Mapping Tridiagonal Solvers to Linear Recurrences

Li-Wen Chang, and Wen-mei Hwu
{lchang20, w-hwu}@illinois.edu

IMPACT Technical Report
IMPACT-13-01
University of lllinois at Urbana-Champaign
Center for Reliable and High-Performance Computing
September 8, 2013
Revision: September 23, 2013

Abstract

In this report, we summarize existing parallel algorithms for tridiagonal solvers and propose a novel
tridiagonal solver algorithm, called LUL-UBD algorithm. We point out all existing algorithms can be
viewed as linear recurrences or extension of linear recurrences. We further indicate necessary
optimization strategies for high-performance implementation of each algorithm in SIMD architectures.
We also analyze the performance of existing algorithms, using computation complexity, the required
number of parallel steps, the required number of division operations, and the number of memory access
requests. Our proposed algorithm has the minimal number of memory access requests, the minimal
number of division operations, and linear computational complexity.

Key terms: Cyclic Reduction, Block Cyclic Reduction, Parallel Cyclic Reduction, SPIKE algorithm,
Tridiagonal Solvers, LU-decomposition, Linear recurrence

1. Introduction

The tridiagonal solver is a very important building block in a wide range of engineering and scientific
applications, including computer graphics [1][2][3], fluid dynamics [2][4][5], Poisson solvers [6],
preconditioners for iterative solvers [7], cubic spline interpolation [8], and semi-coarsening [9][10] for
multi-grid methods. In order to achieve high throughput, several parallel tridiagonal algorithms were
proposed, including Cyclic Reduction (CR) [12], Parallel Cyclic Reduction (PCR) [12], Recursive Doubling
(RD) [13], and the SPIKE algorithm [14][15].

In this report, we first use the first-order and second-order linear recurrence to explain the above
algorithms. We show all existing tridiagonal algorithms are able to be viewed as linear recurrences or
are related to the linear recurrences. Based on that, we further propose a tridiagonal algorithm using
only linear recurrences. Then, we compare the proposed algorithm with the existing algorithms and
show the effectiveness of the proposed algorithm by using computation complexity, the required
number of parallel steps, the required number of division operations, and the number of memory access



requests. The reason using the required number of division operations is that division is the most
expensive operation in a tridiagonal solver, and the reason using memory access requests is that the
tridiagonal solver is a memory-bound application in modern SIMD architectures.

In this report, we do not target algorithms on any architecture, like GPU or CPU. We tend to make our
analysis and discussion general to fit any SIMD architectures. Since no every operation has equivalent
cost, and the relationship of costs might vary from architecture to architecture, optimization strategies
might vary from architecture to architecture. In our analyses, computation complexity, the required
number of parallel steps, the required number of division operations, and the number of memory access
requests are all used for comparing performance.

2. Background for Related Existing Algorithms

The tridiagonal solver is a solver to find a solution of Ax=d, where A is an n-by-n matrix tridiagonal
matrix and d is an n-entry vector as listed in Eq 1. Here, we summarize five classical algorithms, including
the Thomas algorithm [11], CR, PCR, RD, and SPIKE algorithms. While only the Thomas algorithm is a
sequential algorithm, the rest are parallel algorithms.
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2.1 Thomas Algorithm

The Thomas algorithm is a reduced case of Gaussian elimination (or LU-decomposition/solver) for a
tridiagonal matrix and consists of two phases, a forward reduction and a backward substitution as
shown in Eq. 2 and 3. The forward reduction eliminates the lower diagonal sequentially, while the
backward substitution solves unknown variables sequentially using the resultant upper and main
diagonals.
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2.1. Cyclic Reduction

The CR algorithm is an odd-even reduction, and known as a two-way elimination for a tridiagonal matrix.
There are also two phases, forward reduction and backward substitution, in CR. In each step of forward
reduction, each odd (or even) equation is eliminated by using adjacent two equations, and, after
removing redundant unknown variables and zeros, a half-size system is formed of the resultant new
equation. Fig. 1 illustrates one step of forward reduction in a 4-by-4 matrix. In this case, a, and ¢, in the
equation e, is eliminated by e; and e using Eq. 4, but a}, is propagated from a; in e;. After that, a new
row e, is formed. Similarly, e} is generated by eliminating e, with e;. After that, ey and e; can form a
new matrix with the half size.
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Figure 1. A forward reduction step of CR in a 4-by-4 matrix
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In each step of the backward substitution, unknown variables can be solved by substituting solutions of
the smaller system using Eq. 5.
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Figure 2. The graph representation of CR for an 8-by-8 matrix.




Fig. 2 shows the graph representation of CR for an 8-by-8 matrix. Here, we intentionally use 2 colors, red
and blue, to label edges. It might be surprising that all red edges form a Brent-Kung circuit [16] (Fig. 3)
and all blue edges form another reverse Brent-Kung circuit. In Fig. 4, we intentionally split red and blue
in each step to make it easier to be observed. However, it is not a coincidence to have a Brent-Kung
circuit in CR. A tridiagonal matrix can be split into one lower bidiagonal matrix and an upper bidiagonal
matrix easily. A lower bidiagonal solver can be easily represented as a first-order linear recurrence, and
an upper bidiagonal matrix can be considered as a reverse first-order linear recurrence. The Brent-Kung
circuit is a common algorithm for a first-order linear recurrence. Therefore, CR can be considered as a

specialized extension of Brent-Kung circuit.
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Figure 3. The Brent-Kung circuit with 8 nodes
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Figure 4. The graph representation of CR for an 8-by-8 matrix with split red and blue edges




2.2. Parallel Cyclic Reduction

The PCR algorithm is a modification of CR. In contrast to CR, PCR performs only reductions, using Eq. 4,
on both even AND odd equations. Fig. 5 shows an example for 1 step PCR for a 4-by-4 tridiagonal matrix.
After reductions, two independent sets of even and odd equations can be considered as two
independent sub-tridiagonal matrices. Most previous works [17][18] used this characteristic to split a
large tridiagonal matrix into multiple smaller tridiagonal matrices for more parallelism.
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Figure 5. A forward reduction step of PCR in a 4-by-4 matrix

Fig. 6 shows the graph representation of PCR for an 8-by-8 matrix. Here, as we do for CR, we also use 2
colors to label edges. As expected, we can see all red edges form a Kogge-Stone circuit [19] (Fig. 7) and
all blue edges form another bit-reversal Kogge-Stone circuit. Considering the Kogge-Stone circuit is also
a common algorithm for a first-order linear recurrence, it seems obvious. Therefore, PCR can be

considered as a specialized extension of the Kogge-Stone circuit.
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Figure 6. The graph representation of PCR for an 8-by-8 matrix.
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Figure 7. The Kogge-Stone circuit with 8 nodes

2.3. Recursive Doubling

The RD algorithm is a parallel tridiagonal solver by formulating a tridiagonal matrix into a second-order

linear recurrence (Eq. 6) with an unknown variable (x;). By applying a linear recurrence solver, the



relationship, x; =/3’l. —Q;* x,, between an unknown variable x; and X, can be determined, and X, can
be also solved. After x,is solved, an unknown variable X; can be easily solved by applying substitution

with x,. This substitution can be considered as a broadcast, since all unknown variables x,'s require x,.
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2.4. SPIKE algorithm

The SPIKE algorithm is a domain decomposition algorithm, and it decomposes a banded matrix into a set
of disjoint matrices that can be solved independently. We describe a specialized SPIKE algorithm for
tridiagonal matrices. In the tridiagonal solver (Fig. 8), AX=F, the matrix A can be partitioned in several
diagonal blocks A; and off-diagonal single elements B; and C;. Similarly, X and F can be partitioned into
corresponding parts.
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Figure 8. Partition for a tridiagonal matrix in the SPIKE algorithm

Further, we can define D and S satisfying A=DS, where D is just the diagonal blocks of A and S has the

structure in Fig. 9.
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Figure 9. Definition of D and S in the SPIKE algorithm



Here, V; and Wi, satisfy Eq. 7.
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Therefore, AX=F can be easily solved by resulting in DY=F and SX=Y. Since D is block-diagonal, each block
can be solved independently. SX=Y can be solved by a unit block tridiagonal solver. Most existing works
use a specialized Block Cyclic Reduction (BCR) for solving SX=Y. Only two variables in each block are
required to be solved for other blocks. A reduced matrix is required to be solved. We refer readers to
the works of Pollizi [14][15]. In this report, we also propose an alternative using “Block Parallel Cyclic
Reduction” (BPCR) to solve the unit block tridiagonal solver with the reduced matrix in appendix.

We point out the SPIKE algorithm shares a lot of similarities with the group-structure algorithms [X] in
first-order linear recurrences. The group-structure algorithms also decompose a first-order linear
recurrence to several independent local first-order linear recurrences. After solving all local first-order
linear recurrences, group-structure algorithms also solve a reduced first-order linear recurrence.

3. Proposed Algorithm

We propose a tridiagonal algorithm using only linear recurrences. As we mentioned, a tridiagonal matrix
can be split into two bidiagonal matrices, and each bidiagonal solver can be viewed as a first-order linear
recurrence. Therefore, we split the tridiagonal matrix into two bidiagonal matrices, and solve just using
two linear recurrences one after the other. Here, a parallel LU-decomposition is applied for generating
the lower and upper bidiagonal matrices. We consider A=LU, and L and U are defined in Eq. 8.
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Ax=d can be easily solved by resulting in Ly=d and Ux=y. Simply multiplying L and U, we can have Eq. 9
and 10.
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By applying continued fractions with second-order linear recurrence, we can define the following with
second-order linear recurrence (Eq. 11 and Eq. 12).
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Our LU-decomposition actually is a continued-fraction LU (CF-LU) decomposition [20] with a unit upper
bidiagonal matrix.

After each bl.' is computed, we can simply solve Ly=d and save c, /bl.' on-the-fly. More clearly, we fuse

CF-LU with the bidiagonal solver for Ly=d. Considering only l/bl.'is needed for computing both Ly=d and

¢ /bl.', we can simply compute i, = @ to save division operations. After Ly=d solved, x can be simply
i i

solved by solving Ux=y. Here, we use one second-order linear recurrence (Eq. 11) and two first-order

linear recurrences (Ly=d and Ux=y). However, since kernel fusion is applied, only one second-order

linear recurrence and one first-order linear recurrence are really computed. Here, we call our second-

order linear recurrence LUL (LU-decomposition with lower bidiagonal solver) and the first-order linear

recurrence UBD (upper bidiagonal solver). Our method is named as LUL-UBD.

Compared to the RD algorithm, our LUL-UBD algorithm has several benefits. First, RD uses division

operations with cl.'s. Since ¢, may be zero or much smaller than b, or a, in a general matrix and even

a diagonally dominant matrix, RD tends to have more numerical errors. Second, While RD includes one
second-order linear recurrence and one broadcast, LUL-UBD contains one second-order linear
recurrence and two first-order linear recurrences. It seems that LUL-UBD might be slower than RD.
However, in LUL-UBD, one first-order linear recurrence can be fused with the second-order linear
recurrence to avoid redundant memory access. If we consider a first-order linear recurrence is memory-
bound in most modern SIMD architecture, its performance is similar to the performance of broadcast,
which is also memory-bound.

The CF-LU algorithm has its own limitations. Since diagonal values in Eq. 11 are all 1's, which are not
dependent on coefficients of tridiagonal matrix, it might cause overflow when those coefficients are



very big. For example, for a given i, we can simply multiply a;, b,, c,, and d, by a very large number.

This operation does not influence the solution of tridiagonal solver, but might cause overflow of CF-LU.
However, it is also very simple to avoid this overflow issue by performing normalization of each row.
Therefore, in general, LUL-UBD is more robust than RD.

4. Tiling Optimization and Algorithm Analysis

In this section, we discuss about tiling optimization, which is necessary for high-performance
implementation in most SIMD architectures. Before we make a detailed discussion, we define our SIMD
architecture and the problem size to guarantee a fair comparison. Here, we assume the size of matrix is
n. The vector length of a lock step in SIMD is M. M is much smaller than n. We also consider a cluster of
vector processors. The number of vector processor is P. P is also much smaller than n. The largest size
for data caching is L (L time data types). For example, if our data type is double and double is 8 Byte, our
largest size for data caching is 8L Byte. Here, we also assume L is much smaller than n but L is larger than
M (since the size of private cache is usually larger than the vector length). No multithreading exists in
our defined vector processor for simplifying analyses.

4.1 Thomas Algorithm

The Thomas Algorithm is a sequential algorithm, and it cannot benefit from SIMD architectures. The
number of (sequential) steps of Thomas algorithm is 2n-1 and the computational complexity is O(n).
The number of division is also 2n-1. The number of memory access requests includes 4n reads and 2n
writes in the forward reduction and 2n reads and 1n writes in the backward substitution. In the Thomas
algorithm with a large size n, since the forward reduction executes with a different order of the
backward substitution, data used in the forward reduction are less likely to be cached for the backward
substitution. (For data in the tail of forward reduction, data caching might be feasible.) Therefore, the
total number of memory access requests around 9n.

4.2 Cyclic Reduction

If an n-length vector machine is feasible, the required number of (parallel) steps is 2log(n). However, in
practice, it might not be feasible. In our defined SIMD architecture, we consider an M-length vector
processor and P numbers of vector processors. Since it is a cluster of processors, tiling optimization is
necessary for minimizing the number of memory requests. Fig. 10 shows the graph representation of
tiled CR. The bold blue lines are inter-tile communication of forward reduction and were also proposed
as split operations in [21]. Similarly, we can also define the bold red lines as inter-tile communication for
backward substitution after a global CR across all tiles. The numbers of inter-tile communication of
forward reduction and backward substitution are both 4(n/T-1)log(T), where T is the tile size.



Considering the largest size for data caching is L and 4 coefficients are required for one equation, T is
equal to L/4. Since tiled CR does not change the computation pattern, the computational complexity of
tiled CR is still O(n) and the number of division is still 3n-log(n)-3. The required number of (parallel) steps
in each tile is 2log(T) + log(T) + 1 if a T-length vector machine is feasible. While an-M length vector
machine is applied and M is smaller than T, the required number of (parallel) steps islog(T) + 1 +

£ coit L

CR with an n/T problem size. The number of memory requests includes 8n reads, 8n+8n/T writes,

). The number of (parallel) steps for the global CR can be considered as another

8(n/T -1)log(T) reads for inter-tile communication, and the memory requests of global CR, which is
another CR with an n/T problem size. The lower bound of memory requests is 16n, and the upper bound
is 18n.
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Figure 11. The graph representation of tiled CR with the SPIKE algorithm for an 8-by-8 matrix



Fig. 11 shows another possible tiling strategy, which can be considered as a hybrid of SPIKE and CR. In
each tile, a complete CR is performed. After that, BCR or BPCR, which are mentioned in the section of
SPIKE algorithm, is applied for reduced matrices. Then, broadcast operations are applied for completely
solving each tile (each block in block tridiagonal). Here, we leave the analysis in the analysis of SPIKE
algorithm.

4.3 Parallel Cyclic Reduction

If an n-length vector machine is feasible, PCR requires log(n) (parallel) steps, O(n*log (n)) computational
complexity, and 2nlog(n)-n+2 division operations. However, in our defined SIMD architecture, tiling is
also necessary for a high-performance implementation. Fig. 12 shows the graph representation of tiled
PCR, and it can be considered as a hybrid of SPIKE and PCR. Similar to the hybrid of SPIKE and CR, in each
tile, a complete PCR is performed. After that, BCR or BPCR is applied for reduced matrices. Then,
broadcast operations are applied for completely solving each tile. Here, we leave the analysis in the
analysis of SPIKE algorithm.

Global BCR or
BPCR for SPIKE

Figure 12. The graph representation of tiled PCR with the SPIKE algorithm for an 8-by-8 matrix

4.4 Recursive Doubling

In RD, the computational complexity, the number of steps, and the number of memory requests are all
dependent on algorithms for linear recurrences. The minimal computational complexity is O(n), and it
happens in most linear recurrence algorithms. The minimal number of division is n, and it also happens
in most linear recurrence algorithms. The number of steps varies a lot from algorithm to algorithm. The
minimal number of steps is log(n)+2, and it requires the Kogge-Stone circuit with an n-length vector
machine. In practice, a tiled linear recurrence has around T/M + log(M) steps and steps of the global
linear recurrence with a n/T problem size, where T is tiling size and is L/3. The global linear recurrence is
usually implemented with a sequential algorithm with inter-tile communication to minimize the number
of memory requests for a high-performance implementation. The minimal number of memory requests
of second-order linear recurrence contains 4n reads and 2n-1 writes (2n-2 writes for coefficients and 1

write for x;), while the minimal number of memory requests in broadcast contains 2n-1 reads and n-1

writes. Therefore, RD has around 9n memory access requests in minimum.



4.5 SPIKE algorithm

The computational complexity, the number of steps, and the number of memory request in a SPIKE
algorithm is all dependent on the parallel algorithm for solving sub-matrices (each tile). Three algorithms,
which are the Thomas algorithm, CR (Fig. 11), and PCR (Fig. 12), are often applied. The minimal
computational complexity is around O(n), and it happens when the complexity of the sub-matrix solver
is also linear, such as CR or the Thomas algorithm. The SPIKE algorithm with Thomas algorithm has
2n+n/T division operations, while the SPIKE algorithm with CR has 3n-(n/T)*log(T)-n/T division
operations. When PCR is applied for the sub-matrix solver, the complexity becomes O(nlog(T) +
(n/T)*log(n/T) ), where T is tiling size and is equal to L/4. The SPIKE algorithm with PCR has 2nlog(T)-
n+4n/T division operations. Here, to make more clearly, the tiling size (T) of Thomas algorithm might be
different from the tiling size of CR or PCR.

The number of steps varies a lot from algorithm to algorithm, including both algorithms for the sub-
matrix solver and the block tridiagonal solver. When the Thomas algorithm is applied for the sub-matrix
solver, 2T steps are required for each tile with T size. Since the Thomas algorithm does not need data
tiling, we can simply maximize parallelism. Therefore, the minimal number of steps is 2n/M/P + log(M*P)
+1, and it happens when BPCR are applied for the reduced block tridiagonal solver. When the Thomas
algorithm is applied for the sub-matrix solver, 2log(T) steps are required for each tile with T size.
Therefore, the minimal number of steps is 2log(T)+3log(n/T) +1, and also BPCR is applied. When PCR is
applied, the minimal number of steps is log(T)+3log(n/T) +1, and also BPCR is applied. The minimal
number of memory requests of all sub-matrix solvers includes 4n reads and 3n writes. The number of
memory requests for the block tridiagonal solver varies from 4n to 4n + 15n/T, where T is tiling size.

4.5 LUL-UBD algorithm

In LUL-UBD, similar to RD, the computational complexity, the number of steps, and the number of
memory requests are all dependent on algorithms for linear recurrences. The minimal computational
complexity, similar to RD, is O(n), and it happens in most linear recurrence algorithms. The minimal
number of division is also n, and it also happens in most linear recurrence algorithms. In practice, a tiled
LUL, which is a second-order linear recurrence fused with a first-order linear recurrence, has around
2T1/M + log(M) steps and steps of the global linear recurrence with a n/T; problem size, where T is tiling
size and Ty is L/4. The UBD, which is a first-order linear recurrence, has T,/M + log(M) steps and steps of
the other global linear recurrence with a n/T, problem size, where T, is tiling size and T, is L/2. Similar to
RD, the global linear recurrences are usually implemented with a sequential algorithm with inter-tile
communication to minimize the number of memory requests for a high-performance implementation.
The minimal number of memory requests of LUL contains 4n reads and 2n writes, and the one of UBD
contains 2n reads and n writes. Therefore, LUL-UBD has around 9n memory access requests in minimum.



5. Conclusion

We propose a novel tridiagonal algorithm, called LUL-UBD, which only relies on linear recurrences. We
further show all existing algorithms are related to linear recurrences. We also compare LUL-UBD with all
existing algorithms, to demonstrate LUL-UBD has minimal number of memory requests and division
operations.
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Appendix

The Block Parallel Cyclic Reduction (BPCR) algorithm is an extension of PCR for a block tridiagonal solver.
Fig. A1l shows the classical PCR, while Fig. A2 shows a tiled PCR corresponding to the graph
representation of Fig. 12. In Fig. A2, a 2-by-2 reduced matrix is solved for a 8-by-8 block tridiagonal

matrix with a block size as 4-by-4.
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Figure Al. A forward reduction of PCR in a 8-by-8 matrix
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Figure A2. A forward reduction of tiled PCR in a 8-by-8 matrix

In order to make more clear, we consider the situation with more tiles. Fig. A3 shows 4 tiles tiled PCR.
Since only two equations exist in a tile, Fig. A3 can be also viewed as an example of the reduced block
tridiagonal solver of SX=Y in the SPIKE algorithm. In SX=Y, all b’s are ones, and after each step of BPCR,



new b’s are also normalized to ones. Therefore, BPCR can be applied for solving SX=Y in the SPIKE

algorithm.
b 0 c B0 0 0 c by
0 b 0 b 0 0 b
a b, 0 0 0 b 0 0 0 c by
a, 0 b 00 0 B 0 0 b
@ b 0 || a o o0 s 0 0 o by
a, 0 b a 0 0 0 b 0 0 by
a, b 0 al 0 0 b 0 by
a 0 b a 0 0 0 b by
Figure A3. A forward reduction of BPCR in a 8-by-8 matrix



