
Confidence Based Out-of-Order Renaming for Speculatively
Multithreaded Processors∗

Kshitiz Malik, Kevin M. Woley, Samuel S. Stone,
Mayank Agarwal, Vikram Dhar, Matthew I. Frank

Electrical and Computer Engineering
University of Illinois, Urbana-Champaign

June 9, 2006

Abstract
Speculatively multithreaded processors find paral-
lelism by speculatively fetching and renaming dy-
namic flows of instructions from (perhaps) widely
seperated parts of the program flow graph. These pro-
cessors must handle inter-thread register dependences.
The approach followed in this paper is to dynamically
identify the consumers of interflow register mappings
that will be (but have not yet been) produced in a log-
ically earlier thread and then to dynamically awaken
those consumers as soon as the mapping they are wait-
ing for is produced.

The main contribution of this paper is the design and
evaluation of the inter-thread register renaming and
synchronization mechanisms for a speculatively mul-
tithreaded processor that does not need compiler sup-
port. Our scheme is realizable, aggressive, and flexi-
ble and achieves speedups within about 10% of those
achievable by an oracle. We find that inter-thread syn-
chronization mechanisms can and must use path con-
fidence information so that the producers of register
mappings can awaken consumer instructions at just
the right time, neither so early that the producer is on
a misspredicted branch path, nor so late as to add la-
tency to the critical path. We also demonstrate that
a relatively straight-forward predictor can find the set
of consumer instructions that must wait without being
overly conservative.

1 Introduction
Superscalar processors are profitable because they is-
sue and execute instructions out of order, but retire in-
structions in order, thus providing high performance
on a programming model that is easy to reason about.
However, superscalars fetch and rename instructions
in program order and cancel all instructions after a
branch mispredict, even when those instructions have

∗University of Illinois, Center for Reliable and High Performance
Computing, Technical Report Number UILU-ENG-06-2208.

done useful work. Speculatively Multithreaded pro-
cessors [13, 14, 6, 7, 4, 1, 11, 8, 9] are a promising al-
ternative because they retire instructions in order, like
a superscalar, but also fetch and rename instructions
out of order. This allows them to find instruction level
parallelism across widely separated regions of the pro-
gram, including past multiple branch mispredictions.

Although fetching out-of-order improves fetch effi-
ciency, it introduces complications because of dataflow
that crosses thread boundaries. In particular, there may
be register and memory value traffic between the in-
order instructions that have not yet been fetched and
the out-of-order instructions that have been fetched
early by the speculative multithreading mechanism.
That is, producers and consumers of inter-thread value
traffic sometimes need to be synchronized. It turns out
(empirically) that more often than not in speculatively
multithreading systems, a program’s value traffic oc-
curs either within a thread or from a producer instruc-
tion that fetched, renamed and executed before a par-
ticular thread was even spawned [13]. Thus, many
of the instructions that are fetched out-of-order can be
renamed and executed in the order they are fetched,
while others need to wait for portions of the interme-
diate path to be fetched. And, when inter-thread reg-
ister communication does need to be synchronized the
synchronization is often on the critical path.

This paper investigates how aggressively (specu-
latively) the processor should synchronize producer
threads with the consumer instructions that depend
on them. Similar to many earlier speculatively mul-
tithreaded systems [7, 1, 8], the system we evaluate,
which we call the PolyFlow Speculative Multithreaded
Processor is based on a simultaneously multithreaded
core, rather than, for example, a chip multiprocessor.
This means that in our system we have the option of
allowing producer instructions to forward data to con-
sumer instructions speculatively, rather than waiting for
all the branches before the producer instruction to com-
plete. We find that producers must forward data specula-
tively to consumers to avoid adding latency to critical

1

paths, but that the speculative forwarding of data must
be balanced with path confidence information to avoid pro-
ducers that are along mispredicted branch paths from
signaling consumers too early and thus causing the
consumers to also be canceled. The PolyFlow system
is a Dynamic Speculative Multithreaded system, in that
it takes an unmodified binary, and converts it dynami-
cally into threads. Thus, our register synchronization
mechanism must handle inter-thread register depen-
dence without any help from the compiler.

The contributions of this work include, first, the
design and analysis of an effective and realizable
out-of-order register renaming mechanism for dy-
namic speculative multithreading. Our scheme sup-
ports out-of-order spawning and reconnect of flows,
communicates register information only point-to-point
from a predecessor to its immediate successor flow
(rather than globally), requires no selective reexecu-
tion, and yet achieves speedups within about 10% of
those achievable with an oracle that “knows” the opti-
mal time for producers to awaken consumers.

Second we demonstrate that out-of-order register
renaming requires path confidence information to
balance synchronization between register producers
and consumers. We find that register producers must
aggressively and speculatively release/awaken con-
sumers to avoid delays waiting for branches to com-
plete and retire. The producers must also, however,
take branch confidence information into account to
avoid awakening consumers too early, with data from
along a mispredicted path. We present the design of an
appropriate confidence predictor and show how to use
it to drive the register renamer.

Third we demonstrate that inter-thread register con-
sumers can be identified dynamically. Our system
does not use a compiler to identify consumer instruc-
tions, but rather derives this information at runtime.
While finding the last dynamic instance of a producer
is a difficult problem [7] that requires backward com-
piler analysis [15], we find that the set of architectural
registers that need to be synchronized is highly pre-
dictable. Since identifying these register’s consumer
instructions (and their transitive dependents) is a for-
ward analysis it can be performed at runtime in the
front end of the processor. We find that a predictor with
1-bit per architectural register per spawn point is suffi-
cient to allow us to identify the consumer instructions
that must wait for a producer instruction from another
flow.

The rest of this paper is structured as follows. The
next section gives a motivating example to explain,
in rough terms, the problem we are trying to solve
and our solution, and discusses the relationship of our
work to earlier work in speculative multithreading.
Section 3 gives a more detailed description of our de-
sign. In Section 4 we demonstrate that our aggressive
renaming scheme provides speedups within about 10%

of that achievable with an oracular confidence predic-
tor driving the time at which producers release con-
sumers. Section 5 concludes.

2 Background
In this section, we describe the register synchroniza-
tion problem faced by all speculatively multithreaded
systems. In our domain of SMT-based speculative mul-
tithreading with a shared physical register file, the reg-
ister synchronization problem boils down to ensuring
that all instructions get source physical mappings pro-
duced by their corresponding producer instructions,
instead of some predecessor of the producer. Hence,
we term register synchronization as the problem of per-
forming out-of-order renaming.

A speculatively multithreaded system needs to ad-
dress three issues regarding inter-thread register syn-
chronization. First the specific instructions that con-
sume inter-thread register data need to be identified,
and be forced to wait (i.e., their renaming must be de-
layed) till the corresponding producer instruction has
been renamed. We call such instructions waitsFor in-
structions. Second, waitsFor instructions need to be
released, some time after the producer instruction has
been renamed. Release here refers to the process of
providing a waitsFor instruction the correct source reg-
ister mappings. If consumers are released too early
(before the correct producer instruction has been re-
named) then the thread containing the consumer in-
struction will need to be canceled. On the other hand if
the consumers are released too late the synchronization
cost will add to the critical path and slow down pro-
gram execution. Finally, if consumer instructions are
identified speculatively or released speculatively, there
needs to be a validation process that makes sure that
each consumer got matched with the correct producer
instruction.

2.1 Example
Figure 1 shows an oversimplified pedagogical example
intended to clarify these three issues. In this example
thread 0 has spawned thread 1, and then thread 0 has
entered a simple if-then-else statement starting at in-
struction A1. The first issue is to identify waitsFor in-
structions in thread 1, i.e., instructions which should
wait before they go through the rename process. In
this case, instruction D1 does not need to wait, because
it can immediately retrieve its local register alias table
mapping for register Rx (created by instruction Z1, and
copied during the spawn process). Likewise instruc-
tion D5 does not need to wait, because register Rz has
already been renamed locally by instruction D4. In-
struction D2, on the other hand, must wait for a map-
ping to be produced by either instruction B1 or C1. In-

2

���������

����	
��
�
�����

����	
��
�

���������

��������
���������

����������

����������

����������

���������

����������

���	����

Figure 1: How aggressively thread 0 should wake up in-
structions D2 and D3 in thread 1 depends on the predictabil-
ity of the branch at A1. If the branch is highly predictable,
then thread 1’s instructions should be awakened as soon as
thread 0 predicts through the branch, and reaches the po-
tential reconnection point, marked “reconnect,” correctly re-
naming the intervening instructions in either block B or C.
If the branch at A1 is hard to predict then thread 0 should
wait until A1 is actually resolved before releasing instruc-
tions D2 and D3 in thread 1

struction D3 may or may not need to wait for the map-
ping produced by instruction B2, depending on the di-
rection of branch A1. In Section 3 we demonstrate how
to use the renamer to derive a non-conservative set of
instructions that should wait.

The second question, of when to release the waiting
instructions, depends on whether the branch at A1 is
highly predictable or not. If the branch is highly pre-
dictable then as soon as the renamer speculatively re-
names the predicted block (B or C), instructions D2 and
D3 should be released. If, on the other hand, the branch
at A1 is not predictable, then it will be better to make
D2 and D3 wait until the branch at A1 is resolved so as
not to force a flush in thread 1 because of a branch mis-
predict in thread 0. This represents a fundamental trade
off between the benefit of multithreading systems that branch
mispredictions in different threads can be handled indepen-
dently against the cost of adding synchronization to the crit-
ical path. We demonstrate in Sections 3 and 4 that the
sweet spot in this trade off is releasing instructions ag-
gressively and speculatively, but by using a path confi-
dence predictor to gate release.

Another part of releasing waitsFor instructions is
identifying the correct producer instruction from the
dynamic instruction stream in the predecessor thread.
Doing this without any help from the compiler is hard.

Identifying the program counter of the last-writer is
not enough since the same PC may appear multiple
times. We make the observation that when the pre-
decessor thread has renamed all its instructions, which
will be a short while after it reaches its final PC, all last-
writers in the predecessor have been renamed. We re-
fer to this specific release point in the dynamic instruc-
tion stream as the potential reconnection point, or simply
reconnection point.

This may be a good time to send the physical reg-
isters of unsafe registers to the successor thread, all at
once and in bulk, so that its waitsFor instructions can
be released. We call this scheme release-on-arrival(RoA).
Note that this release is speculative, since the predeces-
sor may arrive at the reconnection point on a bad path.
Another option is to perform release when the prede-
cessor thread has retired all of its instructions, which
we call release-on-retirement(RoR). We show in section
4.1 that performing RoA while taking branch confi-
dence into account performs much better than RoR, in
spite of RoA performing release speculatively.

The final question, of how to validate whether we
identified all waitsFor instructions (and did not miss
out any), is addressed in Section 3. We augment each
thread’s register alias table with a set of 4 bits per ar-
chitectural register to track these inter-thread register
dependences.

2.2 Related Work
2.2.1 Dynamic Speculative Multithreaded Systems

Most dynamic speculatively multithreaded processors
[1, 10] don’t perform explicit register synchronization.
Instead, they make the following assumption: Inter-
thread register dependences don’t occur, and even
when they do, the values of architectural registers are
not changed by any predecessor instruction between
the spawn and the reconnection point.

When the above assumption is false, these proces-
sors use replay to selectively re-execute waitsFor in-
structions and their transitive dependents in the suc-
cessor thread, which usually happens when waitsFor
instructions retire. Thus, previous dynamic specula-
tive multithreaded processors have proposed a combi-
nation of value prediction and re-execution to solve the
out-of-order renaming problem. These systems have
produced unique mechanisms that exploit value pre-
diction to get around the renaming problem. However,
we show in Section 4.1 that resolving inter-thread reg-
ister dependences when consumer waitsFor instruc-
tions retire hurts the performance of a speculative mul-
tithreaded processor. Also, our goal is to develop a
relatively simple hardware to handle out-of-order re-
naming. For these reasons, value prediction backed by
replay is not an acceptable solution for us.

Skipper [2] is a dynamic out-of-order fetch proces-

3

sor that fetches from control-independent point in the
program when it reaches a hard-to-predict branch.
The authors develop an efficient mechanism to re-
name instructions out-of-order, and we use some of
their insights to identify and delay waitsFor instruc-
tions. However, Skipper is intended as an add-on
to a superscalar processor that mostly fetches in-order,
whereas our design is intended towards a speculative
multithreaded machine where out-of-order fetch is the
norm, rather than the exception. For example, our
renaming mechanism needs to support out-of-order
spawn and reconnect, which Skipper did not investi-
gate. Also note that Skipper performs release when
the hard-to-predict branch has resolved, whereas we
use a more aggressive confidence based release mech-
anism. Finally, Skipper’s dependence checking mecha-
nism was conservative, in that it sometimes signaled
a violation even though a true dependence was not
violated, which worked well for their domain. We
have found that supporting a non-conservative check-
ing mechanism that flags a misprediction only if a vio-
lation has occurred to be important.

2.2.2 Compiler-based Speculative Multithreaded
Systems

While our goal is to implement register synchroniza-
tion in a dynamic system without compiler support,
we leverage a number of insights from previous work
in compiler-based speculative multithreaded proces-
sors which place explicit register send and receive in-
structions in the binary.

The Multiscalar [13] used a compiler to both identify
thread boundaries, and to move producer instructions
up in the code and consumers (and their dependents)
down in the code, as much as possible [15]. The Implic-
itly Multi-Threaded (IMT) processor [8] extended the
Multiscalar to run on top of an aggressive SMT proces-
sor with speculation. In this system producer instruc-
tions could be fetched and executed along a bad path
after a branch mispredict, and thus sometimes release
consumers too early, causing some extra flushes. Our
work builds on the IMT in three ways. First, we sup-
port out-of-order spawn and reconnect of threads. Sec-
ond, we substantially reduce the probability of flushes
caused by producers releasing consumers early by gat-
ing the releases with branch confidence information.
Third, we have developed a complete system for iden-
tifying the consumer instructions dynamically. Since
our system identifies release points dynamically, rather
than relying on the backward analysis that a compiler
could give us, our release points are somewhat conser-
vative compared to those used on the IMT. This last
point is discussed further in Section 4.

The Stampede speculative multithreaded system ex-
tended the Multiscalar compilation techniques to allow
speculative movement of release instructions above

statically predicted branches [16], which has interest-
ing parallels to our proposal of performing speculative
release based on dynamic branch confidence. Dynamic
confidence predictions may give more accurate predic-
tions than the profile based confidence predictor used
on Stampede. Further, our system only needs to wait
for low confidence branches to execute, rather than re-
tire, which also removes a considerable amount of la-
tency from critical paths. It is difficult to compare our
system to a TLS system implemented on a CMP, since
our register synchronization is much more tightly cou-
pled.

3 Design
In this section we describe the out-of-order register
renaming and synchronization mechanism as imple-
mented in PolyFlow. We start with a broad description
of PolyFlow’s microarchitecture in Section 3.1. We then
provide a detailed view of the renaming mechanism in
Section 3.2. We conclude with a discussion of our path
confidence predictor in Section 3.3.

3.1 PolyFlow Microarchitecture
Figure 2 depicts PolyFlow’s microarchitecture.
PolyFlow is a speculative multithreaded processor
that dynamically spawns flows from a single-threaded
application. The overall organization is similar to an
SMT machine.

The following sections define a flow, and detail the
actions which occur over the lifetime of a flow and their
relationship to architectural components.

3.1.1 Flow State

A flow is a microarchitectural entity that represents
some portion of program execution. Each flow, like a
thread, has a current program counter (PC), a rename
table (mapping architectural register numbers to phys-
ical register numbers), and a reorder-buffer (ROB) of
instructions that have been fetched (and possibly com-
pleted) but not yet retired. Similar to the POWER5 [12],
PolyFlow has a linked-list ROB that is dynamically
shared among flows.

However, unlike a thread, a flow’s state has a start
pc (the program counter of the flow’s first instruction)
and a pointer to the successor flow (the next flow in
program order). To enable out-of-order renaming, each
flow also has a Diverter Queue, and four additional bits
per RAT entry, which are described in Section 3.2.

The PolyFlow renamer extends the conventional re-
naming mechanism to work on an out-of-order instruc-
tion stream. Each flow uses its own register alias ta-
ble (RAT) to rename its in-order instruction stream.
On dispatch, all flows insert instructions into a shared,

4

��������� 	�
��
��

����

�����
�

��
�������

�������
��������������

��
��

������

��	
�	��

��
��������	��
�

�
��	����������	��
�

���
���
���
��

	�
���

	�������������	�������������	�������������	�������������

	�����

���
���
���

���
���
���
��� �	������������

�
	���
������	��
�

���
����
�	�

���
�����	
���
�	�

��������
�������

 ��
���
��������� ������

Figure 2: PolyFlow Microarchitecture

non-blocking scheduler, as well as into their own ROB.
Thus, intra-flow instruction dispatch in PolyFlow is
similar to per-thread dispatch in an SMT processor.
As with all other speculatively multithreaded systems
PolyFlow’s speculative and out-of-order memory sys-
tem must allow flows to communicate and synchronize
memory operands in addition to register operands.
Details of our approach to building this memory sys-
tem are outside the scope (and size constraints) of this
paper. Further enhancements to renaming in PolyFlow
are discussed in Section 3.2.

3.1.2 Flow Lifetime

The Flow Control Unit (FCU) manages the initiation
(spawning), completion (reconnection), and removing
(squashing) of individual flows.

Flow Spawn. We call the process in which one
flow creates a new flow a spawn. As instructions are
fetched, the FCU identifies control-independent points
that could be spawned off. When the FCU decides
that a spawn would be profitable (using some heuris-
tics), it spawns a new flow on an available SMT con-
text. While some Speculative Multithreaded proces-
sors permit only the youngest thread (in program order)
to spawn new threads, PolyFlow’s out-of-order spawn
policy allows any flow to spawn new flows. At spawn,
the new flow’s start and current PCs are set to the
PC of the instruction that the FCU wishes to spawn to.
An empty reorder-buffer queue is allocated for the suc-
cessor. The renaming actions that happen at spawn are
described in Section 3.2.

Note that flows are chained together in a sequence
representing sequential program order, shown in Fig-
ure 3. Each flow has a successor flow, which is immedi-
ately next to it in program order. When a flow spawns
another flow, it inserts the new flow into the sequence
between itself and its former successor, as shown in
Figure 3 (b).

Reconnection. When a flow’s dynamic instruction
stream reaches the start pc of its successor flow, as
in Figure 3 (c), the predecessor flow can reconnect with

���

���

���

���

������

������

������

������ ������

������

������

������

������

������

�������

��	�
����
�	

���������

��	�
����
�	

����
��

��	�
����
�	

Figure 3: Flow Lifetime: Flows are represented as the por-
tion of the dynamic instruction stream. Figure (a) shows the
state of two flows prior to Flow 0’s PC reaching a spawn
point, represented by the dark vertical bar. When Flow 0
reaches the spawn point, Figure (b), it spawns Flow 1 which
is between Flow 0 and Flow 2 in program order. Figure
(c) shows the state of the machine when Flow 0 reaches the
spawn PC of Flow 1. At this point, Flow 0 has no more in-
structions to fetch. At the appropriate time, Flows 0 and 1
are reconnected, shown in Figure (d). After reconnection, all
of the instructions once belonging to Flow 0 are now consid-
ered part of Flow 1, and the appropriate resources of Flow 0
are freed. Note that only the first flow, in program order, is
allowed to retire instructions.

5

��

���

��

����	
��
���

�
�
	��
�
�
�

�
�
�
�
�

�
�
�
�
��

�
�	���

�

���

Figure 4: Register Alias Table of a flow.

its successor. At reconnection, the register data flow
between the predecessor and successor flows is eval-
uated (Section 3.2) for correctness. If dependence vio-
lations are discovered, reconnection fails and the suc-
cessor flow is squashed. Otherwise, reconnection suc-
ceeds. Successful reconnection effectively combines the
two flows into one logical flow, associated with a sin-
gle set of flow state depicted in Figure 3 (d). The result-
ing flow has one PC, start PC, and pointer to its suc-
cessor flow. The reorder buffer of the combined flow
is the concatenation of the individual reorder buffers.
The tail of the predecessor flow ROB is pointed at the
head of the successor flow ROB to build the combined
ROB. The rename state of the combined flow is derived
in Section 3.2. Note that reconnection can occur only
once between any two successive flows and does not
need to occur in program order.

3.2 PolyFlow Register Renaming
The goal of our out-of-order renaming design is to
support inter-flow register communication in a spec-
ulative multithreading system running on an SMT-like
pipeline. We insisted that our renaming design support
out-of-order spawn and reconnect, because ample pre-
vious work has indicated that it was important for per-
formance [4, 1, 9] (we have reconfirmed this in our sys-
tem). The renaming mechanism supports neither se-
lective reexecution nor value speculation; we deemed
it too expensive to add either of these features to sup-
port speculative multithreading. Finally, we are careful
in our design to make sure that all inter-flow commu-
nication is point-to-point because we did not want to
build global broadcast buses into the rename unit.

The following sections describe the design of our
inter-flow register renaming mechanism, beginning
with a description of the additional state we associate
with each flow (Section 3.2.1). We then describe how
this additional state is updated throughout the lifetime
of a flow (Section 3.2.2). Section 3.2.3 then describes
our mechanism for identifying registers that are likely
to be available to a particular flow at the time of spawn.

3.2.1 Register Renaming Flow State

Two additions to the SMT pipeline to support out-of-
order renaming are the flow rename state bits and the Di-
verter Queues. To detect and avoid dependence viola-
tions we augment the RAT entry of each architectural
register in each flow with four bits. These bits are de-
scribed below and shown in Figure 4.

• Written: Indicates that the register has been writ-
ten by its flow.

• Unsafe: Indicates that the flow has a more recent
physical register mapping of this architectural reg-
ister than that copied to its successor (upon the
successor spawn).

• waitsFor: Registers marked with this bit are ex-
pected to be written by a predecessor flow, i.e.,
the flow should not allow instructions reading this
register to execute.

• Eager: Set when the register has been read by its
flow, and was not previously marked waitsFor
or Written.

The per-flow Diverter Queues (Figure 2) are
used to hold those instructions for which a correct
architectural-to-physical register mapping is currently
unknown. The WaitsFor Predictor (Section 3.2.3) pre-
dicts which architectural registers will be unavailable
to a newly spawned flow. In the spawned flow, the
renamer delays the execution of instructions that are
dependent upon registers marked waitsFor by plac-
ing them in a per-context Diverter Queue to await re-
naming. All instructions not explicitly dependent upon
waitsFor registers are sent to the scheduler, including
the transitive dependents of diverted instructions.

The process of delaying the renaming of instructions
that have direct inter-flow dependences is called di-
version. When the FCU has determined that the di-
verted instructions in a flow can be safely released,
the instructions in the Diverter Queue of that flow
are renamed. The released instructions receive cor-
rect register mappings from the previous flow for each
waitsFor register. After an instruction is released, it
is sent to the scheduler.

3.2.2 Renaming Flow State Transitions

Flow Spawn. When a flow is spawned, the RAT of the
predecessor is copied to the RAT of the newly created
successor flow and the four flow state bitmaps are ini-
tialized. The successor’s written and eager bits are
cleared for each architectural register. The waitsFor
bitmap is looked up in the WaitsFor Predictor (Sec-
tion 3.2.3) and logically OR-ed with the predecessor’s
current waitsFor bitmap. The unsafe bitmap is in-
herited from the predecessor, and the predecessor’s
unsafe bitmap is cleared.

6

// Instruction Source Renaming:
instr.src_phys := RAT.phys_reg[instr.src_arch]
RAT.eager[instr.src_arch] :=

RAT.eager[instr.src_arch] or
(not RAT.written[instr.src_arch] and
not RAT.waitsFor[instr.src_arch])

// Instruction Destination Renaming:
instr.dest_phys := allocate_from_freelist()
RAT.phys_reg[instr.dest_arch] :=

instr.dest_phys
RAT.waitsFor[instr.dest_arch] := false
RAT.written[instr.dest_arch] := true
RAT.unsafe[instr.dest_arch] := true

Figure 5: Renaming State Transitions. The instruction
instr and rename-table RAT belong to the same flow. Each
field in the RAT is updated per instruction source and desti-
nation.

Instruction Rename. The instructions within a flow
are seen in-order by the renamer. As they are renamed,
the flow state bitmaps associated with the flow are up-
dated to reflect each register read and update. These
actions are summarized in Figure 5, described below.

When an instruction renames, each source
architectural-to-physical register mappings are found
in the flow’s RAT and the eager bits associated with
each source register are updated. The eager bit is set
if the register is not currently written or waitsFor.
Each architectural source’s waitsFor bit is checked,
and if any are set the instruction is steered to the
flow’s Diverter Queue instead of dispatching to the
scheduler.

If the instruction has a destination register, a new
physical destination register is assigned from the free
register list and the RAT architectural-to-physical map-
ping is updated as normal. The architectural desti-
nation register is marked both written and unsafe.
The final rename action is to clear the destination reg-
ister’s waitsFor bit. This indicates that any register
which may read from this architectural register in the
future should not be diverted, as it will receive the cor-
rect mapping.

Violation Detection. When the program counter of
a flow has arrived at the start PC of its successor,
and all of the predecessor instructions have been re-
named, PolyFlow may try to reconnect the two flows
(Figure 3 (c)). When reconnection is attempted, the bits
associated with each architectural register are used to
determine if a read-after-write violation has occurred
between the two flows.

Since the predecessor’s instructions are earlier in
program order, we are interested in only the reg-
ister writes which occurred between point where it
spawned the successor flow and its final instruction.
This information is held in the predecessor’s set of

writtencomb = writtenpred ∪ writtensucc
unsafecomb = unsafepred ∪ unsafesucc
eagercomb = eagerpred ∪

(eagersucc − writtenpred)

waitsForcomb = waitsForpred − writtensucc

Figure 6: Rules for combining the information sets of
two flows, where the pred flow precedes, and is recon-
necting to, the succ flow to form a combined flow comb.

unsafe bits. A violation can only occur if the succes-
sor flow read from a register before it wrote to it, which
is captured by the successor’s eager bits. The inter-
section of these two bit sets represent the architectural
to physical mappings that the successor read from in-
correctly.

To check whether the two flows can be correctly re-
connected we check the condition:

unsafepred ∩ eagersucc == ∅

If the intersection of the predecessor’s unsafe set
and the successor’s eager set is empty, then we have
guaranteed that the successor accessed register map-
pings for architectural registers that were either (1) not
modified between the spawn point and the rename
point or (2) modified by the successor before the read
(so the source register was renamed correctly). Note
that correctly predicting the waitsFor set is the key
to avoiding reconnection check failure, since those reg-
isters marked waitsFor will not be read from eagerly.
A failed reconnection results in the squashing of the
successor flow, and all flows which follow. The pre-
decessor flow resumes fetching the instructions which
had belonged to the successor flow, as if the successor
had never been spawned.

Flow Reconnection. If reconnection is successful,
we want to combine the two flows into one. The key
point is that the resulting flow should appear as if there
had never been two flows. For simplicity, we eliminate
the predecessor flow and transform the successor flow
into the combined flow. The combined flow will have
the current PC of the successor flow, since this PC rep-
resents the only instructions in the two flows which re-
main to be fetched. The start PC flow is the start
PC of the predecessor flow, since this is the first PC
fetched either flow in program order.

The information from each flow’s RAT also needs
to be merged. We make use of our register state bits
to construct the resulting RAT. Since we will use the
RAT of the successor flow as the base for the com-
bined flow’s RAT, we need only copy from the prede-
cessor those mappings which were modified in prede-
cessor and not the successor. All other register map-

7

pings are either correct because they are unmodified in
both flows (and thus identical) or have only been mod-
ified in the successor. The result is an architecturally
correct RAT, associated with the combined flow’s cur-
rent state. The set of registers updated in the succes-
sor’s RAT upon reconnection is:

unsafepred − writtensucc = updatedcomb

In the case of the four bitsets, we want the result to
appear as if the two flows have never been separate.
The details of combining of the bitsets are given in Fig-
ure 6. The eager and waitsFor bits are discussed
below for added clarity.

The eager set of the combined flow should repre-
sent the set of architectural registers that would have
been read by the combined flow before they were writ-
ten by the combined flow. Thus, the eager set of the
combined flow will be the union of the eager set of
the predecessor flow and those eager registers of the
successor that were not also written by the predecessor
flow.

The waitsFor set of the combined flow should rep-
resent the set of architectural registers that the com-
bined flow should still is unlikely to have the correct
mapping. Since every register mapping that the pre-
decessor flow is aware of has been communicated to
the successor flow (the RATs have been merged), the
set cannot be larger than the set of registers that the
predecessor flow was waiting for. However, some of
the predecessor’s waitsFor registers may have been
redefined by the successor flow, in which case, they
needn’t be ’waited for’. Thus, the waitsFor set of the
combined flow is the waitsFor set of the predeces-
sor flow less the written set of the successor flow.

The final step in reconnection is to process the Di-
verter Queues of the two flows. Each instruction in
the predecessor’s Diverter Queue will remain diverted.
However, the instructions in the successor’s Diverter
Queue can potentially be renamed since the predeces-
sor may have generated the register mapping on which
they are dependent. For each instruction in the suc-
cessor Diverter Queue, we look up the source archi-
tectural registers we were waiting for in the RAT. If
those entries are still marked waitsFor in the RAT
then the instruction is remains diverted in the combined
flow. Otherwise, the instruction now has the source
architectural-to-physical register mapping it was wait-
ing for and is thus renamed and dispatched to the
scheduler.

3.2.3 WaitsFor Prediction

A dynamic out-of-order renaming system has to pre-
dict the set of registers that the predecessor flow will
write between the spawn point and the reconnection to
the successor flow. We have coined these registers the

spawn’s waitsFor set. When a flow is spawned, it re-
ceives a predicted waitsFor set from a hardware struc-
ture called the WaitsFor Predictor.

A “spawn” in a Speculative Multithreaded proces-
sor can be uniquely identified by a pair of program
counters: the PC of the instruction which triggered
the spawn and the PC of the first instruction of the
spawned flow. The WaitsFor Predictor has a table with
one entry per spawn PC pair. The prediction returned
for a spawn is a bitmask which represents, for each ar-
chitectural register, whether or not the register is ex-
pected to be written by the predecessor as it executes
instructions between the spawner PC and spawned PC.

The key insight behind the WaitsFor Predictor is
that, while the actual control flow path taken by the
predecessor flow in going from the spawn point to
the reconnect point may change dynamically, the set
of registers that are written does not vary signifi-
cantly. The waitsFor Predictor, needs to be highly ac-
curate: false positives cause instructions in the succes-
sor thread to wait unnecessarily, while false negatives
(may) cause dependence violations.

To decide which registers should be marked
waitsFor, the predictor keeps a counter per architec-
tural register for each spawn PC pair. As the prede-
cessor thread fetches instructions, the unsafe bitmap
(described earlier) keeps track of registers that should
have been marked waitsFor in its successor. When
the predecessor arrives at the reconnection point, the
predictor is trained using the unsafe bitset as the true
waitsFor set.

If a particular register was waitsFor, its corre-
sponding counter is incremented by a static upcount
value. Otherwise, register’s the counter is decre-
mented by downcount. The next prediction compares
counter values against a threshold, to decide if a regis-
ter should be marked waitsFor. We present results
of three different WaitsFor Predictor configurations in
Section 4.2. It was observed that a predictor using 1-
bit counters per register (with an upcount, downcount,
and threshold of 1) gives the best performance overall.

3.2.4 Example

Figure 7 illustrates the use of rename bitsets as threads
get created, reconnect or get squashed, using machine
snapshots at five different times, A to E. In the begin-
ning F0 is the only active thread, with architectural
register R1 mapped to physical register 101, and R2
mapped to 103. Upon fetching and decoding past in-
struction S2, it spawns the flow F2. When the instruc-
tion S2 is renamed, F2 inherits its RAT from F0. In par-
ticular, the mappings for R1 and R2 are copied over
to from F0 to F2’s RAT. In addition, as Section 3.2.2
describes, F0’s unsafe vector is copied over to F2 and
cleared (although the unsafe vector of F2 is not func-
tionally useful-it does not have a successor flow). Ea-

8

��

��

��

���	

�
�

���

�	
�
�

�����

���

���

�	�����

���

�����

��� �����

���

���
�����

���

�����

�����

���

���

�����

���

���

�����

���

���

�����

���

�����

��

��

��

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�����

��

�������

�����

��

��

���������

��

��

�������

��

��

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

��

��

��

��

��

��

��

�������

�������

��

��

��

��

��

���	�
	��

��
���
���

��

�
��

�

�
!
�
�
�
"
	
�

��

$ % � �

��

��

��

����

���� &"'���	(�)�����

&"'���	(�)�����

����)	��	

&�	���
	�� ��
������	

��(���	
�	
�"	��
��
��

��)	
�"	��
��
��

���

�����

��

�������

�������

�����

��

��

�������

�������

��� �* �� �� �� ��
��

�	�����

�����	�
	�

�	������

)�������

����	��)��

�	����	�

 ��
	���

 ��
	���

 ��
	���

�	�����

 ��
	���

���	�
	��

��
���
���

�	�����

#+

$,

$+

%,

%-

%+

�+

�-

�,

�+

�-,

$��

�	����	�

�.� ��

&���
�

��� �* ��

��� �* ��

Figure 7: An example illustrating the use of rename bitsets. Initially there is a single flow F0, which spawns flow F2
and then F1. Flow F1 reconnects successfully to F2. Subsequently F0 reconnects to the combined flow, signaling a
misreconnect. The progress in time is show along X-axis

ger set of F2 is initialized as being empty. Register R1
is predicted as waitsFor, and any instruction having R1
as one of its sources is diverted pending dataflow from
a predecessor.

At time period B, flow F0 writes to register R1, mark-
ing it as unsafe - if successor flow F2 were to use the
mapping of R1 copied over from F0 at spawn, it would
have used the incorrect mapping. However, since F2
had R1 marked as waitsFor, it correctly diverted any
instructions which read from R1 (note that the instruc-
tion reading R1, marked in black, has infact been di-
verted). Next F0 spawns F1, which is predicted to have
an empty waitsFor set. Initialization of bit vectors pro-
ceeds as for previous spawn. In particular, the un-
safe set is copied over from F0 to F1, F0’s unsafe set
is cleared, and F1’s unsafe set gets R1. Note that regis-
ter R1 is unsafe for flow F1 since this flow has a more
recent mapping for R1 than the flow’s successor, F2.
At time C, F0 writes to R2, and F1 writes to R1, caus-
ing them to be marked unsafe in their respective flows.
Also, F2 writes to R1, causing R1 to be removed from its
waitsFor set, since any future instructions will get the
correct mapping for R1, and added to its unsafe set.

Upon reaching the reconnection point, flow F1 tries

to reconnect to F2. The reconnect checks are done, and
since F2 didn’t eagerly read any register that was un-
safe in F1, the reconnect is successful. The new flow’s
unsafe vector is the union of the two unsafe vectors,
which is R1. The new flow gets an empty waitsFor set,
since the waitsFor set of flow F2 was empty. Also note
that the instruction reading R1 that was diverted in F2
now undergoes undiversion and gets the correct phys-
ical register mapping, 109. The combined flow makes
progress, and at time D, does an eager read of register
R2, based on the mapping inherited from F0. This map-
ping is wrong, since R2 is marked unsafe in F0. Thus,
when F0 reaches the reconnection point at time E, re-
connection checks fail for register R2. An invalid merge
is signaled, and the successor thread formed from the
merge of F1 and F2 is flushed.

3.3 Path Confidence Prediction
Since it is possible for the predecessor flow to reach re-
connection along a misspeculated path, not all “suc-
cessful” reconnections result in a leap in forward
progress. Up until reconnection, branch misspecula-
tions in the predecessor do not effect successor flows;

9

we can safely roll back the state of the flow to the mis-
speculation point without affecting any other flows.

However, if a flow contains a misspeculated branch
and has reconnected with another flow, then the com-
bined flow is the only flow we have to work with. We
must roll back to the state at the time of the mispre-
dicted branch, even if the instructions previously asso-
ciated with the successor flow had no dependences on
those instructions along the mispredicted path. This
results in a loss of a significant amount of computation
that could be avoided by delaying reconnection until the
machine has a high probability of being on the predecessor’s
correct path. To this end, we use a branch confidence
predictor to estimate the likelihood that a flow contains
unresolved and mispredicted branches.

Branch confidence predictors [5, 3] estimate the
probability that a branch is predicted correctly. When a
flow reaches the possible reconnection point, we would
like to estimate the likelihood that all of its unresolved
branches were predicted correctly. In other words, we
need the cumulative confidence estimate for all unre-
solved branches in the flow. We call this cumulative
estimate Path Unconfidence. A high value of path un-
confidence indicates uncertainty about the flow’s un-
resolved branches. When a flow fetches a branch and
predicts its direction, a confidence predictor provides
an estimate of how likely is the branch to be mispre-
dicted, which we call the branch unconfidence. This
value is added to the path unconfidence of the flow that
fetched the branch. When branches resolve, the corre-
sponding flow’s path unconfidence is decremented by
the branch’s unconfidence.

Path unconfidence is used to gate the reconnection
process: when a flow arrives at the reconnection point,
we allow it to reconnect to its successor only if its path
unconfidence is below a certain threshold, called the
Reconnection Threshold. Otherwise, the flow waits at
the reconnection point, until one of the following three
things happen:

First, if the flow executes a mispredicted branch, the
flow recovers from the misspeculation as normal, con-
tinuing along its new path without affecting its suc-
cessor flow. Secondly, if the flow executes a branch
that was correctly predicted which lowers the flow’s
path unconfidence below the reconnection threshold,
the reconnection is allowed to proceed. Lastly, if a
timeout number of cycles pass while waiting to recon-
nect, reconnection is triggered in spite of the current
path unconfidence. Using a timeout value helps to im-
prove performance, since flows often have unresolved
branches which are sitting in the Diverter Queue.

To build confidence mechanisms for reconnect-
gating, we leveraged previous work in branch confi-
dence estimation, along with extensive experimenta-
tion to determine the kind of predictors that well in
this domain. This has resulted in a unique mecha-
nism for determining path unconfidence which we de-

Parameter Value
Pipeline Width 8 instr/cycle
Branch Predictor 8Kbit gshare
Confidence Predictor 8Kbit JRS
Misprediction Penalty at least 8 cycles
Reorder Buffer 1024 entries, dynamically

shared
Functional Units 8 identical fully pipelined

units
L1 I-Cache 8Kbytes, 2-way set assoc.,

128 byte lines, 10 cycle miss
L1 D-Cache 8Kbytes, 4-way set assoc.,

64 byte lines, 10 cycle miss
L2 Cache 512Kbytes, 8-way set assoc.,

128 byte lines, 100 cycle miss

Figure 8: Pipeline parameters.

scribe next. However, providing detailed reasons for
our choices is beyond the scope of this paper.

We use two different branch confidence estimators,
working together: the enhanced JRS predictor [5, 3]
with 4 bits per entry, and another estimator, which
we call the Global Miss Distance Counter (GMDC).
The GMDC contains one 4-bit counter per flow to
keep track of the number of branches that have been
fetched since the most recent mispredict was resolved.
This estimator exploits the insight presented in [3] that
branch mispredicts are often clustered together, and
thus, branches fetched immediately after a mispredict
should have a lower confidence.

We keep track of the path confidence from these two
estimators separately, in two different registers, called
JRS Path Unconfidence, and GMDC Path Unconfidence.
The JRS unconfidence value assigned to a branch is the
counter value read from the JRS predictor subtracted
from 16. (Note that this implies that even the most con-
fident branches get an unconfidence value of 1.) This
unconfidence value is added to the flow’s JRS path un-
confidence. Similarly, the GMDC unconfidence value
for a branch is the value of the flow’s GMDC counter,
subtracted from 16. To gate reconnect, we use two sep-
arate reconnection thresholds, a JRS reconnection thresh-
old, and an GMDC reconnection threshold. Both the JRS
path unconfidence and the GMDC path unconfidence
of a flow must be below their respective thresholds be-
fore the reconnection is allowed.

4 Evaluation
Our experimental evaluation was performed on a sim-
ulator for the PolyFlow Speculative Multithreaded ar-
chitecture. The simulator executes a variant of the
64-bit MIPS instruction set ISA which does not have

10

-5

5

15

25

35

45

55

65

75

85

95

bzip2
(2.693)

crafty
(1.571)

gap
(1.866)

gcc
(1.385)

gzip
(2.423)

mcf
(1.706)

parser
(1.923)

perlbmk
(1.300)

twolf
(1.550)

vortex
(1.949)

vprP
(1.695)

vprR
(2.490)

ROA_perf_conf
ROA_THRESH_INF
ROA_THRESH_15
ROA_THRESH_0
ROR

Figure 9: The impact of path confidence information. The y-axis shows percentage speedup of speculative multithreading
over a superscalar (base superscalar IPC shown in parenthesis). The leftmost bar shows speedup of release at arrival given an
ideal (oracular) confidence predictor. The second bar shows a “hyper-aggressive” policy where release is performed whenever
we arrive at the potential reconnection point, disregarding confidence information. The middle bar shows the use of a realistic
confidence predictor with a threshold set at 15. The fourth bar shows performance degradation due to a non-aggressive policy
that releases only when there are no remaining unexecuted branches. The final bar shows the slow down from an even less
aggressive policy that releases only when all branches have retired.

any special instructions to support speculative multi-
threading. The PolyFlow simulator is fully execution
driven. It not only simulates timing, but also executes
instructions out-of-order in the backend, writing re-
sults to the register file out of program order. When an
instruction is retired, its results are compared against
an architectural simulator, and an error is signaled if
the results don’t match. The PolyFlow simulator mod-
els mispredicted instructions accurately, since the back-
end treats good path and bad path instructions in ex-
actly the same way: both types of instructions execute
and write values to the physical register file, and we
use rename checkpoints to recover from branch mis-
predictions. The simulator also renames instructions
out-of-order speculatively and uses the bitmap based
checking mechanism described earlier to track waits-
For instructions and catch true dependence violations
in the presence of out-of-order spawns and reconnec-
tions.

Many essential functions of the PolyFlow architec-
ture are topics of ongoing research, including the
spawn policy, the memory system, and out-of-order
branch and confidence prediction. For the purposes
of this paper, we idealized these parts of the ma-
chine, so that we could focus on the performance ef-
fects of renaming and data-forwarding. Thus, the
simulator uses oracular memory dependence predic-
tion. The spawn points we use are obtained from a
control-independence analysis of program traces, and
the spawn policy uses oracularly known distance met-
rics to decide which spawns are useful. Finally, we
used branch direction and confidence predictions from
GShare and JRS [5] predictors respectively, executing
the program in-order (i.e., we did not model out-of-

order branch resolution while training these predic-
tors).

We simulate a very aggressive, 8-wide machine, run-
ning 8 threads, with the configuration given in Fig-
ure 8. The superscalar model that we use is capable
of fetching a maximum of one taken branch per cy-
cle. In PolyFlow mode, the machine can fetch from
two threads in a cycle, with a maximum of one taken
branch per cycle per thread. The PolyFlow instruction
fetch unit uses path confidence to prioritize among dif-
ferent threads, giving preference to threads that have a
higher confidence value. However, note that the results
in Figure 10, use a round-robin fetch policy.

In Section 4.1 we demonstrate the performance im-
pact of forwarding data between flows speculatively,
but only when we have high confidence in the spec-
ulation. In particular we find that our path-confidence
predictor can achieve speedups over a base superscalar
that are within 10% of an oracular system that synchro-
nizes at the “perfect” time. Section 4.2 demonstrates
that our waitsFor predictor performance is also nearly
ideal.

In the results presented here, we fast forwarded
through the initialization phase of all benchmarks, and
executed 100 million instructions after that. All the
graphs that we present show the speedup of differ-
ent Speculative Multithreaded configurations over a
superscalar. The absolute IPC numbers for the super-
scalar are shown below each benchmark name in Fig-
ure 9.

11

4.1 Speculative Data Forwarding
In this section, we look at the effects of speculative
data-forwarding on the performance of a PolyFlow
system. We use a perfect waitsFor predictor in these
experiments. The results with a real waitsFor predictor
are presented in Section 4.2. In Figure 9 we compare a
variety of policies for selecting the time at which pro-
ducer threads release the consumer threads.

Most of these are Release-on-Arrival (RoA) policies,
where inter-thread data forwarding (by releasing the
waitsFor instructions) happens when the predecessor
arrives at the potential reconnection point. The policies
differ in how aggressive they are about assuming that
we have arrived at the reconnection point along a good
branch path instead of a mispredicted branch path. We
model four different RoA policies:

• RoA, Perfect Branch Confidence: In this policy,
data is forwarded from the predecessor to the suc-
cessor on good path arrival at the reconnection
point. Good path arrival is determined oracularly.
This configuration is the upper bound on the per-
formance of RoA.

• RoA, Path Confidence Threshold 15+10: This pol-
icy uses the path confidence predictor described in
Section 3.3 to predict whether arrival at the recon-
nection point is good path or bad path. We used
a JRS unconfidence threshold of 15, and a GMDC
unconfidence threshold of 10.
A predecessor thread releases consumers in its
successor thread when the predecessor thread ar-
rives at the potential reconnection point, and the
path unconfidence (both JRS and GMDC) are less
than the threshold. If the path unconfidence is too
high the predecessor waits till either its branches
resolve, decreasing its path unconfidence, or 35
clock cycles elapse, which ever is earlier. At this
point, waiting consumer instructions in the suc-
cessor are released.

• RoA, Path Confidence Threshold Infinity: This
policy does not use path confidence, and aggres-
sively forwards data from predecessor to succes-
sor immediately upon the predecessor’s arrival at
the potential reconnection point.

• RoA, Path Confidence Threshold Zero: This con-
figuration conservatively forwards data from pre-
decessor to successor only when all branches
in the predecessor have resolved (completed
execution). Thus, reconnection happens non-
speculatively.

The final configuration we evaluate is Release-on-
Retirement (RoR), which is even more conservative
than RoA with Path Confidence Threshold Zero. This
policy waits to forward from predecessor to successor

until the predecessor has retired all its instructions, and
therefore, is forwarding completely non-speculatively.
Note, however, that RoR is somewhat less conservative
than would be a policy based on waiting until the con-
sumer instruction retired, as would happen in systems
that base their synchronization on full value specula-
tion with validation, and partial reexecution, at retire-
ment [1, 10].

Figure 9, demonstrates that forwarding data aggres-
sively and speculatively gives better performance than
forwarding it conservatively. Release-on-Retirement is
particularly bad, and results in a small slowdown over
the superscalar for some benchmarks. The other con-
figurations, RoA with a threshold of infinity, and RoA
with a threshold of 0, both perform significantly worse
than RoA with perfect confidence, although there is no
clear favorite among the two. For some benchmarks,
like twolf and bzip2, waiting until all branches in the
predecessor have resolved is better. For other bench-
marks, like vortex forwarding data immediately upon
arrival is better.

RoA with a threshold of 15+10 performs better than
the above two configurations, and comes close to RoA
with perfect confidence. We have also found that the
particular path confidence threshold that performs best
varies from one benchmark to another, although the
results presented here are with a fixed threshold. An
adaptive algorithm that adjusts the threshold dynami-
cally would probably do even better.

Note that using confidence to gate the reconnect sig-
nal reduces performance for one benchmark (vortex),
compared to forwarding data immediately upon ar-
rival. The reason for this is the confidence based fetch
prioritization policy used in our simulations. Such a
policy reduces the likelihood of bad path arrival at the
reconnection point: threads that are low in confidence
fetch fewer instructions, and thus, are less likely to ar-
rive at the reconnection point. With a different fetch
prioritization policy, using branch confidence to gate
data forwarding becomes more important. For exam-
ple, Figure 10 demonstrates that in a system with a
round-robin fetch algorithm, a threshold of 15 always
performs significantly better than thresholds of zero or
infinity. In this case all benchmarks, including vortex,
are helped by using branch confidence to gate synchro-
nization.

Recall that our Release-on-Arrival mechanism for-
wards data from a predecessor thread to a successor
thread only after the predecessor has arrived at the
potential reconnection point. We wanted to under-
stand the performance cost of this design decision since
several compiler based speculative multithreading sys-
tems [8, 16] have taken pains to release individual reg-
isters at the earliest point where the compiler can prove
there will be no more modifications to that register.
Thus, we also performed experiments where we com-
pared our Release-on-Arrival policy with a completely

12

-20

-10

0

10

20

30

40

50

60

70

bzip2 crafty gap gcc gzip mcf parser perlbmk twolf vortex vprP vprR

ROA_THRESH_INF

ROA_THRESH_15

ROA_THRESH_0

Figure 10: Using path confidence information to gate
aggressive synchronization is even more important
when the fetch policy is not biased toward more con-
fident paths. This graph shows speculative multithreading
speedups over superscalar with a (sub-optimal) round-robin
fetch policy. In this case the “hyper-aggressive” synchro-
nization policy never beats the confidence gated policy.

unrealizable oracle that can forward data from a pro-
ducer instruction to all consumer instructions as soon
as the dynamic producer instruction is renamed. Note
that this may be considerably earlier than a compiler
could place a release or send instruction, since we are
working with the dynamic instruction stream rather
than the static program. We found, nonetheless, that
Release-on-Arrival was usually quite competitive with
the unrealizable oracle. For 8 out of our 12 bench-
marks (bzip2, crafty, gap, gzip, parser, perlbmk, vor-
tex and vpr-route) the unrealizable oracle got less than
10% additional speedup over that achieved by Release-
on-Arrival. For the other four benchmarks (gcc, mcf,
twolf, and vpr-place) there is room for improvement.
The twolf benchmark, in particular, achieved an extra
38% speedup (132% compared to RoA’s 94%) over the
superscalar when synchronization is performed by the
unrealizable oracle.

4.2 WaitsFor Prediction
In this section, we evaluate design space of waitsFor
prediction. For all the experiments in this section, we
use Release-on-Arrival with perfect branch confidence
as the data-forwarding strategy, so that we can focus
on the performance of the waitsFor predictor.

Recall that the waitsFor predictor decides which in-
structions in the successor thread should be delayed.
If the predictor fails to mark an instruction as waits-
For, a dependence violation and thread squash could
happen. If the predictor marks instructions as waits-
For unnecessarily, instructions in the successor thread
may be delayed waiting for synchronization that is not
actually required.

0

10

20

30

40

50

60

70

80

90

bzip2
(898)

crafty
(3170)

gap
(1303)

gcc
(17621)

gzip
(575)

mcf
(443)

parser
(2881)

perlbmk
(385)

twolf
(1455)

vortex
(2825)

vprP
(750)

vprR
(1553)

Perfect WaitsFor

1Bit

Saturating

3-Bit

Figure 11: A one bit up-down waitsFor predictor usu-
ally provides speedups over a superscalar that are
within a few percent of those produced by an or-
acle waitsFor predictor. The y-axis shows percentage
speedup of release-on-arrival with a variety of waitsFor pre-
dictors over the aggressive superscalar. The total number of
spawner-spawnee pairs (predictor entries) is shown for each
benchmark along the x-axis. The leftmost bar shows an “or-
acle” waitsFor predictor. The second bar shows a 1-bit pre-
dictor that simply uses the unsafe set from the previous
instance of this spawn. The third bar shows a conservative
saturating “up-only” counter that gets set if a particular
register should ever have been made waitsFor in the past.
The rightmost bar shows a 3-bit counter.

We implemented a number of different waitsFor pre-
dictors, with different values for upcount(U), down-
count(D) and threshold(T). We examine the perfor-
mance of three different predictors: a 1-bit predic-
tor that remembers the true waitsFor set from last
time(U=1, D=1, T=1); a saturating predictor that never
counts down (U=1, D=0, T=1); and an 3-bit predictor
(U=8, D=1, T=1). Their performance is shown in Figure
11, which also shows a perfect predictor for reference.
We find that except for one benchmark (vpr-place), the
amount of hysteresis in the waitsFor predictor does not
affect performance much.

For vpr-place, a 1-bit predictor that simply remem-
bers the waitsFor set from the last time works best, but
still loses about 13% of the speedup achieved by the
oracle predictor. The fact that the 1-bit predictor works
better than the “up-only” and 3-bit predictors indicates
that this application has a consumer on the critical path
that only occasionally needs to be synchronized. The
non-oracular waitsFor predictors conservatively make
this consumer waitsFor too often.

The total number of entries in the predictor, i.e., the
total number of unique spawnerPC-spawnedPC pairs,
is shown below each benchmark in Figure 11. We did
not model size constraints and replacement policies for
the waitsFor predictor.

13

5 Conclusion
This paper describes the inter-flow register renaming
and synchronization hardware of an aggressive spec-
ulatively multithreaded system. The system runs on
top of a simultaneous-multithreading-like pipeline that
can support up to 8 simultaneously active threads.
Our system combines a novel set of features. First,
our inter-flow renaming and synchronization scheme
supports out-of-order spawn and reconnect of threads.
Second, it aggressively and speculatively synchronizes
to minimize latency added to the critical path. Third,
we have designed a path confidence predictor that
works particularly well to gate our synchronization
scheme so that it is not too aggressive. Fourth, we have
demonstrated that our path confidence gating mech-
anism gives us performance within 10% of an oracle
that “magically” knows the perfect time to perform
synchronization. Finally, we have demonstrated that a
straight-forward prediction of a single bit per architec-
tural register allows us to near-optimally identify the
set of consumer instructions with no compiler support
at all.

We made several decisions early in the design pro-
cess. In particular, we decided to target our design
at a tightly coupled (simultaneously multithreaded)
style system rather than a CMP. Also, we decided
that our system would run binaries “out of the box,”
dynamically discovering inter-thread synchronization
points, rather than relying on a compiler to identify
and reschedule synchronization instructions. We be-
lieve that the insights we have gained in our system
may well apply in these two broader contexts.

In particular, we believe that our insights about the
necessity of aggressive, speculative, and path confi-
dence gated synchronization will carry over to spec-
ulative multithreading systems built on top of CMPs.
Our results also indicate that there may be some bene-
fit to be gained by identifying the last dynamic register
producer along particular paths of the program, and
we plan to investigate mechanisms, both dynamic and
compiler based, to gather this information.

Acknowledgements
The work reported in this paper was supported in part
by the National Science Foundation under grant CCR-
0429711. Computational resources were supported by
an equipment donation from AMD Corp., and the Na-
tional Science Foundation under grant EIA-0224453.
This material is based upon work supported under a
National Science Foundation Graduate Research Fel-
lowship (Sam Stone). Any opinions, findings, conclu-
sions or recommendations expressed in this publica-
tion are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References
[1] Haitham Akkary and Michael A. Driscoll. A dynamic

multithreading processor. In 31st Int’l Symp. Microarchi-
tecture, pages 226–236, November 1998.

[2] Chen-Yong Cher and T. N. Vijaykumar. Skipper: a
microarchitecture for exploiting control-flow indepen-
dence. In MICRO 34, pages 4–15, 2001.

[3] Dirk Grunwald, Artur Klauser, Srilatha Manne, and An-
drew R. Pleszkun. Confidence estimation for specula-
tion control. In ISCA, pages 122–131, 1998.

[4] Lance Hammond, Mark Willey, and Kunle Olukotun.
Data speculation support for a chip multiprocessor. In
ASPLOS VIII, pages 58–69, October 1998.

[5] Erik Jacobsen, Eric Rotenberg, and James E. Smith. As-
signing confidence to conditional branch predictions. In
MICRO 29, pages 142–152, 1996.

[6] Venkata Krishnan and Josep Torrellas. A chip-
multiprocessor architecture with speculative multi-
threading. IEEE Transactions on Computers, 48(9):866–
880, 1999.

[7] Pedro Marcuello, Antonio González, and Jordi Tubella.
Speculative multithreaded processors. In Int’l Conf. Su-
percomputing, pages 77–84, 1998.

[8] Il Park, Babak Falsafi, and T. N. Vijaykumar. Implicitly-
multithreaded processors. In ISCA-30, pages 39–51,
2003.

[9] Jose Renau, James Tuck, Wei Liu, Luis Ceze, Karin
Strauss, and Josep Torrellas. Tasking with out-of-order
spawn in TLS chip multiprocessors: microarchitecture
and compilation. In 19th Int’l Conf. Supercomputing (ICS),
pages 179–188, 2005.

[10] Eric Rotenberg and James E. Smith. Control indepen-
dence in trace processors. In International Symposium on
Microarchitecture, pages 4–15, 1999.

[11] Amir Roth and Gurindar S. Sohi. Speculative data-
driven multithreading. In HPCA 7, January 2001.

[12] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,
and J. B. Joyner. POWER5 system microarchitecture.
IBM Journal of Research and Development, 49(4/5), 2005.

[13] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar.
Multiscalar processors. In ISCA 22, pages 414–425, June
1995.

[14] J. Gregory Steffan and Todd C. Mowry. The potential
for using thread-level data speculation to facilitate auto-
matic parallelization. In HPCA 4, pages 2–13, February
1998.

[15] T. N. Vijaykumar. Compiling for the Multiscalar Archi-
tecture. PhD thesis, University of Wisconsin-Madison
Computer Sciences Department, January 1998.

[16] Antonia Zhai, Christopher B. Colohan, J. Gregory Stef-
fan, and Todd C. Mowry. Compiler optimization
of scalar value communication between speculative
threads. In ASPLOS-X, October 2002.

14

