
MCUDA: An Efficient Implementation of CUDA

Kernels on Multi-cores

John A. Stratton, Sam S. Stone, and Wen-mei W. Hwu

{stratton, ssstone2, hwu}@crhc.uiuc.edu

IMPACT Technical Report

IMPACT-08-01

University of Illinois at Urbana-Champaign

Center for Reliable and High-Performance Computing

March 12, 2008

Revision: April 3, 2008

Abstract

The CUDA programming model, which is based on an extended ANSI C language and a

runtime environment, allows the programmer to specify explicitly data parallel computation.

NVIDIA developed CUDA to open the architecture of their graphics accelerators to more

general applications, but did not provide an efficient mapping to execute the programming

model on any other architecture.

This document describes Multicore-CUDA (MCUDA), a system that efficiently maps the

CUDA programming model to a multicore CPU architecture. The major contribution of this

work is the source-to-source translation process that converts CUDA code into standard C

that interfaces to a runtime library for parallel execution. We apply the MCUDA frame-

work to some CUDA applications previously shown to have high performance on a GPU, and

demonstrate high efficiency executing these applications on a multicore CPU architecture. The

thread-level parallelism, data locality and computational regularity of the code as expressed in

the CUDA model achieve much of the benefit of hand-tuning an application for the CPU ar-

chitecture. With the MCUDA framework, it is now possible to write data-parallel code in a

single programming model for efficient execution on CPU or GPU architectures.

1 Introduction

In February of 2007, NVIDIA released the CUDA programming model for use with their GPUs to

make them available for general purpose application programming [1]. However, the adoption of

the CUDA programming model has been limited to those programmers willing to write specialized

code that only executes on certain GPU devices. This is undesirable, as programmers who have

invested the effort to write a general-purpose application for a GPU should not have to make an

entirely separate programming effort to effectively parallelize the application across multiple CPU

cores.

On the surface, most features included in the CUDA programming model seem relevant only

to a specific GPU architecture. The programmer specifies data-parallel functions called kernels,

expressed as parallel threads (hereafter referred to as logical threads) that execute cooperatively in

thread blocks. At a kernel invocation, the programmer uses language extensions to specify runtime

values for the number of thread blocks and number of logical threads per block. In the GPU ar-

1

chitecture, these independent blocks are dynamically assigned to parallel processing units, where

the logical threads are instantiated by hardware threading mechanisms and executed. The CUDA

model also includes explicitly differentiated memory spaces to take advantage of specialized hard-

ware memory resources. The constant memory space uses a small cache of a few kilobytes opti-

mized for high temporal locality and accesses by large numbers of threads across multiple blocks.

The shared memory space maps to the scratchpad memory of the GPU, and is local to each thread

block. The texture memory space uses the GPUs texture caching and filtering capabilities, and

is best utilized with data access patterns exhibiting 2-D locality. More detailed information about

GPU architecture and how features of the CUDA model affect application performance is presented

in [2].

One might argue that the use of GPU specific features limits the execution of CUDA kernels

to GPUs. Since the CPUs do not support these features, a CUDA kernel would not be executed

efficiently on a CPU. This conclusion seems to be supported by the slow execution of CUDA

kernels on CPUs using the emulation mode of the CUDA toolkit [1]. However, through the work

reported in this paper, we show that CUDA kernels can be automatically translated into efficient

code for multicore CPU execution. The use of the GPU-specific features in the CUDA model is

actually beneficial to performance on the CPU, tbecause these features encourage the programmer

to use more disciplined control flow and expose data locality.

In the CUDA model, logical threads within a block can have independent control flow through

the program. However, for good performance on the GPU hardware, each thread should follow the

same control flow, or execution trace, through the kernel code. The NVIDIA G80 GPU architec-

ture executes logical threads in SIMD bundles called warps, but allows for divergence of thread

execution using a stack-based reconvergence algorithm with masked execution [3]. Therefore, log-

ical threads with highly irregular control flow execute with greatly reduced efficiency compared to

a group of logical threads with identical control flow. Therefore, CUDA programmers are strongly

encouraged to adopt algorithms that force logical threads within a block to have very similar, if

not exactly equivalent, execution traces. In addition, the CUDA model encourages data locality

and reuse for good performance on the GPU. Accesses to the global memory space incur uniformly

high latency, encouraging the programmer to use regular, localized accesses through the scratchpad

shared memory or the constant and texture caches.

2

A closer viewing of the CUDA programming model suggests that there could also be an

efficient mapping of the execution specified onto a commodity CPU multicore architecture. At the

first granularity of parallelism, blocks can execute completely independently. Thus, if all logical

threads within a block occupy the same CPU core, there is no need for inter-core synchronization

during the execution of blocks. Thread blocks often have very regular control flow patterns among

constituent logical threads, making it likely that the SIMD instructions common in current x86

processors [4] can be effectively used in many cases. In addition, thread blocks often have the

most frequently referenced data specifically stored in a set of thread-local or block-shared memory

locations, which are sized such that they approximately fit within a core’s L1 data cache.

While the features of the model seem promising, the mapping of the computation is not

straightforward. The conceptually easiest translation is to spawn an OS thread for every GPU

thread specified in the programming model. However, allowing logical threads within a block to

execute on any available CPU core mitigates the locality benefits previously noted, and incurs a

large amount of scheduling overhead. Therefore, we propose a method of translating the CUDA

program into an execution model that maintains the locality expressed in the programming model

with existing operating system and hardware features.

There are several challenging goals in effectively translating these applications. First, each

thread block should be scheduled to a single core for locality. Second, the SIMD-like nature of

the logical threads in many applications should be clearly exposed to the compiler. However, this

goal is in conflict with supporting arbitrary control flow among logical threads. Finally, in a typical

load-store architecture, private storage space for every thread requires extra instructions to move

data in and out of the register file. Reducing this overhead requires identifying storage that can be

safely reused for each thread.

The remainder of this document describes and analyzes the MCUDA system, which addresses

these challenges and translates CUDA application into efficient parallel CPU programs. Section 2

describes the procedure for translating a CUDA kernel into an efficient block-level function. Sec-

tion 3 describes the runtime framework that manages the execution of kernels. In Section 4 we

discuss the performance of several kernels translated by the MCUDA framework. We discuss

related work in Section 5, and make some concluding observations in Section 6.

3

���������
	��

�	����������������
��������
��
���������
�
���

 �!	���	���

��
��
���#"%$'&
(

�����*),+.-�/�����0
1���)324)�56-�/����
0
7
���324)
8 �
9���	
����1��
)32:)<;

�����.�=+.-�/�����0
1���)32>�?56-�/����
0
7
���32>�
8 �
9���	
����1��
)32@� ;

�����.�
����1���).+?
�������7����32:)A56-�/����
0
7����32:)A5=�
8)<;

B /������?	���	���

�=+DC 2EC�;
�����F�����������
+ C�;
G�9��
/
	3�:���
��������H
�
�������������I& (

JK
	���	
��

��
��
���#"����
��1��
)<$L+�	���	���

� ;

K

���������
	���
�	
�������
�������������M�N
��
�����������
����
 �O	���	
��

�

��
���P"%$
�
Q R�S�T�U�V�W�X�YZQ R�S�T�U�[�\
]^Y`_�a�W�\�V�W�X &

(
\�W�X�b,c�d�a�e�f�\�[�\
]^g
h�h!i d�a�e�f�\.j�S
Slk
m�S�a3n:c�d�a�e�f�\�[�\
]3oqp.r�stg

c�d�a�e�f�\�[�\�]3o�p,u*Q R�S�T�U�V�W�X�oqp�g
c�d�a�e�f�\�[�\�]3o�p�v
v�w

m�S�a3n4c�d�a�e�f�\�[�\�]3o4]=r�stg
c�d�a�e�f�\�[�\
]^o4]=u6QxR�S�T�U�V�W�X�o4]3g
c�d�a�e�f�\�[�\
]^o4]
v�v�w

y
���
�=).+,-�/����
0�1��
)^24)�5!-�/�����0
7
���^24)

8 ��9��
	�����1��
)324)z;
���
�,�*+,-�/����
0�1��
)^2>�?5!-�/�����0
7
���^2>�

8 ��9��
	�����1��
)32>�x;
���
�,�
�
��1��
),+?
��
����7
���324)�5�-�/����
0
7����32:)A5=�

8)z;

B /������F	���	
��

�=+{Cx2EC�;
���
�?���
��������+ C�;
G�9���/
	3�4���
�������?H.���������
�����z& (

JK
	���	���

�

��
���P"��
����1���)<$L+A	���	
��

� ;

|
h�h e�}
\ i d�a�e�f�\,j
S
S�kPg

K

Figure 1: Introducing a thread loop to serialize logical threads in Coulombic Potential.

2 Kernel Translation

Automatic translation of the thread blocks is composed of a few key code transformations: it-

erative wrapping, synchronization enforcement, and data buffering. For purposes of clarity, we

consider only the case of a single kernel function with no function calls to other procedures, possi-

bly through exhaustive inlining. It is possible to extend the framework to handle function calls with

an interprocedural analysis [5], but this is left for future work. All transformations are performed

on the program’s abstract syntax tree (AST).

2.1 Transforming a thread block into a serial function

The first step in the transformation changes the nature of the kernel function from a per-thread code

specification to a per-block code specification. This means that the implicit threadIdx variable

now needs to be explicitly included, with control flow introduced to perform a logical thread’s

computation for each value of threadIdx within a single OS thread. An iterative structure around

the entire code body, as shown in Figure 1, is a natural expression of the required additional control

flow. For the remainder of the paper, we will consider this introduced iterative structure a thread

4

loop. Each logical thread now corresponds to an iteration of this thread loop. Local variables are

reused on each iteration, since only a single logical thread is active at any time. Shared variables

still exist and persist across loop iterations, visible to all logical threads. Other implicit variables,

such as blockIdx, are added to the parameter list of the function. Values for these variables are

supplied by the runtime system when the function is called. If the kernel function contains no

synchronization primitives, the translation of the control flow is complete. However, additional

transformations are required to enforce programmer-specified synchronization points.

2.2 Enforcing synchronization with deep fission

For clarity in future discussion, we define a synchronization statement to be a statement or control

structure in the program that all logical threads must enter and leave synchronously. This means

that no logical thread can begin executing a synchronization statement before all other logical

threads reach that synchronization statement, and all logical threads must complete the synchro-

nization statement before any logical thread can continue past it. A thread loop is an instance of a

synchronous statement, for example. A programmer-specified synchronization point is an example

of a synchronization statement that contains no computation.

Because each logical thread is now a loop iteration, a loop fission transformation applied to

the thread loop emulates the effects of a barrier synchronization across the logical threads. Loop

fission applied to the thread loop at a certain point in the code forces each logical thread, in turn,

to execute code up to that point, and then wait for all other logical threads to reach that point. This

is exactly the behavior we expect from a barrier synchronization applied to the logical threads.

Therefore, for synchronization points directly within the scope of the thread loop, we can enforce

the synchronization by applying loop fission around that statement.

Although a loop fission operation applied to the thread loop enforces a barrier synchronization

at that point, this operation can only be applied at the scope of the thread loop. Barrier synchroniza-

tion points within control structures cannot be enforced with loop fission, because a thread loop

that begins outside that control structure cannot end withing the control structure without violating

proper nesting. For example, in Figure 2(a), we cannot allow a thread loop to begin at the top of

the function and end within the for loop.

5

��� ��������	�� �
��� ��
����	��
�

���������������
�
� ��!�"�#
$&%('�)�)+*-,

�
. ���-�/	102	
3���	��
�54

	76�	
8�9��54
	
:�02	
3���;�<=� �

�

�
�?>�@ 9�A��CB���;�	
� > �D��4

�
E
�

F
E

��� �
�����G	
� ���H� �

���G	�����
+�����5�(�I�J��
�
��B���;�	�� � ������< �

�#LKH#�M
��#�!��ON
P ��Q�'C"SRT#VUW#�X�Y�$5Z[,

�

���=>+@ 9�A���B���;�	�� > �\�
4
�
#1]�KH#GM��C"+*^N

E
�

E
E

�
� �����C��	�� ���H� ��
���?	����

����G���_�I�J��
�
��B��
;�	�� � ���
��< �

�
	101	�3��
	����54
`�B�
���;S�/	76�	
8�9���� �

���
!�"�#
$&%a'�)
)+*S,
�F

���
!�"�#
$&%a'�)
)+*S,
�
	2:
02	�3
��;�<=4F

E
�

E
E

��� ��������	�� �
��� ��
����	��
�

���������������
�
� ��!�"�#
$&%('�)�)+*-,

�
	201	
3���	��
�54F

`�B�
���;-�/	76�	
8�9���� �
��B��
;�	
� � ���
��< ��E
��B��
;�	
� � ���
��< ��

	1:
02	�3
��;�<=4E
E
� ��!�"�#
$&%('�)�)+*-,

�F
E

bdcOegf h=i j\i cOk lIm?n=oqpri jts
uvoOwxi cOk i yzo=n|{?m=}=i ~�cak��vs=w�o=c=n=�

bd�=e_��oO��m��zo�u�i n=o
���/�/o=~CjT�I�Dw/mO����oz~5k cOw/c�jDi mOh bx~5e��ScOw j\i j\i mOh�uv~�mO�Go bDnOe�{�m5mO���(i ����i mah

cOw/mO�=h�nruv~�mO�?o

Figure 2: Applying deep fission in Matrix Multiplication to enforce synchronization.

To enforce these synchronization points, we take advantage of the CUDA programming

model’s requirement that control flow affecting synchronization points must be thread-independent

within a block [6]. Since all threads in the thread block must synchronize within the control struc-

ture, all threads can be forced to enter and leave the control structure itself synchronously. This

means that any control structure containing a synchronization point can be defined as a synchro-

nization statement. In a transformation we call deep fission, we enforce synchronization statements

within control structures by creating new thread loops within the scope containing those statements,

and treating the scope itself as another synchronization statement, as shown in Figure 2(b-d). The

full algorithm for enforcing synchronization statements is as follows.

1. For each synchronization statement, determine whether the immediate scope containing the

synchronization statement is an instance of a thread loop.

2. If the condition is false, apply deep fission.

(a) The scope containing the synchronization statement will itself become a new synchro-

nization statement. If any expression within the control structure’s declaration has

side-effects in its evaluation, remove it. For instance, for loops such as the one in

6

���������
	 � ��

����� �����
�������������
�
���! #"�$
%

��&�'
����(
 *),+

�

��-�
�.�/�10
�2

3547698;:�< =>< 4*?�@BA!CEDGFH< =>I
JKDEL>< 4*? < M!D�CON/AEP*< Q�47?
RKIELSD!4EC!T

3>UE6VJXWE:�Q/I!L5AE:!< M�DY4/=
ZKL5A1P7L54*[\[]D7L�ZKL^A*[_.=

3>Q�6VJXWE:�Q�I1L5A7:!< M!D\4/=
@`A7:
=aLSA7?�bc? A�deZXAE<f:�=5T

�-�g�.�
�.	 � ��
.
h�X�� �.�
�.���������/�/�
�2i�i �.�1 -"�$.%

��&�'�����(
 �)>+

�
�-�g�.�
�.	 � ��
.
h�X���
�������E0
�2

�h�/�
�.�
	 � �

�
-�c��2�
�.�
�������/�.�1�
�h�/�
�.�
	 � �

�
-�c��2i
i �
�E #"�$
%

�-&/'�����(
 *),+

�
�h�/�
�.�
	 � �

�
-�c��2���������10
�h�/�
�.�
	 � �

�
-�c��2

Figure 3: Addressing unstructured control flow. The goto statement and its target label are treated
as additional synchronization statements for correctness.

Figure 2 must be translated into while loops with their initializing and update expres-

sions included before and at the end of the loop body, respectively (see Figure 2(b)).

Any conditions that have side effects must have their conditional evaluation expres-

sion moved out of the declaration and assigned to a temporary variable. The condition

evaluation of the loop is then replaced by the temporary variable.

(b) Partition the scope containing the synchronization statement into two thread loops (Fig-

ure 2(c)).

(c) For an if-else construct, after partitioning the scope containing the synchronization,

the scope defined by the other side of the condition must be wrapped in a thread loop

construct as well to define the entire if-else construct as a synchronization statement.

(d) Define the scope of the current synchronization statement as a new synchronization

statement. In the example of Figure 2(c), the while loop itself is marked as a new

synchronization statement to force logical threads to enter and leave the loop syn-

chronously, as expected by the enclosed thread loops. Return to step 1.

3. If the condition is true, apply a simple loop fission operation around the synchronization

statement (see Figure 2(d)). If there are no more synchronization statements to be processed,

the algorithm terminates. Otherwise, return to step 1 for the next synchronization statement.

After this algorithm has been applied with the list of programmer-specified synchronization

7

points as input, the code may still have some control flow for which the algorithm has not properly

accounted. For instance, control flow statements such as continue, break, or goto may not be

handled correctly if the target of the control flow is within a different thread loop. Figure 3(b)

shows a case where irregular control flow would result in incorrect execution. In some blocks, all

logical threads may avoid the goto and synchronize correctly. In other blocks, all logical threads

may take the goto, avoiding synchronization. However, in the second case, control flow would

leave the first thread loop before all logical threads had finished the first thread loop, inconsistent

with the program’s specification. Therefore, we define these early-exit and irregular control flow

statements as synchronization statements as well. For such statements with one or more labels

as their target, the target labels are also included in the synchronization statement list. The same

algorithm for enforcing synchronization statements is then applied with this new list. For the

example of Figure 3, this results in the code shown in Figure 3(c). This irregular control flow

identification and synchronization is applied iteratively until no additional violating control flow is

identified.

The key insight is that we are not supporting arbitrary control flow among logical threads

within a block, but leveraging the restrictions in the CUDA language to overspecify synchroniza-

tion. This “oversynchronizing” allows us to completely implement a “threaded” control flow using

only iterative constructs within the code itself. The explicit synchronization primitives may now

be removed from the code, as they are guaranteed to be bound by synchronization statements on

either side, and contain no other computation. Because only barrier synchronization primitives are

provided in the CUDA programming model, no further control-flow transformations to the kernel

function are needed to ensure proper ordering of logical threads. Figure 4(a) shows the matrix

multiplication kernel after this hierarchical synchronization procedure has been applied.

2.3 Replicating thread-local data

Once the control flow has been restructured, the final task remaining is to buffer the declared vari-

ables as needed. Shared variables are declared once for the entire block, so their declarations

simply need the shared keyword removed. However, each logical thread has a local store for

variables, independent of all other logical threads. Because these logical threads no longer exist

8

independently, software must emulate local storage for logical threads within the block. The sim-

plest implementation creates an instance of the local variable with a separate memory location for

each logical thread. This technique, which we call universal replication, fully emulates the local

store of each logical thread by creating an array of values for each local variable, as shown in Fig-

ure 4(b). Statements within thread loops access these arrays by thread index to emulate the logical

thread’s local store.

However, universal replication is often unnecessary and inefficient. Functions with no syn-

chronization can completely serialize the execution of logical threads, reusing the same memory

locations for local variables. Even in the presence of synchronization, some local variables may

have live ranges completely contained within a thread loop. In this case, logical threads can still

reuse the storage locations of those variables because a value of that variable is never referenced

outside the thread loop in which it is defined. For example, in the case of Figure 4(b), the local

variable k can be safely reused, because it is never referenced outside the third thread loop.

Therefore, to use less memory space, the MCUDA framework only creates arrays for local

variables that are referenced within more than one thread loop. This technique, called selective

replication, results in the code shown in Figure 4(c), which allows all logical threads to use the

same memory location for the local variable k. For future work, an even more selective approach

could be defined with the use of a comprehensive live-variable analysis [5] to determine which

variables never have a live value at the end of a thread loop.

References to a variable outside of the context of a thread loop can only exist in the definitions

of control flow structures. Control structures must affect synchronization points to be outside a

thread loop, and therefore must be uniform across the logical threads in the block. Since all logical

threads should have the same logical value for conditional evaluation, we simply reference element

zero as a representative, as exemplified by the while loop in Figure 4(b-c).

It is useful to note that although CUDA defines separate memory spaces for the GPU archi-

tecture, all data resides in the same shared memory system in the MCUDA framework, including

local variables. The primary purpose of the different memory spaces on the GPU is to specify

access to the different caching mechanisms and the scratchpad memory. A typical CPU system

provides a single, cached memory space, offering similar performance benefit to the CPU cores.

9

��� �������	��� ����
 ����
�	�����	�������������	�������	�������	�������	��� ���	�������	�"!	#$
��%��"&('*)��,+-'.)	��/('*)���&�0�1�2('*)���34'.)65
���������"7�8�9:+-'.)65
������������;(<>=�?�@�<>=�?�@A5
���������B!�;(<>=�?�@�<>=�?�@A5
��C	��D���
 � ������E $&�0�1�24'>F�G�2�)"H���I ��
���CJ�"��C���D���
�K�
��(L>M�NB��C���D���
�K�
��(L>��5
&('.F�G�2)"H���I���
���CJ�"!�O�P��	Q ��R K�S�T���������U�V�K�
���L.M�N"&�0�1�24'>F�G�2�)	5
+W'.F�G�2)"HB!�O�P���Q �	R K�S�T����	����U	V�K�
��(L>��5
+W'.F�G�2)"HX&('.F�G�2)"NY+-'>F�G�2�)A5
+W'.F�G�2)"HY+-'>F�G�2�)"N"&�0�1�24'>F�G�2�)A5
&�0�1�24'>F�G�2�)"H"&('.F�G�2)"N���I���
���CZ5
7�8�9:+-'>F�G�2�)"H�[A5\

I�C�����D]� &4'>^)�_B&�0�1�24'>^)�# $
��C	��D���
 � ������E $��;(<`��C���D���
�K�
��(L>M @Z<>��C	��D���
	K�
���L.��@�H��a< &4'>F�G�2�)�@A5

!�;(<`��C���D���
�K�
��(L>M @Z<>����C���D���
�K�
��(L>� @�HB!(< +W'.F�G�2)	@b5
&('.F�G�2)"N�HB!�O�P��	Q ��R K�S�TZ5+W'.F�G�2)"N�HB!�O�P��	Q ��R K�S�T	��!�I���
���CZ5\

��C	��D���
 � ������E $�����]�>V(<`�	��
�@�H�[A5cV(<`�	��
�@�_�!�O�P��	Q ��R K�S�TZ5cV�<>����
	@�N�N�#
7�8�9:+-'>F�G�2�)"N�H�� ;�<>��C	��D���
	K�
���L.M�@�< 34'>F�G�2�)�@"�

!�;(< 34'>F�G�2�)�@�<`��C���D���
�K�
��(L>� @b5\
\
��C	��D���
 � ������E $�4<`/('.F�G�2)	@�H"7�8�9:+-'>F�G�2�)A5\

\

��� �������	��� ����
 ����
�	�����	�������������	�������	�������	�������	��� ���	�������	�"!	#$
��%��B�(<*@����d<.@���U(<*@�����T�%�
(<*@���3�5
���������"�	;����d<.@A5
������������;(<>=�?�@�<>=�?�@A5
���������B!�;(<>=�?�@�<>=�?�@A5
��C	��D���
 � ������E $��T�%�
4<`�	��
�@�H���I ��
���CJ�"��C���D���
�K�
��(L>M�NB��C���D���
�K�
��(L>��5
�(<>����
	@�H���I���
���CJ�"!�O�P��	Q ��R K�S�T���������U�V�K�
���L.M�NB��T�%�
4<`�	��
�@b5
�4<>����
	@�HB!�O�P���Q �	R K�S�T����	����U	V�K�
��(L>��5
�4<>����
	@�He�(<>����
	@�N"�d<`�	��
�@b5
�4<>����
	@�H"�d<`�	��
�@�NB��T�%�
4<`�	��
�@b5
��T�%�
4<`�	��
�@�HB�(<>����
	@�N���I���
���CZ5
�	;����d<`�	��
�@�H�[A5\

I�C�����D]�`�4<>[@�_���T�%�
4<>[@�# $
��C	��D���
 � ������E $��;(<`��Cf�bDg�b
fKf
h�iLjMZ@ <>��C	��D���
	K�
���L.��@�H��a<`�4<`�	��
�@�@A5

!�;(<`��Cf�bDg�b
fKf
h�iLjMZ@ <>����C���D���
�K�
��(L>� @�HB!(<`�4<>����
	@�@b5
�(<>����
b@�NbHB!hObPg�AQ ��R K�S�TZ5�4<>����
b@�NbHB!hObPg�AQ ��R K�S�T	��!�I���
���CZ5\

��C	��D���
 � ������E $�����]� 3�H�[65k3B_�!�O�P��	Q ��R K�S�TZ5k3�N�N	#�	;����d<`�	��
�@�N�H�� ;�<>��C	��D���
	K�
���L.M�@�< 3 @"�
!	;�<`3�@�<`��C���D���
�K�
��(L>� @b5\

\
��C	��D���
 � ������E $�4<>U(<>����
	@�@�H"�	;����d<`�	��
�@b5\

\

��� �������	��� ����
 ����
�	�����	�������������	�����g�A���A���A�h�b�g�	��� ���	�������	�"!	#$
��%��B�	��� ��U	�c�bTg%b
b�"V 5
���������"�	;�����5
��� ;�C	����D�
 ��� �	�h�b�g���Z;l<m=g?A@ <.=�?	@b5
��� ;�C	����D�
 ��� �	�h�b�g�B!A;l<m=g?A@ <.=�?	@b5
F�n	o�p�&�2:qZr�s�shtiu
��T�%�
BH���I���
g�fCJ�"�hCA�gDb�g
	K�
���L.M�NB��C	��D���
	K�
���L.�Z5
�BH���I ��
���Cv�"!fOgPb�fQ �bR KgS�T����	����U	V�K�
��(L>M�NB��T�%�
65
��HB!�O�P��	Q ��R KbShT����6�h�bUfV�K�
���L.�Z5
��HX�BN"��5
��H"��NB��T�%g
l5
��T�%�
BHB�BNc�bIA�f
g�fC 5
�	;�����H�[65w

I�C�����D]�`�"_���Tg%b
b# $
F�n	o�p�&�2:qZr�s�sht(u
��;(<`��C���D���
fKf
h�iLjMZ@ <x�hCA�gD���
	K�
���L.��@�H��a<`��@b5
!�;(<`��C���D���
fKf
h�iLjMZ@ <x�hCA�gD���
	K�
���L.��@�HB!4< � @b5
�BN�HB!�O�P��fQ �bR KgSfT�5��N�HB!�O�P��fQ �bR KgSfTf�f!:IZ�h
���C�5w

F�n	o�p�&�2:qZr�s�sht(u
�����]�>V"Hy[5cV�_�!hObPg�	Q ��R K�S�TZ5cV�N�N	#
�	;�����N�H��A;i<z�fCf�bDg�b
fK�
��(L>M @Z<.V�@"�

!	;�<.V�@�<`��C���D���
�K�
��(L>� @b5w
\
F�n	o�p�&�2:qZr�s�shtiu
�4<>U	@�H"��;���� 5w

\

{�|~}k�������-�����~��� �-�����k���h����� {���}��B�~� �a���:�W|��W�"���~�`� �W|��g� �~�

{��-}k�Y�,� �����g� �a���"���~�`� �W|��h� ���

Figure 4: Data replication in Matrix Multiplication.

10

������� ���
	���
��������������	�	���
������

�����
�! #"���$&%
'
(
�*),+�-,.,/��,.#021*1,1!3,3*3�$�%*4

(

�*),+�-,.,/��,.#065,1,1�1*3*3738$�%!4

(9

:�;=< >*;!?*@�A=< < B ;�<

:�;=< >*;!?*@�A=< < B ;�<

C,D�/*., �E�+#F�G*G*02+#.,H*.�I�+#J!0,G,I!-,K '

L D#"�0�.8$NM�O,.*/,��.*0�+!I*G��!F#0,.7�*.#%
'
 ��,G���",I�+�P,.*��+��,.,H���+*J�0�G*I�-�$�%!4
/7Q*��+�J=0�G�I*-�$ F! ,/* 2�RK*S

J=0�G�I*-*�6E,H=S
P*/*"7E,T#"U��S
J=0�G�I*-,T�"��R%!4

9
9

Figure 5: MCUDA runtime framework using dynamic block assignment

3 Work Distribution and Runtime Framework

To this point, the MCUDA framework has defined functions that, when invoked with a specific

block index parameter, execute the full computation specified for that CUDA thread block. This

section discusses how these thread blocks are executed in the current MCUDA runtime system to

take advantage of multiple CPU cores.

At this point in the translation process the kernels are now defined as block-level functions,

and all that remains is, on kernel invocation, to iterate through the block indices specified and call

the transformed function once for every specified block index. For a CPU that gains no benefits

from multithreading, this is an efficient way of executing the kernel computation. However, CPU

architectures that do gain performance benefits from multithreading will likely not achieve full

efficiency with this method.

Since these blocks can execute independently according to the programming model, it is

trivial to have multiple OS threads partition the set of block indices among themselves, and execute

blocks concurrently on multithreaded CPU architectures. Many frameworks exist for such work

distribution, such as OpenMP [7] or threading building blocks [8]. Our specific implementation

uses POSIX threads as an example of how thread blocks can be efficiently scheduled. Figure 5

illustrates the runtime framework described in the remainder of this section.

In the host code, the kernel launch statement is translated into a function call to the runtime

11

kernel launch routine. The function call specifies a reference to the kernel function to be invoked,

the kernel configuration parameters, and the parameters to the kernel function itself. In the run-

time library kernel launch routine, the host thread stores the kernel launch information into global

variables, and enters a barrier synchronization point. A statically created pool of worker pthreads,

representing the device in the CUDA model, also enters the barrier. On exiting, each worker thread

reads the kernel launch data and begins executing blocks. The host thread then enters a second

barrier to wait for kernel completion before returning to the host code.

The MCUDA runtime includes support for static and dynamic methods of assigning computa-

tion to CPU threads. The static method distributes a contiguous set of blocks to each worker thread.

Any thread is assigned at most one additional block compared to any other thread. Each thread

then executes independently until completing its set. Under the dynamic method, each worker

thread iteratively acquires and executes blocks until all blocks in the kernel have been issued. Each

OS thread, when requesting a block to execute, atomically loads the current block index, repre-

sented by a global variable. If it is within the range specified by the kernel launch configuration

parameters, it executes that block, and increments the current block index to mark that the block is

being processed. Otherwise, all blocks in the kernel have been issued.

In both methods, when each worker threads completes processing, it enters the barrier at

which the host thread is waiting. When all worker threads reach the barrier, the kernel execution

has completed, and the host thread is allowed to leave the barrier and return to the host code.

4 Performance Analysis

We have implemented the MCUDA automatic kernel translation framework under the Cetus source-

to-source compilation framework [9], with slight modifications to the IR and preprocessor to accept

ANSI C with the language extensions of CUDA. For compatibility with icc, library functions re-

lated to CUDA memory and runtime management were manually removed or replaced by standard

libc functions. Figure 6 shows the kernel speedup of three applications: matrix multiplication of

two 4kx4k element matrices, Coulombic Potential (CP), and MRI-FHD. These applications have

previously shown to have very efficient CUDA implementations on a GPU architecture [10]. The

CPU baselines that we are measuring against are the most heavily optimized CPU implementations

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MM4k CP MRI_FHD

MCUDA1S

MCUDA1D

MCUDA2S

MCUDA2D

MCUDA3S

MCUDA3D

MCUDA4S

MCUDA4D

CPU Opti

Figure 6: Performance (inverse runtime) of MCUDA kernels relative to optimized CPU code.
MCUDA results vary by the number of worker threads (1-4) and the use of (S)tatic or (D)ynamic
block scheduling. CPU Opti implementations are parallelized across 4 threads.

available to us, and are threaded by hand to make use of multiple CPU cores. All performance data

was obtained on an Intel CoreTM2 Quad processor clocked at 2.66 GHz (CPU model Q6700).

All benchmarks were compiled with icc (Version 10.1). Additionally, the CPU optimized matrix

multiplication application uses the Intel MKL.

We can see that the performance scaling of this implementation is very good, with practically

ideal linear scaling for a small number of processor cores. Until the CPU is fully utilized, there

are no noticeable performance differences between static and dynamic block scheduling policies.

However, this is partially due to the structure of the applications themselves. MRI and CP both

repeatedly invoke kernel functions, each of which is executed synchronously by the runtime sys-

tem, limiting the amount of load imbalance that can accumulate within a single kernel invocation.

Matrix multiplication uses a single kernel call for the entire computation, and shows more disparity

between dynamic and static scheduling. In practice, we find that the dynamic method based on a

work queue performs better than the static partitioning method, although only by a small margin

for a small number of threads. We expect improved load balancing to increase the relative benefit

of dynamic scheduling for a larger number of threads.

For each application, the performance of the CUDA code translated through the MCUDA

framework is within a factor of two of the most optimized CPU implementation available. This

13

suggests that the data tiling and locality expressed in effective CUDA kernels also gains most of

the benefits of hand-optimization for the CPU architecture. The regularly structured iterative loops

of the algorithm were also preserved through the translation. The compiler vectorized the inner-

most loops of each application automatically, whether those were thread loops or loops already

expressed in the algorithm.

Typically, a CUDA kernel is tuned by manually applying variations to the kernel. These

optimizations could include varying the number of logical threads in a block, unrolling factors for

loops within the kernel, and tiling factors for data assigned to the scratchpad memory. Although we

have not yet exhaustively explored the range of optimizations for these kernels, we have discovered

some interesting results from experiments with a few different versions of the kernels for each

application.

Our experiments show that not all optimizations that benefit a GPU architecture are effective

for compiling and executing on the CPU. In the CP application, any degree of manual unrolling in

the CUDA source code prevents the compiler from automatically applying vectorization optimiza-

tions using SSE/MMX instructions. Optimizations that spill local variables to shared memory were

also ineffective, since the shared memory and local variables reside in the same memory space on

the CPU.

We have also determined that the best optimization point for each application may be different

depending on whether the kernel will execute on a GPU or CPU. Although we have not applied

an exhaustive search to all of these applications yet, only matrix multiplication seems to have the

same best configuration between the CPU and GPU implementations. For each of the others, we

have verified that there is at least one configuration that outperforms the current GPU-optimal

configuration when executed on the CPU with the current MCUDA framework. Determining how

to optimize a CUDA kernel for the CPU architecture is a very interesting area of future work, both

for programming practice and toolchain features.

For each of these benchmarks, we expect that the performance could potentially be tuned to

more closely match the performance of tuned code in a C or assembly program. In CP, a large

amount of redundant computation is done in the CUDA kernel to reveal additional fine-grained

parallelism. However, manual tiling and loop invariant removal is the current method for reducing

this redundant computation, which generates addressing patterns the compiler does not trust to

14

use vectorization, and hence produces inferior performance at this time. In matrix multiplication,

projects like ATLAS have explored extensive code configuration searches that can closely match

MKL performance [11], and some of that work may be relevant here as well. The CPU code for

MRI uses tuned loop unrolling and tiling factors that most likely account for the difference between

MCUDA and hand-tuned C code.

5 Related Work

With the initial release of the CUDA programming model, NVIDIA also released a toolset for

GPU emulation [1]. However, the emulation framework was designed for debugging rather than

for performance. In the emulation framework, each logical thread within a block is executed by

a separate CPU thread. In contrast, MCUDA localizes all logical threads in a block to a single

CPU thread for more efficient performance. However, the MCUDA framework is less suitable

for debugging the parallel CUDA application for two primary reasons. The first is that MCUDA

modifies the source code before passing it to the compiler, so the debugger can not correlate the

executable with the original CUDA source code. The second is that MCUDA enforces a specific

scheduling of logical threads within a block, which would not reveal errors that could occur with

other valid orderings of the execution of logical threads.

The issue of mapping small-granularity logical threads to CPU cores has been addressed in

other contexts, such as parallel simulation frameworks [12]. There are also performance benefit

to executing multiple logical threads within a single CPU thread in that area. For example, in the

Scalable Simulation Framework programming model a CPU thread executes each of its assigned

logical threads, jumping to the code specified by each in turn. Logical threads that specify sus-

pension points must be instrumented to save local state and return execution to the point at which

the logical thread was suspended. Taking advantage of CUDA’s SPMD programming model and

control-flow restrictions, MCUDA uses a less complex execution framework based on iteration

within the original threaded code itself. The technique used by MCUDA for executing logical

threads can increase the compiler’s ability to optimize and vectorize the code effectively. The sim-

plification of the control flow comes at the expense of completely independent control flow among

the logical threads within a block.

15

A large number of other frameworks and programming models have been proposed for data-

parallel applications for multicore architectures. Some examples include OpenMP [7], Thread

Building Blocks [8], and HPF [13]. However, these frameworks are intended to broaden a serial

programming language to a parallel execution environment. MCUDA is distinct from these in that

it is intended to broaden the applicability of a previously accelerator-specific programming model

to a CPU architecture.

Liao et al. designed a compiler system for efficiently mapping the stream programming model

to a multicore architecture [14]. CUDA, while not strictly a stream programming model, shares

many features with stream kernels. MCUDA’s primary departure from mapping a stream program-

ming model to multicore architectures is the explicit use of data tiling and cooperative threading,

which allows threads to synchronize and share data. With MCUDA, the programmer can exert

more control over the kernels with application knowledge, rather than relying on the toolset to

discover and apply them with kernel merging and tiling optimizations. It is also unclear whether

the range of optimizations available in the CUDA programming model can be automatically dis-

covered and applied by an automated framework.

6 Conclusions

We have described techniques for efficiently implementing the CUDA programming model on a

conventional multicore CPU architecture. We have also implemented an automated framework

that applies these techniques, and tested it on some kernels known to have high performance when

executing on GPUs. We have found that for executing these translated kernels on the CPU, the ex-

pression of data locality and computational regularity in the CUDA programming model achieves

much of the performance benefit of tuning code for the architecture by hand. These initial re-

sults suggest that the CUDA programming model could be a very effective way of specifying

data-parallel computation in a programming model that is portable across a variety of parallel

architectures.

As the mapping of the CUDA language to a CPU architecture matures, we expect that the

performance disparity between optimized C code and optimized CUDA code for the CPU will

continue to decrease. As with any other level of software abstraction, there are more opportunities

16

for optimization at lower levels of abstraction. However, if expressing computation in the CUDA

language allows an application to be more portable across a variety of architectures, many pro-

grammers may find a slightly less than optimal performance on a specific architecture acceptable.

7 Acknowledgments

We would like to thank Micheal Garland, John Owens and NVIDIA corporation for their feedback

and support. Sam Stone is supported under a National Science Foundation Graduate Research Fel-

lowship. Any opinions, findings, conclusions, or recommendations expressed in this publication

are those of the authors and do not necessarily reflect the views of the NSF. We acknowledge the

support of the Gigascale Systems Research Center, funded under the Focus Center Research Pro-

gram, a Semiconductor Research Corporation program. This work was performed with equipment

and software donations from Intel.

17

References
[1] “NVIDIA CUDA.” http://developer.nvidia.com/object/cuda.html.

[2] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A unified graphics and computing
architecture,” IEEE Micro, vol. 28, In press 2008.

[3] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a programmable ray processing unit for realtime ray tracing,”
ACM Trans. Graph., vol. 24, no. 3, pp. 434–444, 2005.

[4] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual, May 2007.

[5] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools (2nd Edition). Reading,
MA: Addison-Wesley, 2006.

[6] NVIDIA Corporation, CUDA Programming Guide, February 2007.

[7] OpenMP Architecture Review Board, “OpenMP application program interface,” May 2005.

[8] “Threading building blocks.” http://threadingbuildingblocks.org/.

[9] S. Lee, T. Johnson, and R. Eigenmann, “Cetus - an extensible compiler infrastructure for source-to-source trans-
formation,” in 16th Annual Workshop on Languages and Compilers for Parallel Computing (LCPC’2003), 2003.

[10] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. Kirk, and W. W. Hwu, “Optimization principles
and application performance evaluation of a multithreaded GPU using CUDA,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, February 2008.

[11] C. Whaley, P. A, and J. Dongarra, “Automated empirical optimizations of software and the atlas project,” Parallel
Computing, vol. 27, pp. 3–25, September 2000.

[12] J. H. Cowie, D. M. Nicol, and A. T. Ogielski, “Modeling the global internet,” Computing in Science and Eng.,
vol. 1, no. 1, pp. 42–50, 1999.

[13] H. P. F. Forum, “High Performance Fortran language specification, version 1.0,” Tech. Rep. CRPC-TR92225,
Rice University, May 1993.

[14] S.-W. Liao, Z. Du, G. Wu, and G.-Y. Lueh, “Data and computation transformations for Brook streaming ap-
plications on multiprocessors,” in Proceedings of the 4th International Symposium on Code Generation and
Optimization, pp. 196–207, March 2006.

18

