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Abstract

As the disparity between processor and main memory per-

formance grows, the number of execution cycles spent wait-

ing for memory accesses to complete also increases. As a

result, latency hiding techniques are critical for improved

application performance on future processors. In this pa-

per we examine the spatial locality characteristics of several

applications, and show that spatial locality varies substan-

tially across and within applications. We then present a

microarchitecture scheme which detects and adapts to this

varying spatial locality, dynamically adjusting the amount

of data fetched on a cache miss. The Spatial Locality Detec-

tion Table, introduced in this paper, facilitates the detection

of spatial locality across adjacent small cached blocks. Re-

sults from detailed simulations of several integer programs

show signi�cant speedups. The improvements are due to the

reduction of con
ict and capacity misses by utilizing small

blocks and small fetch sizes when spatial locality is absent,

and the prefetching e�ect of large fetch sizes when spatial

locality exists.

1 Introduction

This paper introduces an approach to solving the growing

memory latency problem [2] by intelligently exploiting spa-

tial locality. Spatial locality refers to the tendency for neigh-

boring memory locations to be referenced close together in

time. Traditionally there have been two main approaches

used to exploit spatial locality. The �rst approach is to

use larger cache blocks, which have a natural prefetching

e�ect. However, large cache blocks can result in wasted bus

bandwidth and poor cache utilization, due to fragmentation

and underutilized cache blocks. Both negative e�ects oc-

cur when data with little spatial locality is cached. The

second common approach is to prefech multiple blocks into

the cache. However, prefetching is only bene�cial when the

prefetched data is accessed in cache, otherwise the prefetched

data may displace more useful data from the cache, in ad-

dition to wasting bus bandwidth. Similar issues exist with

write allocate caches, which, in e�ect, prefetch the data in

the cache block containing the written address. Particu-

�This technical report is a longer version of [1].

larly when using large block sizes and write allocation, the

amount of prefetching is �xed. However, the spatial locality,

and hence the optimal prefetch amount, varies across and

often within programs.

As the available chip area increases, it is meaningful

to spend more resources to allow intelligent control over

latency-hiding techniques, adapting to the variations in spa-

tial locality. For numeric programs there are several known

compiler techniques for optimizing data cache performance.

In contrast, integer (non-numeric) programs often have ir-

regular access patterns that the compiler cannot detect and

optimize. For example, the temporal and spatial locality of

linked list elements and hash table data are often di�cult

to determine at compile time. This paper focuses on cache

performance optimization for integer programs. While we

focus our attention on data caches, the techniques presented

here are applicable to instruction caches.

In order to increase data cache e�ectiveness for integer

programs we are investigating methods of adaptive cache hi-

erarchy management, where we intelligently control caching

decisions based on the usage characteristics of accessed data.

In this paper we examine the problem of detecting spatial lo-

cality in accessed data, and automatically control the fetch

of multiple smaller cache blocks into all data caches and

bu�ers. Not only are we able to reduce the con
ict and ca-

pacity misses with smaller cache lines and fetch sizes when

spatial locality is absent, but we also reduce cold start misses

and prefetch useful data with larger fetch sizes when spatial

locality is present.

We introduce a new hardware mechanism called the Spa-

tial Locality Detection Table (SLDT). Each SLDT entry

tracks the accesses to multiple adjacent cache blocks, facili-

tating detection of spatial locality across those blocks while

they are cached. The resulting information is later recorded

in the Memory Address Table [3] for long-term tracking of

larger regions called macroblocks. We show that these exten-

sions to the cache microarchitecture signi�cantly improve the

performance of integer applications, achieving up to 17% and

26% improvements for 100 and 200-cycle memory latencies,

respectively. This scheme is fully compatible with existing

Instruction Set Architectures (ISA).

The remainder of this paper is organized as follows: Sec-

tion 2 discusses related work; Section 3 discusses general

spatial locality issues, and a code example from a common
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application is used to illustrate the role of spatial locality

and cache line sizes in determining application cache perfor-

mance, as well as to motivate our spatial locality optimiza-

tion techniques; Section 4 discusses hardware techniques;

Section 5 presents simulation results; Section 6 performs a

cost analysis of the added hardware; and Section 7 concludes

with future directions.

2 Related Work

Several studies have examined the performance e�ects of

cache block sizes [4][5]. One of the studies allowed multi-

ple consecutive blocks to be fetched with one request [4], and

found that for data caches the optimal statically-determined

fetch size was generally twice the block size. In this work we

also examine fetch sizes larger than the block size, however,

we allow the fetch size to vary based on the detected spa-

tial locality. Another method allows the number of blocks

fetched on a miss to vary across program execution, but not

across di�erent data [6].

Hardware [7][8][9][10][11] and software [12][13][14]

prefetching methods for uniprocessor machines have been

proposed. However, many of these methods focus on

prefetching regular array accesses within well-structured

loops, which are access patterns primarily found in numeric

codes. Other methods geared towards integer codes [15][16]

focus on compiler-inserted prefetching of pointer targets,

and could be used in conjunction with our techniques.

The dual data cache [17] attempts to intelligently exploit

both spatial and temporal locality, however the temporal

and spatial data must be placed in separate structures, and

therefore the relative amounts of each type of data must

be determined a priori. Also, the spatial locality detection

method was tuned to numeric codes with constant stride

vectors. In integer codes, the spatial locality patterns may

not be as regular. The split temporal/spatial cache [18] is

similar in structure to the dual data cache, however, the run-

time locality detection mechanism is quite di�erent than that

of both the dual data cache and this paper.

3 Spatial Locality

Caches seek to exploit the principle of locality. By storing

a referenced item, caches exploit temporal locality - the ten-

dency for that item to be rereferenced soon. Additionally, by

storing multiple items adjacent to the referenced item, they

exploit spatial locality - the tendency for neighboring items

to be referenced soon. While exploitation of temporal local-

ity can result in cache hits for future accesses to a particular

item, exploitation of spatial locality can result in cache hits

for future accesses to multiple nearby items, thus avoiding

the long memory latency for short-term accesses to these

items as well. Traditionally, exploitation of spatial locality

is achieved through either larger block sizes or prefetching

of additional blocks. We de�ne the following terms as they

will be used throughout this paper:

element A data item of the maximum size allowed by the

ISA, which in our system is 8 bytes.

spatial reuse A reference to a cached element other than

the element which caused the referenced element to be

fetched into the cache.

The spatial locality in an application's data set can predict

the e�ectiveness of spatial locality optimizations. Unfortu-

nately, no quantitative measure of spatial locality exists, and

we are forced to adopt indirect measures. One indirect mea-

sure of the amount of spatial locality is via its inverse rela-

tioship to the distance between references in both space and

time. With this in view, we measured the spatial reuses in

a 64K-byte fully-associative cache with 32-byte lines. This

gives us an approximate time bound (the time taken for a

block to be displaced), and a space bound (within 32-byte

block boundaries). We chose this block size because past

studies have found that 16 or 32-byte block sizes maximize

data cache performance [4]. These measurement techniques

di�er from those in [19], which explicitely measure the reuse

distance (in time). Our goal is to measure both the reused

and unused portions of the cache blocks, for di�erent cache

organizations.

Figure 1(a) shows the spatial locality estimates for the

fully-associative cache. The number of dynamic cache blocks

is broken down by the number of 8-byte elements that were

accessed during each block's cache lifetime. Blocks where

only one element is accessed have no spatial locality within

the measured context. This graph does not show the relative

locations of the accessed elements within each 32-byte cache

block. Figure 1(a) shows that between 13-83% of the cached

blocks have no spatial reuse. Figure 1(b) shows how this

distribution changes for a 16K-byte direct-mapped cache.

In this case between 30-93% of the blocks have no spatial

reuse.

For a 32-byte cache block, over half the time the extra

data fetched into the cache simply wastes bus bandwidth

and cache space. Similar observations have been made for

numeric codes [19]. Therefore, it would be bene�cial to tune

the amount of data fetched and cached on a miss to the

spatial locality available in the data. This optimization is

investigated in our work. We discuss several issues involved

with varying fetch sizes, including cost e�cient and accu-

rate spatial locality detection, fetch size choice, and cache

support for varying fetch sizes.

3.1 Code Example

In this section we use a code example from SPEC92 gcc to

illustrate the di�culties involved with static analysis and

annotation of spatial locality information, motivating our

dynamic approach.

One of the main data structures used in gcc is an RTL ex-

pression, or rtx, whose de�nition is shown in Figure 2. Each

rtx structure contains a two-byte code �eld, a one-byte mode

�eld, seven one-bit 
ags, and an array of operand �elds. The

operand array is de�ned to contain only one four-byte ele-

ment, however, each rtx is dynamically allocated to contain

as many array elements as there are operands, depending on

the rtx code, or RTL expression type. Therefore, each rtx

instance contains eight or more bytes.

In the frequently executed rtx renumbered equal p rou-

tine, which is used during jump optimization, two rtx
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(a) 64K-byte fully-associative
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(b) 16K-byte direct-mapped

Figure 1: Breakdown of blocks cached in L1 data cache by how many 8-byte elements were accessed while each block was

cached. The results for two cache con�gurations are shown, each with 32-byte blocks.

/* RTL expression ("rtx"). */
typedef struct rtx_def
{

/* The kind of expression this is. */

enum rtx_code code : 16;
/* The kind of value the expression has. */
enum machine_mode mode : 8;
/* Various bit flags */
unsigned int jump : 1;
unsigned int call : 1;
unsigned int unchanging : 1;
unsigned int volatil : 1;
unsigned int in_struct : 1;

unsigned int used : 1;
unsigned integrated : 1;
/* The first element of the operands of this rtx.

The number of operands and their types are controlled
by the `code' field, according to rtl.def. */

rtunion fld[1];
} *rtx;

/* Common union for an element of an rtx. */
typedef union rtunion_def
{

int rtint;
char *rtstr;
struct rtx_def *rtx;
struct rtvec_def *rtvec;

enum machine_mode rttype;
} rtunion;

Figure 2: Gcc rtx De�nition

structures are compared to determine if they are equiva-

lent. Figure 3 shows a slightly abbreviated version of the

rtx renumbered equal p routine. After checking if the code

and mode �elds of the two rtx structures are identical, the

routine then compares the operands, to determine if they

are also identical. Four branch targets in Figure 3 are anno-

tated with their execution weights, derived from execution

pro�les using the SPEC reference input. Roughly 1% of the

time only the code �elds of the two rtx structures are com-

pared before exiting. In this case, only the �rst two bytes in

each rtx structure is accessed. About 46% of the time x and y

are CONST INT rtx, and only the �rst operand is accessed.

Therefore, only the �rst eight bytes of each rtx structure

is accessed, and there is spatial locality within those eight

bytes.

For many other types of RTL expressions, the routine will

use the for loop to iterate through the operands, from last to

�rst, comparing them until a mismatch is found. In this case

there will be spatial locality, but at a slightly larger distance

(in space) than in the previous case. Most instruction types

contain more than one operand. The most common operand

type in this loop is an RTL expression, which results in a

recursive call to rtx renumbered equal p.

This routine illustrates that the amount of spatial local-

ity can vary for particular load references, depending on

the function arguments. Therefore, if the original access

into each rtx structure in this routine is a miss, the optimal

amount of data to fetch into the cache will vary correspond-

ingly. For example, if the access GET_CODE(y) on line 10

of Figure 3, which performs the access y->code, misses in

the L1 cache, the spatial locality in that data depends on

whether the program will later fall into a case body of the

switch statement on line 11 or into the body of the for loop

on line 24, and on the rtx type of x which determines the

initial value of i in the for loop. However, at the time of the

cache miss on line 10 this information is not available, as it

is highly data-dependent. As such, neither static analysis

(if even possible) nor pro�ling will result in de�nitive or ac-

curate spatial locality information for the load instructions.

Dynamic analysis of the spatial locality in the data o�ers

greater promise. For this routine, dynamic analysis of each

rtx instance accessed in the routine would obtain the most

accurate spatial locality detection. Also, dynamic schemes

do not require pro�ling, which many users are unwilling to

perform, or ISA changes.
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16       case LABEL_REF:
17           return (next_real_insn (x−>fld[0].rtx) == next_real_insn (y−>fld[0].rtx));
18       case SYMBOL_REF:
19           return x−>fld[0].rtstr == y−>fld[0].rtstr;
20     }
21     if (GET_MODE (x) != GET_MODE (y)) return 0;
22     /* Compare the elements. If any pair of corresponding elements fail to match, return 0 for the whole thing. */
23     fmt = GET_RTX_FORMAT (code);
24     for (i = GET_RTX_LENGTH (code) − 1; i >= 0; i−−) {
25         register int j;
26         switch (fmt[i]) {
27           case ’i’:
28               if (x−>fld[i].rtint != y−>fld[i].rtint) return 0;
29               break;
30           case ’s’:
31               if (strcmp (x−>fld[i].rtstr, y−>fld[i].rtstrs)) return 0;
32               break;

35               return 0;
36               break; 
37           case ’E’:
38               ... /* Accesses *({x,y}−>fld[i].rtvec) */ ...
39               break;
40         }
41     }
42     return 1;
43   }

 1   int rtx_renumbered_equal_p (rtx x, rtx y)
 2   {
 3     register int i;
 4     register RTX_CODE code = GET_CODE (x);
 5     register char *fmt;
 6     if (x == y) return 1;
 7     if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
 8         && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG && GET_CODE (SUBREG_REG (y)) == REG)))
 9         {   ... /* Rarely entered */ ...    }

33          case ’e’:

10     if (code != GET_CODE (y)) return 0;
11     switch (code) {
12       case PC: case CC0: case ADDR_VEC: case ADDR_DIFF_VEC:
13           return 0;

34             if (! rtx_renumbered_equal_p (x−>fld[i].rtx, y−>fld[i].rtx))

14       case CONST_INT:
15         return x−>fld[0].rtint == y−>fld[0].rtint;

Exits here
448 times

Exits here
29096 times

Case matches
33060 times

Exits here
30014 times

Figure 3: Gcc rtx renumbered equal p routine, executed 63173 times.

3.2 Applications

Aside from varying the data cache load fetch sizes, our spa-

tial locality optimizations could be used to control instruc-

tion cache fetch sizes, write allocate versus no-allocate poli-

cies, and bypass fetch sizes when bypassing is employed. The

latter case is discussed brie
y in [3], and is greatly expanded

in this paper. In this paper we examine the application of

these techniques to control the fetch sizes into the L1 and L2

data caches. We also study these optimizations in conjunc-

tion with cache bypassing, a complementary optimization

that also aims to improve cache performance.

4 Techniques

4.1 Overview of Prior Work

In this section we brie
y overview the concept of a mac-

roblock, as well as the Memory Address Table (MAT), intro-

duced in an earlier paper [3] and utilized in this work.

We showed that cache bypassing decisions could be e�ec-

tively made at run-time, based on the previous usage of the

memory address being accessed. Other bypassing schemes

include [20][21][17][22]. In particular, our scheme dynami-

cally kept track of the accessing frequencies of memory re-

gions called macroblocks. The macroblocks are statically-

de�ned blocks of memory with uniform size, larger than the

cache block size. The macroblock size should be large enough

so that the total number of accessed macroblocks is not ex-

cessively large, but small enough so that the access patterns

of the cache blocks contained within each macroblock are

relatively uniform. It was determined that 1K-byte mac-

roblocks provide a good cost-performance tradeo�.

In order to keep track of the macroblocks at run time

we use an MAT, which ideally contains an entry for each

macroblock, and is accessed with a macroblock address. To

support dynamic bypassing decisions, each entry in the table

contains a saturating counter, where the counter value rep-

resents the frequency of accesses to the corresponding mac-

roblock. For details on the MAT bypassing scheme see [3].

Also introduced in that paper was an optimization geared

towards improving the e�ciency of L1 bypasses, by tracking

the spatial locality of bypassed data using the MAT, and

using that information to determine how much data to fetch

on an L1 bypass. In this paper we introduce a more robust

spatial locality detection and optimization scheme using the

SLDT, which enables much more e�cient detection of spa-

tial locality. Our new scheme also supports fetching varying

amounts of data into both levels of the data cache, both

with and without bypassing. In practice this spatial locality

optimization should be performed in combination with by-

passing, in order to achieve the best possible performance,

as well as to amortize the cost of the MAT hardware. The

cost of the combined hardware is addressed in Section 6,
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Figure 4: Layout of 8-byte subblocks from the 32-byte block

starting at address 0x00000000 in a 512-byte 2-way set-

associative cache with 8-byte lines. The shaded blocks cor-

respond to the locations of the four 8-byte subblocks.

following the presentation of experimental results.

4.2 Support for Varying Fetch Sizes

The varying fetch size optimization could be supported using

subblocks. In that case the block size is the largest fetch size

and the subblock size is gcd(fetch size0; :::; fetch sizen),

where n is the number of fetch sizes supported. Currently,

we only support two power-of-two fetch sizes for each level

of cache, so the subblock size is simply the smaller fetch size.

However, the cache lines will be underutilized when only the

smaller size is fetched.

Instead, we use a cache with small lines, equal to the

smaller fetch size, and optionally �ll in multiple, consecutive

blocks when the larger fetch size is chosen. This approach is

similar to that used in some prefetching strategies [23]. As a

result, the cache can be fully utilized, even when the smaller

sizes are fetched. It also eliminates con
ict misses resulting

from accesses to di�erent subblocks. However, this approach

makes detection of spatial reuses much more di�cult, as will

be described in Section 4.3. Also, smaller block sizes in-

crease the tag array cost, which is addressed in Section 6.

In our scheme, the max fetch size data is always aligned to

max fetch size boundaries. As a result, our techniques will

fetch data on either side of the accessed element, depend-

ing on the location of the element within the max fetch size

block. In our experience, spatial locality in the data cache

can be in either direction (spatially) from the referenced el-

ement.

4.3 Spatial Locality Detection Table

To facilitate spatial locality tracking, a spatial counter, or

sctr, is included in each MAT entry. The role of the sctr

is to track the medium to long-term spatial locality of the

corresponding macroblock, and to make fetch size decisions,

as will be explained in Section 4.4. This counter will be in-

cremented whenever a spatial miss is detected, which occurs

when portions of the same larger fetch size block of data

reside in the cache, but not the element currently being ac-

cessed. Therefore, a hit might have occurred if the larger

fetch size was fetched, rather than the smaller fetch size. In

our implementation, where multiple cache blocks are �lled

when the larger fetch size is chosen, a spatial miss is not

trivial to detect. If the cache is not fully-associative, the

tags for di�erent blocks residing in the same larger fetch size

block will lie in consecutive sets, as shown in Figure 4, where

the data in one 32-byte block is highlighted. Searching for

other cache blocks in the same larger fetch size block of data

will require access to the tags in these consecutive sets, and

thus either additional cycles to access, or additional hard-

ware support. One possibility is a restructured tag array

design allowing e�cient access to multiple consecutive sets

of tags. Alternatively, a separate structure can be used to

detect this information, which is the approach investigated

in this work.

This structure is called the Spatial Locality Detection Ta-

ble (SLDT), and is designed for e�cient detection of spatial

reuses with low hardware overhead. The role of the SLDT

is to detect spatial locality of data while it is in the cache,

for recording in the MAT when the data is displaced. The

SLDT is basically a tag array for blocks of the larger fetch

size, allowing single-cycle access to the necessary informa-

tion. Figure 5 shows an overview of how the SLDT interacts

with the MAT and L1 data cache, where the double-arrow

line shows the correspondence of four L1 data cache entries

with a single SLDT entry. In order to track all cache blocks,

the SLDT would need N entries, where N is the number of

blocks in the cache. This represents the worst case of hav-

ing fetched only smaller (line) size blocks into the cache, all

from di�erent larger size blocks. However, in order to reduce

the hardware overhead of the SLDT, we use a much smaller

number of entries, which will allow us to capture only the

shorter-term spatial reuses. The same SLDT could be used

to track the spatial locality aspects of all structures at the

same level in the memory hierarchy, such as the data cache,

the instruction cache, and, when we perform bypassing, the

bypass bu�er.

The SLDT tags correspond to maximum fetch size

blocks. The sz �eld is one bit indicating if either the

larger size block was fetched into the cache, or if only

smaller blocks were fetched. The vc (valid count) �eld is

log(max fetch size=min fetch size) bits in length, and in-

dicates how many of the smaller blocks in the larger size

block are currently valid in the data cache. The actual num-

ber of valid smaller blocks is vc+1. An SLDT entry will only

be valid for a larger size block when some of its constituent

blocks are currently valid in the data cache. A bit mask

could be used to implement the vc, rather than the counter

design, to reduce the operational complexity. However, for

large maximum to minimum fetch size ratios, a bit mask will

result in larger entries. Finally, the sr (spatial reuse) bit will

be set if spatial reuse is detected, as will be discussed later.

When a larger size block of data is fetched into the cache,

an SLDT entry is allocated (possibly causing the replace-

ment of an existing entry) and the values of sz and vc are set

to 1 and max fetch size=min fetch size � 1, respectively.

If a smaller size block is fetched and no SLDT entry currently

exists for the corresponding larger size block, then an entry

is allocated and sz and vc are both initialized to 0. If an en-

try already exists, vc is incremented to indicate that there is

now an additional valid constituent block in the data cache.

For both fetch sizes the sr bit is initialized to 0. When a

cache block is replaced from the data cache, the correspond-

ing SLDT entry is accessed and its vc value is decremented

if it is greater than 0. If vc is already 0, then this was the

only valid block, so the SLDT entry is invalidated. When
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Figure 5: SLDT and MAT Hardware

an SLDT entry is invalidated its sr bit is checked to see if

there was any spatial reuse while the data was cached. If

not, the corresponding entry in the MAT is accessed and its

sctr is decremented, e�ectively depositing the information

in the MAT for longer-term tracking. Because the SLDT is

managed as a cache, entries can be replaced, in which case

the same actions are taken.

An � (fetch initiator) bit is added to each data cache tag

to help detect spatial hits. The � bit is set to 1 during

the cache re�ll for the cache block containing the referenced

element (i.e. the cache block causing the fetch), otherwise

it is reset to 0. Therefore, a hit to any block with a 0 � bit

is a spatial hit, as this data was fetched into the cache by a

miss to some other element.

Table 1 summarizes the actions taken by the SLDT for

memory accesses. The sr bit, which was initialized to zero,

is set for all types of both spatial misses and spatial hits.

Two types of spatial misses are detected. The �rst type of

spatial miss occurs when other portions of the same larger

fetch size block were fetched independently, indicated by a

valid SLDT entry with a sz of 0. Therefore, there might

have been a cache hit if the larger size block was fetched, so

the corresponding entry in the MAT is accessed and its sctr

is incremented. The second type can occur when the larger

size block was fetched, but one of its constituent blocks was

displaced from the cache, as indicated by a cache miss and a

valid SLDT entry with a sz of 1. It is not trivial to detect if

this miss is to the element which caused the original fetch,

or to some other element in the larger fetch size block. The

sr bit is conservatively set, but the sctr in the corresponding

MAT entry is not incremented.

A spatial hit can occur in two situations. If the larger size

block was fetched, then the � bit will only be set for one of

the loaded cache blocks. A hit to any of the loaded cache

blocks without the � bit set is a spatial hit, as described

earlier. We do not increment the sctr on spatial hits, be-

cause our fetch size was correct. We only update the sctr

when the fetch size should be changed in the future. When

multiple smaller blocks were fetched, a hit to one of these

is also characterized as a spatial hit. This case is detected

by checking if vc is larger than 0 when sz is 0. However,

we do not increment the sctr in this case either because a

spatial miss would have been detected earlier when a second

element in the larger fetch size block was �rst accessed (and

missed).

Cache SLDT

Access Access � sz vc Action

miss hit - 0 sr = 1; sctr ++

- 1 sr = 1

hit hit 0 sr = 1

0 >0 sr = 1

hit miss 0 - - alloc SLDT entry; sz = 1; sr = 1

1 - - alloc SLDT entry

Cache entry vc >0 vc��

replaced vc == 0 invalidate SLDT entry

SLDT entry replaced sr == 0 sctr ��

or invalidated sr == 1 no action

Table 1: SLDT Actions. A dash indicates that there is no

corresponding value, and a blank indicates that the value

does not matter.

4.4 Fetch Size Decisions

On a memory access, a lookup in the MAT of the corre-

sponding macroblock entry is performed in parallel with the

data cache access. If an entry is found, the sctr value is com-

pared to some threshold value. The larger size is fetched if

the sctr is larger than the threshold, otherwise the smaller

size is fetched. If no entry is found, a new entry is allocated

and the sctr value is initialized to the threshold value, and

the larger fetch size is chosen. In this paper the threshold is

50% of the maximum sctr value.

5 Experimental Evaluation

5.1 Experimental Environment

We simulate ten benchmarks, including 026.compress, 072.sc

and 085.cc1 from the SPEC92 benchmark suite using the

SPEC reference inputs, and 099.go, 147.vortex, 130.li,

134.perl, and 124.m88ksim from the SPEC95 benchmark

suite using the training inputs. The last two benchmarks

consist of modules from the IMPACT compiler [24] that we

felt were representative of many real-world integer applica-

tions. Pcode, the front end of IMPACT, is run performing

dependence analysis with the internal representation of the

combine.c �le from GNU CC as input. lmdes2 customizer,

a machine description optimizer, is run optimizing the Su-

perSPARC machine description. These optimizations oper-

ate over linked list and complex data structures, and utilize

hash tables for e�cient access to the information.

In order to provide a realistic evaluation of our technique

for future high-performance, high-issue rate systems, we �rst

optimized the code using the IMPACT compiler [24]. Clas-

sical optimizations were applied, then optimizations were

performed which increase instruction level parallelism. The

code was scheduled, register allocated and optimized for an

eight-issue, scoreboarded, superscalar processor with regis-

ter renaming. The ISA is an extension of the HP PA-RISC

instruction set to support compile-time speculation.

We perform cycle-by-cycle emulation-driven simulation on

a Hewlett-Packard PA-RISC 7100 workstation, modelling

the processor and the memory hierarchy (including all re-

lated busses). The instruction latencies used are those of a

Hewlett-Packard PA-RISC 7100, as given in Table 2. The

base machine con�guration is described in Table 3.

Since simulating the entire applications at this level of de-

tail would be impractical, uniform sampling is used to reduce

simulation time [25], however emulation is still performed
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Function Latency Function Latency

Int ALU 1 FP ALU 2

memory load 2 FP multiply 2

memory store 1 FP divide (single prec.) 8

branch 1 + 1 slot FP divide (double prec.) 15

Table 2: Instruction latencies for simulation experiments.

L1 Icache 32K-byte split-block, direct mapped, 64-byte block

L1 Dcache 16K-byte non-blocking (50 max), direct mapped,

32-byte block, multiported, writeback, no write alloc

L1-L2 Bus 8-byte bandwidth, split-transaction, 4-cycle latency,

returns critical word �rst

L2 Dcache same as L1 Dcache except: 256K-byte, 64-byte block

System Bus same as L1-L2 Bus except: 100-cycle latency

Issue 8-issue uniform, except 4 memory ops/cycle max

Registers 64 integer, 64 double precision 
oating-point

Table 3: Base Con�guration.

between samples. The simulated samples are 200,000 in-

structions in length and are spaced evenly every 20,000,000

instructions, yielding a 1% sampling ratio. For smaller ap-

plications, the time between samples is reduced to maintain

at least 50 samples (10,000,000 instructions). To evaluate

the accuracy of this technique, we simulated several con�gu-

rations both with and without sampling, and found that the

improvements reported in this paper are very close to those

obtained by simulating the entire application.

5.2 Macroblock Spatial Locality Variations

Before presenting the performance improvements achieved

by our optimizations, we �rst examine the accuracy of the

macroblock granularity for tracking spatial locality. It is

important to have accurate spatial locality information in

the MAT for our scheme to be successful. This means that all

data elements in a macroblock should have similar amounts

of spatial locality at each phase of program execution.

After dividing main memory into macroblocks, as de-

scribed in Section 4.1, the macroblocks can be further subdi-

vided into smaller sections, each the size of a 32-byte cache

block. We will simply call these smaller sections blocks. In

order to determine the dynamic cache block spatial locality

behavior, we examined the accesses to each of these blocks,

gathering information twice per simulation sample, or every

100,000 instructions. At the end of each 100,000-instruction

phase, we determined the fraction of times that each block

in memory had at least one spatial reuse each time it was

cached during that phase. We call this the spatial reuse

fraction for that block. Figure 6 shows a graphical represen-

tation of the resulting information for three programs. Each

row in the graph represents a 1K-byte macroblock accessed

in a particular phase. For every phase in which a particu-

lar macroblock was accessed, there will be a corresponding

row. Each row contains one data point for every 32-byte

block accessed during the corresponding phase that lies in

that macroblock. For the purposes of clarity, the rows were

sorted by the average of the block spatial reuse fractions per

macroblock. The averages increase from the bottom to the

top of the graphs. The cache blocks in each macroblock were

also sorted so that their spatial reuse fractions increase from

left to right. Some rows are not full, meaning that not all of

their blocks were accessed during the corresponding phase.

Finally, the cache blocks with spatial reuse fractions falling

within the same range were plotted with the same marker.

Figure 6(a) shows the spatial locality distribution for

026.compress. Most of the blocks, corresponding to the

lighter gray points, have spatial reuse fractions between 0

and 0.25, meaning that there was spatial reuse to those

blocks less than 25% of the time they were cached. Very

few of the blocks, corresponding to the black points, had

spatial reuse more than 75% of the time they were cached.

This represents a fairly optimal scenario, because most of

the macroblocks contain blocks which have approximately

the same amount of reuse. Figure 6(b) shows the distribu-

tion for 134.perl. Around 34% of the macroblocks (IDs 0

to 6500) contain only blocks with little spatial reuse, their

spatial reuse fractions all less than 0.25. About 29% of the

macroblocks (IDs 13500 to 18900) contain only blocks with

large fractions of spatial reuse, their spatial reuse fractions

all over 0.75. About 37% of the macroblocks contain cache

blocks with di�ering amounts of spatial reuse. The medium

gray points in some of these rows correspond to blocks with

spatial reuse fractions between 0.25 and 0.75. However, this

information does not reveal the time intervals over which

the spatial reuse in these blocks varies. It is possible that in

certain small phases of program execution the spatial local-

ity behavior is uniform, but that it changes drastically from

one small phase of execution to another. This type of be-

havior is possible due to dynamically-allocated data, where

a particular section of memory may be allocated as one type

of data in one part of the program, then freed and reallo-

cated as another type later. Finally, Figure 6(c) shows the

distribution for 085.gcc, which has similar characteristics to

134.perl, but has more macroblocks with non-uniform spatial

reuse fractions.

5.3 Performance Improvements

In this section we examine the performance improvement, or

the execution cycles eliminated, over the base 8-issue con�g-

uration described in Section 5.1. To support varying fetch

sizes, we use an SLDT and an MAT at each level of the

cache hierarchy. The L1 and L2 SLDTs are direct-mapped

with 32 entries. A large number of simulations showed that

direct-mapped SLDTs perform as well as a fully-associative

design, and that 32 entries perform almost as well as any

larger power-of-two number of entries up to 1024 entries,

which was the maximum size examined. The L1 and L2

MATs utilize 1K-byte macroblocks, and we examine both

one and four-bit sctrs, We �rst present results for in�nite-

entry MATs, then study the e�ects of limiting the number

of MAT entries.

5.3.1 Static versus Varying Fetch Sizes

The left bar for each benchmark in Figure 7(a) shows the

performance improvement achieved by using 8-byte L1 data

cache blocks with a static 8-byte fetch size, over the base 32-

byte block and fetch sizes. These bars show that the better

choice of block size is highly application-dependent. The

right bars show the improvement achieved by our spatial

locality optimization at the L1 level only, using an 8-byte

L1 data cache block size, and fetching either 8 or 32-bytes

on an L1 data cache miss, depending on the value of the
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(a) 026.compress (b) 134.perl (b) 085.gcc

Figure 6: Spatial reuse fractions (srf) for cache-block-sized-data in the accessed macroblocks for three applications.

corresponding sctr. The results show that our scheme is

able to obtain either almost all of the performance, or is

able to outperform, the best static fetch size scheme. In

most cases the 1 and 4-bit sctrs perform similarly, but in one

case the 4-bit sctr achieves almost 2% greater performance

improvement.

The four leftmost bars for each benchmark in Figure 7(b)

show the performance improvement using di�erent L2 data

cache block and (static) fetch sizes, and our L1 spatial lo-

cality optimization with a 4-bit sctr. The base con�gu-

ration is again the con�guration described in Section 5.1,

which has 64-byte L2 data cache block and fetch sizes.

These bars show that, again, the better static block/fetch

size is highly application-dependent. For example, 134.perl

achieves much better performance with a 256-byte fetch size,

while 026.compress achieves its best performance with a 32-

byte fetch size, obtaining over 14% performance degradation

with 256-byte fetches. The rightmost two bars in Figure 7(b)

show the performance improvement achieved with our L2

spatial locality optimization, which uses a 32-byte L2 data

cache block size and fetches either 32 or 256 bytes on an L2

data cache miss, depending on the value of the correspond-

ing L2 MAT sctr. Again, our spatial locality optimizations

are able to obtain almost the same or better performance

than the best static fetch size scheme for all benchmarks.

Figure 8 shows the breakdown of processor stall cycles

attributed to di�erent types of data cache misses, as a per-

centage of the total base con�guration execution cycles. The

left and right bars for each benchmark are the stall cycle

breakdown for the base con�guration and our spatial local-

ity optimization, respectively. The spatial locality optimiza-

tions were performed at both cache levels, using the same

con�guration as in Figure 7(b) with a 4-bit sctr. For the

benchmarks that have large amounts of spatial locality, as

indicated from the results of Figure 7, we obtain large reduc-

tions in L2 cold start stall cycles by fetching 256 bytes on

L2 cache misses. The benchmarks with little spatial locality

in the L1 data cache, such as 026.compress and Pcode, ob-

tained reductions in L1 capacity miss stall cycles from fetch-

ing fewer small cache blocks on L1 misses. In some cases

the L1 cold start stall cycles increase, indicating that the L1

optimizations are less aggressive in terms of fetching more

data, however these increases are generally more than com-

pensated by reductions in other types of L1 stall cycles. The

L1 con
ict miss stall cycles increase for lmdes2 customizer,

because it tends to fetch fewer blocks on an L1 miss, expos-

ing some con
icts that were interpreted as capacity misses

in the base con�guration.

Revisiting the example of Section 3.1, we found that the

access y->code on line 10 of Figure 3 missed 11,223 times,

fetching 32 bytes for 47% of the misses, and 8 bytes for the

remaining 53%. We also found that on average, 0.99 spa-

tial hits and only 0.02 spatial misses to the resulting data

occurred per miss, illustrating that our techniques are suc-

cessfully choosing the appropriate amount of data to fetch

on a miss.

5.3.2 Set-associative Data Caches

Increasing the set-associativity of the data caches can reduce

the number of con
ict misses, which may in turn reduce

the advantage o�ered by our optimizations. However, the
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Figure 7: Performance for various statically-determined block/fetch sizes and for our spatial locality optimizations using both

1 and 4-bit sctrs.
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Figure 8: Stall cycle breakdown for base and the spatial

locality optimizations.

reductions in capacity and cold start stall cycles that our

optimizations achieve should remain. To investigate these

e�ects, the data cache con�guration discussed in Section 5.1

was modi�ed to have a 2-way set-associative L1 data cache

and a 4-way set-associative L2 data cache.

Figure 9 shows the new performance improvements for our

optimizations. The left bars show the result of applying our

optimizations to the L1 data cache only, and the right bars

show the result of applying our techniques to both the L1

and L2 data caches, using four-bit sctrs. The improvements

have reduced signi�cantly for some benchmarks over those

shown in Figure 7. However, large improvements are still

achieved for some benchmarks, particularly when applying

the optimizations at the L2 data cache level, due to the

reductions we achieve in L2 cold start stall cycles for data

with spatial locality.
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Figure 9: Performance for the spatial locality optimizations

with 2-way and 4-way set-associative L1 and L2 data caches,

respectively.

5.3.3 Growing Memory Latency E�ects

As discussed in Section 1, memory latencies are increasing,

and this trend is expected to continue. Figure 10 shows

the improvements achieved by our optimizations when ap-

plied to direct-mapped caches for both 100 and 200-cycle la-

tencies, each relative to a base con�guration with the same

memory latency. Most of the benchmarks see much larger

improvements from our optimizations, with the exception of

026.compress. Because 026.compress has very little spatial

locality to exploit, the longer latency cannot be hidden as

e�ectively. Although the raw number of cycles we eliminate

grows, as a percentage of the associated base execution cycle

count it becomes smaller.

5.3.4 Comparison of Integrated Techniques to Dou-

bled Data Caches

As the memory latencies increase, intelligent cache manage-

ment techniques will become increasingly important. We ex-

amined the performance improvement achieved by integrat-
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Figure 10: Performance for the spatial locality optimizations

with growing memory latencies.
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Figure 11: Comparison of doubled caches to integrated spa-

tial locality and bypassing optimizations. In�nite, 1024-

entry, and 512-entry direct-mapped MATs are examined.

ing our spatial locality optimizations with intelligent bypass-

ing, using 8-bit access counters in each MAT entry [3]. The

4-way set-associative bu�ers used to hold the bypassed data

at the L1 and L2 caches contain 128 8-byte entries and 512

32-byte entries, respectively. Then, the SLDT and MAT at

each cache level are used to detect spatial locality and con-

trol the fetch sizes for both the data cache and the bypass

bu�er at that level.

Figure 11 shows the improvements achieved by combining

these techniques at both cache levels for a 100-cycle mem-

ory latency. We show results for three direct-mapped MAT

sizes: in�nite, 1K-entry, and 512-entry. Also shown are the

performance improvements achieved by doubling both the

L1 and L2 data caches. Doubling the caches is a brute-force

technique used to improve cache performance. Figure 11

shows that performing our integrated optimizations at both

cache levels can outperform simply doubling both levels of

cache. The only case where the doubled caches perform sig-

ni�cantly better than our optimizations is for 026.compress.

This improvement mostly comes from doubling the L2 data

cache, which results because its hash tables can �t into a

Data Block Tag Tag

Cache Cost Size Size Cost

Level (bytes) (bytes) Sets (bits) (bytes)

L1 32K 32 1024 17 2176

L2 512K 256 2048 13 13312

Table 4: Hardware Cost of Doubled Data Caches.

512K-byte cache. Pcode is the only benchmark for which

the performance degrades signi�cantly when reducing the

MAT size, however, 1K-entry MATs can still outperform the

doubled caches. Comparing Figure 11 to the bypassing im-

provements in [3] shows that often signi�cant improvements

can be achieved by intelligently controlling the fetch sizes

into the data caches and bypass bu�ers.

6 Design Considerations

In this section we examine the hardware cost of the spa-

tial locality optimization scheme described in Section 4, and

compare this to the cost of doubling the data caches at each

level. As discussed in Section 4.1, the cost of the MAT hard-

ware is amortized when performing both spatial locality and

bypassing optimizations. For this reason, we compute the

hardware cost of the hardware support for both of these opti-

mizations, just as their combined performance was compared

to the performance of doubling the caches in Section 5.3.4.

The additional hardware cost incurred by our spatial lo-

cality optimization scheme is small compared to doubling

the cache sizes at each level, particularly for the L2 cache.

For the 16K-byte direct-mapped L1 cache used to generate

the results of Section 5.3, 18 bits of tag are used per entry

(assuming 32-bit addresses). Doubling this cache will result

in 17-bit tags. Because the line size is 32 bytes, the total ad-

ditional cost of the increased tag array will be 17�210�18�29 ,
which is 1K bytes1 In addition, an extra 16K of data is

needed. Similar computations will show that the cost of

doubling the 256K-byte L2 cache is an extra 6144 bytes of

tag and 256K bytes of data. The total tag and data costs of

the doubled L1 and L2 caches is shown in Table 4.

For a direct-mapped MAT with 8-bit access counters and

4-bit spatial counters, Table 12 gives the hardware cost of the

data and tags for the MAT sizes discussed in Section 5.3.4.

Since all addresses within a macroblock map to the same

MAT counter, a number of lower address bits are discarded

when accessing the MAT. The size of the resulting MAT

address for 1K-byte macroblocks is shown in column 3 of

Table 12(a).

Table 12(b) shows the data and tag array costs for the

direct-mapped data caches in our spatial locality optimiza-

tion scheme. The data cost remains the same as the base

con�guration cost, but the tag array cost is increased due

to the decreased line sizes and additional support for our

scheme, which requires a 1-bit fetch initiator bit per tag en-

try.

The cost for the L1 bu�er, which is a 4-way set-associative

cache with 8-byte lines is shown in Table 12(c). As with the

optimized data caches, the bypass bu�ers require a 1-bit

fetch initiator bit, in addition to the address tag. The cost

for the L2 bypass bu�er is computed similarly in Table 12(c).

1We are ignoring the valid bit and other state.
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MAT Data Cost Size of MAT Tag Size Tag Cost

Entries (bytes) Address (bits) (bits) (bytes)

512 758 22 13 832

1K 1536 22 12 1536

(a) Hardware Cost of 512 and 1K entry MATs. Cost is same for both L1 and L2 cache levels.

Data Fetch Block Tag Tag

Cache Cost Size Size Size Cost

Level (bytes) (bytes) (bytes) Sets (bits) (bytes)

L1 16K 8/32 8 2048 18+1=19 4864

L2 256K 32/256 32 8192 14+1=15 15360

(b) Hardware Cost of Optimized Data Caches.

Block Data Tag Tag

Cache Fetch Size Cost Size Cost

Level Entries Size (bytes) (bytes) (bytes) (bits) (bytes)

L1 128 8/32 8 1K 24+1=25 400

L2 512 32/256 32 16K 20+1=21 1344

(c) Hardware Cost of Bypass Bu�ers.

Cache SLDT Tag Size Tag Cost

Level Entries (bits) (bytes)

L1 128 22+4=26 104

L2 128 19+5=24 96

(d) Hardware Cost of SLDTs.

Figure 12: Hardware Cost Breakdown of Spatial Locality Optimizations.

The �nal component of the spatial locality optimization

scheme is the 32-entry SLDT, which can be organized as a

direct-mapped tag array, with the vc, 1-bit sz and 1-bit sr

�elds included in each tag entry. The L1 SLDT requires a 2-

bit vc because there are 4 8-byte lines per 32-byte maximum

fetch, and the L2 SLDT requires a 3-bit vc due to the 8 32-

byte lines per 256-byte maximum fetch. A bit mask could be

used to implement the vc, rather than the counter design,

to reduce the operational complexity. However, for large

maximum to minimum fetch size ratios, such as the 8-to-1

ratio for the L2 cache, a bit mask will result in larger entries.

Table 12(d) shows the total tag array costs of the L1 and L2

SLDTs.

Finally, combining the costs of the MAT, the optimized

data cache, the bypass bu�er, and the SLDT results in a

total L1 cost of 24376 bytes with a 512-entry MAT, and

25848 bytes with a 1K-entry MAT. Therefore, the savings

over doubling the L1 data cache is over 10K and 8K bytes

for the 512 and 1K-entry MATs, respectively. Similar cal-

culations show that our L2 optimizations save over 247K

bytes and 245K bytes for the 512 and 1K-entry MATs, re-

spectively, over doubling the L2 data cache. This translates

into 26% and 44% less tags and data than doubling the data

caches at the L1 and L2 levels, respectively, for the larger

1K-entry MAT. Comparing the performance of the spatial

locality and bypassing optimizations to the performance ob-

tained by doubling the data caches at both levels, as shown

in Figure 11, illustrates that for much smaller hardware costs

our optimizations usually outperform simply doubling the

caches.

To reduce the hardware cost, we could potentially inte-

grate the L1 MAT with the TLB and page tables. For a

macroblock size larger than or equal to the page size, each

TLB entry will need to hold only one 8-bit counter value.

For a macroblock size less than the page size, each TLB

entry needs to hold several counters, one for each of the

macroblocks within the corresponding page. In this case

a small amount of additional hardware is necessary to se-

lect between the counter values. However, further study is

needed to determine the full e�ects of TLB integration.

7 Conclusion

In this paper, we examined the spatial locality character-

istics of integer applications. We showed that the spatial

locality varied not only between programs, but also varied

vastly between data accessed by the same application. As a

result of varying spatial locality within and across applica-

tions, spatial locality optimizations must be able to detect

and adapt to the varying amount of spatial locality both

within and across applications in order to be e�ective. We

presented a scheme which meets these objectives by detect-

ing the amount of spatial locality in di�erent portions of

memory, and making dynamic decisions on the appropriate

number of blocks to fetch on a memory access. A Spatial Lo-

cality Detection Table (SLDT), introduced in this paper, fa-

cilitates spatial locality detection for data while it is cached.

This information is later recorded in a Memory Address Ta-

ble (MAT) for long-term tracking, and is then used to tune

the fetch sizes for each missing access.

Detailed simulations of several applications showed that

signi�cant speedups can be achieved by our techniques. The

improvements are due to the reduction of con
ict and ca-

pacity misses by utilizing small blocks and small fetch sizes

when spatial locality is absent, and utilizing the prefetching

e�ect of large fetch sizes when spatial locality exists. In ad-

dition, we showed that the speedups achieved by this scheme

increase as the memory latency increases.

As memory latencies increase, the importance of cache

performance improvements at each level of the memory hi-

erarchy will continue to grow. Also, as the available chip

area grows, it makes sense to spend more resources to allow

intelligent control over the cache management, in order to

adapt the caching decisions to the dynamic accessing behav-

ior. We believe that our schemes can be extended into a

more general framework for intelligent runtime management
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of the cache hierarchy.
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