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Abstract—Triangle counting and truss decomposition are two
essential procedures in graph analysis. As the scale of graphs
grows larger, designing highly efficient graph analysis systems
with less power demand becomes more and more urgent. In
this paper, we present triangle counting and truss decomposition
using a Field-Programmable Gate Array (FPGA). We leverage
the flexibility of FPGAs and achieve low-latency high-efficiency
implementations. Evaluation on SNAP dataset shows that our tri-
angle counting and truss decomposition implementations achieve
43.5× on average (up to 757.7×) and 6.4× on average (up
to 68.0×) higher performance per Watt respectively over GPU
solutions.

Index Terms—FPGA, graph algorithms, triangle counting,
truss decomposition

I. INTRODUCTION

Triangles and k-truss form basic substructure in almost all
social network graphs. A triangle is defined as a cycle of
length three whereas a k-truss is defined as a subgraph where
every edge belongs to at least k-2 triangles. Triangle counting
and k-truss decomposition algorithms are used to analyze the
network to generate triangle counts and k-truss subgraphs that
could identify cohesive subgroups of individuals. Furthermore,
triangle counts calculation forms the fundamental step in cal-
culating metrics such as clustering coefficient and transitivity
ratio whereas k-truss provides an approximate idea about the
community structure of the graph.

Triangle counting and k-truss problems are often regarded
as memory bandwidth intensive in many application scenarios
like social network activity analysis. A large number of CPU
and GPU based optimization techniques have been proposed
[1], [2]. These works show promising results of accelerating
triangle counting and k-truss problems with tens to hundreds
times of speedup.

As an alternative acceleration platform for computational
intensive and latency sensitive applications, the Field Pro-
grammable Gate Array (FPGA), is playing a vital role. Com-
pared to GPU, FPGA has lower power consumption with
equal or even higher performance potential. Therefore, FPGA
usually achieves better performance per watt than GPU [3].
On the other hand, unlike GPUs, FPGA solution requires
hardware-design knowledge, which can lead to a higher barrier
for wide adoption. One approach to deal with this challenge is

to leverage High-Level Synthesis (HLS) for productive FPGA
design, a powerful tool that allows FPGA designers to use
high-level languages like C/C++ instead of low level hardware
description languages. With the help of HLS, FPGA design is
greatly simplified [4], [5].

In this paper, we leverage the strength of FPGAs to im-
plement triangle counting and truss decomposition algorithms,
aiming to achieve higher power efficiency than GPU platforms.
We evaluate two variants of FPGA boards, to demonstrate the
form factor, power efficiency and computational capabilities
depending on application requirement.

1) Xilinx PYNQ-Z1 FPGA board, a small-scale, low-power
and light-weighted System-on-Chip (SoC) platform, which fits
well in energy constrained edge computations, like Internet-
of-Things (IoT) applications. The power of the board is 2.5
Watt, and the weight is 0.164lbs without attachments.

2) Alpha Data ADM-PCIE-7V3 FPGA board, with a Co-
herent Accelerator Processor Interface (CAPI) connected to an
IBM POWER8 machine. The maximum power consumption
of the board is 25 Watt.

Our paper’s contribution can be summarized as follows.
• To the best of our knowledge, this is the first work that

solves triangle counting and truss decomposition problem
end-to-end on FPGA platforms.

• Our graph analysis solutions achieve significant higher
performance per Watt improvement over GPU solutions.
For some graphs our solutions achieve comparable or
even higher processing throughput compared to GPU
solutions.

• Our implementations target two different FPGA plat-
forms, one for embedded ultra-low-power processing
scenarios and the other for high-performance servers.

II. LITERATURE REVIEW

A. Triangle Counting and Truss Decomposition Literatures

In triangle counting, the popular algorithms can be classified
into three approaches, namely, matrix multiplication based
[6], [7], subgraph matching-based, and set-intersection based
approaches [8]. Both sequential and parallel versions of these
algorithms have been proposed [2], [9], [10], [11], [12]. In
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[13], authors discussed the trade-offs of these three approaches
in detail and concluded that the set-intersection based algo-
rithm performs the best. We selected the set-intersection based
algorithm for FPGA acceleration.

Similarly, efficient fast algorithms to calculate maximal k-
truss for a given graph have been under discussion for decades
[14]. MapReduce [15], Open-MP and shared memory systems
[16], [17], [18], [19], and GPU [2], [20] based fast parallel
k-truss decomposition have been proposed in the past. Two
different methods are discussed for enumerating k-truss in a
graph: Bottom-up approach (increments k starting from 2),
and top-down approach (decrements k starting from a guessed
large value). In this paper, we use the bottom-up approach
based on [2].

B. Solving Graph Problems on FPGA

There are several existing approaches to solve graph prob-
lems on FPGA by leveraging its high parallelism and flexi-
bility. Specifically, GraphStep [21] and GraphGen [22] have
tried to solve large graph algorithms like page rank, BFS
with efficient memory placements and have even built a
compiler backend to support easy transition of code base.
Similarly, GraphOps [23] provides a hardware library for
efficient acceleration of graph algorithms. ForeGraph [24]
performs large scale graph processing in multiple FPGAs
where efficient partition of graphs is performed such that the
communication between the partitions is minimal. However,
none of these existing works has explored implementation of
triangle counting and truss decomposition algorithms on an
FPGA.

III. ALGORITHMS

In this section we present the algorithms we used. We adapt
and optimize the algorithms used in [2] so that they are more
suitable for FPGAs.

A. Triangle Counting

One of the most widely used sequential triangle counting
algorithm is presented in [25] as the forward algorithm. We
adopt this intersection based method for triangle counting
on FPGA, which iterates over each edge and finds common
elements from two adjacency lists of head and tail nodes.
The triangle counting algorithm takes a graph G = (V,E)
in adjacency list format as input, processes the adjacency
list, performs set intersection for each edge e to count the
number of triangles that contain the edge e, ∆(e), and finally
accumulates these ∆’s to get the total triangle count for G,
∆(G). We assume that each node u in the graph has a unique
numerical index, denoted as idx(u), and this indexing of
nodes defines a total order ≺ of nodes, i.e., for any two
vertices u, v ∈ V , idx(u) < idx(v) indicates the order
u ≺ v. The preprocessing step constructs a list of directed
edges and filters adjacency lists according to this ordering,
so that each triangle in the graph is counted only once in
the set intersection step. The full triangle counting steps are
presented in Algorithm 1. Note that the adjacency lists in

Algorithm 1 TriangleCount(G) (intersection-Based)
Input: Graph G = (V,E) in adjacency list format:
{adj0(u) = {vu0 , vu1 , . . . , vuku}|u ∈ V }

Output: Triangle count ∆(G)
1: ∆(G)← 0, E∗ ← ∅, adj∗(e)← ∅,∀e ∈ E
2: for each vertex u ∈ V do
3: for each neighbor v ∈ adj0(u) do
4: if idx(u) > idx(v) then E∗ ← E∗ ∪ {(u, v)}
5: if idx(u) < idx(v) then adj∗(u)← adj∗(u)∪{v}
6: end for
7: end for
8: for each edge (u, v) ∈ E∗ do
9: ∆(G)← ∆(G)+SetIntersect(adj∗(u), adj∗(v))

10: end for

Algorithm 2 SetIntersect(Au, Av) (sorted input sets)
Input: sorted sets Au, Av

Output: size of intersection of Au and Av: ∆(e = (u, v))
1: iu ← 0, iv ← 0
2: while iu < |Au| and iv < |Av| do
3: if Au[iu] < Av[iv] then iu ← iu + 1
4: if Au[iu] > Av[iv] then iv ← iv + 1
5: if Au[iu] == Av[iv] then
6: iu ← iu + 1, iv ← iv + 1
7: ∆(e)← ∆(e) + 1
8: end if
9: end while

the SNAP dataset we use are all sorted by the node index,
therefore SetIntersect could be done by scanning through
two input sets only once. The SetIntersect pseudo code
is presented in Algorithm 2. The compute complexity of
SetIntersect is O(|Au| + |Av|), where |Au| and |Av|
are the size of two input sets.

B. Truss Decomposition

The second static graph challenge aims to discover the k-
truss for all 2 ≤ k ≤ kmax, where kmax is the maximal k such
that k-truss is not an empty set. Given a graph G, a k-truss is
defined as a subgraph of G where each edge in this subgraph
is contained in at least (k− 2) triangles in the subgraph [26].
Our truss decomposition algorithm is shown in Algorithm
3 and has the same input format as triangle counting. The
algorithm consists of two parts, initial triangle counting (line
1-13) and triangle count updates (line 14-32). The initial
triangle counting part slightly differs from Algorithm 1. In
the preprocessing of this initial triangle counting, instead of
filtering adjacency lists as in Algorithm 1, we use the full
adjacency list adj0(u). This provides an easy way to keep track
of triangle count on both forward and backward edges for k-
truss algorithm. Besides, in the initial triangle counting, for
each edge, we stored the list of triangles that contain the edge
(line 8). In our truss decomposition algorithm, we use edge-
centric indexing where we assign indices to edges (line 21-31).
This is different from the node indexing in the input graph file
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Triangles list:
Edge   Triangles

1:        (2, 3), (4, 5)
2:        (1, 3)
3:        (1, 2)
4:        (1, 5)
5:        (1, 4)
6:            -

Triangle Count list:
Edge   Triangle Count

1:          2
2:          1
3:          1
4:          1
5:          1
6:          0

Fig. 1. Example Data Structures for Truss Decomposition

and in Algorithm 1. Indexing edges simplifies edge lookup,
reduces random accesses into DRAM, and speeds up edge
lookup in all data structures used in the truss decomposition
algorithm. Fig. 1 gives an example of data structures used in
our truss decomposition implementation.

Algorithm 3 TrussDecompose(G)
Input: Graph G = (V,E) in adjacency list format:
{adj0(u) = {vu0 , vu1 , . . . , vuku}|u ∈ V }

Output: k-truss for 2 ≤ k ≤ kmax

1: for each edge e = (u, v) ∈ E s.t. u > v do
2: iu ← 0, iv ← 0, ∆(e)← 0, S∆(e)← ∅
3: while iu < |adj0(u)| and iv < |adj0(v)| do
4: if adj0(u)[iu] < adj0(v)[iv] then iu ← iu + 1
5: if adj0(u)[iu] > adj0(v)[iv] then iv ← iv + 1
6: if adj0(u)[iu] == adj0(v)[iv] then
7: e1 ← (adj0(u)[iu], u), e2 ← (adj0(u)[iu], v)
8: S∆(e)← S∆(e) ∪ {(e1, e2)}
9: iu ← iu + 1, iv ← iv + 1

10: ∆(e)← ∆(e) + 1
11: end if
12: end while
13: end for
14: EdgeExists← True, NewDeletes← False, k ← 2
15: while EdgeExists do
16: if NewDeletes == False then
17: Output current graph as k-truss subgraph
18: k ← k + 1
19: end if
20: EdgeExists← False, NewDeletes← False
21: for each edge e ∈ E do
22: if 0 < ∆(e) < (k − 2) then
23: ∆(e)← 0, NewDeletes← True
24: for each (e1, e2) ∈ S∆(e) do
25: Delete any (ea, eb) in S∆(e1) and S∆(e1)

that contains e
26: ∆(e1)← ∆(e1)− 1, ∆(e2)← ∆(e2)− 1
27: end for
28: else if ∆(e) > (k − 2) then
29: EdgeExists← True
30: end if
31: end for
32: end while

IV. GRAPH ANALYSIS WITH PYNQ SOC
A. PYNQ SoC Overview

The PYNQ board contains a Xilinx Zynq-7000 SoC, which
has embedded ARM cores and programmable logic. The
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Fig. 2. PYNQ SoC Design Overview

overview of our SoC design is shown in Fig. 2. The pro-
cessing elements (PEs) in FPGA is connected to external on-
board DRAM via Xilinx AXI High Performance ports. The
embedded ARM CPU and FPGA share the virtual memory
space.

B. FPGA Processing Element (PE) Design
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Fig. 3. Triangle Counting PE Structure
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Fig. 4. Truss Decomposition PE Structure

We map triangle counting and truss decomposition compu-
tation to processing elements (PEs) implemented on FPGA. A
PE is a hardware block that can work on either triangle count-
ing or truss decomposition algorithm independently. Further,
PEs can be duplicated to create multiple instances, a notion
similar to parallel threads.
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For triangle counting, each PE works on a subset of edge list
(lines 8-10 in Algorithm 1). Fig. 3 depicts the PE structure.
Note that the datapath that starts from on-chip Block RAM
(BRAM), then comparator, address increment units, and to
address port are fully pipelined, that means all the function
units in the circuit are fully utilized during execution and
therefore highly efficient. Given an edge, our PE reads the
adjacency lists of the two endpoints from the on-board DRAM
and stores them into on-chip BRAM, and then computes the
size of the intersection of those two adjacency lists. The output
provides the number of triangles associated with that edge.

For truss decomposition, preprocessing and initial triangle
counting are done by the embedded ARM cores. PE on the
FPGA performs the actual truss decomposition (lines 14-32
in Algorithm 3). Fig. 4 shows the PE structure. The datapath
consisting comparators and the address generation units are
fully pipelined. The PE checks the triangle count list to see
whether each edge has more than k − 2 triangles. If no, the
PE marks current edge as deleted, deletes all the edges in
the associated triangles (affected edges) by 1, and updates the
triangles list of those affected edges. The whole triangle count
list and triangles list are stored in the on-board DRAM, and
the data for the edge under processing is buffered in BRAM
dynamically. Our PE is designed in C, and synthesized into
circuit by Xilinx Vivado High-Level Synthesis (HLS) [27].

C. BRAM Buffering Scheme

Accesses to external DRAMs are expensive for FPGA. In
our PE design, to reduce the off-chip DRAM accesses, we
use on-chip FPGA BRAMs to buffer the adjacency lists before
performing set intersection on the adjacency lists. This strategy
not only reduces original random accesses to external DRAM,
but also enables data in the burst access mode. This scheme
further enables to exploit the locality provided by the neighbor
nodes in buffered adjacency list efficiently.

D. Multi-PE Design and Workload Balancing

Given the constrained area, we can fit at most 8 PEs in
the PYNQ board. Each of the PEs works on a part of the
input edge list providing parallelism. We dispatch edges in
the list to PEs using round-robin arbitration scheme. However,
for neighbor edges, we make sure they are mapped to the
same PE. These steps ensure the workload of PEs are balanced
while best reusing data. For truss decomposition acceleration,
it is hard to partition input/output set and distribute partitions
across PEs. This is because multiple PEs could be updating the
same memory location at the same time and an efficient atomic
access scheme is needed. Depending on the implementation,
this could introduce extra performance overhead. In this work
we use 1 PE for truss decomposition.

V. CAPI TRIANGLE COUNTING INTEGRATION

Although FPGAs offer flexibility to provide customized
design for specific algorithms, they have limited fast on-chip
memory. To circumvent this challenge, we leverage IBM’s Co-
herent Accelerator Processor Interface CAPI [28], that allows

CAPI

PSL

CAPP PCIe PSL

CAPP

Physical connection

AFU

Fig. 5. Traditional Architecture (left) vs CAPI Architecture (right)

direct cache coherent interface to the CPU memory banks. As
shown in Fig. 5, CAPI allows the FPGA to access the memory
banks of the CPU side with shorter latency compared to the
traditional architecture.

CAPI has a host side (Coherent Attached Processor Proxy
(CAPP)) and an FPGA side (Power Service Layer (PSL))
driver proxies. Application functional units (AFU), the hard-
ware accelerators, interact with the PSL whenever they require
to access a data present in the host DRAM. In our design, the
AFUs are group of triangle counting PEs with the associated
modules to fetch the required data from the CPU side. Both
CPU and FPGA can access the memory at the same time but
with additional cost on maintaining coherency.
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Fig. 6. Triangle Counting-CAPI Communication

Figure 6 shows interaction of PSL with Triangle counting
accelerator that was created using HLS. PSL provides, the size
of the neighbor, offset, and edges to the Processing element
through a 13 state Mealy finite state machine (FSM). Once
the start signal comes from the PSL, which is directed by
the CAPP (the CPU-CAPI proxy), the Finite state machine
receives the 32-bit num edges (register-based). After that, the
neighbor data will be transferred from the memory banks of
the CPU side to the neighbor buffer on the FPGA. In the
current design, the neighbor buffer hosts 128 bytes and divides
them into 32 patches of 32-bit. The data transfer to the inner
PE’s FIFO is based on the read signal, which directs the FSM
to enable the empty signal or disable it. When the empty signal
is high, it indicates that data transfer is needed and when it
goes down, it means that FIFO is full and there is no need for
more data transfer until the PE finishes the computation. While
the data transfer is performed, there is a counter inside the
FSM that is decremented from the size of the neighbor to zero.
When the counter reaches zero, the neighbor data movement
with CAPI is over, and the same process will happen with the
offset. Once the offset transfer process is done, the edge part
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will start. The ap ready signal is an output flag, which directs
the FSM to take the ap return value (a 32-bit outputvalue of
the PE) back to the CPU to be stored in the memory bank.
After transferring the data back to the CPU, the FSM will
issue the shutdown signal to close both sides of the CAPI
bridge (PSL and CAPP). Afterwards, a couple of states will
be traversed to request and load the data through CAPI-DMA
into the PE’s buffer. Once the output of the PE is generated,
there is a state for moving the output back to the CPU memory
side and closing the bridge between CAPP and PSL.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

We evaluated our triangle counting and truss decomposi-
tion implementations using real-world graphs from the SNAP
dataset [29]. We tested our design on Xilinx PYNQ board and
measured the processing time and power consumption for each
graph. The performance of our implementation is compared
with three existing implementations: sequential Python base-
line provided by the Graph Challenge organizer [26], OpenMP
implementation, and single GPU implementation from [2].
These are the implementations with highest performance in
[2]. The experiments in [2] are conducted on the IBM Min-
sky machine two 80-core 4.02 GHz Power8 CPUs and four
NVIDIA Tesla P100 GPUs [2].

On-board experiments are done with Xilinx PYNQ-Z1
FPGA, a low-power low-cost embedded SoC board. It con-
tains a Xilinx Zynq-7000 SoC, 512MB DDR3 memory, and
MicroSD card as storage. Inside the Zynq-7000 SoC there
are embedded dual-core ARM Cortex-A9 processor (called
processing system, PS) and programmable logic (PL), which
includes 53.2k Look-Up Tables (LUTs), 220 DSPs, and
4.9Mbits fast on-chip Block RAM. The embedded ARM cores
run at 650MHz clock frequency. PS runs an Ubuntu 16.04
operating system. The PS and PL share the virtual memory
space which simplifies programming and data sharing in the
SoC. The PL circuit is synthesized from C code using Vivado
HLS and Vivado 2017.2. Our triangle counting implementation
on PYNQ contains eight triangle counting PEs, while our truss
decomposition implementation contains only one PE.

We also integrate our triangle counting accelerator with IBM
CAPI, and targets IBM Power8 machine with FPGAs. The
simulation results will be presented later in this section.

B. Triangle Counting on PYNQ SoC

In Table I and II, Python is the serial Python baseline
provided by the challenge organizer, OMP is the OpenMP
implementation on Power8 machine from [2] which uses
all 160 CPU cores. GPU is the single Tesla P100 GPU
implementation from [2], which is the fastest implementation
in [2]. Speedup over is the speedup achieved by our PYNQ
implementation over these three previous implementations.
Note that the execution time of our work includes time of pre-
processing, memory allocation, memory copy and execution.
Perf/Watt over GPU is the performance per Watt number of
our whole PYNQ implementation over that of the single P100

GPU implementation. We use the estimate of 250 Watts for the
IBM Minsky machine with one single P100 GPU worker [30].
We use a USB power meter to measure the power consumption
of PYNQ board during execution. The average PYNQ power
consumption we got from the measurement is 2.59 Watts.

From Table I, PYNQ implementation outperforms Python
baseline, OpenMP and GPU by up to 68.47×, 12.75× and
7.85× respectively. For graphs with larger number of edges,
our speed up is lower compared to OMP and GPUs, but in
terms of performance per Watt, we outperform from GPU sig-
nificantly with higher power efficiency by 43.5× (geomean).

For larger graphs, performance limitation is due to frequent
data movement between on-board DRAM and on-chip BRAM.
To understand this further, we measure execution time break
down of our implementation as shown in Fig. 7. Preprocessing
is the step where PS CPU constructs filtered edge list and
adjacency list as explained in Section III. Malloc is the
time when PS CPU allocates arrays in the shared virtual
memory space. Memcpy loads input data to the allocated
shared memory space. All these three steps are done on the
PS CPU side. Kernel is the actual PL FPGA execution time.
On average 50% of time is spent on triangle counting kernel
execution. This indicates that pipelined kernel execution is
possible where the CPU does preprocessing while FPGA does
the kernel execution for previously preprocessed data. This
could be considered as a type of CPU+FPGA collaborative
task partitioning scheme and is left as future work.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
kernel memcpy malloc preprocessing

Fig. 7. Triangle Counting Execution Time Breakdown

C. Truss Decomposition on PYNQ SoC

Table II shows the truss decomposition performance of our
PYNQ implementation and previous ones [2]. Our imple-
mentation outperforms the Python baseline by up to 74.3×,
and it outperforms OMP on graphs with lower number of
edges. Given that the FPGA does not have dedicated caches
and also due to random memory access present in the k-
truss kernel, the performance gain is limited. However, our
implementation beats GPU ones in terms of power efficiency
by 6.4× (geomean), which is noteworthy. Figure 8 in our
truss decomposition design, most of the total execution time
goes to kernel. We still could overlap preprocessing and FPGA
computation to reduce batch processing latency.

D. Triangle Counting on Power Machine with CAPI

We integrated our triangle counting design with IBM CAPI
and collected preliminary simulation results due to limited
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TABLE I
TRIANGLE COUNTING PERFORMANCE COMPARISON OF OUR DESIGN AGAINST P100 GPU AND MULTI-CORE POWER CPU ON REAL-WORLD GRAPHS

Graph #node #edge Triangle
Count

Execution Time (s) Speedup over Perf/Watt
over GPUPython OMP GPU This Work Python OMP GPU

roadNet-CA 1,965,206 5,533,214 120,676 3.543 0.29 0.18 2.342 1.513 0.124 0.077 7.419
amazon0601 403,394 4,886,816 3,986,507 23.036 0.264 0.163 2.011 11.457 0.131 0.081 7.825
amazon0505 410,236 4,878,874 3,951,063 23.203 0.264 0.162 1.958 11.849 0.135 0.083 7.985
amazon0312 400,727 4,699,738 3,686,467 22.058 0.295 0.162 1.880 11.735 0.157 0.086 8.319
flickrEdges 105,938 4,633,896 107,981,213 306.638 0.403 0.188 4.479 68.469 0.090 0.042 4.052
roadNet-TX 1,379,917 3,843,320 82,869 2.386 0.255 0.173 1.586 1.505 0.161 0.109 10.531
roadNet-PA 1,088,092 3,083,796 67,150 1.946 0.254 0.169 1.291 1.507 0.197 0.131 12.631
amazon0302 262,111 1,799,584 717,719 3.181 0.228 0.157 0.662 4.803 0.344 0.237 22.881
soc-Slashdot0811 77,360 938,360 551,724 24.388 0.228 0.155 0.499 48.882 0.457 0.311 29.988
cit-HepPh 34,546 841,754 1,276,868 8.578 0.264 0.154 0.343 24.980 0.769 0.448 43.288
loc-brightkite edges 58,228 428,156 494,728 4.146 0.21 0.147 0.193 21.498 1.089 0.762 73.575
email-Enron 36,692 367,662 727,044 8.153 0.272 0.146 0.220 37.025 1.235 0.663 63.998
ca-CondMat 23,133 186,878 173,361 0.57 0.218 0.154 0.070 8.188 3.131 2.212 213.529
facebook combined 4,039 176,468 1,612,010 2.629 0.232 0.15 0.093 28.358 2.502 1.618 156.177
as-caida20071105 26,475 106,762 36,365 4.286 0.264 0.147 0.072 59.144 3.643 2.029 195.803
p2p-Gnutella04 10,876 79,988 934 0.161 0.234 0.144 0.032 5.016 7.291 4.487 433.081
oregon1 010331 10,670 44,004 17,144 1.518 0.242 0.144 0.028 53.933 8.598 5.116 493.835
as20000102 6,474 25,144 6,584 0.538 0.234 0.144 0.018 29.326 12.755 7.849 757.651
geomean - - - - - - - 13.386 0.732 0.450 43.473

TABLE II
TRUSS DECOMPOSITION PERFORMANCE COMPARISON AGAINST P100 GPU AND MULTI-CORE POWER CPU ON REAL-WORLD GRAPHS

Graph #node #edge kmax
Execution Time (s) Speedup over Perf/Watt

over GPUPython OMP GPU This Work Python OMP GPU
roadNet-CA 1,965,206 5,533,214 4 526.181 0.680 0.249 7.083 74.291 0.096 0.035 3.393
amazon0505 410,236 4,878,874 11 2,666.413 5.395 1.717 110.833 24.058 0.049 0.015 1.495
amazon0312 400,727 4,699,738 11 2,213.735 5.557 1.151 97.622 22.677 0.057 0.012 1.138
roadNet-TX 1,379,917 3,843,320 4 368.975 0.597 0.226 7.083 52.096 0.084 0.032 3.080
roadNet-PA 1,088,092 3,083,796 4 295.109 0.579 0.209 6.446 45.780 0.090 0.032 3.130
amazon0302 262,111 1,799,584 7 306.633 1.562 0.366 14.634 20.953 0.107 0.025 2.414
soc-Slashdot0811 77,360 938,360 35 2,863.684 12.392 1.671 61.127 46.848 0.203 0.027 2.639
cit-HepPh 34,546 841,754 25 1,888.288 12.265 1.785 50.878 37.114 0.241 0.035 3.386
cit-HepTh 27,770 704,570 30 2,387.755 14.477 3.199 56.537 42.233 0.256 0.057 5.462
loc-brightkite edges 58,228 428,156 43 1,498.010 11.84 1.786 29.233 51.243 0.405 0.061 5.897
ca-AstroPh 18,772 396,100 57 854.938 7.072 2.066 30.706 27.842 0.230 0.067 6.494
email-Enron 36,692 367,662 22 1,053.504 9.681 2.975 22.223 47.407 0.436 0.134 12.922
ca-HepPh 12,008 236,978 239 1,080.121 8.376 1.809 71.153 15.180 0.118 0.025 2.454
ca-CondMat 23,133 186,878 26 109.940 2.643 0.394 4.090 26.880 0.646 0.096 9.299
facebook combined 4,039 176,468 97 1,235.489 26.478 6.593 40.258 30.690 0.658 0.164 15.808
as-caida20071105 26,475 106,762 16 143.366 3.405 0.380 2.541 56.415 1.340 0.150 14.434
p2p-Gnutella04 10,876 79,988 4 3.820 0.380 0.152 0.216 17.717 1.762 0.705 68.046
oregon1 010331 10,670 44,004 16 39.433 2.426 0.275 0.920 42.857 2.637 0.299 28.849
as20000102 6,474 25,144 10 12.128 1.472 0.207 0.308 39.414 4.784 0.673 64.934
geomean - - - - - - - 34.959 0.305 0.066 6.412
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time. We targeted Alpha Data 7V3 FPGA board for IBM
Power8 machine. Our synthesis results showed that up to 40
PEs can fit into 7V3 FPGA. From simulation the data loading
time from CPU cache line to FPGA PE is 5.63ms, triangle
counting time for a single PE running at 100MHz for soc-

Epinions1 graph is 3.77s, and with 40 PEs triangle counting
time can be reduced down to 9.25ms, which is 16.8× faster
than the P100 GPU. Vivado power analysis shows that the
power consumption for the FPGA chip itself is 10.7 Watt,
and BRAM and signals make the majority (65%) of dynamic
power consumption. In terms of Perf/Watt, it’s 392.5× better
than P100 GPU. We are still exploring the extra optimization
space enabled by CAPI.

VII. CONCLUSION

To the best of our knowledge, we are the first to present
FPGA based accelerators for triangle counting and k-truss
decomposition algorithms. The FPGA based system provides
43.5× and 6.4× higher performance per Watt compared to
GPU solutions for the two algorithms respectively, making it
an ideal candidate for high-efficiency graph analysis.
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