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Abstract

Improvements in memory speeds have not kept pace with increasing processor clock frequency and

improved exploitation of instruction-level parallelism. Consequently, the gap between processor and

memory speeds is expected to grow. The increased memory latency seen by the processor not only

increases the number of execution cycles spent waiting for memory accesses to complete, but can also

degrade the compiler-generated instruction schedule. One solution to this growing problem is to reduce

the number of cache misses by increasing the e�ectiveness of the cache hierarchy. In this paper we present

a technique for dynamic analysis of program data access behavior, which is then used to proactively guide

the placement of data within the cache hierarchy in a location-sensitive manner. We introduce the concept

of a macroblock, which allows us to feasibly characterize the memory locations accessed by a program,

and a Memory Address Table (MAT), which performs the dynamic reference analysis. Our technique is

fully compatible with existing Instruction Set Architectures. Results from detailed simulations of several

integer programs show signi�cant speedups.

1 Introduction

As processor performance improvements continue to dwarf improvements in main memory performance [1],

the cache miss penalty will begin to dominate the cycle counts of many applications. The large improvements

in processor performance are due both to better circuit design and fabrication technology, which reduce the

cycle time, and to better Instruction-Level Parallelism (ILP) techniques, which increase the Instructions

executed Per Cycle (IPC). This disparity between the processor and memory performance will make cache

misses more and more expensive. Not only do the cache misses result in more processor stall cycles, but in

processors with dynamic scheduling they can also disrupt the compiler-generated ILP schedule. Also, the

data caches are not always used e�ciently. In numeric programs there are several known compiler techniques
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for optimizing data cache performance. However, integer programs often have irregular access patterns that

are more di�cult for the compiler to optimize. This paper focuses on data cache performance optimization

for integer programs.

In order to increase data cache e�ectiveness for integer programs we have investigated methods of cache

hierarchy management, where we proactively control the movement and placement of data in the hierarchy

based on the data usage characteristics. In this paper we present a microarchitecture scheme where the

hardware determines data placement based on dynamic referencing behavior. This scheme is fully compatible

with existing Instruction Set Architectures.

Present cache management methods are location-insensitive in that their policies respect the operation

that requested the memory access, rather than the address being accessed [3] [10]. This can result in poor

choices, since the same instruction can access many locations with varying locality. Our scheme seeks to

overcome this limitation by managing the cache in a manner that is sensitive to the memory locations

accessed. Since the number of memory locations is infeasibly large, we introduce the notion of a macroblock.

A macroblock is a contiguous block of memory that is large enough so that the maintainance overhead is

reasonable, but small enough so that the access pattern of the memory addresses within each macroblock

is statistically uniform. A hardware mechanism called the Memory Address Table (MAT) is introduced to

maintain and utilize the access patterns of the macroblocks to direct data placement in the cache hierarchy.

We show that this extension to the cache microarchitecture signi�cantly improves the overall performance

of integer applications. The improvements are due to increased cache hit rates and reduced cache handling

latencies.

The remainder of this paper is organized as follows: Section 2 discusses related work; Section 3 contains

a case study of a particular benchmark as well as some main concepts used to motivate and develop this

work; Section 4 discusses the hardware implementation; Section 5 presents simulation results; Section 5.3

performs a cost analysis of the added hardware; and Section 6 concludes with future directions.

2 Related Work

Several methods exist to overlap memory accesses with other computation in the processor, thereby hiding

the memory latency. Write bu�ers can often successfully hide the latency of write misses by bu�ering the

write data until the bus is idle. Non-blocking caches allow multiple outstanding load misses without stalling
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the processor in order to overlap load miss latency with other computation that does not consume the result

of an outstanding load miss [2]. Prefetching attempts to fetch data from main memory to the cache before

it is needed, which also overlaps the load miss latency with other computation. Both hardware [3] [4] [5] [6]

and software [7] [8] [9] prefetching methods for uniprocessor machines have been proposed. However, most of

these methods focus on prefetching regular array accesses within loops 1, which are access patterns primarily

found in numerical applications. There is also much prior work on prefetching in multiprocessors, but since

their focus is even more on optimizing numerical applications, we will not review them here.

While the above schemes attempt to hide the latency of load misses, our work focuses on reducing the

e�ective memory latency seen by the processor through the reduction of con
ict misses and their e�ects.

Victim caches also attempt to reduce the number of cache misses, in particular by reducing con
ict misses

in caches with less associativity [4]. While victim caches work well for many programs, as we will show in

Section 5.2, they will not work as well for programs that have very large working sets.

Methods for both static and dynamic cache bypassing have also been investigated. In [10], Tyson et

al. proposed a method where loads are marked for cache bypass either statically by the compiler, or at

dynamically at run-time. While we also investigate cache bypassing, our work di�ers in several key aspects.

First, Tyson et al. use miss behavior of the load as the main decision metric for determining whether to

bypass that load's data. Our work focuses on the reuse behavior, because data that tend to miss may still

have large amounts of locality that would result in reuse while in the cache. Secondly, they decide whether

to bypass data based on the particular load referencing that data. As we will show in Section 3.1, a single

load instruction may reference data with widely varying access patterns. Therefore our work determines

whether to bypass based on the address of that data. As a result, we see both increases cache hit ratios

and decreases in the bus tra�c and total cycle counts, while they achieve a decrease in the bus tra�c at the

expense of a small drop in the cache hit ratios.

3 Concepts

3.1 Case Study

To understand some of the ine�ciencies of current cache hierarchies it is helpful to �rst examine the accessing

behavior of a particular application in detail. Figure 1 shows the main loop body of the 026.compress program

1By this we mean arrays indexed by the loop iteration variable, or some other induction variable.
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from the SPEC'92 benchmark suite [11]. This loop body comprises of over 90% of the execution time of

compress. The majority of the memory accesses in compress are to its hash tables, htab and codetab (the

lines containing the hash table load accesses are numbered). Because of the large size of these hash tables

(htab is larger than 256K bytes and codetab is larger than 128K bytes), and the fact that the hash table

accesses have little temporal or spatial locality, there is very little reuse in a �rst-level data cache.
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while ( (c = getchar()) != EOF ) {

in_count++;

fcode = (long) (((long) c << maxbits) + ent);

i = ((c << hshift) ^ ent); /* xor hashing */

1. if ( htabof (i) == fcode ) {

2. ent = codetabof (i);

continue;

} else if ( (long)htabof (i) < 0 ) /* empty slot */

goto nomatch;

disp = hsize_reg - i; /* secondary hash (after G. Knott) */

if ( i == 0 )

disp = 1;

probe:

if ( (i -= disp) < 0 )

i += hsize_reg;

3. if ( htabof (i) == fcode ) {

4. ent = codetabof (i);

continue;

}

if ( (long)htabof (i) > 0 )

goto probe;

nomatch:

output ( (code_int) ent );

out_count++;

ent = c;

if ( free_ent < maxmaxcode ) {

codetabof (i) = free_ent++; /* code -> hashtable */

htabof (i) = fcode;

}

else if ( (count_int)in_count >= checkpoint && block_compress )

cl_block ();

}

Figure 1: Compress Main Loop Code

Table 1 shows the hash table loads' dynamic execution counts, miss ratios and reuse ratios obtained via

memory access pro�ling. A simple cache simulation was performed to determine whether each of the accesses

was a �rst-level cache hit or miss in a direct-mapped 16K cache with 32-byte lines 2. Also, the pro�ler kept

track of reuse ratios 3. The table shows that, indeed, the hash table load accesses have high miss ratios and

little reuse of the accessed data.

In order to obtain a clearer picture of how the hash tables are accessed throughout the dynamic execution

of the program, we pro�led the accesses as explained above and plotted the address distribution for a given

2This pro�ler is a simpli�ed version of the detailed simulator used to generate the results presented in Section 5.2. Unlike the

simulator, the pro�ler assumes a single-issue, in-order machine and zero-cycle load latencies to simplify handling back-to-back

accesses to the same cache block. More details on the simulator are given in Section 5.1.3.
3The reuse ratio is calculated in the following way. If load A accesses a cache block (whether a hit or miss), on a following

hit by load B to that cache block the reuse counter for load A is incremented once. If another access by load C is a hit to the

same cache block, the counter for load B is incremented, and so on. The total number of reuses counted for a load, divided by
its dynamic execution count, is that load's reuse ratio. Therefore, the hit ratio and reuse ratio are not correlated, because some

of the hits will have reuse, as will some of the misses, and some will not.
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Dynamic

Hash Execution Miss Reuse
Line Table Count Ratio Ratio

1 htab 999999 78.9% 29.2%

2 codetab 566776 70.8% 30.0%

3 htab 1803911 91.4% 15.6%

4 codetab 182336 89.1% 11.5%

Table 1: Pro�ling Statistics for Hash Table Load Accesses (direct-mapped, 16K-byte data cache with 32-byte
lines, single-issue processor).

execution phase.

The pro�ling results for a sample 100000 cycle execution phase of compress are shown in Figure 2. The

memory access distribution for htab is shown in Figure 2a. As the htab distribution shows, much of htab

is relatively sparsely accessed, except for two bands that are heavily accessed. These bands are located

roughly from addresses 200000 to 220000 and 257000 to 300000 (all addresses are o�sets from a base address

of 1048576, or 1M). Most of these accesses are loads resulting in cache misses 4. Looking at several other

execution phases of compress shows that this pattern remains the same throughout the execution.

Analogous to Figure 2a, Figure 2b shows the access distribution for codetab. The access patterns of the

two �gures look similar since codetab is accessed with the same index as htab. However, Figure 2b is sparser

than Figure 2a, since codetab is accessed only when the corresponding entry in htab has been accessed and

matched the current input sequence.

The memory access distributions of Figure 2 illustrate the inherent problem with schemes that determine

how to handle data based on the particular load instruction that requested the access. In compress there

are only two load instructions in the main loop body that access htab, however from the distributions we see

that these loads can access data with dramatically di�erent usage patterns, even during small time intervals.

Schemes that decide where to place the data in the cache hierarchy based on the load instruction accessing

that data, whether in a static or a dynamic manner, must treat all data accessed by each load instruction

as if it was uniform in behavior. However, as Figure 2a shows, in very small time intervals data with widely

varying access patterns is accessed. Therefore, information is lost and some data will be mishandled.

Figure 3 shows how we would like to handle accesses to data with di�erent usage frequencies. In Figure 3a

accesses to di�erently accessed regions of memory will map into the same cache lines, causing con
ict misses.

Assume that an access to a block in an infrequently accessed region of the memory misses in cache, and the

4While the load miss markers do obscure some of the load hit markers, removing the load miss points from the graph shows

few additional load hit points.
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Figure 3: Con
ict Misses in Compress.

con
icting block that would be replaced from the cache under a normal cache management policy is from a

heavily accessed region. Instead of replacing the heavily accessed block, which has a much greater chance of

being reused in the near future, we would like the missing block to bypass the cache. In this case the missing

block would be sent directly to the register �le, and would not be placed in the cache, as illustrated in

Figure 3b. Bypassing infrequently accessed data when it con
icts with much more frequently accessed data

will result in less cache pollution, and therefore increased reuse of more frequently accessed data, resulting

in an overall increase in the hit ratio. Also, when bypassing the cache, only the element size (rather than

the cache line size) needs to be fetched, which will further reduce bus tra�c. To perform this selective cache

bypassing, we need some method of tracking the access behavior of di�erent memory regions.

3.2 Macroblocks

Ideally, we would like to keep track of the usage frequencies of all cache block size data in memory. While this

would give us the most accurate information, it would result in an unmanageably large amount of information.

Instead, we combine groups of adjacent cache block size data into larger blocks called macroblocks. The size

of the macroblocks should be large enough so that the total number of macroblocks residing in the accessed

portion of memory is not too large, but small enough so that the accessing frequency of the cache blocks
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Figure 4: Macroblock Access Uniformity

contained within each macroblock is relatively uniform. If we can keep track of each macroblock's accessing

frequency through some hardware mechanism, then it is possible to determine on a macroblock basis whether

or not to cache the contained data.

In order to determine the best size of a macroblock in practice, we studied the uniformity of cache block

access frequencies within the macroblocks for several macroblock sizes. The number of accesses to each cache

block in memory was �rst pro�led. Then for each macroblock size, and for each macroblock in memory, the

mean and standard deviation of the number of accesses to the cache blocks contained within that macroblock

were computed. Finally, the standard deviation divided by the mean (in order to normalize the results) for

all macroblocks were sorted and plotted on a log10 scale. For a high intra-macroblock accessing uniformity

most of the macroblocks should have relatively small standard deviations.

Figure 4 shows the results for macroblock sizes of 256, 1K, 4K and 16K-bytes. The y-axis is a log10 scale of

the standard deviation divided by the mean, and the x-axis is the percentage of macroblocks with a standard

deviation divided by mean less than or equal to the plotted value. The curve for 256-byte macroblocks has the

lowest standard deviations, however using 256-byte macroblocks may result in too many total macroblocks
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to feasibly track. Using 1K-byte macroblocks, which would include four times as many cache blocks per

macroblock, may be much more feasible and still result in most macroblocks having high uniformity. For

this size about 60% of the macroblocks lie within 20% of the mean, with almost 90% within 50% of the mean.

The 4K-byte curve is only slightly higher, still with most of its macroblocks within 20% of the mean. The

16K-byte curve does not look quite as good. As will be discussed when we present our simulation results in

Section 5.2, we chose the 1K and 4K-byte macroblock sizes for our study.

4 Hardware

4.1 Memory Address Table

As discussed in Section 3.2, we would like to determine on a per macroblock basis whether to cache or to

bypass the contained data on a miss. In order to keep track of the macroblocks we use a table in hardware

called a Memory Address Table or MAT. The MAT ideally contains an entry for each macroblock. Each

entry in the table is a saturating counter, where the counter value represents the frequency of accesses to

the corresponding macroblock. Currently we are using a direct-mapped MAT with an 8-bit counter.

On a memory access, a lookup in the MAT of the corresponding macroblock entry is performed in parallel

with the data cache access. If no entry is found, a new entry with a counter value of zero is allocated. If

an entry is found, the counter is incremented. Also, the counter value (ctr1) must be saved in a register for

possible use in the next step. An example of this operation is shown in Figure 5a, where block A is accessed.

If the data cache access resulted in a hit, the access proceeds as normal, and the counter value is ignored.

On the other hand, if the access resulted in a cache miss, the cache controller must lookup the MAT counter

corresponding to the cache block that would be replaced to determine which data is more heavily accessed,

and therefore more likely to be reused in cache, as shown in Figure 5b. This counter value (ctr2) is then

decremented and compared to the counter value corresponding to the missing access. The actual comparison

performed is:

ctr1 < thresh � ctr2 (1)

where thresh is a fraction from zero to one. If the above inequality is satis�ed then the fetched data will

bypass the cache. Otherwise it is placed in the cache, replacing the existing cached data as normal.

As mentioned above, the counter corresponding to the currently cached block (ctr2) is decremented. This

is to ensure that the counter values will eventually decrease, so that after a transition to another phase of the
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Figure 5: MAT Operation.

program execution, new data can replace data that was accessed only in the previous phase. The rationale

for decrementing counters on missing accesses to con
icting data is that the data currently residing in the

cache must justify remaining cached in the face of heavy contention for that cache location. Therefore, the

heavier the contention for a particular cache location, the more the cached data must be reused to maintain

a counter large enough to satisfy Equation 1.

Rather than compare ctr1 and ctr2 exactly, in Equation 1 we compare ctr1 to some fraction of ctr2. This

is so we act conservatively when con
icting blocks have almost the same usage. Choosing thresh less than

1.0 will prevent bypassing when the counters are almost the same.

Another issue is that we do not want to bypass when the MAT contains no information for one of the

macroblocks. In the case where there is no counter for the address being accessed this can be achieved by

setting all bits to 1 in the register which holds ctr1 for the comparison. When there is no counter found for

the data residing in cache (ctr2), we compare to 0. Both of these are simply a matter of multiplexing in

either the counter value read from the MAT or the appropriate constant, using the valid bit as a selector.

The second MAT access and the comparison are needed only during a cache miss to determine the data

size requested, since only the element size needs to be fetched on a bypass. It is unlikely that both MAT
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accesses can be performed in one cycle, so this information will be available the cycle after the miss is

detected. However, the size can be sent to the next level of the cache hierarchy the cycle after the address

is sent, as the access to the L2 cache or main memory will take at least one cycle before the data can be

returned. In some current processors the system bus request takes two cycles, with the address sent the �rst

cycle and the data request size the second [12], which matches the MAT timing.

4.2 Improved MAT Scheme

One factor not yet taken into account is the fact that there can be some temporal locality even when the

total accessing frequency is relatively low. In this case the basic MAT scheme presented in Section 4.1 will

bypass some data which may have otherwise had a few hits before being displaced from the cache. More

than one additional miss will be incurred by not caching that data, whereas only one miss is removed by not

displacing the much more frequently accessed data. This will result in an overall increase in the miss ratio,

and an overall performance degradation.

To avoid losing performance from the above scenario, we can place bypassing data in a small fully-

associative bu�er with short lines (corresponding to the element size that is fetched on a bypass), as shown

in Figure 6. This bu�er will be accessed in the same manner as a victim cache. As a result, the bypassed

data is held close to the processor for a short time, allowing much of the temporal locality of the infrequently

accessed data to be exploited.

The cost of the MAT hardware will be analyzed in Section 5.3, following the presentation of experimental

results.

5 Experimental Evaluation

5.1 Experimental Environment

In this section, the environment used for experimental evaluation of our technique is presented. The ap-

plications for this study consist of several integer benchmark programs, that will be discussed below in

Section 5.1.5. The experimental environment also includes compiler support, emulation to verify transfor-

mation correctness, and the simulation techniques used to generate experimental results.
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Function Latency Function Latency

Int ALU 1 FP ALU 2

memory load 2 FP multiply 2

memory store 1 FP divide (single prec.) 8

branch 1 + 1 slot FP divide (double prec.) 15

Table 2: Instruction latencies for simulation experiments.

5.1.1 Compiler and Architecture

In order to provide a realistic evaluation of our technique, we �rst optimized the code using the machine-

speci�c phases of the IMPACT compiler [13]. Classical optimizations were applied, then optimizations were

performed which increase instruction level parallelism such as loop unrolling and superblock formation [14].

The code was scheduled, register allocated, and optimized for an eight-issue, scoreboarded, superscalar

processor with register renaming. The Instruction Set Architecture supports compile-time speculation. Up

to four memory accesses can be executed per cycle. The register �le contains 64 integer registers and 64

double-precision 
oating-point registers.

5.1.2 Transformation Correctness Veri�cation via Emulation

To verify the correctness of the code transformations, emulation of the target processor architecture was

performed for all input programs on a Hewlett-Packard PA-RISC 7100 workstation.
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5.1.3 Simulation Parameters and Techniques

The emulator drives the simulator that models on a cycle-by-cycle basis the processor and the memory

hierarchy (including all related busses) to determine application execution time, cache performance and bus

utilization. The instruction latencies used are those of a Hewlett-Packard PA-RISC 7100 microprocessor, as

given in Table 2.

The memory hierarchy includes separate L1 instruction and data caches. The L1 instruction cache is a

direct-mapped, 32K-byte split-block cache with a 64-byte block size. The L1 data cache is a direct-mapped,

16K-byte non-blocking cache with a 32-byte block size. The data cache is a multiported, write-back, no

write-allocate cache that satis�es up to four load or store requests per cycle from the processor and has

streaming support. Up to 50 load misses can be outstanding simultaneously on the bus connecting the L1

and L2 data caches. An 8-entry write bu�er combines write requests to the same cache block. The instruction

cache and data cache share a common, split-transaction L1-L2 bus, with a 4 cycle latency and 8 bytes/cycle

data bandwidth. The memory hierarchy also includes a direct-mapped, 256K-byte non-blocking L2 data

cache with a 64-byte block size. This cache is also write-back and no write allocate. Up to 50 load misses

can be outstanding simultaneously from the L2 data cache on the system bus, which is split-transaction with

a 50 cycle latency to memory and 8 bytes/cycle data bandwidth.

A direct-mapped branch target bu�er with 1024 entries is used to perform dynamic branch prediction

using a 2-bit counter. Hardware speculation is supported, and the branch misprediction penalty is approxi-

mately two cycles.

Since simulating the entire applications at this level of detail would be impractical, uniform sampling

is used to reduce simulation time [15], however emulation is still performed between samples. The samples

are 200,000 instructions in length and are spaced evenly every 20,000,000 instructions, yielding a 1% sam-

pling ratio. For smaller applications, the time between samples is reduced to maintain at least 50 samples

(10,000,000 instructions). From experience with the emulation-driven simulator, we have determined that

sampling with at least 50 samples introduces typically less than 1% error in generated performance statistics.

5.1.4 Experimental Con�gurations

Three di�erent con�gurations (in addition to the base con�guration described above) were simulated. First,

a traditional victim caching scheme was simulated, in order to compare the new methods presented in this

paper with an existing method of reducing con
ict misses. A 64-entry L1 victim cache and a 512-entry L2



Technical Report IMPACT-96-01 15

victim cache are used in this con�guration. The sizes we have chosen for the victim caches are rather large

to make a fair comparison with our scheme using similar amounts of extra hardware.

The next con�guration is the basic MAT scheme presented in Section 4.1. In this case two independent

MATs are used, an L1 MAT and an L2 MAT. Each MAT operates independently of the other, so the L2

MAT only re
ects the accesses that missed in the L1 cache and therefore accessed the L2 cache. On an

L1 bypass eight bytes are fetched, while 32 bytes are fetched on an L2 bypass (we fetch the L1 block size

because the L1 access is not guaranteed to bypass as well). Both MATs use the same value of thresh, and

values of both 0.5 and 1.0 are investigated. Also, several di�erent MAT sizes were simulated.

The third con�guration is the improved MAT scheme presented in Section 4.2. The fully-associative

bu�ers used to hold the bypassed data at the L1 and L2 caches contain 32 and 256 entries, respectively

(half as many entries as the corresponding victim caches from the �rst con�guration). The line sizes are also

smaller than in the victim caches, because the victim cache must hold the entire cache block, while the L1

and L2 bypass bu�ers only need to hold the amount of data fetched on a bypass, which is the element size

and the L1 cache block size, respectively.

We �rst present results for an in�nite-entry MAT, then study the e�ects of limiting the number of entries

in the MAT.

5.1.5 Benchmarks

Four benchmarks were simulated under each of the con�gurations from Section 5.1.4. The �rst, 026.compress,

is from the SPEC'92 benchmark suite, and was discussed in detail in Section 3.1. The second benchmark,

099.go, is from the SPEC'95 benchmark suite. The other benchmarks from the SPEC benchmark suites

had high hit ratios initially 5 and are not likely to bene�t as much from data cache optimizations. Instead,

the remaining benchmarks consist of modules from the IMPACT compiler. The �rst of these benchmarks,

lmdes2 customizer, optimizes a machine description for e�cient use by the IMPACT compiler. These opti-

mizations operate over linked list and complex data structures, and utilize hash tables for e�cient access to

the information. The SuperSPARC machine description �le is used as input to this benchmark. Pcode, the

front end of IMPACT, is the second IMPACT benchmark and is run performing dependence analysis with

the internal representation of the combine.c �le from GNU CC as input.

5This has been noted previously for the SPEC'92 benchmarks in published results [16]. Our own experiments verify this

and also show that it is the case for many of the SPEC'95 benchmarks.
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5.2 Results

Figure 7a shows the speedup of each benchmark for the basic MAT scheme (no bu�ers) with an in�nite-entry

MAT. Compress improves under all thresh values and macroblock sizes. It achieves a performance gain of

over 8%, with 1K macroblocks and a thresh of 1. This suggests that compress is amenable to agressive

bypassing. However, all of the other benchmarks degrade in performance for all 4 con�gurations. This is

due to the phenomenon noted in Section 4.2, wherein the small amounts of temporal locality that exist in

the infrequently accessed macroblocks cannot be exploited after bypassing.

The improved MAT scheme, which places the bypassing data in a small bu�er, yields much better results,

as shown in Figure 7b. All benchmarks now achieve performance improvements for all of the con�gurations.

Compress improves the most, yielding over 12% improvement for 1K macroblocks and a thresh of 1. The

same values of macroblock size and thresh also give the best performance for Pcode, achieving nearly 12%

improvement, and go, while lmdes2 customizer achieves slightly more improvement with 4K macroblocks.

For all benchmarks a thresh of 1 achieves better results than a thresh of 0.5. The bypassing bu�ers allow

this aggressive bypassing to occur, and these results suggest that the bu�ers hold the data for long enough

in most cases to amend any incorrect bypassing decisions made by the higher thresh value.

Also shown in Figure 7b are the speedups attained by the victim caches discussed in Section 5.1.4.

Although the victim caches are large, they attain smaller speedups than those obtained by the improved

MAT scheme, except for go with a thresh of 0.5. However, all con�gurations with thresh values of 1 greatly

outperform the victim caches. We saw in Section 3.1 that the hash table sizes used by compress were

extremely large, and resulted in many con
ict misses. This fact is underlined by the extremely small

speedup achieved by the victim caches (0.26%). Thus, the combination of a 64-entry L1 victim cache and a

512-entry L2 victim cache is still too small to hold a signi�cant portion of the con
icting data.

Figure 8a shows the utilization of the system bus (connecting the L2 cache with the main memory) for

the improved MAT scheme with an in�nite-entry MAT. The reduction in bus tra�c is due to both the

improvements in hit ratio, and to the reduced data request size for bypassing data.

The L1 data cache read hit ratios for the same con�guration are shown in Figure 8b. Surprisingly, the

hit ratios for compress improve the least, while compress achieved the largest speedup. From the memory

access distributions of Figure 2 we see that the heavily accessed portions of htab and codetab alone total

much more than 16K bytes, so although the MAT allows us to keep only heavily accessed data cached,

di�erent blocks from the heavily accessed regions will still replace each other frequently. However, this small
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Figure 7: Speedup with the Basic and Improved MAT Schemes (in�nite-entry MAT).
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Figure 8: Bus Utilization and Read Hit Ratio for the Improved MAT Scheme (in�nite-entry MAT).

improvement in hit ratio and the reduced bus tra�c from the smaller request size of the bypassing data

together achieve a signi�cant speedup. The improvements in the L2 data cache read hit ratio are slightly

higher, but are more di�cult to interpret, as the number of read requests reaching the L2 cache changes for

each of the con�gurations.

However, the non-blocking caches can result in di�erent amounts of e�ective memory latency seen by

the processor, depending on how many miss requests are outstanding when an access occurs. Therefore,

di�erent misses stall the processor for di�erent numbers of cycles, so the hit ratios may not be indicative

of the overall performance. A more meaningful metric is the average miss penalty, or the average number

of cycles the processor is stalled on the data cache per load access 6. Figure 9 shows these values for the

6This is calculated by dividing the number of cycles the processor stalled on a use of outstanding data by the total number

of load accesses
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Figure 9: Average Miss Penalty per Load Access for the Improved MAT Scheme (in�nite-entry MAT).

improved MAT scheme. The average miss penalties correspond better than the hit ratios with the speedup

results shown in Figure 7b.

Figure 10 suggests that the MAT is doing a very good job of deciding which data to bypass for compress.

Figure 10a shows the memory access distribution for both htab and codetab, for the same execution phase

shown in Figure 2. Figure 10b has the same y-axis, memory addresses, and lines up with Figure 10a. The

x-axis of Figure 10b is the ratio of times that a missing access was instructed by the MAT to bypass the

cache. We can see that the very heavily accessed portions of the hash table bypass very rarely. The sparsely

accessed portion of codetab, roughly between address o�sets 100000 and 170000, bypasses almost 100% of

the time. The sparsely accessed portion of htab bypasses about 50% of the time on average. As noted in

Section 3.1, htab is accessed more often than codetab, so it has a less sparse access distribution than codetab

and therefore bypasses less often.

To study the e�ects of a �nite-size MAT we chose to simulate the improved MAT scheme with both

512 and 1K-entry direct-mapped MATs. These sizes were chosen because their hardware cost is reasonable,

as will be discussed in Section 5.3, but yet they were large enough to hold most of the macroblocks for

each of the benchmarks. The bypassing choices should be more conservative as the number of entries in

the MAT is decreased, since we do not bypass unless both counters are found in the MAT, as discussed in

Section 4.1. Table 3 shows the number of macroblocks accessed by each benchmark for both the 1K and 4K

macroblock sizes. Even though lmdes2 customizer and go access less macroblocks than the number of entries

in the MAT sizes we chose, there can still be some e�ects due to the direct-mapped associativity of the MAT

and the fact that the macroblocks are not likely to be contiguous. This e�ect causes lmdes2 customizer

to degrade slightly for a thresh of 1.0, as well as Pcode for the 1K-entry MAT and 4K-byte macroblocks.
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Figure 10: Compress Distribution and Bypassing Ratio Comparison (Improved MAT Scheme, in�nite-entry
MAT).

Macroblocks Accessed

Benchmark 1K Size 4K Size

026.compress 548 139

Pcode 2955 798

lmdes2 customizer 342 96

099.go 238 104

Table 3: Number of Macroblocks Accessed.

Pcode is also a�ected by the limited entries MAT for the con�gurations with more macroblocks than MAT

entries. One anomaly is that several con�gurations have slight performance improvements after reducing the

MAT entries. For example, compress with a thresh of 0.5 and 1K-byte macroblocks improves slightly when

going from the 1K-entry MAT to a 512-entry MAT. This is probably due to the more conservative bypassing

choices avoiding some incorrect bypasses. Several Pcode con�gurations improve similarly.

5.3 Design Considerations

The additional hardware cost incurred by the improved MAT scheme (MAT with bu�ers) is small compared

to doubling the cache sizes at each level. This is particularly true for the L2 cache, but is also the case for

the L1 cache (which uses the same size MAT).

For the 16K-byte direct-mapped L1 cache used to generate the results of Section 5.2, 18 bits of tag are

used per entry (assuming 32-bit addresses). Doubling this cache will result in 17-bit tags. Because the line
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Figure 11: Speedup with the Improved MAT Schemes (1K and 512-entry MAT).
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size is 32 bytes, the total additional cost of the increased tag array will be 17 � 210 � 18 � 29, which is 1K

bytes 7. Besides the larger tag array cost, an extra 16K of data is needed.

For a direct-mapped MAT with 8-bit counters, Table 4 gives hardware cost of the data and tags for the

MAT and macroblock sizes discussed in Section 5.2. Since all addresses within a macroblock map to the

same MAT counter, a number of lower address bits are thrown away when accessing the MAT, as shown in

Figure 12. The size of the resulting MAT address, used to access the MAT, is shown in column 4 of Table 4.

The cost for the L1 bu�er, which is a fully-associative 32-entry cache with 8 byte lines, is 256 bytes of

data and 96 bytes of tag (the tags will each be 24 bits). Although the tag store is fully-associative in design,

it is small in size, which makes the total cost of the additional tag and data arrays for the improved MAT

7We are ignoring the valid bit and other state, which is conservative since the number of these bits per entry is the same or
less in the MAT, and because the number of entries created when doubling the cache is larger than the number of entries in

the MAT
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MAT Data Cost Macroblock Size of MAT Tag Size Tag Cost

Entries (bytes) Size Address (bits) (bits) (bytes)

512 512 1K 22 13 832

4K 20 11 704

1K 1K 1K 22 12 1536

4K 20 10 1280

Table 4: Hardware Cost of 512 and 1K entry MATs.

scheme much less than that of increasing the data cache size.

A similar calculation will show that a 64-entry victim cache requires 2K bytes of data and 168 bytes of

tag, which is slightly more than the total cost of the improved MAT scheme with a 512-entry MAT and a

32-entry bypass bu�er, and slightly less than with a 1K-entry MAT and 32-entry bypass bu�er. For a similar

cost of tags and data, the results presented in Figures 7b and 11 show that the improved MAT scheme almost

always performs much better than victim caching, especially for compress and Pcode.

To make the hardware cost even lower, we could potentially integrate the MAT with the TLB and page

tables. For a macroblock size larger than or equal to the page size, each TLB entry will need to hold only

one 8-bit counter value. For a macroblock size less than the page size, each TLB entry needs to hold several

counters, one for each of the macroblocks within the corresponding page. In this case a small amount of

additional hardware is necessary to select between the counter values. However, further study is needed to

determine the full e�ects of TLB integration.

6 Conclusion

In this paper we presented a method to improve the e�ciency of the caches in the memory hierarchy, by

bypassing data that is expected to have little reuse in cache. This allows more frequently accessed data to

remain cached longer, and therefore have a larger chance of reuse. The bypassing choices are made by a

Memory Address Table (MAT), which performs dynamic reference analysis in a location-sensitive manner.

Both the basic MAT scheme and an improved MAT scheme were investigated, where the latter places

bypassing data in a small fully-associative bu�er, allowing exploitation of small amounts of temporal locality

which may exist in the bypassed data. We also introduced the concept of a macroblock, which allows the

MAT to feasibly characterize the accessed memory locations.

Cycle-by-cycle simulations of several benchmarks show that signi�cant speedups can be achieved by this

technique. The speedups are due to the improved miss ratios and reduced bus tra�c, which also result in a

reduction in the average miss penalty per load. The improved MAT scheme was shown to outperform large
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victim caches, even for a �nite size MAT of a similar hardware cost.

For future work we would like to �nd a larger set of benchmark programs with signi�cant miss ratios

so that we can perform further evaluations of our scheme. We will also work on more sophisticated MAT

counter algorithms, beyond the simple reference count of this design. TLB integration is another area of

future investigation, as mentioned earlier. In general, we believe that the schemes presented in this paper

can be extended into a more general framework for runtime management of the cache hierarchy.
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