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CHAPTER 1

INTRODUCTION

The IMPACT C compiler was developed by the IMPACT research group [1]. It is a large,

complex, but well-structured piece of software intended to exploit the highest ILP for wide-issue

micro processors.

Between the C source code and the machine-dependent assembly code, the IMPACT com-

piler maintains three families intermediate representations: Pcode [2], Hcode [3], and Lcode [4].

Pcode is the high-level intermediate language. The grammar of Pcode maintains all constructs

in C so that the Pcode intermediate representation (IR) can carry source-code information in

order to perform source-to-source transformations. Pcode is further described in Chapter 2.

Hcode is the middle-level IR in the IMPACT compiler. The major di�erence between Hcode

and Pcode is that Hcode uses 
attened control structures. For example, a loop construct in

Pcode is transformed into basic blocks connected via if-then-else and goto constructs in

Hcode. Originally, basic-block pro�ling and pro�le-driven inlining are performed in the Hcode

level. Now they have been moved into the Pcode phase.

Lcode is the low-level IR where machine-independent classic optimizations are applied. More

advanced optimizing technologies like superblock and hyperblock formations are also conducted

in the Lcode level [5] [6]. Then machine-dependent code generators translate Lcode into assem-

bly code. The architectures supported by the IMPACT compiler include AMD 29K [7], MIPS

R3000 [8], Sun SPARC [9], HP PA RISC and Intel x86.
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1.1 Motivation

The invention of high-level programming languages like C facilitates the task of writing a

large program by introducing the concept of modularization. For human beings, it is easier

to decompose a problem into smaller modules and write code for each module. Then all the

modules work in collaboration to solve the problem. In C, functions are the primary constructs

for modularization. The programmers can reduce the program size by absorbing redundant

operations into one function and repeatedly invoking those operations through function calls.

Functions also minimize the debugging e�ort because the programmers can isolate the bug

more easily. However, the impact of this modularization on an optimizing compiler is negative

because it blocks the compiler from seeing all of the code whenever a function call is encountered.

For example, it hinders the compiler from globally performing register allocation, common

subexpression elimination and constant propagation [10].

Originally, the IMPACT compiler expanded function calls with Hinline [10] which operates

on the Hcode level. Hinline lacks the ability to inline function pointers and recursive calls.

However, the most important impetus to perform inline expansion in Pcode instead of Hcode is

that Hinline is unable to properly preserve sync arcs [11], the memory dependence information

generated by Pcode, after function inlining. In order to solve this problem we decided to perform

function inlining before generating sync arcs.

1.2 Contents

The goal of this document is to give a detailed description about the Pcode inlining module,

Pinline. This thesis is divided into six chapters. The next chapter will give a general overview of

the IMPACT frontend modules. The third chapter will describe how the Pcode IR is 
attened,
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so as to expose more functions to the inliner, and how the program source code is split. The

fourth chapter will provide an detailed look into Pinline. The experimental results will be

presented in Chapter 5 and the conclusion will be given in Chapter 6.
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CHAPTER 2

OVERVIEW OF THE IMPACT FRONTEND

Conceptually, a single invocation to IMPACT will do all the compilation and optimization

tasks. In reality, the IMPACT compiler is composed of many executables which either act

as the bridge between two forms of intermediate representations or perform some kinds of

optimizations on a speci�c IR level or both.

2.1 Overview of the IMPACT Parser

In the IMPACT compiler, all the modules invoked before Lcode IR is generated can be

treated as the frontend modules. A C program, after being processed by the C preproces-

sor, is fed into an ANSI C parser called Chsemansi. It is a LALR(1)-driven parser generated

by YACC. Besides parsing, it also renames static variables and inserts tags for tagless struc-

tures/unions/enumerations (referred to as structures collectively hereafter). Tags are the names

of structures, like s1 in struct s1 { int i; }. A FORTRAN program is �rst translated by

F2C [12] into C code. However, F2C linearizes all arrays during translation. But with en-

hancement made by the IMPACT compiler group, F2C can insert delinearization information

which is later translated into Pcode pragmas or directives by a PERL script called Chpp [13].

These pragmas serve an important role in the array dependence analysis performed later [13].

From that point on a FORTRAN program follows the same path as a regular C program. The
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.i

Chsemansi

.c1

Chtrans

.pc

.c .f

.c

Chpp

F2C

Translate Fortran programs into C.

ANSI C parser. Also renames static

inserts delinearization information.

No transformations are applied.

Perl script. Calls the C preprocessor and

Bridge between the .c1 and .pc formats.

variables and inserts tags for structures.

Figure 2.1 Overview of the IMPACT parsing stage.
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output of Chsemansi is processed by Chtrans [14] to generate the Pcode IR. Figure 2.1 shows

the executables used and intermediate �les generated in the parsing stage of the frontend.

2.1.1 Static variables renaming

According to the C language speci�cation [15], an external static variable is only accessible

within the �le in which it is declared. An internal static variable, in addition to private access

by its associated function, remains alive even when the corresponding function exits. The next

invocation of that function can retrieve the content of the static variable produced during the

previous invocation.

In order to correctly preserve the features of static variables, we �rst uniquely name each

static variable. Suppose a static variable var is de�ned in filename.c. After being renamed

by Chsemansi the format of its new name is CHST_filenamei_n_var, where

� CHST is acronym for CHsemansi renamed STatic variables

� filenamei is the respective �le where the variable is de�ned. Originally the �lename is

�lename.c, but after preprocessing the extension name is changed to .i, and with the dot

suppressed it �nally becomes �lenamei. If there are no source �les with the same �lename,

this guarantees the uniqueness of the new name across �les.

� n is an ascending sequence number incremented whenever a static variable is de�ned.

This guarantees the uniqueness of the new name within the same �le.

� var is the original name of the variable. This �eld helps the compiler developers debug

their code. The future IMPACT debugger can retrieve the original variable name by this

�eld.
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int i;

static int j;

int foo1()

{

static int i;

static int j;

}

(a)

int i;

int CHST_statici_0_j;

int CHST_statici_1_i;

int CHST_statici_2_j;

int foo1 ()

{

}

(b)

Figure 2.2 Renaming static variables: (a)original code, (b)after renaming.

� '_' is used as a separator. Also, all the non-alpha-numerical characters in the original

�lename are replaced by '_'.

Additionally, since internal static variables stay alive as long as the program is alive, Pcode

must allocate them in the data segment like global variables, instead of in the activation record.

Figure 2.2 shows a simple example called static.c of how Chsemansi and Pcode handle static

variables. The three static variables in the original code, two inside function foo1 and one

declared outside foo1, are renamed and declared globally.

2.1.2 Tag insertion

In many instances structures are used as user-created data types. In typedef declarations,

the tag name for the structure is often not speci�ed by the programmer. But later in the the

compiler all the user-de�ned types need to be reduced to either generic data types or aggregate

data types based on generic types, which requires each aggregate data type have a tag name.

Therefore Chsemansi inserts a compiler-generated tag for each tagless structure. The naming

convention for an inserted tag is CH_filename_line_column, where
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typedef struct {

int x;

int y;

} coordinate;

coordinate p1, p2;

(a)

struct CH_structi_1_16 {

int x;

int y;

};

struct CH_structi_1_16 p1;

struct CH_structi_1_16 p2;

(b)

Figure 2.3 Tag insertion: (a) original code, (b) after insertion.

� CH designates that this name was created by CHsemansi.

� filename is the respective �le where the structure is encountered.

� line is the line number in the above �le where the structure is declared.

� column is the column number at the above line where the structure is declared.

The reason for choosing the line number and column number instead of an ascending se-

quence number is that structures are often declared in the header �les and then included by

many other source �les. We do not want to create redundant copies of the same structure

declaration simply because they are included by di�erent �les. In that case two objects of the

same type could be mistakenly treated as of di�erent types. This tagging approach has been

proven to be viable through all the SPEC benchmarks and other test programs. Figure 2.3

shows how the IMPACT frontend handles tagless structures. In this example there are one

user-de�ned type coordinate and two instances p1 and p2 of that type. Pcode inserts a tag

for the coordinate structure and uses the tag to declare p1 and p2. The �lename is assumed

to be struct.c.
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2.2 Overview of the Pcode Modules

Pcode is the high-level intermediate representation in the IMPACT compiler. Pcode carries

source-level information and performs high-level transformations. The following sections will

discuss Pcode IR and activities performed in the Pcode environment.

2.2.1 Pcode intermediate representation

The external �le representation of the Pcode IR looks like the LISP [16] language because

the basic elements in Pcode are atoms and parentheses. All the constructs, operators, constants

and variables in C are assigned corresponding atom names. Internally Pcode rebuilds the C

program structures from these lists. As in C, the �rst level constructors include type de�nitions,

global variable declarations, structure declarations, and function de�nitions. Within function

de�nitions there are local declaration and statement sections, and expressions are connected

within statements.

Pcode statements are represented very closely to their C counterparts. For example, an

if statement has an expression �eld pointing to the conditional expression, as well as two

statement �elds pointing to the true-part and false-part respectively. All the three iterative

statements, for-loops, while-loops and do-loops, are also preserved as in C code with the con-

dition expression, optional initialization and iterative expressions, as well as the loop body

�elds. Later they are 
attened and represented as basic blocks connected by if statements

in the Hcode IR. Unlike statements, expression representations are di�erent than in C code

because pre�x notation is used instead of in�x notation. For example, "3 + 5" is represented

as "+ 3 5". Pre�x representation has the advantage over in�x representation of removing the

need for parentheses to determine the precedences of operators. It also facilitates the construc-
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tion of the abstract-syntax tree (AST) [17], by which expressions are linked together as nodes.

Most of the transformations performed in Pcode operate on the abstract-syntax tree.

2.2.2 Local variable renaming

In C, any identi�er should be unique within one scope, while the same identi�er name can be

reused in di�erent scopes. A scope could be the global variable scope or a compound statement

scope. Pcode observes this by reserving 0 for the global scope and assigning a unique ascending

number to each compound statement. So if the same identi�er i is used as a global variable and

local variables in two di�erent compound statements, the local ones will be distinguished by

appending the unique scope number after the original name to become P_i___n and P_i___m

respectively, where n and m are the associated scope numbers for the surrounding compound

statements.

2.2.3 Semantic Analysis

Chsemansi, the parser of the IMPACT compiler, only performs syntax checking which en-

sures that the program complies with the language grammar. To ensure that the program

components meaningfully �t together, the compiler needs to perform semantic analysis [17].

For example, it makes no sense to dereference a pointer which is the sum of a function pointer

and an integer pointer, though it is syntactically correct. Therefore, a lot of e�ort is put into

Pcode to perform semantic analysis.

On the other hand, the compiler should allow certain kinds of type mixture. For example,

with type coercions inserted by the compiler, it is legal to add a 
oating-point number to an

integer number, Sometimes a compiler fails to produce correct result because it fails to insert

the necessary type coercions, while another time the compiler fails to produce fast code because

10



main()

{

char c;

short s;

c = -1;

s = c - 255;

printf("output=%d\n", s);

}

(a)

main()

{

char c;

short s;

c = -1;

s = (short)((int)c - 255);

printf("output=%d\n", s);

}

%output=-256

(b)

main()

{

char c;

short s;

c = -1;

s = (short)(c - (char)255);

printf("output=%d\n", s);

}

%output=0

(c)

Figure 2.4 Type coercions in expressions: (a) original code, (b) correct type conversion, (c)
incorrect type conversion.

it inserts redundant type coercions. Pcode inserts minimal type casts to achieve the fast and

correct result. For example, the code in Figure 2.4(a) subtracts an integer constant from a

character variable and assigns the result to a short integer variable. The proper promotions

should �rst cast the character to an integer, then perform the subtraction, and then cast the

result to a short integer before assigning it to the destination variable. Figure 2.4(b) shows the

11



wrong procedure, which casts the integer constant to a character �rst. This yields the wrong

answer 0, instead of the correct answer -256.
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CHAPTER 3

PREREQUISITES FOR PINLINE

Before invoking Pinline, the source program needs to undergo three preliminary operations,

which are statement restructuring, expression 
attening and �le splitting. Statement restruc-

turing is employed on three kinds of C statements, expression-statements, if-statements and

loop-statements, to facilitate expression 
attening. After statement restructuring, expression


attening reduces the height of the abstract-syntax trees in order to increase the number of

inlinable functions. Finally, �le splitting decomposes the source program into one function per

�le so that callee functions can be conveniently extracted. In this chapter, the general idea of

expression 
attening will be examined �rst, followed by the explanation why some statements

need to be restructured, then a detailed description about �le splitting is given.

3.1 Expression Flattening

Pinline is a high-level source-to-source inliner. Since Pcode is very similar to the original C

code, expanding a �rst-level function call site is trivial. Here "�rst-level" means an expression-

statement which consists of either a single function call or an assignment expression with a

function call as the right-hand-side operand. The inlining procedures of �rst-level call sites are:

� If the function call composes the entire statement, insert expressions that assign the actual

parameters to the corresponding formal parameters of the callee function. Then add a

label to the end of the callee function and replace every return statement in the callee

DRAFT (January 8, 1997 22 : 58) 13 DRAFT



void my_printf(char *str)

{

printf("%s", str);

}

main()

{

my_printf("Hello\n");

return;

}

(a)

main ()

{

{

char *str;

str = "Hello\n";

printf("%s",str);

goto P_my_printf_L___3;

}

P_my_printf_L___3:

return;

}

(b)

Figure 3.1 Inlining a simple function call: (a) original code, (b) after inlining.

function with a goto statement which goes to the newly inserted label. Then replace the

call expression with the body of the callee function to �nish inlining. Figure 3.1 shows

the stated transformation.

� If the call site is on the right-hand side of an assignment expression, the only di�erence

from the transformation of a plain function call is to replace every return statement with

an assignment expression which assigns the return value to the left-hand-side variable.

Figure 3.2 shows this transformation.

However, not every call site can be handled by the above procedures because the C grammar

allows a function call to occur at any place wherever an expression is allowed. For example,

function calls could be used directly in an expression like "i = foo1() + foo2()". In this case

to expand the callee functions is not as trivial as in the examples of Figure 3.1 and 3.2 since

14



square(int i)

{

return i*i;

}

main()

{

int j, k;

j = 10;

k = square(j);

return;

}

(a)

main ()

{

int j;

int k;

j = 10;

{

int i;

i = j;

k = i * i;

goto P_square_L___3;

}

P_square_L___3:

return;

}

(b)

Figure 3.2 Inlining a function call in an assignment expression: (a) original code, (b) after
inlining.

the C grammar does not allow compound statements to appear at the places where expressions

are expected.

In order to inline foo1() and foo2(), we need to transform the above code into

temp1 = foo1();

temp2 = foo2();

i = temp1 + temp2;

Now since both foo1() and foo2() appear as �rst-level function calls, they can be handled by

the inliner very easily. This transformation is called Expression Flattening and will be explained

in Section 3.1.1.
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3.1.1 Flattening methodology

As stated in Section 2.2.1, the Pcode IR is maintained hierarchically with the abstract-

syntax tree format. Pcode de�nes three data structures, FuncDcl, Stmt, and Expr, to represent

functions, statements, and expressions, respectively. The AST representation is used in the

expression level. Each function has a pointer which points to the �rst statement in the function

body. All statements within the same function are linked via the predecessor and successor

pointers. Similarly, expressions are linked under their parent statements. Each Expr object is

treated as a node in the AST tree. Fields in Expr related to expression 
attening are explained

as below:

� opcode: Opcode is an integer �eld which records the prede�ned opcode associated with

each operator. By this �eld the operation of a node can be identi�ed.

� operand and sibling: Both the operand and the sibling �elds are pointers which point

to other expression nodes. For operators without operands, like variable names and scalar

numbers, the operand �eld is set as NULL. For unary operators, like negation, the operand

�eld is set to the only operand of the operator. For operators with more than one operand,

the operand �eld of the operator is set to the �rst operand, while the sibling pointer of

the �rst operand is set to the second operand. Similarly, if the operator has a third

operand, it is linked to the sibling �eld of the second operand. That is, all the operands

of a operator are chained together via their sibling pointers.

� next: For expressions separated by commas like "a, b, c", they are connected as a

chain via the next �elds of a and b.

Figure 3.3 shows the AST of expression a+b, c*d.
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 OP_add

OP_var
     (a)      (d)

operand next sibling

 OP_mul

OP_var
     (b)

OP_var
     (c)

OP_var

Figure 3.3 Abstract-syntax tree representation of the expression "a+b, c*d".

To 
atten an expression, Pcode starts from the �rst expression in the �rst statement of a

function. For each expression AST, all the internal nodes are visited to see if they need to be

marked as BREAK. When an internal node is marked as BREAK, it means that the subtree

rooted at that node will be replaced by a temporary variable to which the evaluation result of the

original subtree is assigned. A new statement which evaluates the subexpression and assigns its

result to the temporary variable will be created and inserted between the subexpression's parent

statement and the predecessor statement of the parent. The algorithm used to analyze the node

attributes is presented in Figure 3.4 and the expression foo1(foo2(), v1), v2++, foo3() will

be used to explain the algorithm.

3.1.1.1 Assign sequence number

In our example, foo2() and v1 are foo1()'s operands while v2++ and foo3() are the

comma-separated next expressions following foo1(). According to the C language speci�ca-
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Mark Expression Attribute

input: an abstract-syntax tree
output: the same tree with evaluation attrubutes marked on every node
f

1. Mark explicit attributes.
1.1 If the root node is one of the following operators, =, ++, --, +=, -=,

*=, /=, %=, >>=, <<=, &=, |=, ^=, or if it is a function, mark the status
of the root node with F SIDE EFFECT, which is de�ned as constant
1.

1.2 If the root node is one of the following operators, &&, ||, ?: (conditional
expression), or a function call, mark the status of the root node with both
F BREAK and F CONTAIN BREAK, which are de�ned as constant
2 and 4, respectively.

1.3 If the root node is a function call, and if it contains arguments, mark each
argument node with F ARGUMENT, which is constant 8. The �rst
argument node should appear as the second operand of the root and the
rest are connected by their next pointers because they are spearated by
commas.

2. Recursively call Mark Expression Attribute on all the operand and next

nodes.
g

Flatten Expression

input: an abstract-syntax tree with evaluation attributes
output: 
attened expression AST with additional statements
f

1. Call Flatten Expression recursively on every operand node.
2. If the current node is marked as BREAK, create a temporary variable to

replace the current node. Also, create a new statement which evaluates
the subtree rooted at the current node and assigns its result to the
temporary variable. Place the new statement right before the original
statement.

3. Call Flatten Expression on the next node.
g

Figure 3.4 Flattening algorithm.
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tion [15], all the operands of an operator are evaluated �rst, then the operator itself, followed

by the comma-separated next expression. The evaluation order of a function's arguments is

not speci�ed and the compiler is free to choose its own implementation. Currently in IMPACT

arguments are evaluated from left to right as the appear in the function's declaration. On the

other hand, the evaluation order of comma-separated expressions is speci�ed as from left to

right. Therefore when the node corresponding to foo1() is visited, 1 is assigned to foo2, 2 is

assigned to v1, and 3 is assigned to v2++, respectively. In addition, another 1 instead of 4 is

assigned to foo3() since it is linked as the next expression to v2++. The resulting evaluation

order of the expression rooted at foo1() is

foo2() -> v1 -> foo1() -> v2++ -> foo3()

3.1.1.2 Mark node attributes

Before marking the current node, Mark Expression Attribute will be recursively called

to mark its operand and next nodes �rst. Step 3 of Mark Expression Attribute will mark

foo1(), foo2() and foo3() as BREAK since they are function call operators. If we skip step 4

inMark Expression Attribute and apply Flatten Expression directly, the following code

will be resulted:

temp1 = foo2();

temp2 = foo1(temp1, v1);

temp3 = foo3();

temp2, v2++, temp3;

However this transformation actually changes the relative evaluation order, because foo3() is

entered before v2 is incremented. Assume that v2 is a global variable whose value is initialized
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as 0 and foo3() references v2. To execute the program correctly, foo3() should see 1 instead

of 0 in v2. To guarantee that, step 4 in Mark Expression Attribute needs to be executed.

What it does is simply to propagate BREAK forward along the chain of operand and next nodes

based on their sequence numbers. In this example v2++ will be marked as BREAK because its

next node, foo3(), is a function call. The correct transformation is

temp1 = foo2();

temp2 = foo1(temp1, v1);

temp3 = v2++;

temp4 = foo3();

temp2, temp3, temp4;

3.2 Statements Restructuring

The expression 
attening method presented in Section 3.1 only works for straight-line code.

That is, it assumes that there is no change of control-
ow between adjacent expressions and

statements. However, there are several cases in the C-language constructs which contain im-

plicit change of control-
ow. These constructs can be divided into two categories. The �rst

category contains boolean expressions and conditional expressions where whether to evaluate

an expression or not depends on the result of the proceeding expressions in the same statement.

The other category contains loop-constructs where adjacent statements and expressions may be

executed di�erent times. The ways to restructure these constructs so that the method described

in Section 3.1 becomes applicable are described in the following sections.

3.2.1 Expression-statements
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Expression Original code Restructured code

Logical-AND expression result = expr1 && expr2; result = 0;

if (expr1)

result = expr2 != 0;

Logical-OR expression result = expr1 || expr2; result = 1;

if (expr1 == 0)

result = expr2 != 0;

Conditional-expression result = condition ? if (condition)

expr1 : expr2; result = expr1;

else

result = expr2;

Table 3.1 Code restructuring for removing intra-statement control-
ow dependences.

In C, constructs like boolean expressions and conditional expressions have intra-statement

control-
ow dependences. Table 3.1 shows methods to restructure the code so that these intra-

statement dependences are turned into inter-statement dependences.

3.2.1.1 Boolean expressions

For boolean expressions, the dependence exists since expressions are evaluated in the short-

circuit style [17]. That is, the evaluation stops as soon as the result is known. In such case

we cannot blindly pull expressions out of their original locations otherwise the original intra-

expression control-
ow dependence will be broken.

For a logical-AND expression as shown in Table 3.1, expr1 is evaluated �rst. If its result

is FALSE, expr2 is not evaluated and FALSE is assigned to result. The restructured code still

obeys this rule while the control-
ow dependence is now explicit. The situation for a logical-OR

expression is similar to that of a logical-AND expression.
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3.2.1.2 Conditional expressions

For a conditional expression, depending on the result of condition, as shown in Table 3.1,

only one of the two possibles destination expressions, expr1 or expr2, will be evaluated. If

we directly apply the method presented in Section 3.1, both destination expressions can be

executed simultaneously because that method will not enforce the control-
ow dependence.

The proposed transformation makes the dependence explicit.

3.2.2 If-statements

A simple if-statement with boolean expressions as the predicate actually contains multiple

branches because short-circuit evaluation is used for the predicate. These hidden branches need

to be transformed into explicit branches so that more accurate control-
ow information can be

provided to the backend of the compiler to perform optimizations like superblock formation,

hyperblock formation and static branch prediction. Figure 3.5 (a) shows a simple if statement

and its associated control-
ow graph with implicit branches is shown in Figure 3.5 (b).

To expose all the branches embedded in the boolean expressions, the method shown in

Section 3.2.1 can be applied here, too. The resulting code is shown in Figure 3.5 (c). However,

the potential problem of this transformation is the live range of those temporary variables. For

example, temp1 is initialized with 0 and remains live across the evaluations of expr1, expr2

and expr3. If a boolean expression is the conjunction of n expressions, n-1 temporary variables

will be generated, which impose great pressure to the register allocator. Therefore a revised

transformation is needed.

Figure 3.5 (d) shows a better transformation which is from the observation that since the

results of expressions in the predicate are only used to change the 
ow of control, there is
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if ( expr1 && expr2 && expr3 ) {

true_block;

}

else {

false_block;

}

(a)

temp1 = 0;

temp2 = 0;

if ( expr1 )

temp2 = expr2 != 0;

if ( temp2 )

temp1 = expr3 != 0;

if ( temp1 ) {

true_block;

}

else {

false_block;

}

(c)

expr1

expr2

expr3

false_block true_block

TF

F

F T

T

(b)

if ( expr1 )

if ( expr2 )

if ( expr3 )

goto true_label;

else

goto false_label;

else

goto false_label;

else

goto false_label;

{

true_label:

true_block;

goto out_label;

}

{

false_label:

false_block;

}

out_label:;

(d)

Figure 3.5 Restructuring if-statements: (a) original code, (b) implicit branches, (c) ine�cient
restructuring, (d) better restructuring.
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no need to create temporary variables to hold temporary values. Consequently, the register

pressure is not increased because of restructuring the statement.

3.2.3 Loop-statements

Flattening expressions in loops is also di�erent than 
attening other expressions because

depending on the context, a single occurrence of an expression in the loop could be executed

multiple times. Therefore the position to place the 
attened expression is critical. Table 3.2

shows the templates to restructure for-loops, while-loops and do-loops. Each of them will be

explained in the following sections.

3.2.3.1 For-loops

For the for-loop example shown in Table 3.2, if initial_exprs, conditional_exprs and

iterative_exprs contain function calls, we cannot perform inline expansions within the paren-

theses because compound statements are not allowed there. If we do not restructure the for-

loop but directly apply the 
attening algorithm stated in Section 3.1, these expressions will

be evaluated outside the loop and done so only once. To execute the loop correctly, the

conditional_exprs should be executed right before entering the �rst iteration to initialize

the iterative conditions. The conditional_exprs must be executed once at the beginning of

every iteration because they are executed to determine if the loop body will be entered or not.

Similarly, the iterative_exprs should be executed once at the end of every iteration to update

the iterative conditions.

In order to obey the for-loop semantics while enable the possibility of function inlining, the

initial_exprs are moved right outside of the for-loop, the conditional_exprs are moved into

the very beginning of the loop body as the predicate of an if-statement which can terminate
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Loop Original code Restructured code

For-loop for (initial_exprs; initial_exprs;

conditionl_exprs; for (;;)

iterative_exprs) {

{ if (!conditional_exprs) break;

: :

if (...) continue; if (...) goto new_continue;

: :

} new_continue:

iterative_exprs;

}

While-loop while (conditional_exprs) while (1)

{ {

: if (!conditional_exprs) break;

} :

}

Do-loop do do

{ {

: :

if (...) continue; if (...) goto new_continue;

: :

} while (conditional_exprs); new_continue:

if (!conditional_expr) break;

} while (1)

Table 3.2 Code restructuring for loop-statements.

the iteration of the for-loop, and the iterative_exprs are moved into the very bottom of the

loop body. If there are continue statements in the loop body, they need to be changed into

goto statements otherwise the iterative_exprs will not get executed because now they are

not in the for-loop parentheses. To do this we need to attach a label to the iterative_exprs

so that they are directly accessible.
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3.2.3.2 While-loops

A while-loop is easier to restructure than a for-loop since it contains the iterative_exprs

only. We perform similar transformation by moving the conditional_expressions into the

beginning of the loop body and leaving a "1" in the original place.

3.2.3.3 Do-loops

A do-loop is di�erent from a while-loop in that the conditional_exprs are evaluated at

the end of each iteration. To restructure a do-loop, we move the conditional_exprs to the

end of loop body as the predicate of an if-statement which can terminate the loop. The original

place of the conditional_exprs is replaced by a "1". Also, all the continue statements are

transformed into goto statements otherwise the conditional_exprs are not reached. We also

need to attach a new label to the if-statement.

3.2.4 Expression 
attening results

Table 3.3 shows the impact of code 
attening on the number of expandable call sites for

the SPEC INT benchmarks. We can see that without code 
attening, only 59.3% of the total

function calls can be inlined at the Pcode level, which does not satisfy the need to achieve high

ILP. After 
attening, all the function calls can be inlined at the Pcode level.

3.3 File Splitting

For C programs, a single �le usually contains more than one function. Because Pinline is

a whole-program inliner, it is possible that we will want to inline function fooA1 in fileA.c

into function fooB1 in fileB.c. In this case the compiler must read fileB.c, locate function
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Benchmarks # of expandable call sites # of total call sites percent

008.espresso 1706 2693 63.3%

022.li 923 1271 72.6%

023.eqntott 271 369 73.4%

026.compress 83 130 63.8%

072.sc 788 1458 54.0%

085.cc1 5067 8415 60.2%

099.go 1683 2085 80.7%

124.m88ksim 980 1499 65.4%

126.gcc 11701 19820 59.0%

129.compress 53 64 82.8%

130.li 923 1271 72.6%

132.ijpeg 884 1654 53.4%

134.perl 2326 4372 53.2%

147.vortex 4411 8536 51.7%

mean 64.7%

Table 3.3 Distribution of expandable and total call sites without code 
attening.

fooB1, locate the function call in fooB1 to fooA1, read fileA.c, locate function fooA1, perform

inline expansion, then write back fooB.c. Additionally, the most di�cult task is to include

all variables and types referenced by fooA1 in fileA.c into fileB.c. This is doable, but very

complicated.

To address the above di�culty, we split the program into multiple �les with a tool called

Psplit. After splitting, each �le contains only one function. If all the static variables and

duplicated structure tags are properly renamed, they can be exposed to all the functions within

the program, even though originally they are not from the same �le. Section 3.3.1 presents the

general idea of Psplit and Section 3.3.2 investigates the method of renaming structures.
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3.3.1 Overview of program splitting

In the C language, the names of global variables are required to be unique within the

program. Also, the names of static variables are made unique by Chsemansi. If structure

names are also unique, we can safely make all the global and static variables visible to all the

functions. That is, we split the program by gathering all variable de�nitions into a �le called

data.pcs, all variable declarations into a �le called extern.pch, all structure declarations into a

�le called struct.pch. Then we decompose the program into one function per �le, where each

�le contains no global data de�nitions. All the global data information is made visible to the

functions by including extern.pch. Figure 3.6 gives a clear look at the dependences between

these �les. Codes will be generated for �les ending with .pcs. Files ending with .pch are header

�les and therefore no code will be generated for them.

3.3.2 Structure renaming

The C language grammar only requires structure names to be unique within a single �le.

Therefore, de�ning structures with the same tag name but di�erent �elds is allowed across �les.

For example, one can de�ne a structure called S in fileA.c to have two integers and rede�ne

S to have three integers in fileB.c. However, this introduces some problems into the program

splitting algorithm.

Psplit renames structures by maintaining a table which keeps track of all de�ned structures.

Whenever a new structure is encountered, its name is checked against the structures in the table.

If a structure with the same tag name is found in the table, their �elds are checked. If any

di�erence is found, a new tag name is created for the new structure and all references in the

current �le to that structure will be redirected to use the new name.
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extern struct s1 v1;
extern int v2;
extern struct s2 v3;
extern int v4;

#include "struct.pch" #include "struct.pch"

int v2;
struct s2 v3;
int v4;

struct s1 v1;

After File Splitting

f_0.pcs f_1.pcs

struct.pch

f_2.pcs f_3.pcs

data.pcsextern.pch

Before File Splitting

fileB.cfileA.c

} v1;

foo1()

{

   :
}

foo2()
{

struct s1 {
  int i;

  int i;

};

}
   :

foo3()
{
   :
}

struct s2 {
  int j;
} v3;

{

struct s1 {

};
  int j;
struct s2 {

}
   :

   :

int v2;

#include "extern.pch"

int v4;

{
foo1()

}
   :

#include "extern.pch"

{

#include "extern.pch"
foo4()
#include "extern.pch"

foo2()

}
   :
{
foo3()

}

}

   :

foo4()

{

Figure 3.6 Overview of program splitting.
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CHAPTER 4

IMPLEMENTATION OF PINLINE

Pinline is a pro�le-driven automatic source-to-source inliner. It takes annotated Pcode �les

with pro�le weights then performs function inlining. According to Table 3.3, the program

126.gcc contains as many as nearly 20,000 function call sites. It is impossible to inline all of

them because the �nal code size expansion would be catastrophic. To bene�t from function

inlining, we would like to inline frequently executed function calls as well as callees with small

body size because inlining a rarely called function will not improve performance too much,

while inlining a huge function could potentially pollute the I-cache. Section 4.1 explains how

Pinline works step-by-step at a high level. Meanings of parameters used to tune the outcome

of Pinline are explained in Section 4.2. Finally, an example is given in Section 4.3 to illustrate

a variety of function inlining patterns.

4.1 Overview

Pinline assumes that the source program has been 
attened, pro�led, and split. Also, the

program has been analyzed by PIP, which represents for Pcode InterProcedural analyzer [11].

This tool resolves function pointers and attaches a list of possible callee names to each function-

pointer call site. Figure 4.1 shows the steps that the program should have gone through before

it reaches Pinline. The desired consequence is that Pinline simply needs to inline �rst-level

function calls. Pinline processes the program in multiple steps as stated below:
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Pcode( flatten )

Profile

PIP ( build callgraph )

Psplit

.pcs .pcs .pcs

Pcode( insert probes )

.hc

.pc

.pcf

.pcf.p

.pcg

Hcode

cc *.hc.c

info

.hc.c

Pcode( merge profile info )

.pcf

Figure 4.1 Overview of prerequisites for Pinline.
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(1) Gather function-�le mapping information. Since the source program has gone

through Psplit, Pinline needs information to locate functions from the split �les. The

format of the mapping information is:

(map 1 (fileA.pc foo1) to (f_0.pcs foo1))

where map is the keyword, 1 means that the function can be inlined, fileA.pc is

the original �le which contains the function foo1, and f_0.pcs is the new �le which

contains the same function foo1.

(2) Mark function calls. Because the program has been pro�led, all function calls

have associated weights. Pinline searches the whole program for important function

calls. These function calls must meet all of the following criteria:

{ If the callee function contains more than 3 operations, the execution frequency

of the call site needs to be higher than min_expansion_weight, a parameter of

Pinline which will be explained in the next section. For small functions, as long

as they are ever called, they are eligible for being inlined.

{ The body of the callee must be available in Pcode format. This means that

Pinline cannot inline library function calls.

{ The callee function must not use a variable-length argument list.

Those eligible function call sites will each be assigned a unique ID number for later

identi�cation. Together with the ID number, the call site's caller and callee names

and its weight are grouped and inserted into a priority heap. Their usage will be

clear after the example shown in Section 4.3. In order to favor small and frequently

called functions, the key of the priority heap is de�ned as: Wp
S
, where W is the call

site weight and S is the size of the callee's body.
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(3) Inline functions. Pinline continues to extract the highest priority function call out

of the heap and tries to inline the callee until the heap is empty. If the body size

or stack size of the resulting function after expansion exceeds either one of the two

parameters, max_function_size and max_sf_size_limit, the callee function will

not get inlined.

4.2 Parameters

Pinline is controlled by a set of parameters. Important ones are explained as follows:

� Print inline stats - setting this parameter to yes enables Pinline to generate a log

�le which records information pertaining to each function including the body and stack

size, the frequency that the function is called. Also, the �le keeps track of every decision

Pinline made about to or not to inline a certain function.

� max sf size limit - parameter speci�es the maximum stack frame size a function can

reach after inlining. The size is measured by the number of bytes allocated in the function.

� max expansion ratio - parameter controls the maximum ratio of program size expan-

sion after inlining.

� max function size - parameter controls the upper bound on the size that one function

can reach. The size is measured by the number of operations contained in the function.

� min expansion weight - parameter speci�es the lower bound on function call site

frequencies. Function calls with lower weight than this will not be expanded.
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Figure 4.2 Sample call graph.

� inline function pointers - setting this parameter to yes enables Pinline to expand

function pointer call sites. The detail will be explained in Section 4.3.3.

4.3 Call site Samples

The most important task for Pinline is to make intelligent and correct inline decisions. As

stated before, these decisions are based on the call site frequency and the callee size. Therefore

Pinline must ensure that the frequencies are correctly distributed and the sizes are correctly

accumulated during inlining. Figure 4.2 shows a sample call graph with �ve kinds of function

calls. All �ve cases will be explained later.

In this call graph, there are six functions A, B, C, D, E, F with �rst instruction execution

frequencies as Wa, Wb, Wc, Wd, We, Wf, respectively. In addition, there are seven call sites 1,

2, 3, 4, 5, 6, 7 with frequenciesW1, W2, W3, W4, W5, W6, W7. Since it is a graph, functions
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can be referred to as nodes and call sites can be referred to as arcs. The following formulas

hold for these nodes and arcs:

Wa �
X

weights of incoming arcs to A

Wb �
X

weights of incoming arcs to B

Wc � W1 +W2

Wd � W3

We � W4

Wf � W5 +W6

Notice that the relation is "�" instead "=". It is because the existence of the function pointer

arc 7 since the target of arc 7 can not be determined by the compiler. In real programs the

relation for most of the nodes is "=".

4.3.1 Normal functions

In this subsection, the mechanism for expanding non-recursive and non-pointer functions

are examined. The general rule for splitting weights over normal function calls is that if an arc

A with weight WA to node N with weight WN is expanded, WA

WN
of N is moved to the caller.

That is, the weights of all the new instructions brought to the caller are WA

WN
out of their original

weights and the weights of all the instructions in N become 1� WA

WN
out of their original weights.

And the caller's new body size is the sum of its old size plus the body size of the callee. So is

the stack size calculated.

In the sample call graph, arc 4 is the simplest case because E is a leaf node and arc 4 is the

only incoming arc to E. After inlining, the function call to E in D is replaced by the body of
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E and node E's remaining non-inlined portion is zero if E has never been entered from arc 7.

Figure 4.3 (a) shows the resulting call graph.

Inlining D into C via arc 3 totally absorbs D since C is the only caller to D. The di�erence

between arc 3 and 4 is that now call sites 4 and 5 are moved into C, because C now contains

the body of D. Figure 4.3 (b) shows the call graph after inlining arc 3. It is also assumed that

C has never been called via arc7, otherwise node D would remain in the call graph with a node

weight but without incoming arcs.

For arc 1 and 2, since C is the callee of more than one call site, inlining either arc 1 or arc

2 only cannot totally absorb C. Figure 4.3 (c) shows the distributions of C when only arc 1 is

inlined. Notice that the weight of node C now becomes W2

Wc
Wc, which is W2. The weight of the

new call to D in A is W1

Wc
W3, and the weight of the original call to D in C becomes Wc�W1

Wc
W3.

Figure 4.3 (d) shows the case after both arcs 1 and 2 are inlined, assuming arc 7 does not reach

node C.

4.3.2 Recursive functions

In this example node F is a self-recursive function which is invoked via D. When arc 5 is

inlined, there is no way to totally absorb F because a new arc to F is introduced in D. The

original weight of F is distributed such that W5 is moved into D and Wf �W6 is left in F. Also,

the weight of the new arc 6' in D is W5

Wf
W6 and the new weight of the old arc 6 is

Wf�W5

Wf
W6.

Figure 4.4 shows the resulting call graph.

Inlining a self-recursive function call like arc 6 is a total di�erent story because the caller

and the callee are the same function. Inlining this arc cannot totally eliminate the function

call but it will reduce function call overheads and increase basic block sizes. The distribution
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W1*W3
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     Wc
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W7

W1*W3 W2*W3
      Wc       Wc(Wc-W1)*W3

Figure 4.3 Call graphs after: (a) inlining arc 4, (b) inlining arc 3, (c) inlining arc 1, (d)
inlining both arc 1 and 2.
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Figure 4.4 Call graph after inlining arc 5.

of weight when inlining self-recursive functions is very di�erent than inlining normal functions

in that the caller and callee share the same copy of the body. Unlike inlining normal functions

where a portion of the overall weight is dealt out to the caller, the distribution of weight is

rearranged within the expanded function.

If the �rst instruction in F is I1, the weight of I1 should be Wf . After inlining, there are

two instances of I1, where I1' is treated as the I1 in the caller while I1" is treated as the I1

from the expanded callee. The following equations should hold for these I1's:

Wf = WI10 +WI1"

WI1" =
W6

Wf

WI10

W60 =
W6

Wf

WI1"
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Figure 4.5 Call graph after inlining arc 6.

By solving the equations we get

WI10 =
W 2

f

Wf +W6

W60 =
W 2

6

Wf +W6

Figure 4.5 illustrates the distribution of weights in expanded self-recursive functions.

4.3.3 Function pointers

While the existence of function pointers adds 
exibility to the programmers, it also adds

load the programmers of compilers. That is because the actual callee of a function pointer is
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not known for sure until run-time. With the help of Pcode interprocedural analysis [11], a list

of pragmas for possible callee names is appended to the function pointer call. Then Pinline

sorts the list by putting the most frequently called node �rst, excluding callees with di�erent

numbers of parameters. Also, a node whose �rst-instruction weight equal to the sum of all

incoming arcs' weights is not considered as a possible candidate. Then if the pointer is �nally

resolved to be only one possible name, say, foo1, the function pointer call (*fp_call)() is

transformed into

if (fp_call == foo1) {

foo1();

}

else

(*fp_call)();

and depending on the size of foo1() it could further be inlined. Notice that the original function

pointer call is put as the else part of the if statement as a safe guard. The original weight of

the call is evenly spread over the if statement. For example, if the original weight of the call is

W , then the if statement itself will have weight W , the true-part and the false-part will have

weight W
2
. However, after foo1() gets inlined into the true-part, W

2
will not be deducted from

the weight of node foo1() because we are not sure if foo1() is actually the callee. Leaving

more weight with a node does not compromise the priority heap, but negative weight does.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, experimental results from applying Pinline to a suite of integer benchmarks

consisting of SPEC92, SPEC95 and common Unix benchmarks are studied. The speedup

resulted from performing function inlining on 
oating-point benchmarks is found to be negligible

because those benchmarks are computation-intensive and functions calls rarely occur in the

loops. Therefore 
oating-point benchmarks will not be discussed here. In the experiments, a

fully-uniform 8-issue processor with one branch unit is assumed. Based on this con�guration, the

impact from basicblock and superblock scheduling on three di�erent amounts of code expansion

ratios, 1.1, 1.25, and 1.5, are studied. The code size is measured by the number of operations

in the Pcode IR.

With basicblock scheduling, the speedup after function inlining, shown in Figure 5.1 (a),

mainly comes optimizations made possible after the removal of fences between the caller and

callee. Without these barriers more optimization opportunities for local optimizations are

created. Figure 5.2 shows a simple example. Originally, function switch_foo1() contains a

switch statement which prints out a string based on the actual parameter. After function

inlining, as shown in Figure 5.2(b), the value 20 can be propagated into the switch statement

and local optimization can get rid of the switch statement and generate succinct code as in

Figure 5.2(c). Besides the increased opportunities of traditional optimizations, the speedup

also results from the enlarged scope of the register allocator.
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Figure 5.1 Speedup on expanded code with: (a)basicblock scheduling, (b)superblock schedul-
ing.
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switch_foo1(int i)

{

switch (i) {

case 10 :

printf("10\n");

break;

case 20 :

printf("20\n");

break;

default :

printf("others\n");

break;

}

}

main()

{

switch_foo1(20);

}

(a)

main()

{

int i;

i = 20;

switch (i) {

case 10 :

printf("10\n");

break;

case 20 :

printf("20\n");

break;

default :

printf("others\n");

break;

}

}

(b)

main()

{

printf("20\n");

}

(c)

Figure 5.2 Optimizations made possible by function inlining: (a) original code, (b) code after
inline expansion, (c) code after inline expansion and local optimization.

Figure 5.1 (b) shows the performance improvement with superblock scheduling techniques.

If we compare Figure 5.1 (a) and Figure 5.1 (b), we can �nd that for those benchmarks with

obvious performance improvement in the basicblock case, the speedup is further boosted if

superblock scheduling is applied. This is resulted from the enriched freedom of the scheduler
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since the expanded code form multiple callees can coalesce into a superblock therefore more

independent instructions can be intermixed.

As for the amount of inlining, experimental results show that it is highly dependent on the

properties of individual benchmarks. Therefore one can use the provided parameters to tune

Pinline to get the desired results.

44



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis has described the necessary steps to implement a source-to-source automatic

inliner. Function call is a very important construct in the modern programming languages. It

helps the programmer to write modularized code. However, it imposes great challenge to the

compiler because a fence is placed between the caller and callee therefore important optimiza-

tion and scheduling opportunities are prevented. Given a piece of program, after performing

statement restructuring and expression 
attening, all the function calls can be exposed to the

inliner for code expansion. If a function pointer is resolved by PIP, Pinline can further inline

the possible callee.

After code expansion, aggressive ILP optimizations can produce signi�cant speedup on

some benchmarks. However, for most of them more potential optimization and scheduling

opportunities are still restricted by ambiguous memory dependences. Since the time and space

complexity of the the current memory disambiguation algorithm employed by IMPACT is of

O(n), where n is the number of memory access, the feasibility of this algorithm on expanded

code is limited. Therefore future work is needed to reduce the space and time requirements of

the algorithm so that it can be applicable on expanded code.
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