
The E�ect of Code Expanding Optimizations on

Instruction Cache Design

William Y. Chen Pohua P. Chang Thomas M. Conte Wen-mei W. Hwu �

April 29, 1991

Abstract

This paper shows that code expanding optimizations have strong and non-intuitive impli-

cations on instruction cache design. Three types of code expanding optimizations are studied

in this paper: instruction placement, function inline expansion, and superscalar optimizations.

Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion

improves the performance for small cache sizes, but degrades the performance of medium caches.

Superscalar optimizations increases the cache size required for a given miss ratio. On the other

hand, they also increase the sequentiality of instruction access so that a simple load-forward

scheme e�ectively cancels the negative e�ects. Overall, we show that with load forwarding, the

three types of code expanding optimizations jointly improve the performance of small caches

and have little e�ect on large caches.

Index terms - C compiler, code optimization, cache memory, code expansion, load forwarding,

instruction placement, function inline expansion, superscalar optimizations.

�The authors are with the Center for Reliable and High-Performance Computing, University of Illinois, Urbana-

Champaign, Illinois, 61801.

1

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 2

1 Introduction

Compiler technology plays an important role in enhancing the performance of processors. Many

code optimizations are incorporated into a compiler to produce code that is comparable or better

than hand-written machine code. Classic code optimizations decrease the number of executed

instructions [1]. However, there are factors limiting the e�ectiveness of these optimizations. For

example, small function bodies limit the scope of optimization and scheduling. To increase the

scope of code optimization, inline function expansion is performed by many compilers [2] [3] [4].

Function inlining replaces a function call with the function body. To further enlarge the scope of

code optimization and scheduling, compilers unroll loops by duplicating the loop body several times.

The IMPACT-I C compiler utilizes inline expansion, loop unrolling, and other code optimization

techniques. These techniques increase the execution e�ciency at the cost of increasing the overall

code size. Therefore, these compiler optimizations can a�ect the instruction cache performance.

This paper examines the e�ect of these code expanding optimizations on the performance of a

wide range of instruction cache con�gurations. The experimental data indicate that code expanding

optimizations have strong and non-intuitive implications on instruction cache design. For small

cache sizes, the overall cache miss ratio of the expanded code is lower than that of the code

without expansion. The opposite is true for large cache sizes. This paper studies three types of

code expanding optimizations: instruction placement, function inline expansion, and superscalar

optimizations. Overall, instruction placement increases the performance of small caches. Function

inline expansion improves the performance of small caches, but degrades that of medium caches.

Superscalar optimizations increases the cache size required for a given miss ratio. However, they

also increase the sequentiality of instruction access so that a simple load-forward scheme removes

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 3

the performance degradation. Overall, it is shown that with load forwarding, the three types of

code expanding optimizations jointly improve the performance of small caches and have little e�ect

on large caches.

1.1 Related Work

Cache memory is a popular and familiar concept. Smith studied cache design tradeo�s extensively

with trace driven simulations [5]. In his work, many aspects of the design alternatives that can a�ect

the cache performance were measured. Later, both Smith and Hill focused on speci�c cache designs

parameters. Smith studied the cache block (line) size design and its e�ect on a range of machine

architectures, and found that the miss ratios for di�erent block sizes can be predicted regardless of

the workload used [6]. The causes of cache misses were categorized by Hill and Smith into three

types: con
ict misses, capacity misses, and compulsory misses [7]. The loop model was introduced

by Smith and Goodman to study the e�ect of replacement policies and cache organizations [8].

They showed that under some circumstances, a small direct mapped cache performs better than

the same cache using fully associativity with LRU replacement policy. The tradeo�s between a

variety of cache types and on-chip registers were reported by Eickenmeyer and Patel [9]. This

work showed that when the chip area is limited, a small- or medium-sized instruction cache is

the most cost e�ective way of improving processor performance. Przybylski et al: studied the

interaction of cache size, block size, and associativity with respect to the CPU cycle time and the

main memory speed [10]. This work found that cache size and cycle time are dependent design

parameters. Alpert and Flynn introduced an utilization model to evaluate the e�ect of the block

size on cache performance [11]. They considered the actual physical area of caches and found that

larger block sizes have better cost-performance ratio. All of these studies assumed an invariant

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 4

compiler technology and did not consider the e�ects of compiler optimizations on the instruction

cache performance.

Load forwarding is used to reduce the penalty of a cache miss by overlapping the cache repair

with the instruction fetch. Hill and Smith evaluated the e�ects of load forwarding for di�erent

cache con�gurations [12]. They concluded that load forwarding in combination with prefetching

and sub-blocking increases the performance of caches. In this paper a simpler version of the load-

forward scheme is used, where neither prefetching nor sub-blocking is performed. The e�ectiveness

of this load-forward technique is measured by comparing the cache performance of code without

optimizations and with code expanding optimizations. Load forwarding potentially can hide the

e�ects of code expanding optimizations.

Davidson and Vaughan compared the cache performances of three architectures with di�erent

instruction set complexities [13]. They have shown that less dense instruction sets consistently

generate more memory tra�c. The e�ect of instruction sets of over 50 architectures on cache

performance has been characterized by Mitchell and Flynn [14]. They showed that intermediate

cache sizes are not suited for less dense architectures. Steenkiste [15] was concerned with the

relationship between the code density pertaining to instruction encoding and instruction cache

performance. He presented a method to predict the performance of di�erent architectures based on

the miss rate of one architecture. Unlike less dense instruction sets which typically have higher miss

rate for small caches [13], we show that code expansion due to optimizations improves performance

of small caches, and degrades that of large caches. Our approach is also di�erent from these previous

studies in that the instruction set is kept constant. A load/store RISC instruction set whose code

density is close to that of the MIPS R2000 instruction set is assumed.

Cuderman and Flynn have simulated the e�ects of classic code optimizations on architecture

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 5

design decisions [16]. Classic code optimizations do not signi�cantly alter the actual working sets

of programs. In contrast, in this paper, classic code optimizations are always performed; code

expanding optimizations that enlarge the working sets are the major concern. Code expanding

optimizations increase the actual code size and change the instruction sequential and spatial local-

ities.

1.2 Outline Of This Paper

Section 2 describes the instruction cache design parameters and the performance metrics. The

cache performance is explained using the recurrence/con
ict model [17]. Section 3 describes the

code expanding optimizations and their e�ects on the target code and the cache design. Section 4

presents and analyzes experimental results. Section 5 provides some concluding remarks.

2 Instruction Cache Design Parameters

2.1 Performance Metrics with Recurrences and Con
icts

The dimension of a cache is expressed by three parameters: the cache size, the block size, and the

associativity of the cache [5]. The size of the cache, 2C , is de�ned by the number of bytes that can

simultaneously reside in the cache memory. The cache is divided into b blocks, and the block size,

2B, is the cache size divided by b. The associativity of a cache is the number of cache blocks that

share the same cache set. An associativity of one is commonly called a direct mapped cache, and

an associativity of 2C�B de�nes a fully associative cache.

The metric used in many cache memory system studies is the cache miss ratio. This is the

ratio of the number of references that are not satis�ed by a cache at a level of the memory system

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 6

hierarchy over the total number of references made at that cache level. The miss ratio has served as

a good metric for memory systems since it is characteristic of the workload (e.g., the memory trace)

yet independent of the access time of the memory elements. Therefore, a given miss ratio can be

used to decide whether a potential memory element technology will meet the required bandwidth

for the memory system.

The recurrence/con
ict model [17] of the miss ratio will be used to analyze the cause of cache

misses. Consider the trace in Figure 1, a1; a2; a3, and a4 are the �rst occurrence of an access, and

they are unique in the trace. The recurrences in the trace are accesses a5; a6; a7 and a8. Without a

context switch, all these four recurrences would result in a hit in an in�nite cache. In the ideal case

of an in�nite cache and in the absence of context-switching, the intrinsic miss ratio is expressed

as,

�o =
N �R

N
; (1)

where R is the total number of recurrences and N is the total number of references. Note that

an access can be of only two types: either a unique or a recurrent access. Non-ideal behavior

occurs due to con
icts, and this paper considers only the dimensional con
icts ; multiprogramming

con
icts are considered in [18].

A dimensional con
ict is de�ned as an event which converts a recurrent access into a miss

due to limited cache capacity or mapping in
exibility. For illustration, consider a direct mapped

cache composed of two one-byte blocks as shown in Figure 2. A miss occurs for recurrent access a5

Reference a1 a2 a3 a4 a5 a6 a7 a8
Address 0 1 2 3 1 2 1 2

Figure 1: An example trace of addresses.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 7

block 0:

block 1:

Address: 0 1 2 3

1 2 1 2

0

1

0 2

1 3

2

1

2 2

1 1

2 2

1

*

* Dimensional conflict

miss miss miss miss

miss

Reference: a1 a2
a
3 a4

a5 a6 a7 8a

Figure 2: An example two-block direct-mapped cache behavior.

because reference a4 purges address 1 from the cache due to insu�cient cache capacity. Hence, a4

represents a dimensional con
ict for the recurrence a5. The other misses, a1; a2; a3 and a4, occur

because these are the �rst references to addresses 0; 1; 2 and 3, respectively (i.e., they are unique

accesses). Therefore, the following formula can be used for deriving the cache miss ratio, �, for a

given trace, and a given cache dimension:

� =
N � (R� CD)

N
= �o +

CD

N
; (2)

where CD is the total number of dimensional con
icts, and �o is the intrinsic miss ratio.

In a simple design, when a cache miss occurs, instruction fetch stalls and the instruction cache

waits for the appropriate cache block to be �lled. After instruction cache repair is completed,

the instruction fetch resumes. The number of stalled cycles is determined by three parameters:

the initial cache repair latency (L), the block size, and the cache-memory bandwidth (�). For a

single cache miss, the number of stalled cycles is the initial cache repair latency plus the number

of transfers required to repair the cache block. The total miss penalty without load forwarding, tn,

is expressed by the number of total misses multiplied by the number of stalled cycles for a single

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 8

cache miss.

tn = (N � (R� CD))� (L+
2B

�
): (3)

This is the miss-penalty model used when load forwarding is not assumed. The miss penalty ratio

is calculated by dividing the miss penalty, tn, by N .

2.2 Load Forwarding

Load forwarding was evaluated by Hill and Smith [12]. They concluded that load forwarding in

combination with prefetching and sub-blocking increases the performance of the cache. In this

paper, we use a simpler version of the load forwarding scheme where neither prefetching nor sub-

blocking is performed. The state transition diagram for load forwarding is shown in Figure 3.

The instruction cache is in the standby state initially (state 0). When a cache miss occurs, the

instruction fetch stalls (state 1). Instead of waiting for the entire cache block to be �lled before

resuming, the cache loads the block from the currently-referenced instruction and forwards the

instruction to the instruction fetch unit (state 2). Furthermore, if the instruction reference stream

is sequential, each subsequent instruction is forwarded to the instruction fetch unit until the end

of the block is reached or a taken branch is encountered. Any remaining un�lled cache-block bytes

are repaired in the normal manner, and the instruction fetch stalls (state 3). This load forwarding

scheme requires no sub-block valid bits and therefore has a simpler logic for cache block repair than

sub block-based schemes.

An example of the cache-block repair process with load forwarding is provided in Figure 4.

Reference X results in a miss. It takes L cycles before this reference is placed in the appropriate

block location and is forwarded to the fetch unit. Reference Y is a sequential access, thus it is

considered as a hit. It is placed in the cache and forwarded to the fetch unit. Reference Z breaks

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 9

repaired
block
whole

begin
transfer
to cache
memory

repair

repair

hit

miss
taken branch

or
end of block

instruction fetch unit stalled

instruction fetch unit not stalled

state 1
initial
delay

state 0
standby

state 3
no load
forward

state 2
load
forward

Figure 3: State transition diagram of the load forwarding process.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 10

300 33

ZZZ

YXX

stall and repair

2*L+3L+3L+2

L+10

1

stall and repair

1 221

4

4 4

forwardstall and repair

4 miss

1 2

forward

2

2 hit

1

1 miss

L

1

forward

Reference:

Status:

Address:

block 1:

block 0:

Cycle:

Cycle:

block 0:

block 1:

Address:

Status:

Reference:

Figure 4: An example of the load forwarding process.

the sequential-reference stream, load forwarding stops, and cache repair of block 0 continues. At

cycle L+2, the end of the block is reached, and the cache repair continues from the beginning of

the cache block. At cycle L+3, the entire cache block is �lled, the fetch unit continues with the

next instruction reference. The block wrap around time is assumed to be negligible compared to

the total block-repair time 1. References X and Y are sequential and constitute a run length (the

number of sequential instructions before a taken branch) of 2.

For the ith cache miss, if the total number of bytes where the instruction fetch and cache repair

1For the actual hardware implementation, the cache repair can start at the beginning of the cache block. When

the location of the instruction to be fetched is encountered within the cache block, load forwarding begins. Load

forwarding terminates when the end of the block is reached or when a taken branch is encountered. Cache repair
stops at the end of the block. The miss penalty incurred by this method is the same as the one presented in the

paper.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 11

overlap is represented by S[i], the total miss penalty with load forwarding, tl, is expressed as

tl = tn � tS (4)

where tS is

tS =
(N�R)+CDX

i=1

S[i]

�
: (5)

tS measures the number of cycles saved by load forwarding. Equation 4 is the miss-penalty model

used when load forwarding is assumed. The miss penalty ratio with load forwarding is calculated

by dividing the miss penalty, tl, by N .

The saved cycles expressed in Equation 5 is constrained by two factors. First, load forwarding is

limited by the sequentiality of the instruction reference stream. The more sequential the instruction

reference stream is, the more overlap between the cache repair and load forwarding cycles that can

be achieved. Second, assuming the sequentiality of the referencing stream is not a problem, load

forwarding is performed only from the missed reference until the end of the block. Thus the savings

is highly dependent upon the location of the miss within the cache block. The sequentiality of the

reference stream can be increased by appropriate compiler optimizations and this will be discussed

in Section 3. This second factor is highly variable and dependent upon the instruction reference

stream and the block size.

3 Optimizations and Code Transformations

3.1 Base Optimizations

A standard set of classic optimizations is available in commercial compilers today (see Table 1).

The goal of these optimizations is to reduce the execution time. Local optimizations are performed

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 12

Local Global

constant propagation constant propagation
copy propagation copy propagation
common subexpression elimination common subexpression elimination
redundant load elimination redundant load elimination
redundant store elimination redundant store elimination
constant folding dead code removal
strength reduction loop invariant code removal
constant combining loop induction strength reduction
operation folding loop induction elimination
operation cancellation global variable migration
dead code removal loop unrolling
code reordering

Table 1: Base optimizations.

within basic blocks, whereas global optimizations are performed across operations in di�erent basic

blocks. In this paper, these classic code optimizations are always performed on the compiled

programs.

3.2 Execution Pro�ler

Execution pro�ling is performed on all measured benchmarks. The IMPACT-I pro�ler translates

each target C program into an equivalent C program with additional probes. When the equivalent

C program is executed, these probes record the basic block weights and the branch characteristics

for each basic block. Pro�le information is used to guide the code expanding optimizations. The

pro�le information is collected using an average 20 program inputs per benchmark. An additional

input is then used to measure the cache performance.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 13

3.3 Instruction Placement

Reordering program structure to improve the memory system performance is not a new subject.

In more recent literature regarding instruction caches, instruction placement has been shown to

improve performance [19] [20] [21]. The IMPACT-I C compiler instruction placement algorithm

improves the e�ciency of caching in the instruction memory hierarchy [19]. Based on dynamic

pro�ling, this algorithm increases the sequential and spatial localities, and decreases cache mapping

con
icts of the instruction accesses.

For a given function body, several steps are taken to reorder the instruction sequence. For

each function, basic blocks which tend to execute in sequence are grouped into traces [22] [23].

Traces are the basic units used for instruction placement. The algorithm starts with the function

entrance trace and expands the placement by placing the most important descendent after it. The

placement continues until all the traces with non-zero execution pro�le count have been placed.

Traces with zero execution count are moved to the bottom of the function, resulting in a smaller

e�ective function body.

Reordering the basic blocks does not increase the program size signi�cantly. The overall se-

quentiality of the resulting code is increased (i.e. the number of taken branches are reduced) due

to the formation of traces, and this may increase the need for a larger cache block size. For the

same cache size, an increase in block size translates to a decrease in tag store. The overall locality

of the resulting code is increased due to the placement of more important traces at the beginning

of the function.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 14

3.4 Function Inline Expansion

Function inline expansion replaces the frequently invoked function calls with the function body. The

importance of inline expansion as an essential part of an optimizing compiler has been described

by Allen and Johnson [24]. Several optimizing compilers perform inline expansion. For example,

the IBM PL.8 compiler does inline expansion of all leaf-level procedures [25]. In the GNU C

compiler, the programmer can use the keyword inline as a hint to the compiler for inline expanding

function calls [2]. The Stanford MIPS C compiler examines the code structure (e.g., loops) to

choose the function calls for inline expansion [26]. The IMPACT-I C compiler has an algorithm

that automatically performs inter-�le inlining assisted by the pro�le information where only the

important function call sites are considered [4]. Inlining is done primarily to enlarge the scope of

optimization and scheduling.

Since the callee is expanded into the caller, inline expansion increases the spatial locality and

decreases the number of function calls. This transformation increases the number of unique ref-

erences, which may result in more misses. However, a decrease in the miss ratio may also occur,

because without inline expansion the callee has the potential to replace the caller in the instruction

cache. With inline expansion, this e�ect is reduced. Inline expansion provides large functions to

enlarge the size of traces selected. This enlargement of function bodies helps to further the e�ec-

tiveness of instruction placement. With an increase in the sequentiality of the referencing stream,

an improvement in the performance of load forwarding can be expected.

3.5 Optimizations for Superscalar Processors

Since basic blocks typically contain few instructions, there is little parallelism within a basic block.

For superscalar processors, many code transformations are necessary in order to increase the num-

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 15

ber of instructions available for scheduling. Many researchers have shown the e�ectiveness of

these optimizations [27] [28] [29]. Although these optimizations are frequently used for super-

scalar processors, these optimizations are also useful for scalar processors (e.g., MIPS C compiler

performs automatic loop unrolling [3]). The following superscalar optimizations have been imple-

mented in the IMPACT-I C compiler and are performed in addition to function inline expansion

and instruction placement. They have been shown to provide signi�cant speedup on superscalar

processors [30].

Super-block formation: A super-block is a sequence of instructions that can be reached only

from the top instruction and may contain multiple branch instructions. A trace can be converted to

a super-block by creating a copy of the trace and by redirecting all control transfers to the middle

of the trace to the duplicate copy; thus, super-block formation, or trace duplication, increases code

optimization and scheduling freedom.

Loop unrolling: The body of a loop is duplicated to increase the number of instructions in

the super-block, To unroll the loop N times, the body of the loop is duplicated (N - 1) times. For

multiple instruction issue processors, the IMPACT-I C compiler typically unrolls small loops four

or more times. For larger loops, N decreases according to the loop size.

Loop peeling: Many loops iterate very few times, (e.g., less than ten). For these loops, loop

unrolling and software pipelining are less e�ective because the execution time spent in the parallel

section (the optimized loop body) is not substantially longer than in the sequential section (the loop

prologue and epilogue). An alternative approach to loop unrolling is to peel o� enough iterations,

such that the loop typically executes as a straight-line code.

Branch target expansion: Instruction placement and super-block formation introduce many

branch instructions. Branch target expansion helps to eliminate the number of taken branches by

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 16

object code size instruction

program description (bytes) references

cccp GNU C preprocessor 20400 2.89 � 107

eqntott truth table generator 15256 1.47 � 108

espresso boolean minimization 61264 5.48 � 107

mpla pla layout 138808 1.07 � 108

tbl format table for tro� 24804 3.08 � 107

xlisp lisp interpreter 31920 1.46 � 108

yacc parsing program generator 21320 3.47 � 107

Table 2: Benchmark program characteristics.

copying the target basic block of a frequently taken branch into its fall-through path. The number

of static instructions increases due to this optimization.

Super-block formation, loop unrolling, loop peeling, and branch target expansion increase the

sequentiality of the code. Loop unrolling and loop peeling decrease both spatial and temporal

locality. A reduction in cache performance can be expected due to a decrease in spatial locality.

The increased code size and increased unique references can be expected to increase the cache size

requirement.

4 Experiments and Analysis

4.1 Benchmark Programs

Table 2 shows the benchmark programs that are used in this paper. Three of the programs,

eqntott, espresso, and xlisp, are from the SPEC2 benchmark set [31]. Four other C programs,

mpla, cccp, yacc, and tbl, are commonly used scalar programs. The object code size column gives

the program size in bytes without any code expanding optimizations. The size of these benchmark

2University of Illinois is a member of SPEC.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 17

programs are large enough for studying instruction caches. The instruction references column gives

the corresponding number of dynamic instruction references. These instruction references are for

the full run of each benchmark program, no sampling or reference partitioning is used.

4.2 Measurement Tools

The measurement results are generated by trace driven simulation. To collect the instruction

traces, the compiler's code generator was modi�ed to insert probes into the assembly language

program. Executing the modi�ed program with sample input data produced the instruction trace.

The traces consist of the IMPACT assembly instructions (LCODE 3) which is similar to the MIPS

R2000 assembly language [32].

Since the performance number for many cache dimensions are needed, a one pass cache simulator

is used. The cache simulator for the experiments uses the recurrence/con
ict model [17], where

only one pass over the instruction trace is needed to simulate all cache dimensions. Similarly,

the information required to derive miss penalty with load forwarding is collected for all cache

dimensions. In this paper, associativity of one-way, two-way, four-way, and fully-associative are

simulated. The block sizes considered are 16, 32, 64, and 128 bytes. The cache sizes range from

1K to 128K bytes.

4.3 Empirical Data and Analysis

For the purpose of experimentation, the code expanding optimizations described in Section 3 are

organized into four optimization levels with increasing functionality: no (no code expanding op-

timization), pl (instruction placement), in (function inline expansion plus instruction placement),

3LCODE documentation is available as an internal report.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 18

program no pl in su

cccp - 2% 36% 54%

eqntott - 1% 2% 7%

espresso - 1% 10% 60%

mpla - 1% 13% 41%

tbl - 3% 22% 67%

xlisp - 1% 18% 49%

yacc - 4% 21% 110%

average - 2% 17% 55%

Table 3: Accumulated code size increase.

and su (superscalar optimization, function inline expansion, and instruction placement). Experi-

ments are conducted by varying the optimization level to measure the incremental and accumulative

e�ects of these optimizations.

General E�ects

In order to quantify the e�ect of optimization on code size, the object code size was measured for

each level of optimization. Table 3 shows the relative object code size for each optimization level. All

ratios and percentages are computed based on the code size without code expanding optimization.

Instruction placement increases the average code size by 2%. Function inline expansion results in a

15% code expansion after instruction placement, as indicated by the 17% increase in average code

size in the in column of Table 3. Superscalar optimization further increases the code size by 38%

after both inline expansion and instruction placement. The total code expansion due to all the

three optimizations is 55%, which reinforces the concern that these optimizations may degrade the

instruction cache performance.

The instruction working set of a program is de�ned as the smallest fully-associative instruction

cache which achieves a 0.1% miss ratio for the program. It provides a relative measure of cache

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 19

16 byte block 32 byte block 64 byte block 128 byte block

program no pl in su no pl in su no pl in su no pl in su

cccp 13 13 13 13 13 13 12 13 12 12 12 13 13 12 12 13

eqntott 10 10 10 10 10 10 9 10 10 10 10 10 11 11 11 11

espresso 14 14 14 15 14 14 14 15 13 13 13 14 13 13 13 14

mpla 14 13 14 15 14 13 14 15 14 14 14 15 14 14 14 15

tbl 14 14 15 15 14 14 15 15 14 14 15 15 14 13 14 15

xlisp 12 12 13 13 13 12 13 13 13 13 13 14 13 13 13 14

yacc 11 11 12 13 12 11 11 13 11 11 11 13 11 11 11 13

Table 4: Working set size for various block sizes in log2 cache size.

no pl in su

program num % inc num % inc num % inc num % inc

cccp 5.1 - 7.5 47 7.7 50 10.5 105

eqntott 3.8 - 5.9 53 5.9 54 5.9 54

espresso 6.4 - 8.4 31 9.1 42 14.8 131

mpla 5.1 - 8.9 76 9.9 96 17.8 253

tbl 3.5 - 4.9 42 6.4 84 13.1 278

xlisp 4.2 - 6.3 50 9.5 129 10.8 159

yacc 4.0 - 5.9 47 6.1 51 13.0 223

average 4.6 - 6.8 48 7.8 70 12.3 167

Table 5: Average number of sequential instructions.

size requirement by programs. Table 4 presents the instruction working set size of each benchmark

for all optimization levels. All numbers presented are in log2 scale (e.g., 14 is a 16K byte cache).

The largest working set size needs at most a 32K byte cache. All miss ratios for the larger caches

are considered negligible, and for this reason, cache sizes larger than 32K will generally not be

shown in this paper. Instruction placement and function inline expansion have very little e�ect on

the instruction working set size. Superscalar optimization approximately double the instruction

working set size. This is expected since superscalar optimizations results in the largest increase in

code size.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 20

base % change

program no pl in su

cccp 2.89 � 107 -0.27 -2.01 -3.17

eqntott 1.47 � 108 -0.42 -0.43 -0.45

espresso 5.48 � 107 +0.18 -1.23 -3.33

mpla 1.07 � 108 -0.62 -6.18 -10.1

tbl 3.08 � 107 +0.21 -12.3 -16.2

xlisp 1.46 � 108 -1.84 -14.6 -16.7

yacc 3.47 � 107 -1.00 +0.13 +6.53

Table 6: Number of dynamic references.

As discussed in Section 3, all of the three code expanding optimizations can improve the sequen-

tiality of instruction access. To quantify this e�ect, the average number of sequential instructions

executed between taken branches was measured. As shown in Table 5, all of the three optimizations

improve the sequentiality signi�cantly. With all optimizations, the average number of sequential in-

structions increased from 4.6 to 12.3. This dramatic increase in sequentiality suggests that schemes

such as load forwarding may be able to o�set the negative e�ect of code expansion. We will further

explore this subject later in this section.

Although the static code size increases signi�cantly after the code expanding optimizations, the

number of dynamic instruction references tends to decrease with each additional level of optimiza-

tions. Table 6 presents the number of instruction references for each benchmark program. The

largest improvement results from function inline expansion; this is due to the increasing opportunity

to apply classic local and global optimizations on the inlined version of the code and to eliminate

instructions that save and restore registers across function boundaries. The purpose for super-

scalar optimizations is to uncover parallelism and scheduling opportunities. Note however, that

superscalar optimizations often result in a decrease in the number of instruction references. The

contribution of instruction placement to the number of dynamic references is small when compared

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 21

16 byte block 32 byte block

program no pl in su no pl in su

cccp 840 800 890 1120 450 430 480 590

eqntott 400 500 400 500 200 300 200 200

espresso 2170 2170 2320 3290 1140 1130 1210 1740

mpla 3500 3300 4200 5620 1900 1700 2200 2970

tbl 1310 1270 1510 2000 690 660 780 1070

xlisp 800 700 800 1100 400 400 500 600

yacc 980 910 1040 2020 530 480 550 1060

64 byte block 128 byte block

cccp 240 230 260 310 140 130 140 170

eqntott 100 200 100 100 90 100 100 90

espresso 600 600 640 940 320 330 350 520

mpla 1000 900 1200 1600 600 500 700 870

tbl 360 350 420 570 180 180 220 300

xlisp 300 300 300 300 200 200 200 200

yacc 290 250 300 570 160 130 160 310

Table 7: Number of unique references.

to the other optimizations since instruction placement only performs code reordering.

The sum of the number of recurrent references and the number of unique references constitutes

the number of total dynamic references. Table 7 shows that the number of unique references

increases for inlining and superscalar optimizations, but decreases for instruction placement. The

absolute di�erence within the unique references does not constitute a signi�cant variation in the

miss ratio since the di�erence is insigni�cant when compared to the number of dynamic references

in Table 6.

Instruction Placement

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 22

16b block 32b block 64b block 128b block
1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k

% miss

5

with placement

without placement

Direct Mapped Cache

7

6

4

3

2

1

Figure 5: Average e�ect of placement.

16b block 32b block 64b block 128b block
1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k

% miss

with placement

without placement

Direct Mapped Cache

10

12

14

8

6

4

2

Figure 6: The e�ect of placement for the highest miss ratios.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 23

16b block

10

1

0.1

0.01

0.001

% miss

1k 2k 4k 8k 16k 32k

Direct Mapped Cache
32b block

1k 2k 4k 8k 16k 32k
64b block

1k 2k 4k 8k 16k 32k

intrinsic miss ratio

dimensional miss ratio without placement

dimensional miss ratio with placement

Figure 7: E�ect of placement on dimensional con
icts and unique references.

Figure 5 shows the e�ect of instruction placement on the average cache miss ratio 4. On one hand,

instruction placement reduces miss ratio for small caches (1K and 2K). For example, the miss ratio

of a 1K cache with placement is comparable to that of a 2K cache without placement. On the

other hand, instruction placement has very little e�ect on large caches (8K and 16K). The same

trend can be observed from the worst case miss ratios in Figure 6. The worst case miss ratio is the

maximal miss ratio observed among all benchmark programs. Note that the bene�t of instruction

placement is more pronounced for programs with high miss ratios. This is a very desirable e�ect

since it increases the stability of the cache performance.

To analyze why instruction placement improves the performance of small caches, we have mea-

sured the misses due to unique references (intrinsic misses, see Section 2) and those due to dimen-

sional con
icts (dimensional misses). The log plot of Figure 7 shows the contribution of each to

4We found that the e�ect of instruction placement on the cache miss ratio of other associativities closely follows

the trend of the direct mapped cache case, therefore only the direct mapped cache results are presented.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 24

the miss ratio with and without placement. The black bars show the intrinsic miss ratio. Figure 7

clearly indicates that instruction placement makes negligible di�erence in the number of intrinsic

misses 5. The shaded bars in Figure 7 show the dimensional misses. As can be seen in the �gure,

the reduced miss ratio after placement is due to decreased dimensional con
icts 6.

The changes in program behavior due to instruction placement explain the discrepancy between

small and large caches. The working set of the benchmark programs do not �t into small caches.

This accounts for the high miss ratio of the small caches. Instruction placement separates the

frequently executed code segments from those executed infrequently. This helps the small caches

to accommodate the frequently executed portions of the programs. Therefore, the performance of

small caches improves signi�cantly after instruction placement. Since large caches can accommodate

the working set of most benchmark programs, the compaction e�ect of instruction placement does

not make a signi�cant di�erence for these cache sizes.

Function Inline Expansion

Function inline expansion has two con
icting e�ects on cache performance. On the positive side,

with inlining the caller and callee bodies are processed together by instruction placement. This

allows instruction placement to signi�cantly increase the sequentiality of the program (see Table 5).

When the cache miss ratio is high, the increased sequentiality reduces the miss ratio because it

increases the number of useful bytes transferred for each cache miss. On the negative side, inlining

increases the working set size (see Tables 3 and 4). If the working set �ts into a cache before inlining

5The reader is encouraged to derive the intrinsic miss ratio by dividing the number of unique references in Table 7

with the number of dynamic references in Table 6.
6Note that Figure 7 is in log scale, which is necessary to make the intrinsic miss ratio visible. However, the log

scale also magni�es the miss ratio of large caches. For example, instruction placement seem to make comparable

di�erence for small caches (1K and 2K) and large caches (16K and 32K) in Figure 7. However, it is clear from

Figure 5 that instruction placement has strong e�ect on small caches but negligible e�ect on large caches.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 25

16b block 32b block 64b block 128b block
1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k

% miss

with placement

Direct Mapped Cache

5

4

3

2

1

with inlining and placement

Figure 8: Average e�ect of inlining and placement.

16b block
Direct Mapped Cache

10

1

0.1

0.01

0.001

% miss

1k 2k 4k 8k 16k32k64k1k 2k 4k 8k 16k32k64k 1k 2k 4k 8k 16k32k64k
32b block 64b block

intrinsic miss ratio

dimensional miss ratio with placement

dimensional miss ratio with inlining and placement

Figure 9: E�ect of inlining and placement on dimensional con
icts and unique references.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 26

16b block 32b block 64b block 128b block
1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k 1k 2k 4k 8k 16k

% miss

Direct Mapped Cache

with inlining and placement

super-scalar opti., inlining, and placement

6

5

4

3

2

1

Figure 10: E�ect of superscalar optimizations for direct mapped cache.

but does not after inlining, the cache miss ratio may increase substantially.

Figures 8 and 9 show the e�ect of inline function expansion on cache performance 7. The cache

miss ratio is relatively high for small caches before inlining. In this range, the increased sequentiality

reduces the cache miss ratio. In the middle range (8K, 16K, and 32K), the working sets of some

benchmarks �t in the cache before inlining but not after inlining. As a result, inlining increases

cache miss ratio. The 64K cache is large enough to accommodate the program working set before

and after inlining. Therefore, inlining has negligible e�ect in caches of size 64K and greater.

Superscalar Optimizations

Figure 10 shows the changes in the cache miss ratios when superscalar optimizations are applied

after inlining and placement. The miss ratios are consistently higher with superscalar optimizations.

Therefore, a larger cache is required to compensate for the e�ect of superscalar optimizations to

maintain the same miss ratio. This information is consistent with the working set size calculated in

7As before, the trend for higher set associativities is very close to the results for direct mapped cache. Thus, only
the direct mapped results are presented.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 27

10

1

0.1

0.01

0.001

% miss

16b block
1k 2k 4k 8k 16k32k

Direct Mapped Cache

1k 2k 4k 8k 16k32k
32b block

1k 2k 4k 8k 16k32k
64b block

intrinsic miss ratio

dimensional miss ratio with inlining and placement

dimensional miss ratio with super-scalar opti.,
inlining, and placement

Figure 11: E�ect of superscalar optimizations on dimensional con
icts and unique references.

Table 4. If the block sizes are kept constant, the required cache size to maintain the same level of

miss ratio is approximately twice the cache size over that of code with no superscalar optimizations.

Figure 11 indicates that superscalar optimizations increase the number of unique references,

but the increase is not signi�cant. Therefore, it is the increase in code size rather than the increase

in unique references that is the primary cause of reduced cache performance.

All Optimizations

Figure 12 shows the cumulative e�ect of all optimizations on direct mapped caches. Intuitively,

smaller caches should perform worse on expanded code because of increase in the expected number

of dimensional con
icts. However, the experimental data show the opposite. For the 1k and 2k

caches, the miss ratio of code without code expanding optimizations are larger than the miss ratios

of code with code expanding optimizations. Sequentiality is increased by superscalar optimizations,

thus for larger block size, the decrease in miss ratio is due to sequentiality (e.g., for 1K cache in

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 28

16b block

% miss

5

Direct Mapped Cache

32b block

1k 2k 4k 16k8k 1k 2k 4k 16k8k

64b block 128b block

% miss

5

1k 2k 4k 16k8k 1k 2k 4k 16k8k

Direct Mapped Cache

with placement

no opimization

with inlining

with super-scalar opti.

4

3

2

1

6

7

7

6

4

3

2

1

Figure 12: Cumulative e�ect of all optimizations for direct mapped cache.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 29

Figure 12, code with superscalar optimizations has a larger drop in miss ratio going from 64B to

128B block size than code with no optimization). For small block sizes, the positive e�ect of higher

sequentiality disapears, and the negative e�ect of code expansion causes an increase in the miss

ratio. However, the increase in code locality by function inlining and instruction placement is still

large enough to o�set the negative e�ect of the code expansion, and a slight decrease in the miss

ratio can still be seen in small caches.

Load Forwarding

The results of load forwarding are presented in Figure 13. Since superscalar optimizations have

the worst results thus far, they are used here to evaluate the e�ectiveness of load forwarding. The

initial memory repair latency (L) is assumed to be 4 cycles, and the cache-memory bandwidth (�)

is assumed to be 4 bytes. Equations 3 and 4 are used to calculate the relative miss time penalty.

Load forwarding reduces the miss penalty and e�ectively upgrades the cache to a performance

level similar to a non load-forwarding cache of twice the size. For example, assume that 2K direct

mapped cache with block size of 64 bytes is used with load forwarding. Using the same block size,

the miss penalty is approximately the same as that of a 4K cache without load forwarding. When

superscalar optimizations are used, the designer can either double the cache size to maintain the

same performance level or use load forwarding and achieve the same result.

Another observation is that a block size of 128 bytes has consistently higher average miss

penalties than for other block sizes. This can be explained by the number of sequential instructions

shown in Table 5. The overall average run length for superscalar optimizations is approximately

12.3 instructions (49.2 bytes). It is possible that the �rst non-sequential miss will not be in the

beginning of the block (see Figure 14). By using the symbol R for the run length, and l as the run

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 30

16b block 32b block

1k 2k 4k 16k8k 1k 2k 4k 16k8k

Direct Mapped Cache

0.2

0.4

0.6

0.8

1.0

1.2

1.4

MISS
PENALTY
RATIO

Direct Mapped Cache
64b block 128b block

1k 2k 4k 16k8k 1k 2k 4k 16k8k

0.2

0.4

0.6

0.8

1.0

1.2

1.4

MISS
PENALTY
RATIO

No load forwarding with no optimization

Load forwarding with no optimization

No load forwarding with all optimizations

Load forwarding with all optimizations

Figure 13: E�ect of load forwarding for direct mapped cache.

instruction stream

instruction stream
two blocks are fetched

only one block is fetched

cache block N+1cache block N

Figure 14: Reference stream and cache block re�lls.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 31

length starting location within the cache block, the total number of cache blocks involved in a miss

is formulated as,

�(l; B;R) = d
(l+ R)

2B=�
e: (6)

The ceiling function is used to include all used cache blocks. For each run length, there are 2B=�

starting locations. Assuming uniform distribution for all starting locations, the probability of each

starting location would be �=2B. Therefore, the penalty of each cache miss for a particular run

length is shown as Equation 7.

P (R;B) =

2
B

�
�1X

l=0

1

2B=�
� f�(l; B;R)� (L+

2B

�
)�Rg (7)

For simplicity, an integer approximation of the run length is used. Instead of 12.3, the value of 13

is used for R in Equations 6 and 7.

P (13; 4) = 19 cycles (8)

P (13; 5) = 17 cycles (9)

P (13; 6) = 22 cycles (10)

P (13; 7) = 36:5 cycles (11)

The calculated values follow the trend in Figure 13 closely. For B equal to 4, 5, and 6, the load

forwarding miss penalties are relatively the same, with B equal to 5 (the lowest), and B equal to

4 (the next lowest). For B equal to 7, the load forwarding miss penalty is noticeably higher than

the other block sizes, and this can also be shown by using Equation 7.

The miss penalty for each run of sequential accesses is dominated by three values: the initial

load delay, the number of re�ll cycles with load forwarding, and the number of re�ll cycles without

load forwarding. While the initial load delay is dependent upon the hardware design technology, the

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 32

Direct Mapped Cache

0.1

0.2

0.3

MISS
PENALTY
RATIO

128 byte block

64 byte block

32 byte block

16 byte block

L = 2 L = 4 L = 6 L = 8 L = 10 L = 12

Figure 15: E�ect of initial load delay (4k cache).

non-stalling and stalling re�ll cycles are related to the block size and the instruction sequentiality.

Before the initial load delay reaches a certain threshold value, the number of re�ll cycles will have a

dominant e�ect upon the miss penalty. Larger block sizes will tend to have higher wasted number

of re�ll cycles than smaller block sizes. However, larger block sizes are penalized less for the initial

load delay than smaller block sizes. Figure 15 shows the e�ect of varying the value of the initial

load delay on block sizes for a 4k cache. For each value of L, the miss penalty ratio is compared

between four block sizes. For small values of L, 16 and 32-byte blocks perform the best. But for

larger values of L, 64-byte block performs the best. This is also veri�ed by Equation 7. Here, the

value of L is set to 10.

P (13; 4) = 43 cycles (12)

P (13; 5) = 32 cycles (13)

P (13; 6) = 32:5 cycles (14)

P (13; 7) = 44:75 cycles (15)

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 33

From Figure 15, for initial delay of 10, block sizes of 32 and 64 bytes have similar performances,

and block sizes of 16 and 128 bytes have similar performances.

As the value of L increases, the performance of the larger block sizes increases while the perfor-

mance of the smaller block sizes decreases. It is not until an initial load delay of 40 cycles before

128-byte blocks start to out-perform other block sizes. For smaller cache sizes, the miss ratios are

the dominating factor, and a smaller block size should be used. On the contrary, for larger cache

sizes, since the miss ratios are very small, larger block sizes are preferred.

5 Conclusions

This paper analyzes the e�ect of compile-time code expanding optimizations on instruction cache

design. We �rst show that instruction placement, function inline expansion, and superscalar op-

timizations cause substantial code expansion, reinforcing the concern that they may increase the

cache size required to achieve a given performance level. We then show the actual e�ect of each

optimization on cache design.

Among the three types of optimizations, instruction placement causes the least amount of code

expansion. Its e�ects on the cache performance are mostly due to the increased instruction access

sequentiality. For small caches where the miss ratio is relatively high, the increased sequential-

ity reduces the number of cache misses by increasing the useful bytes transferred for each cache

miss. For large caches where the miss ratio is relatively low, the e�ect of instruction placement is

negligible.

Inline function expansion a�ects the cache performance by increasing both the sequentiality

and the working set size. For small caches where the miss ratio is high, the increased sequentiality

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 34

helps to reduce the miss ratio. Due to the increased working set size, some benchmarks which �t

into moderately sized caches before inlining do not �t after inlining. Therefore, inlining increases

the miss ratio of moderately-sized caches. For large caches, since the working sets �t in the cache

before and after the cache, the e�ect of inlining is insigni�cant.

Superscalar optimizations increase the cache size required for a given miss ratio. However,

they increase the sequentiality of instruction access so much that a simple load-forward scheme

e�ectively cancels the negative e�ects. Using load forwarding, the three types of code-expanding

optimizations jointly improves the performance of small caches in spite of the substantial code

expansion. Load forwarding also allows the code expanding optimization to have little negative

e�ect on the performance of large caches.

Acknowledgements

The authors would like to thank Nancy Warter, Sadun Anik, Scott Mahlke, and all members of

the IMPACT research group for their support, comments and suggestions. This research has been

supported by the National Science Foundation (NSF) under Grant MIP-8809478, Dr. Lee Hoevel

at NCR, the AMD 29K Advanced Processor Development Division, the National Aeronautics and

Space Administration (NASA) under Contract NASA NAG 1-613 in cooperation with the Illinois

Computer laboratory for Aerospace Systems and Software (ICLASS).

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[2] R. M. Stallman, Using and Porting GNU CC. Free Software Foundation, Inc., 1989.

[3] MIPS Computer Systems, MIPS language programmer's guide, 1986.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 35

[4] W. W. Hwu and P. P. Chang, \Inline function expansion for compiling C programs," in Proc.

1989 ACM Conf. on Prog. Lang. Design and Implementation, (Portland, OR), June 1989.

[5] A. J. Smith, \Cache memories," ACM Computing Surveys, vol. 14, no. 3, pp. 473{530, 1982.

[6] A. J. Smith, \Line (block) size choice for CPU cache memories," IEEE Trans. Computers,
vol. C-36, pp. 1063{1075, Sept. 1987.

[7] M. D. Hill and A. J. Smith, \Evaluating associativity in CPU caches," IEEE Trans. Computers,
vol. C-38, pp. 1612{1630, Dec. 1989.

[8] J. E. Smith and J. R. Goodman, \Instruction cache replacement policies and organizations,"
IEEE Trans. Computers, vol. C-34, pp. 234{241, Mar. 1985.

[9] R. J. Eickenmeyer and J. H. Patel, \Performance evaluation of on-chip register and cache
organizations," in Proc. 15th Ann. Int'l Symp. Computer Architecture, (Honolulu, Hawaii),
pp. 64{72, May 1988.

[10] S. Przybylski, M. Horowitz, and J. Hennessy, \Performance tradeo�s in cache design," in Proc.

15th Ann. Int'l Symp. Computer Architecture, (Honolulu, Hawaii), pp. 290{298, June 1988.

[11] D. B. Alpert and M. J. Flynn, \Performance trade-o�s for microprocessor cache memories,"
Micro, pp. 44{54, Aug. 1988.

[12] M. D. Hill and A. J. Smith, \Experimental evaluation of on-chip microprocessor cache mem-
ories," in Proc. 11th Ann. Int'l Symp. Computer Architecture, (Ann Arbor, MI), pp. 158{166,
June 1984.

[13] J. Davidson and R. Vaughan, \The e�ect of instruction set complexity on program size and
memory performance," in Proc. Second Int'l Conf. on Architectural Support for Prog. Lang.

and Operating Systems., (Palo Alto, CA), pp. 60{64, Oct. 1987.

[14] C. L. Mitchell and M. J. Flynn, \The e�ects of processor architecture on instruction memory
tra�c," ACM Transaction on Computer Systems, vol. 8, pp. 230{250, Aug. 90.

[15] P. Steenkiste, \The impact of code density on instruction cache performance," in Proc. 16th

Ann. Int'l Symp. Computer Architecture, (Jerusalem, Israel), pp. 252{259, June 1989.

[16] K. J. Cuderman and M. J. Flynn, \The relative e�ects of optimization on instruction archi-
tecture performance," Tech. Rep. CSL-TR-89-398, Computer Systems Laboratory, Stanford
University, Stanford, CA, Oct. 1989.

[17] T. M. Conte and W. W. Hwu, \Single-pass memory system evaluation for multiprogramming
workloads," Tech. Rep. CSG-122, Center for Reliable and High-Performance Computing, Uni-
versity of Illinois, Urbana, IL, May 1990.

[18] W. W. Hwu and T. M. Conte, \The susceptibility of programs to context switching," IEEE

Trans. Computers, 1991. submitted for publication.

CRHC-91-17, May 1991, University of Illinois, Urbana-Champaign. 36

[19] W. W. Hwu and P. P. Chang, \Achieving high instruction cache performance with an opti-
mizing compiler," in Proc. 16th Ann. Int'l Symp. Computer Architecture, (Jerusalem, Israel),
pp. 242{251, June 1989.

[20] S. McFarling, \Program optimization for instruction caches," in Proc. Third Int'l Conf. on

Architectural Support for Prog. Lang. and Operating Systems., pp. 183{191, Apr. 1989.

[21] K. Pettis and R. C. Hansen, \Pro�le guided code positioning," in Proc. 1990 ACM Conf. on

Prog. Lang. Design and Implementation, (White Plains, NY), June 1990.

[22] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE Trans.

Computers, vol. c-30, no. 7, pp. 478{490, July 1981.

[23] W. W. Hwu and P. P. Chang, \Trace selection for compiling large C application programs to
microcode," in Proc. 21st Ann. Workshop on Microprogramming and Microarchitectures, (San
Diego, CA.), Nov. 1988.

[24] R. Allen and S. Johnson, \Compiling C for vectorization, parallelism, and inline expansion," in
Proc. 1988 ACM Conf. on Prog. Lang. Design and Implementation, (Atlanta, Georgia), June
1988.

[25] M. Auslander and M. Hopkins, \An overview of the PL.8 compiler," in Proc. ACM SIGPLAN

'82 Symp. Compiler Construction, 1982.

[26] F. Chow and J. Hennessy, \Register allocation by priority-bases coloring," in Proc. ACM

SIGPLAN '84 Symp. Compiler Construction, pp. 222{232, 1984.

[27] J. R. Ellis, Bulldog: a Compiler for VLIW Architectures. Combridge, MA: The MIT Press,
1986.

[28] B. R. Rau and C. D. Glaeser, \Some scheduling techniques and an easily schedulable horizontal
architecuture for high performance scienti�c computing," in Proc. 14st Ann. Workshop on

Microprogramming and Microarchitectures, Oct. 1981.

[29] S. Weiss and J. E. Smith, \A study of scalar compilation techniques for pipelined supercom-
puters," in Proc. Second Int'l Conf. on Architectural Support for Prog. Lang. and Operating

Systems., Oct. 1987.

[30] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An
architectural framework for multiple-instruction processors," in Proc. 18th Ann. Int'l Symp.

Computer Architecture, (Toronto, Canada), pp. 266{275, June 1991.

[31] \Spec newsletter," Feb. 1989. SPEC, Fremont, CA.

[32] G. Kane, MIPS RISC Architecture. Englewood Cli�s, NJ: Prentice-Hall, 1988.

