A Productive Framework for Generating High Performance, Portable, Scalable Applications for Heterogeneous computing

Wen-mei W. Hwu

with
Tom Jablin, Chris Rodrigues, Liwen Chang, Steven ShengZhou Wu, Abdul Dakkak

CCoE, University of Illinois at Urbana-Champaign
4,224 Kepler GPUs in Blue Waters

• NAMD
 – 100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included
 – 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only
 – 768 nodes, XK7 is 1.8X XE6

• Chroma
 – Lattice QCD parameters: grid size of $48^3 \times 512$ running at the physical values of the quark masses
 – 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 – 768 nodes, XK7 is 2.4X XE6

• QMCPACK
 – Full run Graphite $4 \times 4 \times 1$ (256 electrons), QMC followed by VMC
 – 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 – 700 nodes, XK7 is 2.7X XE6
Two Current Challenges

- At scale use of GPUs
 - Communication costs dominate beyond 2048 nodes
 - E.g., NAMD Limited by PME
 - Insufficient computation work
- Programming Efforts
 - This talk
Writing efficient parallel code is complicated.
Tools can provide focused help or broad help

Planning how to execute an algorithm
Implementing the plan

- Choose data structures
- Map work/data into tasks
- Schedule tasks to threads

- Memory allocation
- Data movement
- Pointer operations
- Index arithmetic
- Kernel dimensions
- Thread ID arithmetic
- Synchronization
- Temporary data structures

Tangram

GMAC
DL
Triplet, X10, Chappel, Nesl, DeLite, Par4All
OpenACC/C++AMP/Thrust

SC13
Levels of GPU Programming Languages

<table>
<thead>
<tr>
<th>Current generation</th>
<th>CUDA, OpenCL, DirectCompute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next generation</td>
<td>OpenACC, C++AMP, Thrust, Bolt</td>
</tr>
<tr>
<td>Prototype & in development</td>
<td>X10, Chapel, Nesl, Delite, Par4all, Triolet...</td>
</tr>
</tbody>
</table>

Implementation manages GPU threading and synchronization invisibly to user.

Simplifies data movement, kernel details and kernel launch.

Same GPU execution model (but less boilerplate).
Where should the smarts be for Parallelization and Optimization?

- **General-purpose language + parallelizing compiler**
 - Requires a very intelligent compiler
 - Limited success outside of regular, static array algorithms

- **Domain-specific language + domain-specific compiler**
 - Simplify compiler’s job with language restrictions and extensions
 - Requires customizing a compiler for each domain

- **Parallel meta-library + general-purpose compiler**
 - Library embodies parallelization decisions
 - Uses a general-purpose compiler infrastructure
 - Extensible—just add library functions
 - Historically, library is the area with the most success in parallel computing
Triolet – Composable Library-Driven Parallelization

- EDSL-style library: build, then interpret program packages
- Allows library to collect multiple parallel operations and create an optimized arrangement
 - Lazy evaluation and aggressive inlining
 - Loop fusion to reduce communication and memory traffic
 - Array partitioning to reduce communication overhead
 - Library source-guided parallelism optimization of sequential, shared-memory, and/or distributed algorithms
- Loop-building decisions use information that is often known at compile time
 - By adding typing to Python
def correlation(xs, ys):
 scores = (f(x,y) for x in xs for y in ys)
 return histogram(100, par(scores))

Compute f(x,y) for every x in xs and for every y in ys (Doubly nested loop)

Compute it in parallel

Put scores into a 100-element histogram
Triolet Compiler
Intermediate Representation

- List comprehension and `par` build a package containing
 1. Desired parallelism
 2. Input data structures
 3. Loop body
 for each loop level
- Loop structure and parallelism annotations are **statically known**

```plaintext
correlation xs ys =
  let i = `IdxNest HintPar
          (arraySlice xs)
          (λx. `IdxFlat HintSeq
            (arraySlice ys)
            (λy. f x y ))
  in histogram 100 i
```

Outer loop

Inner loop

Body
Triolet Meta-Library

- Compiler inlines histogram
- histogram has code paths for handling different loop structures
- Loop structure is known, so compiler can remove unused code paths

```
correlation xs ys =
  case IdxNest HintPar
    (arraySlice xs)
    (\x. IdxFlat HintSeq
      (arraySlice ys)
      (\y. f x y ))
  of IdxNest parhint input body.
  case parhint
  of HintSeq. code for sequential nested histogram
    HintPar. parReduce input
      (\chunk. seqHistogram 100 body chunk)
  of IdxFlat parhint input body. code for flat histogram
```
Example: Correlation Code

- Result is an outer loop specialized for this application
- Process continues for inner loop

```haskell
correlation xs ys = parReduce
  (arraySlice xs)
  (\chunk. seqHistogram 100
    (\x. IdxFlat HintSeq
      (arraySlice ys)
      (\y. f x y )
    )
  )

Parallel reduction; each task processes a chunk of xs
Task computes a sequential histogram
Inner loop
Body
```
Cluster-Parallel Performance and Scalability

- **Triolet** delivers large speedup over sequential C
- On par with manually parallelized C for computation-bound code (left)
- Beats similar high-level interfaces on communication-intensive code (right)

A parallel algorithm framework for solving linear recurrence problems

- Scan, tridiagonal matrix solvers, bidiagonal matrix solvers, recursive filters, ...
- Many specialized algorithms in literature

Linear Recurrence - very important for converting sequential algorithms into parallel algorithms
Tangrams Linear Optimizations

• Library operations to simplify application tiling and communication
 – Auto-tuning for each target architecture

• Unified Tiling Space
 – Simple interface for register tiling, scratchpad tiling, and cache tiling
 – Automatic thread fusion as enabler

• Communication Optimization
 – Choice/hybrid of three major types of algorithms
 – Computation vs. communication tradeoff
Linear Recurrence Algorithms and Communication

Brent-Kung Circuit Kogge-Stone Circuit Group Structured
Tangram Initial Results

Prefix scan on Fermi (C2050)

Prefix scan on Kepler (Titan)

IIR Filter on both GPUs

Tridiagonal solver on both GPUs
Next Steps

• Triolet released as an open source project
 – Develop additional Triolet library functions and their implementations for important application domains
 – Develop Triolet library functions for GPU clusters

• Publish and release Tangram
 – Current tridiagonal solver in CUSPARSE is from UIUC based on the Tangram work
 – Integration with Triolet
THANK YOU!