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Abstract

This paper studies the performance implications of architectural synchronization support

for automatically parallelized numerical programs. As the basis for this work, we analyze the

needs for synchronization in automatically parallelized numerical programs. The needs are due

to task scheduling, iteration scheduling, barriers, and data dependence handling. We present

synchronization algorithms for e�cient execution of programs with nested parallel loops. Next,

we identify how various hardware synchronization support can be used to satisfy these soft-

ware synchronization needs. The synchronization primitives studied are test&set, fetch&add

and exchange-byte operations. In addition to these, synchronization bus implementation of

lock/unlock and fetch&add operations are also considered. Lastly, we ran experiments to quantify

the impact of various architectural support on the performance of a bus-based shared memory

multiprocessor running automatically parallelized numerical programs. We found that support-

ing an atomic fetch&add primitive in shared memory is as e�ective as supporting lock/unlock

operations with a synchronization bus. Both achieve substantial performance improvement over

the cases where atomic test&set and exchange-byte operations are supported in shared memory.

1 Introduction

Automatically parallelized numerical programs represent an important class of parallel applica-

tions in high-performance multiprocessors. These programs are used to solve problems in many

engineering and science disciplines such as Civil Engineering, Mechanical Engineering, Electrical

Engineering, Chemistry, Physics, and Life Sciences. In response to the popular demand, paralleliz-
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ing Fortran compilers have been developed for commercial and experimental multiprocessor systems

to support these applications [1][11][21][6][10]. With maturing application and support software,

the time has come to study the architecture support required to achieve high performance for these

parallel programs.

Synchronization overhead has been recognized as an important source of performance degra-

dation in the execution of parallel programs. Many hardware and software techniques have been

proposed to reduce the synchronization cost in multiprocessor systems [12][23][22][2][13][14][15].

Instead of proposing new synchronization techniques, we address a simple question in this paper:

does architecture support for synchronization substantially a�ect the performance of automatically

parallelized numerical programs?

To answer this question, we start with analyzing the needs for synchronization in parallelized

Fortran programs in Section 2. Due to the mechanical nature of parallelizing compilers, parallelism

is expressed in only a few structured forms. This parallel programming style allows us to systemat-

ically cover all the synchronization needs in automatically parallelized programs. Synchronization

issues arise in task scheduling, iteration scheduling, barriers and data dependence handling. A set

of algorithms are presented which use generic lock()/unlock() and increment() operations. We then

identify how several hardware synchronization primitives can be used to implement these generic

synchronization operations. These synchronization primitives are test&set, fetch&add, exchange-

byte, and lock/unlock operations . Since these primitives di�er in functionality, the algorithms for

synchronization in parallel programs are implemented with varying e�ciency.

Section 3 describes the experimental procedure and the scope of our experiments. In Section 4,

the issue of iteration scheduling overhead is addressed in the context of hardware synchroniza-

tion support. We use an analytical model for the e�ect of iteration scheduling overhead and loop
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granularity on execution time. The model is then used to explain the di�erences in the iteration

scheduling overhead of di�erent synchronization primitives for a simulated shared-memory multi-

processor.

Synchronization needs of a parallel application depend on the numerical algorithms and the

e�ectiveness of the parallelization process, therefore the performance implications of architectural

synchronization support can only be quanti�ed with experimentation. Section 5 addresses the issues

of granularity and lock locality in real applications. Using programs selected from the Perfect Club

[4] benchmark set, we evaluate the impact of various architectural support on the performance of a

bus-based shared-memory multiprocessor architecture in Section 6. We conclude that architectural

support for synchronization has a profound impact on the performance of the benchmark programs.

2 Background and Related Work

In this section, we �rst describe how parallelism is expressed in parallel Fortran programs. We then

analyze the synchronization needs in the execution of these programs. Most importantly, we show

how architectural support for synchronization can a�ect the implementation e�ciency of scheduling

and synchronization algorithms.

2.1 Parallel Fortran Programs

The application programs used in this study are selected from the Perfect Club benchmark set [4].

The Perfect Club is a collection of numerical programs for benchmarking supercomputers. The

programs were written in Fortran. For our experiments, they were parallelized by the KAP/Cedar

source-to-source parallelizer [17][10] which generates a parallel Fortran dialect, Cedar Fortran. This

process exploits parallelism at the loop level, which has been shown by Chen, Su, and Yew to capture
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DOALL 30 J=1,J1

X(II1+J) = X(II1+J) * SC1

Y(II1+J) = Y(II1+J) * SC1

Z(II1+J) = Z(II1+J) * SC1

30 CONTINUE

Figure 1: A DOALL loop

most of the available parallelism for Perfect Club benchmark set programs [5]. They measured the

instruction level parallelism by trace based data 
ow analysis and concluded that parallel loop

structures su�ciently exploit this parallelism. However this assumes that all memory and control

dependences can be resolved in the parallelization process. In practice, compile time analysis of

dependences may not be successful due to complex array indexing and limited inter-procedural

data-
ow analysis.

Cedar Fortran has two major constructs to express loop level parallelism: DOALL loops and

DOACROSS loops. A DOALL loop is a parallel DO loop where there is no dependence between

the iterations. The iterations can be executed in parallel in arbitrary order. Figure 1 shows an

example of a DOALL loop.

In a DOACROSS loop [8], there is a dependence relation across the iterations. A DOACROSS

loop has the restriction that iteration i can only depend on iterations j where j < i. Because

of this property, a simple iteration scheduling scheme can guarantee deadlock free allocation of

DOACROSS loop iterations to processors. In Cedar Fortran, dependences between loop iterations

are enforced by Advance/Await synchronization statements [1]. An example of a DOACROSS

loop is shown in Figure 2. The �rst argument of Advance and Await statements is the name of

the synchronization variable to be used. The second argument of an Await statement is the data
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dependence distance in terms of iterations. In this example, when iteration i is executing this

Await statement, it is waiting for iteration i � 3 to execute its Advance statement. The third

argument of Await is used to enforce sequential consistency in Cedar architecture [10]. The third

argument implies that upon the completion of synchronization, the value of X(I-3) should be read

from shared memory. Similarly, the second argument of Advance statement implies that writing

the value X(I) to shared memory should be completed before Advance statement is executed.

DOACROSS 40 I=4,IL
...

AWAIT(1, 3, X(I-3))

X(I) = Y(I) + X(I-3)

ADVANCE (1, X(I))
...

30 CONTINUE

Figure 2: A DOACROSS loop

2.2 Synchronization Needs

In executing parallel Fortran programs, the needs for synchronization arise in four contexts: task

scheduling, iteration scheduling, barrier synchronization, and Advance/Await. In this section, we

discuss the nature of these synchronization needs.

Task scheduling is used to start the execution of a parallel loop on multiple processors. All

processors to participate in the execution of a parallel loop, or task, must be informed that the

loop is ready for execution. In this study, all experiments assume a task scheduling algorithm that

uses a centralized task queue to assign tasks to processors. The processor which executes a DOALL

or DOACROSS statement places the loop descriptor into the task queue. All idle processors acquire
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the loop descriptor from the task queue and start executing the loop iterations. The accesses to the

task queue by the processors are mutually exclusive. A lock is used to enforce mutual exclusion.

A number of distributed task scheduling algorithms have been proposed in the past, Anderson,

Lazowska, and Lewy [3] compared the performance of several algorithms in the context of thread

managers. Most distributed task scheduling algorithms rely on a large supply of parallel tasks to

maintain load balance. Also, they usually assume that each task needs to be executed by only

one processor. These are valid assumptions for thread managers because there are usually a large

number of tasks (threads) in their application programs and each task represents a piece of sequen-

tial code. These assumptions are, however, not valid for the current generation of automatically

parallelized Fortran programs where parallelism is typically exploited at only one or two loop nest

levels. Since all parallel iterations of a single loop nest level form a task, there is typically only

a very small number of tasks in the task queue. Also, multiple processors need to acquire the

same task so that they can work on di�erent iterations of the task loop. This lack of task level

parallelism makes it di�cult to e�ectively use distributed task queues. Thus, while distributed task

queues may become attractive when production parallelizing compilers can e�ectively exploit more

advanced constructs of parallelism, such as nested parallel loops, the experiments reported in this

paper assume a task scheduling algorithm based on a centralized task queue.

Figures 3 and 4 show the task scheduling algorithms for the processor which executes a parallel

DO statement and for the idle processors respectively. The removal of the loop descriptor from the

task queue is performed by the �rst processor entering the barrier associated with the loop.

The implementation of the lock(), unlock(), and increment() functions with di�erent prim-

itives is presented in the next section. By de�nition lock() and unlock() operations are atomic.

Whenever underlined in an algorithm, the increment() operation is also assumed to be atomic and
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put task() f
new loop->number of processors = 0 ;

new loop->number of iterations = number of iterations in loop;

new loop->barrier counter = 0 ;

new loop->iteration counter = 0 ;

lock(task queue) ;

insert task queue(new loop) ;

task queue status = NOT EMPTY ;

unlock(task queue) ;

g

Figure 3: Producer algorithm for task scheduling

read task() f
while(task queue status == EMPTY) ;

lock(task queue) ;

current loop = read task queue head() ;

/* Doesn't remove the loop from the queue */

increment(current loop->number of processors) ;

unlock(task queue) ;

g

Figure 4: Consumer algorithm for task scheduling

can be implemented with a sequence of lock, read-increment-write, and unlock operations. How-

ever, we will show that the frequent use of atomic increment in parallel Fortran programs makes it

necessary to implement atomic increment with e�cient hardware support.

During the execution of a parallel loop, each processor is assigned with di�erent iterations, which

is called iteration scheduling. We use the self-scheduling algorithm [20] to implement iteration

scheduling. In this method, the self-scheduling code is embedded in the loop body. Each time

a processor is ready to execute the next loop iteration, it executes this code to get a unique

iteration number. The self-scheduling algorithm shown in Figure 5 is executed at the beginning
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schedule iteration() f
last iteration = increment(current loop->iteration counter) ;

if (last iteration >= current loop->number of iterations) f

barrier synchronization ;

g

else f
execute (last iteration + 1)th iteration of loop;

g
g

Figure 5: Self scheduling algorithm for loop iterations

of each loop iteration and it performs an atomic increment operation on a shared counter. Unless

the multiprocessor supports an atomic fetch&add operation, a lock is required to enforce mutual

exclusion in accessing the shared counter.

Two alternative dynamic iteration scheduling algorithms, chunk scheduling and guided self-

scheduling (GSS), have been proposed to avoid the potential bottleneck of scheduling the iterations

one at a time [19]. When the number of iterations in a parallel loop is much larger than the

number of processors, these algorithms reduce the iteration scheduling overhead by assigning mul-

tiple iterations to each processor at a time. This increases the e�ective granularity of parallel

loops. The issue of granularity and scheduling overhead is discussed in Section 4. Both of these

algorithms are proposed for DOALL loops. In the presence of dependences across iterations ,i.e.,

DOACROSS loops, scheduling more than one iteration at a time may sequentialize the execution

of a parallel loop. In section 5, we present the program characteristics of our applications to show

that the parallelism is mostly in the form of DOACROSS loops or DOALL loops with a small

number of iterations. Therefore, our experimental evaluation of the architectural support assume

self-scheduling algorithm rather than guided self-scheduling or chunk scheduling.
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barrier synchronization() f
if (current loop->barrier counter == 0) f

lock(task queue) ;

if (current loop == read task queue head()) f
delete task queue head() ;

if (task queue empty() == TRUE) task queue status = EMPTY ;

g

unlock(task queue) ;

g

if (increment(current loop->barrier counter) ==

current loop->number of processors - 1) f

resume executing program from the end of this loop ;

g
else read task() ;

g

Figure 6: Barrier synchronization algorithm

After all iterations of a loop have been executed, processors synchronize at a barrier. In this

paper, we use a non-blocking linear barrier algorithm which is implemented with a shared counter

(see Figure 6). After all iterations of a parallel loop have been executed, each processor reads

and increments the barrier counter associated with the loop. The last processor to increment the

counter completes the execution of the barrier. As in the case of iteration self-scheduling, unless the

multiprocessor system supports an atomic fetch&add operation, the mutually exclusive accesses to

the shared counter are enforced by a lock.

The barrier algorithm shown in Figure 6 speci�es that the �rst processor to enter the barrier

removes the completed loop from the task queue. Using this barrier synchronization algorithm,

the processors entering the barrier do not wait for the barrier exit signal and before they start

executing another parallel loop whose descriptor is in the task queue. In contrast to the compile

time scheduling of \fuzzy barrier" [14], this algorithm allows dynamic scheduling of loops to the



Submitted for publication - Journal of Parallel and Distributed Processing 10

initialization(synch pt) f
for (i = 1 ; i < number of iterations ; i++) V[synch pt][i] = 0 ;

g

advance(synch pt) f

V[synch pt][iteration number] = 1 ;

g

await(synch pt, dependence distance) f

if(iteration number <= dependence distance) return() ;

else while (V[synch pt][iteration number - dependence distance] == 0) ;

g

Figure 7: Algorithm for Advance/Await operations

processors in a barrier. The linear barrier is a sequential algorithm and for the case where this

algorithm proves to be a sequential bottleneck, a parallel algorithm (e.g. Butter
y barrier [15]) can

be used. The last processor to enter the barrier executes the continuation of the parallel loop |

the code in the sequential Fortran program that is executed after all iterations of the current loop

are completed1.

The combination of task scheduling, iteration self scheduling and non-blocking barrier synchro-

nization algorithms presented in this section allows deadlock free execution of nested parallel loops

with the restriction that DOACROSS loops appear only at the deepest nesting level [20].

The last type of synchronization, Advance/Await, is implemented by a vector for each syn-

chronization point. In executing a DOACROSS loop, iteration i, waiting for iteration j to reach

synchronization point synch pt, busy waits on location V[synch pt][j]. Upon reaching point

synch pt, iteration j sets location V[synch pt][j]. This implementation, as shown in Figure 7,

1By using a semaphore, the processor which executed the corresponding DOALL/DOACROSS statement can be
made to wait for the barrier exit to execute the continuation of the loop.
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uses regular memory read and write operations, thus does not require atomic synchronization prim-

itives. This implementation assumes a sequentially consistent memory system. In the case of weak

ordering memory systems, an Await statement can be executed only after the previous memory

write operations complete execution. For a multiprocessor with software controlled cache coherency

protocol, Cedar Fortran Advance/Await statements include the list of variables whose values should

be written to/read from shared memory before/after their execution. The implementation details

of these statements under weak ordering memory system models or software controlled cache co-

herency protocols are beyond the scope of this paper.

2.3 Locks and Hardware Synchronization Primitives

In executing numeric parallel programs, locks are frequently used in synchronization and scheduling

operations. In the task scheduling algorithm (See Figures 3 and 4), the use of a lock enforces mutual

exclusion in accessing the task queue. Locks are also used to ensure correct modi�cation of shared

counters when there is no atomic fetch&add primitive in the architecture. Such shared counters are

used both by iteration scheduling (See Figure 5) and barrier synchronization (See Figure 6).

There are several algorithms that implement locks in cache coherent multiprocessors using hard-

ware synchronization primitives[2][13]. Virtually all existing multiprocessor architectures provide

some type of hardware support for atomic synchronization operations. In theory, any synchroniza-

tion primitive can be used to satisfy the synchronization needs of a parallel program. In practice,

di�erent primitives may result in very di�erent performance levels. For example, a queuing lock

algorithm [2][13] can be implemented e�ciently with an exchange-byte or a fetch&add primitive

whereas a test&set implementation may be less e�cient. In this section, we outline the lock algo-

rithms that we choose for each hardware synchronization primitive examined in our experiments.
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Exchange-byte. The exchange-byte version of the queuing lock algorithm is shown in Figure 8.

In this implementation, the exchange-byte primitive is used to construct a logical queue of processors

that contend for a lock. The variable my id is set at the start of the program so that its value for

the ith processor is 2� i, where processors are numbered from 0 to P � 1. During the execution,

the value of my id alternates between 2� i and 2� i+1. This eliminates the race condition between

two processors competing for a lock which has just been released by one of them. The variable

queue tail holds the I.D. of the last processor which tried to acquire this lock. A processor which

tries to acquire the lock receives the I.D. of its preceding processor via queue tail. It then writes

its own I.D. into the variable queue tail. This algorithm constructs a queue of processors waiting

for a lock where each processor waits speci�cally for its predecessor to release the lock. By mapping

the elements of synchronization vector flags[] to disjoint cache lines, the memory accesses in the

while loop of this algorithm can be con�ned to individual caches of processors. When a processor

releases the lock, only the cache line read by its successor needs to be invalidated.

Test&set. Because of its limited functionality, test&set cannot be used to construct processor

queues in a single atomic operation. Therefore, in this study, whenever the architecture o�ers only

test&set, a plain test&test&set algorithm (see Figure 9) is used to implement all lock operations 2.

Fetch&add. Due to the emphasis on atomic increment operations in iteration scheduling and

barrier synchronization, supporting a fetch&add primitive in hardware can signi�cantly decrease

the need for lock accesses in these algorithms. When the fetch&add primitive is supported by a

system, a fetch&add implementation of test&test&set algorithm can be used to support the lock

accesses in task scheduling as well as a queuing lock algorithm. The performance implications of

2However, We would like to point out that in an environment where critical sections of algorithms involve many
instructions and memory accesses, a test&set implementation of a queuing lock may enhance performance.
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initialization() f
flags[2P] = FREE ;

flags[0. . .2P-1] = BUSY ;

queue tail = 2P ;

g

lock() f
my id = my id XOR 1 ;

queue last = exchange-byte(my id, queue tail) ;

while(flags[queue last] == BUSY) ;

flags[queue last] = BUSY ;

g
unlock() f

flags[my id] = FREE ;

g

Figure 8: Queuing lock algorithm for lock accesses

lock() f

while(lock == BUSY || test&set(lock) == BUSY) ;

g

unlock() f

lock = CLEAR ;

g

Figure 9: Test&test&set algorithm for lock accesses



Submitted for publication - Journal of Parallel and Distributed Processing 14

supporting the fetch&add primitive will be presented in Section 4 and Section 6.

Synchronization bus. In the Alliant FX/8, a separate synchronization bus and a Concurrency

Control Unit is provided [1] which can improve parallel program performance by reducing the

latency of both fetch&add operations and lock accesses. Such a bus provides the processors with

a coherent set of shared counters and lock variables that can be accessed and updated in a single

cycle. In this study, we also consider the case where a synchronization bus is used to implement

synchronization operations.

The cost performance tradeo�s in synchronization support can only be determined by evaluating

the performance implications of di�erent schemes for real parallel applications. The needs for

synchronization and scheduling support depend on the application characteristics like granularity

of loop iterations, and structure of parallelism in the application. These issues are addressed by

experiments reported in Sections 5 and 6.

3 Experimental Method

Trace driven simulation is used in our experiments to evaluate the performance implications of

architecture support for synchronization. In our simulation model, a parallel Fortran program

consists of a collection of sequential program segments called task pieces . To execute task pieces in

parallel, several types of events arise: execution of DOALL and DOACROSS statements, execution

of parallel loop iterations, barriers synchronization, and execution of Advance/Await statements.

Each trace used in our simulations is a record of events that takes place during the execution of a

parallel program and detailed information about instructions executed between each pair of events.

In this study, traces are collected by instrumenting the source code of parallelized applications.

In a trace, each event is identi�ed by its type and arguments, e.g., the synchronization point and
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the iteration number for an Await event. Each task piece is annotated with the number of dynamic

instructions executed in the task piece and the dynamic count of shared memory accesses. These

numbers are collected with the help of pixie, an instruction level instrumentation tool for the

MIPS architecture [18]. Using a RISC processor model similar to MIPS R2000, where instruction

execution times are de�ned by the architecture, the time to execute instructions in CPU and local

cache can be calculated directly from the dynamic instruction count. On the other hand, the time

to service the cache misses and the atomic accesses to the shared memory depends on the activities

of other processors in the system. Therefore, a multiprocessor simulator is used to calculate the

program execution time from a trace.

In order to assess the performance implications of synchronization primitives, a library of

scheduling and synchronization routines as described in Section 2 is included in the simulator.

In the simulation model, the processor memory interconnect is a split transaction or decoupled

access bus, where a memory access requested by a processor only occupies the bus when its request

and response are transmitted between the processor and the memory modules. The bus is made

available to other memory accesses while the memory modules process the current accesses. When

the memory modules have long access latency, the split transaction bus plus memory interleaving

allows the multiple accesses to be overlapped. In our experiments, we assume that shared memory

is 8-way interleaved. Two memory module cycle times are used: 3 and 20 processor cycles. The 3-

cycle memory module cycle time is chosen to represent the situation where slow processors are used

in low cost multiprocessor systems. The 20-cycle latency represents the case where fast processors

are used in high performance multiprocessor systems.

In our experiments, the atomic operations test&set , exchange-byte and fetch&add are performed

in the memory modules rather than through the cache coherence protocol. Whenever a memory
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location is accessed by one of these synchronization primitives, the location is invalidated from

the caches. The read-modify-write operation speci�ed by the primitive is then carried out by

the controller of the memory module that contains the accessed location. Note that this memory

location may be brought into cache later by normal memory accesses made to that location due to

spin waiting. This combination of atomic operation implementation in memory modules, the cache

coherence protocol, and the split transaction bus is similar to that of Encore Multimax 300 series

multiprocessors [11]. In Section 5, we present the characteristics of our application programs that

lead to the choice of performing the read-modify-write in memory modules rather than through the

cache coherence protocol.

Without any memory or bus contention, a synchronization primitive takes one cycle to invalidate

local cache, one cycle to transmit request via the memory bus, two memory module cycles to

perform the read-modify-write operation, and one cycle to transmit response via the memory bus.

This translates into 9 and 43 cycles for our two memory module latencies respectively. A memory

access that misses from cache takes one cycle to detect the miss, one cycle to transmit cache re�ll

request via the bus, one memory module cycle time to access the �rst word in the missing block,

four clock cycles to transmit the four words back to cache via the memory bus. This amounts to

9 and 26 cycles for our assumed memory module latencies. Note that the latency for executing

synchronization primitives and re�lling caches increases considerably in the presence of bus and

memory contention. This e�ect is accounted for in our simulations on a cycle-by-cycle basis.

To evaluate the e�ectiveness of a synchronization bus, a single cycle access synchronization bus

model is used. The synchronization bus provides single cycle lock/unlock operations on shared lock

variables and single cycle fetch&add operations on shared counters. In the presence of con
icts,

i.e., multiple requests in the same cycle, requests are served in round robin fashion. A summary of
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Table 1: Timing assumptions without contention. M is the memory module cycle time.

primitive latency

test&set 3 + 2 �M
exchange-byte 3 + 2 �M
fetch&add 3 + 2 �M
cache miss 6 +M

lock/unlock (synchronization bus) 1
fetch&add (synchronization bus) 1

Table 2: Assumptions for memory tra�c

parameter value

memory/instruction ratio 0.20
shared data cache miss rate 0.80
non-shared data cache miss rate 0.05

the timing assumptions for synchronization primitives is shown in Table 1.

In all the simulations, an invalidation based write-back cache coherence scheme is used. The

shared memory tra�c contributed by the application is modeled based on the measured instruction

count and frequency of shared data accesses. Table 2 lists the assumptions used to simulate the

memory tra�c for the task-pieces. We assume that 20% of the instructions executed are memory

references. In addition, we measured that 6-8% of all instructions (approximately 35% of all memory

references) are to shared data. We assume that references to shared data cause the majority of

cache misses (80% shared data cache miss rate and 5% non-shared data cache miss rate)3.

3When we repeated the experiments by lowering the shared cache miss rate to 40%, the speedup �gures reported
in Section 5 changed by less than 2%.
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4 Analysis of iteration scheduling overhead

In the execution of a parallel loop, the e�ect of iteration scheduling overhead on performance

depends on the number of processors, total number of iterations, and the size of each iteration. In

this section we �rst present the expressions for speedup in executing parallel loops where the loop

iterations are large (coarse granularity) and where the loops iterations are small (�ne granularity).

These expressions provide insight into how iteration scheduling overhead in
uences loop execution

time, and will be used to analyze the simulation results later in this section. A more general

treatment of program granularity and run-time overhead can be found in [16].

Consider a DOALL loop with N iterations where each iteration takes tl time to execute without

parallel processing overhead. For a given synchronization primitive and lock algorithm, let tsch be

the time it takes for a processor to schedule an iteration. We will look at the impact of scheduling

overhead for two cases. For the �rst case we assume that when a processor is scheduling an iteration,

it is the only processor doing so.

For a given P and tsch, the necessary condition for this case is

tl > (P � 1)� tsch ;

and the time to execute the loop with P processors can be written as

tP = ((tsch + tl)� dN=Pe) + toh;

where toh is the total task scheduling and barrier synchronization overhead per processor. Since the

task scheduling and barrier synchronization overhead depends only on the number of processors,

toh, is constant for a given P .

The execution time of the sequential version of this loop, tseq , is tl �N . We de�ne speedup for
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P processors as the ratio of tseq to tP . The speedup for a DOALL loop is

speedup =
tseq

tP

=
tlN

((tsch + tl)� dN=Pe) + toh

�
P

tsch+tl
tl

+ P�toh
N�tl

for N � P

speedup � P �
tl

tsch + tl

using tl > (P � 1)� tsch

speedup > P �
tl

tl
P�1

+ tl

> P �
P � 1

P

> P � 1

Therefore, when tl > (P � 1)� tsch , the speedup increases linearly with number of processors

hence the execution time depends only on P and the total amount of work in the loop, N � tl.

Now let us consider the case where a processor completing the execution of an iteration always

has to wait to schedule the next iteration because at least one other processor is scheduling an

iteration at that time. The necessary condition for this case is

tl < (P � 1)� tsch ;

and the iteration scheduling overhead forms the critical path in determining the loop execution

time. When iteration scheduling becomes the bottleneck, execution time is:

tP = N � tsch + tl;
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for N � P

tP � N � tsch:

When the iteration scheduling algorithm is implemented with lock operations, scheduling an

iteration involves transferring the ownership of the lock from one processor to the next, and reading

and incrementing the shared counter. Therefore

tsch = tlock�transfer + tupdate:

In the remainder of this section we �rst look at how loop execution time varies with loop

granularity. Then we quantify the iteration scheduling overhead (tsch) for di�erent hardware syn-

chronization primitives by simulating execution of a parallel loop with very �ne granularity.

4.1 Granularity e�ects

The analysis above shows the existence of two di�erent types of behavior of execution time for

a parallel loop. Given a multiprocessor system, the parameters P and tsch do not change from

one loop to another. Keeping these parameters constant, the granularity of a loop, tl, determines

whether scheduling overhead is signi�cant in overall execution time or not.

The architectural support for synchronization primitives in
uences the execution time of parallel

loop in two ways. On one hand, di�erent values of tsch for di�erent primitives result in di�erent

execution time when the loop iterations are small (i.e., �ne granularity loops). On the other

hand tsch determines whether a loop is of �ne or coarse granularity. In this section we present

the simulation results on how loop execution time varies across di�erent implementations of the

iteration scheduling algorithm. Since tsch determines the execution time of �ne granularity loops,

we quantify how tsch changes with synchronization primitives used, and the number of processors

in the system.
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Figure 10: Execution time vs. granularity for test&set primitive

Figure 10 shows the simulation results for execution time vs. the size of an iteration in a

DOALL loop with the test&set primitive implementing test&test&set algorithm for lock accesses.

Similar curves were obtained for other synchronization primitives and for a synchronization bus

supporting atomic lock operations. The loop sizes are in terms of the number of instructions, and

the execution time in terms of CPU cycles. In these simulations, the total number of executed

instructions in the loop is kept constant while changing the number of instructions in an iteration.

Figure 10 shows that for 16 processors and using test&set primitive, there is a sharp increase in

execution time when iteration size is less than 550 instructions. The memory modules cycle time

is assumed to be 3 processor cycles. Similar plots for other primitives (not shown due to space

constraints) indicate that the critical iteration sizes are around 300 for exchange-byte, and 200

for a synchronization bus. Using the fetch&add primitive, the critical iteration size is around 100

instructions. As will be shown in Section 5, in the application programs we used in our experiments,

the iteration sizes of the parallel loops vary from 10 to 1000 instructions. This shows that the choice
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Figure 11: Execution time vs. number of iterations for test&set primitive

of synchronization primitives will in
uence the performance of some loops.

4.2 Scheduling overhead for �ne grain loops

For �ne grain loops, the loop execution time TP is approximately N� tsch . The change of execution

time with respect to the granularity of a set of synthetic loops is shown in Figure 11 for the

test&set primitive implementing the test&test&set algorithm. Each of the synthetic loops has a

total of 220000 executed instructions. Therefore, the region where iteration size < 50 instructions

corresponds to N > 4400 in these �gures. The common observation from these �gures is that when

loop iterations are su�ciently small (N is su�ciently large), the execution time increases linearly

with N . Also, when extrapolated, TP vs. N lines go through the origin which validates the linear

model

TP = N � tsch

for execution time.
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Figure 12 shows how scheduling overhead per iteration, tsch, changes for the di�erent syn-

chronization primitives as the number of processors increases. Using the test&set primitive, the

scheduling overhead increases with number of processors. For the exchange-byte and fetch&add

primitives and the synchronization bus, the scheduling overhead scales well. Furthermore, tsch

shows wide variation across primitives. For the 16 processor case the average number of cycles to

schedule a loop iteration are 98, 31, 17 and 7 cycles for test&set , exchange-byte, synchronization

bus, and fetch&add primitives respectively.

The synchronization bus model used in these simulations has single cycle access time for free

locks and single cycle lock transfer time. Therefore the synchronization bus data shows the highest

performance achievable by hardware support for lock accesses alone. In Section 6, the performance

�gures for a synchronization bus which also supports single cycle fetch&add operation are given.

Such a synchronization bus is capable of scheduling a loop iteration every clock cycle. Therefore its

overall performance can be expected to be better than all the primitives analyzed in this section.
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5 Synchronization Characteristics of Applications

In this section we report some synchronization characteristics of the application programs used in

our experiments. These characteristics help to focus our experiments and to analyze the experimen-

tal results. Section 5.1 presents the granularity of the parallel loops in these application programs.

Section 5.2 deals with their lock access locality.

5.1 Parallelism characteristics of application programs

Experimental investigation of parallel processing requires realistic parallel programs. To support

our experiments, we parallelized a set of programs from the Perfect Club benchmark set. KAP [17]

was used as the primary parallelization tool. Using basic-block pro�ling (tcov), the frequently

executed parts of the program were identi�ed. If the parallelization of these parts were not satis-

factory, the reasons for were investigated. In some cases, the unsatisfactory parallelization results

were simply due to KAP's limitations in manipulating loop structures, e.g., too many instructions

in loop body or too many levels of nesting. In these cases, the important loops were parallelized

manually.

Among all the programs thus parallelized, four of them show a relatively high degree of paral-

lelism, i.e., at least 60% of the computation was done in the parallel loops. These four programs are

ADM, BDNA, DYFESM, and FLO52. ADM is a three-dimensional code which simulates pollutant

concentration and deposition patterns in a lakeshore environment by solving complete system of hy-

drodynamic equations. The BDNA code performs molecular dynamic simulations of biomolecules

in water. The DYFESM code is a two-dimensional, dynamic, �nite element code for the analysis

of symmetric anisotropic structures. The FLO52 code analyses the transonic inviscid 
ow past an

airfoil by solving unsteady Euler equations.
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Table 3: Granularity and parallelism in innermost parallel loops of benchmarks

program average number average number of

name of iterations instructions per iteration

BDNA 450 515
FLO52 58 39
ADM 11 48
DYFESM 14 112

To perform experiments with these four programs, we insert instrumentation code in the pro-

grams and collected their traces. An in-depth treatment of automatic parallelization and the

available parallelism in the Perfect Club programs can be found in [7][9].

Table 3 shows the available parallelism and granularity for the innermost parallel loops in

the four automatically parallelized programs. In three of the four programs, FLO52, ADM, and

DYFESM, the parallelism was exploited in the form of nested DOALL loops. For the BDNA

program, the parallel loops were not nested and two thirds of the dynamic parallel loops were

DOACROSS loops with dependence distances of one iteration.

For nested parallel loops, the number of iterations of outer loops does not di�er from that of

innermost parallel loops. Therefore, the number of iterations of parallel loops cannot be increased

with techniques such as parallelizing outer loops or loop interchange. The small number of loop

iterations suggests that chunk scheduling and guided self scheduling cannot be used to improve

performance signi�cantly beyond self-scheduling. The small number of instructions in each iteration

suggests that architectural support is needed to execute these programs e�ciently.

5.2 Locality of lock accesses in synchronization algorithms

In our simulations, all four programs exhibited very low locality for lock accesses. When a processor

acquires a lock, we consider it a lock hit if the processor is also the one that last released the lock.
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Otherwise, the lock acquisition is results in a lock miss . The measured lock hit rate for the four

programs with four or more processors was less than 0.2%. Such a low lock access locality can be

explained by the dynamic behavior of scheduling and synchronization algorithms.

For each parallel loop, every processor acquires the task queue lock and barrier lock only once.

This results in a round-robin style of accesses to these locks. For each parallel loop, the loop counter

lock used in the loop self-scheduling algorithm is accessed multiple times by each processor. How-

ever, a lock hit can occur only when the processor which most recently acquired an iteration �nishes

the execution of that iteration before the completion of all the previously scheduled iterations. Due

to low variation in the size of iterations of a parallel loop, this scenario is unlikely.

In the experiments, because of the low lock hit rate, the atomic memory operations are im-

plemented in shared memory. An implementation of atomic operations via the cache coherence

protocol would result in excessive invalidation tra�c, and would also increase the latency of atomic

operations. On the other hand, algorithms like test&test&set require spinning on memory loca-

tions which are modi�ed by atomic operations. Therefore all memory locations are cached with an

invalidation based write-back cache coherence scheme. This simple scheme e�ectively use cache to

eliminate excessive memory tra�c due to spinning while e�ciently executes atomic synchronization

primitive in memory modules.

6 Experimental Results

In this section we present the performance implications of synchronization primitives on four ap-

plication programs. The performance results are obtained by simulating a 16-processor system

assuming centralized task scheduling, iteration self-scheduling, and linear non-blocking barrier syn-

chronization. The system timing assumptions are the same as those summerized in Section 3.
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To calculate the speedup, the execution time for the sequential version of a program without any

parallel processing overhead is used as the basis.

Figures 13{16 present the speedup obtained in the execution of these program together with

three categories of parallel processing overhead: iteration scheduling, task scheduling, and idle time.

Each �gure shows the results for one benchmark in two graphs, one for 3-cycle memory modules and

the other for 20-cycle memory modules. The horizontal axis lists the combinations of architectural

support and lock algorithms used in the experiments; these combinations are described in Table 44.

The task scheduling overhead corresponds to the time the processors spent to acquire tasks

from the task queue. The iteration scheduling overhead refers to the time the processors spent in

the self-scheduling code to acquire iterations. The processor idle time is de�ned as the time spent

by processors waiting for a task to be put into the empty task queue. According to this de�nition,

a processor is idle only if the task queue is empty when the processor completes its previously

assigned task. This provides a measure of available parallelism in the parallelized programs.

Note that the three overhead numbers in Figures 13{ 16 for each combination do not add up

to 100%. The major part of the di�erence is the time that is actually spent in the execution of

the application code. In addition, there are three more categories of overhead that are measured

but not shown because they are usually too small to report. They are due to task queue insertion,

barrier synchronization, and Advance/Await synchronization. The time it takes for processors to

insert tasks into the task queue is less than 2% of the execution time for all experiments. For all

four benchmarks, the barrier synchronization overhead is also measured to be less than 2% of the

execution time. Of the four benchmarks, we encounter a signi�cant number of DOACROSS loops

4The combination of exchange-byte primitive with test&test&set algorithm is not included because this case has
the same performance as the test&set with test&test&set combination.
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Table 4: The use of architectural support and lock algorithms in experiments.

architectural support use in scheduling

and lock algorithm and synchronization

fetch&add with test&test&set Iteration scheduling and barrier synchronization algo-
rithms use fetch&add for shared counter increments.
Test&test&set algorithm based on fetch&add is used
to access the task queue lock.

fetch&add with queuing lock Iteration scheduling and barrier synchronization algo-
rithms use fetch&add for shared counter increments.
Queuing lock based on fetch&add is used to access
the task queue lock.

synch. bus supporting Iteration scheduling and barrier synchronization

fetch&add algorithms use single cycle fetch&add on synchroniza-
tion bus for shared counter increments. Synchroniza-
tion bus provides single cycle lock operations to access
the task queue lock.

exchange-byte with queuing lock Queuing lock algorithm is used to access the locks as-
sociated with shared counters in iteration scheduling
and barrier synchronization. It is also used to access
the task queue lock.

test&set with test&test&set Test&test&set algorithm is used to access the locks
associated with the shared counters in iteration
scheduling and barrier synchronization algorithms. It
is also used to access the task queue lock.

synch. bus Synchronization bus provides the single cycle
lock/unlock operations to access the locks associated
with the shared counters in iteration scheduling and
barrier synchronization algorithms. They are also
used to access the task queue lock.
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Figure 13: Speedup and scheduling overhead for BDNA with 16 processors

only in the BDNA program. The overhead for Advance and Await synchronization is about 11%

of the execution time for 3-cycle memory modules and 18% for 20-cycle memory modules.

In Figures 13-16, the three experiments on the left side of each graph correspond to the cases

where some form of fetch&add primitive is supported in hardware. For all four applications, when

fetch&add operation is not supported, the iteration scheduling overhead increased signi�cantly.

This increase in overhead has a direct impact on the performance of the applications. Furthermore,

the performance of fetch&add primitive with queuing lock algorithm (column 2) was at least as good

as the performance of a synchronization bus supporting single cycle atomic lock accesses(column

6). This is true even when the memory module cycle time is 20 processor cycles, which implies

a minimal latency of 43 cycles to execute fetch&add . Therefore, implementing the fetch&add

primitive in memory modules is a e�ective as providing a synchronization bus that supports one

cycle lock/unlock primitives.

For the BDNA program, task scheduling overhead is not signi�cant for all experiments. As

shown in Table 3, loops in BDNA have a large number of iterations and relatively large granularity.
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Figure 14: Speedup and scheduling overhead for FLO52 with 16 processors
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Figure 15: Speedup and scheduling overhead for ADM with 16 processors
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Figure 16: Speedup and scheduling overhead for DYFESM with 16 processors

Which results in infrequent invocation of the task scheduling algorithm. On the other hand, the

remaining three programs have much less computation per parallel loop and this is re
ected in the

signi�cant task scheduling overhead in their performance. Even with a synchronization bus that

implements single cycle lock/unlock and single cycle fetch&add (column 3), the task scheduling

overhead is still signi�cant (See Figures 14{16). Note also that in FLO52, the relative percentage

of time spent in task scheduling is higher with fetch&add support. This increased importance of

task scheduling overhead is due to reduction of time spent in the iteration scheduling rather than

increase of time spent in task scheduling.

We would like to make two more points about the lock algorithms. We have three di�erent

implementations of lock accesses. They are test&test&set algorithm (columns 1 and 4), queuing lock

algorithm (columns 2 and 5), and a synchronization bus implementation of lock operations (columns

3 and 6). The test&test&set algorithm di�ers from queuing lock algorithm in the amount of bus

contention it causes. On the other hand, the queuing lock algorithm is similar to a synchronization

bus implementation of lock operations, except for a much higher lock access latency.
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A comparison of speedup �gures for columns 4 and 5 for the four programs show that reducing

the bus contention is important for the performance of all the four application programs. The bus

contention introduced by the test&test&set algorithm can seriously limit the speedup achieved by

parallel processing. The same conclusion holds for fetch&add results shown in columns 1 and 2,

even though lock operations are not used for iteration scheduling here. Comparison of the speedup

�gures for columns 5 and 6 shows that decreasing lock access latency can substantially increase the

application program performance.

As for ADM and DYFESM, lack of parallelism is also an important factor for the low speedup

�gures. This can be observed from the idle time of processors in Figures 15 and 16. Finally,

the results presented here demonstrate that the architectural support for synchronization and the

choice of lock algorithms signi�cantly in
uence the performance of all the four parallel application

programs.

7 Concluding Remarks

In this paper, we analyze the performance implications of synchronization support for Fortran

programs parallelized by a state-of-the-art compiler. In these programs, parallelism is exploited

at the loop level that requires task scheduling, iteration scheduling, barrier synchronization, and

advance/await.

Using simulation, we show that the time to schedule an iteration varies signi�cantly with the

architectural synchronization support. The synchronization algorithms used in executing these

programs depend heavily on shared counters. In accessing shared counters, we conclude that lock

algorithms which reduce bus contention do enhance performance. For the applications we examined,

due to the importance of shared counters, a fetch&add primitive implemented in memory modules
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can be as e�ective as a special synchronization bus which supports single-cycle lock access.

Simulation with real programs show that for applications with �ne granularity loops and limited

parallelism, the execution time vary widely across synchronization primitives and lock algorithms.

This is caused by the di�erences in the e�ciency of iteration and task scheduling algorithms.

Note that we assumed in our simulation moderate memory latency and split transaction bus. For

architectures with very long memory access latency or those where atomic operations consume more

memory bus bandwidth by requiring exclusive bus access during synchronization, the performance

implications of synchronization support are expected to be even stronger.
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