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4,224 Kepler GPUs in Blue Waters 

• NAMD

– 100 million atom benchmark with Langevin dynamics and PME 

once every 4 steps, from launch to finish, all I/O included

– 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only

– 768 nodes, XK7 is 1.8X XE6

• Chroma

– Lattice QCD parameters: grid size of 483 x 512 running at the 

physical values of the quark masses

– 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 768 nodes, XK7 is 2.4X XE6

• QMCPACK

– Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC

– 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 700 nodes, XK7 is 2.7X XE6

IWCSE 2013



Two Current Challenges

• At scale use of GPUs

– Communication costs 

dominate beyond 2048 

nodes

– E.g., NAMD Limited by 

PME

– Insufficient computation 

work

• Programming Efforts

– This talk
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Writing efficient parallel code is 

complicated.

• Choose data structures

• Map work/data into tasks

• Schedule tasks to threads

• Memory allocation

• Data movement

• Pointer operations

• Index arithmetic

• Kernel dimensions

• Thread ID arithmetic

• Synchronization

• Temporary data structures

Planning how to execute an algorithm Implementing the plan

GMAC

DL

OpenACC/

C++AMP/

Thrust

Tools can provide focused help

or broad help

Tangram

Triolet, X10, Chappel, Nesl, DeLite, Par4All
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Levels of GPU Programming 

Languages

IWCSE 2013

Current generation CUDA, OpenCL, DirectCompute

Next generation OpenACC, C++AMP, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch

Same GPU execution model (but less boilerplate)

Prototype & in development X10, Chapel, Nesl,

Delite, Par4all, Triolet...

Implementation manages GPU threading and synchronization

invisibly to user



Where should the smarts be for 

Parallelization and Optimization?

• General-purpose language + parallelizing compiler

– Requires a very intelligent compiler

– Limited success outside of regular, static array algorithms

• Domain-specific language + domain-specific compiler

– Simplify compiler’s job with language restrictions and extensions

– Requires customizing a compiler for each domain

• Parallel meta-library + general-purpose compiler

– Library embodies parallelization decisions

– Uses a general-purpose compiler infrastructure

– Extensible—just add library functions

– Historically, library is the area with the most success in parallel 
computing

SC13



Triolet – Composable Library-Driven 

Parallelization

• EDSL-style library: build, then interpret program packages

• Allows library to collect multiple parallel operations and 

create an optimized arrangement

– Lazy evaluation and aggressive inlining

– Loop fusion to reduce communication and memory traffic

– Array partitioning to reduce communication overhead

– Library source-guided parallelism optimization of sequential, 

shared-memory, and/or distributed algorithms

• Loop-building decisions use information that is often

known at compile time

– By adding typing  to Python

SC13



Example: Correlation Code

def correlation(xs, ys):
scores = (f(x,y) for x in xs for y in ys)
return histogram(100, par(scores))

Compute f(x,y) for every x 

in xs and for every y in ys

(Doubly nested loop)

Compute it in parallel

Put scores into a 100-

element histogram

SC13



Triolet Compiler 

Intermediate Representation

• List comprehension and par build a package containing
1. Desired parallelism

2. Input data structures

3. Loop body

for each loop level

• Loop structure and parallelism annotations are statically 
known

correlation xs ys =
let i = IdxNest HintPar

(arraySlice xs)
(λx. IdxFlat HintSeq

(arraySlice ys)
(λy. f x y )       )

in histogram 100 i

Outer loop

Inner loop

Body

SC13



Triolet Meta-Library 

• Compiler inlines histogram

• histogram has code paths for handling different loop structures

• Loop structure is known, so compiler can remove unused code 

paths

correlation xs ys =
case IdxNest HintPar

(arraySlice xs)
(λx. IdxFlat HintSeq

(arraySlice ys)
(λy. f x y )       )

of IdxNest parhint input body.
case parhint
of HintSeq. code for sequential nested histogram

HintPar. parReduce input
(λchunk.

seqHistogram 100 body chunk)
IdxFlat parhint input body. code for flat histogram

SC13



Example: Correlation Code

• Result is an outer loop specialized for this application

• Process continues for inner loop

correlation xs ys =
parReduce
(arraySlice xs)
(λchunk. seqHistogram

100
(λx. IdxFlat HintSeq

(arraySlice ys)
(λy. f x y )       )

chunk)

Inner loop

Body

Parallel reduction; each task 

processes a chunk of xs

Task computes a sequential 

histogram

SC13



Cluster-Parallel Performance and 

Scalability

• Triolet delivers 

large speedup over 

sequential C

• On par with 

manually 

parallelized C for 

computation-bound 

code (left)

• Beats similar high-

level interfaces on 

communication-

intensive code 

(right)

SC13Chris Rodriues Rodrigues, et al, PPoPP 2014



Tangram

• A parallel algorithm 

framework for solving 

linear recurrence problems

– Scan, tridiagonal matrix 

solvers, bidiagonal matrix 

solvers, recursive filters, …

– Many specialized 

algorithms in literature

• Linear Recurrence - very 

important for converting 

sequential algorithms into 

parallel algorithms



Tangrams Linear Optimizations

• Library operations to simplify application tiling 

and communication

– Auto-tuning for each target architecture

• Unified Tiling Space

– Simple interface for register tiling, scratchpad 

tiling, and cache tiling

– Automatic thread fusion as enabler

• Communication Optimization

– Choice/hybrid of three major types of algorithms

– Computation vs. communication tradeoff



Linear Recurrence 

Algorithms and Communication

SC13
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Tangram Initial Results
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Next Steps

• Triolet released as an open source project

– Develop additional Triolet library functions and 

their implementations for important application 

domains

– Develop Triolet library functions for GPU clusters

• Publish and release Tangram

– Current tridiagonal solver in CUSPARSE is from 

UIUC based on the Tangram work

– Integration with Triolet
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THANK YOU!
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