
A New Breakpoint Implementation Scheme for Debugging Globally

Optimized Code

Le-Chun Wu� Wen-mei W. Hwuy

�Department of Computer Science
yDepartment of Electrical and Computer Engineering and

The Coordinated Science Laboratory

University of Illinois

Urbana, IL 61801

Email: flcwu, hwug@crhc.uiuc.edu

Technical Report IMPACT-98-06

July 1998

Abstract

With an increasing number of executable binaries generated by optimizing compilers in to-

day's high-performance computing, providing a clear and correct source-level debugger for pro-

grammers to debug optimized code has become a necessity. Implementing source breakpoints

is a fundamental aspect of such a debugger. In this paper, a new source breakpoint implemen-

tation scheme which consists of a new code location mapping scheme and a forward recovery

model is proposed. The approach is aimed at solving the fundamental problems su�ered by

traditional methods. By taking over the control early and executing instructions under our for-

ward recovery model, the debugger can preserve and gather the required program states. With

this information accumulated and the help of a data location tracking method, the expected

values of user variables can be recovered at source breakpoints. The new code location mapping

scheme helps the debugger to determine where to suspend and resume the normal execution and

decide if a source breakpoint should be reported. The algorithms and theoretical foundations

for constructing and calculating the mappings are presented.

Technical Report IMPACT-98-06 2

1 Introduction

In today's high-performance computing, compilers are playing an increasingly important role by

optimizing programs to fully utilize advanced architecture features. With an increasing number of

executable binaries being highly optimized, it has become a necessity to provide a clear and correct

source-level debugger for programmers to debug optimized code.

In general, there are two ways for an optimized code debugger to present meaningful information

of the debugged program [1]. It provides expected behavior of the program if it hides the optimization

from the user and presents the program behavior consistent with what the user expects from

the unoptimized code. It provides truthful behavior if it makes the user aware of the e�ects of

optimizations and warns of surprising outcomes when the expected answers to the debugging queries

cannot be provided. Although it is not always possible to recover the program behavior to what the

user expects without constraining the optimization performed or inserting some instrumentation

code [2], it is desirable for the user to see as much expected program behavior as possible. Therefore

this paper will focus on a framework for recovering expected behavior.

One of the most frequently used functionalities of a source-level debugger is for the user to set

breakpoints and examine variables' values at these points. Therefore accurate implementation of

source breakpoints is a basic requirement in supporting optimized code debugging. Traditionally,

the debugger maps a breakpoint set at a source statement to an object code location, called object

breakpoint [3], and the execution halts when this object location is reached. The debugger then uses

the program state at this point to answer the user's inquiries. However, compiler optimizations

cause di�culties to the debuggers using this traditional approach. For example, Figure 1 shows

a C source program and its assembly code optimized by scheduling and register allocation. We

assume that the debugger uses a mapping that would set the object breakpoint at I5 when a source

breakpoint is set at statement S2. When the debugger halts the execution at I5, instructions from

statement S3 (I3 and I4) have been executed, which causes variable y to be updated prematurely.

Also instruction I6 which should have been executed in order to obtain the expected value of

variable a has not been executed at this point.

There are two primary aspects associated with code optimization that cause the traditional

scheme di�culties in handling optimized code. First, optimization complicates the mapping be-

tween the source code and the object code. Due to code duplication, elimination, and re-ordering

Technical Report IMPACT-98-06 3

breakpoint
 S3: y = z * 3;

S2: x = 2;
S1: a = b + c;

(a) (b)

I6: add r3, r1, r2 <S1>

I1: ld r1, b <S1>
I2: ld r2, c <S1>
I3: ld r5, z <S3>
I4: mul r6, r5, 3 <S3>
I5: mov r4, 2 <S2>

Figure 1: An example program (a) C-style source code (b) Assembly code

caused by optimization, it can be hard for the debugger to identify the object breakpoint location

when the user sets a source breakpoint. Second, only the program state of a single point is available

once the execution is halted by the debugger. Therefore, optimized code debuggers that adopt a

traditional breakpoint implementation scheme usually have problems reporting the expected values

of the variables which are updated either too early or too late [2, 4].

In this paper, we propose a new breakpoint implementation scheme which overcomes the prob-

lems encountered by the traditional method. Our approach is motivated by the observation that

in order for the debugger to provide the expected variable values, the program states changed by

the out-of-original-source-order instructions have to be tracked by the debugger. To do this for a

breakpoint at source statement S, the debugger suspends execution before executing any instruc-

tion that should happen after S. The object code location where the debugger suspends the normal

execution is referred to as the interception point. It then moves forward in the instruction stream

executing instructions (basically single-stepping through the instructions) using a new forward re-

covery technique which keeps track of program states. When the debugger reaches the farthest

extent of instructions which should happen before S, referred to as the �nish point, it begins to

answer the user's inquiries. When reporting the value of a variable, it uses the preserved program

states to recover the expected values.

The basic idea of our approach can be illustrated by the example in Figure 1. If the user sets

a breakpoint at source line S2, since instruction I3 originates from source line S3, the debugger

suspends execution at I3. The debugger keeps executing instructions using the forward recovery

technique until instruction I6 is executed because it originates from source line S1 which should be

executed before the breakpoint. The debugger then hands over the control to the user and starts

taking user's requests. During forward recovery execution, the original contents of the registers

which are updated prematurely are preserved to provide the user with the expected variable values

Technical Report IMPACT-98-06 4

I3(S2)

(a) (b) (c)

B

A

E

F

D

B

A

E

F

D

I4’(S3) I4’(S3)

I3(S2)
I4(S3)
I5(S3)

B

A

E

F

DC C

breakpoint
I3’(S4)

I5’(S3)

I3’(S4)

I5’(S3)

I3’’(S2,S4)

Figure 2: A control
ow graph example (a) original program (b) after code hoisting (c) after tail

merging

at S2.

The basic idea of our breakpoint implementation strategy looks straightforward for a straight-

line code example shown in Figure 1. However, the scheme must address several challenging issues

when dealing with globally optimized code. We use the example shown in Figure 2 to illustrate

how global optimization complicates our scheme. Figure 2 (a) shows the control
ow graph of an

unoptimized program where instruction I3 is from statement S2, I4 and I5 are from S3, and I30

is from S4. Basic block C contains only I3, I4, and I5. Figure 2 (b) shows an optimized version

of the program where instruction I5 is moved out of loop and instruction I4 is hoisted to basic

block B. Figure 2 (c) shows an optimized version of the program where I3 and I30 are merged and

sunk to basic block E. Basic block C is therefore left empty. Suppose a source breakpoint is set at

statement S3 by the user. The problems which need to be addressed by our scheme include:

1. How to calculate all the possible interception points and �nish points?

With code being re-ordered globally, instructions which should be executed after a source

breakpoint might be hoisted above the breakpoint on di�erent paths leading to the breakpoint.

For example, in Figure 2 (b), instruction I40 and I50 are the instructions which should be

executed after the breakpoint but were hoisted. We can see that for the �rst iteration of

the loop, the debugger should suspend the execution at I50, while for the rest of the loop

Technical Report IMPACT-98-06 5

iterations the debugger should suspend the executed at I40. Therefore I50 and I40 should

both be interception points of S3. Similarly, in Figure 2 (c), I3 should be executed before

the breakpoint but was sunk to basic block E. The debugger needs to be able to identify

where I300 is and continues its forward recovery until I300 is executed. Hence it is necessary

to devise a set of systematic algorithms to calculate all the possible interception points and

�nish points.

2. How does the debugger con�rm a source breakpoint?

To preserve the required program states, the debugger has to suspend the execution early at

the interception point. However, reaching an interception point of a source breakpoint does

not necessarily mean the breakpoint should be reported to the user. Consider Figure 2 (b).

After taking over control at instruction I50, which is an interception point of S3, the debugger

should report the breakpoint only when basic block C is reached. Otherwise, it should

continue the normal execution without reporting the breakpoint. Apparently, for the debugger

to be able to con�rm the breakpoint, some mapping scheme which would map statement S3

to an object location inside basic block C has to be devised.

Sometimes the compiler cannot even �nd a single object location in the optimized code to

correctly map a source statement to. Figure 2 (c) illustrates such a case where basic block C is

removed after optimization. We can see that there is no single object location which by itself

can be used by the debugger to decide if statement S3 will be reached or not. Some branch

conditions will need to be incorporated into the mapping scheme to help the con�rmation of

a breakpoint.

3. How does forward recovery work?

For globally optimized code where instructions are moved across branches, it is important for

the debugger to �nish all the instructions that should be executed during forward recovery

before reporting variable values to the user. Also the forward recovery technique should

ensure that all the source breakpoints are reported to the user in the order consistent with

what the user expects.

Our breakpoint implementation scheme consists of a new code location mapping scheme and

a debugger forward recovery model. The code location mapping scheme enables the debugger to

Technical Report IMPACT-98-06 6

correctly determine where to suspend and resume the normal execution and decide if a source

breakpoint should be reported. The forward recovery model ensures that the breakpoints and

exceptions behave the way consistent with what the user expects. This new breakpoint scheme

addresses the aforementioned problems caused by global optimization and provides a foundation

for the design of an optimized code debugger. Working with a data location tracking method

(such as the ones proposed in [4] and [5]) and some other necessary debugging information, the

debuggers adopting our breakpoint implementation scheme is capable of recovering the expected

program behavior.

The remainder of this paper is organized as follows: Section 2 discusses the new code location

mapping scheme. Section 3 describes how our forward recovery model works. Section 4 discusses

some of the previous works and compares our approach with them. Section 5 contains our conclu-

sions.

2 Code location mapping

A debugger usually uses two kinds of code mappings [1, 2]: the object-to-source mapping which the

debugger uses to report the faulty statement when an exception occurs, and the source-to-object

mapping which the debugger uses to determine where to suspend the normal execution and decide

if a source breakpoint should be reported. Since we are only interested in the implementation of

user breakpoints in this paper, we will be focusing on source-to-object mapping in our scheme. The

object-to-source mapping, nonetheless, can easily be built from the execution order information

preserved during compilation (see Section 2.2.1).

Unlike the conventional source-to-object mapping scheme where a source statement is mapped

to a single object location, our approach maps a statement to a set of object locations which can be

classi�ed into four categories with di�erent functionalities: anchor points, interception points, �nish

points, and escape points. Interception points are the object locations where the debugger should

suspend the normal execution and start forward recovery. Finish points are the object locations

where the debugger should stop forward recovery and begin to take the user's requests. Escape

points are used for the debugger to determine that a source breakpoint should not be reported.

Anchor point information is the base for deriving interception, �nish, and escape points, and needs

Technical Report IMPACT-98-06 7

to be constructed and maintained by the compiler. Interception points, �nish points, and escape

points can be derived from the anchor point information at either compile time or debug time. We

will discuss each of these object locations in the following subsections.

2.1 Anchor points

In a traditional mapping scheme, a source breakpoint at statement S is mapped to a single object

location (usually the �rst instruction of S). Without optimization, reaching this object location at

run time means statement S is reached (providing the compiler is correct) and the debugger should

report the breakpoint to the user.

Optimization, however, leaves this simple scheme insu�cient. During optimization, the �rst

instruction of a statement (or even the whole statement) might be deleted or moved away from its

original place. Reaching the �rst instruction of a statement S does not necessarily mean S will be

reached in the original source program. Sometimes the compiler cannot even �nd a single object

location in the optimized code to correctly map a source statement to, as illustrated by the example

shown in Figure 2 (c).

In order for the debugger to be able to correctly con�rm a source breakpoint for globally

optimized code, we extend the traditional simple source-to-object mapping by associating each

source statement with anchor point information. An anchor point of a source statement is an

object code location. Each anchor point comes with a boolean condition referred to as anchoring

condition. When an anchor point of a source statement is reached during execution and its anchoring

condition is true, the breakpoint set at that source statement should be reported.

Anchor point information for each source statement is constructed and maintained by the

compiler. Before any optimization is performed, the anchor point of a source statement S is

set to the �rst instruction of S and the anchoring condition is set to boolean value 1 (true).

During the process of code optimization, when code duplication optimization such as loop

unrolling, function inlining, and loop peeling is performed, if an anchor point of statement S is

contained in the duplicated code, the anchor point information is also duplicated. With the anchor

point(s) of every duplicated instance of statement S associated with S, the debugger can correctly

report the breakpoint set at S when any of S's instances is reached.

When an instruction I which is an anchor point of statement S is deleted or moved away from

Technical Report IMPACT-98-06 8

step 1 If I has an immediate succeeding instruction J in the same basic block, J becomes an

anchor point of S and the anchoring condition is boolean value 1.

step 2 else if I has an immediate preceding instruction J in the same basic block, J becomes an

anchor point of S and the anchoring condition is boolean value 1.

step 3 else, all of I's immediate preceding instructions, J1; J2; :::; Jk (where k � 1), become anchor

points of S. If Ji is a conditional branch instruction, the condition under which Ji will branch

to I becomes the anchoring condition. Otherwise, the anchoring condition is boolean value

1.

Figure 3: An algorithm for maintaining the anchor point information of statement S when instruc-

tion I, which is an anchor point of S, is being removed.

its original place, the compiler will modify the anchor point information of S using the algorithm

shown in Figure 3.

Note that the algorithm in Figure 3 is based on the following assumptions: (1) Conditional

branches will not be removed (assuming no predicated code). Thus any instruction I which is being

removed is never a conditional branch and its anchoring condition is always 1. If the condition of a

branch is a constant, our method allows the branch to be treated as an unconditional jump and thus

allows it to be removed. (2) Every function in the object code has a section of prologue code which

will not be removed. Thus any instruction which is being removed has an immediate predecessor.1

Figure 4 shows a control
ow graph example where the whole basic block D is removed due to

optimization. Based on our algorithm, both instruction I1 and I2 become the new anchor points

of S1 with the anchoring conditions of boolean value 1 and (r1 > 5) respectively.

After a series of optimizations is performed, a source statement might have more than one

anchor points and an object instruction might be the anchor point of several source statements.

2.1.1 Proof of correctness

To prove that the anchor point information maintained by the compiler using the algorithm shown

in Figure 3 is correct for the debugger to unambiguously decide if a source breakpoint should take

e�ect or not, we need to �rst introduce the concept of reaching condition.

1If instruction I is in an unreachable block, I might not have a predecessor. However, the case is irrelevant because

breakpoints set inside this block would never take e�ect anyway.

Technical Report IMPACT-98-06 9

B C

I1

E

F

bgt r1, 5, F

(b)(a)

bgt r1, 5, D

B C

D E

F

S1

jump DI1 I2 jump F I2

Figure 4: A control
ow graph example (a) before removing basic block D (b) after removing basic

block D.

De�nition 1 The reaching condition of an instruction I, RCI , is a boolean expression comprising

program variables and intermediate results so that when the condition is true, instruction I will be

reached from the function entry point.

Note that we assume that conditional branches will not be removed during optimization, there-

fore the reaching condition of an instruction remains the same during optimization as long as the

instruction itself is not moved or deleted.

There might be more than one path which can lead to an instruction. For an instruction to

be reached through a speci�c path, on this path every branch condition under which the path will

be taken has to be true. Therefore, the single-path reaching condition of instruction I through a

speci�c path P , RCI;P , is the conjunction of every branch condition on P under which P is taken.

That is,

De�nition 2 RCI;P =
Vn
i=1 Ci, where Ci is the condition of branch i under which P is taken, and

n is the number of branches on P .

Since an instruction can be reached through every path leading to it, the operational de�nition

of the reaching condition of instruction I, RCI , is the disjunction of all the I's single-path reaching

conditions. That is,

De�nition 3 RCI =
Wn
i=1RCI;P i, where Pi is the ith path leading to I and n is the number of

di�erent paths leading to I.

Technical Report IMPACT-98-06 10

The reaching condition of an instruction can also be derived from that of its predecessors as

the following theorem shows:

Theorem 1 The reaching condition of the �rst instruction I of a basic block is equal to

n_
i=1

RCJi ^BCJi

, where Ji is the ith immediate preceding instruction of I, RCJi is the reaching condition of in-

struction Ji, BCJi is the branch condition under which Ji will branch to I, and n is the number

of I's immediate preceding instructions.

For any two instructions in the same basic block, when control reaches one instruction, it will

de�nitely reach or have reached the other. Therefore,

Theorem 2 All the instructions in the same basic block have the same reaching condition.

As we mentioned earlier, a source breakpoint will be reported only when any one of its an-

chor point(s) is reached and the corresponding anchoring condition is true. The condition for the

debugger to report a source breakpoint is referred to as breakpoint con�rmation condition.

De�nition 4 The breakpoint con�rmation condition of a source statement S, BCCS, is

n_
i=1

RCIi ^ACIi

, where Ii is the ith anchor point of S, ACIi is the anchoring condition of Ii, and n is the number

of S's anchor point(s).

Before any optimization is performed, our scheme will map the anchor point of statement S to

the �rst instruction, say I, of S and set the anchoring condition to 1. Assuming the compiler is

correct, it is true that for the unoptimized code the breakpoint set at S should be reported if and

only if I is reached. That is, before any optimization is performed, the breakpoint con�rmation

condition of S is a su�cient and necessary condition for the breakpoint set at S to be reported.

Therefore if we can prove that the breakpoint con�rmation conditions before and after the algorithm

in Figure 3 is applied are the same, the algorithm is correct.

Technical Report IMPACT-98-06 11

Theorem 3 When an instruction I, which is an anchor point of source statement S, is removed

due to optimization, the breakpoint con�rmation conditions of S before and after the algorithm in

Figure 3 is applied are the same.

Proof: We prove the above theorem in two cases.

Case 1: Instruction I is the only anchor point of S. Therefore, BCCS;before = RCI ^ 1 = RCI .

When the algorithm in Figure 3 is applied, if either step 1 or step 2 is true, J becomes one

and the only one anchor point of S and the anchoring condition is 1. Since J and I are in

the same basic block, according to Theorem 2, RCJ = RCI .

Thus, BCCS;after = RCJ ^ 1 = RCI ^ 1 = BCCS;before.

If step 3 is applied, all the I's immediate preceding instructions, J1; J2; :::; Jk, become the

anchor points of S, and the branch condition of Ji, BCJi, under which Ji will branch to I

becomes the anchoring condition of Ji, ACJi.

Hence

BCCS;after =
Wk
i=1RCJi ^ACJi (fromDefinition 4)

=
Wk
i=1RCJi ^BCJi

From Theorem 1, we know RCI =
Wk
i=1RCJi ^ BCJi, where BCJi is the branch condition

under which Ji will branch to I.

Therefore, BCCS;after =
Wk
i=1RCJi ^BCJi = RCI = BCCS;before.

Case 2: I is not the only anchor point of S. Assuming S has k anchor points, I1, I2, ..., Ii, ...,

Ik, where Ii = I, from De�nition 4 we have

BCCS;before = (RCI1 ^ACI1) _ ::: _ (RCIi ^ACIi) _ ::: _ (RCIk ^ACIk) (1)

After the algorithm is applied, assuming m new anchor points, J1, J2, ..., Jm, are calculated

in place of Ii, we have

BCCS;after = (RCI1^ACI1)_:::_(RCJ1^ACJ1)_:::_(RCJm^ACJm)_:::_(RCIk^ACIk) (2)

Technical Report IMPACT-98-06 12

Assume there is a source statement S0 of which I is the only anchor point. From the proof

of case 1 presented above, we have already proven that BCCS0;before = RCIi ^ ACIi =

BCCS0;after =
Wm
i=1RCJi ^ACJi

Thus, replacing RCIi ^ ACIi with
Wm
i=1RCJi ^ACJi in Equation 1, we have BCCS;before =

BCCS;after.

2.2 Interception points and �nish points

When the user sets a breakpoint, the debugger needs to �rst identify the interception points and

�nish points corresponding to the source breakpoint so that it knows where the normal execution

should be suspended and where the forward recovery should stop. Note that reaching an intercep-

tion point of a source breakpoint does not necessarily mean the breakpoint should be reported to

the user. Only when an anchor point of the breakpoint is reached during forward recovery can the

debugger report the breakpoint.

To calculate the interception points and �nish points, information about the original execution

order of instructions has to be constructed and preserved during compilation. In the following

subsections, an instruction execution-order tracking method is proposed, and the algorithms to

calculate the interception points and �nish points are described.

2.2.1 Execution order

We propose an instruction execution order tracking method which determines the original execution

order of all the instructions and maintains this information during compilation. In our scheme, we

do not distinguish execution order between instructions originating from the same source statement.

The reason for this is because we are focusing on source-level breakpoints which can only be set at

statement boundaries.

To determine the execution order of instructions, one would intuitively think about using source

line numbers and column numbers, and annotating each instruction with this information. Al-

though the line number and column number information can determine the execution order of

the instructions in the same basic block, it is not su�cient to track the execution order of the

instructions across basic blocks. We need to incorporate control
ow information to the execution

order information. In our scheme, each basic block is assigned an integer number, called sequence

Technical Report IMPACT-98-06 13

number, which re
ects the dynamic execution
ow. A basic block with a smaller sequence number

will not be executed after another basic block with a larger sequence number without traversing

back edges. The derivation and correctness proof of our execution order information is presented

in Appendix A.

2.2.2 Interception points

When the user sets a breakpoint at source statement S, all the instructions in the function can be

divided into two groups with regard to S based on the execution order information preserved:2

pre-breakpoint instructions the instructions which should be executed before S.

post-breakpoint instructions the instructions which should be executed after S, including in-

structions originating from S.

For a breakpoint set at source statement S, the debugger needs to identify interception points

on paths which can lead to the anchor points of S. Assuming all the loops in the optimized code are

monotonic,3 for an anchor point I of statement S, the paths that the debugger needs to consider

include:

� paths from the function entry point to I without traversing back edges, and

� paths starting from loop headers to I without traversing back edges if I is inside a loop (or

loops).

For each path mentioned above, moving forward along the path from its starting point, the �rst

post-breakpoint instruction encountered is an interception point of S.

Referring back to Figure 2 (b), assuming I3 is the only anchor point of S3, there are two paths

leading to I3 which the debugger needs to consider: path P1 = < A;B;C(I3) > and path P2 =

2Instructions which can neither reach S nor be reached from S are also classi�ed as either pre-breakpoint or post-

breakpoint based on their execution order information. These instructions are irrelevant as far as the reconstruction

of expected variable values at the breakpoint is concerned.
3A loop in the optimized code is called monotonic if all the instructions in iteration i+1 of the loop are supposed

to be executed after any instruction in iteration i in terms of the original program execution order, as opposed to

non-monotonic loops such as modulo scheduled loops [6, 7] where instructions from di�erent iterations of the original

loop are mixed together in the same iteration of the new loop. In this paper we only base the discussion of our

approach on the assumption that all the loops in the optimized code are monotonic loops (such as unrolled loops).

Technical Report IMPACT-98-06 14

< B;C(I3) >. If I50 is the earliest post-breakpoint instruction along P1, I50 is an interception point

of S3. Also, if I40 is the earliest post-breakpoint instruction along P2, I40 is another interception

point of S3.

An algorithm using data-
ow analysis to systematically calculate all the interception points

with regard to an anchor point is presented in the following.

In the control
ow graph G of the function, suppose an anchor point I of statement S is in basic

block D and the function entry block is E. To �nd out the interception points of S with regard to

I, we need to �rst split D into two basic blocks D1 and D2, where

1. D1 is the top portion of D including instructions from the �rst instruction of D up to the

one at I.

2. D2 contains the bottom portion of D including instructions from the one immediately fol-

lowing I to the last one.

3. All the D's predecessors become D1's predecessors.

4. All the D's successors become D2's successors.

5. There is no edge directly from D1 to D2.

Let V be the set of basic blocks which are on the paths leading to D1 in graph G (including

D1).4 For each basic block B in V , let us de�ne

gen[B] = A one-element set containing the �rst post-breakpoint instruction in basic block B,

if there is any. An empty set, otherwise.

kill[B] =

8><
>:

out[B] if gen[B] 6= �

� otherwise

The data-
ow equations for in and out sets of B are:

out[B] =
[

S is a successor of B

in[S]

in[B] = gen[B] [(out[B]� kill[B])

We can use the iterative algorithm shown in Figure 5 to �nd out the in[B] for each basic block

B in V . The union of in[E] and in[D2] is the set of all the interception points of S with regard to

I.

4
V can be obtained through the backward depth-�rst search from D1

Technical Report IMPACT-98-06 15

for each block B in graph G do

if B is in V then

in[B] = gen[B];

else

in[B] = �;

endif

end for

while changes to any of the in sets occur do

for each block B in V do

out[B] =
S
S is a successor of B in[S];

in[B] = gen[B] [(out[B]� kill[B]);

end for

end while

Figure 5: An iterative algorithm for interception point determination

2.2.3 Finish points

To identify �nish points, we need to �rst address an issue about function calls. Due to the sur-

rounding pre-breakpoint instructions, if a post-breakpoint function call which performs some I/O

operations such as printing messages to the display screen is executed by the debugger, the user

can be confused because the breakpoint was supposed to be set before the function call. Therefore,

we do not allow the debugger to execute those post-breakpoint function calls while it does forward

recovery. Instead, we will set the �nish point before any of function call instructions. This way we

might reduce the ability of the debugger to recover the values of some variables because the debug-

ger does not always execute all the pre-breakpoint instructions, but at least it does not confuse the

user. Since most compilers have very limited abilities to move code across I/O function calls, this

will not be a serious practical issue.

Suppose I is an anchor point of a source statement S. For each di�erent path from I to

the function exit point without traversing back edges, the �nish point of S on this path is either

the earliest post-breakpoint function call or the instruction immediately following the last pre-

breakpoint instruction, depending on which one is encountered �rst. An algorithm using data-
ow

analysis to calculate all the �nish points with regard to an anchor point is designed. The algorithm

is similar to the one shown in Section 2.2.2 and is presented in Appendix B.

Technical Report IMPACT-98-06 16

2.3 Escape points

In our breakpoint implementation scheme, the debugger takes over control at an interception point

of a source breakpoint. If an anchor point of the source statement is reached during forward recovery

and the anchoring condition is true, the debugger con�rms the breakpoint and transfers the control

to the user at the �nish point. However, before the debugger can make sure that no anchor point of

the statement is going to be encountered, it will have to execute instructions (in forward recovery

mode) all the way to the end of a function. In order to minimize the number of the instructions

executed under forward recovery (which is a lot more ine�cient than normal execution), additional

information needs to be provided to the debugger so that it can resume normal execution as soon

as possible if the breakpoint should not take e�ect. Another set of object locations (referred to as

escape points) which are derived from anchor point information is proposed. An escape point of a

source breakpoint is an object location such that when it is reached during forward recovery, its

corresponding breakpoint should not be allowed to take e�ect and the normal execution is resumed.

For a source statement S, there are two sets of escape points corresponding to it. The �rst set

includes those instructions which can be reached from any of S's interception point(s) but does not

lead to any of S's anchor point(s). It is calculated in the following way:

For each anchor point, I, of a source statement S,

step 1 For each interception point of S, �nd out every di�erent path from the interception point

to I without traversing back edges.

step 2 For each path P =< B1; B2; B3; :::; Bi > found in step 1 (where B1 is the basic block con-

taining the interception point and Bi is the basic block containing I), �nd out the immediate

successors of nodes B1, B2, ..., Bi�1 which are not on any path leading to any anchor point

of S without traversing back edges.

step 3 The �rst instruction of each of the basic blocks found in step 2 becomes an escape point of

S.

Figure 6 shows a control
ow graph of an example program in which I2 is an anchor point

of a source breakpoint and I1 is the only interception point. We can see that there is only one

path from I1 to I2, which is < A;B;D >. We �nd that basic blocks C and E are the immediate

Technical Report IMPACT-98-06 17

interception

A

B C

D E

F

I1

I2anchor

Figure 6: A control
ow graph example.

successors of A and B, and they are not on any path leading to I2. Therefore the �rst instructions

of C and E are the escape points corresponding to anchor point I2.

The second set of the escape points is derived from the anchor points with anchoring conditions

other than boolean constant 1. It is calculated in the following way:

For each anchor point I of S which has an anchoring condition other than boolean constant 1

(I must be a conditional branch instruction),

1. If I's anchoring condition is the same as its branch condition, the fall-through target instruc-

tion of I which is not on any path leading to any of S's anchor points without traversing back

edges is an escape point of S.

2. If I's anchoring condition is the complement of its branch condition, the taken target instruc-

tion of I which is not on any path leading to any of S's anchor points without traversing back

edges is an escape point of S.

3 Forward recovery model

To recover the expected program behavior, a naive and intuitive forward recovery model is to

execute only pre-breakpoint instructions and skip the post-breakpoint instructions. Refer back to

the simple example in Figure 1. If this recovery model is used, after taking over control at I3 (the

interception point), the debugger skips instruction I3, I4, and I5, and executes only instruction

I6 before it hands over control to the user. Once the user resumes execution, the debugger will go

back to execute those skipped instructions.

Technical Report IMPACT-98-06 18

There are several problems with this model. The �rst problem is that the instructions in the

optimized code cannot simply be re-ordered back to their original execution order because there

might be dependency introduced when register allocation is performed after instruction schedul-

ing. Although this problem can be solved by saving the old contents of the destinations of the

pre-breakpoint instructions executed, there is another more serious problem. When some pre-

breakpoint instructions are moved below a branch instruction which itself is a post-breakpoint

instruction, since the debugger will only execute pre-breakpoint instructions under this model, the

debugger cannot decide which way to continue the forward recovery without executing the branch

instruction.

To avoid these problems, we propose a forward recovery model under which every instruction

between the interception point and the �nish point is executed and the values updated prematurely

are saved. In this model, two important data structures need to be maintained by the debugger

during the forward recovery. The �rst one is the data history bu�er which keeps track of all the old

contents of the destinations of the post-breakpoint instructions executed between the interception

point and the �nish point. We need these old values to recover the expected values of user variables.

An entry in the data history bu�er comprises a destination location, which may be a register number

or a memory address, and one or more value information records. A value information record of

a destination includes the address of the corresponding instruction and the old content of the

destination.

The other data structure is called instruction history bu�er which contains the addresses of the

instructions executed between the interception point and the �nish point in their dynamic execution

order. Each address in the bu�er might be annotated with some other information.

The instructions of the debugged program will be executed in either normal mode or forward

recovery mode. The program starts running in normal mode. When an interception point of a

source breakpoint is reached during normal execution, the debugger takes over control and the

forward recovery mode is entered. From this point on, each instruction will be executed one by one

under the debugger's supervision until one of the �nish points or escape points is reached.

In the forward recovery mode, before an instruction I is executed, the current content of I's

destination along with the address of I will be saved in the data history bu�er if I is a post-

breakpoint instruction. The address of I is also saved in the instruction history bu�er (regardless

Technical Report IMPACT-98-06 19

address execution order

(a)

interception

anchor

finish

2008 I2: r4 = r3 - r1 5
2004 I1: r1 = r2 * 2 1

2012 I3: r2 = ld x 6
2016 I4: f6 = f2 / 3.0 2
2020 I5: y = st r5 4
2024 I6: r4 = r2 - 7 6
2028 I7: r2 = 9 8
2032 I8: r7 = r3 + 1 3
2036 I9: ... 9

2008
2012
2016

(c)

2020
2024
2028
2032

address annotation

Instruction History Buffer

(b)

 r4 8 2008

 6 2024

 r2 -2 2012

 7 2028

 M(y) 0 2020

Data History Buffer

destination old value instr. addr

Figure 7: (a) Optimized code example (b) Instruction history bu�er (c) Data history bu�er (the

old values in the data history bu�er are given arbitrarily in the example).

of whether I is pre-breakpoint or post-breakpoint). If I happens to be an interception point of other

breakpoint(s), I's entry in the instruction history bu�er will be annotated with this information.

Figure 7(a) shows an optimized program example. For simplicity, we use a single number as the

execution order information in this example. Assuming the anchor point of a source breakpoint set

by the user is at instruction I5. The interception point and the �nish point will be set at I2 and

I9 respectively. Once the debugger takes over control at I2, each instruction is executed in forward

recovery mode until I9 is reached. Figure 7(b) and (c) show the resulting instruction history bu�er

and the data history bu�er.

Because some instructions such as load and
oating-point operations might cause exceptions

during execution, handling the exceptions so that they behave in the way the user expects is very

important. If an exception is caused by a post-breakpoint instruction and is posted immediately, the

users might be confused because the exception should have occurred after the breakpoint. In order

not to confuse the user, the debugger should suppress the exceptions caused by post-breakpoint

instructions while executing them, and post the exceptions to the user later on. One way to achieve

this is for the debugger to provide its own exception handling routine. When an exception occurs

in the forward recovery mode, the handling routine provided by the debugger takes over. If the

exception is caused by a post-breakpoint instruction, it will be suppressed and the debugger will

annotate the entry of the instruction in the instruction history bu�er with the exception information

so that the exception can be signaled later on. Referring back to the example in Figure 7, if an

exception occurs at instruction I3, since it is a post-breakpoint instruction, the exception will be

suppressed and the entry corresponding to I3 in instruction history bu�er will be annotated as

shown in Figure 8.

Technical Report IMPACT-98-06 20

2008
2012
2016
2020
2024

exception

2028
2032

address annotation

Instruction History Buffer

Figure 8: Instruction history bu�er.

When a �nish point is reached, the debugger stops to answer the user's requests. With the

information preserved, our approach can work with a data location tracking method such as the

ones proposed in [4] and [5] to provide the expected variable values.

Once the user resumes execution, the debugger will go through the instruction history bu�er to

check if there is any annotated information and will update both the instruction history bu�er and

data history bu�er. Until an instruction denoted as an interception point of another breakpoint

(or other breakpoints) is encountered or the whole instruction history bu�er has been processed,

the debugger will visit each instruction I in the bu�er with the following actions : (1) If the

instruction is annotated with exception information, the debugger will signal the exception. (2)

The value information record of this instruction's destination (if there is any) is removed from the

data history bu�er. (3) The entry of this instruction in the instruction history bu�er is removed.

If the debugger has visited every instruction in the instruction history bu�er without running

into another interception point, the normal execution will resume from the �nish point.

If an instruction visited is an interception point of another breakpoint, the debugger will continue

going through the instruction history bu�er in the following way:

1. If the instruction is annotated with exception information, the debugger will �rst determine

the new type (pre-breakpoint or post-breakpoint) of the instruction with regard to the new

breakpoint because a post-breakpoint instruction for the old breakpoint might become a pre-

breakpoint instruction for the new breakpoint. If the instruction becomes pre-breakpoint,

the debugger signals the exception and removes the annotation. Otherwise, the exception

remains suppressed.

2. If the type of the instruction is changed (from post-breakpoint to pre-breakpoint), the value

information record of this instruction's destination is removed from the data history bu�er.

Technical Report IMPACT-98-06 21

 7 2028

 r2 -2 2012

 6 2024

 r4 8 2008

 M(y) 0 2020

destination old value instr. addr

Data History Buffer

(b)

interception point
2008
2012
2016
2020
2024
2028
2032

address annotation

Instruction History Buffer

(a)

Figure 9: (a)Instruction history bu�er (b)Data history bu�er (the old values in the data history

bu�er are given arbitrarily in the example).

Since the �nish points of the new breakpoint might be di�erent from those of the old breakpoint,

after having gone through the instruction history bu�er, the debugger might need to execute more

instructions in forward recovery mode until a �nish point or an escape point is hit.

To show how the visiting process is working, refer to the example in Figure 7 again. If I3 is an

interception point of another outstanding breakpoint (whose anchor point is at I6), its entry in the

instruction history bu�er will be annotated with this information as shown in Figure 9(a). When

the user wants to resume execution from the current breakpoint, the debugger goes through the

instruction history bu�er. Since the instruction at address 2008 is not annotated with anything,

the debugger removes it from the instruction history bu�er and deletes its corresponding entry in

data history bu�er as shown in Figure 9. The debugger visits the next entry in the instruction

history bu�er and �nds out the instruction at address 2012 is an interception point of another

breakpoint. The debugger will keep going through the rest of the instruction history bu�er without

deleting any entry. Since I5 (at address 2020) becomes a pre-breakpoint instruction with regard

to the new breakpoint, its entry in the data history bu�er is deleted.

Similarly, when an escape point is reached in forward recovery mode, which means the break-

point should not take e�ect, the debugger will go through the instruction history bu�er in the same

way described above.

3.1 Proof of correctness

As we mentioned in Section 1, to provide the expected program behavior, it is essential for the

debugger to report the source breakpoints in the order consistent with what the user expects. Our

Technical Report IMPACT-98-06 22

breakpoint implementation scheme handles and reports the source breakpoints in the order of their

corresponding interception points being reached. To show that the source breakpoint behavior

provided by our approach is correct, we need to prove the interception points of source breakpoints

are always reached in the order conforming to the original execution order of their corresponding

source statements.

Theorem 4 For any two source statements S1 and S2 such that S1 has a smaller execution order

than S2 (that is, S1 should be executed before S2 if execution
ow can reach S2 from S1), on any

path which contains interception points of both S1 and S2, the interception point of S2 will never

be reached before the interception point of S1.

Proof: We prove the theorem by contradiction.

Suppose there is a path P contains an interception point of S1's, I1, and an interception point

of S2's, I2, such that I2 is reached before I1 along P . From the de�nition of interception point,

we know I1 is the earliest post-breakpoint instruction on path P with regard to S1.

Suppose I2 originates from statement B. B should be executed after statement S2. Since S2

should be executed after S1, B should be executed after S1. Therefore, I2 is also a post-breakpoint

instruction with regard to S1. Because I2 is reached before I1 on path P , I2 is an earlier post-

breakpoint instruction than I1 on P with regard to S1, which contradicts the assumption that I1

is the interception point of S1 on path P .

4 Related work

To solve the code location mapping problem in debugging optimized code, there have been di�erent

source-to-object mapping schemes proposed such as semantic breakpoints [1], syntactic breakpoints

[1], and statement labels [2, 4]. Each of these mapping schemes maps a source breakpoint to

a di�erent place in the object code to preserve di�erent kind of source code properties, but the

problems su�ered by the traditional scheme as we mentioned in Section 1 still remain because all

of them map a source breakpoint to a single object location.

Zellweger [8] proposed a method which can correctly map a source breakpoint to every object

code location corresponding to the breakpoint. However, her method can only handle programs

optimized by function inlining and cross jumping (tail merging) where a source statement may have

Technical Report IMPACT-98-06 23

more than one instances, or a sequence of machine instructions might correspond to two or more

statements. She did not address the problem of mapping a source breakpoint to object locations

when the instructions are globally re-ordered or deleted.

In his thesis [2], Adl-Tabatabai proposed to use branch conditions to help the debugger to

con�rm a source breakpoint when there is no single object location for the debugger to map the

breakpoint to. This idea is similar to our anchoring condition scheme. However, he did not provide

any in-depth discussion on this topic, nor did he provide algorithms to keep track of the required

information during compilation.

Hennessy [9] and Adl-Tabatabai et al. [3] proposed techniques to recover the expected values

of variables. Their approaches are similar in concept. They recover the value of a variable by

reconstructing and interpreting the original assignment of the variable. The expected value of

the variable can be recovered successfully as long as the source operands of the assignment are

still available at the object breakpoint. Since both of their approaches adopt a traditional source-

to-object mapping scheme, the debugger does not always suspend the execution early enough

to preserve the values of the original source operands. Therefore the success rates to recover

expected variable values of their approaches are low. Also Adl-Tabatabai's approach can only

handle locally optimized code. Hennessy can handle some global optimizations, but only with very

limited capability.

There are other research works using di�erent strategies to provide expected program behavior.

Gupta[10] proposed an approach to debug code reorganized by a trace scheduling compiler. In this

approach the user has to specify the commands for monitoring values before compilation and these

commands will be added and compiled into the program. During run time the debugger stops when

a monitor command is executed and reports the monitored information to the user. The major

problem with this invasive approach is that adding extra code to the debugged program might

change the program behavior and consequently mask existing bugs or introduce new bugs.

Holzle, Chambers and Ungar [11] proposed an approach in their SELF programming environ-

ment [12] to debug globally optimized code. By dynamically deoptimizing code on demand, their

debugger can provide full expected behavior. In their approach, the debugger can be invoked only

at pre-de�ned interrupt points where the program state is guaranteed to be consistent with what

the original program would have. This constraint implies that the optimization can only be per-

Technical Report IMPACT-98-06 24

formed so that its e�ects either do not reach an interrupt point or can be undone at that point.

Once the debugger is invoked, the function containing the interrupt point is deoptimized so that

the debugging requests can be carried out. With the function deoptimized, the program can be

stopped at any source point within the function and almost all the typical debugging operations

can be supported. The major problem with their deoptimization approach is that the bugs exposed

or introduced by the optimizer will be masked.

5 Conclusions

Compiler optimizations cause traditional breakpoint implementation schemes di�culties in two

ways: (1) the mapping between source code and object code becomes very complicated, and (2)

only the program state of a single point is available, which makes reporting the expected values of

user variables very di�cult when the program is heavily optimized. In this paper, a new breakpoint

implementation scheme for debugging globally optimized code is described. The approach is aimed

at solving the problems su�ered by traditional breakpoint implementation schemes so that the

expected program behavior can be recovered.

In our approach, the debugger takes over the control of execution early to make sure the infor-

mation required for recovery will not be destroyed permanently. It then moves forward executing

instructions under our forward recovery scheme which maintains some data structures to keep track

of the program states changed during the forward recovery. Once the debugger has executed all

the instructions required, it stops to answer the user's requests. Our scheme can work with a data

location tracking method to provide the expected values of variables at the breakpoints. The source

breakpoints will be reported to the user in the order speci�ed by the original source program. The

behavior of exceptions also meets what the user expects.

A new code location mapping scheme is proposed. The new mapping scheme helps the debugger

to determine where to suspend and resume the normal execution and decide if a source breakpoint

should be reported. The algorithms and theoretical foundations for constructing and calculating

di�erent mappings are presented. A new instruction execution order tracking method at compile

time is also described in this paper.

Our breakpoint implementation scheme is primarily targeted at code optimized by techniques

Technical Report IMPACT-98-06 25

involving global code re-ordering, deletion, and duplication. Code optimized by loop transformation

techniques such as loop interchange, loop fusion, loop skewing, etc. is not covered by our approach.

The feasibility of extending the approach to handle predicated code and advanced ILP optimizations

such as modulo scheduling is being explored.

References

[1] P. T. Zellweger, Interactive Source-Level Debugging of Optimized Programs. PhD thesis, Elec-

trical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, 1984.

[2] A. Adl-Tabatabai, Source-Level Debugging of Globally Optimized Code. PhD thesis, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, 1996.

[3] A. Adl-Tabatabai and T. Gross, \Detection and recovery of endangered variables caused by

instruction scheduling," in Proceedings of the ACM SIGPLAN '93 Conference on Programming

Language Design and Implementation, pp. 13{25, June 1993.

[4] D. Coutant, S. Meloy, and M. Ruscetta, \DOC: A practical approach to source-level debug-

ging of globally optimized code," in Proceedings of the ACM SIGPLAN '88 Conference on

Programming Language Design and Implementation, pp. 125{134, June 1988.

[5] A. Adl-Tabatabai and T. Gross, \Evicted variables and the interaction of global register allo-

cation and symbolic debugging," in Conference Record of the 20th Annual ACM Symposium

on Principles of Programming Languages, pp. 371{383, January 1993.

[6] D. M. Lavery and W. W. Hwu, \Unrolling-based optimizations for modulo scheduling," in

Proceedings of the 28th International Symposium on Microarchitecture, pp. 327{337, November

1995.

[7] D. M. Lavery and W. W. Hwu, \Modulo scheduling of loops in control-intensive non-numeric

programs," in Proceedings of the 29th International Symposium on Microarchitecture, pp. 126{

141, December 1996.

[8] P. T. Zellweger, \An interactive high-level debugger for control-
ow optimized programs,"

SIGPLAN Notices, vol. 18, pp. 159{171, August 1983.

[9] J. Hennessy, \Symbolic debugging of optimized code," ACM Transactions on Programming

Languages and Systems, vol. 4, pp. 323{344, July 1982.

[10] R. Gupta, \Debugging code reorganized by a trace scheduling compiler," Structured Program-

ming, vol. 11, pp. 141{150, July 1990.

[11] U. Holzle, C. Chambers, and D. Ungar, \Debugging optimized code with dynamic deoptimiza-

tion," in Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design

and Implementation, pp. 32{43, June 1992.

[12] D. Ungar and R. B. Smith, \SELF: The power of simplicity," in OOPSLA '87 Conference

Proceedings, pp. 227{241, October 1987.

Technical Report IMPACT-98-06 26

 a = b + c
 goto L2

L3 w = u + v

L1: d = e + f 3

 a = b + c 1
 goto L2 2

 goto L3 4
L2: x = y + z 5
 goto L1 6
L3: w = u + v 7

line #

(b)(a)

L1 d = e + f
 goto L3

L2 x = y + z
 goto L1

Figure 10: Example program (a) Source program with line numbers (b) Control
ow graph

A Derivation and correctness proof of the execution order infor-

mation

First we want to show why line number and column number information is not su�cient to track

the execution order of the instructions across basic blocks. As we can see from Figure 10, although

statement L1 has a smaller line number (line 3) than statement L2 (line 5), L2 will always be

executed before L1 in the dynamic execution
ow as shown in Figure 10(b). Therefore we need to

incorporate the sequence number to our execution order information.

To obtain the sequence number, the compiler �rst builds a control
ow graph of the original

program. For example, Figure 11(a) shows a control
ow graph example. All the back edges in

the graph are removed to make the graph acyclic. The compiler then assigns a non-descending

sequence number to each one of this partially ordered set of nodes as shown in Figure 11(b) via

a topological sort of the graph.5 Although the sequence number assignment might not be unique,

there is only one relative execution order between two basic blocks where the execution control can

reach one from the other.

Theorem 5 In a reducible acyclic control
ow graph, there is always a well-de�ned execution order

5There are some programs whose control
ow graphs are irreducible and it's hard to determine the back edges.

In this case, we use tail duplication (node splitting) technique to convert an irreducible graph to a reducible graph

before we apply our sequence number assigning algorithm.

Technical Report IMPACT-98-06 27

(a) (b)

1

2 3

4

5

6

Figure 11: (a) Control
ow graph (b) Acyclic control
ow graph with sequence numbers assigned

to basic blocks

between two basic blocks where execution control can reach one from the other.

Proof: We prove the theorem by contradiction.

Suppose there is a basic block A which can be reached both before and after another basic block

B in the control
ow graph. There must be a path from A to B and back to A, which makes the

graph cyclic and contradicts our assumption. Thus, there is only one execution order between A

and B.

Having the sequence number, line number, and column number information associated with each

instruction, a simple comparison of the numbers can determine the execution order of instructions.

Before any optimization is performed, sequence numbers will be assigned, along with the line

number and column number information, to each instruction. During an optimization phase, the

execution order information associated with each instruction remains the same as long as there is

no code duplication or code creation optimization performed.

When code duplication optimization which duplicates basic blocks is performed, maintaining the

sequence number information depends on if the duplicated code is introduced to a new context. In

optimizations such as loop unrolling, function inlining, and loop peeling, the duplicated basic blocks

are introduced to a context di�erent from their original one. Their original sequences numbers may

no longer be valid in the new context, so we need to dynamically adjust the sequence numbers of

the duplicated code and the a�ected instructions in the surrounding new context to re
ect the new

execution order. For optimizations such as tail duplication where the duplicated code remains in

Technical Report IMPACT-98-06 28

 foo(int a, int b)
 {
 int t;
S3: t = a; (1, 4, 4)
S4: a = b + 4; (1, 5, 4)
S5: b = t; (1, 6, 4)
 }

 bar()
 {
 int x, y;

 }

S6: x = 2; (1, 12, 4)
S7: y = 3; (1, 13, 4)
S8: foo(x, y); (1, 14, 4)
S9: y = x + 1; (1, 15, 4)

(b)

 foo(int a, int b)
 {

(a)

 int t;

S9: y = x + 1; (3, 15, 4)

 }

 bar()
 {
 int x, y;

 {

 }

 }

S3: t = a; (1, 4, 4)
S4: a = b + 4; (1, 5, 4)
S5: b = t; (1, 6, 4)

S6: x = 2; (1, 12, 4)
S7: y = 3; (1, 13, 4)

S1’: a = x; (2, 1, 4)
 int a,b,t;

S2’: b = y; (2, 1, 4)
S3’: t = a; (2, 4, 4)
S4’: a = b + 4;(2, 5, 4)
S5’: b = t; (2, 6, 4)

Figure 12: Sequence number adjustment for function inlining (a) original C source code (b) func-

tions after inlining. Each statement is annotated with (sequence #, line #, column #).

the old context, we keep the original sequence number information.

To show how the compiler adjusts the sequence number information, we use a function inlining

example. Figure 12(a) shows an example C program with two functions, foo and bar, where bar

calls foo. Each statement is annotated with the execution order information (sequence number,

line number, column number). After inlining, statement S8 is replaced with a set of statements

duplicated from function foo as shown in Figure 12(b). In order to maintain the correct relative

execution order among instructions originating from function foo and function bar, we need to

change the sequence numbers of all the new statements coming from foo and the sequence numbers

of the statements which should be executed after S8. In Figure 12(b), we can see the sequence

numbers of the duplicated statements are all changed to 2 (their original sequence number plus 1,

the original sequence number of the function call) and the sequence number of S9 becomes 3.

Sequence number adjustment for loop unrolling and loop peeling can be done in a similar

fashion.

For optimizations which involve creating new code such as common subexpression elimination,

we treat the newly-inserted instructions as if they are from one of the statements involved in the

optimization and assign them the same execution order information as the other instructions of the

statement. For example, Figure 13(b) shows an optimized program after common subexpression

elimination, where S3 is newly created code. We assign the execution order information of S1 to

Technical Report IMPACT-98-06 29

 .
 .

S3: t = a + b (1, 3, 4)
S1: x = t (1, 3, 4)

S2: y = t (1, 8, 4)

 . .

(b)

 .
 .

S1: x = a + b (1, 3, 4)

S2: y = a + b (1, 8, 4)

(a)

Figure 13: Execution order information maintenance (a) original C source code (b) program after

common subexpression elimination. Each statement is annotated with (sequence #, line #, column

#).

S3 because we treat S3 as if it originates from S1.

B A data-
ow algorithm for �nding �nish points

In the control
ow graph G of the function, suppose an anchor point I of statement S is in basic

block D and the function exit block is E (we assume there is a unique exit block for each function).

To �nd out the �nish points of S with regard to I, we need to �rst split D into two basic blocks

D1 and D2 in the same manner as we do in Section 2.2.2.

Let V be the set of basic blocks which are on the paths from D2 to E (including D2 and E).6

For each basic block B in V , let us de�ne

gen[B] = A one-element set containing the instruction which is either the earliest post-breakpoint

function call or the instruction immediately following the last pre-breakpoint instruction (depending

on which one is encountered �rst) in basic block B, if there is any. An empty set, otherwise.

kill[B] =

8><
>:

in[B] if gen[B] 6= �

� otherwise

The data-
ow equations for in and out sets of B are:

in[B] =
[

P is a predecessor of B

out[P]

out[B] = gen[B] [(in[B]� kill[B])

We can use the iterative algorithm shown in Figure 14 to �nd out the out[B] for each basic

block B in V . out[E] is the set of all the �nish points of S with regard to I.

6
V can be obtained through a depth-�rst search from D2.

Technical Report IMPACT-98-06 30

for each block B in graph G do

if B is in V then

out[B] = gen[B];

else

out[B] = �;

endif

end for

while changes to any of the out sets occur do

for each block B in V do

in[B] =
S
P is a predecessor of B out[P];

out[B] = gen[B] [(in[B]� kill[B]);

end for

end while

Figure 14: An iterative algorithm for �nish point determination

