Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Computing

John A. Stratton, Christopher Rodrigues, 1-Jui Sung, Nabgi@,

Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, Wen-mei WuHw
{stratton, cirodrig, sungl0, obeidl, |chang20, assaril, gengliu2, whw}@IIlinois.edu

IMPACT Technical Report
IMPACT-12-01
University of Illinois at Urbana-Champaign
Center for Reliable and High-Performance Computing
March 2, 2012
Revision: March 19, 2012

Abstract

The Parboil benchmarks are a set of throughput computinficagipns useful for studying the performance of
throughput computing architecture and compilers. The naomes from the culinary term for a partial cooking
process, which represents our belief that useful througbguputing benchmarks must be “cooked”, or preselected
to implement a scalable algorithm with fine-grained paltalsks. But useful benchmarks for this field cannot be
“fully cooked”, because the architectures and programmiogdels and supporting tools are evolving rapidly enough
that static benchmark codes will lose relevance very quickl

We have collected benchmarks from throughput computindicgjon researchers in many different scientific
and commercial fields including image processing, biomdbcsimulation, fluid dynamics, and astronomy. Each
benchmark includes several implementations. Some impitatiens we provide as readable base implementations
from which new optimization efforts can begin, and otherseaamples of the current state-of-the-art targeting
specific CPU and GPU architectures. As we continue to opéitiese benchmarks for new and existing architectures
ourselves, we will also gladly accept new implementatiardslaenchmark contributions from developers to recognize
those at the frontier of performance optimization on eadthiggcture.

Finally, by including versions of varying levels of optinatzon of the same fundamental algorithm, the bench-
marks present opportunities to demonstrate tools andtacothres that help programmers get the most out of their
parallel hardware. Less optimized versions are presergechallenges to the compiler and architecture research
communities: to develop the technology that automatiaaliges the performance of simpler implementations to the
performance level of sophisticated programmer-optimirgglementations, or demonstrate any other performance

or programmability improvements. We hope that these beacksnwill facilitate effective demonstrations of such
technology.

. INTRODUCTION

Benchmarks are an incredibly important part of computehitecture research. They allow a research commu-
nity to focus on a shared codebase, with individual resegiscinore easily able to understand another’s results. If
a benchmark or set of benchmarks is generally acceptedsétean dispel concerns of bias that often arise when a
researcher creates their own benchmarks to generate thdistped data. The specific goals of existing benchmark
suites are as varied as the suites and research commuhgieselves, but all focus on defining a limited set of
codes representative of some larger set that is worth stgdiost benchmark suites also explicitly or implicitly
define a category of computer system that the benchmarks as¢ useful for studying. As computer systems
change over time, older benchmarks become less usefulvating the creation of new benchmarks applicable to
the current systems and applications of interest.

Throughput computing, especially targeting a heteroges€oPU+Accelerator system architecture, has been
steadily growing and evolving as an application and archite area of great interest. The most widely studied
variant thus far has been the CPU+GPU accelerator systdmiemture, typically using the OpenCL and NVIDIA
CUDA languages. As the properties and challenges of progiagiGPU architectures were understood more and
more, architecture and compiler research in the area oligfimout computing has also grown significantly. Yet
throughput computing research remains difficult to evales there have been few consistent, useful benchmarks
to use as test cases. Many authors created their own berichmatr of necessity, but may not explicitly publish
the code used to create their published works, making intgre replication or validation of results extremely
difficult.

To address this situation, an appropriate benchmark shasld:

« Represent the emerging scientific and commercial apphicatses of throughput computing.

« Represent application algorithms exhibiting low algarith complexity.

« Scale to very wide parallel architectures, anticipating gotential for exponential growth in machine width
and choosing algorithms that will remain applicable foresal years.

« Provide application implementations and a benchmarkirfigastructure that will support the work of var-
ious research interests, at minimum encompassing artlmiéeamicroarchitecture, compiler, language, and
programming environment research.

Taking these directives as our goals, we have developedeaieParboil benchmark suite. The Parboil bench-
marks are a set of accelerated, heterogeneous applicatigpisasizing throughput-oriented computing. The bench-
mark suite includes iterative methods, dynamic task kerngéénse array operations, and data-dependant mem-
ory access patterns. The diversity of the kernels within Plaeboil benchmarks exercises memory bandwidth,
floating-point throughput, latency tolerance, and evermeaffectiveness, with applications drawn from astronomy,
biomolecular simulation, fluid dynamics, image processasjronomy, and dense and sparse linear algebra. Each
benchmark is based on a specific algorithm that is scalabieaqplicable for the datasets included with the
benchmarks. Furthermore, each benchmark includes naultighlementations of that algorithm to support different
benchmarking comparisons or scenarios.

First, we provide a baseline accelerated version of evemglmaark, which embodies a reasonable throughput-
oriented implementation. The baseline accelerated vergipresents reasonable decisions about how to parallelize
and accelerate the algorithm computationally, but makies ptimization effort. Such versions are often consiedi
by memory bandwidth, because they do not necessarily haadgmlescing behavior or other typical optimizations.
We believe these versions are similar to what the averaggraamomer would write as a first functionally-correct
effort, and possibly the deployed version if further optiation is more costly than the programmer can afford.

Second, we provide example architecture-optimized vession which significantly more programmer effort
was typically invested to avoid performance pitfalls ortatecture shortcomings for a specific device, representing
the state of the art for that application on that architextiar the best of our knowledge. The initial architecture-
optimized examples highlight the gap between the perfoomgossible and the performance achieved by the
baseline version. The initial optimized versions also desti@te for other researchers some of the potential
optimizations that have worked well for each applicatiomoidd they choose to develop a new implementation
advancing the state of the art.

Which leads us to the third kind of implementation includeceach benchmark. Anticipating that researchers
may want to reimplement the application algorithms usingfferént language or framework, we provide a simple,

readable, C or C++ implementation to help facilitate thenmementation process, as well as an unoptimized
OpenMP version explicitly marking the major regions of plaissm. The focus on reimplementability also led us

to generally choose benchmarks that were both interestirgjricture, yet small enough for reimplementation of
most or all of the benchmarks to be feasible. We expect theattitire benchmark set could be ported to another
programming model in a few weeks by a small team of expergpcegrammers.

Since the simple versions are focused on simplicity andaieidity to support reimplementation, they should not
be used as the basis of comparison for the other implemensain terms of performance. However, because the
simple implementation does use the same general algorishitmesaccelerated implementations, the autoparalleliza-
tion community may see opportunities to transform the sémipiplementation directly to increase its performance.
Such work is strongly encouraged, and may benefit from therathplementations as points of comparison.

The name “Parboil” comes from the culinary term for a partiabking process that is typically followed
with some finishing step before the dish is served. The tepresents our belief that useful throughput computing
benchmarks must be “cooked”, or released with a scalabt@itiigh suitable for a fine-grained parallel architecture.
But we do not desire to provide only “fully cooked” versiordiscouraging any modifications often necessary
to demonstrate interesting research results. Nor do weedésipublish only “overdone” versions, completely
optimized to a specific device’s low-level characteristithe Parboil benchmarks should be fluid, with standard
versions available for consistent points of comparison,rballeable enough to benefit or even reflect the in-flux
state of the field at this time.

The remainder of this paper has three main objectives. TBe dljective is to acknowledge related work,
contributions and influences on the Parboil benchmarks,adtednative benchmark suites. Ultimately, we want to
help users make informed decisions about whether the RPdveochmarks would be best used instead of or in
combination with those other suites, which we accomplisiSéttion Il. The second objective is to describe the
Parboil benchmarks themselves, in Section Ill. The benckmescriptions are intended to be a point of reference
for those wishing to understand the benchmarks and theiomeamputation patterns at some level without being
forced to read the source code directly. We intend the datgamis to benefit primarily those intending to reimplement
the benchmarks or those attempting to understand reseasalisr based on the benchmarks. The third and final
objective of this document is to outline what we believe tale best practices for publishing results based on the
Parboil benchmarks, and encourage the research commongyrsue the highest standards of research integrity.
Finally, we recognize those whose collaboration and suppade these benchmarks what they are today and offer
some other concluding remarks in Section V.

Il. BENCHMARK SUITE ALTERNATIVES AND COLLABORATIONS

Benchmarks are a prevalent part of the existing researck amcomputer systems, and many benchmark sets
have been developed for different purposes. Depending ongwen use case, Parboil may fulfill your requirements
best alone or supplement other available benchmarks. Yguatsa find that other benchmarks fully satisfy your
needs. Here, we present what we know of other throughput angpbenchmark suites available or in development
to help you decide how Parboil might be most useful to you.

The initial Parboil benchmark set was created at the Uniyes Illinois and used to demonstrate the
performance and applicable code optimizations of the desteration NVIDIA CUDA architecture [8]. However,
the initial benchmarks were almost all some form of regul@nse array operation, which is only a small subset
of the kind of applications that can benefit from throughpunputing. The original Parboil benchmarks were also
developed in 2008, when features such as atomic operatiens absent from the GPU architectures available.
In our revised Parboil benchmark suite, we include a few ef dhiginals to maintain examples of dense array
operations, but believe that the updated Parboil benchsnagresent a much more diverse benchmark set. The
old Parboil benchmarks are therefore no longer fully suggabralthough the original distributions can be made
available on request.

Multithreaded CPU performance has been the emphasis ofatenezent benchmark suites. The PARSEC
benchmarks [1] are one such example, with a focus on broastage of characteristic workloads and parallelization
patterns suitable for the shared-memory architecture winsgtric multiprocessors (SMPs) or chip multiprocessors
(CMPs). They also embody an emphasis on consumer-direetmhmition, mining and synthesis benchmarks.
For those PARSEC benchmarks that would be applicable falysig accelerator architectures as well, we would

be interested in considering their inclusion into futuresiens of Parboil, likely with the current PARSEC im-
plementation as a multithreaded CPU-optimized implentemaSPLASH and its successors are also applicable
CMP benchmarks, but also have not been applied to througtgmaputing architecture studies. To the best of
our knowledge, SPLASH has also not been actively updatediite gome time. To a researcher most interested
in comparing against previously published results for elrahared-memory systems, reimplementing some of
these benchmarks for an accelerator system may be mogittigérdndeed, we are aware that some efforts in this
direction have begun [9].

The Rodinia benchmarks published by the University of Viigi[2] are very similar in philosophy and devel-
opment to the Parboil benchmarks. They contain a similaturexof building-block kernels and full applications,
and also support both CUDA and OpenCL for most benchmarkssgarcher desiring a set of GPU computing
source codes to experiment with, but that does not need any &i uniform scripting environment for code
multiversioning, collecting performance results, or daiag platform settings across all benchmarks, may find the
Rodinia benchmarks to be a better fit. The Rodinia benchntarks no compilation complexity other than standard
source code and Makefiles to understand. The support in Parowides easy ways of conducting certain kinds
of research experiments at the cost of a slightly more comgbenpilation and execution system, although we try
to make the standard interface user-friendly.

Arguably the largest force behind benchmarking in computoday is SPEC. The SPEC High-Performance
Group is developing an accelerator benchmark suite, to twhie are contributing the Parboil benchmarks as
candidates. It is our suspicion that once that suite is pheti, many Parboil users may be able to migrate to the
SPEC accelerator benchmarks, and gain the support of p@iemied results publishing. However, we also suspect
that the Parboil development environment will likely prawere friendly to developing alternate implementations,
especially if those alternate expressions require mone st@ndard C, C++ or Fortran build systems.

[1l. BENCHMARK SUMMARIES

The Parboil benchmarks themselves are a diverse set otappiis. Some are intended to represent common
library routines with broad applicability, such as SGEMMsmarse-matrix, dense-vector multiplication. Others are
specific analyses applicable to a narrower domain, sucheasvittpoint angular correlation function benchmark or
MRI sample gridding. It would not be accurate to call any af farboil benchmarks a “complete application” in
the typical sense, although several of the benchmarks dl@cirrun as standalone tools in some situations. Still,
compared to end-to-end user applications, these benchraagkrelatively simple. It is an admitted weakness, but
also a useful property in that a few graduate students caadilfly port the entire suite to a new programming
model, or optimize them for a new architecture. A suite of &lplications would practically prohibit such activities
We hope that in our explanation of the benchmarks their dityeand relevance will become apparent despite their
“simplicity.”

Although the benchmarks include versions implemented th bte OpenCL and CUDA programming models,
we will typically use OpenCL terminology in describing atsrated implementation details.

A. SGEMM

The SGEMM dense matrix operation is an important buildirgcklin numerical linear algebra codes. Packages
such as the BLAS (Basic Linear Algebra Subprograms), onkeofriost commonly used numeric packages on dense
matrices, are so important that major hardware vendorsiénetty provide their highly optimized BLAS packages
such as MKL, ACML or CUBLAS. Because it is such a well undesst@pplication, often the first studied on any
new architecture, and commonly the most heavily tuned dijperan existing architectures, we include it in the
Parboil benchmarks in spite of its “lack of novelty”.

In Parboil, the optimized CUDA versions for the NVIDIA aroicture are based on the register-tiling GPU
SGEMM code by Volkov [12], one of the fastest known implenagions. However, unlike the implementation
released by Volkov, the Parboil GPU kernel code has beempéeimented such that the readability, configurability,
and performance of the code are better balanced. For exaoaptain code transformations like memory prefetching

The distribution site for the most recent SPLASH benchmanisears to be no longer valid. Although “cached” versiorsamilable,
we would appreciate any information about an active, pryinsaurce for the SPLASH-2 benchmarks.

and common subexpression elimination are adequately &armi current CUDA compilers; implementing them
in source code reduces readability with little or no perfante gain in our experiments. We also parameterize the
code so that the degrees of register tiling/coarsening hated memory tiling can be configured at compile time,
greatly easing our efforts to tune the benchmark for difiel@PU generations. For example, although the code
was originally designed for earlier generations of NVIDIAGs, with a simple adjustment of preprocessor macros
setting tiling degrees, the implementation readily acksegver 500GFLOP/s on GTX480 GPUs.

B. Histogram (Histo)

The Histogram Parboil benchmark is a straightforward lgistomming operation that accumulates the number
of occurrences of each output value in the input data setoliygut histogram is a two-dimensional matrix of char-
type bins that saturate at 255. The Parboil input sets, ebegynpf a particular application setting in silicon wafer
verification, are what define the optimizations appropriatethe benchmark. The dimensions of the histogram
(256 W x 8192 H) are very large, yet the input set follows a roughly €&#an distribution, centered in the output
histogram. Recognizing this high concentration of comtidns to the histogram’s central region (referred to as the
“eye”), the benchmark optimizations mainly focus on impngythe throughput of contributions to this area. Prior
to performing the histogramming, the optimized implemé&ates for scratchpad run a kernel that determines the
size of the eye by sampling the input data. Architecturel wait implicit cache can forego such analysis, since the
hardware cache will automatically prioritize the heaviycassed region wherever it may be.

Two primary transformations reduce the amount of contestiopdates. First, the eye region is privatized to
batches of work-groups, the ideal number of batches detesnéxperimentally for a given platform. The input is
partitioned among the batches, each of which creates apprivate histogram, later reduced into the final output.
These partial histograms can be generated in parallel,|dm#dhes are launched together in one parallel kernel
invocation.

Secondly, each batch is further decomposed into seveeddhrlocks (work-groups), each assigned an exclusive
region of the output in the batch’s partial histogram. Ealdthkin a batch handles the largest number of rows of
the output histogram that still fits into its local memoryt lall gather their input from the region assigned to their
batch. Because the size of local memory is limited, everglblzan only compute a small portion of the histogram
locally.

Therefore, ifw is the maximum number of histogram rows that can be storeadal Imemory, andV is
the size of the eye, it takeld’/w blocks in each batch to generate the partial histogram fioenbiatch’s given
portion of the input set. The input for the batch is read retdumly by each constituent block, which only processes
the input falling within its tile. The relevant input is stated into the local memory tile, a reasonably efficient
operation. One designated block in the batch is also refilerfor handling the rare inputs that fall outside the
eye region, by atomically incrementing the appropriatesbhinglobal memory. When blocks in a batch complete,
their local tiles are juxtaposed with each other and the eym-histogram regions in global memory, composing
the entire partial histogram for the batch. The partialdgsams are reduced into the final output.

Overall, the histogram benchmark demonstrates the highod@andom atomic updates to a large dataset. The
global atomic update penalty can sometimes outweigh a fixettr cost of redundantly reading input data.

C. Cutoff-limited Coulombic Potential (CUTCP)

Some molecular modeling tasks require a high-resolutiop ofathe electrostatic potential field produced by
charged atoms distributed throughout a volume [4]. Cuinfited Coulombic Potential (CUTCP) computes a short-
range component of this map, in which the potential at a givap point comes only from atoms within a cutoff
radius of 1. In a complete application, this would be added to a longeacomponent computed with a less
computationally demanding algorithm. In a simple, segaémnplementation, each atom is visited in sequence,
and electropotential contributions made by a visited ateenaccumulated into all output cells within the cutoff
distance before proceeding to the next atom.

In an accelerated implementation, the atom data is firstopies$ into a spatial data structure as follows. The
atom-filled volume is partitioned into a 3D uniform grid ofllse and atoms are placed into a 3D array at an index
determined by which cell they occupy in the space. The aremydapacity for up to eight atoms in one cell; excess

atoms are processed separately on the CPU. For biomoleutliese the atom density is uniform and close to the
density of water, this data structure utilizes memory effitly. This presorting step is performed on the CPU.

In the accelerated kernel, an electrostatic potentialevalia point is computed by scanning the contents of
all cells within that point’s cutoff radius, finding the atenn those cells that are actually within the cutoff radius,
and accumulating the potentials resulting from those atdmshe most optimized versions, to reduce redundant
computation, each thread computes the potential at melldptput points. To reduce memory bandwidth, one cell’s
worth of atom data at a time is loaded into local memory by akwgpoup, where it can be reused by multiple
threads. All threads in a work-group scan the same set ofsatdims greatly reduces memory traffic at the cost
of increased computation, since threads scan more atorndgdhaot contribute to the final calculation.

The optimized CUTCP application is compute-bound. Unlike dther compute-bound benchmarks, this kernel
achieves high computational throughput partly at the cbgedforming redundant computation. The percentage of
redundant computation is the primary performance limiterthe hardware configurations we have studied.

D. Sum of Absolute Differences (SAD)

In video compression, motion is usually estimated by coingaa block of an input video frame to many
candidate blocks in a reference video frame to find the masilagi block. The Sum of Absolute Differences
(SAD) benchmark represents the comparison step as used ifotht Model (JM) reference H.264/AVC encoder’s
full-search motion estimation algorithm. The benchmarknpares pairs of 44 pixel blocks taken from two
different greyscale images, computing for each pair a numdggesenting the difference between the blocks. In a
separate step, it computes differences between largekdblme summing the results for-# blocks.

The computation for 44 pixel blocks dominates the parallel execution time. If vestrict our attention to
a single block from the input frame, SAD is a 2D stencil algor. It is memory-intensive and benefits from
caching as well as register tiling optimizations to expltata reuse. The processing of multiple input frame blocks
contributes an additional, outer level of parallelism. & are permitted to straddle image boundaries, in which
case out-of-bounds pixels have the same value as the negmbesinds pixel. To reduce the cost of bounds checking,
boundary conditions are handled by texture sampling hamlwa the GPU, and by precalculating a row of a block
on the CPU. The GPU and CPU implementations differ in how $oapre selected for register tiling. Coarsening
was applied to reduce the number of costly texture accessteedGPU, and register tiling to minimize the amount
of arithmetic performed on the CPU.

Computation of SAD values for larger blocks consists of ausege of vector additions. Additions are grouped
into a few GPU kernels to reduce memory traffic.

E. Two-Point Angular Correlation Function (TPACF)

The Two-Point Angular Correlation Function (TPACF) is a s@& of the distribution of massive bodies in
space. The information of interest is a histogram of angdlatances between all pairs of observed objects in
space, as well as the relative value of that histogram digtan compared to the distribution of observed points
correlated with a random set of points and the distributibma scandom set correlated with itself. For robustness,
one observed set is typically correlated with many randots, ®ach also correlated with itself.

To reduce the number of kernels launched, a generic kerulgl isavritten that will correlate any two sets of data
with a single thread block. The thread block performs tilmgiterating over both sets by tiles, one set cached into
private registers and one cached into shared memory. Giveriiles, each thread computes the distance between
its privately cached point with each point cached in sharedhory. Contributions to the small histogram are highly
contentious, so privatization is used to replicate theolgistm, reducing contention. Multiple histogram copies per
thread block are kept in shared memory, with threads hashéistograms in a way minimizing contention. A
reduction on the distributed histograms is the final steghefimplementation.

F. Breadth-First Search (BFS)

The Breadth-first Search algorithm is commonly used in gragiblems such as finding the shortest path
between two nodes. The Parboil benchmark is credited to Lab ¢5], and specifically optimized for a particular
EDA application finding the shortest paths between a sounde mnd every other node in a graph. In a sequential

implementation, the CPU takes every node in the currentti'omand enqueues all unexplored neighbors to the
next frontier. This process iterates until all the nodeshia graph have been visited.

In the parallel implementations, a task is created for evexge in the current frontier. Each task explores all
the neighbors of the node for unvisited nodes, and updatesdht frontier accordingly. Each task adds a variable
number of items to the work queue for the next frontier, whitlygested a dynamic queue with atomic updates
as the primary data structure. However, atomic updatesewahiable representing the queue tail can be a major
point of contention for a single, centralized queue.

To reduce the amount of contention when threads update thidroatier, multiple levels of privatization were
applied to the queue and its tail, resulting in a hierardrgcgue management system. At the lowest levels, threads
are hashed into one of several local queues to reduce locabmecontention. When the tasks finish discovering
new frontier nodes, they merge the local queues into a compatralized queue for the group. Finally, the group
commits the group queue contents to the global queue withrepresentative thread performing one atomic update
to the global tail. The complexity of this parallel algorithis O(V+E) with V being the number of vertices and E
being the number of edges in the graph.

One interesting feature of the optimized implementatidtsisariety of different kernels for frontiers of different
size. When the frontier is very small, only one work-grouprisated, which iterates through frontiers with fast, local
synchronizations until the frontier is too large to cachésnocal memory. When the frontier is too large to cache
in one compute unit's local memory, but small enough to fithie tombined local memory of the entire device, a
number of work-groups equal to the number of compute unitsaated to advance the frontier with global barrier
synchronization among the concurrently executing woiddgs implemented through atomic operations. This is the
most efficient version of the kernel when the frontier justebafits in the combined local memories, as it utilizes
the whole chip’s resources but rarely has to read and writigentries to global memory. When the frontier is too
large to be cached in the entire chip’s resources, a thindekdrased on the streaming model is launched to stream
in the entire current frontier and write out the entire st frontier to global memory. Thus, for very large
graphs, most of the processing time is spent in the streak@ngel, and the fundamental performance bottleneck
is memory bandwidth.

G. MRI Cartesian Gridding (Gridding)

Gridding is a preconditioning step that maps non-Cartebl&nsamples onto a Cartesian grid before applying
and taking the inverse Fast Fourier Transform of the sampdees to generate an image. Gridding interpolates
each input sample onto the grid points that fall within itsinity using the Kaiser-Bessel function to determine
the weight of the sample point onto each grid point based erdistance between them. Because the contribution
becomes insignificantly small as the distance increasesajpproximated to zero beyond a certain cutoff, reducing
the algorithmic complexity to only scale with the input simstead of the input/output size product.

For scalable parallel performance, gridding is best exatusing a gather approach instead of the “natural”
scatter approach, in order to eliminate write contentioth@output. In addition, because the input has an unknown
distributior?, we sort it into bins before executing the gridding kernédeThiggest challenge of MRI gridding is
the highly non-uniform distribution of its input data. Themuniformity is a result of the acquisition method
which collects far more points in the center of the space,revtike most useful imaging information is found,
than along its edges. Making all the bins equal in capacitylditead to a large inflation of the bin data structure
due to padding elements. Instead, the binning kernel peslaccompressed, sparse representation, in which each
bin has variable capacity exactly matching the number ofsttuent elements. Accessing the compact bins is
more challenging than accessing uniform-sized bins, ramguthe precomputation of the starting offset of each bin.
However, the bandwidth savings more than compensate foaddéional complexity of access.

The gridding benchmark also enforces a cap on the capac#gai bin, and spilling over the excess elements
to the CPU. This puts a hard limit on the amount of load imbedatnat may afflict the gridding kernel, while also
employing the host CPU’s computational resources in paralith the GPU gridding kernel.

2In practice, the distribution may in fact be “known”, but makiange after the gridding implementation is written or thRIMlevice
purchased, and therefore must be considered unknown.

H. Sencil

The importance of solving partial differential equatiof®DE) numerically as well as the computationally-
intensive nature of this class of application have made P@lizess an interesting candidate for accelerators. In
the benchmark we include a stencil code, representing aatiite Jacobi solver of the heat equation on a 3-D
structured grid, which can also be used as a buliding blockrfore advanced multi-grid PDE solvers.

The GPU-optimized version draws from several publishedka/@n the topic, containing a combination of 2D
blocking [7] in the X-Y plane, and register-tiling (coargeg) along the Z-direction, similar to the one developed by
Datta et al [3]. Even with these optimizations, the perfano®limitation is global memory bandwidth for current
GPU architectures we have tested.

I. Sparse Matrix-Dense Vector Multiplication (SpMV)

Sparse matrix-vector multiplication is the core of manyat®e solvers. SpMV is memory-bandwidth bound
when the matrix is large. Thus, most optimization effortgehfocused on improving memory bandwidth for both
regular and irregular access.

Sparse matrix data can be stored or transformed into mangopsdy studied data layout patterns, such as
compressed sparse row (CSR) format, ELLPACK (ELL) format] dagged Diagonal Storage (JDS) format. Each is
designed to store non-zero elements efficiently with its oggularization approaches. Computation in these three
formats typically results in regular accesses over non-aé¢ments, both value and index fields, and irregular,
data-dependent accesses over the dense vector. Congiddrich format to use for the GPU-optimized version,
we note that JDS and ELL formats both work with finer paraleligranularities more easily than CSR format.
Particularly, the JDS format is well-designed for parafielector processors, and can be viewed as a modification
of ELL format minimizing imbalance among adjacent rows tigb row permutation. Because of its better load
balance characteristics, we chose to base the GPU-optimieion on JDS format.

JDS format naturally results in stride-one access for tlasgpmatrix elements. Padding may be introduced to
align data, but introduces holes in the input that becomehaaa bandwidth for a bandwidth-limited kernel, and
is only applicable on certain architectures where alignniewery crucial. Other optimization efforts focused on
the irregular accesses to the dense vector. On a GPU atciéegithout a general cache, the texture unit’s cache
can be used to improve the efficiency of irregular accesséisetovector data. Prefetching is also applied to hide
more memory latency when high thread-level parallelismassufficiently available to hide latency alone.

J. Lattice-Boltzman Method simulation (LBM)

The Lattice-Boltzman Method (LBM) is a method of solving tegstems of partial differential equations
governing fluid dynamics [6]. Its implementations typigalepresent a cell of the lattice with 20 words of data: 18
represent fluid flows through the 6 faces and 12 edges of ttieelatell, one represents the density of fluid within
the cell, and one represents cell type or other propertigs ®. differentiate obstacles from fluid. In a timestep,
each cell uses the input flows to compute the resulting odikpws from that cell and an updated local fluid density.

Although some similarities are apparent, the major difieeesbetween LBM and a stencil application is that no
input data is shared between cells; the fluid flowing into &iselot read by any other cell. Therefore, the application
has been memory-bandwidth bound in current studies, anhigption efforts have focused on improving achieved
memory bandwidth [13], [11].

To reach for better bandwidth, optimizations for GPU amttitires focus on addressing the layout of the lattice
data. The effective bandwidth delivered by GPU architexguis primarily determined by two factors: coalescing
and bank conflicts. Coalescing is an attribute of a singl&lnton executed for many work-items. If the addresses
accessed by those work-items are contiguous, then the ngesgetem delivers a single DRAM burst to satisfy
the “coalesced” accesses. Memory bank conflicts arise dthetdistributed nature of the DRAM memory system.
Different DRAM modules, or “banks” contain different setf addresses. If the active threads in the GPU all
happen to access different addresses in the same memorythankccesses will be serialized at that bank even
as the other banks remain idle. The resulting memory bartvwddlivered is therefore much less than the peak
bandwidth that could have been available.

The LBM benchmark base GPU version uses the most logicautafgw software engineering: a large array
of cell structures. Data layout transformation resultsrinogtimized GPU version using a tiled structure-of-arrays

Benchmark || Typical Optimizations Applied Optimized Implementatior] Potential Improvements
Bottleneck of Bottleneck
an Unoptimized
Implementation

cutcp Contention, Scatter-to-Gather, Binning, Regu-Instruction Throughput Minimizing Reads/Checks
Locality larization, Coarsening of Irrelevant Bin Data

mri-g Poor Locality Data Layout Transformation| Instruction Throughput

Tiling, Coarsening

gridding Contention, Load| Scatter-to-Gather, Binning, Com- Instruction Throughput Minimizing Reads/Checks
Imbalance paction, Regularization, Coarsening of Irrelevant Bin Data

sad Locality Tiling, Coarsening Memory Band-| Target Devices with Highe

width/Latency Register Capacities

stencil Locality Coarsening, Tiling Bandwidth

tpacf Locality, Tiling, Privatization, Coarsening | Instruction Throughput
Contention

Ibm Bandwidth Data Layout Transformation Bandwidth

sgemm Bandwidth Coarsening, Tiling Instruction Throughput

spmv Bandwidth Data Layout Transformation Bandwidth

bfs Contention, Load| Privatization, Compaction, Regy- Bandwidth Avoiding Global Barriers /
Imbalance larization Better Kernels for Midsized

Frontiers

histogram Contention, Band-| Privatization, Scatter-to-Gather Bandwidth Reducing Reads of Irrel

width evant Input (alleviated by
cache)

TABLE I: Architecture Stresses of Benchmarks Before anceAfbptimization

implementation that achieves both good coalescing andiglan@emory bank usage. The best tiling does depend
on the specific GPU architecture. We provide a simipdgout _confi g. h header file for easy exploration of
different layouts for various architectures.

K. Mri non-cartesian Q matrix calculation (MRI-Q)

One of the original Parboil benchmarks, MRI-Q, calculatgeagion 3 in the GPU-based MRI reconstruction
paper by Stone et al. [10], and is based on the implementatsad to publish their work. An MRI image
reconstruction is a conversion from sampled radio respotesmagnetic field gradients. Sample “coordinates” are in
the space of magnetic field gradientskespace. The Q matrix in MRI image reconstruction is a precomputablee
based on the sampling trajectory, the plan of how points $p&ee will be sampled. The algorithm examines a large
set of input representing the intended MRI scanning trajgcand the points that will be sampled. Each element
of the Q matrix is computed by a summation of contributiormsrirall trajectory sample points. Each contribution
involves a three-element vector dot product of the input@utgut 3-D location, and a few trigonometric operations.

The output Q elements are complex numbers, but the inputaltéelement vectors. An output element (and
its corresponding input denoting its 3-D location) is assid to a single thread. To make sure the thread-private
data structures exhibit good coalescing, a structurerafya layout was chosen for the complex values and physical
positions of a thread’s output. The shared input data seteher, is cached using GPU constant memory or some
other high-bandwidth resource, and elects an array-atstres implementation to keep each structure in a single
cache line. When limited-capacity constant memory is eggalpthe data is tiled such that one tile is put in constant
memory before each kernel invocation, which accumulatasttle’s contributions into the output.

MRI-Q is a fundamentally compute-bound application, agotnometric functions are expensive and the regu-
larity of the problem allows for easy management of bandwi@herefore, once tiling and data layout remove any
artificial bandwidth bottleneck, the most important optiations were the low-level sequential code optimizations
improving the instruction stream efficiency, such as loopoliimg.

L. Summary

Table | shows a brief summary of the major architecturaluesg stressed by each benchmark in its unoptimized
and optimized forms. The table highlights the ultimate @feof the optimization techniques applied to each

Benchmark base| cuda-base cuda-fermi| cuda-generic| ocl-base| omp-base
cutcp X X X X X
mri-q X X X X X
mri-grid X X X X X
sad X X X X X
stencil X X X X X X
tpacf X X X X X
Ibm X X X X X
sgemm X X X X X X
spmv X X X X X
bfs X X X X X
histogram X X X X X

TABLE II: Benchmark versions included as of February 23rd12

benchmark, and our best assessment of the fundamentadtlonitfor further performance improvement in the
optimized implementation. Although each application ique, we hope that this set at least presents a multifaceted
view of the important characteristics of architecture aptimizations for general throughput computing.

Table 1l show the benchmark versions currently supported.an¢ committed to contributing more versions
optimized for more architectures, and invite others to Gbute optimized versions as well to build the base
of optimized versions available for architecture comparss Furthermore, if any new or existing architectural
characteristics not significantly probed by these bencksnare brought to our attention, we would be glad to
expand or adjust the Parboil set with new applications agdrahms to gain insight into those areas.

IV. GUIDELINES FORRESEARCH AND PUBLICATION

We envision three primary use models for Parboil. The firsigesmodel is for calibrating the performance of
real machines. To support this usage, we plan to provide @ibagerformance for each benchmark. The guidelines
and rules for such usage will be similar to that of the SPECcharark set. The details of the hardware, software
stack, and code optimizations performed will be publishetha Parboil web site. The system used to perform
such measure will also be maintained and preserved at thmiPhosting institution for at least five years. When
a party reports a Parboil performance number for a systeenh#indware, software stack, and code optimizations
performed should be documented to the same level of detailsesbaseline number. After verification by the Parboll
support team, the reported numbers, the system confignyatim the optimized code used for the publication will
be published at the official Parboil web site. An organizatsimilar to the SPEC consortium is being formed to
support this usage model. We believe that with its guidslifiexibility, and support, Parboil will stimulate healthy
competition among vendors in this fast advancing area @utinput computing.

The second Parboil use model for Parboil is to evaluate naavistions in computer architecture. In this usage,
we envision that researchers will use Parboil benchmarkisdin simulation studies. Due to the research nature of
such usage, we will not require a particular guideline buk work to foster an environment where researchers can
more easily build on each others work. In particular, adeanesearch in future parallel architectures will most
likely involve new program optimization techniques. Welwihcourage researchers to deposit their own optimized
versions of Parboil benchmarks into a community repositdvg will also encourage researchers to describe the
simulation configuration, compilers and software stacksiagd in their experiments. The Parboil hosting institutio
will periodically compile an annotated list of research @apthat use Parboil.

The third use model for Parboil is to study the benefit of nemnitation and runtime techniques for real
machines. We envision that researchers and developergepitirt enhanced Parboil numbers for real systems
due to their new techniques. They will be encouraged to phlilie details of the hardware, software stack, and
code optimizations performed at the Parboil web site. Harethe Parboil hosting institution will not verify the
results. In particular, the Parboil hosting institutiorlwit require the submitting teams to release their comite
runtime implementations. Rather, the teams that subméetihesults are simply expected to adhere to conventional
academic publication integrity guidelines. The intentierto foster an environment where researchers can make
better comparisons by seeing the input code used in eachsakperiments. It will be up to the researchers and
developers to share or release their actual implementation

10

In all cases, we will remind users to respect the intendedtisach version of the benchmark. For instance, the
reference sequential version of a benchmark is primartigrided to facilitate reimplementation, not provide a point
of performance comparison point based on CPU architect®esearchers should not publish performance results
of the reference sequential implementation, with an exeegbr authors specifically documenting performance
improvements made to the reference sequential code its@ligh automatic parallelization or other techniques.
Parboil results for CPU systems should be reported with ©ptimized Parboil implementations using techniques
such as cache tiling, multithreading, and vectorizatiothwrtrinsics or compiler directives as applicable, such as
the examples we provide for MRI-Q and Histogramming.

The same consideration also applies to the baseline aatedleversions of each benchmark. This version
is meant to provide researchers and developers with insigbtthe types of parallelization and optimization
strategies that will likely be suitable for the correspamggbenchmark. They may be used as points of comparison
with architecture-optimized versions on the same systemthe versions one should use to compare two systems
are the architecture-optimized versions.

Finally, we envision that the optimized versions of eactbBibenchmark program will evolve over time with
community contribution. We encourage researchers andorerid create new versions of benchmarks, especially
those representing the state of the art in optimization fearicular programming model or platform and to submit
their versions to be included in the publicly available r&ipmry. Copyright and licensing issues are addressed on
the official Parboil web page:

http://inpact.crhc.illinois.edu/parboil.php
We hope that, through mutually sharing our updates and ibotibns, the community can recognize the highest
level of performance for each platform and credit contadosit Such collaborative and competitive efforts will also
contribute to our understanding of parallel computingfplats as a community.

V. CONCLUSIONS

Although we have already acknowledged through citationtrifigst all of the external contributors for each of
the benchmarks individually, we want to thank all our cofiediors and sponsors explicitly and directly here as well.
When appropriate, the acknowledgements are noted with ¢inehmark embodying their primary contributions.
Our thanks go to John Stone, David Hardy, Klaus Schulten,ainthe other members and collaborators of the
Theoretical and Computational Biophysics Group at the &hsity of lllinois (CUTCP); lan Atkinson and Keith
Thulborn of the Center of MR Research at the University dfidiis at Chicago (Gridding); Lijuan Luo and Martin
Wong (BFS); and the multiple students of ECE 498 AL that aldws to use their final projects as benchmark seeds.
Finally, the members of the IMPACT research group not listssddirect authors have all made some meaningful
contribution. Thanks especially to Xiao-Long Wu, Hee-S&dk, Timothy Wentz, I1zzat El Hajj, Sara Baghsorkhi,
Deepthi Nandakumar, Xiaohuang Huang, Stephanie Tsao, atdrML athara.

This work is not directly supported by any particular granfunding agency, but is supported in part by all
the supporters of the IMPACT research group and its memiéis. work is supported in part by the following
parties: the Gigascale Systems Research Center (GSRQ)tea inded under the Focus Center Research Program
of the Semiconductor Research Corporation (SRC); the wsaddParallel Computing Research Center (UPCRC)
at the University of Illinois, jointly funded by Intel and Nliosoft; the National Science Foundation, under grant
NSF CNS 05-51665; the National Institute of Health undentgaNIF-P41-EB03631-16 and NIG-R01-CAQ098717;
and NVIDIA Corporation.

We look forward to working with the throughput computing aoomity to continue to maintain high standards
for system benchmarking, and insightful analysis from #ecture and optimization efforts targeted at these
benchmarks. Please contact us if you would like to collaieasa the further development of the Parboil benchmarks.

REFERENCES

[1] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University, January 2011.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, SkHe, and K. Skadron. Rodinia: A benchmark suite for hetaregas
computing. InProceedings of the 2009 |EEE International Symposium on Workload Characterization (I1SVC), pages 44-54, 2009.

[3] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, [Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil contaion optimization
and auto-tuning on state-of-the-art multicore architexsu InProceedings of the 2008 ACM/IEEE conference on Supercomputing, SC
‘08, pages 4:1-4:12, Piscataway, NJ, USA, 2008. IEEE Press.

11

[4] D.J. Hardy, J. E. Stone, K. L. Vandivort, D. Gohara, C. Rgdes, and K. Schulten. Fast molecular electrostatiogritlans on GPUs.
In GPU Computing Gems. 2010.
[5] L. Luo, M. Wong, and W.-m. Hwu. An effective GPU implematibn of breadth-first search. IRroceedings of the 47th Design
Automation Conference, pages 52-55, June 2010.
[6] Y. H. Qian, D. D’Humieres, and P. Lallemand. Lattice BGKodels for Navier-Stokes equatioEurophysics Letters, 17(6):479-484,
1992.
[7] G. Rivera and C.-W. Tseng. Tiling optimizations for 3desttific computations.SC Conference, 0:32, 2000.
[8] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. StoneBDKirk, and W. W. Hwu. Optimization principles and appliat
performance evaluation of a multithreaded gpu using cud@PbPP '08, pages 73-82, New York, NY, USA, 2008. ACM.
[9] M. Sinclair, H. Duwe, and K. Sankaralingam. Porting CMBrBhmarks to GPUs. Technical report, Department of Comj@gdences,
The University of Wisconsin-Madison, 2011.
[10] S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu., Z. Liang] B. P. Sutton. Accelerating advanced MRI reconstrustimm GPUs.
In International Conference on Computing Frontiers, pages 261-272, 2008.
[11] 1.-J. Sung, J. A. Stratton, and W. mei W. Hwu. Data laytnainsformation exploiting memory-level parallelism inusttured grid
many-core applications. I@onference on Parallel Architectures and Compilation Techniques, pages 513-522, September 2010.
[12] V. Volkov and J. W. Demmel. Benchmarking GPUs to tunesgelinear algebra. I8upercomputing '08, pages 1-11, Piscataway, NJ,
USA, 2008. IEEE Press.
[13] Y. Zhao. Lattice Boltzmann based PDE solver on the GRidual Computing, 24(5):323—-333, 2008.

