
HMDES Version 2.0 Speci�cation

John C. Gyllenhaal Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois, Urbana-Champaign, IL 61801

gyllen, hwu@crhc.uiuc.edu

http://www.crhc.uiuc.edu/Impact/

B. Ramakrishna Rau

Hewlett Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94304

rau@hpl.hp.com

Technical Report IMPACT-96-3

Contents

1 Introduction 4

2 The MD Language 6

2.1 Creating New Sections And Referencing Existing Sections : 7
2.2 Declaring Fields For New And Existing Sections : 7
2.3 Creating New Entries And Modifying Existing Entries : 10
2.4 Modifying Field Values : 11

3 The MD Preprocessor 12

3.1 Comment Handling : 12
3.2 File Inclusion : 12
3.3 Text Replacement : 12
3.4 Integer Expression Evaluation : 15
3.5 Conditional Inclusion : 16
3.6 Range Expansion : 17
3.7 Looping Over Text : 17
3.8 Preprocessor Output : 18
3.9 Preprocessor Directive Precedence : 18

4 Format Information 20

4.1 Field Type : 20
4.2 Operation Format : 21

5 Resource Usage Information 22

5.1 Resource : 24
5.2 Resource Usage : 25
5.3 Resource Unit : 26
5.4 Table Option : 28
5.5 Reservation Table : 29

6 Latency Information 29

6.1 Operand Latency : 30
6.2 Operation Latency : 31

7 Operation Information 35

7.1 Scheduling Alternative : 35
7.2 Operation : 38
7.3 IMPACT Operation : 40

8 Register Information 40

8.1 Register Overlap : 42
8.2 MDES-Driven Register Allocation : 44

9 Compiler-Speci�c Information 46

9.1 Parameter : 47
9.2 IMPACT Alt Flag : 48
9.3 IMPACT Operation Flag : 49

A Initial speci�cation of structure pristine.hmdes2 51

B Initial speci�cation of PA 7100 pristine.hmdes2 55

2

C Initial speci�cation of structure IMPACT.hmdes2 68

D Initial speci�cation of PA 7100 IMPACT.hmdes2 71

3

Technical Report IMPACT-96-3 4

1 Introduction

This document is an initial speci�cation of how a compiler-independent machine description should be

written in the MD language (one that both HP labs and IMPACT can share) and how an compiler-speci�c

machine description could be built on top of this machine description (I.e, for IMPACT or Elcor). Since the

machine descriptions for both IMPACT and Elcor continue to evolve, their current state may not be perfectly

re
ected in this speci�cation (accurate as of October 1995). In addition, the compiler-independent/compiler-

speci�c division has not yet been set in stone. Both are described in this document to provide some context

for the compiler-independent machine description and to allow easy moving of the division between the

compiler-independent and compiler-speci�c information.

This speci�cation document starts with an overview of the MD language in Section 2. The MD language

will be extensively used in this speci�cation to de�ne the structure and contents of a machine description.

Section 3 then describes the syntax and features of the MD preprocessor. MD preprocessor's directives will

be used in many of the machine description speci�cation examples to illustrate how they can be used to

write concise machine descriptions.

The remaining sections of this speci�cation describe how a compiler-independent and a compiler-speci�c

machine description can be written using the MD language. The structural overview of the MD sections

used to represent a machine description is shown in Figure 1. The interconnection between MD sections are

represented by arrows between the section names. The compiler-independent machine description sections

and interconnections are shown with bold type and arrows. One possible way to build a compiler-speci�c

machine description for IMPACT, on top of the compiler-independent machine description, is shown with

highlighted type and arrows.

This machine description speci�cation breaks down the machine description into six types of information,

denoted by the labeled dashed boxes in Figure 1. Format information, described in Section 4, speci�es what

operands are allowed by each type of operation. Resource usage information, described in Section 5, speci�es

how operations use the processor's resources as they execute. Latency information, described in Section 6,

speci�es how to calculate dependence distances between operations. Operation information, described in

Section 7, speci�es the operations supported by the architecture and describes them in terms of format,

resources usage, and latency information. Register information, described in Section 8, speci�es how registers

overlap and, in IMPACT's description, the information necessary to do register allocation. Compiler-speci�c

information, described in Section 9, speci�es any other information that the compiler needs in the machine

Technical Report IMPACT-96-3 5

Operation

Scheduling_Alternative

Register

Field_Type

Operation_Format

Operand_Latency

Operation_Latency

Resource_Usage

Resource_Unit

Table_Option

Reservation_Table

Resource

Registers Operations

LatencyFormat

ParameterIMPACT_OperationRegister_File

Register_Class

Flags

IMPACT_Operation_Flag

IMPACT_Alt_Flag

Resource Usage

Figure 1: Structural overview of the machine description. Bold section names and arrows indicates compiler-
independent features. Highlighted section names and arrows indicates IMPACT-dependent features.

description.

The examples in this document are taken from a prototype machine description of the PA-7100 based on

the this document's speci�cations. The compiler-independent section de�nitions, which should be included

at the top of all compiler-independent machine descriptions, can be found in \structure pristine.hmdes2"

shown in Appendix A. The compiler-independent description of the PA-7100 based on these de�nitions can

be found in \PA 7100 pristine.hmdes2" shown in Appendix B.

The IMPACT-dependent section de�nitions, which should be included in all IMPACT machine descrip-

tions �les after including the pristine machine description �le, can be found in \structure IMPACT.hmdes"

shown in Appendix C. Appendix D, \PA 7100 IMPACT.hmdes2", contains the IMPACT-dependent descrip-

tion of the PA-7100, which includes and expands upon the compiler-independent description.

Technical Report IMPACT-96-3 6

2 The MD Language

The MD language, used in conjunction with the the MD libraries and tools, represents structured information

in a way that is easy to read, modify, and write, for both a compiler and the compiler's users. It is a powerful

language, designed so that it can be used to write complex machine descriptions, as described in Sections 4-9.

It also has features to facilitate a hierarchical speci�cation of structured information, where each level in the

hierarchy can be placed in a separate MD �le. These features are useful when writing machine descriptions

because they allow compiler-speci�c machine descriptions to be built on top of compiler-independent machine

descriptions, and they allow variations of an architecture to be built on top of the base architecture's machine

description. These features also allow MD declarations de�ning the machine description's overall structure to

be placed in a separate �le that then can be included in all the machine descriptions. Lastly, the MD language

supports powerful preprocessing directives, described in Section 3, that facilitates concise representation of

structured information.

Structured information that is being represented in the MD language is �rst broken down into sections,

based on a high-level classi�cation of the information being represented. For example, a machine description's

information might be broken down so that one section contains the description of the processor's resources,

another the description of the processor's instruction set, a third the description of the processor's registers,

and so on. Then, the information represented in each section is broken down into individual entries. For

example, in a machine description, there might be an entry for each resource in the processor, for each

assembly instruction in the processor, and for each of the processor's registers. Lastly, information about

each entry is broken down into MD �elds, based on a low-level classi�cation of the information. For example,

entries describing processor registers might use one �eld to specify the register's width and another �eld to

specify the name of the registers that overlap this register. The MD �elds are declared in each section to

allow type checking to be done.

The rest of this section describes the details of representing structured information in the MD language.

Section 2.1 describes how MD sections are created and referenced. Section 2.2 describes how to declare

each section's MD �elds. Section 2.3 describes how the add new MD entries and how to add additional

information to existing MD entries. Section 2.4 describes how to modify the contents of �elds that already

have been speci�ed.

Technical Report IMPACT-96-3 7

2.1 Creating New Sections And Referencing Existing Sections

The command to create a new section with the name `section name' has the following form:

CREATE SECTION section_name

{

}

Each section may only be created once. To reference an existing section, remove the `CREATE' keyword.

Field declarations (described in Section 2.2) are placed between the section name and the opening curly

brace (`f'). The section's entries (described in Section 2.3) are placed between the opening (`f') and closing

(`g') curly braces for the section. The section name must be a legal C identi�er, where a legal C identi�er

starts with a letter or an underscore () and may only contain letters, numbers and underscores.

Example 2.1.1: In Figure 2, the section `usage' is �rst created, then referenced again later by removing

the `CREATE' keyword. Field declarations, entry creations, and entry modi�cations may be done when the

section is created and/or referenced, as illustrated by the comments in the �gure.

// Create the section `usage'

CREATE SECTION usage

// Field declarations may go here

{

// Entries may be created and/or modified here

}

// Reference the existing section `usage'

SECTION usage

// Additional field declarations may go here

{

// Entries may be created and/or modified here

}

Figure 2: An example of creating and referencing a section, described in Example 2.1.1.

2.2 Declaring Fields For New And Existing Sections

Field declarations are placed between the section name and the opening `f' when creating new or referencing

existing sections, as was just illustrated in Example 2.1.1. Note that �eld declarations may be added to a

section even after entries for that section have been made.

Technical Report IMPACT-96-3 8

Each �eld declaration consists of a �eld type (REQUIRED, OPTIONAL, or IGNORED), the �eld's name,

and a declaration of the expected contents of the �eld (a list of zero or more element types (INT, FLOAT,

STRING, or LINK(section1jsection2j...jsectionN))). The form of a �eld declaration is as follows:

FIELD_TYPE field_name (ELEMENT_TYPE1 ELEMENT_TYPE2 ... ELEMENT_TYPEn);

The last element type may be Kleene starred (an `*' after the element type), if 0 or more element of that

type are allowed. This is useful when a �eld may contain a variable length list of elements.

The �eld types are used indicate how the �elds should be handled by MD compiler. The supported three

�eld types are:

1. REQUIRED: Indicates that the contents of this �eld is required to be speci�ed for every entry in this
section, after all the MD commands in the �le have been processed. Note that required �elds to not
have to be speci�ed when an entry is created, as long as they are speci�ed before the end of processing.

2. OPTIONAL: Indicates that the contents of this �eld is not required to be speci�ed for every entry in
this section.

3. IGNORED: Indicates that, if the contents for this �eld is speci�ed, that it will be ignored. This last
�eld type is useful for "commenting out" �elds out of an existing MD �le. This feature is not currently
implemented but will be soon.

The element types are used to specify the type of information may be placed in the �eld. The four

element types supported are:

1. INT: An integer is expected. Decimal, hex and octal bases are supported. For hex, pre�x with `0x'.
For octal, pre�x with `0'.

2. FLOAT: An
oating point number is expected. C-style scienti�c notation is supported.

3. STRING: A 'single quoted string', a "double quoted string", or a whitespace delimited string, that
does not contain an unbackslashed MD delimiter (() [] f g < > ; ' " * ! j), is expected. A string
may not contain newlines, or be speci�ed across multiple lines. Quotes, backslashes, and other special
characters can be included in a string by proceeding the special character by a backslash. In the rare
cases where the information type is variable, the STRING type can be used to get a string version of
the information to the compiler which it can convert to the desired type.

4. LINK(section1jsection2j...jsectionN): The name of an entry, from one of the sections speci�ed in the
declaration, is expected. The name must also uniquely identify an entry in one of the sections speci�ed,
ambiguous links are not allowed. In addition, an entry must be created in the MD �le before it can
be referenced by a link (no forward references are allowed). After the entire MD �le is processed, the
information is scanned for ambiguous links caused by entries created after the link was made.

Example 2.2.1: In Figure 3, a section `example' is created that has three �elds declared. The �rst �eld,

`number', is a required �eld, and expects exactly one integer to be speci�ed for it. The second �eld, `list',

is also a required �eld, and expects zero or more integers to be speci�ed (the INT is Kleene starred). The

Technical Report IMPACT-96-3 9

third �eld, `list2', is an optional �eld, and expects one or more integers to be speci�ed. Note that specifying

a �eld's contents to be nothing (an empty list), is not equivalent to leaving the �eld's contents unspeci�ed.

Thus the `list' �eld is required to be speci�ed, even if contents of this �eld is set to be nothing. Also, the

`list2' �eld is not required to be speci�ed for any of the entries, but if it is, the �eld's contents must be

speci�ed to be a list of one or more integers.

CREATE SECTION example

REQUIRED number(INT);

REQUIRED list(INT*);

OPTIONAL list2(INT INT*);

{

}

Figure 3: An set of example �eld declaration, described in Example 2.2.1.

Example 2.2.2: In Figure 4, two sections, `example1' and `example2', are created and several �elds are

declared using element types other than INT. The only �eld declared in the example1 section, `subproblems',

is an optional �eld, and allows zero or more entry names from the example1 section to be speci�ed. This

type of �eld is useful when an entry can be related to other entries in a single section.

The �rst �eld declared in the example2 section, `examples', is a required �eld, and allows zero or more

entry names from either the example1 section or the example2 section to be speci�ed. This type of �eld is

useful when an entry can be related to more than one section, in a
exible way. The second �eld declared in

the example2 section, `misc', is an optional �eld, and expects three elements of information, an int, a
oat,

and a string, to be speci�ed.

CREATE SECTION example1

OPTIONAL subproblems(LINK(example1)*);

{

}

CREATE SECTION example2

REQUIRED examples(LINK(example1|example2)*);

OPTIONAL misc(INT FLOAT STRING);

{

}

Figure 4: An more complex set of �eld declaration, described in Example 2.2.2.

Technical Report IMPACT-96-3 10

2.3 Creating New Entries And Modifying Existing Entries

Directives to create or modify existing entries for a section are placed between the section's open `f' and

close `g'. An entry is created or modi�ed using directives with the following form:

entry_name (field1_name(field1_contents) ...

fieldN_name(fieldN_contents));

The entry's name must be either a valid C identi�er or a quoted string (the quotes are not considered

part of the entry's name). The �rst time an entry's name is encountered in a section, an entry with that

name is created. The contents of some, or all, of that entry's �elds can then be speci�ed between that

entry's opening '(' and closing ');'. The contents of a �eld is speci�ed by using directives of the form

field_name(field_contents), as shown above.

An entry may be modi�ed later by specifying the entry's name again in the section. The contents

of previously unspeci�ed �elds can be then speci�ed, or the contents of previously speci�ed �elds can be

modi�ed, using the directives described in Section 2.4.

Example 2.3.1: In Figure 5, two entries, `usage1' and `usage2', are described. The �rst entry, `usage1',

has the contents for �elds `time1' and `time2' speci�ed when it is created. To show how entry information

can be speci�ed in a piecemeal fashion, the second entry, `usage2', is �rst created with nothing about its

�elds speci�ed. Then, on the next line, the contents of `time2' is speci�ed. Later, when the section `usage'

is referenced again, the contents of `time1' is �nally speci�ed. As mentioned in Section 2.2, even though

`time1' is a required �eld, it does not need to be speci�ed right away.

CREATE SECTION usage

REQUIRED time1(INT*);

OPTIONAL time2(INT*);

{

usage1 (time1(1) time2(3 4));

usage2 ();

usage2 (time2(8 9));

}

SECTION usage

{

usage2 (time1(7))

}

Figure 5: An example of entry creation and modi�cation, described in Example 2.3.1.

Technical Report IMPACT-96-3 11

2.4 Modifying Field Values

The contents of an already speci�ed �eld can be modi�ed using two di�erent �eld modi�ers. The �rst �eld

modi�er, the concat modi�er `jj', has the following form:

field_name||(element1 element2 ... elementN)

The concat modi�er causes element1 thru elementN to be appended to the elements already speci�ed

for that named �eld. This modi�er may only be used with �elds declared with a Kleene star. The concat

modi�er may be used on an unspeci�ed �eld, if that �eld allows zero or more elements to be speci�ed.

Example 2.4.1: In Figure 6, the contents of the �eld `times' is �rst speci�ed as a list of one number,

'1'. Then, using the concat modi�er, the contents of `times' �eld becomes a list of three numbers, `1 2 3'.

CREATE SECTION usage

REQUIRED times(INT*);

{

usage1 (times(1))

usage1 (times||(2 3));

}

Figure 6: An example of concatenating to a �eld's contents, described in Example 2.4.1.

The second modi�er is the replace �eld modi�er `!' and it has the following form:

field_name!(element1 element2 ... elementN)

This modi�er replaces the contents of the �eld with the new contents speci�ed. This modi�er may be

used even if the �eld was previously unspeci�ed.

Example 2.4.2: In Figure 7, the contents of `times' is �rst speci�ed as a list of one number, '1'. Then,

using the replace modi�er, the contents of `times' is then speci�ed as a list of two numbers, '2 3'.

CREATE SECTION usage

REQUIRED times(INT*);

{

usage1 (times(1));

usage1 (times!(2 3));

}

Figure 7: An example of replacing a �eld's contents, described in Example 2.4.2.

Technical Report IMPACT-96-3 12

3 The MD Preprocessor

The MD preprocessor was designed to facilitate the writing of machine descriptions in the MD language.

It is based on the C preprocessor and the Unix C shell language. It is a fully recursive implementation,

allowing the nesting of preprocessor directives.

3.1 Comment Handling

The MD preprocessor strips out both nested C-style comments (/* */) and C++-style line comments (//).

Comments are removed before any other processing is done, so it is safe to use a C++-style comment in a

text replacement directive (unlike in the C++ preprocessor).

3.2 File Inclusion

To include the text of another �le into the �le being preprocessed, the include directive shown below is used:

$include "name_of_file_to_include"

The $include directive must be placed at column 0, and nothing else may be placed on that line.

3.3 Text Replacement

The $def text replacement directive has the following two forms:

$def def_name def_value

$def def_name {bounded_def_value}

where the def name must be a valid C identi�er. To make rede�nitions of def name easier, text replacement

is suppressed for def name in the $def directive. If it is desired that def name be replaced before the $def

directive is processed, the `force replacement' directive ($fdef nameg, described later) can be used.

In the �rst form, def value is taken to be everything between def name and the end of the line, with

leading and trailing whitespace removed. This form is analogous to the C #de�ne directive.

In the second form, bounded def value is taken to be everything between the `f' and `g'. The bounded def value

may include newlines and matched pairs of curly brackets fg. Single curly brackets should be backslashed.

Just like in the C preprocessor, text replacement occurs on any clearly delimited name that has been

de�ned to a value. Also, just like in Unix C shell scripts, text replacement can occur in double quoted text

but text replacement is prevented between single quoted text. The MD language (Section 2) treat both types

Technical Report IMPACT-96-3 13

of quoted strings identically, so the only diference is in how the contained text is preprocessed. Newlines

may not occur in quoted text.

As with the C preprocessor, text replacement directives may be issued on the MD preprocessor command

line with an -Dname=value. Also, as with Unix C shell scripts, Unix environment variables may be accessed,

with the force replacement directive $fnameg described a little later. Command line directives override

directives in the text, and both command line and text directives override the unix environment variables.

Example 3.3.1: The two di�erent forms of the $def directive, and the e�ect of quotes, are shown in

Figure 8.

$def NAME1 name1 text

$def NAME2 { name2 text }

"NAME1" "name1 text"

"NAME2" " name2 text "

'NAME1' 'NAME1'

(a) Before Preprocessing (b) After Preprocessing

Figure 8: A example using the two forms of the $def text replacement directive. The e�ects of single and
double quotes on text replacement is also shown.

Text replacement can be forced, or unix environment variables can be accessed, using the `force replace-

ment' directive, which has the following form:

${name}

MD preprocessor command line text replacement directives have highest precedence, so `name' is de�ned

on the command line, that replacement text will be used. If `name' is not de�ned on the command line, but

in the text, that replacement text will be used. Otherwise, if `name' is an Unix environment variable, the

variable's value will be used. If `name' is not de�ned anywhere, then an error will occur.

Example 3.3.2: The `force replacement' directive is useful for concatenating text, as shown in Figure 9.

$def OP_NAME sub

OP_${OP_NAME} OP_sub

(a) Before Preprocessing (b) After Preprocessing

Figure 9: A example using the force replacement directive $fnameg.

Technical Report IMPACT-96-3 14

Text replacement can be prevented for a name using the `prevent replacement' directive which has the
following form:

$\name

Example 3.3.3: The `prevent replacement' directive is useful determining what a name is de�ned to, as

shown in Figure 10.

$def I 1

$\I = I I = 1

$def I 2

$\I = I I = 2

(a) Before Preprocessing (b) After Preprocessing

Figure 10: A example using the prevent replacement directive $nname.

A text replacement directive can be nulli�ed using the $undef directive, which has the following form:

$undef name

Example 3.3.4: The $undef directive can be used to prevent replacement for the rest of the text, as

shown in Figure 11.

$def I 3

$\I = I I = 3

$undef I

$\I = I I = I

(a) Before Preprocessing (b) After Preprocessing

Figure 11: A example using the $undef directive.

It is often useful in conditional constructs (Section 3.5) to be able to determine if a name has been
de�ned. The `is de�ned?' directive serves this purpose and has the following form:

$?{name}

Example 3.3.5: The text if Figure 12 shows what $?fnameg is replaced with when name is not de�ned,

and when it has been de�ned to a value.

Technical Report IMPACT-96-3 15

Before $\I defined = $?{I} Before I defined = 0

$def I 10

After $\I defined = $?{I} After I defined = 1

(a) Before Preprocessing (b) After Preprocessing

Figure 12: A example showing the two possible values substituted in for the $?fnameg directive.

3.4 Integer Expression Evaluation

The form of the directive to replace an integer expression with its integer value is:

$={expr}

where expr is any integer C-style expression. The operators allowed in expressions and their relative

precedence level is shown in Figure 13.

() <- Highest precedence

! ~ +(unary) -(unary)

* / %

+ -

<< >>

< <= > >=

== !=

&

^

|

&&

|| <- Lowest precedence

Figure 13: The relative precedence of $=fexprg operators.

Example 3.4.1: A example calculation of two values using $=fexprg is shown in Figure 14

$={5 + -1} 4

$={((10 * 5) + 2)/5} 10

(a) Before Preprocessing (b) After Preprocessing

Figure 14: A example using $=fexprg directive.

Technical Report IMPACT-96-3 16

3.5 Conditional Inclusion

Text may be conditionally included, and preprocessor directives may be conditionally executed, using the

following \conditional inclusion" directives:

$if(cond){body}

$elif(cond){body}

$else{body}

Zero or more $elif directives may be used after an $if directive, and the $else directive is optional.

Example 3.5.1: In Figure 15, conditional inclusion directives are used to determine if `NUM' has been

de�ned to `1'. In Figure 16, conditional inclusion directives are used �rst to set `NUM' to `5', if it has not

already been de�ned to a value, and then to determine which of three ranges the value of `NUM' falls into.

$def NUM 5

$if(NUM == 1) {one} not one

$else {not one}

(a) Before Preprocessing (b) After Preprocessing

Figure 15: A simple example using conditional inclusion directives, described in Example 3.5.1.

Before $\NUM = NUM; Before NUM = NUM;

$if(!$?{NUM}) (Defining NUM)

{(Defining NUM) $def NUM {5}} After NUM = 5;

After $\NUM = NUM; NUM > 4

$if(NUM == 1) {$\NUM = 1}

$elif(NUM < 4) {$\NUM < 4}

$else{$\NUM > 4}

(a) Before Preprocessing (b) After Preprocessing

Figure 16: An more complex example using conditional inclusion directives, described in Example 3.5.1.

Technical Report IMPACT-96-3 17

3.6 Range Expansion

A range of signed integers can be expanded into a list of numbers using the \range expansion" directive,

which has the following form:

$x..y

The placeholders x and y may be replaced with either a signed integer, or a parathesized expression

`(expr)'.

Example 3.6.1: An example using range expansion directive is shown in Figure 17.

$2..-2 2 1 0 -1 -2

$(5+1)..(5+5) 6 7 8 9 10

$1..(2-1) 1

(a) Before Preprocessing (b) After Preprocessing

Figure 17: Example uses of the range expansion directive.

3.7 Looping Over Text

The format of the $for directive is the following:

$for (def_name in value1 value2 ... valueN) {for_body}

where for body will be replicated for each value given and def name will be de�ned to this value.

The values may be speci�ed in one of the following ways:

� A string containing letters, numbers, ` ', `.', `+', and `-'. No whitespace allowed.

� A quoted string.

� or a string bounded by fg.

The for body will be replicated exactly as speci�ed between the bounding fg. All whitespace, including

newlines, will be replicated. A $for loop that iterates over the values `1', `3', and `2' is shown in Figure 18.

A $for loop that illustrates how the list of values is parsed is shown in Figure 19.

Technical Report IMPACT-96-3 18

$for (I in 1 3 2) {$\I=I } I=1 I=3 I=2

(a) Before Preprocessing (b) After Preprocessing

Figure 18: An example using the $for directive.

$for (I in "text 1" {text 2} text 3) "text 1"

{I text 2

} text

3

(a) Before Preprocessing (b) After Preprocessing

Figure 19: An example using the $for directive that illustrates how the value list is parsed.

3.8 Preprocessor Output

Like the C preprocessor, the preprocessor by default, outputs $line directives that tell the MD compiler

where all the preprocessed text came from. These $line directives may be turned o� with a command line

option.

3.9 Preprocessor Directive Precedence

The order that the various preprocessor tasks are performed on each piece of text is shown below:

1) comment removal

2) text replacement

3) expression calculation

4) range expansion

5) other directives, in the order encountered.

This order allows the preprocessor directives to be fully utilized while preventing some unintuitive com-

binations. For example, this order allows a $for directive to contain a range expansion that uses expressions

containing de�ned text and comments, but prevents `NAME$={1+1}' from being replaced with the de�ned

value of `NAME2'.

This concludes the description of the MD language and preprocessor. The rest of this document de-

scribes how a compiler-independent machine description and a compiler-speci�c machine description, with

Technical Report IMPACT-96-3 19

the structure shown in Figure 1, can be written in the MD language.

Technical Report IMPACT-96-3 20

4 Format Information

The machine description's format information describes what operands are supported by each of the ar-

chitecture's operations. Two MD sections, Field Type and Operation Format, are used to represent this

information. The �elds declared in each of these MD sections, and how these sections are linked together, is

shown in Figure 20.

Field Type entries are used to describe the types of operands that may be placed in the operand �elds of

an assembly operation. Operation Format entries are used to to describe the operation formats supported

by the processor, in terms of �eld types supported by each the operation's operands. The rest of this section

describes each of these MD sections in detail and provides examples of how these MD sections are used.

FORMAT

Field_Type
OPTIONAL compatible_with(LINK(Field_Type)*);

Operation_Format
OPTIONAL src(LINK(Field_Type)*);
OPTIONAL pred(LINK(Field_Type)*);

OPTIONAL dest(LINK(Field_Type)*);

(Scheduling_Alternative)

Figure 20: Structural overview of the machine description's format information.

4.1 Field Type

The various types of operands (a register, a �ve bit literal, part of an label, etc.) that may be placed in an

assembly operation are enumerated in the `Field Type' section. The MD language de�nition for this section

Technical Report IMPACT-96-3 21

is shown below:

CREATE SECTION Field_Type

OPTIONAL compatible_with(LINK(Field_Type)*);

{

}

The `compatible with' �eld is used specify other operand types that may be placed in a �eld of that

type (I.e., a �ve bit literal can be placed in a �eld big enough for an 11 bit literal). By convention, the

customizer and/or compiler is expected to use the transitive property of the `compatible with' relationship to

`�ll out' this �eld, since the mdes version 1 language used this transitive property. In general, the compiler-

independent machine description should provide as much detail as possible about �eld types and operation

formats (Section 4.2), and restrict abstractions to the compiler-speci�c part.

Example 4.1.1: The PA-7100 supports several literal widths, including several which contain the high

or low bits of a label. One way to model the �eld types supported by the PA-7100 are shown in Fig-

ure 21. By convention, the `NULL' �eld type speci�es that no operand is allowed in that �eld. Figure 22

shows this section after a mdes customizer uses the transitive property to �ll out `compatible with', so that

`compatible with' �eld explicitly lists all the �eld types each entry is compatible with.

SECTION Field_Type

{

NULL ();

REG ();

Lit5 ();

Lit11 (compatible_with(Lit5));

Label ();

Lit12 (compatible_with(Lit11 Label));

Lit14 (compatible_with(Lit12));

Lit17 (compatible_with(Lit14));

Lit21 (compatible_with(Lit17));

any (compatible_with(Lit21 REG NULL));

}

Figure 21: An example Field Type section for the PA-7100, described in Example 4.1.1.

4.2 Operation Format

The formats of the assembly-level operations supported by the architecture are enumerated in the `Opera-

tion Format' section (I.e, one operation might require that the dest be a register, that src0 be a register,

Technical Report IMPACT-96-3 22

SECTION Field_Type

{

NULL ();

REG ();

Lit5 ();

Lit11 (compatible_with(Lit5));

Label ();

Lit12 (compatible_with(Lit11 Label Lit5));

Lit14 (compatible_with(Lit12 Lit11 Lit5 Label));

Lit17 (compatible_with(Lit14 Lit12 Lit11 Lit5 Label));

Lit21 (compatible_with(Lit17 Lit14 Lit12 Lit11 Lit5 Label));

any (compatible_with(Lit21 REG NULL Lit17 Lit14 Lit12 Lit11 Lit5 Label));

}

Figure 22: The example Field Type section after a customizer expands `compatible with' as described in
Example 4.1.1.

and that src1 be a 11 bit literal). The MD language de�nition for this section is shown below:

CREATE SECTION Operation_Format

OPTIONAL dest(LINK(Field_Type)*);

OPTIONAL src(LINK(Field_Type)*);

OPTIONAL pred(LINK(Field_Type)*);

{

}

The �elds `dest', `src', and `pred' list the �eld type expected for each destination operand, source operand,

and predicate operand, respectively. By convention, if a �eld type is not speci�ed for an operand (or the

entire �eld is not speci�ed), then nothing may be speci�ed for those operands, which is equivalent to the

�elds being padded with the `NULL' �eld type. This convention requires special treatment of these �elds by

the customizer and/or compiler, perhaps by padding unspeci�ed �elds with the `NULL' �eld type.

Example 4.2.1: The PA-7100 has three standard formats for arithmetic operations, which can be

speci�ed as shown in Figure 23. As shown in this �gure, these arithmetic operations may not be predicated,

and may have only two sources and one destination. The entries `OF Std2' and `OF Std3' model the cases

where a 11 bit literal is required in src0 or src1, respectively.

5 Resource Usage Information

The machine description's resources usage information describes the processor's resources and the ways that

operations can use these resources as they execute. Five MD language sections (Resource, Resource Usage,

Technical Report IMPACT-96-3 23

SECTION Operation_Format

{

OF_Std1 (dest(REG) src(REG REG));

OF_Std2 (dest(REG) src(Lit11 REG));

OF_Std3 (dest(REG) src(REG Lit11));

}

Figure 23: An example Operation Format section enumerating the three standard arithmetic operation
formats in the PA-7100, described in Example 4.2.1.

Resource_Usage
REQUIRED time(INT INT*);
REQUIRED use(LINK(Resource));

Resource

Resource Usage

REQUIRED use(LINK(Table_Option|Resource_Unit|Resource_Usage)*);

Reservation_Table

LINK(Resource_Unit|Resource_Usage)*);
LINK(Resource_Unit|Resource_Usage)REQUIRED one_of(

Table_Option

LINK(Resource_Usage)*);
LINK(Resource_Usage)REQUIRED use(

Resource_Unit

(Scheduling_Alternative)

Figure 24: Structural overview of the machine description's resource usage information.

Resource Unit, Table Option, and Reservation Table) are used to represent this information. The �elds

declared in each of these MD language sections, and how these sections are linked together, is shown in

Figure 24.

The Resource section's entries are used to enumerate the processor's resources. The Resource Usage

Technical Report IMPACT-96-3 24

section's entries describe the times that these resources can be used. The Resource Unit section's entries

group these resource usages into more intuitive units, such as function units. The Table Option section's

entries describe the cases where one of a set of resources may be used. The Reservation Table section's

entries describe the way an operation can use the processor's resources as it executes. The rest of this

section describes each of these MD sections in detail, and provides examples of how these MD sections are

used.

5.1 Resource

The resources used as operations execute are enumerated in the `Resource' section (such as issue slots, stages

in the ialu and falu, etc.). The MD language speci�cation of this section is shown below:

CREATE SECTION Resource

{

}

There are no compiler-independent �elds declared for this section since the main purpose of this section

is to enumerate the processor's resources. By convention, the resource names do not have any implicit

meaning, they just identify the resource for later use in the machine description. If an compiler wishes to

associate some meaning with these resources, such as which resources correspond to ialu pipeline stages,

extra compiler-speci�c �elds should be added to this section for this purpose.

SECTION Resource

{

slot0 (); // Instruction issue slots

slot1 ();

fissue (); // Only one floating point operation/cycle

ialu ();

falu_s0 ();

falu_s1 ();

fmul_s0 ();

fmul_s1 ();

fmulfake (); // Used to model interlock with divide

fdiv ();

mem ();

}

Figure 25: An example Resource section enumerating the resources that can be used to model the PA-7100's
resources, described in Example 5.1.1.

Technical Report IMPACT-96-3 25

Example 5.1.1: A set of resources that can be used to model the PA-7100 is shown in Figure 25. The

PA-7100 can issue up to two operations per cycle (two `issue slots', modeled by slot0 and slot1) but is limited

to one
oating point operation and one integer operation per cycle (loads and stores are considered integer

operations). The constraint of one integer operation per cycle is modeled by the presence of only one integer

alu (ialu). There are however, several
oating point function units (falu sX, fmul sX, fdiv) in the PA-7100,

so the resource `�ssue' is used to model the limit of one
oat operation per cycle.

The
oating point alu and multiply units are fully pipelined (depth two), so both stages are modeled as

separate resources (falu s0, falu s1, fmul s0, and fmul s1). The
oating point divide is not pipelined, so only

one resource is used to model it (fdiv). The
oating point divide also shares an unspeci�ed resource with

the
oating point multiply unit that can cause the multiply to interlock for a cycle when the multiply issues

several cycles after a divide. This unspeci�ed shared resource is modeled by `fmulfake'.

The PA-7100's memory unit is modeled by `mem' and loads use both this unit and the integer alu for 1

cycle. Stores use also the memory unit, but for two cycles, and the integer unit for one cycle. Because loads

and stores use the memory unit di�erently, it was necessary to model this memory resource.

5.2 Resource Usage

Resources are used at distinct times as operations execute. For example, the
oating point add operation

uses the �rst stage of the
oating point alu one cycle before it uses the second stage. Because all these

resource usage times are relative, �xing time 0 at any point in the execution of the operation is valid. Since

scheduling is usually centered around modeling resources in the execution unit, time 0 is �xed, by convention,

to be the �rst cycle an operation spends in the execution stage (i.e., the time the operation enters a function

unit). Thus, the
oating point add operation is described as using the �rst stage of the
oating point alu

(falu s0) at time 0 and the second stage (falu s1) at time 1.

The times that resources maybe used as operations execute are enumerated in the `Resource Usage'

section. The MD de�nition of this section is shown below.

CREATE SECTION Resource_Usage

REQUIRED use(LINK(Resource));

REQUIRED time(INT INT*);

{

}

Each Resource Usage entry associates a resource `use' with a list of one or more usage times. As mentioned

Technical Report IMPACT-96-3 26

above, the �rst cycle in the execution unit is considered time 0. By convention, resources used to constrain

the number and type of operations issued (such as slot0, slot1, and �ssue) are also used at time 0.

Example 5.2.1: The Resource Usage entries that can be used to model the PA-7100 shown in Figure 26.

The naming convention used pre�xes all Resource Usage entry names with \RU ", and if the resource is used

at more than one time, post�xes the entry names with the time used (such as \ t0") or the range of times

used (such as \ t0 14").

SECTION Resource_Usage

{

RU_slot0 (use(slot0) time(0));

RU_slot1 (use(slot1) time(0));

RU_fissue (use(fissue) time(0));

RU_ialu (use(ialu) time(0));

RU_falu_s0 (use(falu_s0) time(0));

RU_falu_s1 (use(falu_s1) time(1));

RU_fmul_s0_t0 (use(fmul_s0) time(0));

RU_fmul_s0_t6_7 (use(fmul_s0) time(6 7));

RU_fmul_s0_t13_14 (use(fmul_s0) time(13 14));

RU_fmul_s1 (use(fmul_s1) time(1));

/* fmulfake used to model the interlocks between fmul and fdiv */

RU_fmulfake_t0 (use(fmulfake) time(0));

RU_fmulfake_t5 (use(fmulfake) time(5));

RU_fmulfake_t12 (use(fmulfake) time(12));

RU_fdiv_t0_7 (use(fdiv) time($0..7));

RU_fdiv_t0_14 (use(fdiv) time($0..14));

RU_mem_t0 (use(mem) time(0));

RU_mem_t0_1 (use(mem) time(0 1));

}

Figure 26: An example Resource Usage section, described in Example 5.2.1.

5.3 Resource Unit

It is often desirable to group a set of resource usages together to form more intuitive units, such as function

units or issue units. This grouping is accomplished in the machine description using the `Resource Unit'

Technical Report IMPACT-96-3 27

section. The MD de�nition of the this section is shown below:

CREATE SECTION Resource_Unit

REQUIRED use(LINK (Resource_Usage) LINK(Resource_Usage)*);

{

}

Each Resource Unit entry groups together one or more Resource Usage entries. A recommended usage

is to describe the units available in each major stage in the processor's pipeline. In example 5.3.1, units are

described for the issue stage (namely
oating point issue), and the for the execution stage (all the function

units, which may overlap in resource usage).

Example 5.3.1: One way to group Resource Usage entries for the PA-7100 is shown in Figure 27.

The entries `�ssue0 unit' and `�ssue1 unit' are used to model the two possibilities for issuing
oating point

operations (in slot0 or slot1). Both Resource Unit entries use the �ssue resource to model the constraint

that only one
oating point operation may be issued per cycle.

SECTION Resource_Unit

{

fissue0_unit (use(RU_slot0 RU_fissue));

fissue1_unit (use(RU_slot1 RU_fissue));

ialu_unit (use(RU_ialu));

ibr_unit (use(RU_ialu));

falu_unit (use(RU_falu_s0 RU_falu_s1));

fmul_unit (use(RU_falu_s0 RU_falu_s1 RU_fmul_s0_t0 RU_fmul_s1

RU_fmulfake_t0));

fmulI_unit (use(RU_falu_s0 RU_falu_s1 RU_fmul_s0_t0 RU_fmul_s1));

fdivS_unit (use(RU_fdiv_t0_7 RU_fmulfake_t5 RU_fmul_s0_t6_7));

fdivD_unit (use(RU_fdiv_t0_14 RU_fmulfake_t12 RU_fmul_s0_t13_14));

load_unit (use(RU_ialu RU_mem_t0));

store_unit (use(RU_ialu RU_mem_t0_1));

}

Figure 27: An example Resource Unit section, described in Example 5.3.1.

The fmulfake resource is used by several Resource Unit entries to model the one cycle interlock that

occurs if a
oating point multiply (fmul) is issued 6 cycles after a single-precision fdiv or 13 cycles after a

double-precision fdiv. This interlock causes the fmul to take three cycles instead of the normal two cycles.

The Resource Unit entry fmul unit models the two cycle fmul, and its use of fmulfake resource con
icts with

the fdivS unit and fdivD unit, when the fmul should interlock. The fmulI unit entry models the interlocked,

three cycle fmul, and it doesn't use the fmulfake resource. In the Scheduling Alternative entry for the fmul

Technical Report IMPACT-96-3 28

(Example 7.1.1), the use of fmulI unit will imply a three cycle latency and the use of fmul unit will imply a

two cycle latency.

5.4 Table Option

It is often the case that operations have some
exibility in terms of the resources they use during execu-

tion. For example, there may be several function units capable of executing the operation. This
exible

use of resources is modeled using Table Option entries, where one of a set of Resource Usage entries (de-

scribed in Section 5.2) and/or Resource Unit entries (described in Section 5.3) may be selected from. The

`Table Option' section is described by the following MD declaration:

CREATE SECTION Table_Option

REQUIRED one_of(LINK(Resource_Unit|Resource_Usage)

LINK(Resource_Unit|Resource_Usage)*);

{

}

Each table option entry consists of a list of Resource Unit or Resource Usage entry names in the `one of'

�eld. By convention, the �rst entry in the list is the most desirable option, the second entry is the second

most desirable option, and so on. A list consisting of one entry name in the `one of' �eld is allowed to

facilitate parameterized machine descriptions. The allowing of a Resource Unit or a Resource Usage entry

to be speci�ed in the `one of' �eld (verses requiring only Resource Unit entries) is to minimize the number

of resource units that must be declared.

Example 5.4.1: The PA-7100 allows any ordering of the integer and
oating point instructions. This

exibility can be modeled by the table options `any iissue' and `any �ssue' shown in Figure 28. Other types

of
exibility that can be modeled in this section includes available register ports, function units, and result

buses.

SECTION Table_Option

{

any_iissue (one_of(RU_slot0 RU_slot1));

any_fissue (one_of(fissue0_unit fissue1_unit));

}

Figure 28: An example Table Option section, described in Example 5.4.1.

Technical Report IMPACT-96-3 29

5.5 Reservation Table

The Resource Usage entries, Resource Unit entries, and Table Option entries described in the last three

sections are used in the `Reservation Table' section to build reservation tables. Each Reservation Table entry

describes how an operation can use resources over its entire execution. For example, a Reservation Table

entry for an integer alu operation might specify that one of the integer issue units and the only ialu must be

used. The MD declaration for the `Reservation Table' section is shown below:

CREATE SECTION Reservation_Table

REQUIRED use(LINK(Table_Option|Resource_Unit|Resource_Usage)*);

{

}

For each Reservation Table entry, the Table Option entries, Resource Unit entries, and/or Resource Usage

entries that are used as the operation executes are listed in the `use' �eld. In order to schedule the operation,

the requirements of everything speci�ed in the `use' �eld must be met in order to schedule the operation.

The `use' �eld is allowed to be empty for pseudo operations like compiler directives, which can be speci�ed

in the compiler-speci�c part of the machine description and don't use any resources.

Example 5.5.1: The PA-7100's issue and execution stages may be modeled using the Reservation Table

entries shown in Figure 29. For the PA-7100, each reservation table entry needs to specify which resources

are necessary to issue the operation (any iissue or any �ssue), and what function unit resources are needed

to execute the operation (ialu unit, ibr unit, etc.). Other architectures may require di�erent resources to be

modeled. For example, Sparc-based machines, also require modeling of the register read and write ports.

6 Latency Information

The machine description's latency information describes how to calculate dependence distances for depen-

dencies between operations. Two MD language sections, Operand Latency and Operation Latency, are used

to represent this information. The �elds declared in each of these MD language sections, and how these

sections are linked together, is shown in Figure 30.

The Operand Latency section's entries are used to specify the times when operands can be used. The

Operation Latency section's entries are used to specify when an operation uses its operands. The rest of this

section describes each of these MD sections in detail, and provides examples of how these MD sections are

used.

Technical Report IMPACT-96-3 30

SECTION Reservation_Table

{

RT_INOP (use(any_iissue ialu_unit));

RT_IAlu (use(any_iissue ialu_unit));

RT_IBr (use(any_iissue ibr_unit));

RT_FPAlu (use(any_fissue falu_unit));

RT_FPMul2 (use(any_fissue fmul_unit));

RT_FPMul3 (use(any_fissue fmulI_unit));

RT_FPAluMul (use(any_fissue fmul_unit));

RT_FPDivS (use(any_fissue fdivS_unit));

RT_FPDivD (use(any_fissue fdivD_unit));

RT_Load (use(any_iissue load_unit));

RT_Store (use(any_iissue store_unit));

}

Figure 29: An example Reservation Table section, described in Example 5.5.1.

(Scheduling_Alternative)

LATENCY

REQUIRED time(INT*);
Operand_Latency

Operation_Latency
OPTIONAL dest(LINK(Operand_Latency)*);
OPTIONAL src(LINK(Operand_Latency)*);
OPTIONAL pred(LINK(Operand_Latency)*);

OPTIONAL mem_dest(LINK(Operand_Latency));
OPTIONAL mem_src(LINK(Operand_Latency));

OPTIONAL ctrl_dest(LINK(Operand_Latency));
OPTIONAL ctrl_src(LINK(Operand_Latency));

OPTIONAL sync_dest(LINK(Operand_Latency));
OPTIONAL sync_src(LINK(Operand_Latency));

Figure 30: Structural overview of the machine description's latency information.

6.1 Operand Latency

Operations use their operands at various times during execution. Source register operands are typically

read just before entering the execution stage, and destination register operands are e�ectively written just

as the operation exits the execution stage (assuming full bypass logic). By describing when operations use

Technical Report IMPACT-96-3 31

their operands in the machine description, dependence distances can be calculated for the various
ow, anti,

and output dependences between operations. An example of how this information can be used to calculate

dependence distances is presented in Section 6.2. The times that operands may be used are enumerated in

the machine description's `Operand Latency' section, which has the following MD de�nition:

CREATE SECTION Operand_Latency

REQUIRED time(INT*);

{

}

For each Operand Latency entry, the times that the operand may be used is listed in the `time' �eld. By

convention, time 0 is �xed to be the moment just before an operation enters the execution stage (at the very

end of the cycle before the execution stage is entered). Thus, time 1 is at the very end of the �rst cycle in

the execution stage.

Typically, a single usage time is speci�ed for each Operand Latency entry, corresponding to when that

operand is read or written. Multiple times may be speci�ed in order to model the operand being read from

or written to multiple times or at varying times (this is something not previously handled in IMPACT). The

ability to specify an empty list in the `time' �eld is provided to allow marking of operands that should not

be read or written to at all.

Example 6.1.1: On way to enumerate the operand use times for the PA-7100 is shown in Figure 31. The

PA-7100's integer alu operations write their result at time 1 (d1), loads and most
oating point operations

write their result at time 2 (d2), an interlocked
oating point multiply writes its result at time 3 (d3), and

the
oating point divides write their result at time 8 (d8) or 15 (d15) depending on their precision. The

PA-7100's operations typically read their source operands at time 0 (s0), but the store operation reads the

data to be stored at time 2 (s2). The sync operands (ss0, sd0, and sd1) will be used and explained in

Section 6.2.

6.2 Operation Latency

In Section 6.1, it was described how operand use (read/write) times are enumerated in the `Operand Latency'

section. Those operand use times are used by the `Operation Latency' entries to describe when an operation

Technical Report IMPACT-96-3 32

SECTION Operand_Latency

{

$for (N in 1 2 3 8 15)

{

d${N} (time(N)); // Destination operands

}

$for (N in 0 2) {s${N} (time(N)); } // Source operands

$for (N in 0) {ss${N} (time(N)); } // Sync Source operands

$for (N in 0 1) {sd${N} (time(N)); } // Sync Dest operands

x (time()); // For when operand should not be a register

}

Figure 31: An example Operand Latency section, described in Example 6.1.1.

uses each of its operands. The MD de�nition for the `Operation Latency' section is shown below:

CREATE SECTION Operation_Latency

OPTIONAL dest(LINK(Operand_Latency)*);

OPTIONAL src(LINK(Operand_Latency)*);

OPTIONAL pred(LINK(Operand_Latency)*);

OPTIONAL mem_dest(LINK(Operand_Latency));

OPTIONAL ctrl_dest(LINK(Operand_Latency));

OPTIONAL sync_dest(LINK(Operand_Latency));

OPTIONAL mem_src(LINK(Operand_Latency));

OPTIONAL ctrl_src(LINK(Operand_Latency));

OPTIONAL sync_src(LINK(Operand_Latency));

{

}

The �elds `dest', `src', and `pred' associate an Operand Latency entry with each destination, source, and

predicate operand of the operation, respectively. The Operand Latency entries specify the time(s) each of

those operands are used by the operation, and can be used to calculate dependence distances for all register

ow, anti, and output dependences.

For example, to calculate the dependence distance for a register
ow dependence between an operation

that writes r1 at time 2 and an operation that reads r1 at time 0, the the read time 0 is subtracted from

the write time 2 to get a two cycle dependence distance. If the
ow dependent operation read r1 at time 2

instead of time 0, then a zero cycle dependence (read time 2 minus write time 2) would be calculated.

Technical Report IMPACT-96-3 33

The remaining �elds in the Operation Latency section are used to calculate dependence distances for

memory, control, and synchronization dependencies. The `mem dest' and `mem src' �elds are used to calcu-

late distances for memory dependences (dependences that preventing ambiguous or dependent stores from

reordering with other loads and stores). The `ctrl dest' and `ctrl src' �elds are used to calculate control

dependence distances (dependencies preventing operations from moving above or below a branch). The

`sync dest' and `sync src' �elds are used to calculate synchronization dependence distances (dependences

from operations that no other operations should move past).

By convention, it is an error if a dependence distance calculation attempts to use information that was

left unspeci�ed in a Operation Latency entry.

Example 6.2.1: The dependence distances modeling the PA-7100 can be calculated from the Opera-

tion Latency entries shown in Figure 32. Most of the PA-7100's operations have one destination. The two

exceptions are memory operations (which support pre and post increments of an address register) and a set

of special
oating point operations that do two independent calculations with one assembly instruction.

All PA-7100 operations, except stores, read their source register just before entering the execution stage

(time 0). Store operations read the register containing the value being stored at time 2. This design allows

PA-7100 store operations to be issued in parallel with the operation that is producing the value being stored,

if that operation has a latency of 1 or 2.

The PA-7100 does not allow a load to be issued until 2 cycles after the store is issued (presumably to

allow memory-
ow-dependent loads to get the correct data). This issue constraint is modeled with resources

(in Figure 27), so using a 0 cycle mem
ow dependence would be su�cient for correctness. But the distance

is set to 2 in this example, so that the control
ow graph more accurately models the situation, which

helps scheduling heuristics. Note that only operations that write memory need to have the �eld `mem dest'

speci�ed, and only operations that read memory need to have the �eld `mem src' speci�ed.

The PA-7100's issue logic prevents operations control dependent on the branch from issuing in the same

cycle as the branch. A 1 cycle control
ow dependence distance (speci�ed by Operation Latency entry

OL Branch) is used to model this constraint.

Although synchronization dependences are not used often, their function is to prevent any operation from

moving past a synchronization operation. Typically, synchronization operations are those that change the

processor or register state, such as the operation to rotate the register window in the Sparc architecture.

(Side note: One common operation in SPEC'92 benchmarks that needs to be treated as a synchronization

Technical Report IMPACT-96-3 34

SECTION Operation_Latency

{

// Non-memory operations don't use mem_src or mem_dest

// All operations may have ctrl or sync dependences.

$for(N in 1 2 3 8 15)

{

OL_Lat${N} (dest(d${N} x) src(s0 s0 s0 s0)

ctrl_dest(sd0) ctrl_src(ss0)

sync_dest(sd0) sync_src(ss0));

}

// Some floating point operands with latency 2 have two destinations

OL_Lat2 (dest!(d2 d2));

OL_Branch (dest(d1 x) src(s0 s0 s0 s0)

ctrl_dest(sd1) ctrl_src(ss0) // 1 cycle ctrl flow dep

sync_dest(sd0) sync_src(ss0));

// Stores read the value to be stored two cycles after issue

// They also may have two destinations for post-increment stores

// Loads flow dependent on stores must follow store by at least 2 cycles.

// Only mem_dest specified since stores only write memory

OL_Store (dest(d1 d1) src(s0 s0 s2 s0)

mem_dest(sd2) // 2 cycle mem flow dep

ctrl_dest(sd0) ctrl_src(ss0)

sync_dest(sd0) sync_src(ss0));

// Label stores store 4th operand instead of 3rd

// Only mem_dest specified since stores only write memory

OL_Label_Store (dest(d1 d1) src(s0 s0 s0 s2)

mem_dest(sd2) // 2 cycle mem flow dep

ctrl_dest(sd0) ctrl_src(ss0)

sync_dest(sd0) sync_src(ss0));

// Loads may have two destination. Second dest for addr post-increment.

// Only mem_src specified since loads only read memory

OL_Load (dest(d2 d1) src(s0 s0 s0 s0)

mem_src(ss0)

ctrl_dest(sd0) ctrl_src(ss0)

sync_dest(sd0) sync_src(ss0));

}

Figure 32: An example Operation Latency section, described in Example 6.2.1.

operation is a jsr to `setjmp' (or `sigsetjmp'). The spec for setjmp states that all registers are saved but

values in memory, such as, spilled registers are not. So in reality, any register value may be destroyed across

a setjmp. The benchmarks are written so very few, if any, registers should be live across a setjmp, but

Technical Report IMPACT-96-3 35

scheduling can cause a serious bug if code motion is allowed across a setjmp.)

7 Operation Information

The machine description's operation information describes the operations supported by the architecture

and how they may be scheduled. Two compiler-independent MD language sections, Scheduling Alternative

and Operation, are used to represent this information. Additionally, other compiler-speci�c MD language

sections and �elds may needed to interface this information with the compiler. The IMPACT-speci�c MD

language section IMPACT Operation is used in this section to illustrate this. The �elds declared in each of

these MD language sections, and how these sections are linked together, is shown in Figure 33.

The Scheduling Alternative section's entries are used to describe the ways operations can be scheduled

in terms of their operands, the resources they use, and their dependence distance information. The Oper-

ation section's entries enumerate the assembly-level operations supported by the architecture and associate

scheduling alternatives with each of these operation. The IMPACT-speci�c IMPACT Operation section's

entries associate the compiler's operations to the architecture's operations. The rest of this section describes

each of these MD sections in detail, and provides examples of how these MD sections are used.

7.1 Scheduling Alternative

A scheduling alternative is a set of three requirements that must be met in order to schedule an operation

using that alternative (one or more scheduling alternatives are associated with an operation in Section 7.2).

These three requirements that must be met in order to schedule an operation are: 1) The resources the

alternative requires (speci�ed by a Reservation Table entry name) must be available, 2) the register, control,

memory, and synchronization dependence distances for the alternative (speci�ed by a Operation Latency

entry name) must be satis�ed, 3) and the operation's operands must be compatible with the alternative's

allowable operands (speci�ed by one or more Operation Format entry names).

These Scheduling Alternative entries will be used in Section 7.2 to specify how each assembly-level oper-

Technical Report IMPACT-96-3 36

Operations

REQUIRED alt(LINK(Scheduling_Alternative)
LINK(Scheduling_Alternative)*);

Operation

IMPACT_Operation
REQUIRED op(LINK(Operation)

LINK(Operation)*);

OPTIONAL flags(LINK(IMPACT_Operation_Flag)*);

Scheduling_Alternative

REQUIRED latency(LINK(Operation_Latency));

REQUIRED resv(LINK(Reservation_Table));

REQUIRED format(LINK(Operation_Format)
LINK(Operation_Format)*);

OPTIONAL flags(LINK(IMPACT_Alt_Flag)*);

(Operation_Format) (Reservation_Table) (Operation_Latency)

(IMPACT_Operation_Flags)

(IMPACT_Alt_Flags)

Figure 33: Structural overview of the machine description's operation information. Highlighted section
names, �eld names, and arrows indicate IMPACT-speci�c features.

ation can be scheduled. The MD declaration for the `Scheduling Alternative' section is shown below:

CREATE SECTION Scheduling_Alternative

REQUIRED format (LINK(Operation_Format) LINK(Operation_Format)*);

REQUIRED resv (LINK(Reservation_Table));

REQUIRED latency (LINK(Operation_Latency));

{

}

Often, additional compiler-speci�c information is needed about a Scheduling Alternative entry. This

compiler-speci�c information can be added in a separate compiler-speci�c �le using MD language features.

In IMPACT, a `
ags' �eld is added to the Scheduling Alternative section for this reason (see Section 9.2 for

details). This additional IMPACT-speci�c �eld has the
owing MD language declaration:

OPTIONAL flags (LINK(IMPACT_Alt_Flag)*);

Example 7.1.1: One way to model the scheduling alternatives for PA-7100's
oating point multiply

Technical Report IMPACT-96-3 37

and the PA-7100's load operations is shown in Figure 34. As mentioned in Example 5.3.1, the PA-7100's

oating-point multiply normally takes 2 cycles, but can interlock and take 3 cycles when issued 6 cycles after

a single-precision fdiv or 13 cycles after a double-precision fdiv. The 2 cycle, non-interlocking,
oating-point

multiply case is modeled by the Scheduling Alternative entry `ALT FMul2' and the 3 cycles, interlocking,

case is modeled by `ALT FMul3'. The two cycle and three cycle latencies are set by the Operation Latency

entry names `OL Lat2' and `OL Lat3', respectively. In Example 7.2.1, `ALT FMul2' will be given higher

scheduling priority, so that `ALT FMul3' will be used only when an interlock occurs.

SECTION Scheduling_Alternative

{

ALT_FMul2 (format(OF_Std1) resv(RT_FPMul2) latency (OL_Lat2));

ALT_FMul3 (format(OF_Std1) resv(RT_FPMul3) latency (OL_Lat3));

// Load operations

ALT_LD_Short (format(OF_Load1) resv(RT_Load) latency(OL_Load));

ALT_LD_Long (format(OF_Load2 OF_Load2_Reg OF_Load2_Label)

resv(RT_Load) latency(OL_Load));

ALT_LD_Index (format(OF_Load3) resv(RT_Load) latency(OL_Load));

ALT_LD_Inc_Short (format(OF_Load4) resv(RT_Load) latency(OL_Load));

ALT_LD_Inc_Long (format(OF_Load5) resv(RT_Load) latency(OL_Load));

ALT_LD_Inc_Index (format(OF_Load6) resv(RT_Load) latency(OL_Load));

}

Figure 34: An example Scheduling Alternative section, described in Example 7.1.1.

The various Scheduling Alternative entries for loads explicitly model the operand combinations allowed

in the PA-7100's load operations. The exact operand combinations allowed depends on the type of data the

operation loads. It will be shown in Example 7.2.1 that
oating point loads support the fewest combinations,

and that integer loads support the most. Note that all the load operation alternatives have the same resource

usage and latency info, and could have been speci�ed with just one alternative with a
exible instruction

format. These variations were spelled out in order to more closely model the architecture and to provide a

consistency check for the operation's operands.

Technical Report IMPACT-96-3 38

7.2 Operation

Every assembly-level operation in the architecture is enumerated in the `Operation' section, which has the

following MD de�nition:

CREATE SECTION Operation

REQUIRED alt(LINK(Scheduling_Alternative) LINK(Scheduling_Alternative)*);

{

}

An entry in created in the Operation section for each assembly-level operation. By convention, the

entry's name should be the actual assembly mnemonic for each operation, with necessary adaptations when

the mnemonic by itself is not speci�c enough (namely when part of the opcode is encoded into the operands

or the operands' value).

As the above MD de�nition shows, each Operation entry requires the enumeration of one or more schedul-

ing alternatives for the operation, in the `alt' �eld. Through these scheduling alternatives, the operation

formats supported, the resources the operation used during execution, and the operation's latency informa-

tion are associated with the operation (see Section 7.1).

By convention, the �rst alternative in the `alt' �eld should be given the highest scheduling priority, the

second alternative should be given the second highest scheduling priority, etc. This priority convention is

used extensively to model unusual interlock and bypass conditions in real architectures, such as the fmul

and fdiv interlock in the PA-7100 and the ability of the SuperSparc to sometimes issue
ow dependent

instructions in the same cycle. Thus, it is important to take these priorities into account when scheduling

(it is currently unclear how these priorities interact with some software pipelining and operation scheduling

algorithms).

Example 7.2.1: One way to enumerate the PA-7100's
oating-point multiply and load operations, in

an Operation section, is shown in Figure 35. In this example, a variation of IMPACT's opcode names are

used in this example instead of the PA-7100's assembly names for clarity purposes (the assembly names for

loads are a little cryptic).

The Operation entries modeling the PA-7100's
oating point multiplies, OP MUL F and OP MUL F2,

list the two cycle alternative ALT FMul2 �rst, giving that Scheduling Alternative entry the highest schedul-

ing priority. Due to ALT FMul3's lower priority, support for the the same operation formats as ALT FMul2,

and the same read times for its source operands (thus dependence-wise, ready at the same time) as ALT FMul2,

ALT FMul3 will only be scheduled when the fmulfake resource is not available (which indicates the fmul is

Technical Report IMPACT-96-3 39

SECTION Operation

{

// FP Mul takes 2 cycles, unless interlocks due to conflict with divide

OP_MUL_F (alt(ALT_FMul2 ALT_FMul3));

OP_MUL_F2 (alt(ALT_FMul2 ALT_FMul3));

/*

* The rather extensive collection of HP-PA load operations

*/

$for(TYPE in C C2 I F F2)

{

OP_LD_SHORT_${TYPE} (alt(ALT_LD_Short));

OP_LD_INDEX_${TYPE} (alt(ALT_LD_Index));

OP_LD_SHORT_PRE_${TYPE} (alt(ALT_LD_Inc_Short));

OP_LD_SHORT_POST_${TYPE} (alt(ALT_LD_Inc_Short));

OP_LD_INDEX_POST_${TYPE} (alt(ALT_LD_Inc_Index));

}

// The C C2 and I loads have long versions

OP_LD_LONG_C (alt(ALT_LD_Long));

OP_LD_LONG_C2 (alt(ALT_LD_Long));

OP_LD_LONG_I (alt(ALT_LD_Long));

// Int loads also has long increment versions

OP_LD_LONG_PRE_I (alt(ALT_LD_Inc_Long));

OP_LD_LONG_POST_I (alt(ALT_LD_Inc_Long));

}

Figure 35: An example Operation section, described in Example 7.2.1.

interlocking due to a fdiv).

The Operation entries modeling all the loads supported by the PA-7100 are also shown in this exam-

ple. Each load operation's entry speci�es only one Scheduling Alternative entry, because the PA-7100 has

a di�erent assembly name for each operand combination. In will be shown in the compiler-speci�c IM-

PACT Operation section (Section 7.3) how all these variations are grouped into about a third as many

IMPACT operations. For example, the PA-7100 Operation entries OP LD SHORT I, OP LD INDEX I,

and OP LD LONG I are all grouped into the IMPACT Operation entry Lop LD I (the PA-7100 operations

di�er only in operand formats supported).

Technical Report IMPACT-96-3 40

7.3 IMPACT Operation

The compiler-independent Operation entries described in Section 7.2 often cannot be used \as is" by a

compiler. When this is the case, some compiler-speci�c information needs to be added in order to interface

the machine description with the compiler. One way to add this information is to de�ne compiler-speci�c

operation entries in terms of the compiler-independent Operation entries. The IMPACT compiler does this

through the `IMPACT Operation' section, which has the following MD declaration:

CREATE SECTION IMPACT_Operation

REQUIRED op(LINK(Operation) LINK(Operation)*);

OPTIONAL flags(LINK(IMPACT_Operation_Flag)*);

{

}

An entry is created in the IMPACT Operation section for each operation supported the architecture's

code generator. By IMPACT's convention, the operation names de�ned in IMPACT's header �les are used to

name the entries (for example, Lop LD I and LHPPAop LDIL). Each IMPACT Operation entry's `op' �eld

lists the Operation entries, in priority order, that this entry can be mapped to. This allows a generic IMPACT

operation to be mapped to multiple assembly-level operation. In addition, compiler-speci�c information

about the IMPACT Operation entry can be speci�ed in the `
ags' �eld (see Section 9.3 for more details).

Example 7.3.1: The way PA-7100's
oating-point multiply operations and load operations are described

in the IMPACT Operation section is shown in Figure 36. The IMPACT Operation entries for the
oating-

point multiplies (Lop MUL F and Lop MUL F2) map directly to assembly-level operations (OP MUL F and

OP MUL F2). Their
ags �eld speci�es that these
oating-point multiplications can cause exceptions.

The IMPACT Operation entries for the PA-7100's load operations map to multiple assembly-level oper-

ations, due to the multiple addressing modes supported by the PA-7100. For this reason, the generic integer

load operation entry Lop LD I lists in its `op' �eld the Operation entries OP LD SHORT I, OP LD INDEX I,

and OP LD LONG I. The Lop LD I entry is also
agged as a load and as a possibly excepting operation.

8 Register Information

The machine description's compiler-independent register information describes the way the processor's reg-

isters overlap. In addition, compiler-speci�c machine description extensions can be used to describe how to

register allocate for the architecture. One MD language section, Register, is used to represent the compiler-

independent information. Two more MD language sections, Register Class and Register File, and some

Technical Report IMPACT-96-3 41

SECTION IMPACT_Operation

{

Lop_MUL_F (flags(EXCEPT) op(OP_MUL_F));

Lop_MUL_F2 (flags(EXCEPT) op(OP_MUL_F2));

// The rather extensive collection of HP-PA load operations

$for(TYPE in C C2 I F F2)

{

Lop_LD_${TYPE} (flags(LOAD EXCEPT)

op (OP_LD_SHORT_${TYPE} OP_LD_INDEX_${TYPE}));

Lop_LD_PRE_${TYPE} (flags(LOAD EXCEPT) op(OP_LD_SHORT_PRE_${TYPE}));

Lop_LD_POST_${TYPE} (flags(LOAD EXCEPT)

op(OP_LD_SHORT_POST_${TYPE} OP_LD_INDEX_POST_${TYPE}));

}

// The C C2 and I loads have long versions

Lop_LD_C (op||(OP_LD_LONG_C));

Lop_LD_C2 (op||(OP_LD_LONG_C2));

Lop_LD_I (op||(OP_LD_LONG_I));

// Int loads also has long increment versions

Lop_LD_PRE_I (op||(OP_LD_LONG_PRE_I));

Lop_LD_POST_I (op||(OP_LD_LONG_POST_I));

}

Figure 36: An example IMPACT Operation section, described in Example 7.3.1.

additional Register section �elds, can be added to represent the compiler-speci�c register allocation informa-

tion. The �elds declared in each of these MD language sections, and how these sections are linked together,

is shown in Figure 37.

The way that the processor's registers overlap is described by the Register section's entries. The infor-

mation necessary to do machine description based register allocation can be added, by linking each Register

section entry to a Register Class entry in order to specify its properties to the register allocator, and by using

Register File entries to group registers together into register banks. The rest of this section describes how

each of these MD sections is used to convey these two types of register information and provides examples

of their usage.

Technical Report IMPACT-96-3 42

Registers

Register_File
REQUIRED reg(LINK(Register)*);

Register
OPTIONAL overlaps(LINK(Register)*);

REQUIRED width(INT);
REQUIRED class(LINK(Register_Class));

Register_Class

Figure 37: Structural overview of the machine description's register information. Highlighted entry names,
�elds, and arrows are IMPACT-speci�c.

8.1 Register Overlap

When determining which register dependencies are needed, it is necessary to know how know how physical

(and virtual) registers overlap so that proper
ow, anti, and output dependencies may be created after

(before) register allocation. The architecture's implementation determines how physical registers overlap,

so this information is considered compiler-independent and should be speci�ed in the compiler-independent

machine description. Because the way virtual registers are handled and overlap is compiler-speci�c, virtual

register overlap information should be placed in the compiler-speci�c machine description. The `Register'

section used to describe this overlap is de�ned in the MD language as follows:

CREATE SECTION Register

OPTIONAL overlaps (LINK(Register)*);

{

}

By convention, if the `overlap' �eld is not speci�ed, the register overlaps no other register (same as if

an empty list is speci�ed for overlap). Since the `overlaps' relation is not transitive, all overlaps must be

explicitly speci�ed. Also by convention, if register x overlaps register y, this overlap must be speci�ed for both

registers x and y. The customizer and/or the compiler should punt if this condition is not met (IMPACT's

customizer detects this case) instead of \�lling in" the missing overlap.

Technical Report IMPACT-96-3 43

Example 8.1.1: The PA-7100's double register %fr1 overlaps with the two
oat registers %fr1R and

%fr1L. This overlap can be speci�ed in the Register section as shown in Figure 38.

SECTION Register

{

'%fr1' (); // Declare double's names

'%fr1R' (overlaps ('%fr1'));

'%fr1L' (overlaps ('%fr1'));

'%fr1' (overlaps ('%fr1R' '%fr1L')); // Now define double's overlap

}

Figure 38: An example Register section specifying the overlap of PA-7100's %fr1, %fr1R, and %fr1L registers,
as described in Example 8.1.1.

Example 8.1.2: The PA-7100 has 32 double registers (0 - 31) which overlap with its 64
oat registers in

the manor described in Example 8.1.1. It also has 32 integer registers which do not overlap with any other

registers. This can be speci�ed in the Register section as shown in Figure 39.

SECTION Register

{

$for (REG_NUM in $0..31)

{

/* Integer registers */

"%r${REG_NUM}" ();

/* Floating point registers */

"%fr${REG_NUM}" (); // Declare double register's name

'%fr${REG_NUM}R' (overlaps ('%fr${REG_NUM}'));

'%fr${REG_NUM}L' (overlaps ('%fr${REG_NUM}'));

'%fr${REG_NUM}' (overlaps ('%fr${REG_NUM}R' '%fr${REG_NUM}L'));

}

}

Figure 39: An example Register section specifying the overlap for all of the PA-7100's registers as described
in Example 8.1.2.

Note that the `Register' section is also used in IMPACT's compiler-speci�c machine description to describe

the registers to the register allocator (see Section 8.2).

Technical Report IMPACT-96-3 44

8.2 MDES-Driven Register Allocation

The register allocator needs to know which physical registers a that virtual register can be allocated to,

and what the properties of that physical register is (such as is callee/caller saved and may the register be

pre-allocated using one of IMPACT's so-called macro registers). The capabilities of the register allocator,

and the treatment of virtual registers, is compiler-speci�c, so all the information in this section is considered

compiler-speci�c.

(In the current IMPACT, arrays with the information described in this section is created by the code

generators and passed to the generic register allocator. This hard-coded implementation sometimes limits

exibility when evaluating virtual architectures. It is envisioned that Limpact and Lplaydoh will use the

information described in this section to build the arrays passed to the register allocator instead of using the

hard coded method. The code generators for existing architectures, such as Lhppa, Lsparc, and Lx86, will

probably continue to use their hard coded, non-mdes driven, versions.)

There are three mdes sections used to describe the processor's registers to the register allocator. The

�rst, the `Register Class' section, has the following de�nition in the MD language:

CREATE SECTION Register_Class

{

}

This section's entries simply enumerates the types of registers the register allocator supports. This

section, and its contents, appears only in the \structure IMPACT.hmdes2" header �le and is used to coerce

the MD language into doing some error checking on register class names.

Example 8.2.1: Figure 40 shows the Register Class section as it appears in \structure IMPACT.hmdes2".

CREATE SECTION Register_Class

{

callee();

caller();

macro_callee();

macro_caller();

reserved();

}

Figure 40: The Register Class entries supported by IMPACT as described in Example 8.2.1.

The second section used to describe the processor's registers to the register allocator, is the `Register'

Technical Report IMPACT-96-3 45

section. Its MD de�nition is expanded (from Section 8.1's de�nition) to allow speci�cation of each register's

class, and the width, in bits, of each register, as shown bellow:

CREATE SECTION Register

REQUIRED class (LINK(Register_Class));

REQUIRED width (INT);

OPTIONAL overlaps (LINK(Register)*);

{

}

The `class' �eld is de�ned as a LINK instead of a STRING to provide some error checking. These classes

specify whether it is a general register with a particular saving convention (callee and caller), a pre-allocated

register that the register allocator may use (macro callee and macro caller), or a register that may not be

used by the register allocator (reserved). The width information is used as a sanity check.

Example 8.2.2: Figure 41 shows the de�nition of the PA-7100's
oats that use the caller save convention.

SECTION Register

{

/* Caller floats */

$for (REG_NUM in $8..11 $22..31)

{

"%fr${REG_NUM}R" (class(caller) width(32));

"%fr${REG_NUM}L" (class(caller) width(32));

"%fr${REG_NUM}" (class(caller) width(64));

}

/* Macro caller floats */

$for (REG_NUM in $4..7)

{

"%fr${REG_NUM}R" (class(macro_caller) width(32));

"%fr${REG_NUM}L" (class(macro_caller) width(32));

"%fr${REG_NUM}" (class(macro_caller) width(64));

}

}

Figure 41: An example of adding IMPACT-speci�c information to the Register section as described in
Example 8.2.2.

The third section used to describe the procesor's registers to the register allocator, is the `Register File'

Technical Report IMPACT-96-3 46

section. The MD de�nition for this section is as follows:

CREATE SECTION Register_File

REQUIRED reg(LINK(Register)*);

{

}

Each entry represents a type of register (int,
oat, double, or predicate), and the �eld `reg' enumerates

the registers of that type that the register allocator may use to allocate virtual register to physical registers.

By IMPACT's convention, registers listed �rst in the `reg' �eld will be used �rst by the register allocator.

Example 8.2.3: The PA-7100 register �les may be modeled as shown in Figure 42.

SECTION Register_File

{

i (reg ($for (N in $3..18 $19..22 $23..26 28 29 31) {"%r${N}" }));

f (reg ($for (N in $12..21 $8..11 $22..31 $4..7)

{"%fr${N}R" "%fr${N}L" }));

f2 (reg ($for (N in $12..21 $8..11 $22..31 $4..7) {"%fr${N}" }));

}

Figure 42: An example Register File section, described in Example 8.2.3.

9 Compiler-Speci�c Information

The machine description's compiler-speci�c information can be used to provide any addition information the

compiler needs about the architecture. As an example of such a usage, three IMPACT-speci�c MD language

sections (Parameter, IMPACT Operation Flag, and IMPACT Alt Flag) are described in this section. The

�elds declared in each of these MD language sections, and how these sections are linked to other machine

description sections, is shown in Figure 43.

The Parameter section's entries are used to pass architecture-speci�c parameters to the compiler. The

IMPACT Operation Flag and IMPACT Alt Flag sections' entries are used to enumerate the
ags used by

an IMPACT-speci�c extension of the machine description. The rest of this section describes each of these

MD sections in detail, and provides examples of how these MD sections are used.

Technical Report IMPACT-96-3 47

Flags

Parameter
REQUIRED value(STRING*);

IMPACT_Operation_Flag(IMPACT_Operation)

IMPACT_Alt_Flag(Scheduling_Alternative)

Figure 43: Structural overview of the machine description's compiler-speci�c information for IMPACT.

9.1 Parameter

Often new compiler-speci�c sections are needed to pass information of some sort to the compiler. The

\Parameter", used by IMPACT, is an example of such a compiler-speci�c section. This section is used to

pass machine description related parameters to the compiler/scheduler/optimizer/etc. The section is de�ned

in the MD language as follows:

CREATE SECTION Parameter

REQUIRED value (STRING*);

{

}

All Parameter entries are required to have the `value' �eld speci�ed but an empty value �eld may be

valid for some parameters. This makes this section's usage similar to IMPACT's parameter �le, but unlike

IMPACT's parameter �le, strict type checking is not done by the MD language (they are all treated as

strings), so it is up to the customizer and/or compiler to check the validity of the values speci�ed.

Example 9.1.1: A sample IMPACT Parameter section is shown in Figure 44. The `processor model'

parameter e�ects the layout of the code generated by the code scheduler. The `customization headers'

parameter is used to specify the IMPACT header �les that should be used by the IMPACT lmdes customizer.

Technical Report IMPACT-96-3 48

SECTION Parameter

{

processor_model (value(superscalar));

customization_headers (value(

${IMPACT_REL_PATH}/src/include/Lcode/l_opc.h

${IMPACT_REL_PATH}/src/include/Lcode/l_flags.h

${IMPACT_REL_PATH}/src/include/machine/m_spec.h

${IMPACT_REL_PATH}/src/include/machine/m_hppa.h

${IMPACT_REL_PATH}/src/include/Lcode/lhppa_phase1.h));

}

Figure 44: An example Parameter section, described in Example 9.1.1.

9.2 IMPACT Alt Flag

Often additional compiler-speci�c information needs to be added to the compiler-independent entries in the

machine description. Using the MD language features, it is easy to add new �elds to existing sections,

and to �ll in these new �elds on existing entries. These MD language features are used by IMPACT to

add a `
ags' �eld to the `Scheduling Alternative' section described in Section 7.1. This `
ags' �eld, in the

Scheduling Alternative section, has the following declaration:

OPTIONAL flags (LINK(IMPACT_Alt_Flag)*);

The \IMPACT Alt Flag" section, that is linked to in the above declaration, has the following MD dec-

laration:

CREATE SECTION IMPACT_Alt_Flag

{

}

Example 9.2.1: An example of the scheduling
ags IMPACT uses is shown in Figure 45. The two
ags

`NT' and `NN' are used to specify the squashing convention used by each branch's Scheduling Alternative

entry. The
ag `SILENT' is used when an Scheduling Alternative entry represents a silent operation, where

exceptions are suppressed.

Technical Report IMPACT-96-3 49

CREATE SECTION IMPACT_Alt_Flag

{

NT (); // Nullify Taken (squashes delay slot when cbr taken)

NN (); // Nullify Not-taken (squashes when cbr not taken)

SILENT (); // Alternative is a silent version of the operation.

// Indicates that this form is valid when operation is

// being speculated above a branch.

}

Figure 45: An example IMPACT Alt Flag section, described in Example 9.2.1.

9.3 IMPACT Operation Flag

The compiler-speci�c \IMPACT Operation Flag" section is used in IMPACT's machine description to enu-

merate the IMPACT Operation entry
ags. The MD declaration of this section is shown below:

CREATE SECTION IMPACT_Operation_Flag

{

}

Example 9.3.1: An example set of IMPACT Operation
ags are shown in Figure 46. The comments in

the �gure explain what each
ag does.

CREATE SECTION IMPACT_Operation_Flag

{

IGNORE (); // Marks that ignored by scheduler

SYNC (); // Nothing may move past this operation

NI (); // Non-interlocking (has delay slot)

EXPANDS (); // Expands into multiple operations after scheduling.

// May not be put in delay slot of branch.

EXCEPT (); // May cause exceptions, may not be moved above a

// branch unless has SILENT flag also set.

JSR (); // Operation types. Used by the dependence graph builder

RTS (); // and the register allocator.

JMP ();

CBR ();

LOAD ();

STORE ();

}

Figure 46: An example IMPACT Operation Flag section, described in Example 9.3.1.

Technical Report IMPACT-96-3 50

Acknowledgments

The authors would like to thank Rick Hank, Roger Bringmann, Scott Mahlke, Sabrina Hwu, Dan Lavery,

Dave Gallagher, Andrew Hsieh, and all the members of the IMPACT research group, whose comments and

suggestions over the years have helped improve the quality of the MDES facility signi�cantly. The authors

would also like to thank Mike Schlansker, Vinod Kathail, Shail Aditya, and the rest of the CAR group at

HP Labs for valuable insight and discussion concerning countless machine description issues.

This research has been supported by the National Science Foundation (NSF) under grant MIP-9308013,

Intel Corporation, Advanced Micro Devices, Hewlett-Packard, SUN Microsystems, NCR, and the National

Aeronautics and Space Administration (NASA) under Contract NASA NAG 1-613 in cooperation with the

Illinois Computer Laboratory for Aerospace Systems and Software (ICLASS).

Technical Report IMPACT-96-3 51

A Initial speci�cation of structure pristine.hmdes2

/*

* Preliminary pristine Hmdes2 structure.

*

* Created by John C. Gyllenhaal 2/10/95

*/

/*

* Specifies the registers in the architectures.

* Also specifies how these registers overlap each other. The overlapping

* conditions are assumed to be completely specified (up to the compiler

* to check for errors in this case).

*/

CREATE SECTION Register

OPTIONAL overlaps (LINK(Register)*);

{

}

/*

* Specifies the field types supported by the architecture's

* instruction set (assembly language).

*

* Currently uses LINKs to specify the hierarchy of field types.

*

* When the CHILD datum type gets implemented, the LINK will get changed

* to CHILD. For example, lit11 is compatible with lit5.

*/

CREATE SECTION Field_Type

OPTIONAL compatible_with(LINK(Field_Type)*);

{

}

/*

* Specifies the architecture's assembly language operation formats

*/

CREATE SECTION Operation_Format

OPTIONAL pred(LINK(Field_Type)*);

OPTIONAL src(LINK(Field_Type)*);

OPTIONAL dest(LINK(Field_Type)*);

{

}

/*

* Specifies the architecture's resources (real or for only

* interlock purposes)

*/

CREATE SECTION Resource

{

}

Technical Report IMPACT-96-3 52

/*

* Specifies the characteristic's of the architecture's resource usage.

* Namely, when a resource is used by an operation relative to

* issue time.

*

* Possible extension: Specify if resource used if operation predicate

* squashed.

*/

CREATE SECTION Resource_Usage

REQUIRED use(LINK(Resource));

REQUIRED time(INT INT*);

{

}

/*

* Specifies resource units (such as function units) that should

* be treated like a unit by the scheduler/simulator

*/

CREATE SECTION Resource_Unit

REQUIRED use(LINK(Resource_Usage) LINK(Resource_Usage)*);

{

}

/*

* Specifies option for the reservation tables. For example,

* that any one of the ialus may be used.

*/

CREATE SECTION Table_Option

REQUIRED one_of(LINK(Resource_Unit|Resource_Usage)

LINK(Resource_Unit|Resource_Usage)*);

{

}

/*

* Specifies the reservation tables used to model the architecture.

* (How resources are used as an operation executes.)

*

*/

CREATE SECTION Reservation_Table

REQUIRED use(LINK(Table_Option|Resource_Unit|Resource_Usage)*);

{

}

/*

* Used to specify how register and sync operands interact so that

* a dependence distance can be calculated.

*

* For now, a list of possible use times are specified for each operand.

*

Technical Report IMPACT-96-3 53

* Other information that it may be desirable to specify is whether

* the dependence holds for predicated operations on disjoint predicates.

*/

CREATE SECTION Operand_Latency

REQUIRED time(INT*);

{

}

/*

* The section is used to specify the dependence distances between

* operations (if dependence exists). All dependences (register,

* memory, control, sync, etc) are modeled as flow,

* output, and anti dependencies between operands.

*

* Uses Operand_Latency above to specify how operands interact.

*

*

*/

CREATE SECTION Operation_Latency

OPTIONAL dest(LINK(Operand_Latency)*);

OPTIONAL src(LINK(Operand_Latency)*);

OPTIONAL pred(LINK(Operand_Latency)*);

OPTIONAL mem_dest(LINK(Operand_Latency));

OPTIONAL ctrl_dest(LINK(Operand_Latency));

OPTIONAL sync_dest(LINK(Operand_Latency));

OPTIONAL mem_src(LINK(Operand_Latency));

OPTIONAL ctrl_src(LINK(Operand_Latency));

OPTIONAL sync_src(LINK(Operand_Latency));

{

}

/*

* Describes a scheduling alternative for an operation.

*

* Allow multiple operation formats to be specified

* (for operations that have multiple operation formats but behave the same).

*/

CREATE SECTION Scheduling_Alternative

REQUIRED format (LINK(Operation_Format) LINK(Operation_Format)*);

REQUIRED resv (LINK(Reservation_Table));

REQUIRED latency (LINK(Operation_Latency));

{

}

/*

* Describes the operations in the architecture.

*

* The scheduling alternatives for each operations may be specified.

Technical Report IMPACT-96-3 54

*/

CREATE SECTION Operation

REQUIRED alt(LINK(Scheduling_Alternative) LINK(Scheduling_Alternative)*);

{

}

Technical Report IMPACT-96-3 55

B Initial speci�cation of PA 7100 pristine.hmdes2

/*

* Preliminary conversion of PA_7100.hmdes to pristine hmdes2 format.

*

* Written by John C. Gyllenhaal 2/10/95

*/

/* Include the structure specification for this pristine hmdes. */

$include "structure_pristine.hmdes2"

/*

* Specifies the registers in the architectures.

* Also specifies how these registers overlap each other. The overlapping

* conditions are assumed to be completely specified (up to the compiler

* to check for errors in this case).

*

* I am using the PA_7100 assembly format for register names as

* the entry names. Since these names have a '%' in them, the names

* must be quoted.

*/

SECTION Register

{

/*

* Specify overlap conditions.

*

* Ints do not overlap.

* Floats overlap with double with same number.

*/

$for (REG_NUM in $0..31)

{

/* Integer registers */

"%r${REG_NUM}" ();

/* Floating point registers */

"%fr${REG_NUM}" (); /* Declare double register's name */

"%fr${REG_NUM}R" (overlaps("%fr${REG_NUM}"));

"%fr${REG_NUM}L" (overlaps("%fr${REG_NUM}"));

"%fr${REG_NUM}" (overlaps("%fr${REG_NUM}R" "%fr${REG_NUM}L"));

}

}

/*

* Specifies the field types supported by the architectures

* instruction set (assembly language).

*/

SECTION Field_Type

{

NULL (); // NULL and any should be explicit

REG ();

Technical Report IMPACT-96-3 56

Lit5 ();

Lit11 (compatible_with(Lit5));

Label ();

Lit12 (compatible_with(Lit11 Label));

Lit14 (compatible_with(Lit12));

Lit17 (compatible_with(Lit14));

Lit21 (compatible_with(Lit17));

any (compatible_with(Lit21 REG NULL));

}

/*

* Specifies the architecture's assembly language operation formats

*/

SECTION Operation_Format

{

// Standard operation formats

OF_Std1 (dest(REG) src(REG REG));

OF_Std2 (dest(REG) src(Lit11 REG));

OF_Std3 (dest(REG) src(REG Lit11));

OF_ZVDEPI (dest(REG) src(Lit5 Lit11 REG));

OF_ZVDEP (dest(REG) src(REG Lit11 REG));

OF_VSHD (dest(REG) src(REG REG REG));

OF_EXTRU (dest(REG) src(REG Lit11 Lit11));

OF_DEPI (dest(REG) src(Lit11 Lit11 Lit11 REG));

OF_Lit5 (dest(REG) src(Lit5 REG));

OF_Lit11 (dest(REG) src(Lit11 REG));

OF_Lit14 (dest(REG) src(Lit14 REG));

OF_Lit21_Mov (dest(REG) src(Lit21));

OF_Lit21_Add (dest(REG) src(Lit21 REG));

OF_Label_Add (dest(REG) src(Label Lit21 REG));

OF_Label_Mov (dest(REG) src(Label Lit21));

// Operation format for "move"

OF_Mov (dest(REG) src(REG));

// Operation format for fp 5op

OF_5op (dest(REG REG) src(REG REG REG REG));

// Operation format for unconditional branch

OF_Rts (src(any));

OF_Jsr1 (dest(any any) src(Lit17));

OF_Jsr2 (dest(any any) src(REG));

OF_Ubr1 (src(Lit17));

OF_Ubr2 (src(REG));

OF_Ubr3 (src(REG REG));

// Operation format for conditional branch

OF_Cbr1 (src(REG REG Lit12));

OF_Cbr2 (dest(any) src(Lit5 REG Lit12));

Technical Report IMPACT-96-3 57

OF_Cbr_BB (src(REG Lit11 Lit12));

// Operation format for Stores

OF_Store1 (src(Lit21 REG REG));

OF_Store2 (src(Lit21 REG REG));

OF_Store2_Label (src(Label Lit21 REG REG));

OF_Store3 (src(REG REG REG));

// pre/post inc short store

OF_Store4 (dest(REG) src(Lit5 REG REG));

// pre/post inc long store

OF_Store5 (dest(REG) src(Lit14 REG REG));

// post inc index store

OF_Store6 (dest(REG) src(REG REG REG));

// Operation format for loads

OF_Load1 (dest(REG) src(Lit21 REG));

OF_Load2 (dest(REG) src(Lit21 REG));

OF_Load2_Reg (dest(REG) src(Lit21 REG REG));

OF_Load2_Label (dest(REG) src(Label Lit21 REG));

OF_Load3 (dest(REG) src(REG REG));

// pre/post inc short load

OF_Load4 (dest(REG REG) src(Lit5 REG));

// pre/post inc long load

OF_Load5 (dest(REG REG) src(Lit14 REG));

// post inc index load

OF_Load6 (dest(REG REG) src(REG REG));

OF_Nil (); // Nop

}

/*

* Specifies the architecture's resources (real or for only

* interlock purposes)

*

* Naming convention for resources:

* name[id_#][_s{stage_#}]

*

* where 'name' is the name of the resource.

* 'id_#' is used when there is replicated resources.

* 'stage_#' is used when resource is a pipeline stage.

*/

SECTION Resource

{

slot0 ();

slot1 ();

ialu ();

idummy ();

fissue ();

falu_s0 ();

falu_s1 ();

fmul_s0 ();

Technical Report IMPACT-96-3 58

fmul_s1 ();

fmulfake ();

fdiv ();

mem ();

}

/*

* Specifies the characteristic's of the architecture's resource usage.

* Namely, when a resource is used by an operation relative to

* issue time.

*

* Naming convention for resource usages:

* RU_{name}[id_#][_s{stage_#}][_t{times}]

*

* where 'name' is the name of the resource.

* 'id_#' is used when there is replicated resources.

* 'stage_#' is used when resource is a pipeline stage.

* 'times' is the times used if it is used a more than 1 time.

* If a range is used, use {start}_{stop}.

*/

SECTION Resource_Usage

{

RU_slot0 (use(slot0) time(0));

RU_slot1 (use(slot1) time(0));

RU_ialu_t0 (use(ialu) time(0));

RU_ialu_t0_1 (use(ialu) time(0 1));

/* idummy used to prevent placement of operations in delay slot */

RU_idummy_t0 (use(idummy) time(0));

RU_idummy_t1 (use(idummy) time(1));

RU_fissue (use(fissue) time(0));

RU_falu_s0 (use(falu_s0) time(0));

RU_falu_s1 (use(falu_s1) time(1));

RU_fmul_s0_t0 (use(fmul_s0) time(0));

RU_fmul_s0_t6_7 (use(fmul_s0) time(6 7));

RU_fmul_s0_t13_14 (use(fmul_s0) time(13 14));

RU_fmul_s1 (use(fmul_s1) time(1));

/* fmulfake used to model the interlocks between fmul and fdiv */

RU_fmulfake_t0 (use(fmulfake) time(0));

RU_fmulfake_t5 (use(fmulfake) time(5));

RU_fmulfake_t12 (use(fmulfake) time(12));

RU_fdiv_t0_7 (use(fdiv) time($0..7));

RU_fdiv_t0_14 (use(fdiv) time($0..14));

Technical Report IMPACT-96-3 59

RU_mem_t0 (use(mem) time(0));

RU_mem_t0_1 (use(mem) time(0 1));

}

/*

* Specifies resource units (such as function units) that should

* be treated like a unit by the scheduler/simulator

*

* Naming convention for resource units:

* {name}_unit

*/

SECTION Resource_Unit

{

/* Resources required for issuing floating point operations */

fissue0_unit (use(RU_slot0 RU_fissue));

fissue1_unit (use(RU_slot1 RU_fissue));

/* Integer units */

ialu_unit (use(RU_ialu_t0));

icmp_unit (use(RU_ialu_t0_1 RU_idummy_t0));

ibr_unit (use(RU_ialu_t0 RU_idummy_t1));

ibr2_unit (use(RU_ialu_t0_1)); // For dynamic jsrs, no delay slot

/* Floating point units */

falu_unit (use(RU_falu_s0 RU_falu_s1));

fmul_unit (use(RU_falu_s0 RU_falu_s1 RU_fmul_s0_t0 RU_fmul_s1

RU_fmulfake_t0));

/* Interlock case, where fmul interlocks with fdiv */

fmulI_unit (use(RU_falu_s0 RU_falu_s1 RU_fmul_s0_t0 RU_fmul_s1));

fdivS_unit (use(RU_fdiv_t0_7 RU_fmulfake_t5 RU_fmul_s0_t6_7));

fdivD_unit (use(RU_fdiv_t0_14 RU_fmulfake_t12 RU_fmul_s0_t13_14));

/* Memory units */

load_unit (use(RU_ialu_t0 RU_mem_t0));

store_unit (use(RU_ialu_t0 RU_mem_t0_1));

}

/*

* Specifies option for the reservation tables. For example,

* that any one of the ialus may be used.

*

* Naming convention for table options:

* {desc}_{name}

*

* where desc is any, some, etc.

*/

SECTION Table_Option

{

/* Integer issue requirements */

Technical Report IMPACT-96-3 60

any_iissue (one_of(RU_slot0 RU_slot1));

/* Float issue requirements */

any_fissue (one_of(fissue0_unit fissue1_unit));

}

/*

* Specifies how resources are used as operations execute.

*/

SECTION Reservation_Table

{

RT_INOP (use(any_iissue));

/* Integer operations */

RT_IAlu (use(any_iissue ialu_unit));

RT_ICmp (use(any_iissue icmp_unit));

RT_IBr (use(any_iissue ibr_unit));

//dynamic subroutine, no delay slot

RT_IBr2 (use(any_iissue ibr2_unit));

/* Floating point operations */

RT_FPAlu (use(any_fissue falu_unit));

RT_FPMul2 (use(any_fissue fmul_unit));

/* interlocking fmul case, takes extra cycle */

RT_FPMul3 (use(any_fissue fmulI_unit));

RT_FPAluMul (use(any_fissue fmul_unit));

RT_FPDivS (use(any_fissue fdivS_unit));

RT_FPDivD (use(any_fissue fdivD_unit));

/* Memory operations */

RT_Load (use(any_iissue load_unit));

RT_Store (use(any_iissue store_unit));

}

/*

* Used to specify how register and sync operands interact so that

* a dependence distance can be calculated.

*

* For now, a list of possible use times are specified for each operand.

*/

SECTION Operand_Latency

{

/* Source operands */

$for (N in 0 2)

{

Technical Report IMPACT-96-3 61

s${N} (time(N));

}

/* Destination operands */

$for (N in 1 2 3 8 15)

{

d${N} (time(N));

}

/* Sync Source operands */

$for (N in 0)

{

ss${N} (time(N));

}

/* Sync Dest operands */

$for (N in 0 1 2)

{

sd${N} (time(N));

}

/* For operands we want to be warned about if they are being used

* For debugging purposes.

*/

x (time());

}

/*

* The section is used to specify the dependence distances between

* operations (if dependence exists). All dependences (register,

* memory, control, sync, etc) are modeled as flow,

* output, and anti dependencies between operands.

*

* Uses Operand_Latency above to specify how operands interact.

*

* May need to replace more operands with 'x' for debugging purposes.

*/

SECTION Operation_Latency

{

// Non-memory operations don't use mem_src or mem_dest

// All operations may have ctrl or sync dependences.

$for(N in 1 2 3 8 15)

{

OL_Lat${N} (dest(d${N} x)

src(s0 s0 s0 s0)

ctrl_dest(sd0)

sync_dest(sd0)

ctrl_src(ss0)

sync_src(ss0));

}

Technical Report IMPACT-96-3 62

// Some floating point operands with latency 2 have two destinations

OL_Lat2 (dest!(d2 d2));

OL_Branch (dest(d1 x)

src(s0 s0 s0 s0)

ctrl_dest(sd1) // 1 cycle ctrl flow dep

sync_dest(sd0)

ctrl_src(ss0)

sync_src(ss0));

// Stores read value to be stored two cycles after issue

// They also may have two destinations for post-increment stores

// Loads flow dependent on stores must follow store by at least 2 cycles.

// Only mem_dest specified since stores only write memory

OL_Store (dest(d1 d1)

src(s0 s0 s2 s0)

mem_dest(sd2) // 2 cycle mem flow dep

ctrl_dest(sd0)

sync_dest(sd0)

ctrl_src(ss0)

sync_src(ss0));

// Label stores store 4th operand instead of 3rd

// Only mem_dest specified since stores only write memory

OL_Label_Store (dest(d1 d1)

src(s0 s0 s0 s2)

mem_dest(sd2) // 2 cycle mem flow dep

ctrl_dest(sd0)

sync_dest(sd0)

ctrl_src(ss0)

sync_src(ss0));

// Loads may have two destination. Second dest for addr post-increment.

// Only mem_src specified since loads only read memory

OL_Load (dest(d2 d1)

src(s0 s0 s0 s0)

ctrl_dest(sd0)

sync_dest(sd0)

mem_src(ss0)

ctrl_src(ss0)

sync_src(ss0));

}

/*

* Describe the scheduling alternatives for the operations this

* processor supports.

*

* Allow multiple operation formats to be specified

* (for operations that have multiple operation formats but behave the same).

*/

Technical Report IMPACT-96-3 63

SECTION Scheduling_Alternative

{

// 1 cycle NO-OP

ALT_NOP (format(OF_Nil) resv(RT_INOP) latency(OL_Lat1));

// Integer conditional branches

ALT_Cbr_COMB_FWD (format(OF_Cbr1) resv(RT_IBr) latency(OL_Branch));

ALT_Cbr_COMB_BWD (format(OF_Cbr1) resv(RT_IBr) latency(OL_Branch));

ALT_Cbr_COMIB_FWD (format(OF_Cbr2) resv(RT_IBr) latency(OL_Branch));

ALT_Cbr_COMIB_BWD (format(OF_Cbr2) resv(RT_IBr) latency(OL_Branch));

ALT_Cbr_ADDIB_FWD (format(OF_Cbr2) resv(RT_IBr) latency(OL_Branch));

ALT_Cbr_ADDIB_BWD (format(OF_Cbr2) resv(RT_IBr) latency(OL_Branch));

ALT_Cbr_BB_FWD (format(OF_Cbr_BB) resv(RT_IBr) latency(OL_Branch));

ALT_Cbr_BB_BWD (format(OF_Cbr_BB) resv(RT_IBr) latency(OL_Branch));

// Unconditional branches

ALT_Jsr (format(OF_Jsr1) resv(RT_IBr) latency(OL_Branch));

ALT_Jsr_DynCall (format(OF_Jsr2) resv(RT_IBr2) latency(OL_Branch));

ALT_Rts (format(OF_Rts) resv(RT_IBr) latency(OL_Branch));

ALT_Jump (format(OF_Ubr1) resv(RT_IBr) latency(OL_Branch));

ALT_Jump_RG (format(OF_Ubr3) resv(RT_IBr) latency(OL_Branch));

// Integer ALU operations

ALT_Ialu (format(OF_Std1) resv(RT_IAlu) latency(OL_Lat1));

ALT_Shift (format(OF_Std1 OF_Std3) resv(RT_IAlu)

latency(OL_Lat1));

ALT_Copy (format(OF_Mov) resv(RT_IAlu) latency(OL_Lat1));

ALT_LDO_Mov (format(OF_Lit14) resv(RT_IAlu) latency(OL_Lat1));

ALT_LDO_Add (format(OF_Lit21_Add OF_Label_Add) resv(RT_IAlu)

latency(OL_Lat1));

ALT_LDIL (format(OF_Lit21_Mov OF_Label_Mov) resv(RT_IAlu)

latency(OL_Lat1));

ALT_ADDIL (format(OF_Lit21_Add OF_Label_Add) resv(RT_IAlu)

latency(OL_Lat1));

ALT_ADD (format(OF_Std1) resv(RT_IAlu) latency(OL_Lat1));

ALT_ADDI (format(OF_Lit21_Add) resv(RT_IAlu) latency(OL_Lat1));

ALT_SUB (format(OF_Std1) resv(RT_IAlu) latency(OL_Lat1));

ALT_SUBI (format(OF_Lit11) resv(RT_IAlu) latency(OL_Lat1));

ALT_ZVDEPI (format(OF_ZVDEPI) resv(RT_IAlu) latency(OL_Lat1));

ALT_ZVDEP (format(OF_ZVDEP) resv(RT_IAlu) latency(OL_Lat1));

ALT_VEXTRS (format(OF_ZVDEP) resv(RT_IAlu) latency(OL_Lat1));

ALT_VSHD (format(OF_VSHD) resv(RT_IAlu) latency(OL_Lat1));

// Integer comparison operations

ALT_ICmp (format(OF_Std1 OF_Std2) resv(RT_ICmp)

latency(OL_Lat2));

// Floating point operations

ALT_FMov (format(OF_Mov) resv(RT_FPAlu) latency (OL_Lat2));

ALT_FAlu (format(OF_Std1) resv(RT_FPAlu) latency (OL_Lat2));

Technical Report IMPACT-96-3 64

ALT_FMul2 (format(OF_Std1) resv(RT_FPMul2) latency (OL_Lat2));

ALT_FMul3 (format(OF_Std1) resv(RT_FPMul3) latency (OL_Lat3));

ALT_FDivS (format(OF_Std1) resv(RT_FPDivS) latency (OL_Lat8));

ALT_FDivD (format(OF_Std1) resv(RT_FPDivD) latency (OL_Lat15));

ALT_FSqrtS (format(OF_Mov) resv(RT_FPDivS) latency (OL_Lat8));

ALT_FSqrtD (format(OF_Mov) resv(RT_FPDivD) latency (OL_Lat15));

ALT_FAluMul (format(OF_5op) resv(RT_FPAluMul) latency (OL_Lat2));

// Load operations

ALT_LD_Short (format(OF_Load1) resv(RT_Load) latency(OL_Load));

ALT_LD_Long (format(OF_Load2 OF_Load2_Reg OF_Load2_Label)

resv(RT_Load) latency(OL_Load));

ALT_LD_Index (format(OF_Load3) resv(RT_Load) latency(OL_Load));

ALT_LD_Inc_Short (format(OF_Load4) resv(RT_Load) latency(OL_Load));

ALT_LD_Inc_Long (format(OF_Load5) resv(RT_Load) latency(OL_Load));

ALT_LD_Inc_Index (format(OF_Load6) resv(RT_Load) latency(OL_Load));

// Short operations

ALT_ST_Short (format(OF_Store1) resv(RT_Store) latency(OL_Store));

ALT_ST_Long (format(OF_Store2) resv(RT_Store) latency(OL_Store));

ALT_ST_Index (format(OF_Store3) resv(RT_Store) latency(OL_Store));

ALT_ST_Inc_Short (format(OF_Store4) resv(RT_Store) latency(OL_Store));

ALT_ST_Inc_Long (format(OF_Store5) resv(RT_Store) latency(OL_Store));

ALT_ST_Inc_Index (format(OF_Store6) resv(RT_Store) latency(OL_Store));

}

/*

* Describe the operations for this architecture

*

* The scheduling alternatives for each operation is specified.

*

* I currently used OP_ instead of Lop_ in front of operation names.

* I plan to convert to quoted PA_7100 assembly names as soon as I get

* the preprocessor array directives implemented so that mapping

* GE_U to '<<=', etc is much easier.

*/

SECTION Operation

{

// NOP

OP_NOP (alt(ALT_NOP));

/*

* Integer conditional branch operations

*/

$for (CASE in EQ NE GT GE LT LE GT_U GE_U LT_U LE_U)

{

OP_COMB_${CASE}_FWD (alt(ALT_Cbr_COMB_FWD));

OP_COMIB_${CASE}_FWD (alt(ALT_Cbr_COMIB_FWD));

OP_COMB_${CASE}_BWD (alt(ALT_Cbr_COMB_BWD));

OP_COMIB_${CASE}_BWD (alt(ALT_Cbr_COMIB_BWD));

OP_ADDIB_${CASE}_FWD (alt(ALT_Cbr_ADDIB_FWD));

Technical Report IMPACT-96-3 65

OP_ADDIB_${CASE}_BWD (alt(ALT_Cbr_ADDIB_BWD));

}

// Branch on bit

$for (CASE in BB_0 BB_1)

{

OP_${CASE}_FWD (alt(ALT_Cbr_BB_FWD));

OP_${CASE}_BWD (alt(ALT_Cbr_BB_BWD));

}

// Unconditional branches

OP_JSR (alt(ALT_Jsr));

// Dynamic subroutine call doesn't have slot to fill

OP_JSR_DYNCALL (alt(ALT_Jsr_DynCall));

OP_RTS (alt(ALT_Rts));

OP_JUMP (alt(ALT_Jump));

OP_JUMP_RG (alt(ALT_Jump_RG));

/*

* Integer ALU operations

*/

OP_COPY (alt(ALT_Copy));

OP_LDO_MOV (alt(ALT_LDO_Mov));

OP_LDO_ADD (alt(ALT_LDO_Add));

OP_LDIL (alt(ALT_LDIL));

OP_ADDIL (alt(ALT_ADDIL));

OP_ADD (alt(ALT_ADD));

OP_ADDI (alt(ALT_ADDI));

OP_SUB (alt(ALT_SUB));

OP_SUBI (alt(ALT_SUBI));

$for (OPCODE in ZVDEPI ZVDEP VSHD VEXTRS)

{

OP_${OPCODE} (alt(ALT_${OPCODE}));

}

// logical operations

$for (OPCODE in OR AND XOR AND_COMPL)

{

OP_${OPCODE} (alt(ALT_Ialu));

}

// shift operations

$for (OPCODE in LSL ASR LSR)

{

OP_${OPCODE} (alt(ALT_Shift));

}

// Integer comparison operations

$for(CMP in EQ NE GT GE LT LE GT_U GE_U LT_U LE_U)

{

Technical Report IMPACT-96-3 66

OP_${CMP} (alt(ALT_ICmp));

}

/*

* Floating point operations

*/

$for(OPCODE in MOV_F MOV_F2 ABS_F ABS_F2 I_F I_F2 F2_I F_I F_F2 F2_F)

{

OP_${OPCODE} (alt(ALT_FMov));

}

$for(OPCODE in ADD SUB EQ GT GE NE LT LE)

{

$for(TYPE in F F2)

{

OP_${OPCODE}_${TYPE} (alt(ALT_FAlu));

}

}

// FP Multiply takes 2 cycles, unless interlocks due to conflict with divide

OP_MUL_F (alt(ALT_FMul2 ALT_FMul3));

OP_MUL_F2 (alt(ALT_FMul2 ALT_FMul3));

OP_DIV_F (alt(ALT_FDivS));

OP_DIV_F2 (alt(ALT_FDivD));

OP_SQRT_F (alt(ALT_FSqrtS));

OP_SQRT_F2 (alt(ALT_FSqrtD));

// Floating-point 5ops operations

OP_FMPYADD (alt(ALT_FAluMul));

OP_FMPYSUB (alt(ALT_FAluMul));

/*

* The rather extensive collection of HP-PA load operations

*/

$for(TYPE in C C2 I F F2)

{

OP_LD_SHORT_${TYPE} (alt(ALT_LD_Short));

OP_LD_INDEX_${TYPE} (alt(ALT_LD_Index));

OP_LD_SHORT_PRE_${TYPE} (alt(ALT_LD_Inc_Short));

OP_LD_SHORT_POST_${TYPE} (alt(ALT_LD_Inc_Short));

OP_LD_INDEX_POST_${TYPE} (alt(ALT_LD_Inc_Index));

}

// The C C2 and I loads have long versions

OP_LD_LONG_C (alt(ALT_LD_Long));

OP_LD_LONG_C2 (alt(ALT_LD_Long));

OP_LD_LONG_I (alt(ALT_LD_Long));

// Int loads also has long increment versions

OP_LD_LONG_PRE_I (alt(ALT_LD_Inc_Long));

OP_LD_LONG_POST_I (alt(ALT_LD_Inc_Long));

Technical Report IMPACT-96-3 67

/*

* The almost as extensive collection of HP-PA store operations

*/

$for(TYPE in C C2 I)

{

OP_ST_SHORT_${TYPE} (alt(ALT_ST_Short));

OP_ST_LONG_${TYPE} (alt(ALT_ST_Long));

OP_ST_SHORT_PRE_${TYPE} (alt(ALT_ST_Inc_Short));

OP_ST_SHORT_POST_${TYPE} (alt(ALT_ST_Inc_Short));

}

// Int stores also has long increment versions

OP_ST_LONG_PRE_I (alt(ALT_ST_Inc_Long));

OP_ST_LONG_POST_I (alt(ALT_ST_Inc_Long));

$for(TYPE in F F2)

{

OP_ST_SHORT_${TYPE} (alt(ALT_ST_Short));

OP_ST_INDEX_${TYPE} (alt(ALT_ST_Index));

OP_ST_SHORT_PRE_${TYPE} (alt(ALT_ST_Inc_Short));

OP_ST_SHORT_POST_${TYPE} (alt(ALT_ST_Inc_Short));

OP_ST_INDEX_POST_${TYPE} (alt(ALT_ST_Inc_Index));

}

}

Technical Report IMPACT-96-3 68

C Initial speci�cation of structure IMPACT.hmdes2

/*

* Preliminary IMPACT specific Hmdes2 structure

* (built upon the pristine Hmdes2 structure).

*

* Created by John C. Gyllenhaal 2/10/95

*/

/* Section for passing parameters to the compiler */

CREATE SECTION Parameter

REQUIRED value (STRING*);

{

}

/*

* Specifies the valid register classes that may be specified.

*/

CREATE SECTION Register_Class

{

callee();

caller();

macro_callee();

macro_caller();

reserved();

}

/*

* Add specification of class and width of the the registers in the

* architectures, in order to do register allocation.

*

* (The pristine mdes specifies how registers overlap)

*

*

*/

SECTION Register

REQUIRED class (LINK(Register_Class));

REQUIRED width (INT);

{

}

/*

* Specifies the Register files for the architecture

*

* The registers that are contained by each register file is specified.

*/

CREATE SECTION Register_File

REQUIRED reg(LINK(Register)*);

{

Technical Report IMPACT-96-3 69

}

/*

* IMPACT scheduling alternative flag section

*

* Flags used for IMPACT scheduling alternatives.

* Flags show are those that historically have been used as alternative flags.

*

* Currently just defining the flag names.

*/

CREATE SECTION IMPACT_Alt_Flag

{

NT (); // Nullify Taken (squashes delay slot when cbr taken)

NN (); // Nullify Not-taken (squashes when cbr not taken)

SILENT (); // Alternative is a silent version of the operation.

// Indicates that this form is valid when operation is

// being speculated above a branch.

}

/*

* Add a flag field to scheduling alternatives to allow flags to be specified.

*/

SECTION Scheduling_Alternative

OPTIONAL flags(LINK(IMPACT_Alt_Flag)*);

{

}

/*

* IMPACT operation flag section.

*

* Flags for IMPACT operations.

* Used to specify operation types, scheduling information, etc.

*

* Currently just defining the flag names.

*/

CREATE SECTION IMPACT_Operation_Flag

{

IGNORE (); // Marks that ignored by scheduler

SYNC (); // Nothing may move past this operation

NI (); // Non-interlocking (has delay slot)

EXPANDS (); // Expands into multiple operations after scheduling.

// May not be put in delay slot of branch.

EXCEPT (); // May cause exceptions, may not be moved above a

// branch unless has SILENT flag also set.

Technical Report IMPACT-96-3 70

/*

* Operation types.

*

* Used by dependence graph builder and register allocator.

*/

JSR ();

RTS ();

JMP ();

CBR ();

LOAD ();

STORE ();

}

/*

* IMPACT operation section.

*

* Maps impact names to on or more operations in the pristine hmdes2.

* One IMPACT operation may map to many pristine operations and

* many IMPACT operations may map to one pristine operation.

*

* Also specifies flags about the operation that the compiler needs,

* see IMPACT_Operation_Flag section.

*/

CREATE SECTION IMPACT_Operation

REQUIRED op(LINK(Operation) LINK(Operation)*);

OPTIONAL flags(LINK(IMPACT_Operation_Flag)*);

{

}

Technical Report IMPACT-96-3 71

D Initial speci�cation of PA 7100 IMPACT.hmdes2

/*

* Preliminary conversion of PA_7100.hmdes to IMPACT specific hmdes2 format.

*

* Written by John C. Gyllenhaal 2/10/95

*/

/*

* Start with the pristine PA_7100.hmdes2

*/

$include "PA_7100_pristine.hmdes2"

/*

* Add in the IMPACT specific syntax.

*/

$include "structure_IMPACT.hmdes2"

/* For now, specify release path here */

$def IMPACT_REL_PATH /home/altair1/impact

/*

* Specify processor model and the header files to use in the

* customization in the customization_headers entry.

*/

SECTION Parameter

{

// Indicate this is a superscalar processor

processor_model (value(superscalar));

customization_headers (value(

${IMPACT_REL_PATH}/src/include/Lcode/l_opc.h

${IMPACT_REL_PATH}/src/include/Lcode/l_flags.h

${IMPACT_REL_PATH}/src/include/machine/m_spec.h

${IMPACT_REL_PATH}/src/include/machine/m_hppa.h

${IMPACT_REL_PATH}/src/include/Lcode/lhppa_phase1.h));

}

/*

* Specifies the registers in the architectures.

* Also specifies how these registers overlap each other. The overlapping

* conditions are assumed to be completely specified (up to the compiler

* to check for errors in this case).

*

* I am using the PA_7100 assembly format for register names as

* the entry names. Since these names have a '%' in them, the names

* must be quoted.

*

Technical Report IMPACT-96-3 72

* Specifying the class and width information for the int and float registers.

* Adding predicate registers for supporting emulation of predicated code.

*/

SECTION Register

{

/*

* Integer registers

*/

/* Integer callee */

$for (REG_NUM in $3..18)

{

"%r${REG_NUM}" (class(callee) width(32));

}

/* Integer caller */

$for (REG_NUM in $19..22)

{

"%r${REG_NUM}" (class(caller) width(32));

}

/* Integer macro caller */

$for (REG_NUM in 1 2 $23..26 28 29 31)

{

"%r${REG_NUM}" (class(macro_caller) width(32));

}

/* Integer reserved */

$for (REG_NUM in 0 27 30)

{

"%r${REG_NUM}" (class(reserved) width(32));

}

/*

* Float registers

*/

/* Callee floats */

$for (REG_NUM in $12..21)

{

"%fr${REG_NUM}R" (class(callee) width(32));

"%fr${REG_NUM}L" (class(callee) width(32));

"%fr${REG_NUM}" (class(callee) width(64));

}

/* Caller floats */

$for (REG_NUM in $8..11 $22..31)

{

"%fr${REG_NUM}R" (class(caller) width(32));

"%fr${REG_NUM}L" (class(caller) width(32));

"%fr${REG_NUM}" (class(caller) width(64));

}

Technical Report IMPACT-96-3 73

/* Macro caller floats */

$for (REG_NUM in $4..7)

{

"%fr${REG_NUM}R" (class(macro_caller) width(32));

"%fr${REG_NUM}L" (class(macro_caller) width(32));

"%fr${REG_NUM}" (class(macro_caller) width(64));

}

/* Special registers */

$for (REG_NUM in $0..3)

{

"%fr${REG_NUM}R" (class(reserved) width(32));

"%fr${REG_NUM}L" (class(reserved) width(32));

"%fr${REG_NUM}" (class(reserved) width(64));

}

/* Predicate block register (overlaps with all predicate registers) */

"%pr_all" (class(callee) width (64));

/* Predicate registers (all callee) */

$for (REG_NUM in $0..63)

{

"%pr${REG_NUM}" (class(callee) width(1));

}

/* Set the overlap conditions between %pr_all and the predicate registers*/

$for (REG_NUM in $0..63)

{

"%pr${REG_NUM}" (overlaps("%pr_all"));

"%pr_all" (overlaps||("%pr${REG_NUM}"));

}

}

/*

* Specifies the Register files for the architecture

*

* The registers that are contained by each register file is specified.

*/

SECTION Register_File

{

i (reg ($for (N in $3..18 $19..22 $23..26 28 29 31) {"%r${N}" }));

f (reg ($for (N in $12..21 $8..11 $22..31 $4..7)

{"%fr${N}R" "%fr${N}L" }));

f2 (reg ($for (N in $12..21 $8..11 $22..31 $4..7)

{"%fr${N}" }));

// Add a predicate register file for emulation by Lhppa

p (reg ($for (N in $0..63) {"%pr${N}" }));

}

Technical Report IMPACT-96-3 74

/*

* Specifies the field types supported by the architecture's

* instruction set (assembly language).

*

* Add predicate field type

*/

SECTION Field_Type

{

/* p -> predicate register */

p ();

any (compatible_with||(p));

pany (compatible_with(p NULL));

}

/*

* Specifies the architecture's assembly language operation formats

*

* Declare operation formats for compiler directives and

* emulated operations

*

* Add two optional predicate fields for each operation format.

*/

SECTION Operation_Format

{

// Standard operation formats

OF_Std1 (pred(pany pany));

OF_Std2 (pred(pany pany));

OF_Std3 (pred(pany pany));

OF_ZVDEPI (pred(pany pany));

OF_ZVDEP (pred(pany pany));

OF_VSHD (pred(pany pany));

OF_EXTRU (pred(pany pany));

OF_DEPI (pred(pany pany));

OF_Lit5 (pred(pany pany));

OF_Lit11 (pred(pany pany));

OF_Lit14 (pred(pany pany));

OF_Lit21_Mov (pred(pany pany));

OF_Lit21_Add (pred(pany pany));

OF_Label_Add (pred(pany pany));

OF_Label_Mov (pred(pany pany));

// Operation format for "move"

OF_Mov (pred(pany pany));

// Operation format for fp 5op

OF_5op (pred(pany pany));

Technical Report IMPACT-96-3 75

// Operation format for unconditional branch

OF_Rts (pred(pany pany));

OF_Jsr1 (pred(pany pany));

OF_Jsr2 (pred(pany pany));

OF_Ubr1 (pred(pany pany));

OF_Ubr2 (pred(pany pany));

OF_Ubr3 (pred(pany pany));

// Operation format for conditional branch

OF_Cbr1 (pred(pany pany));

OF_Cbr2 (pred(pany pany));

OF_Cbr_BB (pred(pany pany));

// Operation format for Stores

OF_Store1 (pred(pany pany));

OF_Store2 (pred(pany pany));

OF_Store2_Label (pred(pany pany));

OF_Store3 (pred(pany pany));

// pre/post inc short store

OF_Store4 (pred(pany pany));

// pre/post inc long store

OF_Store5 (pred(pany pany));

// post inc index store

OF_Store6 (pred(pany pany));

// Operation format for loads

OF_Load1 (pred(pany pany));

OF_Load2 (pred(pany pany));

OF_Load2_Reg (pred(pany pany));

OF_Load2_Label (pred(pany pany));

OF_Load3 (pred(pany pany));

// pre/post inc short load

OF_Load4 (pred(pany pany));

// pre/post inc long load

OF_Load5 (pred(pany pany));

// post inc index load

OF_Load6 (pred(pany pany));

// Nop

OF_Nil (pred(pany pany));

// For compiler directives

OF_Directive (pred(pany pany) dest(any any) src(any any any any));

// For operations emulated by Lhppa

OF_Emulation (pred(pany pany) dest(any any) src(any any any any));

}

Technical Report IMPACT-96-3 76

/*

* Specifies how resources are used as operations execute.

*

* Create resources usages for compiler directives and emulated operations

*/

SECTION Reservation_Table

{

// For compiler directives

RT_Directive (use(any_iissue));

// For operations emulated by Lhppa

RT_Emulation (use(any_iissue));

}

/*

* Used to specify how register and sync operands interact so that

* a dependence distance can be calculated.

*

* For now, a list of possible use times are specified for each operand.

*/

SECTION Operand_Latency

{

p0 (time(0));

}

/*

* The section is used to specify the dependence distances between

* operations (if dependence exists). All dependences (register,

* memory, control, sync, etc) are modeled as flow,

* output, and anti dependencies between operands.

*

* Uses Operand_Latency above to specify how operands interact.

*

* Specify latency 1 for emulated operations and compiler

* directives (compiler directives will not be scheduled so

* it really doesn't matter).

*

* Add Operand_Latency specifiers for predicate operands to

* can emulate predicated code with Lhppa. May have two predicate

* operands (the second operand is used for debugging predicate

* promotion, and does not effect execution of operation)

*

*/

SECTION Operation_Latency

{

// For compiler directives, dependence graph should not be drawing arcs

// to or from these

OL_Directive (pred(x x)

dest(x x)

src(x x x x)

mem_dest(x)

Technical Report IMPACT-96-3 77

ctrl_dest(x)

sync_dest(x)

mem_src(x)

ctrl_src(x)

sync_src(x));

// For operations emulated by Lhppa, model as latency 1

OL_Emulation (pred(p0 p0)

dest(d1 d1)

src(s0 s0 s0 s0)

mem_dest(sd0)

ctrl_dest(sd0)

sync_dest(sd0)

mem_src(ss0)

ctrl_src(ss0)

sync_src(ss0));

/*

* Add predicated operands for all Operation_Latency types

* specified in the pristine hmdes2

*/

$for(N in 1 2 3 8 15)

{

OL_Lat${N} (pred(p0 p0));

}

OL_Branch (pred(p0 p0));

OL_Store (pred(p0 p0));

OL_Label_Store (pred(p0 p0));

OL_Load (pred(p0 p0));

}

/*

* Describe the scheduling alternatives for the operations this

* processor supports.

*

* Allow multiple operation formats to be specified

* (for operations that have multiple operation formats but behave the same).

*

* Specify scheduling alternatives for compiler directives and emulation

* operations.

*/

SECTION Scheduling_Alternative

{

// Add squashing flags for branch alternatives

ALT_Cbr_COMB_FWD (flags(NT));

ALT_Cbr_COMB_BWD (flags(NN));

ALT_Cbr_COMIB_FWD (flags(NT));

ALT_Cbr_COMIB_BWD (flags(NN));

ALT_Cbr_ADDIB_FWD (flags(NT));

Technical Report IMPACT-96-3 78

ALT_Cbr_ADDIB_BWD (flags(NN));

ALT_Cbr_BB_FWD (flags(NT));

ALT_Cbr_BB_BWD (flags(NN));

ALT_Rts (flags(NT));

ALT_Jump (flags(NT));

ALT_Jump_RG (flags(NT));

// For compiler directives

ALT_Directive (format(OF_Directive) resv(RT_Directive)

latency(OL_Directive));

// For operations emulated by Lhppa

ALT_Emulation (format(OF_Emulation) resv(RT_Emulation)

latency(OL_Emulation));

}

/*

* Describe the operations for this architecture

*

* The scheduling alternatives for each operation is specified.

*/

SECTION Operation

{

// For compiler directives

OP_DIRECTIVE (alt(ALT_Directive));

// For operations emulated by Lhppa

OP_EMULATION (alt(ALT_Emulation));

}

/*

* IMPACT operation section.

*

* Maps impact names to operations in the pristine hmdes2.

* Specifies flags about the operation that the compiler needs.

*/

SECTION IMPACT_Operation

{

// NOP

Lop_NO_OP (op(OP_NOP));

/*

* Integer conditional branch operations

*/

$for (CASE in EQ NE GT GE LT LE GT_U GE_U LT_U LE_U)

{

LHPPAop_COMB_${CASE}_FWD (flags(CBR NI) op(OP_COMB_${CASE}_FWD));

Technical Report IMPACT-96-3 79

LHPPAop_COMIB_${CASE}_FWD (flags(CBR NI) op(OP_COMIB_${CASE}_FWD));

LHPPAop_COMB_${CASE}_BWD (flags(CBR NI) op(OP_COMB_${CASE}_BWD));

LHPPAop_COMIB_${CASE}_BWD (flags(CBR NI) op(OP_COMIB_${CASE}_BWD));

}

// Lhppa only uses the LT version

LHPPAop_ADDIB_LT_FWD (flags(CBR NI) op(OP_ADDIB_LT_FWD));

LHPPAop_ADDIB_LT_BWD (flags(CBR NI) op(OP_ADDIB_LT_BWD));

// Branch on bit

$for (CASE in BB_0 BB_1)

{

LHPPAop_${CASE}_FWD (flags(CBR NI) op(OP_${CASE}_FWD));

LHPPAop_${CASE}_BWD (flags(CBR NI) op(OP_${CASE}_BWD));

}

// Unconditional branches

Lop_JSR (flags(JSR NI) op(OP_JSR));

Lop_JSR_FS (flags(JSR NI) op(OP_JSR));

Lop_JSR_ND (flags(JSR NI) op(OP_JSR));

// Dynamic subroutine call doesn't have slot to fill

LHPPAop_JSR_DYNCALL (flags(JSR) op(OP_JSR_DYNCALL));

Lop_RTS (flags(RTS NI) op(OP_RTS));

Lop_RTS_FS (flags(RTS NI) op(OP_RTS));

Lop_JUMP (flags(JMP NI) op(OP_JUMP));

Lop_JUMP_FS (flags(JMP NI) op(OP_JUMP));

Lop_JUMP_RG (flags(JMP NI) op(OP_JUMP_RG));

Lop_JUMP_RG_FS (flags(JMP NI) op(OP_JUMP_RG));

/*

* Integer ALU operations

*/

Lop_MOV (op(OP_COPY OP_LDO_MOV OP_LDIL));

LHPPAop_LDIL (op(OP_LDIL));

LHPPAop_LDO (op(OP_LDO_ADD));

LHPPAop_ADDIL (op(OP_ADDIL));

Lop_ADD (op(OP_ADD OP_ADDI));

Lop_SUB (op(OP_SUB OP_SUBI));

$for (OPCODE in ZVDEPI ZVDEP VSHD VEXTRS)

{

LHPPAop_${OPCODE} (op(OP_${OPCODE}));

}

// logical operations

$for (OPCODE in OR AND XOR AND_COMPL)

Technical Report IMPACT-96-3 80

{

Lop_${OPCODE} (op(OP_${OPCODE}));

}

// shift operations

$for (OPCODE in LSL ASR LSR)

{

Lop_${OPCODE} (op(OP_${OPCODE}));

}

// Integer comparison operations

$for(CMP in EQ NE GT GE LT LE GT_U GE_U LT_U LE_U)

{

Lop_${CMP} (flags(EXPANDS) op(OP_${CMP}));

}

/*

* Floating point operations

*/

$for(OPCODE in MOV_F MOV_F2 ABS_F ABS_F2)

{

Lop_${OPCODE} (flags() op(OP_${OPCODE}));

}

$for(OPCODE in I_F I_F2 F2_I F_I F_F2 F2_F)

{

Lop_${OPCODE} (flags(EXCEPT) op(OP_${OPCODE}));

}

$for(OPCODE in ADD SUB EQ GT GE NE LT LE)

{

$for(TYPE in F F2)

{

Lop_${OPCODE}_${TYPE} (flags(EXCEPT) op(OP_${OPCODE}));

}

}

Lop_MUL_F (flags(EXCEPT) op(OP_MUL_F));

Lop_MUL_F2 (flags(EXCEPT) op(OP_MUL_F2));

Lop_DIV_F (flags(EXCEPT) op(OP_DIV_F));

Lop_DIV_F2 (flags(EXCEPT) op(OP_DIV_F2));

Lop_SQRT_F (flags(EXCEPT) op(OP_SQRT_F));

Lop_SQRT_F2 (flags(EXCEPT) op(OP_SQRT_F2));

// Floating-point 5ops operations

LHPPAop_FMPYADD (flags(EXCEPT) op(OP_FMPYADD));

LHPPAop_FMPYSUB (flags(EXCEPT) op(OP_FMPYSUB));

Technical Report IMPACT-96-3 81

/*

* The rather extensive collection of HP-PA load operations

*/

$for(TYPE in C C2 I F F2)

{

Lop_LD_${TYPE} (flags(LOAD EXCEPT)

op (OP_LD_SHORT_${TYPE}

OP_LD_INDEX_${TYPE}));

Lop_LD_PRE_${TYPE} (flags(LOAD EXCEPT)

op(OP_LD_SHORT_PRE_${TYPE}));

Lop_LD_POST_${TYPE} (flags(LOAD EXCEPT)

op(OP_LD_SHORT_POST_${TYPE}

OP_LD_INDEX_POST_${TYPE}));

}

// The C C2 and I loads have long versions

Lop_LD_C (op||(OP_LD_LONG_C));

Lop_LD_C2 (op||(OP_LD_LONG_C2));

Lop_LD_I (op||(OP_LD_LONG_I));

// Int loads also has long increment versions

Lop_LD_PRE_I (op||(OP_LD_LONG_PRE_I));

Lop_LD_POST_I (op||(OP_LD_LONG_POST_I));

/*

* The almost as extensive collection of HP-PA store operations

*/

$for(TYPE in C C2 I)

{

Lop_ST_${TYPE} (flags(STORE EXCEPT)

op(OP_ST_SHORT_${TYPE}

OP_ST_LONG_${TYPE}));

Lop_ST_PRE_${TYPE} (flags(STORE EXCEPT)

op(OP_ST_SHORT_PRE_${TYPE}));

Lop_ST_POST_${TYPE} (flags(STORE EXCEPT)

op(OP_ST_SHORT_POST_${TYPE}));

}

// Int stores also has long increment versions

Lop_ST_PRE_I (op||(OP_ST_LONG_PRE_I));

Lop_ST_POST_I (op||(OP_ST_LONG_POST_I));

$for(TYPE in F F2)

{

Lop_ST_${TYPE} (flags(STORE EXCEPT)

op(OP_ST_SHORT_${TYPE}

OP_ST_INDEX_${TYPE}));

Lop_ST_PRE_${TYPE} (flags(STORE EXCEPT)

op(OP_ST_SHORT_PRE_${TYPE}));

Lop_ST_POST_${TYPE} (flags(STORE EXCEPT)

Technical Report IMPACT-96-3 82

op(OP_ST_SHORT_POST_${TYPE}

OP_ST_INDEX_POST_${TYPE}));

}

/*

* Compiler directives. Ignored by the scheduler

*/

$for(DIRECTIVE in DEFINE ALLOC EPILOGUE PROLOGUE)

{

Lop_${DIRECTIVE} (flags(IGNORE) op(OP_DIRECTIVE));

}

/*

* Operation emulated by Lhppa

*/

LHPPAop_PRED_MOV (op(OP_EMULATION));

$for(OPCODE in PRED_CLEAR PRED_LD PRED_ST PRED_ST_BLK PRED_LD_BLK

CMOV CMOV_COM CMOV_F CMOV_COM_F CMOV_F2 CMOV_COM_F2

AND_NOT OR_NOT SELECT SELECT_F SELECT_F2 PREF_LD)

{

Lop_${OPCODE} (op(OP_EMULATION));

}

// Predicate setting operations

$for(CASE in EQ NE GT GT_U GE GE_U LT LT_U LE LE_U)

{

Lop_PRED_${CASE} (op(OP_EMULATION));

}

$for(CASE in EQ NE GT GE LT LE)

{

Lop_PRED_${CASE}_F (op(OP_EMULATION));

Lop_PRED_${CASE}_F2 (op(OP_EMULATION));

}

}

