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Abstract 

Memory-based attacks represent one of the largest attack classes in the field.  

Many techniques have been proposed to protect applications from certain 

classes of memory exploits, however, few of these techniques can protect the 

application from all memory attacks, and few permit the protection of only 

select variables.  We present a technique to provide protection of select 

variables from a wide range of memory attacks.  The protection is provided by 

computing the dependence tree of each critical variable, ensuring that no 

variable or instruction within the dependence tree is corrupted by utilizing 

hardware supported runtime checks.  We evaluate the technique using software 

based emulation. 

 

1. Introduction 

This paper presents a technique (information flow signature checking) to protect data that is 

critical to the application from a memory corruption attack. We define a memory corruption 

attack as a malicious corruption of any control/non-control data (in the heap, stack, or registers) 

through a memory error in the program. These memory errors can occur in programs written in 

languages such as C and C++ which are not type-safe, and hence the runtime environment allows 

any pointer to write to any location in memory, regardless of type. While attackers have 

exploited memory errors to overwrite control data such as return addresses and function pointers 

[1], they can also overwrite security-critical non-control data (such as passwords) by exploiting 

memory errors. Chen et al. [2] showed that such attacks are practical for a broad class of 

applications, including large server programs. Our goal is to protect application data that is 

critical from the security point of view, be it control data or non-control data, from memory-

corruption attacks. 

The strength of our technique is that it considers a very broad threat model.  It is assumed that 

the attacker can execute arbitrary code as well as overwrite any program variable stored in 

memory or registers, provided the modification is observable at execution time. The threat model 

also covers physical attacks in which code is injected via some malicious hardware device, such 
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as a corrupt smart-card, as long as the memory is manipulated through the checked processor’s 

pipeline.  

Many existing techniques [3] break down when they are applied to select variables, as not 

protecting even one variable in the dependence tree of a critical variable allows an attacker to 

influence that critical variable.  Our technique on the other hand, explicitly protects the entire 

dependence tree of the critical variable.  This allows the overhead of checking to be configurable 

based on application requirements.  Furthermore, information flow signature checking ensures 

that any security violation affecting the critical data can be detected before the data is used by the 

original program in a security-critical context. This allows attacks to be detected before they can 

compromise the system or propagate to other parts of the system. 

The proposed technique is primarily based on the observation that the main reason for a data 

error is the ‘disconnect’ between the source-level semantics of a program and its system 

semantics. Information flow checks enforce the source-level semantics of memory accesses at 

runtime for the security-critical data.  The properties inferred by a compiler-based static analysis 

of which instructions are allowed to write to a security-critical object according to the source 

code are checked and enforced at runtime.  A pointer to an object can be manipulated by an 

attacker at runtime to reach another object by taking advantage of data layout arrangements in 

the object files, however, the compiler can infer from the source code that the pointer is not 

allowed to access the second object.  In order to achieve high detection coverage, the proposed 

technique protects the entire dependence chain of instructions/data which contribute to the 

computation of the critical variable.  

Our technique can also detect insider attacks in which parts of the program itself behave 

maliciously, or more specifically, against the source-code semantics of the original program.  For 

example, assume that the browser contains a table of the user’s public keys, which is marked 

critical.  Now suppose the user loads a malicious plug-in which is allowed to execute code in the 

same memory space as the browser.  Our technique will detect any attempt by the plug-in to 

write to the critical table independent of whether the plug-in code itself is checked since the 

security checks are in the browser.  

We implemented and tested our technique on the OpenSSH server program.  The results show 

that the overhead incurred by the runtime checking is highly dependent on the selected critical 

variable, ranging from 2.5% to 187%. 

2. Related Work 

Much of the earlier work related to memory corruption attacks has been targeted for specific 

attacks.  For example, techniques such as StackGuard [4] and Libsafe [5] protect specifically 
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against buffer overflow vulnerabilities.  Similarly, control flow checking techniques such as the 

No Execute Bit [6], Program Shepherding [1], and Control-flow Integrity [7] protect against 

attacks in which the attacker corrupts control data in the program. Recently, Chen et al. [2] have 

shown that it is possible for an attacker to overwrite non-control data (i.e., a password) in the 

system and exert the same level of influence over the application as if they had overwritten 

control data. 

Another class of techniques, broadly called information flow-based security, enforces an 

externally imposed policy rather than one inherent to the program. Information flow-based 

security techniques [8] classify program data as high-security and low-security and ensure that 

low-security data cannot influence high-security data in the program.  Sabel and Myers also 

explore information flow-based security, but focus on confidentiality rather than 

integrity/security [23].  A common variant of information security is taintedness (first proposed 

in the PERL programming language), which marks all externally supplied data (through user-

input) as low-security data and ensures that these cannot influence high-security data in the 

program (such as pointers [9] and return addresses [10]). The main problem with these 

techniques is that they can result in false positives (rejection of valid code) and missed attacks 

due to incompatibilities or differences between the imposed policy and the policies inherent to 

the programming language.  

Techniques such as address space randomization [11][12][13] are also based on the observation 

that an attacker exploits the disconnect between the source-level semantics and the application 

binary. However, they attempt to obfuscate the details of the underlying memory layout from the 

attacker rather than detecting and preventing attacks.  Thus, protection is probabilistic and can be 

circumvented by repeated undetected attacks on the system, or through program information 

leaks such as pointer addresses exposed to the user or specially crafted format string attacks.  

A broad class of techniques for ensuring memory safety of C and C++ programs has been 

proposed in the literature (e.g. [14][15]). These techniques use static analysis to prove pointers 

are safe at compile time and insert runtime checks for pointers that cannot be proven to be safe. 

These techniques are effective at guaranteeing protection from failures due to program errors.  

However, they cannot guarantee the program is secure from all malicious attackers since an 

attack may alter the data flow assumed by static analysis. 

Another broad class of techniques generally referred to as intrusion detection systems has also 

been proposed [22].  The goal of these techniques is to detect security attacks by monitoring 

streams of network traffic.  These techniques are useful for detecting well-known attacks for 

which attack invariants have been extracted and are advantageous because they incur little 

overhead since the network stream can be monitored by an independent computer.  However, 
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there are two main disadvantages of these techniques.  First, they can only detect attacks which 

are performed over the network and thus cannot detect physical/local attacks (such as smart-card 

attacks) or attacks in which a user modifies a local object, such as an environmental variable or 

program data file.  Secondly, these techniques require certain known invariant byte strings (or at 

least some group of disjoint invariant bytes).  Thus, intrusion detection systems can only defend 

against well-known attacks, or attacks which are very similar to previous attacks.  Therefore, 

these techniques are not generally useful for against attacks which exploit a previously 

undisclosed vulnerability. 

Recently a technique to guarantee memory safety in the presence of malicious attacks was 

proposed in [3]. The main idea is to compute the data flow graph of the program and enforce this 

data flow at runtime. This is performed by computing the reaching definitions of each variable in 

the program using intraprocedural, flow-sensitive analysis and ensuring that only the instructions 

that write to the memory location according to the reaching definitions analysis can do so at 

runtime. The attack model considered by this paper is similar to our paper in that the attacker is 

allowed to write to any memory location.  It is assumed, however, that: (i) The attacker cannot 

overwrite variables stored in registers and hence checking memory loads and stores is sufficient 

to provide protection.  (ii) The control flow of the program is preserved and can be enforced by 

instrumenting every read and write of program control data. Selectively protecting only the 

critical variables, as it is done in our approach, may violate and hence break the guarantees 

provided by the scheme. Further, our attack model assumes that the attacker can write to both 

memory and registers, and therefore, the checking is not restricted to memory loads and stores. 

Finally, our model does not require the original program’s control flow to be preserved during an 

attack.  The approach proposed in [3] does not consider context-sensitivity in computing the 

reaching definitions analysis which can introduce serious security holes in the data-flow graph 

computed statically. 

3. Attack Model 

We assume that the attacker can write to any location, be it memory or register at any point in the 

execution of the program. The attacker can also execute arbitrary code and change the control 

flow of the original program.  

Recall that our goal is to protect certain data marked critical and prevent the attacker from 

corrupting this data against the semantics of the source program. 

The attack model also covers physical attacks on the hardware e.g. smartcards, where the 

attacker can change the control flow of the program or change the operands fetched by an 

executing instruction at runtime. However, the attack model does not consider attacks in which 



 5 

the executable image of the program is altered by the attacker, or attacks that tamper with the 

program executable before it is loaded. It is also assumed that the program load process is not in 

the control of the attacker and that a secure linker/loader is deployed.  

In general, the technique proposed in this paper assures the integrity of critical data and not its 

confidentiality. Hence it does not address side-channel attacks [17]. However, unlike 

randomization based protection, the technique does not require the program to be free of 

information leaks (which would allow the attacker to guess the randomization details).  

4. Concept of Information Flow Signature Checking 

Our technique computes, for each critical data location in the program, the set of instructions that 

are allowed to write to the critical data location in the program (according to source code 

semantics). In this section, example attacks are used to illustrate how the signature checking 

technique detects attacks. 

 

4.1. How Information Flow Signatures Detect Attacks 

The program fragment given below prompts the user for a password and then compares the 

supplied password to the correct password stored in the password variable.  If a user enters the 

correct seven-character password “asecret”, the program outputs “Success”.  If the passwords do 

not match, the program outputs “Failed”.  Observe that the unchecked bounds on the gets() 

function allow the user to enter more than seven-characters, causing variables on the stack to be 

overwritten.  Suppose that an attacker enters the string “attack! attack!”.  This would enable the 

attacker to overwrite the stack variable password. 

1  int main() 
2  { 
3   char password[8] = "asecret"; 
4   char userpass[8]; 
5   printf(“Enter Password:\n”); 
6   gets(userpass); 
8   if(strncmp(userpass,password,7)==0) 
9      printf("Success\n"); 
10   else 
11     printf("Failed\n"); 
12 } 

The main reason for this vulnerability is that the programmer never implied that the password 

buffer should be written to by the gets() function.  From the source code, it is clear that the gets() 

function should only write to the userpass buffer; however, this is not enforced by the runtime 

system, which allows any instruction to write to any memory location.  The attacker exploits this 

disconnect between the source-level semantics and the runtime layout of objects on the stack to 
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compromise the system.  If the semantics of the source code were enforced, the gets() function 

would not be allowed to write to the password variable, and the attack would be prevented.  Our 

method provides this enforcement for critical variables, such as the user password, which if 

corrupted can compromise the security of the application.  

Detection.  In the example, suppose that both the password and userpass buffers are critical.  

During static compilation, the compiler encodes the set of all instructions that are allowed to 

write to each of the critical variables.  For the sake of clarity, signatures used in the examples are 

considered at the granularity of program statements rather than machine-level instructions.  In 

this example, the only statement that is allowed to write to the password variable is password[8] = 

"asecret" on line 3, and the only statement that is allowed to write to the userpass variable is 

gets(userpass) on line 6.  Suppose that the chosen signature is the set of all statements allowed to 

write to that variable.  Thus, the signature for password is {3} and the signature for userpass is {6}.  

Now any attempt to write to password from within gets() on line 6 will be detected, since 6 is not 

in the signature for the password variable.  

4.2. Why the signature must encode the entire dependence tree 

In the example above, the signature included only those statements that directly manipulate the 

critical variable.  In many programs, however, due to instruction/data dependencies, program 

variables can be altered indirectly following the instruction dependence chain.  In order to 

provide protection against attacks which exploit an instruction/data dependence to tamper with 

the critical variables, it is necessary to encode the entire dependence tree.  The example 

discussed in this section illustrates such a scenario. 

1  int authenticate(char* username, char* password) 
2  { 
3 int authenticated=0; 
4 int result;  
5 char tmpbuf[512]; 
6    result = strncmp(“asecret”,password,7); 
7       snprintf(tmpbuf,sizeof(tmpbuf),”user: %s”,user); 
8 tmpbuf[sizeof(tmpbuf)-1] = ‘\0’; 
9 syslog(LOG_NOTICE,tmpbuf); 
10 authenticated=!result; 

In the program above, assume that the variable authenticated is determined to be a critical 

variable.  The signature of this statement is {10}, since the only instruction that writes to this 

statement is authenticated=!result.  Suppose that the attacker attempts to overwrite the variable 

authenticated via manipulating statement 9 (for example, by exploiting a format string 

vulnerability).  The signature technique, as described in Example 1 would detect tampering with 

authenticated.  Now, assume that the attacker knows that authenticated is protected, and that only 

statement 10 can modify the variable without raising an alarm.  Instead of directly overwriting 
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the authenticated variable, the attacker can overwrite the result variable, thus indirectly 

modifying authenticated and gaining access to the system.  Notice that during the attack, the 

authenticated variable is only written by the statement on line 10, and thus the signatures match.  

Therefore, instead of simply encoding the direct dependencies of a critical variable in its 

signature, it is necessary to encode the entire dependence tree of the critical variable, thereby 

protecting critical variables from both direct and indirect modification. 

5. Approach 

This section describes the approach to derive information flow signatures for security-critical 

variables in applications.  Compiler-based static program analysis is used to derive the signatures 

and hardware support is employed to enable runtime signature checking. 

5.1. Static Analysis 

Identify critical variables and their location within a 

program to place detectors for best coverage

Construct dynamic dependence 

graph of the program via profiling

Apply heuristics, e.g., fanouts

metric, to identify critical variables.  

Use knowledge of the application 

semantics to identify security critical 

variables, e.g., a password 

Static program analysis 

Compute backward slice of program variable along

each program path starting from the critical variable

and the program point at which it is to be checked

Generate correctness checks for data 

values in critical program locations

Check encoded as path optimized 

sequence of instructions

Generate checks to verify that the value is 

produced by a legitimate set of instructions

Check encoded as the set of objects to 

which an instruction is allowed to write

Reliability Security

Runtime checking 

Implementation in software/programmable hardware  
Figure 1: Steps in Compiler-based Static Analysis presented as part of a compiler-based 

security and reliability framework 

5.1.1. Steps in Compiler Analysis 

Figure 1 presents a unified compiler analysis framework to derive both error and attack detectors. 

This paper focuses on the derivation of attack detectors, which is shown on the right-hand side in 

Figure 1. These steps are as follows: 

• The first step in compiler analysis is to determine the security-critical variables for the 

program. This can be done either by (i) the programmer, based on understanding of the 

program semantics (for example, variables used in authenticating a user in an SSH 
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server) or (ii) an automated tool, based on common targets for security attackers (for 

example, function pointers, return addresses, virtual function tables).  

• The compiler then constructs the backward program slice for each of the critical variables 

starting from the program points where they are used in a security-critical context. This 

includes the uses of the critical variable in making control decisions and security-critical 

decisions (such as in a strcmp() function where a password is compared to the supplied 

system password).  Ideally, this slice would be inter-procedural and take into account 

both register and memory dependences in the program.  

• From the backward slice of a critical variable, instruction sequences can be extracted for 

each control-flow path in the slice. These instruction sequences are the dependence 

chains for the critical instruction and correspond to those instructions that can influence 

the value of a critical variable in a program execution. 

• After computing the signatures, the compiler adds information to the program binary 

which is used to inform the runtime system of the critical variables and their pre-

computed signatures. The compiler must also identify the places where the critical 

variables need to be checked (when they are used in a security critical fashion) and 

communicate this to the runtime system, using function calls or special instructions.  

5.1.2. Data-Flow Analysis 

In order to derive the signatures, the compiler needs to perform pointer and data-flow analysis on 

the program to determine the dependences for security critical variables. While data-flow 

analysis typically involves data dependences through registers (virtual or real), pointer analysis 

involves data-dependences through memory. Data-flow analysis attempts to answer the question 

of which instructions can directly or indirectly affect certain registers, while pointer analysis 

attempts to answer the question of which instructions can potentially write to specific memory 

variables (technically this is done by deriving points-to sets of pointer variables used by the write 

instructions). While data-flow analysis is a standard technique employed by most compilers (and 

is highly accurate), pointer analysis is a much harder problem and compilers typically perform 

various degrees of approximation depending on the space/time tradeoffs. The degree of 

approximation made by the compiler can affect the coverage of the derived signatures and allow 

attacks that could have been avoided in a more accurate analysis.   

5.1.3. Pointer Analysis 

This section provides a brief overview of the main factors that determine the precision of pointer 

analysis.  A more detailed analysis is presented by [16].   
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• A context-sensitive analysis is one which isolates the calling contexts of called functions 

from each other. In a context-insensitive analysis on the other hand, values can flow from 

one call through the function and return to another caller. In other words, a context 

insensitive analysis does not distinguish one invocation of a function from another 

invocation.  

• Flow-sensitive analysis considers the order of statements in a procedure when performing 

pointer analysis, and hence computes a solution for each program point. Flow-insensitive 

analysis, on the other hand, computes a solution assuming, conservatively, that any order 

of statements is possible in the procedure.  

• The analysis feature known as field-sensitivity refers to how individual fields of a 

structure are modeled. Field-sensitive analysis considers each field of a struct or array 

separately, while field-insensitive analysis considers them to be a single object or 

location.  

• The last type of pointer analysis considered is heap sensitivity. Heap insensitive analysis 

treats the entire heap as one single object.  Heap sensitive analysis can minimally track 

heap objects by their allocation site, program location of calls to malloc(),  in the program. 

While this suffices for many programs in which distinct objects are allocated at different 

sites, some programs may have customized allocation routines that allocate memory for 

multiple types of objects. In the latter case, an analysis that tracks heap objects by 

allocation site would in effect treat all objects allocated by the custom allocation routine 

as one object. Tracking the call sequences leading into the allocation site can further 

distinguish these objects and increase the level of heap sensitivity. 

Each of these analyses increases the resolution and therefore sensitivity of our security checking 

scheme by decreasing the number of objects that alias each other.  Utilizing a compiler that 

performs detailed pointer analysis significantly increases the amount of work an attacker needs 

to perform to gain access to the system.  

5.2. Runtime tracking of signatures 

The proposed signature checking technique enforces the properties of the compiler generated 

data dependence chain on critical variables at runtime.  For efficiency and ease of 

implementation, the runtime enforcement of the signature checking scheme is divided into three 

levels.  Together, these three levels provide the same guarantees provided by the signature 

scheme presented in the examples in section 2.  Implementing the signature checking via this 

three-level scheme reduces the overhead and limits the propagation of compromised data.  

Before presenting the checking scheme, we introduce useful terminology: 
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Direct Critical Variable: A variable which has been determined either heuristically or by a 

human to be critical to the security of the application. 

Trusted Instruction: An instruction which is statically determined to potentially read, write, or 

have influence on a critical variable directly or indirectly as defined by source code semantics.  

All the instructions in the dependence tree of the direct critical variable are marked trusted by 

the compiler. 

Indirectly Critical Variable: A variable or object which influences the value of a direct critical 

variable (through a trusted instruction).  All variables and objects in the data dependence tree of 

a direct critical variable are marked indirectly critical by the compiler. 

Critical Bit: For each register and memory location, this bit is set if and only if the register or 

memory currently contains a direct critical or indirectly critical variable. 

5.2.1. Three Level Checking Scheme 

This section presents the three-level checking scheme and show the invariants and protection 

guaranteed by each level: 

Level 1, the critical bit: The objective of the level 1 check is to separate the instructions and 

variables upon which any critical variable is dependent from the instructions and data which do 

not have influence on critical variables, according to compiler analysis.  In the context of the 

dependence signature, level 1 ensures that instructions outside the signature of a critical variable 

do not influence instructions inside the signature.  In order to accomplish this, a critical bit is 

maintained (by the hardware) for each register and memory location in the program.  Initially, 

the critical bit for all variables that are used as operands to trusted instructions is set to 1.  The 

propagation of the critical bit is performed by hardware in the background according to the rules 

presented in Table 1 and described below.  An alarm is raised if a trusted instruction attempts to 

use a non-critical variable as an operand.  This is because the compiler guarantees that all 

variables in the dependence tree of a direct critical variable are marked indirectly critical by 

initializing their critical bit to 1.  Thus, under correct execution all operands of trusted 

instructions should be marked critical.  If the critical bit of a trusted instruction’s operand is not 

set, it means that the operand has been influenced, either directly or indirectly, by an instruction 

that the compiler determined should be unable to influence the operand.  The fact that the 

operand has been influenced by an instruction outside of its dependence tree represents a 

violation of source code semantics, and therefore triggers an alarm. The runtime tracking of the 

critical bit is very similar to the Taintedness Tracking used in [18]. 

Propagation of the Critical Bit.  The critical bit is propagated according to the simple rule shown 

below: 
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Crit(destination) � Crit(operand 1) && Crit(operand 2) && Trusted(op) 

The critical bit of the destination (register or memory) is set if and only if the critical bit of all 

operands is set and the instruction is trusted.  If any one of these conditions does not hold, the 

critical bit of the destination is cleared. 

It is important to point out that the actual checking of level 1 can be deferred and performed as 

part of the level 2 check.  This is because an alarm is raised only in the event that a trusted 

instruction attempts to read from non-critical data.  Since all trusted instructions are checked by 

level 2, it makes sense to do both checks at the same time, as shown in Figure 2.  Thus, all that is 

required to enforce level one is the propagation of the critical bit according to straightforward 

rule presented above. 

Table 1: Enumeration of all possible conditions and actions for the level 1 check 

Instruction 

Type 

Op Data Action Reasoning 

Trusted Read Critical Does not trigger alarm Trusted instruction is using valid data inside its dependence 

tree. 

Trusted Read Non-

Critical 

Trigger Alarm All dependent data of any trusted instruction is marked critical 

by the compiler, the cleared critical bit means an attacker has 
corrupted the data . 

Trusted Write Critical Allowed and passed to 

level 2 

Trusted instruction is operating on valid data.  A check needs 

to be performed to verify that the instruction writes to the 
dependence tree of the correct critical variable (level 2 check) 

Trusted Write Non-

Critical 

Allowed and passed to 

level 2, set critical bit 

of target 

Propagate the criticality to the destination if and only if all 

source operands for the trusted instruction are critical and the 

level 2 check passed. 

Un-Trusted Read Critical Allowed Un-trusted instructions may be dependent on critical data, 

however critical data cannot be dependent on un-trusted 
instructions 

Un-Trusted Read Non-

Critical 

Allowed Not a security threat 

Un-Trusted Write Critical Reset critical bit The critical bit of the destination must be cleared since this 

may be a malicious instruction. 

Un-Trusted Write Non-

Critical 

Allowed Not a security threat 

 

Level 2, the sufficient condition.  The level 2 check enforces two invariants of the dependence 

signature.  First, it guarantees that instructions inside one signature chain cannot influence 

instructions or variables within another signature chain.  Secondly, it guarantees that instructions 

inside a signature chain can only write to variables directly dependent upon them inside the 

signature chain.   

Immediately performing the level 2 check instead of checking an accumulated dependence 

signature when the critical variable is reached allows us to detect attacks much earlier and 
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therefore prevent the propagation of corrupt data.  Furthermore, performing an immediate check 

is more efficient than fetching an accumulated signature from memory, performing an update 

operation and then storing it back to memory. 

 

Figure 2: Theoretical Hardware Checking Implementation 

As shown in Figure 2, the level 2 check is triggered by a trusted instruction.  The hardware 

checker maintains two tables to facilitate the level 2 check:   

• Object Address Range Table maps virtual addresses to the corresponding compiler 

generated object. 

• Instruction to Allowed Object Table maps each trusted instruction to the objects that the 

compiler has determined the instruction is allowed to write to.   

When the compiler encounters an instruction with a set trusted bit, the level 2 checking 

mechanism retrieves both the address of the instruction (stored in the program counter) and the 

destination address or register to which the instruction is attempting to write.  The destination 

address is used to index the Object Address Range Table to determine which object the runtime 

instruction is actually attempting to modify.  The program counter is used to index the 

Instruction to Allowed Object Table to determine which objects the current instruction is allowed 

to modify.  The objects are then compared to ensure the instruction is writing to one of the 

objects in its allowed-write set.  An additional check to determine whether the critical bit is set 

Load 

         Instruction Pipeline 

Object Address Range 

Table 

 
Maps virtual address to 

corresponding object 

Instruction to Allowed Object 

Table 

 
Maps trusted instructions to objects 

the instruction is allowed to write 

Write-back 

Store Add NOP Add 

Destination 

PC of instruction 

Comparator 

And 

Operand Check 

 

 
Check Critical Bits of 

Operand(s)  

Check OK Signal 

 Denotes a Trusted Instruction (which triggers the level 2 check) 

1 

1 

0 0 0 0 

Critical bits of operands 
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for all operands (which was deferred from level 1) is performed in parallel.  If either one of these 

checks fail, an alarm is raised before the instruction is allowed to enter the write-back stage in 

the processor. 

Runtime Mapping of Objects.  In order to perform the level 2 check, the hardware must have the 

ability to map a raw address to the corresponding symbolic object used by the compiler 

(accomplished using the object to address range table shown in Figure 2).  The means by which 

this mapping is created depends on the type of object: 

• Global Variables, Static Variables or Constants: These objects are statically allocated by 

the compiler at compile time and thus their mapping is known and can be provided to the 

hardware at initialization. 

• Local or Stack Variables: The exact address of these variables is not known statically at 

compile time, but can be represented statically as an offset to the stack, or base pointer.   

• Dynamic or Heap Variables:  The address mappings of these variables must be 

determined and stored dynamically by intercepting calls to the heap allocator.  This 

requires limited instrumentation of the memory related sys calls.  

Level 3, the necessary condition.  The goal of the level 3 check is to enforce that all instructions 

in a dependence chain of a critical variable are executed by the time that critical variable is used 

by a trusted instruction.  This is necessary since in theory, an attacker could subvert the control 

flow of an application, somehow preventing the execution of a trusted instruction and thereby 

influencing the value of the critical variable.  Another way of thinking about the level 3 check is 

that it ensures that every instruction in the signature chain of the critical variable is eventually 

checked. 

The level three check can be implemented by statically extracting the set of all trusted 

instructions which have influence on the direct critical variable along each unique control flow 

path.  These sets are then stored by the hardware.  During runtime, the hardware keeps track of 

the set of all trusted instructions that have influenced each direct critical variable.  Upon reaching 

a use of the direct critical variable, the runtime set for that direct critical variable is compared to 

the statically extracted sets.  During correct execution, the runtime control flow path should 

correspond to one of the statically extracted control flow paths, resulting in a match.  If an 

attacker manipulates the control flow to prevent the execution of certain trusted instructions, the 

sets will not match, and the attack will be detected.  An example is provided in Figure 3: 
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Figure 3: Example of the Level 3 Check 

Suppose that in this program there are two control flow paths.  Path 1 includes instructions A, D 

and F, whereas path 2 includes instruction B, C, E and F.  During static analysis, the compiler 

will extract these two sets, {A, D, F} and {B, C, E, F}.  Now, during runtime, suppose path 1 is 

executed.  The runtime accumulator for the direct critical variable will add each instruction to the 

direct critical variable’s set as it is executed.  Thus, by the time instruction F is executed, the 

accumulator will contain {A, D, F} which will match the set extracted during static analysis.  If 

the attacker prevents the execution of instruction D, the set will contain only {A, F} and thus will 

not match. 

In order to implement this check, it is necessary to add an accumulator for each direct critical 

variable, as well as a means to track which trusted instructions have influence on which direct 

critical variables.  The most straightforward way to implement the trusted instruction to direct 

critical variable mapping is to augment the Instruction to Allowed Object Table.  Since each 

trusted instruction already has an entry in this table, all that is required is to add a field which 

contains the IDs of the direct critical variables that the instruction has influence on.   

During the level 2 check, the hardware simply appends the current trusted instruction’s id to the 

accumulators of each direct critical variable listed in the extra field of the Instruction to Allowed 

Object Table. 

It is important to point out that the level 3 check implementation described above is most likely 

overkill.  This is because it assumes the attacker can subvert the control flow of the application 

from any instruction, including in the middle of basic blocks.  Without the ability to modify the 

instructions themselves, it is unclear how the attacker would subvert the control-flow in the 

middle of a basic block as this would require the creation of a control-flow instruction where non 
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exists.  Thus, it should be sufficient to check for valid control flow at the basic block boundaries 

instead of within them.  Quite a few schemes which do just that have been proposed, e.g. [7][19]. 

The three levels of checking are summarized by the diagram in Figure 4, which shows the 

actions performed by each check as well as the invariant provided by each level. Together the 

three levels of checking provide the same guarantees as the data-flow signature introduced in 

section 3 with the advantages of preventing the propagation of corrupted data and improved 

checking efficiency (in terms of performance). 

 
Figure 4: Steps in Compiler Analysis for Detector Derivation 

Hardware Implementation. It is important to point out that in the case of a hardware 

implementation of the security checking scheme, no instrumentation of the program binary is 

required.  Instead, at application load time, a relatively small configuration file can be associated 

with each executable protected by the technique.  This configuration file would contain all the 

static variable mappings as well as the critical variables, indirectly critical variables, trusted 

instructions, and trusted instruction to allowed object mappings.  This configuration file is then 

used to initialize the hardware checking engine.  The use of a configuration file instead of direct 

executable instrumentation provides the unique ability to run the program at various security 

levels by utilizing multiple configuration files.  For example, if an intrusion detection system 

detects an attack in progress, server daemons can be reloaded using configuration files which 

contain more critical variables, or perhaps critical variables specific to the attack at hand, thereby 

 

Level 1: Critical Bit 

• Set for any instruction in the dependence tree of a critical variable 

• Critical bit of the result is cleared if the critical bit of any operand is not set 
or if the instruction generating the result is not trusted. 

• Ensures that a corrupt data value is never used by a trusted instruction 

Level 2: Direct Dependence Check 

• Checks that each instruction with the trusted bit set writes only to the set of 
objects allowed by the compiler analysis.  

• For each trusted instruction executed, the destination address is mapped to  a 
compiler memory object 

• Ensures that trusted instructions modify only objects which the source 
code semantics explicitly allow them to modify. 

 

Level 3: Control Flow Check 

• Prevents the attacker from influencing the value of the critical variable by 
omitting or preventing the execution of instructions on which the critical 

variable is dependent. 

• Ensures the execution of all critical instructions and checks for a given 
critical variable along a particular control flow path 
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providing greatly increased security.  Thus, the technique allows the provided security to be 

configured based on application requirements. 

6. Information Flow Signature Checking in Action 

The authentication function for the OpenSSH server program is used to demonstrate the three-

level checking scheme.  This program is widely used to provide secure remote access to servers.  

Figure 5 shows a code snippet from the SSH server program that is used to authenticate a user 

based on the user supplied login and password. In this case, the encrypted_password variable is 

the password entered by the user and the pw_passwd variable is the encrypted password that the 

system reads from the password file. Suppose an attacker can exploit a memory error in the 

sys_auth_password function to overwrite the pw_passwd variable with the encrypted version of 

their own password, allowing them to become authenticated by the system.  The goal is to 

protect the encrypted password from the attacker by preventing the corruption of the pw_passwd 

variable. Therefore, the security critical variable is pw_passwd and the strcmp function which 

compares the encrypted password and the supplied password performs a security-critical use of 

the variable.  The security checking technique guarantees that any corruption of the pw_passwd 

variable will be detected before it is used by the strcmp function. 

int sys_auth_passwd(Authctxt *authctxt, const char *password) { 

1: struct passwd *pw = authctxt->pw; 

 char *encrypted_password; 

 /* Just use the supplied fake password if authctxt is invalid */ 

2: char *pw_password = authctxt->valid ? shadow_pw(pw) :  

                    pw->pw_passwd; /*Critical Variable Definition*/ 

 /* Check for users with no password. */ 

3: if (strcmp(pw_password, "") == 0 && strcmp(password, "") == 0) 

  return (1); 

 /* Encrypt the candidate password using the proper salt. */ 

4: encrypted_password = xcrypt(password, 

     (pw_password[0] && pw_password[1]) ? pw_password : "xx"); 

 /* Authentication is accepted if the encrypted passwords match */ 

5:    return (strcmp(encrypted_password, pw_password) == 0); 

} 

Figure 5: Example code fragment showing derivation of attack detectors 

Before discussing the technique, it is useful to consider the means by which an attacker can 

overwrite the encrypted password.   One method would be for the attacker to corrupt pw_passwd 

directly through a memory error in shadow_pw, strcmp, or xcrypt.  The other alternative is for 

the attacker to corrupt one of the values that pw_passwd depends on, and hope to influence the 

result of the final strcmp function. Our technique protects against both kinds of attacks 

For simplicity, statements within the function body are annotated with integer labels that are 

used to derive the signature for the critical pw_passwd variable. These labels are also used in the 
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dependence graph presented in Figure 6.  In reality, the signature is stored based on the addresses 

of the instructions corresponding to the statements.  Each object or variable label maps onto 

multiple addresses and a runtime table precisely tracks which instruction address is allowed to 

modify which variables at runtime. The compiler performs inter-procedural slicing to find the 

origins of the variables being passed as function parameters and use this in the real signature (an 

example of the actual static dependence graph for the code in Figure 5 is presented in Figure 6).  

 

Figure 6: High-level static dependence graph corresponding to example code 

Table 2: Mapping of Trusted Instructions to the data objects they are allowed modify 

Trusted Instruction Directly Modifiable Data Objects 

1. *pw assignment pw 

2.1 shadow_pw() shadow_pw retval 

2.2 *pw_password assignment pw_password  

4. xcrypt() encrypted_password 

5. strcmp() return value of sys_auth_passwd() function  

7. Example Attack Scenarios 

In this section, examples of real attack scenarios are used to illustrate the detection capabilities of 

Information Flow Signatures. 

Attack 1: The attacker overwrites the pw_passwd variable 

Assume that the strcmp statement at Statement 5 has a memory error and allows the attacker to 

overwrite the pw_passwd variable and influence the results of the comparison (presumably 
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authenticating the attacker with an incorrect password). Since instruction 5 is marked trusted, it 

will be checked by the level 2 checking scheme.  The checker will lookup instruction 5 in the 

trusted instruction table (presented in Table 2) revealing that the only object/variable that can be 

modified by instruction 5 is the return value of the sys_auth_passwd() function.  Since the 

instruction has instead attempted to write to pw_passwd, the attack will be detected.  

Attack 2: The attacker changes the pw pointer in shadow_pw in an attempt to influence the 

pw_passwd variable in Statement 3 

Here, the attacker tries to overwrite the pw pointer instead of pw_passwd directly, possibly to 

cause shadow_pw to return a hash for which the password is known.  In order to do this, the 

attacker must modify pw from a non-trusted instruction, since all trusted instruction are checked.  

However, since pw must be written to by a non-trusted instruction, its critical bit will be cleared.  

Now, when the trusted strcmp instruction is executed, it will attempt to use the pw_password 

variable, but since the critical bit is no longer set, an alarm will be raised and the attack will be 

detected. 

Attack 3: The attacker corrupts the return value of xcrypt. 

Context sensitivity allows us to detect attacks which cannot be detected by a context insensitive 

analysis such as that used by [3].  For example, an attack which could not be detected without 

context sensitivity is one in which the value returned by the xcrypt function is incorrect due to a 

memory error exploited by the attacker in the function. This is because a context insensitive 

analysis is less precise when tracking signatures inter-procedurally.  With context sensitivity, the 

level 2 checks can be made more precise.  For example, the checking engine can verify that the 

memory location pointed to by the return value of xcrypt is the one that should be written by that 

particular call of xcrypt and not a memory location that should be written during an unrelated 

invocation of xcrypt. 

Attack 4: The attacker changes the value of authctxt->valid 

Since the authctxt->valid variable is used to decide whether to obtain the shadow password, an 

attacker could change the value of authctxt->valid from 0 to 1 and force the system to obtain the 

shadow password even if an invalid username is supplied.  The attacker’s goal in this attack is 

unclear, since he/she must still ensure that the authctxt->pw field holds the correct password in 

order to be authenticated by the system.  Perhaps one could imagine a scenario in which 

authctxt->valid may be manipulated to the advantage of the attacker.  If this attack were 

performed, it would be undetected by our scheme since modifying the authctxt->valid field 

makes the program execute a valid (but incorrect) control-path.   This type of path dependence 

cannot be tracked by current compilers.  It implies that each variable along the path is indirectly 
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dependent on any variable that was used in a branch decision leading to that path.  If this were to 

be tracked, each variable would have a huge number of these dependencies since each possible 

branch decision would become a data dependency for each variable along that path.  

8. Performance Evaluation 

In order to evaluate performance of the proposed technique, the information flow signature 

checking scheme is applied to protect security critical variables in the authentication functions 

from the OpenSSH (secure shell) server program (introduced in Section 6). Four variables are 

identified (manually based on application semantics) as critical: (i) authctxt, a pointer to the user 

entered password (ii) sys_auth_passwd, the return value of the sys_auth_passwd() authentication 

function, the value of which determines whether the user is authenticated or not, (iii) fakepw, a 

pointer to a dummy SSH Authentication context used when the user has entered an invalid 

username, and (iv) permit_empty_passwd, a variable which determines if users are allowed to 

login through SSH if their password is empty.  These variables are critical to the security of SSH 

because their corruption can result in the inaccurate authentication of an attacker.  Information 

flow signature checking can detect tampering with the values of the selected variables and foil 

the potential attack.  

Recall that the information flow signature encodes the entire dependence tree for a given critical 

variable. As a result, the performance overhead of the deployed technique depends on the length 

(in terms of instructions) of the dependence chain.  The measurements reported in this section 

quantify this overhead in the context of the SSH application and the selected critical variables. 

Application instrumentation. The IMPACT compiler [21] (developed at the University of 

Illinois) is employed for static analysis and IMPACT’s Lemulate tool is used to simulate the 

hardware checks.  Lemulate allows IMPACT to transform compiled output to a C-code 

representation rather than a program binary.  This transformation allows each machine-level 

instruction to be represented using C syntax, with each line of the resulting C-code file 

corresponding to a single machine-level instruction.  This C-code file can then be instrumented, 

re-compiled into a binary, and run.  The hardware checks are simulated by creating a small C++ 

library to implement the two maps used by the level 2 check (Object to Address Range Table and 

Instruction to Allowed Object Table).  The security checks are inserted by adding callbacks to the 

library before each trusted instruction in the C-code generated by Lemulate.  The check() 

callback includes: (i) the ID of the instruction (corresponding to the PC which would be used in a 

hardware implementation), (ii) the virtual address of the object the instruction is writing to, and 

(iii) the size of the object the instruction writes to. 
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Attacks are emulated by modifying the address to which an instruction writes along with the 

corresponding address in the check() callback.  This represents the actual address (to which an 

instruction writes) being sent to the hardware checker at runtime.   

Results.  

Table 3 and Figure 7 report performance measurement results while targeting protection of 

selected critical variables. Baseline represents the time required (in microseconds) to run the 

compiled SSH authentication stub generated by Lemulate without any instrumentation.  

Initialization time represents the time required to add static variable mappings (for global 

variables and variables on the stack), in addition to time required to initialize the checker with 

the trusted instructions and their associated objects.  Checking + Dynamic mapping time reports 

the time required to perform the runtime checks and the dynamic variable mappings (for objects 

allocated on the heap memory).  The reported overhead is just an indirect measure of the 

overhead which would be incurred with a hardware implementation.  With hardware support, the 

checks will be done in parallel with the main processor so few or no extra cycles will be incurred.  

Thus, although the results are useful to show the complexity of checking for various critical 

variables, they should not be interpreted as the overhead required for the checking scheme itself.  
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Table 3: Performance of Information Flow Signatures Deployed in OpenSSH 

Critical Variable Baseline Initialization 

Time 

Checking + 

Dynamic Mapping 

Time 

Total (Full 

Instrumentation) 

authctxt (pointer) 184 610 345 1139 

sys_auth_passwd (return value) 184 616 348 1148 

fakepw (pointer) 184 20 5 209 

permit_empty_passwd (flag) 184 266 33 299 

(Execution Times in usec) 

Table 4: Proportion Instructions in Dependence Chains of Critical Variables of SSH Application 

Critical Variable Total Ops Checked Ops Local Variable 

Mappings 

Global Variable 

Mappings 

Authctxt 500 125 84 3 

sys_auth_passwd  500 126 84 3 

Fakepw 500 4 3 0 

permit_empty_passwd 500 16 11 0 

Protection of the authctxt ptr and the sys_auth_passwd critical variables incurs highest overhead 

of 2.9x ((184+348)/184 see Table 3).  Note that the time required initialize the application is 

excluded since the overhead due to initialization is encountered only once when the application 

is first started.  The significant overhead for these two variables is due to the fact that authctxt is 

the main authentication data structure and thus it is passed to each authentication function.  

Similarly, the sys_auth_passwd return value represents the final authentication decision, and 

ultimately determines whether the user is authenticated.  As a result the dependence chains for 

these two variables are relatively long (see Table 4) and hence, the checking leads to higher 

overhead.  Table 4 shows the numbers of instructions which need to be protected by information 

flow signatures for the four critical variables of the SSH application. One can see that for the 

authctxt ptr and the sys_auth_passwd critical variables, 25% and 25.2% of the total number of 

instructions in corresponding functions belong to the dependence chain of each variable, 

respectively. However, it is interesting to point out that these variables share the same 125 

instructions and 84 indirect variables dependencies.  This overlap between the dependence 

chains of these two critical variables is a significant advantage.  For example, if the authctxt 

pointer variable is already being checked, the sys_auth_passwd variable can also be checked 

simply by adding a single trusted instruction.   

Another interesting result is the significantly low overhead associated with checking the fakepw 

variable.  This variable points to a dummy authentication context which SSH uses to authenticate 

against in the event that an invalid username is provided.  However, if an attacker is able to 

overwrite the hash associated with this dummy user with a hash for which he/she knows the 

password, the attacker would be authenticated by certain authentication functions in the system 

(he/she would then have to overwrite the username to make it valid).  Since very few legitimate 

instructions use this dummy authentication context, it is extremely efficient to check, and 
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arguably prevents an important security attack.  In fact, this class of yet undiscovered but 

possible security vulnerabilities represents the strength of the information flow checking 

technique.  Instead of attempting to find and patch the vulnerabilities, our technique actively 

protects critical data from a wide class of memory attacks, including undiscovered or unreleased 

exploits.  

9. Conclusion 

We have shown that the Dynamic Tracking of Information Flow Signatures is a powerful 

technique, providing security and attack detection for a very broad class of attacks.  The 

technique is highly configurable, allowing the user to determine the desired level of protection, 

as well as which variables to protect.  The technique uses detection of program data-flow 

violations as an indicator of malicious tampering with the system/application and prevents an 

attacker from exploiting the disconnect between source-level semantics and execution semantics 

of the program. Although the checking overhead incurred for certain critical variables is high, a 

true hardware implementation should reduce this overhead dramatically. A compile-time static 

program analysis is employed to extract a backward slice which collates all dependent 

instructions along each control-path used in computing the security critical program variables.  

Instructions (in terms of their PCs) identified in along the dependence chain are encoded to form 

a signature, which is checked at runtime.  Any violation of the pre-computed signature raises an 

alarm.  The approach is employed and demonstrated in the context of the SSH application.  As 

part of future work, we plan to evaluate the technique using several other server-based 

applications such as WU-FTPD, httpd and sendmail.  We also plan to create a hardware 

prototype in order to evaluate the overhead of a true hardware-based implementation. 

10. References 

[1] Kiriansky, V., Bruening, D., and Amarasinghe, S. Secure execution via program shepherding. In 

Proceedings of the 11th USENIX Security Symposium (Aug. 2002). 

[2] S. Chen, J. Xu, E. Sezer, P. Gauriar, and R. Iyer. Non-control-hijacking attacks are realistic threats. In 

USENIX Security, 2005. 

[3] Miguel Castro, Manuel Costa.  Securing Software by Enforcing Data-flow Integrity.  Microsoft Research 

Cambridge.  In OSDI, 2006. 

[4] Cowan, C., Pu, C., Maier, D., Hinton, H., Bakke, P., Beattie, S., Grier, A., Wagle, P., and Zhang, Q. 

StackGuard: Automatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings of 

the Seventh USENIX Security Conference (San Antonio, TX, Jan. 1998). 

[5] Baratloo, A., Singh, N., and Tsai, T. Transparent fun-time defense against stack smashing attacks. In 

Proceedings of the 2000 USENIX Technical Conference (San Diego, CA, June 2000). 

[6] Intel. Intel Itanium 2 Processor Reference Manual For Software Development and Optimization. Intel 

Corporation, 2004. 

[7] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow Integrity: Principles, implementations, 

and applications. In ACM CCS (Nov. 2005). 

[8] S. Z. Guyer, E. Berger, and C. Lin, Detecting errors with configurable whole-program dataflow analysis: 

Dept. Comput. Sci., Univ. Texas at Austin, Tech. Rep. TR 02-04, Feb. 2002. 



 23 

[9] Chen, S.; Xu, J.; Nakka, N.; Kalbarczyk, Z.; Iyer, R.K.  Defeating memory corruption attacks via pointer 

taintedness detection.  In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. 

International Conference on 28 June-1 July 2005 Page(s): 378- 387  

[10] J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer. Architecture support for defending against buffer overflow 

attacks. EASY-2 Workshop, October 2002. 

[11] J. Xu, Z. Kalbarczyk, and R. Iyer. Transparent runtime randomization for security. In A. Fantechi, editor, 

Proc. 22nd Symp. on Reliable Distributed Systems --SRDS 2003 pages 260--9. IEEE Computer Society, 

Oct. 2003.  

[12] S. Bhatkar, D. DuVarney, and R. Sekar. Address obfuscation: An efficient approach to combat a broad 

range of memory error exploits. In V. Paxson, editor, Proc. 12th USENIX Sec. Symp., pages 105--20. 

USENIX, Aug. 2003. 

[13] Berger, E. D. and Zorn, B. G. 2006. DieHard: probabilistic memory safety for unsafe languages. In 

Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and 

Implementation (Ottawa, Ontario, Canada, June 11 - 14, 2006). PLDI '06. ACM Press, New York, NY, 

158-168.  

[14] Necula, G. C., McPeak, S., and Weimer, W. 2002. CCured: type-safe retrofitting of legacy code. In 

Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming 

Languages (Portland, Oregon, January 16 - 18, 2002). POPL '02. ACM Press, New York, NY, 128-139. 

[15] Dhurjati, D., Kowshik, S., and Adve, V. 2006. SAFECode: enforcing alias analysis for weakly typed 

languages. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design 

and Implementation (Ottawa, Ontario, Canada, June 11 - 14, 2006). PLDI '06. ACM Press, New York, 

NY, 144-157. 

[16] Hind, M. and Pioli, A. 2000. Which pointer analysis should I use?. In Proceedings of the 2000 ACM 

SIGSOFT international Symposium on Software Testing and Analysis (Portland, Oregon, United States, 

August 21 - 24, 2000). M. J. Harold, Ed. ISSTA '00. ACM Press, New York, NY, 113-123. 

[17] Boneh, D., DeMillo, R. A., & Lipton, R. J. (2001). On the Importance of Eliminating Errors in 

Cryptographic Computations Journal of Cryptology: The Journal of the International Association for 

Cryptologic Research, vol. 14, pp. 101-119.  

[18] G. Suh, J. Lee, and S. Devadas. “Secure Program Execution via Dynamic Information Flow Tracking.” 

11th International Conference on Architectural Support for Programming Languages and Operating 

Systems. Boston, Massachusetts.  October 2004. 

[19] S. Bagchi et al. Hierarchical error detection in a software implemented fault tolerance (sift) environment. 

IEEE Transactions on Knowledge and Data Engineering, 12:203–224, March/April 2000. 

[20] Dynamic Tracking of Information Flow Signatures for Security Checking.  Tech Report.  

http://www.crhc.uiuc.edu/DEPEND/ 

[21] UIUC OpenIMPACT Effort.  The OpenIMPACT IA-64 Compiler.  http://gelato.uiuc.edu 

[22] Newsome, J., Karp, B., and Song, D. 2005. Polygraph: Automatically Generating Signatures for 

Polymorphic Worms. In Proceedings of the 2005 IEEE Symposium on Security and Privacy (May 08 - 

11, 2005). SP. IEEE Computer Society, Washington, DC, 226-241. 

[23] A. Sabelfeld, A. Myers. Language-based information-flow security. IEEE J-SAC, 2003 


