
A New Data-Location Tracking Scheme for the Recovery of

Expected Variable Values

Le-Chun Wu� Wen-mei W. Hwuy

�Department of Computer Science
yDepartment of Electrical and Computer Engineering and

The Coordinated Science Laboratory

University of Illinois

Urbana, IL 61801

Email: flcwu, hwug@crhc.uiuc.edu

Technical Report IMPACT-98-07

September 1998

1 Introduction

The run-time location of a user variable may be altered by optimizations such as register allocation. The

variable value may be in di�erent places (constant, register, or memory) at di�erent points of execution. Or

it may not exist at all due to code deletion and register (and memory location) reuse. To allow the user

to access the value of a variable, the debugger has to know what location holds the value of the variable at

breakpoints.

Coutant et al. [1] proposed a data structure called range to communicate to the debugger the location

information of variables in di�erent ranges of the binary program. A variable has a set of range records

which are calculated based on the live ranges of the variable at compile-time. For example, in Figure 1(a),

there are three live ranges for variable a in the sample program.

The range records for variable a is shown in Figure 1(b). By comparing the address of an object code

location with the Low Address and High Address of each range record, the debugger can decide where to get

the variable value at this object code location. If the address is not in any one of the range records, which

means the variable value is not available at this point, the debugger has to inform the user of this fact.

Range information calculated based on the live ranges of variables is considered conservative because the

1

Technical Report IMPACT-98-07 2

address

(a)

2004 = 3 + r2 = a + b
2008 r1 = a =
2012 = r1 = a
2016 = r1 = a

2000 ... a = 3

2020 ...
2024 r5 = a =
2028 = r5 = a

source code

2028 2028 r5 register

Low Addr High Addr Location Type

(b)

Low Addr High Addr Location Type

(c)

2004 2004 3 constant

2012 2016 r1 register

2028 2028 r5 register

2004 2008 3 constant

2012 2024 r1 register

Figure 1: (a) An example code segment (b) range records for variable a (c) extended range records for
variable a

fact that a variable is not live doesn't mean its value is not available. For example, in the program shown in

Figure 1, variable a is not live from address 2020 to 2024, but its value is still in register r1. Adl-Tabatabai

and Gross [2] have proposed a framework using data-
ow analysis which can be used to extend the range of

a value location to the point where the value is killed. The extended ranges of variable a for the example in

Figure 1(a) is shown in Figure 1(c).

While the data-location information generated by the aforementioned techniques is su�cient for the

debugger to determine if a variable value can be found in any place, it becomes insu�cient (or even inaccurate)

when the debugger attempts to recover the expected variable values at breakpoints, as illustrated in Figure 2.

Figure 2(a) shows the original code of a sample program. Figure 2(b) shows the optimized code where

instruction I5 (a de�nition of variable b) is moved up. The ranges for variable b constructed using Adl-

Tabatabai's approach is depicted in Figure 2(c). Suppose a breakpoint is set at statement S whose anchor

point is at I4. When the user requests for b's value at this breakpoint, the debugger in our scheme will

compare the address of the anchor point I4 with the range records for b1. Using the range records shown in

Figure 2(c), the debugger would think b's value is in register r3, while in fact the value of b at the breakpoint

should come from the de�nition at I1 (in register r1) in order to provide expected behavior. Hence the range

information we desire in order to provide the expected value of b should be the one depicted in Figure 2(d)

where the �rst range is extended to cover instruction I4.

To solve the problem mentioned above and provide data-location information more �tting to our new

debugging strategy, a new data-location tracking scheme is proposed. Our scheme keeps track of information

about the de�nitions (assignments) of source variables during compilation and register allocation, and then

calculates variable range information using the de�nition information preserved. The range information will

be constructed in a way such that the original execution order relationship between the de�nitions of a

1Our debugging scheme does not map a source breakpoint to a single object location as most of the traditional debuggers

do. Therefore we use the address of the anchor point of a source breakpoint to compare with the range records because anchor

points preserve the original execution order and reaching conditions of the source statements.

Technical Report IMPACT-98-07 3

I2: ...
I3: = r1 (use b)
I4: r5 = (def c)
I5: r3 = (def b)
I6: ...
I7: = r3 (use b)

b in r1

b in r3

I1: r1 = (def b)

(a)

I5’: r3 = (def b)

I1: r1 = (def b)
 I2: ...

I3: = r1 (use b)

I4: r5 = (def c)
I6: ...
I7: = r3 (use b)

b in r1

b in r3

(b) (c) (d)

Figure 2: (a) Original code (b) Optimized code (c) range records for variable b using previous techniques
(d) range records for variable b desired

variable and the breakpoints is re
ected.

Recovering the expected values of non-current variables caused by code deletion is also handled by our

data-location tracking scheme. Most of the time when an assignment of a variable is deleted, the value

assigned to the variable can still be recovered using the values of other variables. Our scheme tracks where

or how to obtain the value of a variable whenever an assignment of a variable is deleted. Besides a constant,

a register, or a memory location, the location of a variable in our scheme can also be an arithmetic expression

consisting of various storage locations. Although the concept of using the values of other variables to recover

a deleted variable value has been mentioned in some of the previous work [3, 1], our scheme provides a more

general and systematic approach which can handle almost all kinds of code deletion and recover the expected

values of deleted variables whenever it is possible.

In the following subsections, we discuss how our scheme preserves the variable de�nition information and

calculates the range information.

2 Variable de�nition information

For each source variable, the compiler keeps a set of de�nition records each of which corresponds to a source

de�nition (assignment) of the variable. A de�nition record contains the following information:

De�nition type The type of the de�nition includes original, moved, equivalent, and deleted.

Value expression The information about where or how to obtain the value of the variable. It may be a

constant, a register, a memory location, or an arithmetic expression.

Actual de�nition points The instruction (machine location) that moves the source value of the variable

to a storage location, or the instructions whose destinations constitute the value expression of the

variable when the original de�nition instruction is deleted.

Technical Report IMPACT-98-07 4

E�ective de�nition points The instructions (machine locations) from which the source de�nition should

take e�ect based on the semantics of the original program.

Source location of the de�nition This information includes the source location and the execution order

of the de�nition (assignment).

Before any optimization is performed, for a source de�nition D of variable V , the instruction I that

moves the source value of V to a storage location serves as both the actual and the e�ective de�nition points

of D. The type of the de�nition is original and the value expression is the destination of I .

Since only code deletion and code movement will a�ect the values of source variables, we will discuss how

the variable de�nition information is maintained in these two cases.

1. Code deletion.

When an instruction I , which is an actual de�nition point of a de�nition D of variable V 's, is deleted,

(a) If the value of the destination of I , dst, can be obtained through the expression E which is

available at I , and I is the only actual de�nition point of D which de�nes dst,

i. dst in the value expression of D is replaced by E,

ii. the instructions which de�ne the operands of E replace I and become the actual de�nition

points of D, and

iii. the type of D becomes equivalent if it hasn't been so.

(b) Otherwise, the type of D becomes deleted and there is no actual de�nition point and value ex-

pression for D.

If the type of D is original, the anchor points of the source de�nition corresponding to D will become

the e�ective de�nition points of D. This issue will be discussed later.

Figure 3 shows a code example where instruction I4, a de�nition of variable y, is deleted because it is

dead. We can see y's value can be recovered by the expression r1+r2 (a+b). Therefore r1+r2 becomes

the value expression of the deleted de�nition, instructions I1 and I2 become the actual de�nition points,

and the type of the de�nition becomes equivalent. If instruction I5 is the anchor point of the source

de�nition, I5 becomes the e�ective de�nition point.

2. Code movement

Technical Report IMPACT-98-07 5

I2: r2 =

I6: r5 =
I5: ...

I3: ...
I4: r4 = r1 + r2

a =
b =
...
y = a + b

I1: r1 =

...

(b)

y = I6: r5 =
I5: ...
I4: r4 = r1 + r2

(a) (c)

I3: ...

I1: r1 =
I2: r2 =

Figure 3: (a) Original source code (b) Original assembly code (c) Optimized assembly code

When an instruction I , which is an actual de�nition point of a de�nition D of variable V 's, is moved

to a place control-equivalent to its original location 2,

(a) I 's new location replaces its old location as an actual de�nition point of D.

(b) If the type of D is original, it is changed to moved.

Also if the type of D is original, the anchor points of the source de�nition corresponding to D will

become the e�ective de�nition points of D.

Refer back to Figure 2. After instruction I5, which is a de�nition of variable b, is moved, the new

location of I5 becomes the actual de�nition point of the de�nition, and the de�nition type becomes

moved. If I6 is the anchor point of the de�nition, it becomes the e�ective de�nition point.

When an instruction I is moved to a place which is not control-equivalent to its original location as

shown in Figure 4, if the type of D is equivalent, we handle the movement as we did for the simple code

movement mentioned above. Even though the movement of I might render the value expression of D

unavailable at some points, the compiler will calculate the availability of the value expression before

the range information is calculated.

However, when D's type is either original or moved, how we handle it depends on the movement of the

code which can be classi�ed into four cases.

Case 1 I is moved up to a place which dominates but is not post-dominated by I 's old location as

shown in Figure 4(a). This case usually happens when speculative code motion is performed. We

treat this case as if I is deleted, while the value of V de�ned by I can be found in the destination

of I 0. Therefore the type of D becomes equivalent and I 0 becomes the actual de�nition point of

D. This way we can ensure the range records for V will be created (see Section 3) such that the

2Two machine locations are control-equivalent if one dominates and is post-dominated by the other.

Technical Report IMPACT-98-07 6

value of V at breakpoint 1, 2, 3, and 5 will not be from I 0, while the expected value of V can be

obtained at breakpoint 4 as long as r4 is not re-de�ned before reaching the breakpoint.

Case 2 I is moved up to a place which does not dominate but is post-dominated by I 's old location.

If this case happens due to partial redundancy elimination as depicted in Figure 4(b), we treat

this case as if I is moved to two new places, J and I 0. Therefore the type of D becomes moved

and both J and I 0 become the actual de�nition points of D. This way we can ensure the range

records created for V will not be a�ected by I 0 (see Section 3) and the expected value of V can

be obtained at breakpoint 3 as long as the value of r4 de�ned by J and I 0 are both available at

the breakpoint.

However, if I is moved up due to other reasons, to be conservative, we treat the case as if I is

being deleted and the value of V de�ned by I cannot be recovered. That is, the type of D becomes

deleted and there is no actual de�nition point and value expression for D.

Case 3 I is moved down to a place which does not post-dominate but is dominated by I 's old location

as shown in Figure 4(c). This case usually happens when partial dead code elimination is per-

formed. We treat this case as if I is deleted, while the value of V de�ned by I can be found in the

destination of I 0. Therefore the type of D becomes equivalent and I 0 becomes the actual de�nition

point of D. This way we can ensure the range records for V will be created (see Section 3) such

that the value of V de�ned by the de�nition(s) prior to I will not be seen by breakpoint 1, 2, 3,

and 5, while the expected value of V can be obtained at breakpoint 4.

Case 4 I is moved down to a place which post-dominates but is not dominated by I 's old location.

If this case happens due to tail merging as depicted in Figure 4(d), we treat it as a simple code

movement. Therefore the type of D becomes moved and I 0 becomes the actual de�nition point of

D.

However, if I is moved down due to other reasons, to be conservative, we treat the case as if I

is being deleted and the value of V de�ned by I cannot be recovered. That is, the type of D

becomes deleted and there is no actual de�nition point and value expression for D.

After all the optimizations have been done, the compiler will check the de�nition records of each variable.

If the type of a de�nition is not original, the anchor points of the source assignment statement which

corresponds to the de�nition become the e�ective de�nition points of the de�nition. Since we use the

address of the anchor point of a source breakpoint to compare with the range records, using anchor points of

a moved or deleted source assignment as the e�ective de�nition points (which will later on become the start

Technical Report IMPACT-98-07 7

B C

I’: r4=r1+r2
breakpoint 2

breakpoint 3

breakpoint 4

D
breakpoint 5

D
breakpoint 5

J: r4=r1+r2 (def V)

J: r4=r1+r2 (def V)

(d)

A

C

A B

C

A B

(b)

I: r4=r1+r2 I: r4=r1+r2

I’: r4=r1+r2

I: r4=r1+r2

I’: r4=r1+r2

 (def V)

 (def V) (def V)

breakpoint 1

breakpoint 2

breakpoint 3

breakpoint 1 breakpoint 1

breakpoint 2

breakpoint 3

C

I: r4=r1+r2 (def V)

breakpoint 3

breakpoint 4

B

I’: r4=r1+r2

breakpoint 1

breakpoint 2

A

(a)

(c)

Figure 4: Code moved to a non-control-equivalent place (a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

points of range records) will ensure the correct coverage of the ranges with regard to each source breakpoint.

3 Range calculation

Besides low address (start address), high address (end address), and location information (which is extended

to handle more complicated value expression), a range record in our scheme also includes information about

source execution order of the source assignment corresponding to the range. The reason why the execution

order information is required will be discussed later.

Range calculation is based on the variable de�nition information preserved during optimization. For a

source variable V , range records are created for each of its de�nitions, D, only when

1. the type of D is not deleted, and

2. the destinations of D's actual de�nition points are all available at some points between D's e�ective

de�nition points and the places where D is killed if the type of D is equivalent.

For example, in the optimized code shown in Figure 3(c), if either r1 or r2 is re-de�ned before instruction

Technical Report IMPACT-98-07 8

I5 (which is the e�ective de�nition point of a de�nition of y) is reached, no range record will be created for

this de�nition of y.

Range records created for D may start at the following locations:

1. The e�ective de�nition points of D if

(a) the type of D is original or moved, or

(b) the type of D is equivalent and all of D's actual de�nition points will be reached before its e�ective

de�nition points without traversing back edges.

2. The earliest location where all the destinations of D's actual de�nition points are available if

(a) the type of D is equivalent, and

(b) some of D's actual de�nition points will be reached after its e�ective de�nition points without

traversing back edges.

For example, in Figure 4(c), suppose after optimization the e�ective de�nition point of V 's de�nition

is the instruction immediately following I in basic block A. Since the actual de�nition point of the

de�nition, I 0, is reached after the e�ective de�nition point, the range record corresponding to the

de�nition will start from the point immediately following I 0.

3. The beginning of a basic block which can be reached by de�nition D if

(a) D is available on all paths leading to the basic block, or

(b) there is a de�nition of V 's on every path leading to the basic block and all V 's de�nitions which

reaches the basic block have the same value expression.

For example, in Figure 5(a), suppose I1 and I2 are two de�nitions of variable y which reaches basic

block C. Since these two de�nitions have the same value expression, r1, a range record for variable y

will be created starting from the beginning of basic block C. On the contrary, in Figure 5(b), suppose

I1 and I2 are two de�nitions of variable y which reaches basic block C. Since their value expressions

are di�erent, no range record for variable y will start from the beginning of basic block C.

Range records for D may end at the following locations:

1. The e�ective de�nition points of other de�nitions of V (including those de�nitions with type deleted).

Technical Report IMPACT-98-07 9

A

C

B

I2: r1 = (def y)I1: r1 = (def y)

(b)

A

C

B

I1: r1 = (def y) I2: r2 = (def y)

(a)

Figure 5: (a) De�nitions with the same value expression (b) De�nitions with di�erent value expressions

I2: = r1
I3: r1 = (def b)

I5: r3 = (def c)
I6: r1 = (def b)

I4: = r1

I7: ...
I8: = r1

I1: r1 = (def a)I1: r1 = (def a)
I2: = r1

(b)

I3: r1 = (def b)
I4: = r1
I6’: r1 = (actual def b)
I5: r3 = (def c)

I8: = r1
I7: ... (effective def b)

(a)

Figure 6: (a) Original code (b) Optimized code

2. The location where any of the source operands in D's value expression is re-de�ned (killed), unless the

instruction which re-de�nes the operand is an actual de�nition point of a moved de�nition of V .

For example, Figure 6(b) shows an optimized code where instruction I6 is moved up after optimization.

The range record for variable a will end at I3 because r1, which is the value expression of a's de�nition,

is re-de�ned by I3. However, the range record for the �rst de�nition of b does not end at I60 because

I60 is the actual de�nition point of a moved de�nition of b. The reason is because if the range record

for the �rst de�nition of b ends at I60, since the range record for the second de�nition of b won't start

until I7 (the e�ective de�nition point of the second de�nition of b), instruction I5 will not be covered

by any range record of b. However, we would like I5 to be covered by the range record of the �rst

de�nition of b because our selective execution would provide a correct value of r1 even though r1 is

modi�ed prematurely by I60.

3. The end of a basic block.

The range records constructed for D are assigned D's value expression and source execution order infor-

mation.

Note that the reason why a range record for a de�nition D of variable V starts from instruction I , an

e�ective de�nition point of D, instead of the instruction immediately following I is because I might serve

as an anchor point of multiple source statements. Some of these statements might have smaller execution

Technical Report IMPACT-98-07 10

order than de�nition D and therefore we should exclude I from the range record for D. Some might have

larger execution order than D and I should be included in the range record. Without knowing where the

breakpoints will be set in advance, we will need to always include I in the range record. At debug-time,

when the address of an anchor point of a source breakpoint matches the start address of a range record, the

debugger will use the source execution order information of the range record to decide if this range should

cover the breakpoint or not.

Based on the the concept and intuition we described above and the algorithm Adl-Tabatabai proposed to

determine the residency of variables [4], a data-
ow algorithm to calculate the range information of variables

is presented in Appendix A. Note that the range records for a variable V calculated by our algorithm is

automatically coalesced so that the adjacent ranges of V which have the same value expression are merged

into a bigger range to reduce the number of the range records (and therefore the size of the debugging

information).

References

[1] D. Coutant, S. Meloy, and M. Ruscetta, \DOC: A practical approach to source-level debugging of globally
optimized code," in Proceedings of the ACM SIGPLAN '88 Conference on Programming Language Design

and Implementation, pp. 125{134, June 1988.

[2] A. Adl-Tabatabai and T. Gross, \Evicted variables and the interaction of global register allocation
and symbolic debugging," in Conference Record of the 20th Annual ACM Symposium on Principles of

Programming Languages, pp. 371{383, January 1993.

[3] J. Hennessy, \Symbolic debugging of optimized code," ACM Transactions on Programming Languages

and Systems, vol. 4, pp. 323{344, July 1982.

[4] A. Adl-Tabatabai, Source-Level Debugging of Globally Optimized Code. PhD thesis, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA 15213, 1996.

A Data-
ow algorithm for range calculation

To facilitate the data-
ow algorithm, instructions will be �rst annotated with variable de�nition attributes

(each of which include a variable name and a value expression) in the following way:

For each de�nition, D, of variable V ,

� if I is an e�ective de�nition point of D, I will be annotated with a de�nition attribute of V with value

expression E. However, the value expression in the attribute will be set to null when

1. the type of D is deleted, or

Technical Report IMPACT-98-07 11

2. the type of D is equivalent and some of D's actual de�nition points will be reached after its

e�ective de�nition points without traversing back edges, or

3. the type of D is equivalent and the destinations of D's actual de�nition points are not all available

at any point between D's e�ective de�nition points and the places where D is killed.

Or,

� if I is the earliest location where all the destinations of D's actual de�nition points are available when

1. the type of D is equivalent, and

2. some of D's actual de�nition points will be reached after its e�ective de�nition points without

traversing back edges, and

3. the destinations of D's actual de�nition points are all available at some points between D's

e�ective de�nition points and the places where D is killed,

I will be annotated with a de�nition attribute of V with value expression E.

The data-
ow algorithm is operated on variable de�nition pair < V;E > where V is a source variable and

E is a value expression. That < V;E > is available at a point of the program means V 's value is obtained

through E when the execution stops at that point. Therefore we have

AvailV arExprIn[I] = f< V;E > j the value of V is obtained through E at the point before executing

Ig

AvailV arExprOut[I] = f< V;E > j the value of V is obtained through E at the point after executing

Ig

Also we de�ne V alueExpression[V] to be the set of value expressions which V's value can be obtained

from at di�erent points of the program.

The value of a variable V is obtained through a value expression E at the point before executing I only

when V 's value is obtained through E after all of I 's predecessor. Therefore

AvailV arExprIn[I] =
\

J is a predecessor of I

AvailV arExprOut[J]

We de�ne AvailV arExprGen[I] to be the set of variable de�nition pairs made available by instruction

I and AvailV arExprKill[I] to be the set of variable de�nition pairs killed by I .

AvailV arExprOut[I] = AvailV arExprGen[I] [(AvailV arExprIn[I] �AvailV arExprKill[I])

The AvailV arExprGen set and AvailV arExprKill set for instruction I are de�ned as follows:

Technical Report IMPACT-98-07 12

� If I is annotated with a variable de�nition attribute of variable V with value expression E,

{ < V;E >2 AvailV arExprGen[I] if E is not null

{ 8E0 2 V alueExpression(V); < V;E0 >2 AvailV arExprKill(I)

� If I has a destination L, for each value expression E of every variable V which has L as one of its

operands (unless I is an actual de�nition point of a moved de�nition of V),

{ < V;L >2 AvailV arExprKill[I]

After the data-
ow analysis is done, a range record for variable V with value expression E starts from

instruction I if < V;E > is �rst seen in AvailV arExprOut[I], and ends at instruction J if < V;E > is not

in AvailV arExprOut[J] any more.

