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Abstract

This paper introduces a method for speculative execution, sentinel scheduling with recovery
blocks, which is an improvement upon sentinel scheduling. This method is compared against
speculative models that have been proposed previously. The hardware and compiler support
needed for sentinel scheduling with recovery blocks is fully described. Quantitative results of
speedup and code growth are presented for 14 benchmark programs. This method was fully
implemented with the IMPACT compiler. Sentinel scheduling with recovery blocks is shown to
have a low hardware cost, while achieving good performance results.

Index terms - speculative execution, sentinel scheduling, computer architecture, compilers, static
scheduling, recovery blocks, instruction-level parallelism, potentially excepting instructions

1 Introduction

Instruction-level parallelism (ILP) is necessary in order to fully utilize the functional units in wide

issue superscalar and VLIW architectures. There is insu�cient ILP within basic blocks, especially

for non-numeric applications, to fully utilize the processor resources that are available. [1] [2] [3]

Techniques such as software pipelining [4] [5] [6] and predicated execution - used in conjunction with

software pipeline loop scheduling [7] or straight-line code scheduling [8] - are e�ective for exposing

ILP only when branch conditions can be exposed in advance. For applications where accurate

branch prediction is not possible, speculative execution is an important source of ILP. [9] [10] [3]

Lack of ILP is intimately tied to the increasingly important problem of coping with high memory

latency. As such, speculation can also diminish the negative e�ects of memory latency.
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2 BACKGROUND AND RELATED WORK

Speculative execution refers to the execution of an instruction before it is known whether the

instruction needs to be executed. During compilation, the instruction becomes speculated when it

is moved above one or more conditional branches. Code speculation introduces some problems that

could e�ect proper code execution. When an instruction is speculated, it can be executed more

times than if it were not speculated. These extra executions must have no e�ect on the outcome

of the application. This includes ignoring exceptions during the extra executions of potentially

excepting instructions (PEI's).

Several architectural and compiler models have been proposed to deal with the problems of

speculative execution. This paper presents a background of the most recognized models to date.

Then, it introduces a new model, sentinel scheduling with recovery blocks (SSRB), which is an

improvement upon sentinel scheduling, a scheme with many positive aspects. Throughout, the

advantages of SSRB over existing speculation models will be presented.

2 Background and Related Work

This section presents a number of speculation models. In turn, each of these model is presented

and evaluated. The �rst two models, restricted and general speculation, are on opposite extremes

with respect to dealing with PEI's. This fact makes them a good basis of comparison for generating

relative performance results. The remaining methods, instruction boosting, write-back suppression,

and sentinel scheduling, are used for comparison with SSRB in areas such as hardware overhead,

speculation distance, execution time, and register pressure.

2.1 Restricted Speculation Model

One way to deal with PEI's is to simply not speculate them. Restricted speculation is a simple

speculation model that does just this. [3] The compiler only speculates instructions that it can

guarantee will not except. This means that loads, stores, integer divides, and all 
oating point

operations as well as any other PEI cannot be speculated. Since speculation is limited only to

non PEI's, there are fewer opportunities for ILP. Additionally, since no memory operations are
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2 BACKGROUND AND RELATED WORK 2.2 General Speculation Model

speculated, this model has a reduced bene�t with respect to hiding memory latency. Therefore,

restricted speculation is used as a lower bound base case for our performance analysis.

2.2 General Speculation Model

General speculation's solution to proper exception handling is to provide a non-excepting version

of each PEI which is used when it is speculated. [3] The hardware ignores all exceptions, except for

page faults and TLB misses, during execution of a speculated PEI. This model is easy to implement

and allows the maximum performance to be obtained with minimal costs to the architecture. A

major drawback is that exceptions which were caught by the original program may not occur in

the speculated version of the same code. This allows the program to continue execution despite

incorrect execution of the speculated instruction. Many times, a program will terminate normally,

yet produce incorrect results that may go undetected. The general speculation model's results are

used as an upper bound base case for our analysis since it is optimal in terms of performance.

2.3 Instruction Boosting Scheduling Model

Instruction boosting proposed by Smith, et al. combines extra hardware support in the form of

shadow register �les and extra compiler support by generating recovery blocks to handle exception

recovery. [9] [11] When an exception occurs for a speculated PEI, the exception is recorded with

respect to one of the shadow register �les. If no exception occurs for a speculated PEI, the results

of the speculated instruction are put into the shadow register �le. At the commit point for a

speculated PEI, the shadow register is examined to see if an exception has occurred. If there

was no exception, the result located in that shadow register is moved to its corresponding normal

register. If there was an exception, the shadow register is ignored, and the processor re-executes

instructions in an appropriate recovery block. The compiler generated recovery blocks regenerate

the exception as if the code had not been speculated.

This model provides accurate detection and handling of speculated PEI's. However, there is

a substantial hardware cost. The scheme requires multiple copies of the register �le, a counter

for each register in each register �le, and a �eld in each speculated instruction indicating the
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2 BACKGROUND AND RELATED WORK 2.4 Write-Back Suppression Model

number of branches it was moved above. In fact, it needs as many register �les and counter �les

as the maximum number of branches any single instruction is speculated above. Given that some

integer benchmarks have an average of 2-4 instructions between each branch, this method either

has extremely high cost or very low performance. [12] The proponents of instruction boosting

acknowledge this limitation and suggest the use of hybrid models. However, the only reasonable

solution still requires one extra register �le, a counter for each register, a few control bits, and a �eld

in each speculated instruction. The size of the �eld determines how many branches a speculated

instruction can be moved above.

Instruction boosting cannot speculate spilled registers since the counter needs to be resident.

Not being able to speculate spilled registers can restrict speculation of instructions when regis-

ter pressure is signi�cant. This nulli�es some of the advantages that instruction boosting's large

hardware overhead provided.

When using a reasonable amount of hardware, instruction boosting can only support one path of

execution between a speculated instruction and its original location. The severity of this limitation

is discussed in more detail in the section 3.

2.4 Write-Back Suppression Model

Write-back suppression delays the exception of a speculated PEI. After encountering the specu-

lated exception, it systematically suppresses all updates to the register �le by other speculated

instructions that were located after the speculated exception in the original program. [13] These

instructions are identi�ed by a �eld in each instruction indicating how many basic blocks above its

home block it was speculated. A check instruction located in the PEI's home block indicates that

recovery should occur. If there was a PEI from that basic block that excepted, the exception han-

dling is performed upon reaching the check instruction. Exception handling consists of re-executing

the excepting PEI and all subsequent instructions that were suppressed in the original pass.

Write-back suppression, like instruction boosting, provides accurate recovery from excepting

speculated PEI's. A drawback of write-back suppression is that it requires an extra k-bit (where an

instruction is allowed to move above 2k�1 branches) �eld on every instruction in order to determine
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2 BACKGROUND AND RELATED WORK 2.5 Sentinel Scheduling Model

which home block it came from.

A disadvantage of write-back suppression as presented is that, like instruction boosting, it can

only handle one path between the speculated instruction and its origin. Another disadvantage of

write-back suppression is that it cannot spill any registers associated with a speculated instruction.

This limits the speculation potential when the register pressure is high. Write-back suppression

also has a hardware overhead due to the fact that it has to support a stack of suppressed instruction

PC's which is used during the recovery process.

2.5 Sentinel Scheduling Model

A model which requires much less hardware to handle excepting speculated instructions correctly

is sentinel scheduling. [14] Sentinel scheduling is a compiler based technique that requires relatively

few changes to the processor architecture. When an exception occurs for a speculated PEI, the

destination register of the instruction is marked as excepting. The program counter of the excepting

instruction is then written into the destination register itself. The previous value in this register is

not needed since it was going to be overwritten by the excepting instruction anyway. Subsequent

speculative instructions which use the result of that excepting speculative instruction are suppressed

and instead propagate the PC and exception tag to their destination register. Source operands for

speculative instructions are preserved by ensuring that the scheduler and register allocator do not

allow any instructions to overwrite a speculative instruction's source operands until the exception

is recovered or avoided. Recovery is initiated by a sentinel which may be an explicit or, more

commonly, an implicit check. An explicit check is represented by a special additional instruction

created solely to act as a sentinel. Its register operands are checked for an exception tag. An implicit

check is a normal non-speculated instruction whose source registers are checked for an exception


ag before it is executed. The actual process of recovery is started by setting the PC to the value

found in the register and re-executing all speculative instructions until the check instruction that

initiated the recovery is reached.

The main bene�t of sentinel scheduling is its low hardware overhead. Only the extra S bit in

the instruction and an extra E bit in every register are needed. The S bit indicates if an instruction

is speculated or not. The E bit is the exception 
ag discussed previously.
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3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS

The only signi�cant 
aws with sentinel scheduling are due to the complexity involved with inline

recovery. First, the scheduler and register allocator are inhibited by the requirement that all source

and destination operands of speculated instructions cannot be reused until after it is known that

those values are not needed for recovery. Second, the source and destination registers of speculated

instructions cannot be spilled easily. This is due to the fact that inline recovery cannot automatically

load spilled registers during recovery. In the paper that introduced sentinel scheduling, the authors

dealt with this problem by despeculating any instruction which would have needed spill code. [14]

Third, since all speculated instructions are re-executed, their re-execution cannot have any adverse

e�ects. For example, a self-antidependent (e.g., RA = RA + 1 is self-antidependent) instruction

cannot be speculated unless it is broken up into an instruction that is not self-antidependent and

an added renaming instruction which is added to the home block. Finally, inline recovery needs

to know the direction of all branches between the initial speculated instruction and the check, so

that the control 
ow is reproduced accurately. This is not a trivial problem, unless only one path

of execution is used, as in the case of superblocks. How this problem is dealt with by sentinel

scheduling has not been addressed in previous papers about sentinel scheduling. These and other

negative e�ects due to inline exception recovery with sentinel scheduling led to the idea of using

recovery blocks. The remainder of this paper discusses the use of recovery blocks in doing exception

recovery with sentinel scheduling.

3 Sentinel Scheduling with Recovery Blocks

Sentinel scheduling with recovery blocks uses sentinels and exception tags on registers to know when

to recover, just as traditional sentinel scheduling. However, unlike traditional sentinel scheduling,

SSRB goes to a special code sequence, called a recovery block, to handle the exception. A recovery

block is a compiler generated block of code used for the sole purpose of recovery. Performing recov-

ery in special recovery blocks does increase code size, but instruction cache e�ects are minimized

by locating them away from the frequently executed program code.

In traditional sentinel scheduling, a speculated instruction that excepts writes its program

counter into the destination register. This PC value is not needed in SSRB since inline recovery is

not performed. Instead, each basic block with a sentinel in it is assigned its own recovery block. The
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3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS

processor calculates the address of a basic block's recovery block based upon a compiler generated

lookup table. The lookup table is referenced by the address of the �rst instruction in the basic

block and it returns the address of the corresponding recovery block. In SSRB, the destination

register of a speculated instruction can be used for other purposes.

Since traditional sentinel scheduling re-executes all speculated instructions during recovery,

all registers that are involved must contain the same value they had during the initial execution

sequence. This is done by extending the interval in which the source registers retain the same value.

The compiler makes sure that these registers have their live ranges extended, don't get rede�ned,

and are not spilled. Register pressure may actually force code to be despeculated. To alleviate

this problem, SSRB uses the destination operand of the PEI to hold the value of the �rst source

operand. This frees the �rst source operand for immediate reuse. Any other source operands in

the PEI cannot be reused. Reuse of one register is not signi�cant. However, in many cases, there

are many instructions which are dependent on the excepting PEI. Since these instructions are also

suppressed, their �rst source operand is copied into their destination operand. The combined e�ect

of one register freed for reuse per suppressed instruction is signi�cant. Since reusing one register

may have a greater positive impact than reusing another, it is suggested that special instructions

be added that allow reordering of source operands when their order is signi�cant with respect to

the operation.

Sentinel scheduling with recovery blocks can support multiple execution paths from a speculated

instruction to the sentinel. Unlike sentinel scheduling, SSRB does not need to know which path

to re-execute because recovery is performed using recovery blocks. This is also unlike instruction

boosting and write-back suppression since SSRB does not depend on a prede�ned execution path

as the mechanism to keep track of the excepting speculated PEI's.

Instruction boosting, write-back suppression, and sentinel scheduling cannot handle the case

shown in the original code found in Figure 1 without a technique like superblock formation. It is

not possible for these methods to speculate an instruction from Basic Block (BB) 5 into BB 1 since

there are two paths between BB 1 and BB 5. These methods must choose one path, or trace, in

which instructions can be speculated. Superblock formation is used by these methods to create this

path. Sentinel scheduling with recovery blocks is not limited to one path and does not necessarily
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3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS 3.1 Architectural Support

BB 1

BB 5

BB 2

BB 3

BB 4

BB 5’

BB 1

BB 2

BB 3

BB 4

BB 5

Figure 1: Superblock formation for a simple if-then-else structure.

need to perform superblock formation.

The details of the architecture support needed for SSRB is discussed in 3.1 and the details of

the the compiler support required is discussed in 3.2.

3.1 Architectural Support

The most obvious extension to the micro-architecture is the addition of a bit in the opcode �eld

of every instruction to indicate whether the instruction is speculated or not. This bit is referred

to as the S bit. The compiler must set this bit if it chooses to speculate a particular instruction.

Another extension is an exception tag that is added to each real register in the register �le. This

tag, or E bit, is used to keep track of exceptions and recovery.

The complete signi�cance of the E and S bits becomes clear when the e�ects they have on the

normal operation of the processor are detailed. In a traditional processor, an instruction executes

unless it causes an exception, in which case the exception is handled. In a processor with SSRB

support, the E bit, the S bit, and whether an instruction excepts are combined to determine what

action should be taken. A summary of the actions needed with respect to the execution of each
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3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS 3.1 Architectural Support

S bit [src(�):E bit excepts dest:E bit dest:data action

0 0 0 0 instruction result none

0 0 1 0 - take exception.

0 1 0 0 - execute recovery block.

0 1 1 0 - execute recovery block, then take exception.

1 0 0 0 instruction result none

1 0 1 1 src(1):data none

1 1 0 1 src(1):data none

1 1 1 1 src(1):data none

Table 1: Instruction action taken by sentinel scheduling with recovery blocks.

instruction is presented in Table 1.

If an instruction, whether it is speculated or not, executes normally, its results are placed in

the destination register. In addition, the instruction also clears the destination register's E bit.

If a speculated instruction would except, or if one of its source operand registers E bits are set,

special action is taken. Instead of executing, it sets the E bit of its destination register and copies

its �rst source operand register into the destination operand register. For instructions where it is

impossible to change the operand order without changing the instructions meaning (e.g., division,

subtraction, etc.), multiple versions of these instructions are added to the instruction set so that

the compiler can pick which register to save. For example, a divide instruction could be developed

which overrides the hardware default of always saving the �rst source operand register. Another

option is for a divide instruction that puts the divisor �rst to be complimented with one that puts

the divisor second.

If a non-speculated instruction has one of its source operand registers E bits set, that instruction

acts as a sentinel, and the processor begins execution of the appropriate recovery block. This

instruction may be an implicit check or an explicit check. The explicit check is an additional

instruction whose sole purpose is to check the E bit of all its source registers. It is used for cases

where no implicit check is available. Upon returning from the recovery block, the instruction is

executed. If the instruction excepts, the exception is signaled immediately. In all these cases, the

E bit of the destination operand is also cleared.
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3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS 3.2 Compiler Support

When exception processing is initiated, the hardware determines the location of the appropriate

recovery block with the use of a compiler generated lookup table. The address of the �rst instruction

in the basic block is used as the index into this table which contains the address of the appropriate

recovery block. This is similar to the method that was utilized in Smith's instruction boosting

model. [11] The hardware also records the current PC on the stack, so that upon completion of the

recovery block, execution can continue where it left o�.

Execution in the recovery block is performed in a slightly di�erent manner than program code.

Most every instruction in the recovery block is self-antidependent. The reason for this will become

clear in Section 3.2. Since executing self-antidependent instructions extra times is destructive, the

hardware must execute only the relevant instructions in the recovery block. This is done by only

executing instructions whose destination has the E bit set. Since a register can only be a destination

once in any particular recovery block, the E bit may be reset immediately after the instruction is

executed. Upon completion all exceptions related to a home block are recovered by a single pass

through the recovery block.

As mentioned previously, the exception bit must be maintained in the same manner as the

register contents. For this reason, modi�cations must be made to how the processor performs

context switches so that E bits are saved and restored. This also means that special spill code

loads and stores must be created for the same purpose. Another reason a special spill code store

must be created is to ensure that spill code does not act as a sentinel.

3.2 Compiler Support

The compiler is responsible for ensuring that a sentinel is present for every speculated PEI in its

home block, generating the recovery blocks, and removing self-antidependencies for registers which

need to have values maintained to the recovery block.

An important concept to understand is a PEI's 
ow dependence chain. A PEI's 
ow dependence

chain is the chain of instructions which are 
ow dependent on the PEI, or are 
ow dependent on an

instruction that is part of the PEI's 
ow dependence chain. For example, a PEI's 
ow dependence

chain could consist of N instructions and only one of them is 
ow dependent on the PEI. The
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3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS 3.2 Compiler Support

�rst instruction is 
ow dependent on the PEI, the second instruction is 
ow dependent on the �rst

instruction, the third instruction is 
ow dependent on the second instruction, and so forth. The


ow dependence chain only contains speculated instructions. The 
ow dependence chain stops at

a sentinel.

The 
ow dependence chain determines if an explicit check is needed or not. An instruction can

act as an implicit check for a PEI if it is 
ow dependent on an instruction located in the PEI's 
ow

dependence chain, belongs to the same home block as the PEI, and is not speculated. If there is

no instruction in a PEI's home block that meets this criteria, an explicit check must get added.

The instructions put into the recovery block consist of all the PEI's from a home block, and all

the speculated instructions found in the PEI's 
ow dependent chains. At the end of the recovery

block, a return operation is inserted so the processor knows that exception recovery is complete.

This return instruction lets the program execution restart at the sentinel instruction that initiated

the recovery.

Speculative instructions that were originally located in the home block where the recovery block

is being built are non-speculative in the recovery block. If the recovery block is being executed, pro-

gram control has already ensured that these instructions should execute. Speculative instructions

from other home blocks should remain speculative in the recovery block because it is not known

yet whether program control will allow these instructions to execute.

There is only one recovery block per home block. This allows the hashing scheme (the lookup

table discussed in the previous section) to work easier, and limits the size of some recovery blocks.

Several PEI's may be from the same home block, and they may share common instructions in their


ow dependence chain. These common instructions appear only once in a common recovery block,

but would appear multiple times if each check had its own recovery block.

Sentinels are not required to be located next to one another. Therefore, it is possible that an

instruction speculated from a di�erent home block could be located between sentinels, and still be

part of a PEI's 
ow dependence chain. This may cause the speculated instruction to be executed

more than once, but this does not hurt anything as long as the instruction is not self-antidependent.
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3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS 3.3 Code Example

If there is a self-antidependence, it needs to be broken up.

Source operands of instructions present in the recovery blocks are altered to re
ect the fact that

the hardware automatically stores the �rst source register operand's value into the destination reg-

ister when a speculated instruction excepts. The only time the �rst source operand is not altered for

the recovery block is when all the source operands for an instruction are also destination operands

for other instructions in the recovery block. Note that this creates many self-antidependent instruc-

tion. Therefore, the recovery block must only execute once to recover for all instructions originally

in a home block.

Self-antidependencies are an issue if a source register's value must be maintained from a specu-

lated instruction to its recovery block. This is solved with register renaming. A new register is used

in place of the destination register of a self-antidependent instruction. Then, all references to the

old register from that point until an appropriate sentinel are renamed to the new register. After the

sentinel, the value in the new register is moved back to the old register if necessary. The number

of times that this needs to be done can be minimized by having the compiler choose the source

registers that have self-antidependent instructions to be saved automatically in the destination

register.

Self-antidependencies are allowed for destination registers that are already going to be part of a

recovery block. This is allowed as long as the source register to be automatically saved is the same

as the destination register and the speculated self-antidependent instruction always excepts when

entry into the recovery block is going to occur (a self-antidependent instruction cannot be allowed

to execute more than once). If these requirements cannot be met, the self-antidependence solution

described in the previous paragraph must be used.

3.3 Code Example

Table 2 shows how an example code segment would get scheduled using SSRB. The home block

seen in the original code sequence is de�ned by the two branches (instructions 1 and 7). The

scheduled code has speculated four instructions (instructions 2, 3, 4, and 5). Instruction 6 cannot

be speculated since it is a store instruction. Two PEI's have been speculated from the original

August, Deitrich, Mahlke - Sentinel Scheduling with Recovery Blocks 12



3 SENTINEL SCHEDULING WITH RECOVERY BLOCKS 3.3 Code Example

1 beq r5; 1; 50 2 hSi r10 mem(r11) 20 r10 mem(r10)

2 r10 mem(r11) 3 hSi r3 r2=r1 30 r3 r3=r1

3 r3 r2=r1 4 hSi r6 r3 + r4 40 r6 r6 + r3

4 r6 r3 + r4 5 hSi r9 r10 + r6 50 r9 r10 + r6

5 r9 r10 + r6 1 beq r5; 1; 50 60 return

6 mem(r7) r6 6 mem(r7) r6

7 bne r10; 0; 100 8 check r10

7 bne r6; 0; 100

A. Original Code Sequence B. Scheduled Code Sequence C. Recovery Block

Table 2: Example of code scheduled for sentinel scheduling with recovery blocks.

home block (instructions 2 and 3). Instruction 5 is part of instruction 2's 
ow dependence chain;

instructions 4 and 5 are part of instruction 3's 
ow dependence chain.

Instruction 6 acts as a sentinel for instruction 3 since it has not been speculated, belongs to

the same original home block as instruction 3, and is 
ow dependent on instruction 4 which is a

member of instruction 3's 
ow dependence chain. Since instruction 4 is not a member of instruction

2's 
ow dependence chain, instruction 6 cannot act as a sentinel for instruction 2.

This means that instruction 2 needs to have an explicit check for it in the home block. The

check (instruction 8) determines if instruction 2 excepted. The explicit check could have had a

value other than r10. It could have been r9. If r9 had been chosen instead, the check could have

acted as a sentinel of instruction 2 and 3. An implicit check does not add any extra code, and if

it was scheduled before the explicit check of r9, the implicit check would still force entry into the

recovery block.

The recovery block for this home block is also shown. The key thing to note is the use of

the destination register in saving a source register. This means that the only registers that need

to have their live ranges extended into the home block are r10, r3, r1, and r6. The scheduler

and register allocator would be free to reuse r11, r2, and r4 as long as their live-ranges have

expired. In the original sentinel scheduling model, these live-ranges would have been extended

to the sentinel. Also note that instruction 50 of the recovery block does not use the destination

register as a source register. This happens because both of its original source registers are de�ned

by previous instructions in the recovery block.
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4 EVALUATION OF COMPLETE RECOVERY METHODS

Category Boosting WBS Sentinel Scheduling SSRB

Addition To Instructions k-bit �eld k-bit �eld 1-bit �eld 1-bit �eld

Hardware Per Register Counters and Registers None 1-bit exception 
ag 1-bit exception 
ag

Additional Hardware Jump Table Stack and Counter Instructions Jump Table and Instr.

Spill Speculated Registers N/A No No Yes

Maximum Speculation very limited limited unlimited unlimited

Multiple Execution Paths no no extra hardware yes

Code Size Recovery Blocks minimal minimal Recovery Blocks

Performance high high high high

Table 3: Relative merits of safe speculative execution models.

4 Evaluation of Complete Recovery Methods

The relative merits of the speculative models, described earlier in this paper, are shown in Ta-

ble 3. The four models, Instruction Boosting, Write Back Suppression (WBS), Sentinel Scheduling,

and SSRB, are compared.

SSRB and Sentinel Scheduling require the fewest number of additional bits in each instruction.

They only require one additional bit to every instruction as opposed to a �eld. SSRB does require

hardware for a jump table and extra instructions, but overall it requires much less hardware than

instruction boosting. Sentinel Scheduling and write-back suppress also require special hardware, but

the hardware they require is also much less than the hardware involved with instruction boosting.

SSRB also has more scheduling freedom than the other models because it allows any speculated

register to become spilled. Instruction boosting, by de�nition, does not have to spill any speculated

registers, but it does so at a large hardware cost and cannot speculate as much in the presence of

high register pressure. SSRB also has no limit on the number of branches that an instruction can

be speculated above, and can support multiple execution paths.

SSRB, like Instruction Boosting, has more code growth than the other two models because

compiler generated recovery blocks are used. Since the exceptions that are being delayed should

occur infrequently, the recovery blocks should rarely need to be used. Where a PEI is intentionally

allowed to except, the PEI should not be allowed to speculate. In these cases, performance is

degraded too much to allow an instruction that is known to except to be speculated using SSRB.
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5 EXPERIMENTAL EVALUATION

The performance of these models is comparable. SSRB may get a slight edge over the other

models because it provides more scheduling freedom. In any case, the important thing about

SSRB is that it provides good performance at a smaller cost than previously presented speculative

models.

5 Experimental Evaluation

In section 5.1, the details of our implementation are discussed Then the speedup obtained by

sentinel scheduling with recovery blocks is analyzed in section 5.2. Finally, the amount of code

growth is presented and discussed in section 5.3.

5.1 Implementation

The best way to evaluate the e�ectiveness of sentinel scheduling with recovery blocks is to use

a compiler to generate code for a machine with such support. The compiler generated code can

be used to evaluate code growth associated with the recovery blocks, explicit checks, and other

necessary code changes. The generated code can also be used to analyze the performance of a

machine with SSRB support.

For this project, support for sentinel scheduling with recovery blocks was added to the instruc-

tion scheduler of the IMPACT-I compiler. The IMPACT-I compiler is a prototype optimizing

compiler designed to generate e�cient code for VLIW and superscalar processors. [3] While SSRB

can support multiple traces, this implementation limited speculation to within a single superblock.

Using the IMPACT-I compiler with SSRB support, we generated code for 14 non-numeric

benchmarks. These benchmarks are shown in Table 4. The benchmarks consist of 5 programs from

the SPECint92 suite and 9 other commonly used non-numeric programs.

The instruction set used is based upon the HP PA-RISC instruction set with extensions to

support SSRB. [15] Instruction latencies of the HP PA-RISC 7100 are assumed. Table 5 shows
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5 EXPERIMENTAL EVALUATION 5.2 Speedup

Benchmark Benchmark Description

cccp GNU C preprocessor
cmp compare �les
compress compress �les
eqn format math formulas for tro�
eqntott boolean equation minimization
espresso truth table minimization
grep string search
lex lexical analyzer generator
li lisp interpreter
qsort quick sort
tbl format tables for tro�
sc spreadsheet
wc word count
yacc parser generator

Table 4: Benchmarks

these assumed instruction latencies. The basic processor has 64 integer registers, 64 single precision


oating point registers which can accommodate 32 double precision values, and an 8 entry store

bu�er. An issue rate of 8 is also assumed with at most 1 branch per cycle. Program execution time

is derived using pro�le based calculation of the worst case cycle count given a 100% cache hit rate

and static branch prediction. Branch mispredictions incur a 2 cycle penalty.

Function Latency Function Latency

Int ALU 1 FP ALU 2
memory load 2 FP multiply 2
memory store 1 FP divide(SGL) 8
branch 1 / 1 slot FP divide(DBL) 15

Table 5: Instruction latencies.

5.2 Speedup

Given that the general speculation model yields the best possible result for any given speculative

scheduler, a good measure of any speculation model's e�ectiveness is the percentage of general's

performance it can attain. Justi�cation for using an exception recovery model at all is how much

performance the model gives over restricted speculation alone. Sentinel scheduling with recovery

block's performance compared to no speculation, restricted speculation, and general speculation is

presented in Figure 2. Performance is relative to the no speculation case which is normalized to

1. It should be mentioned that due to IMPACT-I's other optimizations, speedup with respect to

unoptimized code is much greater.
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5 EXPERIMENTAL EVALUATION 5.2 Speedup

No Speculation

Restricted

Sentinel Scheduling with Recovery Blocks

General

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

0

0.5

1

1.5

2

2.5

3

Figure 2: Relative performance of sentinel scheduling with recovery blocks.

It is clear that general speculation far outperforms restricted speculation. In fact, restricted

only yields signi�cant speedup in 026.compress and 072.sc. This is mostly due to the fact that

no memory operations are speculated with the restricted model. Loads usually begin dependence

chains, therefore, not being able to speculate them does not allow the overlap of more dependence

chains. Dependence height becomes the limiting factor, reducing overall ILP.

General speculation would be ideal if it could detect exceptions. Sentinel scheduling with

recovery blocks can detect and recover such exceptions, and it perform nearly as well as general. It

performs 90.92% to 100.0% as well as general. On average, it yields a 97.14% speedup compared to

general. At these levels, performance gain over restricted speculation is signi�cant. Any di�erence

between SSRB and general could due to additional explicit checks or spill code created by the

added register pressure associated with speculation. The use of the destination register to hold a

source register was signi�cant in reducing the amount of spill code. It should also be noted that our

implementation of SSRB used an oversimpli�ed algorithm to choose which source register should

be saved. It is our opinion that further gains could be made by improving this algorithm.
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5 EXPERIMENTAL EVALUATION 5.3 Code Growth

While Figure 2 does show good performance relative to general, it does not show the cumula-

tive multiplicative e�ect of an aggressive optimizer combined with speculation. For example, the

IMPACT compiler boosts the speed of cmp by roughly 5 times on the same machine without any

speculation using only other optimizations. With SSRB, cmp gives 80% speedup over no specu-

lation. The combined e�ect is that cmp will run roughly 900% of its original speed. Clearly, the

positive e�ect of speculation and of SSRB is understated by the �gure.

Code growth due to explicit checks can have a performance e�ect, however it more likely has a

signi�cant e�ect on the instruction cache. To demonstrate that our assumption of perfect instruc-

tion cache is valid, section 5.3 discusses the amount and e�ect of SSRB's code growth.

5.3 Code Growth

Sentinel scheduling with recovery blocks increases codes size in several ways. The largest and

most obvious source of code growth is due to the recovery blocks themselves. SSRB also adds

an explicit check when an implicit check cannot be found in the appropriate home block. In

our model, each unprotected register generates one explicit check instruction. However, a real

implementation of SSRB would allow several register operands for an explicit check, cutting down

on the number of check instructions generated. In cases of speculated self-antidependencies, a

renaming instruction must sometimes be created. Again, our implementation is naive. A re�ned

version of the compiler could reduce code expansion due to added renaming instructions because

not all of the ones generated are necessary.

In addition to the instructions added by our SSRB implementation, the process of speculation

can increase register pressure. While register pressure is alleviated by the use of the destination

register to allow reuse of one source register, an e�ect is still present. The register allocator copes

with the added register pressure by creating the appropriate spill code. This spill code is another

source of code growth.

Despite the naive aspects of certain parts of our implementation, the e�ect of any extra code

growth is small. This is due to the fact that most of the code growth is contained in the recovery

blocks themselves. The code in the recovery blocks is very rarely executed and therefore would
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6 CONCLUSION

Assembly Check

Benchmark Instructions Instructions

008.espresso 89191 1454

022.li 22653 234

023.eqntott 11555 149

026.compress 4525 105

072.sc 34722 666

cccp 13783 121

cmp 1025 31

eqn 11779 68

grep 1998 47

lex 24275 279

qsort 758 10

tbl 23368 580

wc 578 2

yacc 31070 697

Table 6: Maximum number of explicit sentinels required with 64 integer and 64 
oating-point
registers.

time.

6 Conclusion

The intent of this paper was to present and evaluate a better alternative to the currently available

methods of safe speculation. In order for a method to be seriously considered for commercial

implementation in a wide issue superscalar or VLIW processor, it must yield a large performance

bene�t and it must also be low cost. As was we have shown, Sentinel scheduling with recovery blocks

clearly meets these requirements by having the lowest hardware cost of any method presented, while

achieving good performance results.

Further work in sentinel scheduling with recovery block should be performed to tune its abil-

ities even more. As was discussed earlier, more aggressive SSRB algorithms could be used in the

scheduler to reduce code size and increase execution time.
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Another area of work which could be explored deals with reducing any register pressure created.

For any speculation model, a large portion of the speculated instructions are loads. One way to

save register pressure with speculated loads could be to put the calculated memory address in the

destination operand instead of only the �rst source operand. This works because loads except while

attempting to load the already calculated addresses. Depending on the architecture, this could allow

two or more registers to be reused, reducing register pressure and the spill code associated with it.

While we did not implement this or study its e�ects, we feel that this should be examined in the

future.

Finally, since sentinel scheduling with recovery blocks does not depend on a single speculation

path, it would be worthwhile to evaluate the performance advantage this would yield when used

with compilation methods other than superblock formation.
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