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Abstract

Speculative parallelization (SP) enables a processor to extract multiple threads from a single sequen-
tial thread and execute them in parallel. For speculative parallelization to achieve high performance
on integer programs, loads must speculate on the data dependences among threads. Techniques for
speculating on inter-thread data dependences have a first-order impact on the performance, power, and
complexity of SP architectures.

Synchronizing predicted inter-thread dependences enables aggressive load speculation while mini-
mizing the risk of misspeculation. In this paper, we present store set synchronization, a complexity-
effective technique for speculating on inter-thread data dependences. The store set synchronizer (SSS)
predicts store-load dependences using store sets and enforces those predicted dependences using recently
proposed techniques for dynamic register synchronization. The key insight behind store set synchroniza-
tion is that predicted dependences carried through store sets can be treated exactly like the dependences
carried through architectural registers.

By balancing the benefits and risks of load speculation, the SSS increases performance, conserves
power, and reduces complexity. On integer benchmarks the SSS increases performance by as much as
56% and by 20% on average. The SSS also reduces the average rate of dependence violations by 80%,
which conserves power and dramatically decreases the number of threads squashed due to dependence
violations. Furthermore, the low rate of dependence violations mitigates the need for costly disambigua-
tion hardware such as per-thread load queues. We show that replacing the associative load queues with
filtered load re-execution in an SSS-equipped system decreases performance by just 3%.

1 Introduction

With chip budgets exceeding 1 billion transistors and superscalar pipelines scaling poorly, microprocessor
manufacturers have recently focused much attention on multithreaded and multicore processors. The mul-
ticore architecture is inherently scalable and achieves dramatic speedups on explicitly parallel workloads,

but does not increase the performance of a single, sequential thread. To leverage the substantial resources
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of multithreaded and multicore architectures without incurring the significant costs of hand-parallelizing
sequential codes, some mechanism for automatically parallelizing sequential threads is needed.

Speculative parallelization (SP) is a technique whereby a processor extracts multiple, possibly depen-
dent threads from a single sequential thread and executes them in parallel. Examples of the speculative
parallelization paradigm include the Multiscalar [35], thread-level speculation (TLS) [12, 39, 15], and
speculative multithreading [1, 18, 27], among others. By exploiting not only the local instruction-level
parallelism but also the global thread-level parallelism within a sequential thread, SP has the potential to
dramatically increase a thread’s performance.

For speculative parallelization to achieve high performance on integer programs, loads must speculate
on the data dependences among threads. Otherwise, ambiguous inter-thread data dependences render many
integer codes difficult, if not impossible, to parallelize. Techniques for speculating on inter-thread data
dependences have a first-order impact on the performance, power, and complexity of architectures that
support speculative parallelization.

Synchronizing predicted inter-thread memory dependences enables aggressive speculative paralleliza-
tion while minimizing the risks of load misspeculation. In this paper we describe store set synchronization,
a complexity-effective technique for speculating on inter-thread data dependences. The store set synchro-
nizer (SSS) predicts store-load dependences using store sets [7] and enforces those predicted dependences
using recently proposed techniques for dynamic register synchronization [17]. The key insight behind store
set synchronization is that predicted dependences carried through store sets can be treated exactly like the
dependences carried through architectural registers.

We evaluate the store set synchronizer in an SP architecture that dynamically synchronizes inter-thread
register dependences. Our results show that the SSS increases performance, conserves power, and reduces
complexity. On integer benchmarks the SSSincreases performance by as much as 56% and by 20% on
average. The SSSalso reduces the average rate of dependence violations by 80%, which conserves power
and dramatically decreases the number of threads squashed due to dependence violations. Furthermore,
the low rate of dependence violations mitigates the need for costly disambiguation hardware such as per-
thread load queues. We show that replacing the associative load queues with filtered load re-execution in an
SSS-equipped system decreases performance by just 3%.

The remainder of this paper is organized as follows. Section 2 discussed background and related works.

Section 3 develops store set synchronization in the context of a superscalar and extends the SSS to an SP
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Figure 1: A taxonomy for load speculation. Value speculation encompasses load address prediction and
load value prediction. Dependence speculation may be synchronized or unsynchronized. With synchro-
nized dependence speculation, the system speculates that a load depends on some set of unresolved stores
(possibly empty) and delays the load only until that set of stores resolves. With unsynchronized dependence
speculation, the system either speculates that a load has no dependence on any unresolved store or does not
speculate the load at all.

architecture. Sections 4 and 5 present methodology and results, and Section 6 concludes.

2 Background and related work

Figure 1 describes a taxonomy of techniques for load speculation, with principal classes defined as no spec-
ulation, value speculation, unsynchronized dependence speculation, and synchronized dependence specula-
tion. Each technique strikes a different balance between the benefits of successful speculation and the costs
of misspeculation. In this section, we review applications of these techniques that have been proposed for
SP systems, with reference to related proposals for ILP systems ! when appropriate. As this paper focuses
on synchronized dependence speculation, we limit our discussion of the other load speculation techniques.
The remainder of this section is organized as follows. Section 2.1 discusses parallelizing compilers
that do not permit speculation on inter-thread data dependences. Section 2.2 reviews the mechanisms used
to detect dependence violations in systems that permit load speculation. Sections 2.3, 2.4, and 2.5 dis-
cuss value speculation, unsynchronized dependence speculation, and synchronized dependence speculation,

respectively.

'TLP systems: architectures that exploit ILP but do not speculatively parallelize threads, such as superscalars and VLIW’s.



2.1 No speculation

Early parallelizing compilers did not permit speculation on inter-thread data dependences. These compilers
allow threads to execute in parallel only if the compiler can prove that the threads are not data depen-
dent [26] or explicitly synchronize all suspected dependences [2, 36]. Given the abundance of ambiguous
data dependences in integer codes, this technique extracts little SP from integer programs.

Without some form of load speculation, executing parallel threads extracted from an integer program
is often difficult if not impossible. Even with extensive compiler analysis, ambiguous data dependences
often exist between regions of code that are otherwise independent [9]. By breaking those ambiguous data
dependences, load speculation allows a SP system to execute parallel threads that are likely to be independent
most of the time, even if they are not provably independent or not always independent. In this manner, load

speculation dramatically increases the parallelism exposed to a SP system.

2.2 Detecting dependence violations

Because loads that issue speculatively may violate true data dependences, a system that performs load
speculation must detect dependence violations. Disambiguation is the process by which a system detects
data dependence violations. Before discussing load speculation, we describe the mechanisms proposed for
disambiguation in SP systems.

Static disambiguation. Speculation can be performed by the compiler, in software, even on processors
with little or no hardware support for memory disambiguation. In [28], the compiler identifies loads that
may execute speculatively and inserts code to test for dependence violations and to repair the program state
if a violation occurs.

Caches and coherence protocols. In [12, 39, 38, 37], a multiprocessor uses the .1 caches and a
snoopy cache coherence protocol to disambiguate inter-thread memory references. Although the details
of the proposed schemes differ, the general frameworks are similar. The L1 cache line is extended with a
“speculatively loaded” bit that is set when a load from a speculative thread accesses the cache line. When a
thread commiits a store to its L1 cache, the coherence protocol sends an invalidation to the other caches. If a
thread that is later in program order has speculatively loaded the cache line, the system detects a dependence
violation. The speculative versioning cache (SVC) implements a similar disambiguation scheme for the

Multiscalar [11].



The memory disambiguation table (MDT) of [15] manages inter-thread disambiguation for a directory-
based coherence protocol. In [5], bit vectors external to the caches (signatures) are used to perform bulk
disambiguation, thereby decreasing the complexity of the caches and the coherence protocol.

Load queues. TLP processors that speculate loads typically use a load queue to perform disambigua-
tion [14]. The load queue is an age-ordered, fully-associative buffer containing all in-flight loads. When a
store completes, it searches the load queue for a later, completed load that matches the store’s address. If
such a load is found, a dependence violation has occurred.

Two SP systems based on simultaneous multithreaded (SMT) cores, DMT [1] and IMT [27], use per-
context load queues to perform inter-thread disambiguation. In these systems, each hardware context con-
tains a load queue. When a store completes, it not only searches the load queue in its own context to detect
intra-thread dependence violations, but also searches the load queues of contexts running later threads to
detect inter-thread violations. Skipper [6] and Ginger [13] also use a load queue to perform disambiguation.

The Multiscalar uses an address resolution buffer (ARB) to disambiguate in-flight stores and loads [8,
35]. The ARB is a centralized buffer of address-indexed banks shared by all of the Multiscalar’s processing
units. Each address-indexed bank contains the age-ordered set of loads and stores that are in-flight and
that access the address associated with that bank. In that sense, each ARB bank is essentially a load-store
queue. If a load and store to the same address execute out of program order, the ARB detects a dependence
violation.

Filtered load re-execution. To reduce the complexity of disambiguation in ILP systems, [4] and [30]
proposed filtered load re-execution as an alternative to the fully-associative load queue. With filtered load
re-execution, a small percentage of completed loads access the cache just prior to retirement. If the value
obtained non-speculatively from the cache does not match the value obtained during speculative execution,
then the load has violated a true dependence. Roth also proposed the use of filtered load re-execution in

Ginger [13], an architecture that uses out-of-order fetch to exploit control independence.

2.3 Value speculation

With load value speculation, a processor speculatively executes a load and its dependents based on a pre-
diction of the load’s address or value. Address prediction breaks the dependence between a load and the
instructions that produce the load’s address, while value prediction breaks the dependence between the load

and the store that produces the load’s value. Speculative execution based on load value prediction was



originally proposed in [16].

SP systems use load value speculation to break inter-thread dependences, thereby allowing dependent
threads to execute in parallel. Although the benefits of successful value speculation are significant, misspec-
ulations are frequent. The clustered speculative multithreaded processor (clustered SM) and its predecessors
perform inter-thread load value speculation by predicting the addresses of a thread’s load instructions and
by predicting the values of a thread’s live-out registers, including the live-outs defined by load instruc-
tions [18, 22, 19, 21, 20]. Likewise, the dynamic multithreading processor (DMT) speculates on load
addresses by predicting the values of a thread’s live-in registers, including the live-ins used to compute
load addresses [1]. In both clustered SM and DMT, misspeculations are handled by selective re-execution.

Finally, Gonzalez [10] and Steffan [38] studied the benefits of load value speculation in TLS systems.

2.4 Unsynchronized dependence speculation

With unsynchronized dependence speculation, the system predicts whether a load has a dependence on any
earlier unresolved store, but does not identify the set of stores on which the load may depend. Loads with
predicted dependences may not execute speculatively; all other loads may execute speculatively. By spec-
ulating only loads that are not likely to have dependences on in-flight stores, unsynchronized dependence
speculation reduces the rate of misspeculation, at the expense of exposing less parallelism.

The compiler (perhaps using information from a profiler, or from the user) can make a static decision to
speculate across ambiguous memory dependences. This is the approach taken by, for example, Rauchwerger
and Padua in the LRPD test for the Polaris parallelizing compiler [28]. When performing such speculation,
the compiler adds extra code to check the speculation and to roll back program state after any violations.

ILP processors with dynamic, unsynchronized speculation use a load wait table to identify loads that
have violated dependences in the past [14, 29, 41]. Loads that hit in the wait table are not permitted to
issue speculatively. For SP systems, Steffan proposed that a static load that has violated an inter-thread

dependence in the past should not issue until its thread becomes non-speculative [38].

2.5 Synchronized dependence speculation

With synchronized dependence speculation, a memory dependence predictor identifies a (possibly empty)

set of in-flight stores upon which a load is likely to depend, and the scheduler delays the load until the



stores in that set resolve their addresses. That is, the memory dependence predictor predicts store-load de-
pendences, and the scheduler enforces those predicted dependences. The goal of synchronized dependence
speculation is to delay a given load just long enough to avoid violating the load’s true data dependence.
Thus, synchronized dependence speculation balances the benefits of speculation against the costs of mis-
speculation by speculating on dependences that are predicted to be ambiguous and enforcing dependences
that are predicted to be true.

ILP systems. Several memory dependence predictors (MDP’s) have been proposed for ILP processors.
Moshovos proposed the first MDP, leveraging the observation that past store-load violations are a good
predictor of future store-load dependences [23, 25]. Moshovos” MDP predicts that a dynamic load depends
on a dynamic store if (1) the corresponding static load and store have violated a data dependence in the past,
and (2) the dependence distance between the dynamic load and store matches the dependence distance of
the earlier violation. Moshovos” MDP includes two large, fully-associative tables: a prediction table (which
predicts store-load dependences) and a synchronization table (which synchronizes predicted dependences).

The store set predictor of [7] groups static stores and loads into store sets, such that a load’s store
set contains a particular store if the load has violated a dependence with respect to that store in the past.
The store set predictor consists of two direct-mapped tables, the store set identifier table (SSIT) and the
last fetched store table (LFST). The SSIT maps the program counters of load and store instructions to
their corresponding store set identifiers (SSID’s). The LFST maps the SSID of a load (or store) to the
instruction number of the most recently fetched store in that store set, thereby allowing the scheduler to
create a dependence between the load (or store) and the most recently fetched store in the store set. The
scheduler then ensures that no load or store in a given store set issues until all earlier stores in the same store
set have resolved their addresses.

The MDP proposed in [41] uses Store vectors to predict store-load dependences by tracking the relative
ages of stores on which a load has depended in the past. Because the load’s predicted dependences are easily
encoded in an age-ordered bit vector, the store vectors MDP is amenable to matrix scheduling.

In [31, 32], Sha proposes MDP’s that are variants of the store set predictor. The chief distinction is that
the store set predictor associates each load with an integer SSID that represents a set of stores, while Sha’s
MDP’s associate each load with a finite set of store instructions PC’s or store instruction sequence numbers.

Memory renaming is a type of synchronized dependence speculation in which the system speculates

that a particular dynamic store produces the value of a particular dynamic load. The system then passes the



value directly from the store to the load (or directly from the producer of the store’s value to the consumer
of the load’s value) without accessing the memory system. Several variants of memory renaming have been
proposed for ILP systems [43, 24, 33, 32, 40]. We are not aware of any proposals for memory renaming in
SP systems.

SP systems. In [23, 25], Moshovos adapts his MDP to support synchronized dependence speculation
on the Multiscalar [35]. A centralized implementation achieves average speedups within a few percent of a
perfect MDP on integer benchmarks. However, the centralized implementation uses large, fully associative
prediction and synchronization tables. A distributed implementation organized in a manner similar to the
store set predictor achieves speedups within 10% of a perfect MDP on integer benchmarks. In the distributed
implementation, the prediction and synchronization tables are two-way set associative, and each thread
must broadcast a message to all other threads whenever it decodes a store instruction. IMT [27] also uses
Moshovos” MDP to synchronize inter-thread dependences.

In [18, 21, 20], the clustered speculative multithreaded processor and its predecessors use load/store
address prediction to perform synchronized dependence speculation. When spawning a thread, the clustered
SM processor predicts the addresses to which the thread will store and from which the thread will load.
When the address predictions imply an inter-thread dependence, the clustered SM delays execution of the
load in the later thread until the matching store in the earlier thread has executed. Skipper [6] and Gin-
ger [13], two systems that fetch instructions out-of-order to exploit control independence, use Moshovos’

MDP and a variant of the store set predictor, respectively.

3 Storeset synchronization

In this section we describe store set synchronization, a complexity-effective technique for speculating on
inter-thread data dependences. The store set synchronizer (SSS) predicts store-load dependences using store
sets [7] and enforces those predicted dependences using recently proposed techniques for dynamic register
synchronization [17]. The key insight behind store set synchronization is that predicted dependences carried
through store sets can be treated exactly like the dependences carried through architectural registers. The
SSS increases the performance of an SP system by enabling aggressive load speculation, while conserving
power by reducing costly violations. Furthermore, the store set synchronizer’s low violation rate mitigates

the need for costly disambiguation hardware (such as per-thread load queues) and recovery techniques (such
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Figure 2: Register and store set synchronization in a superscalar.

as selective re-execution).
The remainder of this section is organized as follows. Section 3.1 introduces store set synchronization in
the context of a superscalar. Section 3.2 extends the SSS to an SP system and demonstrates synchronization

of inter-thread memory dependences by way of an example.

3.1 Storeset synchronization in a superscalar

Store set synchronization enables a superscalar to enforce register dependences and predicted memory de-
pendences using identical structures and techniques. The store set synchronizer is modeled after the store
set predictor [7], but uses conventional renaming and scheduling techniques to enforce the predicted depen-
dences. As Figure 2 shows, enforcement of predicted memory dependences is analogous to enforcement of
register dependences.

First consider register dependences. In the decoder, the processor learns an instruction’s architectural
source and destination registers. To eliminate false dependences, the processor renames the instruction’s
architectural registers. In the renamer, the register alias table (RAT) maps the architectural source registers
to the corresponding physical register tags. The instruction obtains a physical register tag from the free list
and updates the RAT with the destination register’s new architectural-to-physical register mapping. Finally,
the instruction dispatches to the scheduler. In Figure 2 the superscalar uses a matrix scheduler to enforce
the true register dependences [3].

Enforcement of predicted memory dependences follows naturally. In the decoder, each load or store
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Figure 3: An overview of a SyncMT pipeline. The SyncMT extends an underlying SMT core to support
speculative parallelization. The thread control unit monitors the instruction stream and, when possible,
spawns speculative threads. The register synchronization logic includes the register alias tables (RAT’s),
diverter queues, and unsafe register predictor. The store set synchronizer includes the store set identifier
table (SSIT), store set alias tables (SSAT’s), diverter queues, and unsafe store set predictor.

instruction accesses the store set identifier table (SSIT) and obtains the identifier (SSID) of the store set
that contains the instruction, if any. The SSS regards each store as both a consumer and a producer of the
dependence carried through its SSID, while each load is simply a consumer. This policy ensures that a load
with a valid SSID does not issue until all earlier stores in its store set have issued, at the expense of issuing
stores in the same store set in order?.

In the renamer, the store set alias table (SSAT) maps each load or store instruction’s SSID to the corre-
sponding store set dependence tag (SSTAG). Each store also obtains a dependence tag from the free list and
updates the SSAT with the new mapping from SSID to SSTAG. Finally, the load or store dispatches into the

scheduler, which uses an additional matrix to enforce the predicted memory dependences.

3.2 Storeset synchronization in an SP system

While synchronization of inter-thread register and memory dependences is a general technique that may be
applied to any SP system, we discuss synchronization in the context of the synchronized multithreading pro-
cessor (SyncMT) of Figure 3. The SyncMT consists of a simultaneous multithreaded (SMT) core [42] with
support for speculative parallelization. The SyncMT handles inter-thread register and memory dependences
by predicting and synchronizing them. In the following paragraphs, we briefly describe the SyncMT’s ar-
chitecture.

The SyncMT’s underlying SMT core contains multiple hardware contexts that are capable of executing

2 As discussed in [7], a load should not issue until all earlier stores in its store set have issued because the load is likely to depend
on some earlier store in its store set, but the precise identity of the matching store is not predicted.
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independent threads in parallel. Each hardware context has its own program counter, RAT, SSAT, and
reorder buffer. Threads dynamically share other pipeline resources, including the scheduler, caches, and
physical registers.

To enable speculative multithreading with synchronization of inter-thread dependences, the SyncMT
augments this SMT core with a thread control unit (TCU), a register synchronizer, and a store set synchro-
nizer. They synchronizers are described below. The thread control unit manages the speculative threads.
As instructions are fetched, the TCU identifies control-independent points at which speculative threads may
be created (Spawned). If a candidate thread seems profitable, the TCU spawns the thread on one of the

processor’s idle contexts.

3.2.1 Dependence synchronization

In [17], Malik proposes a novel technique for synchronizing register dependences in an SP system. Referring
to Figure 3, the register synchronization components include the SyncMT’s per-context RAT’s, per-context
diverter queues, shared scheduler, and unsafe register predictor. These components are described below.

When the system spawns a new thread, it copies the RAT from the spawner’s context to the spawnee’s
context. Thus, the spawnee’s RAT initially contains the correct architectural-to-physical register mappings
for all architectural registers that are not written by the unfetched instructions between the Sspawn point
(the instruction that initiated the spawn) and the reconnection point (the first instruction in the spawnee).
Such architectural registers are referred to as safe. Likewise, any architectural register that is written by
an instruction in the spawnee becomes safe after that local definition. Clearly, the spawnee can rename
and dispatch any instruction that reads only safe source registers without violating any inter-thread register
dependences.

How does a thread differentiate between those registers that are initially safe and those that are initially
unsafe? When the system spawns a thread, the unsafe register predictor supplies a bit vector that indicates
which architectural registers are predicted to be unsafe. The set of registers predicted to be unsafe is simply
the set of registers that have ever been written between the spawn point and the reconnection point.

The spawnee does not rename or dispatch any instruction that reads a register predicted to be unsafe,
because that instruction is likely to obtain an incorrect architectural-to-physical register mapping from the
RAT. To avoid violating an inter-thread register dependence, the renamer places any instruction that depends

directly on an unsafe register in the context’s diverter queue. Likewise, the renamer places any instruction
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Figure 4: An example of synchronizing inter-thread memory dependences.

that depends on a diverted instruction in the queue. These transitively diverted instructions can actually
obtain correct architectural-to-physical register mappings from the RAT, but as these instructions are known
to depend on diverted instructions, dispatching them would only waste valuable slots in the scheduler.
When the spawner renames the instruction preceding the reconnection point, the spawner and spawnee
reconnect. During reconnection, the spawnee obtains the correct architectural-to-physical mappings for
registers that were predicted to be unsafe, then renames and dispatches the instructions in the diverter queue.
Furthermore, if the spawnee inadvertently read an unsafe register, this inter-thread dependence violation is
discovered during reconnection, and the misspeculated instructions are canceled. Finally, at reconnection
the SyncMT transmits the reconnection information not only to the successor thread but to any threads to
which the successor thread has already reconnected; we refer to this transmission as limited broadcast. For
further details on the bitset manipulations used to divert and undivert instructions and to detect inter-thread

register dependence violations, refer to [17].

3.22 Anexample

Because inter-thread register synchronization and inter-thread store set synchronization are analogous, we
forgo a formal discussion of store set synchronization and instead offer an example. Figure 4 depicts succes-

sive snapshots of execution on a SyncMT processor. Each frame represents the active threads as instruction
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streams, with fetched instructions at the top and not-yet-fetched instructions at the bottom. Time increases
from left to right.

Frame A depicts a single thread (TO) with a potential spawn point in the unfetched portion of its instruc-
tion stream. The thread has just renamed a store with SSID 9. Thus, in the thread’s store set alias table
(SSAT), store set identifier (SSID) 9 is mapped to store set tag (SSTAG) 37. No SSID’s in TO are marked
unsafe.

In Frame B, thread O spawns thread 1. T1 copies TO’s SSAT, thereby obtaining the mapping from SSID
9 to SSTAG 37. T1 also consults the unsafe store set predictor; the predicted unsafe set includes SSID 9.
Thus, the store set synchronizer predicts that the unfetched portion of thread O contains a store in store set 9.

In Frame C, thread O fetches a store in store set 9, while thread 1 fetches a load in store set 9. When
TO renames the store, it obtains a free store set tag (38) and updates the SSAT so that SSID 9 is mapped to
SSTAG 38. When T1 attempts to rename the load, it discovers that the load’s SSID is unsafe and places the
load in the diverter. Subsequent instructions that depend on the load are also placed in the diverter.

Finally, in Frame D, thread O renames its last instruction and reaches the reconnection point. During
reconnection, thread 1 obtains the correct mapping for SSID 9, marks SSID 9 as safe, and undiverts the
load that was diverted in Frame C, along with its transitive dependents. The load accesses the SSAT, obtains
the correct mapping for SSID 9, and dispatches. Assuming that the second store in thread 0 and the load
in thread 1 actually access the same address, the store set synchronizer has successfully prevented the load
from violating an inter-thread memory dependence.

Note that diversion is not required to synchronize all inter-thread dependences. For example, if the store
between the spawn point and the reconnection point in Figure 4 were not in store set 9, then the unsafe
SSID predictor would probably not predict SSID 9 to be unsafe. In that case, thread 1 would not divert the
load with SSID 9. Instead, the load would access T1’s SSAT, obtain the (correct) mapping from SSID 9
to SSTAG 37, and dispatch into the scheduler. The scheduler would then enforce the predicted inter-thread

dependence between the first store in TO and the load in T1.

3.2.3 Disambiguation

Enforcement of inter-thread memory dependences is precisely analogous to enforcement of inter-thread
register dependences, with two exceptions. First, the unsafe store set predictor predicts an SSID to be unsafe

if it was written between the spawn point and the reconnection point the last time those instructions retired.
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Second, whereas the register synchronizer uses bitsets in the spawner and spawnee to detect violations of
inter-thread register dependences, the store set synchronizer uses per-context load queues to detect violations
of inter-thread memory dependences. The store sets are, after all, only an approximation of the true memory
dependences that are actually carried through addresses. Thus, some form of memory disambiguation is
necessary, and the SyncMT processor of Figure 3 uses the load queues for that purpose.

Even per-context load queues are not sufficient to detect all inter-thread memory dependence violations,
because the SyncMT permits inter-thread store-load forwarding from its store queues. Thus, when a load
in one thread obtains its value from a store in an earlier thread, and that forwarding store is subsequently
canceled by a branch misprediction, the SyncMT will not necessarily squash the dependent load’s thread.

Clearly, the SyncMT needs some mechanism to detect dependence violations caused by inter-thread
forwarding from wrong-path stores to right-path loads. The processor uses a variant of the store vulnerability
window (SVW) for this purpose [30]. SVW is a form of filtered load re-execution; see Section 2 for an
overview of this disambiguation technique.

The SyncMT uses the following algorithm to identify retiring loads that should re-execute. The decode
stage assigns a sequence number to each store. At any time, the sequence numbers represent a total ordering
on all stores in all threads in the processor. All stores and loads access a direct-mapped, address-indexed
table (the filter) as they retire. Each store writes its sequence number in the corresponding entry. If a retiring
load obtained its value from the store queue, it compares the sequence number of the forwarding store to
the sequence number in the corresponding filter entry. If the sequence numbers do not match, the load
re-executes. We refer to this algorithm as limited SVW (L-SVW), and it is sufficient to detect all cases of
inter-thread forwarding from wrong-path stores to right-path loads.

In the Section 5, we evaluate store set synchronization on a SyncMT that uses per-context load queues
and L-SVW to disambiguate memory dependences. We also evaluate the SSS on a SyncMT that has no
load queues. Eliminating the load queues altogether changes the filtering algorithm slightly. As described
in [30], each load obtains a store sequence number (SSN) when it executes. If a load does not get its value
from the store queues, then the load’s SSN is set to the SSN of the most recently retired store. Each retiring
load that did not obtain its value from the store queues compares its SSN to the SSN in the corresponding
filter entry. If the load’s SSN is less than the SSN in the filter entry, the load must re-execute. However, as
described above, loads that actually obtained their values from the store queues face a more stringent test: if

the load’s SSN is not equal to the SSN in the filter entry, the load must-re-execute. We refer to this algorithm
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Figure 5: SyncMT system resources.

Contexts 8
Pipeline width 8 instructions
Functional units | 8 identical, fully pipelined
ROB size 512 instructions
Scheduler size 128 instructions ‘ benchmark ‘ Input
Diverter size 128 instructions bzip2 Igred.source, 128KB
Branch predictor | 16 kbit gshare with 8 bits of crafty Igred.in
global history gap lgred.in
I Cache 8KB, 2-way, 10-cycle miss gce mdred.rtlanal.i
latency gzip Igred.log, IMB
D Cache 16KB, 4-way, 10-cycle miss mcf mdred.in
latency parser 2.1.dict, mdred.in
L2 Cache 512KB, 8-way, 100-cycle miss perlbmk mdred.makerand.pl
latency twolf mdred
SSIT Shared, 16K entries, direct- vortex mdred.raw
mapped vpr route Igred.net, small.arch
SSAT 1 per context, 32 entries, direct- vpr place Igred.net, small.arch,
mapped, not checkpointed lgred.place

Figure 6: SPECINT2K benchmarks and inputs.

as extended SVW (E-SVW), and it is sufficient to detect all memory dependence violations.

4 Methodology

We use execution-driven, cycle-level simulation of the SyncMT architecture to evaluate the store set syn-
chronizer. For an overview of the SyncMT architecture, refer to Section 3.2. The SyncMT simulator exe-
cutes a variant of the 64-bit MIPS ISA that has no special instructions to support speculative multithreading.
Inter-thread dependences are predicted and enforced using the register and store set synchronizers described
in the previous section, The simulator faithfully models all effects of mispredictions and dependence viola-
tions, including execution of misspeculated instructions in the simulator’s back end. After a misprediction
or dependence violation resolves, the simulator immediately reclaims the resources allocated to canceled
instructions (e.g. rob slots, physical registers) and repairs the states of the affected RAT’s.

We model an 8-wide pipeline with 8 hardware contexts. Each hardware context has its own diverter and
reorder buffer (ROB). Like the ROB of the POWERS5 [34], the SyncMT’s ROB and diverter are dynamically
shared among contexts. We model zero latency for undiversion; when threads reconnect, the undiverted
instructions are immediately renamed and inserted into the scheduler. The load and store queues are fixed-

sized structures that are large enough to never cause pipeline stalls, and the scheduler is compacting. We
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model 32 SSID’s and sufficient SSTAG’s to avoid stalls. Other pertinent pipeline parameters are listed in
Figure 5.

With regards to the register and store set synchronizers, the register synchronizer predicts that a register
is unsafe if that register has ever been written between the specified spawn and reconnection points. The
store set synchronizer predicts that an SSID is unsafe if that register was written between the spawn and
reconnection points the last time those points retired, as described in the previous section. We do not model
conflict or capacity misses in the unsafe register and unsafe store set predictors, but we do model cold
misses. We do not model the latency of training the unsafe register predictor (this policy is conceptually
similar to not modeling the latency of training a branch predictor).

With regards to the thread control unit, the spawn points are obtained from a control-independence
analysis of program traces and are loaded into a spawn hint cache at the beginning of execution. We do not
model misses in the hint cache. Also, the TCU uses information obtained from a dynamic trace to avoid
spawning over fewer than 5 instructions or more than 128 instructions.

We evaluate the store set synchronizer using the SPECINT2K benchmarks with the inputs listed in
Figure 6; we lack runtime library support for eon. The SPECINT2K benchmarks are difficult to parallelize
because potential threads exhibit many inter-thread register and data dependences. Thus, these benchmarks
should stress the store set synchronizer. We compile the benchmarks with gcc -O3 and link them with our

own libraries, which are largely derived from FreeBSD.

5 Results

In this section we evaluate the performance of the store set synchronizer in the SyncMT simulator. We
compare the performance of the SSS to a scheme that synchronizes only intra-thread memory dependences,
and to an oracle synchronizer that delays the issue of any load just until the store that produces its value
has issued. We evaluate the three synchronizers both in a SyncMT system that has per-context load queues
and in a SyncMT that uses only filtered load re-execution to detect dependence violations. With regards
to filtered load re-execution, we do not model contention for data cache ports between executing loads and
re-executing loads, and stores commit to the cache-memory hierarchy as soon as they retire. In the figures,

IPC is normalized to the IPC of a superscalar with the same resources as the SyncMT; the IPC’s achieved
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Figure 7: SyncMT performance with per-context load queues. Results are normalized to the performance of
a superscalar with the same resources as the SyncMT. The left bar (intra) represents SyncMT’s performance
when only intra-thread dependences are synchronized. This configuration achieves an average speedup of
12% over the superscalar, which demonstrates the SyncMT architecture effectively extracts thread-level par-
allelism from the benchmarks. The middle bar (sss) represents SyncMT’s performance when the SSS syn-
chronizes intra- and inter-thread store-load dependences. This configuration obtains an additional speedup
of 8% over intra, which demonstrates that the SSS effectively identifies and enforces inter-thread depen-
dences. The right bar (oracle) represents SyncMT’s performance with an oracle synchronizer.

by the superscalar are listed in Figure 7.

Figure 7 shows that in a SyncMT with per-context load queues, store set synchronization achieves an av-
erage speedup of 20% over the superscalar, while intra-thread synchronization achieves only a 12% speedup.
Furthermore, the average speedup of SSS is within 8% of the average speedup obtained by the oracle. This
result compares favorably with those reported in [25], in which Moshovos’ distributed, 2-way associative
dependence predictor achieves performance within 11% of an oracle.

On three benchmarks (gap, place, and vortex), the SSS improves performance by at least 15% compared
to the intra-thread synchronizer; Figure 8 shows that these benchmarks exhibit high rates of inter-thread
dependence violations. By contrast, the SSS and the intra-thread synchronizer both achieve performance
within a few percent of the oracle on gcc, gzip, mcf, parser, and perlbmk. None of these benchmarks
experience high dependence violation rates, and the latter four are clearly constrained by factors other than
memory dependence violations. On the remaining benchmarks (bzip2, crafty, route, and twolf), the SSS
neither achieves significant speedup over the intra-thread synchronizer nor approaches the performance of
the oracle. In all five cases, the SSS is most likely diverting loads unnecessarily. Adding path-sensitivity to

the unsafe store set predictor (by hashing the global history with the spawner’s PC) might enable the SSS to

17



4.0 8
Ointra - Ointra
35 — H 7
Wsss 2 Wsss
E _
C2-5 T é 5
o] 0
° g 4
S 3 _
gls - g3 _
o] e}
—1.0 ®2
c
0.0 | J—ILT 0 ],J.L_r
PR E RS L PSS P R E RS LN PSS
K& 6\&2“’}@@ F&SSE &Q’& NaFCHE A &Q'zr‘:é@& NER {5@@

Figure 8: Load misspeculation rates. When inter-thread store-load dependences are not synchronized, load
speculation incurs 8.5 inter-thread dependence violations for every 1000 retired loads. When inter-thread
dependences are synchronized, the average dependence violation rate decreases to 1.6 violations per 1000
retired loads, a reduction of 80%. The decrease in inter-thread violations translates directly to an 80%
reduction in the number of threads squashed due to inter-thread violations.

divert fewer loads unnecessarily.

Figure 9 shows that in a SyncMT that uses filtered load re-execution to detect dependence violations,
the SSS achieves an average speedup of 17% over the superscalar, while intra-thread synchronization and
the oracle achieve speedups of 5% and 27%, respectively. The performance of the SSS-equipped SyncMT
decreases by only 3% when the load queues are removed. Comparing the complexity and power consump-
tion of the load queues to the complexity and power consumption of filtered load re-execution, this trade-off
seems quite favorable.

Why does the performance of intra-thread synchronization suffer more than the performance of the SSS
when the load queues are removed? As Figure 8 shows, synchronizing only intra-thread dependences yields
an average inter-thread dependence violation rate of 8.5 violations per 1000 retired loads, while the SSS
suffers only 1.6 violations per 1000 retired loads - a reduction of roughly 80%. Furthermore, the number
of threads squashed due to inter-thread dependence violations is strongly correlated with the inter-thread
dependence violation rate. The SSS reduces the average number of squashed threads from 1.9M to 0.4M -
again, a reduction of nearly 80%. By synchronizing inter-thread dependences, the SSS not only increases

performance, but also conserves the power associated with costly misspeculations.
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Figure 9: SyncMT performance with filtered load re-execution. The baseline and the SyncMT configurations
are identical to those in Figure 7, with the exception that the SyncMT now uses filtered load re-execution
rather than per-context load queues. While sss maintains a speedup of 17% over the superscalar (only 3%
lower than the speedup achieved with load queues), intra’s speedup decreases from 12% to 5%. In short,
when inter-thread dependences are synchronized, the per-context load queues are not necessary.

6 Conclusion

By extracting dependent threads from a sequential thread and executing those threads in parallel, speculative
parallelization leverages the resources of multithreaded and multicore processors to increase performance.
For speculative parallelization to achieve high performance on integer programs, loads must speculate on
the data dependences among threads. Techniques for speculating on inter-thread data dependences have
a first-order impact on the performance, power, and complexity of architectures that support speculative
parallelization.

Out contributions include the following: (1) Store set synchronization enables aggressive speculative
parallelization while minimizing the risks of load misspeculation. The SSS achieves speedups within 10%
of an oracle, while decreasing by 80% the rates of dependence violations and thread squashes caused by
inter-thread dependence violations. (2) The SSS mitigates the need for costly disambiguation hardware
such as per-thread load queues. In particular, a synchronized multithreading processor equipped with SSS

loses just 3% performance on average by replacing the load queues with filtered load re-execution.
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