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Abstract

To e�ciently schedule superscalar and superpipelined processors, it is necessary to move

instructions across branches. This requires increasing the scheduling scope beyond the basic

block. Superblock scheduling, a static scheduling method, is a variant of trace scheduling that

removes the bookkeeping complexity associated with branches into a trace by removing these

entrances using a method called tail duplication. Once the scheduling scope is enlarged, there are

hazards to moving an instruction above a conditional branch because the instruction is normally

only executed on one path of the conditional branch. To allow the compiler to schedule code

more aggressively, hardware support can be provided to prevent such hazards. In this paper we

analyze the architecture support and performance of three superblock scheduling models.

Index terms - Conditional branches, exception handling, speculative execution, static code

scheduling, superblock, superpipelining, superscalar.
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1 Introduction

For non-numeric programs, there is insu�cient instruction level parallelism available within a basic

block to exploit superscalar and superpipelined processors[20] [21] . To schedule instructions beyond

the basic block boundary, instructions have to be moved across conditional branches. There are two

problems that need to be addressed in order for a scheduler to move instructions above branches.

First, to schedule the code e�ciently, the scheduler must identify the likely executed paths and

then move instructions along these paths. Second, when the branch is mispredicted, executing the

instruction should not alter the behavior of the program.

Dynamically scheduled processors can either use hardware branch prediction[17] to schedule

instructions from the likely executed path or schedule instructions from both paths of a conditional

branch[19]. Statically scheduled processors can either predict the branch direction using pro�ling or

some other static branch prediction mechanism or use guarded instructions to schedule instructions

along both paths[11]. For loop intensive code, static branch prediction is accurate and techniques

such as loop unrolling and software pipelining are e�ective at scheduling code across iterations in

a well-de�ned manner [18] [23] [16]. For control intensive code, pro�ling provides accurate branch

prediction [13]. Once the direction of the branch is determined, blocks which tend to execute

together can be grouped to form a trace[9] [3]. To reduce some of the bookkeeping complexity, the

side entrances to the trace can be removed to form a superblock [5].

In dynamically and statically scheduled processors in which the scheduling scope is enlarged by

predicting the branch direction, there are possible hazards to moving instructions across branches.

An instruction that is moved above a conditional branch should not cause an exception which

terminates the program or incorrectly overwrites a value when the branch is mispredicted. Various
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hardware techniques can be used to prevent such hazards. Bu�ers can be used to store the values

of the moved instructions until the branch commits [12] [21] [22]. If the branch is taken, the

values in the bu�ers are squashed. In this model, exception handling can be delayed until the

branch commits. Alternatively, non-trapping instructions can be used to guarantee that a moved

instruction does not cause an exception [8].

In this paper we focus on static scheduling using pro�ling information to predict the branch

direction. We present a superblock scheduling algorithm that supports three code percolation

models which require varying degrees of hardware support to enable code motion across branches.

We present the hardware required for each model. Our experimental results show the performance

of the three models on superscalar and superpipelined processors.

2 Superblock Scheduling

Superblock scheduling is an extension to trace scheduling[9] which reduces some of the bookkeeping

complexity. The superblock scheduling algorithm is a four-step process,

1. trace selection,

2. superblock formation and enlarging,

3. dependence graph generation, and

4. list scheduling.

Steps 3 and 4 are used for both prepass and postpass code scheduling. Prepass code scheduling

is performed prior to register allocation to reduce the e�ect of arti�cial data dependencies that

are introduced by register assignment [10] [6]. Postpass code scheduling is performed after register
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avg = 0;
weight = 0;
count = 0;
while(ptr != NIL)  {
    count = count + 1;

}
if(count != 0)
    avg = weight/count;

if(ptr->wt < 0)
    weight = weight - ptr->wt;
else
    weight = weight + ptr->wt;
ptr = ptr->next;

Figure 1: C code segment.

allocation.

The C code segment in Figure 1 will be used in this paper to illustrate the superblock scheduling

algorithm. Compiling the C code segment for a load/store architecture produces the assembly

language shown in Figure 2. The assembly code format is opcode destination, source1, source2

where the number of source operands depends on the opcode. The weighted control 
ow graph of

the assembly code segment is shown is Figure 3. The weights on the arcs of the graph correspond

to the execution frequency of the control transfers. For example, basic block 2 (BB2) executed

100 times with the control going from BB2 to BB4 90% of the time and from BB2 to BB3 the

remaining 10% of the time. This information can be gathered using pro�ling.

The �rst step of the superblock scheduling algorithm is to use trace selection to form traces from

the most frequently executed paths of the program [9]. Figure 4 shows the portion of the control


ow graph corresponding to the while loop after trace selection. The dashed box outlines the most

frequently executed path of the loop. In addition to a top entry and a bottom exit point, traces can

have multiple side entry and exit points. A side entry point is a branch into the middle of a trace

and a side exit is a branch out of the middle of a trace. For example, the arc from BB2 to BB3 in
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//  weight
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Figure 2: Assembly code segment.

Figure 4 is a side exit and the arc from BB3 to BB5 is a side entrance. To move code across a side

entrance, complex bookkepping is required to ensure correct program execution [9]. For example,

to schedule the code within the trace e�ciently, it may be desirable to move instruction i12 from

BB5 to BB4. To ensure correct execution when the control 
ow is through BB3, then i12 must

also be copied into BB3 and the branch instruction i10 modi�ed to point to instruction i13. If

there were another path out of BB3 then a new basic block would need to be created between

BB3 and BB5 to hold instruction i12 and a branch to BB5. In this case, the branch instruction

i10 would branch to the new basic block.

The second step of the superblock scheduling algorithm is to form superblocks. Superblocks

avoid the complex repairs associated with moving code across side entrances by removing all side

entrances from a trace. Side entrances to a trace can be removed using a technique called tail

duplication [5]. A copy of the tail portion of the trace from the side entrance to the end of the

trace is appended to the end of the function. All side entrances into the trace are then moved

to the corresponding duplicate basic blocks. The remaining trace with only a single entrance is a
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Figure 3: Weighted control 
ow graph.
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Figure 4: Loop portion of control 
ow graph after trace selection.

superblock. Figure 5 shows the loop portion of the control 
ow graph after superblock formation

and branch expansion. 1 During tail duplication, BB5 is copied to form superblock 2, (SB2). Since

BB3 only branches to BB5, the branch instruction i10 can be removed and the two basic blocks

merged to form BB3'. Note that superblock 1, SB1, no longer has a side entrance.

Loop-based transformations such as loop peeling and loop unrolling [2] can be used to enlarge

superblock loops, a superblock which ends with a control 
ow arc to itself. For superblock loops

that usually iterate only a small number of times, a few iterations can be peeled o� and added to

the superblock. For most cases, the peeled iterations will su�ce and the body of the loop will not

need to be executed. For superblock loops that iterate a large number of times, the superblock

loop is unrolled several times.

1Note that the pro�le information is scaled during tail duplication. This reduces the accuracy of the pro�le
information. For an accurate analysis of the �nal schedule, the transformed program must be repro�led.
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Figure 5: Loop portion of control 
ow graph after superblock formation and branch expansion.
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After superblock formation many classic code optimizations are performed that take advan-

tage of the pro�le information encoded in the superblock structure and clean up the code after

the above transformations. These optimizations include the local and global versions of: constant

propagation, copy propagation, common subexpression elimination, redundant load and store elim-

ination, dead code removal, branch expansion and constant folding [1]. Local strength reduction,

local constant combining and global loop invariant code removal, loop induction strength reduc-

tion, and loop induction elimination are also performed. To improve the amount of parallelism in

superblocks, register renaming, loop induction variable expansion, accumulator expansion, and tree

height reduction are applied to each superblock [5].

The third step in the superblock scheduling algorithm is to build a dependence graph. The

dependence graph represents the data and control dependencies between instructions. There are

three types of data dependencies, 
ow, anti, and output. A 
ow dependence between two instruc-

tions i and j indicates that an instruction j reads a value that instruction i writes and instruction

i executes before instruction j. This is also known as a read-after-write dependence. Likewise, anti

and output dependencies refer to write-after-read and write-after-write dependencies respectively.

Control dependencies represent the ordering between a branch instruction and the instructions fol-

lowing the branch. There is a control dependence between a branch and a subsequent instruction

i if the branch instruction must execute before instruction i.

The last step in the scheduling algorithm is to perform list scheduling using the dependence

graph and instruction latencies to indicate which instructions can be scheduled together. The

general idea of the list scheduling algorithm is to pick, from a set of nodes (instructions) that are

ready to be scheduled, the best combination of nodes to issue in a cycle. The best combination of

nodes is determined by using heuristics which assign priorities to the ready nodes[6]. A node is
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ready if all of its parents in the dependence graph have been scheduled and the result produced by

each parent is available.

If the number of dependencies are reduced, a more e�cient code schedule can be found. Of the

data dependencies, only the 
ow dependencies are true dependencies. Output and anti dependencies

are formed when registers are reused. Hardware or software renaming can be used to remove these

dependencies. Control dependencies can also be removed by adding hardware support. If a control

dependency is removed, the corresponding instruction can be moved across the branch. Three

superblock scheduling models with varying degrees of hardware support to enable code motion

across branches are presented in the next section.

3 Code Motion Across Branches

The instructions within a superblock are placed linearly in instruction memory. Thus, the side

exits of the superblock correspond to conditional branches where the branch is likely not taken.

To e�ciently schedule code within a superblock, the compiler should be able to move instructions

across branches. Let I and Br denote two instructions where I is the instruction to move and Br

is a branch instruction. We de�ne live-out(Br) as the set of variables which may be used before

de�ned when Br is taken. Moving I from above to below Br, downward code motion, is relatively

straight forward. If Br does not depend on I then I can be moved below Br. If the destination

register of I is in live-out(I), then a copy of I must be inserted between Br and its target.

In order to reduce the critical path of a superblock, upward code motion is more common. For

instance, moving a load instruction earlier to hide the load delay. For upward code motion, moving

instruction I from below to above branch Br, there are two major restrictions.
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Restriction 1: The destination register of I is not in live-out(Br).

Restriction 2: I must not cause an exception that may terminate the program execution.

Three superblock scheduling models: restricted code percolation, general code percolation, and

speculative code percolation require varying degrees of hardware support to remove part or all

of the restrictions on upward code motion. The restricted code percolation model enforces both

Restrictions 1 and 2. Only instructions that cannot cause exceptions and those that do not overwrite

a value in the live-out set of the taken path of a conditional branch can be moved above the branch.

The general code percolation model strictly enforces Restriction 1 but not Restriction 2. In the

speculative code percolation model [22], code motion is unrestricted. In the Section 4 we discuss

the architecture support required for each model.

Examples of code motion can be shown using the assembly code in Figure 6. This is the assembly

code of the C code in Figure 1 after superblock formation. The loop has been unrolled once to allow

more code motion and to illustrate the hazards of moving instructions across branches. Only the

instructions within the loop superblock have been labeled. In the unrolled iteration, registers r1

and r4 have been renamed to r5 and r6 respectively. Note that once the loop has been unrolled and

renamed, branch I9must branch to L1' to restore r1 and r4 before the code atL1 is executed. 2 Also

note that the code within the superblock corresponding to L0 is placed sequentially in instruction

memory. The live-out sets of the three branches within loop superblock are shown in Figure 7.

Performing dependence analysis on I1 through I12 produces the dependence graphs for the

three superblock scheduling models shown in Figure 8. The data dependencies are represented by

solid arcs and labeled with f for 
ow and o for output (there are no anti dependences). The control

2Tail duplication can be recursively applied to form a superblock at label L1'.
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(I2)
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(I4)
(I5)
(I6)

L0: add
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beq

//  ptr->wt

//  ptr->next
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//  avg
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mov
mov
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load
bne

//  ptr->next

r1,
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r2,
r3,
L3,
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0
0
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L1,
r3,
r5,
L3,

r2,
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r2,
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0
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r1,
r4,
r3,
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r3,
4[r1]
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0

1

0
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0

Figure 6: Assembly code of C segment after superblock formation and loop unrolling.

live-out(I3)  =  {r1,  r3,  r4}

live-out(I6)  =  {r2,  r3,  r7}

live-out(I9)  =  {r3,  r5,  r6}

Figure 7: Live-out sets for loop superblock branch instructions.
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dependencies are represented by dashed arcs. It is clear from the corresponding number of control

dependence arcs in the three graphs that code motion in the restricted code percolation model (6

arcs) is the most limited, then general (4 arcs) and then speculative (3 arcs). In the general code

percolation model, control dependence arcs can be removed if the destination of the sink of the

arc is not in live-out(source of the arc). In all cases, control dependence arcs between two branch

instructions cannot be removed unless the order of the branches does not matter (e.g., in a switch

statement). Other than this constraint, all remaining control dependence arcs can be removed in

the speculative code percolation model.

The code schedules determined from the graphs in Figure 8 are shown in Figure 9. The actions

that result when the code is executed on processors without additional hardware support are given.

The code schedules assume uniform function unit resources with the exception that only one branch

can be executed per cycle. 3 The integer ALU instructions have a one cycle latency and the load

instructions have a two cycle latency.

For restricted code percolation (both restrictions), the loop takes 9 cycles to execute and the

program executes properly without additional hardware support. When only Restriction 1 is ob-

served, general code percolation, load instruction I5 can be issued in cycle t1. This reduces the

loop execution time to 5 cycles. Note that since only one branch can be executed per cycle, branch

I6 cannot be issued until cycle t4. While this does not a�ect the code schedule, if there is no addi-

tional hardware support, instruction I8 will cause a segmentation violation by accessing memory

through a nil pointer. In the speculative code schedule, there are no restrictions on code motion

across branches and thus instruction I7 can be issued in cycle t2. Since r2 is in the live-out set

3This assumption is here in order to illustrate the hazards of removing Restriction 1. In our simulations we do

not impose this restriction unless speci�ed.
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Figure 8: Dependence graphs for the three superblock scheduling models.
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t3:
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t5:

t6:

t7:
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{I1, I2, I5}

{I7}

{I3, I4, I8, I11}

{I6}

{I9, I10, I12}

Without hardware support:

Figure 9: Code schedules and execution results for the three superblock scheduling models.

of instruction I6, without additional hardware support, count will be incremented one too many

times and if the program terminated normally, avg would be incorrect. However, as in the case of

general code percolation, without hardware support there will be a segmentation violation which

will terminate the program. In this example, the schedule using speculative code percolation does

not improve upon the schedule achieved from general code percolation.

4 Architecture Support

In this section we discuss the details of the architecture support required by the three superblock

scheduling models. Architecture support is required to relax the restrictions on upward code motion.

An instruction that is moved above a branch is referred to as a boosted instruction [22]. When

Restriction 1 is relaxed, a boosted instruction can overwrite a value used on the taken path.

Therefore, some form of bu�ering is required to ensure that the value is not written until the
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branch direction is determined. To relax Restriction 2, a boosted instruction should not cause

an exception if the branch is taken. In addition, when any instruction is moved above a branch

and the branch is taken, the instruction may cause an extra page fault. While additional page

faults do not alter the program's outcome, they will reduce the program's performance. To avoid

extra page faults, an alternative approach is to handle page faults of boosted instructions when the

branch commits. The next three sections describe the architectural support needed for each code

scheduling model.

4.1 Restricted Code Percolation

The restricted code percolation model assumes that the underlying architecture supports the fol-

lowing types of trapping instructions: integer divide, memory access, and 
oating point arithmetic.

Therefore, these instructions can never be moved across a branch since they may cause an exception

that will terminate the program. A non-trapping instruction can be moved across a branch if it

does not violate Restriction 1. The majority of existing commercial processors support this model

with only minor variations.

The hardware support for handling page faults does not need to be modi�ed to support restricted

code percolation. Page faults are handled when they occur. Since memory accesses are not boosted,

the only source of additional page faults will be from instruction memory page faults. Instructions

are boosted from the most likely executed path, therefore these instructions will likely be in the

working set in memory and thus will not usually cause page faults.



Technical Report CRHC-91-29, University of Illinois 17

4.2 General Code Percolation

The general code percolation model assumes that the trapping instructions in the restricted code

percolation model have non-trapping counterparts [8]. Speci�cally, general code percolation as-

sumes that there are non-trapping versions for integer divide, memory loads, and 
oating point

arithmetic. Thus, these instructions can also be moved across a branch if they do not violate

Restriction 1. Memory stores are still not percolated above branches for two reasons. First, it is

di�cult to perform perfect memory disambiguation to ensure that Restriction 1 is not violated.

Second, in a load/store architecture, stores are typically not on the critical path and thus will not

impact the performance as much as a load or an arithmetic instruction.

There are two types of exceptions, arithmetic and access violation. To implement non-trapping

instructions, the function unit in which the exception condition occurs must have hardware to

detect whether the instruction is trapping or non-trapping and only raise the exception 
ag for

a trapping instruction. For a non-trapping load instruction, if there is an access violation, the

load is not executed. When an exception condition exists for a non-trapping instruction, the value

written into the destination register will be garbage. The use of this value is unpredictable, it may

eventually cause an exception or it may lead to an incorrect result.

As with restricted code percolation, page faults are handled when they occur. If there is an

access violation, the page fault is ignored. No additional hardware beyond traditional hardware

support is required to handle page faults. Since memory accesses can be percolated, the number of

page faults for the general model may be larger than the number for the restricted model.
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4.3 Speculative Code Percolation

Speculative code percolation is similar to Smith et. al.'s speculative execution model [22]. In-

structions which violate Restrictions 1 and 2 can be moved above a branch because no action is

committed until the branch commits. A bu�er such as the shadow register �le in [22] is required to

store the results until the branch commits. Instructions that are moved above conditional branches

are marked as boosted. An instruction can be moved above more than one branch instruction. This

would require additional bits to indicate the number of branches that an instruction has moved

across and also additional bu�ering. However, our experimental results corroborate Smith et. al.'s

�ndings that the largest performance increase is seen for moving instructions across one branch

instruction [22] [4]. Therefore, this model assumes that instructions are only moved across one

conditional branch. 4

When a branch commits, a boosted instruction has either �nished execution or is still executing.

If the boosted instruction �nishes before the branch commits, the result is stored in the shadow

register �le until the branch commits. Since code is scheduled within a superblock, instructions are

moved across a branch from the not-taken path. Thus, if the branch is not taken, the values in

the shadow register are copied to the sequential register �le. However, if the branch is taken, the

values in the shadow register are cleared. If stores are boosted then a shadow write bu�er similar

to the one in [22] can be used. When the branch commits the values in the shadow write bu�er

are copied into the write bu�er. If the branch is taken then the values in the shadow write bu�er

are squashed. Our experiments have shown that boosting stores does not improve the performance

signi�cantly and thus in our model a shadow write bu�er is not required.

4If multiple branches can be issued in the same cycle, there must be an ordering of branches and hardware to

support multiple squashing delay slots. Boosted instructions can be issued with multiple branches provided they are

issued in the proper slot.
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Since boosted instructions may be executing when the branch commits, the execution pipeline

must distinguish between boosted and regular instructions. When the branch commits and the

branch is not taken, any boosted instructions in the execution pipeline are converted to normal

instructions. If the branch is taken then any boosted instructions in the pipeline are squashed

(except those in the branch delay slot).

All exception handling for boosted instructions, including page fault handling, is delayed until

the branch commits. Page faults could also be handled immediately in this model but the hardware

is available to delay page fault handling until the branch commits. When a boosted instruction

causes a page fault or exception the condition is stored until the branch commits. If the branch is

taken, the exception condition is ignored. Otherwise, the values in the shadow register are cleared

and the boosted instructions and delay slot instructions (boosted or not) in the execution pipeline

are squashed. At this point the processor is in a sequentially consistent state and the boosted

instructions are reexecuted sequentially until the exception occurs. To reexecute the boosted in-

structions, the program counter of the �rst boosted instruction, pc boost, must be saved. 5

The instructions can either be reexecuted in software by the exception handling routine or in

hardware. In the software scheme, the only additional hardware for exception handling is for the

pc boost register. In the hardware scheme, the instruction fetch mechanism must be altered to fetch

from pc boost when an exception condition exists when the branch commits. Only instructions that

are marked as boosted are reexecuted, all others are squashed at the instruction fetch unit. After

an exception on a boosted instruction is handled (assuming it does not terminate the program),

only boosted instructions are executed until the branch instruction. Then the exception condition

5Alternatively, the program counter of the previous branch plus the delay slot o�set can be saved. This avoids

hardware required to detect the �rst boosted instruction after a branch.
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is cleared and instruction fetch returns to normal operation.

5 Side E�ects of General Code Percolation

Code compiled with general code percolation will not necessarily raise an exception when an ex-

ception condition exists. When an exception condition exists for a boosted instruction and the

branch is taken, this condition is ignored as it should be. However, it is also ignored when the

branch is not taken. The garbage value returned may eventually cause an exception but there is

no guarantee. However, the output will likely be incorrect. Since the program has an error (i.e.,

an exception condition exists), it is valid to produce incorrect output. However, from a debugging

point of view, a detectable error has become undetectable, which is undesirable. Therefore, code

should �rst be compiled with restricted code percolation until the code is debugged. Then general

code percolation can be turned on to improve the performance. This approach may not be suitable

for critical applications such as transaction processing where unreported errors are not acceptable.

6 Experiments

The purpose of this study is to analyze the cost-e�ectiveness of the three scheduling models. In

the previous section we analyzed the cost with respect to the amount of hardware support required

by each model. In this section we analyze the performance of each model for superscalar and

superpipelined processors.
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6.1 Methodology

To study the performance of the three scheduling models, each model has been implemented in

the superblock scheduler of the IMPACT-I C compiler. The IMPACT-I C Compiler [4] is a retar-

getable, optimizing compiler designed to generate e�cient code for superscalar and superpipelined

processors. The performance of code generated by the IMPACT-I C compiler for the MIPS R2000

is slightly better than that of the commercial MIPS C compiler 6 [5]. Therefore, the scheduling

results reported in this paper are based on highly optimized code.

The IMPACT-I C compiler uses pro�ling to form superblocks. The pro�ler measures the exe-

cution count of every basic block and collects branch statistics. A machine description �le is used

to characterize the target machine. The machine description includes the instruction set, microar-

chitecture, and the scheduling model. The microarchitecture is de�ned by the number and type of

instructions that can be issued in a cycle and the instruction latencies.

To evaluate the performance of a scheduling model on a speci�c target architecture, a benchmark

was compiled using the composite pro�le of 20 di�erent inputs. Using a di�erent input than those

used to compile the program, the best and worst case execution times of each benchmark are

derived. The worst case is due to long instruction latencies that protrude from one superblock

to another superblock. For the benchmark programs used in this study (Table 1), the di�erence

between the best case and the worst case execution time is always negligible. The results presented

in Section 6.3 are the harmonic mean of the speedup numbers of all benchmarks using the worst

case execution time to calculate the speedup.

6MIPS Release 2.1 using the (-O4) option.
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name description

cccp GNU C preprocessor

cmp compare �les

compress compress �les

eqn typeset mathematical formulas for tro�

eqntott boolean minimization

espresso boolean minimization

grep string search

lex lexical analysis program generator

tbl format tables for tro�

wc word count

yacc parsing program generator

Table 1: Benchmarks.

6.1.1 Processor Architecture

In this study, we analyzed the speedup of the three superblock scheduling models for superscalar

and superpipelined processors. The base processor is a pipelined, single-instruction-issue processor

that supports the restricted code percolation model with basic block scheduling. Its instruction set

is a superset of the MIPS R2000 instruction set with additional branching modes [15]. Table 2 shows

the instruction latencies. Instructions are issued in order. Read-after-write hazards are handled by

stalling the instruction-unit pipeline. The microarchitecture uses a squashing branch scheme [14]

and pro�le-based branch prediction. For the base processor, one branch slot is allocated by the

compiler for each predicted-taken branch. The processor has 64 integer registers and 32 
oating-

point registers. 7

The superscalar version of this processor fetches multiple instructions into an instruction bu�er

and decodes them in parallel. An instruction is blocked in the instruction unit if there is a read-

7The code for these benchmarks contains very few 
oating point instructions.
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Table 2: Instruction latencies.

Function Latency

integer ALU 1

barrel shifter 1

integer multiply 3

integer divide 25

load 2

store -

FP ALU 3

FP conversion 3

FP multiply 4

FP divide 25

after-write hazard between it and a previous instruction. All the subsequent instructions are also

blocked. All the instructions in the bu�er are issued before the next instruction is fetched. The

maximum number of instructions that can be decoded and dispatched simultaneously is called the

issue rate. The superscalar processor also contains multiple function units. In this study, unless

otherwise speci�ed, every instruction can be executed from every instruction slot. When the issue

rate is greater than one, the number of branch slots increases [14].

The superpipelined version of this processor has deeper pipelining for each function unit. If the

number of pipeline stages is increased by a factor P, the clock cycle is reduced by approximately

the same factor. The latency in clock cycles is longer, but in real time it is the same as the base

microarchitecture. The throughput increases by up to the factor P. We refer to the factor P as the

degree of superpipelining. The instruction fetch and decode unit is also more heavily pipelined to

keep the microarchitecture balanced. Because of this, the number of branch slots allocated for the

predicted-taken branches increases with the degree of pipelining [14].
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Figure 10: Comparison of Basic Block and Restricted Superblock Scheduling.

6.2 Results

In this section we �rst motivate the need for superblock scheduling and then analyze the relative

performance of each of the superblock scheduling models for superscalar and superpipelined archi-

tectures. In addition, we characterize the performance of the models for various hardware resource

assumptions.

6.2.1 Basic Block vs. Superblock Scheduling

First, we want to verify the need for superblock scheduling. Figure 10 shows that the most speedup

that can be achieved using basic block scheduling is approximately 1.25. Whereas for superblock

scheduling using the restricted model, a speedup larger than 2 can be achieved for an issue 8

processor with uniform function units.
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Figure 11: Comparison of scheduling models for a superscalar processor model.

6.2.2 Scheduling Superscalar and Superpipelined Processors

Next we want to analyze the performance of the three scheduling models on superscalar and super-

pipelined processors with uniform function units. Thus, the type of instructions that can be issued

in a cycle is not limited by hardware. Figure 11 shows the speedup of the three scheduling models

for a superscalar processor model. The speedup for the general and speculative code percolation

models with uniform function units is approximately the same. For an issue 8 processor, these two

models perform approximately 22% better than the restricted code percolation model.

Figures 12 and 13 show the speedup of the three scheduling models when superpipelining is

added. The degree of superpipelining in Figures 12 and 13 is 2 and 4 respectively. The issue rate

of the combined superscalar/superpipelined processor ranges from 1 to 8. A pure superpipelined

processor corresponds to issue rate 1. The relative performance among the three models remains

the same for superpipelined as for superscalar. Comparing the performance of the three models
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Figure 12: Comparison of scheduling models for a superpipelined processor model with (P = 2).

on a superscalar processor for issue rates 2 and 4 (Figure 11) with the performance of the models

for the pure superpipelined processors in Figures 12 and 13 it can be seen that all models perform

slightly better on the pure superpipelined processors.

Relative to the pure superscalar processor, the processors in Figures 12 and 13 can respectively

execute two and four times as many instructions in a given time period. As the number of instruc-

tions executed per cycle increases, the di�erence between the speedup for each of the scheduling

models increases. However, the speedup for all three scheduling models starts to level o� for the

processor with degree of superpipelining equal to 4 and issue rate 8. At this point speculative

performs slightly better than general (1.1%) and much better than restrictive (28%).

Figures 11 - 13 show that the general code percolation model performs almost as well as the

speculative code percolation model even though code motion is more restricted. This implies that

there are not many cases where code moved across a branch is in the live-out set of the branch,
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Figure 13: Comparison of scheduling models for a superpipelined processor model with (P = 4).

which is expected after the application of register renaming, loop induction variable expansion, and

accumulator expansion. The fact that both the general and speculative models perform considerably

better than the restricted code percolation model implies that moving any or all of the following

types of instructions: memory loads, integer divide, and 
oating point arithmetic, greatly reduces

the critical path. Since our benchmark set is not 
oating point intensive and there are usually

many more loads than integer divide instructions, these results imply that scheduling loads early

has a large impact on the performance. Since the latency of 
oating point arithmetic is relatively

large, scheduling these instructions earlier will also bene�t numerical applications.

6.2.3 Scheduling a Superscalar with Non-uniform Function Units

The cost to replicate all function units for each additional instruction slot can be very high. There-

fore, we have evaluated the performance degradations due to non-uniform function unit resources.
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Figure 14: Comparison of scheduling models for a superscalar with limited resources.

Since the relative behavior of the three scheduling models is the same for both the superscalar and

the superpipelined processors, we only analyze the e�ect of limiting resources for the superscalar

processor. Figure 14 shows the speedup of the three scheduling models for a superscalar proces-

sor with one cache port, one integer ALU, one FPU, and branch logic to issue one branch per

cycle. Since there are only four function units, there is no speedup beyond issue rate 4. For an

issue 4 machine with the general and speculative code percolation models, there is a performance

drop of approximately 34% with these resource limitations. Whereas for an issue 4 machine with

the restricted code percolation model there is approximately a 29% performance drop with the

same resource limitations. The di�erence in the performance drops indicates that the general and

speculative models can take advantage of additional resources better than the restricted model.
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6.2.4 E�ect of Load Delay

Because it is not possible to perform perfect memory disambiguation, memory references often

cannot be determined until run time. Thus, memory loads are usually on the critical execution

path. For single-issue architectures there is a su�cient number of independent instructions available

to the scheduler to hide moderate memory load latencies. However, the demand for independent

instructions to schedule after a load grows as a multiple of the issue rate and load delay. As a result,

for high-issue rate processors, the limited supply of independent instructions can no longer hide a

high memory load latency. The bene�t of reducing the load delay is clearly shown in Figures 15

and 16 which show the speedup for superscalar processors with load delays of 1 and 3 respectively.

Another interesting point is that the relative performance of the restricted code percolation

compared to speculative and general code percolation increases when the load delay is decreased.

The di�erence between general and speculative remain small (0.6%) as the load delay decreases. In

other words, when the load delay is decreased from 3 to 2, the speedup for general and speculative

code percolation increases by 22% while the speedup for restricted code percolation increases by

27%. Likewise, when the load delay is decreased from 2 to 1, the speedup for general and speculative

code percolation increases by 27% while the speedup for restricted code percolation increases by

37%. This is expected since loads cannot be moved across branches in the restricted model and thus

are more likely to be on the critical path than in the general and speculative models. Therefore,

restricted code percolation is more sensitive to increasing the memory access delay.

6.2.5 Scheduling a Superscalar with 8K Data Cache

In the previous experiments we have assumed an ideal instruction and data cache. To analyze the

e�ect of the data cache, which typically has a higher miss ratio than the instruction cache, we
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Figure 15: Comparison of scheduling models for a superscalar with load delay 1.
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Figure 16: Comparison of scheduling models for a superscalar with load delay 3.
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Figure 17: Comparison of scheduling models for a superscalar with 8K data cache.

replaced the ideal data cache with an 8K direct mapped data cache with 32 byte blocks. An 8K

data cache was chosen to represent moderate sized on-chip caches in the near future. Therefore,

for the range from moderate to large data cache sizes, the performance impact due to cache misses

is bounded by the curves shown in Figure 17 and those in Figure 11. We assume that the processor

stalls on a cache miss. The initial delay to memory is 4 cycles and the transfer size is 32 bits. For an

8 issue processor, Figure 17 shows that the e�ect of the data cache misses e�ectively decreases the

speedup of speculative and general by 10% and of restricted code percolation by 7%. As expected,

the performance of the data cache has a greater impact on the more aggressive scheduling models.

7 Conclusion

In this paper we have analyzed three superblock code scheduling models for superscalar and su-

perpipelined processors. We have shown that increasing the scheduling scope from basic block to
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superblock increases the available parallelism. There is enough parallelism within a superblock

to achieve almost 200% speedup for an issue 4 uniform function unit superscalar processor with

a restricted code scheduling model. Within a superblock there can be many conditional branch

instructions. To e�ciently schedule the code, instructions must be moved from below to above a

conditional branch on the sequential path. However, there is the danger that these instructions

may have adverse side-e�ects when the branch is taken. Thus, restrictions must be placed on code

motion to ensure that the program executes properly. The three code scheduling models for moving

code across branches: restricted code percolation, general code percolation, and speculative code

percolation, use varying degrees of hardware support to remove the restrictions on code motion.

Restricted code percolation assumes traditional trapping instructions (integer divide, memory

access, 
oating point arithmetic). The non-trapping instructions can be moved across a branch

if they do not write over any values along alternate execution path of the branch. General code

percolation supports both trapping and non-trapping versions for memory loads, integer divide,

and 
oating point arithmetic. The non-trapping versions are used when these instructions are per-

colated, to guarantee that they do not cause an exception that terminates the program incorrectly.

Thus, it requires a larger subset of non-trapping instructions and minimal support to detect a

non-trapping instruction to prevent raising the exception condition 
ag when the instruction ter-

minates. A garbage value is returned when there is an exception on an instruction that was moved

across a branch. No extra hardware support is required to support page fault handling in either

the restricted or general code percolation model. Speculative execution uses a shadow register �le

to hold the results of instructions that have been moved across a conditional branch until that

branch commits. An extra bit is required per instruction to indicate that the instruction has been

moved across a branch. In addition, extra hardware is required to control the execution pipeline
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and shadow register �le when a branch commits. To handle precise exceptions and page faults the

program counter of the �rst instruction to be move across a branch must be saved.

The speculative code percolation model is the least restrictive, however, it is also requires the

most hardware support. In this paper, we analyzed the speedup of all three models on superscalar

and superpipelined processors. Both the speculative and general code percolation models perform

considerably better (approximately 22%) than restrictive code percolation. Speculative performs

slightly better (approximately 1%) than general code percolation. Similar trends have been shown

for processors with varying resource assumptions. Therefore, general code percolation is an e�cient

scheduling model since it has good performance with low hardware overhead.
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