
A Productive Framework for

Generating High Performance,

Portable, Scalable Applications for

Heterogeneous computing

Wen-mei W. Hwu

with

Tom Jablin, Chris Rodrigues, Liwen Chang,

Steven ShengZhou Wu, Abdul Dakkak

CCoE, University of Illinois at Urbana-Champaign

4,224 Kepler GPUs in Blue Waters

• NAMD

– 100 million atom benchmark with Langevin dynamics and PME

once every 4 steps, from launch to finish, all I/O included

– 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only

– 768 nodes, XK7 is 1.8X XE6

• Chroma

– Lattice QCD parameters: grid size of 483 x 512 running at the

physical values of the quark masses

– 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 768 nodes, XK7 is 2.4X XE6

• QMCPACK

– Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC

– 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 700 nodes, XK7 is 2.7X XE6

IWCSE 2013

Two Current Challenges

• At scale use of GPUs

– Communication costs

dominate beyond 2048

nodes

– E.g., NAMD Limited by

PME

– Insufficient computation

work

• Programming Efforts

– This talk
0

500

1000

1500

2000

2500

3000

3500

512 1024 2048 4096

Blue Waters K7 Nodes NAMD
Strong Scaling – 100M Atoms

CPU CPU+GPU

SC13

Writing efficient parallel code is

complicated.

• Choose data structures

• Map work/data into tasks

• Schedule tasks to threads

• Memory allocation

• Data movement

• Pointer operations

• Index arithmetic

• Kernel dimensions

• Thread ID arithmetic

• Synchronization

• Temporary data structures

Planning how to execute an algorithm Implementing the plan

GMAC

DL

OpenACC/

C++AMP/

Thrust

Tools can provide focused help

or broad help

Tangram

Triolet, X10, Chappel, Nesl, DeLite, Par4All

SC13

Levels of GPU Programming

Languages

IWCSE 2013

Current generation CUDA, OpenCL, DirectCompute

Next generation OpenACC, C++AMP, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch

Same GPU execution model (but less boilerplate)

Prototype & in development X10, Chapel, Nesl,

Delite, Par4all, Triolet...

Implementation manages GPU threading and synchronization

invisibly to user

Where should the smarts be for

Parallelization and Optimization?

• General-purpose language + parallelizing compiler

– Requires a very intelligent compiler

– Limited success outside of regular, static array algorithms

• Domain-specific language + domain-specific compiler

– Simplify compiler’s job with language restrictions and extensions

– Requires customizing a compiler for each domain

• Parallel meta-library + general-purpose compiler

– Library embodies parallelization decisions

– Uses a general-purpose compiler infrastructure

– Extensible—just add library functions

– Historically, library is the area with the most success in parallel
computing

SC13

Triolet – Composable Library-Driven

Parallelization

• EDSL-style library: build, then interpret program packages

• Allows library to collect multiple parallel operations and

create an optimized arrangement

– Lazy evaluation and aggressive inlining

– Loop fusion to reduce communication and memory traffic

– Array partitioning to reduce communication overhead

– Library source-guided parallelism optimization of sequential,

shared-memory, and/or distributed algorithms

• Loop-building decisions use information that is often

known at compile time

– By adding typing to Python

SC13

Example: Correlation Code

def correlation(xs, ys):
scores = (f(x,y) for x in xs for y in ys)
return histogram(100, par(scores))

Compute f(x,y) for every x

in xs and for every y in ys

(Doubly nested loop)

Compute it in parallel

Put scores into a 100-

element histogram

SC13

Triolet Compiler

Intermediate Representation

• List comprehension and par build a package containing
1. Desired parallelism

2. Input data structures

3. Loop body

for each loop level

• Loop structure and parallelism annotations are statically
known

correlation xs ys =
let i = IdxNest HintPar

(arraySlice xs)
(λx. IdxFlat HintSeq

(arraySlice ys)
(λy. f x y))

in histogram 100 i

Outer loop

Inner loop

Body

SC13

Triolet Meta-Library

• Compiler inlines histogram

• histogram has code paths for handling different loop structures

• Loop structure is known, so compiler can remove unused code

paths

correlation xs ys =
case IdxNest HintPar

(arraySlice xs)
(λx. IdxFlat HintSeq

(arraySlice ys)
(λy. f x y))

of IdxNest parhint input body.
case parhint
of HintSeq. code for sequential nested histogram

HintPar. parReduce input
(λchunk.

seqHistogram 100 body chunk)
IdxFlat parhint input body. code for flat histogram

SC13

Example: Correlation Code

• Result is an outer loop specialized for this application

• Process continues for inner loop

correlation xs ys =
parReduce
(arraySlice xs)
(λchunk. seqHistogram

100
(λx. IdxFlat HintSeq

(arraySlice ys)
(λy. f x y))

chunk)

Inner loop

Body

Parallel reduction; each task

processes a chunk of xs

Task computes a sequential

histogram

SC13

Cluster-Parallel Performance and

Scalability

• Triolet delivers

large speedup over

sequential C

• On par with

manually

parallelized C for

computation-bound

code (left)

• Beats similar high-

level interfaces on

communication-

intensive code

(right)

SC13Chris Rodriues Rodrigues, et al, PPoPP 2014

Tangram

• A parallel algorithm

framework for solving

linear recurrence problems

– Scan, tridiagonal matrix

solvers, bidiagonal matrix

solvers, recursive filters, …

– Many specialized

algorithms in literature

• Linear Recurrence - very

important for converting

sequential algorithms into

parallel algorithms

Tangrams Linear Optimizations

• Library operations to simplify application tiling

and communication

– Auto-tuning for each target architecture

• Unified Tiling Space

– Simple interface for register tiling, scratchpad

tiling, and cache tiling

– Automatic thread fusion as enabler

• Communication Optimization

– Choice/hybrid of three major types of algorithms

– Computation vs. communication tradeoff

Linear Recurrence

Algorithms and Communication

SC13

Brent-Kung Circuit Kogge-Stone Circuit Group Structured

Tangram Initial Results

 0

 2

 4

 6

 8

 10

 12

 14

1-32bit 8-32bit 64-32bit 1-64bit 8-64bit 64-64bit

T
h
r
o
u
g
h
p
u
t

(
b
i
l
l
i
o
n
s

o
f

s
a
m
p
l
e
s

p
e
r

s
e
c
o
n
d
)

Problem Size (millions of samples, data tpye)

StreamScan-Reported

Proposed-Tuned

StreamScan-Tuned

SDK-5.0

Thrust-1.5

 0

 5

 10

 15

 20

 25

 30

 35

1 8 64

T
h
r
o
u
g
h
p
u
t

(
b
i
l
l
i
o
n
s

o
f

s
a
m
p
l
e
s

p
e
r

s
e
c
o
n
d
)

Problem Size (millions of samples)

Tuned-for-Kepler, Run-on-Kepler

Tuned-for-Kepler-no-Shuffle, Run-on-Kepler

StreamScan, Run-on-Kepler

Tuned-for-Fermi, Run-on-Kepler

SDK-5.0, Run-on-Kepler

 0

 5

 10

 15

 20

 25

1 2 4

T
h
r
o
u
g
h
p
u
t

(
b
i
l
l
i
o
n
s

o
f

s
a
m
p
l
e
s

p
e
r

s
e
c
o
n
d
)

Order of IIR Filter

Proposed, Tuned-for-Fermi, Run-on-Fermi

Proposed, Tuned-for-Fermi, Run-on-Kepler

Proposed, Tuned-for-Kepler, Run-on-Kepler

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 16

T
h
r
o
u
g
h
p
u
t

(
m
i
l
l
i
o
n
s

o
f

e
q
u
a
t
i
o
n
s

p
e
r

s
e
c
o
n
d
)

Problem Size (millions of equations)

Ours,Kepler-Kepler

Ours,Fermi-Fermi

Ours,Fermi-Kepler

SC12,Kepler-Kepler

SC12,Fermi-Fermi

NVIDIA,Kepler-Kepler
NVIDIA,Fermi-Fermi

Prefix scan on Fermi (C2050) Prefix scan on Kepler(Titan)

IIR Filter on both GPUs Tridiagonal solver on both GPUs

Next Steps

• Triolet released as an open source project

– Develop additional Triolet library functions and

their implementations for important application

domains

– Develop Triolet library functions for GPU clusters

• Publish and release Tangram

– Current tridiagonal solver in CUSPARSE is from

UIUC based on the Tangram work

– Integration with Triolet

SC13

THANK YOU!

SC13

