
1. INTRODUCTION.. 1
1.1 The AMD K5 Microprocessor.. 2
1.2 Notation... 3

2. OVERVIEW OF THE IMPACT C COMPILER .. 4
2.1 Overview of Compilation Process... 4
2.2 Introduction to Lcode... 7
2.3 Code Generation.. 11

3. SUPPORT FOR X86 INSTRUCTION FORMAT.. 15
3.1 Two-Operand Instructions... 15
3.2 Custom Copy Propagation .. 16
3.3 Separate Compare-Branch Instructions ... 18
3.4 Floating Point .. 19
3.5 Subset Registers .. 20

4. OPTIMIZATIONS FOR X86 ARCHITECTURE FEATURES.............................. 23
4.1 Complex Addressing Modes... 23
4.2 CISC Instructions.. 26
4.3 Elimination of Redundant Compare Instructions .. 28
4.4 Instruction Size Optimizations... 32

5. ADDITIONAL X86 OPTIMIZATIONS... 36
5.1 Load-Effective Address Instruction... 37
5.2 Constant Multiply Instructions .. 39
5.3 Bit Masking with Test Instruction ... 44
5.4 X86 Predication... 45
5.5 Zero-Extended Loads.. 48
5.6 Bit Field Handling ... 49
5.7 Pointer Post-Increment.. 49
5.8 Multiple Return Statements ... 50
5.9 Controlling Inappropriate Superscalar Optimizations.................................... 51
5.10 Register Saving Convention .. 52
5.11 The Seventh Register... 54
5.12 The Eighth Register... 57
5.13 Improved Function Entry.. 61
5.14 Built-in Compiler Functions.. 61

6. PERFORMANCE EVALUATION .. 65
7. CONCLUSIONS AND FUTURE WORK ... 71
REFERENCES ... 72

1

1. INTRODUCTION

Recent compiler research has provided insight into many sophisticated compilation

techniques for wide-issue superscalar RISC machines. However, the vast majority of

computers still use processors based on CISC instruction set architectures (such as the

x86) with limited register sets, complex addressing modes, and special-purpose

instructions. Many of the sophisticated compiler techniques which are effective, and even

necessary, for optimal performance on wide-issue RISC microprocessors exhaust the

limited number of x86 registers. In many cases, these aggressive optimizations cause

performance degradation. On the x86 architecture, superscalar optimizations must be

guided and controlled by register pressure heuristics, and peephole optimizations that

provide minor performance gains on wide-issue processors are significantly more

important.

This thesis describes the modification and optimization of the IMPACT compiler [1],

an aggressive superscalar RISC compiler, to generate efficient code for the 486 [2], Intel

Pentium [3], and AMD K5 processors. By retargeting an existing compiler, the new code

generator can utilize existing IMPACT tools for optimization, register allocation, and code

scheduling. The design of the compiler can then focus on machine-dependent

optimizations for the x86 architecture. Performance of the IMPACT x86 compiler is

shown to exceed several commercially and publicly available compilers.

2

The thesis is divided into seven chapters. The remainder of this chapter briefly

describes the architecture of the AMD K5 microprocessor and introduces the notation used

for the x86 assembly examples in the thesis. Chapter 2 gives an overview of the IMPACT

C compiler. Chapter 3 describes changes in the intermediate language that were necessary

to support non-RISC elements in the x86 instruction set, such as the two-operand

instruction format and the separate compare-branch instructions. Chapter 4 describes

optimizations that take advantage of x86-specific features, including complex addressing

modes and arithmetic instructions with memory operands. Chapter 5 presents peephole

optimizations that, as mentioned earlier, are extremely important for producing efficient

x86 code. Chapter 6 presents performance results. Finally, Chapter 7 offers concluding

remarks and suggestions for future work.

1.1 The AMD K5 Microprocessor

One of the goals of the x86 IMPACT project is to produce efficient code for AMD's

K5 microprocessor. The K5 is a four-issue superscalar machine with two integer units, a

dual-ported load/store unit, a branch unit, and a floating point unit. The K5 translates each

x86 instruction into one or more microinstructions [4], referred to as RISC operations or

ROPs . The ROPs are issued in-order, but may execute out-of-order according to dataflow

constraints. After the instructions finish execution, they wait in a reorder buffer and are

retired in-order. Thus, the K5 is similar to superscalar processors from other vendors

(such as Motorola's PPC604) and can benefit from the general superscalar optimizations in

the IMPACT compiler. This thesis describes general-purpose optimizations that are

effective on the K5, 486, and Pentium processors. For a discussion of superscalar

scheduling and optimizations for the K5, refer to [5].

3

1.2 Notation

The x86 IMPACT code generator produces code for 32-bit x86 UNIX

implementations. Currently, IMPACT supports Linux, Novell's Unixware, and the

Pharlap 32-bit environments. The assembly code examples in this thesis use the standard

UNIX x86 notation. The following rules should help to clarify the code examples:

1. Destination registers appear last in the instruction format. For example, the

instruction "addl %eax, %ebx" performs the operation %ebx <- %ebx + %eax.

2. The operand size is usually encoded in the instruction mnemonic. For example,

addl operates on longwords (thirty-two bits), while addb operates on bytes (eight

bits).

3. Constant operands are preceded by a dollar sign, as in "$5." Register operands are

preceded by a percent sign, as in "%eax."

4

2. OVERVIEW OF THE IMPACT C COMPILER

IMPACT is a complex compiler system composed of many optimizing, simulation,

profiling, and code generation tools. IMPACT supports multiple target architectures

(MIPS R2000/R3000, HPPA, SPARC, i860, AMD 29K, and x86). Recently, a template-

guided approach was introduced to minimize the amount of redundant work being done in

each code generator [6]. In particular, code generators now share a common machine-

independent optimizer, scheduler, and register allocator. This chapter provides a brief

overview of the compilation process, an introduction to the Lcode intermediate language,

and a description of the standard general-purpose code generator. Knowledge of Lcode

and the code generation process is important for understanding the optimization techniques

described in the remainder of this thesis.

2.1 Overview of Compilation Process

Figure 2.1 shows a high-level block diagram of the IMPACT C compiler. The

compilation process begins with preprocessing, which must be done on the target

architecture so that correct system header files are included. Almost all other steps in the

compilation process, except for profiling and assembling the final code, need not be done

5

on the target architecture. Compiling on other machines is important for x86 compilation,

since the other workstations are typically much faster than x86 machines.

C Source Code

Hcode Intermediate Language

C to Hcode

Insert Profile Probes

Hcode to C

Generate Profile
 Database

 Merge Profile
Database with Hcode

Hcode to Lcode

Inline Expansion

Code Optimizer

Superscalar Code
 Optimizer

Code Generator
MIPS HPPA SPARC i860 AMD29K x86

Preprocessor

Host Assemblers

Lcode Intermediate Language

Figure 2.1: Block diagram of the IMPACT C compiler.

6

After preprocessing, the C files are converted into Hcode, a high-level intermediate

language. If profile information is desired, tools are available for inserting profile probes

into the Hcode and reverse translating the probed Hcode to probed C code. Compiling and

running the probed C code on the target architecture produces a profile database. The

profile database contains the invocation count of each function, the execution count of each

basic block, and branch direction information [7]. The profile database is merged with the

Hcode files to produce profiled Hcode. If profile information is not desired, compilation

can proceed directly from Hcode generation to HtoL conversion.

If inline expansion [8] is chosen as one of the compile-time optimizations, the program

will be broken up into one Hcode file per function. This simplifies the merging process

required by inlining and makes it easier to isolate bugs in the compiler, since good and bad

functions can be swapped by simply exchanging files. Inline expansion is much more

effective with good profile information, although it is possible to inline functions without

performing the profiling stages.

The HtoL tool then converts Hcode to Lcode. Lcode is a machine-independent

assembly language that serves as the input language for a number of tools in the IMPACT

environment, including Lopti, a machine-independent optimizer [7]. Lopti performs

classical optimizations such as copy propagation, constant folding, common subexpression

elimination, strength reduction, loop-invariant code removal, jump optimizations, and dead

code removal.

The superscalar optimizer uses profile information to form superblocks [9].

Superblocks are groups of basic blocks that tend to execute in a sequence. The superblock

has one entry point (at the start) but may have multiple exit points. Superblocks expose

additional opportunities for optimization; thus all of the classical optimizations performed

7

by Lopti are performed again on the superblock code. In addition, the superscalar

optimizer may perform superscalar optimizations such as loop unrolling and software

pipelining to expose parallelism between loop iterations.

After passing through the machine-independent optimizers, a code generator for the

target architecture translates Lcode into machine language. Code generation involves three

phases. Phase I converts the Lcode into Mcode. Mcode is similar to Lcode, but the Mcode

operations are closer to the target architecture, and Mcode maps directly to the target

assembly. Phase II performs additional code annotations, register allocation, scheduling,

and machine-specific optimizations. Finally, Phase III converts the optimized Mcode into

assembly instructions for the target architecture. The host assembler can then be used to

assemble and link the final executable. Section 2.3 describes the code generation process in

more detail.

2.2 Introduction to Lcode

Lcode is a compiler intermediate language that is similar to RISC instructions sets such

as MIPS and SPARC. Lcode assumes a load/store architecture: arithmetic instructions are

register-to-register operations, and data transfers between registers and memory are

accomplished by explicit memory load/store instructions. Instructions are described with a

three-operand notation. Lcode supports infinite virtual registers and basic synchronization

operations [10].

Figure 2.2 shows an example of an Lcode function in the ASCII representation. The

ASCII representation interfaces the various tools in the compilation process. For example,

the machine-independent optimizer Lopti reads an ASCII Lcode file as input and writes an

optimized ASCII Lcode file as output. Lcode also has standard internal data structures that

8

are common across all tools. For a detailed description of the internal representation of

Lcode, refer to [6].

(ms data)
(global _maxbits)
(long 1 _maxbits (i 16))
(ms text)
(global _rindex)
(function _rindex 1.000000 <L>)
 (cb 1 1.000000 [(flow 0 2 1.000000)])
 (op 1 define [(mac $tm_type i)] [(mac $IP i)(i 4)] <(tm (i 300))>)
 (op 2 define [(mac $tm_type i)] [(mac $IP i)(i 8)] <(tm (i 301))>)
 (op 3 define [(mac $return_type i)] [])
 (op 4 define [(mac $local i)] [(i 0)])
 (op 5 define [(mac $param i)] [(i 0)])
 (op 6 prologue [] [])
 (op 7 ld_i <F> [(r 2 i)] [(mac $IP i)(i 4)] <(tm (i 300))>)
 (op 8 ld_i <F> [(r 3 i)] [(mac $IP i)(i 8)] <(tm (i 301))>)
 (cb 2 1.000000 [(flow 1 5 0.000000)(flow 0 3 1.000000)])
 (op 9 mov [(r 1 i)] [(i 0)])
 (op 10 ld_c [(r 4 i)] [(r 2 i)(i 0)])
 (op 11 beq [] [(r 4 i)(i 0)(cb 5)])
 (cb 3 13.000000 [(flow 1 6 0.000000)(flow 0 4 13.000000)])
 (op 12 ld_c [(r 5 i)] [(r 2 i)(i 0)])
 (op 13 beq [] [(r 5 i)(r 3 i)(cb 6)])
 (cb 4 13.000000 [(flow 1 3 12.000000)(flow 0 5 1.000000)])
 (op 14 mov [(r 6 i)] [(r 2 i)])
 (op 15 add_u [(r 2 i)] [(r 2 i)(i 1)])
 (op 16 ld_c [(r 7 i)] [(r 2 i)(i 0)])
 (op 17 bne [] [(r 7 i)(i 0)(cb 3)])
 (cb 5 1.000000 [(flow 1 7 1.000000)])
 (op 18 mov [(mac $P0 i)] [(r 1 i])
 (cb 7 1.000000 [])
 (op 19 epilogue [] [])
 (op 20 rts [] [] <(tr (mac $P0 i))>)
 (cb 6 0.000000 [(flow 1 4 0.000000)])
 (op 21 mov [(r 1 i)] [(r 2 i)])
 (op 22 jump [] [(cb 4)])
(end _rindex)

Figure 2.2: Sample Lcode function.

Lcode divides the program into data and function blocks. In Figure 2.2, the (ms data)

directive begins the data block and identifies a memory space for non-constant data that can

9

be statically initialized to any value. Other memory spaces include the data1 space for

read-only data, the bss space for non-initialized data, and the sync space for

synchronization variables [10].

In Figure 2.2, the (long 1 _maxbits (i 16)) operation declares storage space for one

long-size variable at label _maxbits and initializes its value to sixteen. The global

operation on the preceding line makes the _maxbits label visible outside the scope of the

current file. In addition to declaring storage for long-size data, operations may also declare

storage for bytes, words, single-precision floating point values, and double-precision

floating point values.

The (ms text) directive defines a text space that will contain executable instructions and

is the beginning of the function block in this example. Function blocks are composed of

control blocks containing the Lcode instructions. Function and control blocks are annotated

with the profile information gathered in the earlier compilation stages, or null information if

profiling is not performed. In this case, the profile information indicates that the function

is called one time.

The first control block (cb) begins with the (cb 1) directive. A unique number

identifies each control block. Control blocks have one or more exit points, but only one

entry point. Control blocks with one entry point are the same as basic blocks. Control

blocks with more than one exit point are referred to as superblocks. The flow information

in the first control block header indicates that cb 1 always flows to cb 2.

The first control block contains define operations that indicate the number and location

of incoming parameters (two stack-based parameters), the size of the return value (integer),

the size of the local variable space required (zero bytes), and the maximum outgoing

parameter size (zero bytes). This information can be used to calculate the necessary stack

frame size for the function after the register allocator determines the spill code size. The

10

prologue operation is expanded during Phase II of code generation to allocate the stack

frame and to save the callee-saved registers.

Lcode instructions begin with the word op and are composed of four major parts:

operation number, opcode, operands, and attributes. The operation number is unique for

each Lcode instruction in the function. Opcodes include the define operations seen in cb 1

above, and more traditional opcodes such as those shown in Figure 2.3 below.

ld_i Load Integer
ld_c Load Character
mov Move to Register
beq Branch if Equal
add_u Add Unsigned
rts Return from Subroutine

Figure 2.3: Examples of Lcode opcodes.

Opcodes are broken down into assembler macros, integer and floating-point ALU

operations, memory access, and control flow. For a more detailed description of each

opcode, refer to [10].

Lcode instructions support multiple destination and source operands. Each operand

has two fields. The first field specifies the operand type as either register (r), label (l),

integer (i), single precision floating point (f), double-precision floating point (f2), macro

(mac), or control block number (cb). Macro registers correspond directly to the registers

that are present in the target architecture; for example, the x86 integer macro registers are

eax, ebx, ecx, edx, esp, ebp, esi, and edi. The second field is the data of the specified

type.

Finally, instructions can contain attributes to store additional information that cannot be

contained in the other fields of the Lcode instruction format. For example, Lopti adds

attributes to identify loop and inner-loop control blocks. In Figure 2.2, operation op1

11

contains the attribute "(tm (i 300))" that indicates the first incoming parameter is passed

through a memory location to the function. Later chapters in this thesis discuss some of

the attributes that are added by the x86 code generator.

2.3 Code Generation

The creation of a code generator for the IMPACT involves two tasks. First, a machine-

specific file (mspec) must be developed. The mspec file conveys the architectural

characteristics and limitations of the target processor to earlier compilation stages. For

example, the mspec may contain information on the data alignment requirements of the

architecture or details on the addressing mode for accessing local variables.

Once the mspec is complete, a code generator must be written to convert Lcode

instructions into assembly files for the target architecture. Code generation is divided into

three phases, as shown in Figure 2.4.

Phase I performs code annotation to convert the Lcode into an Mcode format. Mcode

is very similar to Lcode (they have identical data structures), but Mcode instructions are

closer to the target instruction set, and can be easily mapped to the target assembly. For

example, the x86 code generator translates three-operand instructions into two-operand

instructions during Phase I annotation. The two-operand instructions can be directly

converted to x86 assembly instructions. Chapter 3 describes the two-operand conversion

and other Phase I annotations.

12

Code Annotation

Lcode Intermediate Language

Phase I

Phase II

Pre-pass Code
Optimizations

Pre-pass Code
 Scheduling

Register Allocation

Post-pass Code
 Annotation

Post-pass Code
 Scheduling

Code Annotation

Phase III

Mcode Intermediate Language

Optimized Mcode

Assembly Code

Figure 2.4: Block diagram of an IMPACT code generator

Phase II performs Mcode optimizations to remove inefficient code introduced by Phase

I and to select better code sequences for the target architecture. Most code generators can

use a standard library of Mcode optimizations, including common subexpression

13

elimination, copy propagation, and dead code elimination. For the x86, the standard

Mcode copy propagation reverses the two-operand conversion. Thus, the x86 code

generator uses a custom copy propagation routine that is described in Chapter 2. In

addition, many of the machine-specific peephole optimizations described in this thesis are

performed during pre-pass code optimization. Optimizations at this stage are easier to

write because they are close to the Mcode file output from Phase I, and scheduling cannot

prevent the optimization opportunity from materializing.

Pre-pass code scheduling has been shown [11] to provide a better schedule than post-

pass since it is not restricted by anti- and output dependences that may be introduced by the

register allocator. The scheduler attempts to minimize dependences and efficiently utilize

machine resources by moving instructions into fill slots and separating data definition from

data use. Unfortunately, in the x86, a schedule with fewer dependences typically increases

register pressure and forces large amounts of spill code. The effects are especially

detrimental on narrow-issue machines such as the 486 and Pentium, which are not able to

hide spill code as well as the four-issue K5.

A machine-independent register allocator [12] converts the virtual registers to the

machine-specific physical registers. The register allocator decides whether to use a callee-

save or caller-save register convention. If insufficient registers exist in the architecture, as

is typically the case with the eight registers in the x86, the register allocator will insert spill

and unspill code to break live ranges.

Post-pass code annotation and optimizations are performed after register allocation.

Function prologue and epilogue, which depend on the spill code size information provided

by the register allocator, are annotated at this point. In addition, instructions that reference

addresses on the stack frame (such as incoming and outgoing parameters, local variables,

14

and spill locations) are annotated to contain the correct stack offsets. Optimizations that

operate on the spill code are also run at this point.

Finally, post-pass scheduling reorders instructions within the constraints of the register

allocation. For the narrow-issue x86 processors, post-pass is the only scheduling

performed. Post-pass scheduling is "free" in the sense that it cannot increase register

pressure, but it is typically limited in its effectiveness.

15

3. SUPPORT FOR X86 INSTRUCTION FORMAT

The x86 instruction set includes several unusual features not found in traditional RISC

architectures and not used in any of the code generators previously supported by IMPACT.

For example, all x86 ALU instructions are two-operand instructions, in which one of the

source registers also serves as the destination register. RISC architectures and the Lcode

intermediate language use more general three-operand instructions. Other unique x86

features include separate compare and branch instructions, the stack-based x86 floating

point architecture, and the concept of byte and word-sized subset registers. To make basic

code generation possible, IMPACT must support these x86-specific features.

3.1 Two-Operand Instructions

The x86 instruction set was designed to minimize the instruction length at a time when

memory and storage space were extremely limited. Thus the instruction set overlaps the

destination register with one of the source registers to reduce the number of operands that

have to be encoded in the instruction. Unfortunately, instructions in the two-operand

format destroy one of the source registers. Modern RISC architectures use a fixed

instruction size and a more general three-operand format. As described in Chapter 2, the

Lcode intermediate language also uses a three-operand format. Thus the first task of the

16

x86 code generator is to convert all instructions into a two-operand format. By delaying

this conversion until the first phase of code generation, the machine-independent optimizers

can be used. Figure 3.1 shows the conversion process.

R1 <- R2;
R1 <- R2 + R3; R1 <- R1 + R3;

 (a) (b)

Figure 3.1: Mapping of three-operand Lcode into two-operand Mcode: (a) three-operand
Lcode, (b) two-operand Mcode.

Note that conversion is only necessary if R1 and R2 refer to different registers.

3.2 Custom Copy Propagation

The two-operand conversion process inserts a large number of move instructions into

the code. Frequently, one of the source registers is not needed after the operation, and the

move instruction is useless. The code generator attempts to eliminate the unnecessary

move instructions through forward and reverse copy propagation during Phase 2

optimizations. Figure 3.2 shows an example of how forward copy propagation can

eliminate a move introduced during the Phase 1 conversion to two-operand instructions.

I1: R2 <- R1 I1: R2 <- R1;
I2: R2 <- R2 + R3; I2: R1 <- R1+ R3;

(change all other uses
 of R2 to R1)

 (a) (b)

Figure 3.2: Forward copy propagation example: (a) original Mcode, (b) after forward
copy propagation

17

Forward copy propagation requires that R1 not be used after instruction I2 in the

original Mcode, and that R1 not be live out of the cb. After changing all of the uses of R2

to R1 after instruction I2 in Figure 3.2, the move instruction I1 will be deleted by dead

code removal.

Figure 3.3 shows an example of how reverse copy propagation can eliminate a move

introduced during the Phase 1 conversion to two-operand instructions.

I0: R1 <- ... I0: R2 <- ...
I1: R2 <- R1 I1: R2 <- R2;
I2: R2 <- R2 + R3; I2: R2 <- R2 + R3;

(a) (b)

Figure 3.3: Reverse copy propagation example: (a) original Mcode, (b) after reverse copy
propagation

Reverse copy propagation attempts to change the destination of the instruction that

defines R1. This requires that R1 is not used after instruction I2 in the original Mcode,

and that R1 is not live on any path out of the cb. After reverse copy propagation, the move

instruction I1 will be deleted by dead code removal.

The generic Mcode copy propagation routines used by other code generators reverses

the two-operand conversion done in Phase I and is therefore unusable in the x86 code

generator. Consider the reverse copy propagation example in Figure 3.3 above: if I0 is an

subtract instruction such as "R1 <- R1 - 5," reverse copy propagation will create the

instruction "R2 <- R1 - 5," which cannot be generated in the x86 architecture. To prevent

this error from occurring, the x86 has customized copy propagation routines that do not

propagate registers back into any instructions that only support two operands. Essentially,

this means that copy propagation is limited to load operations and load effective address

(lea) instructions.

18

3.3 Separate Compare-Branch Instructions

The x86 architecture implements conditional branching with separate compare and

branch instructions. The compare instruction is used to set a system flags register, and the

branch direction is determined from conditions in the system flags register. In addition, all

x86 arithmetic and logic operations modify the flags register, and thus the compare

instruction can sometimes be eliminated if the preceding ALU instruction sets the flags

register correctly. Section 4.4 discusses an optimization to delete redundant compare

instructions. The flags register causes problems when scheduling instructions: it is

necessary to prevent the scheduler from moving ALU instructions between the compare

and the branch. This scheduling problem was new to IMPACT: other architectures

supported by IMPACT either use a combined compare and branch instruction (HP), or do

not have arithmetic instructions which modify the flags register as a side effect.

The initial solution was to add the flags macro register as an additional destination for

all the arithmetic and logic instructions. This successfully prevents ALU instructions from

being scheduled between compare and branch pairs; however, it also severely restricts

scheduling freedom. The scheduler cannot reorder any instructions that modify the flags

register because of the apparent output dependences between the instructions. For

example, consider the following:

I1: [R1, flags] <- R1 + R2;

I2: [R3, flags] <- R3 + r4;

I3: [flags] <- cmp (R3, R1)

I4: jge loop

19

To the scheduler, it appears as if I1 and I2 have an output dependence on the flags

register and therefore cannot be scheduled. In fact, the flags register written by instructions

I1 and I2 is "dead" because the flags register is overwritten by I3 before being used in I4.

The notion of live instructions writing to dead registers is completely foreign to the

scheduler, and it was decided not to modify the scheduler to support this situation.

Instead, the compare-and-branch pairs are left as single instructions until after

scheduling. Scheduling cannot move ALU instructions between the compare-branch pairs

because they are still single instructions when they are scheduled. This approach has the

disadvantage that compare instructions cannot be scheduled, but frequently this is

impossible and x86 architectures such as the Pentium can execute the compare-branch pair

at the same time. If scheduling of compare instructions is still desired, a post-pass

optimization after compare-branch splitting could move the comparison instruction as far

as possible from the branch. By delaying compare-branch splitting until after scheduling,

the general-purpose IMPACT scheduler could be used.

3.4 Floating Point

The x86 floating point architecture is implemented using a stack of eight registers.

Most floating point instructions use the top of the floating point stack for one of their

operands. The stack organization makes it difficult, if not impossible, to allocate the

floating point registers on the register stack. To generate efficient floating point code,

floating point values are allocated to memory locations on the stack frame rather than

attempting to allocate the stack registers. Floating point instructions with memory

operands execute at the same speed as those with stack register operands [13].

20

Traditional RISC architectures have a large number of floating point registers (typically

thirty-two or more) that are allocated using standard register allocation techniques. Since

all the x86 floating point registers are actually located on the stack frame, register allocation

for the x86 simply assigns each floating point operand a home location on the stack. To

facilitate this stack allocation, a large (1000 entry) register bank is passed to the register

allocator. The macro register numbers returned by the register allocator are then used as

indexes into the floating point register section on the stack frame.

The use of stack locations for floating point registers can lead to inefficient code that

shuffles floating point operands between memory and the floating point register section on

the stack frame. For example, if a floating point operand is already located in memory, it

can be directly accessed from the memory location and does not need to be loaded into its

home location on the stack. To eliminate these inefficiencies, a pass during Phase II detects

and optimizes these sequences.

3.5 Subset Registers

The x86 architecture supports byte and word-sized instructions that access subsets of

the 32-bit general-purpose registers. For example, the instruction "addb %al, $5" adds

five to the 8-bit al register, which is actually the low-order byte of the 32-bit eax register.

The subset registers can be modified without changing the rest of the register.

Unfortunately, only half of the eight registers in the architecture have 8-bit versions (eax,

ebx, ecx, and edx). The register allocator must allocate one of these four registers to the

byte-size instruction.

Since the register allocator did not initially support the ability to restrict allocation to a

subset of the available registers, the original solution was to avoid byte-size instructions

21

whenever possible and to use an explicit macro register when the byte-size instructions

could not be avoided. Byte size instructions can be avoided by zero or sign-extending 8-bit

operands to occupy the entire 32-bit register, and then using the 32-bit register in 32-bit

operations. Figure 3.4 shows this approach.

movb (), %al ;load movzbl (), %eax
... ...
addb $5, %al addl $5, %eax

 (a) (b)

Figure 3.4: Elimination of byte registers via sign extension: (a) byte-sized instructions, (b)
sign-extension to 32-bit instructions.

However, some instructions, such as setcc, always write to 8-bit destinations. For

these instructions, the eax (or al in the 8-bit version) macro register was explicitly coded as

the destination. The register allocator is prepared to deal with explicitly coded macro

registers in the Mcode input, as these macro registers are used in many architectures for

function call and return parameters, and are used in the x86 architecture for some special-

purpose instructions such as shift-by-register and divide.

While the register allocator produces a correct allocation when macro registers are used

in the input stream, the allocation may be less than optimal, particularly when many

instructions that write to the same macro appear in close proximity. Also, the initial

approach of extending all 8-bit operands to 32-bit versions is expensive, especially on 486

and Pentium processors. A zero or sign-extended load requires three cycles on a Pentium

and may restrict pairing due to an opsize prefix. For these reasons, the register allocator

was modified to support the concept of illegal registers (ill_regs) for an operand in an

instruction. Byte-size ALU and setcc instructions are marked during Phase 1 Annotation

and Phase 2 Optimization with the ill_reg notation to indicate that the esi, edi, ebp, and esp

22

registers cannot be allocated to the destination operand in these instructions. The register

allocator uses the ill_reg attribute to guarantee a legal register allocation. Ill_regs provide

much more flexibilty than the explicitly coded macro register approach, and generate a

more efficient register allocation.

23

4. OPTIMIZATIONS FOR X86 ARCHITECTURE FEATURES

The preceding chapter describes how IMPACT was changed to make basic x86 code

generation possible. This chapter describes optimizations that take advantage of features in

the x86 architecture that are not found in traditional RISC architectures. Section 4.1

describes merging address calculation operations into memory instructions using the x86

complex address modes. Section 4.2 discusses the use of CISC instructions, which reduce

register pressure and instruction size by combining load and store instructions with ALU

operations. Section 4.3 presents optimizations that eliminate compare instructions when

the flags register is set appropriately by an arithmetic instruction. Finally, Section 4.4 lists

simple transformations that reduce instruction size and increase instruction density in

caches and main memory.

4.1 Complex Addressing Modes

When the x86 architecture was introduced in the late 1970s, one of the figures of merit

for an instruction set was its "richness" and "flexibility" [14]. Thus, the x86 was designed

with a wide variety of complex addressing modes: x86 addresses can contain a base

register, plus a scaled index register that is multiplied by two, four, or eight, plus a label

operand, plus a sign-extended offset, plus a segment offset. The segment offset will not be

24

discussed here since x86 UNIX implementations use a flat memory model without the

segment registers. On modern x86 implementations (such as Pentium and K5), the

calculation of the complex addressing mode can be done in a single cycle, and merging the

shift and add operations otherwise used to calculate the address into a complex addressing

mode reduces register pressure and eliminates many dependent instructions.

For store instructions, a total of six possible source operands (store source, base, index,

scale, label, and offset) are possible, requiring an expansion of the number of operands in

the intermediate Mcode format. Because a larger number of operands impacts the

performance of the compiler, and because addressing modes such as base plus index plus

label are unlikely, the memory operand format shown in Figure 4.1 was used:

source 0: source operand for stores and CISC operations
source 1: Base Register or Label Operand
source 2: Index Register
source 3: Scale Factor
source 4: Constant Offset or Label Operand

Figure 4.1: Internal format for x86 memory operations.

To take advantage of the complex addressing modes, memory operations are converted to

the five-operand format in Phase 1 of the code generator. Before Phase 1, the memory

operations are in standard Lcode format (two-operand register plus register or label or

offset) and can be optimized by the machine-independent optimizers. During Phase 2 of

code generation, lea (load effective address) instructions are generated for left-shifts of two,

four, or eight, and for three-operand addition operations. Figure 4.2 shows an example of

how these lea instructions can be merged into a complex addressing mode. The complex

addressing mode in Figure 4.2(d) requires no registers to calculate the address and

eliminates a chain of three dependent operations.

25

long buf[80]; R1 <- buf;
R2 <- R1 + 4;

a = buf[i+4]; R3 <- i*4;
R4 <- (R3 + R4);

 (a) (b)

R2 <- buf + 4;
R3 <- i*4; R4 <- (i*4 + buf + 4);
R4 <- (R2 + R3);

 (c) (d)

Figure 4.2: Formation of complex addressing modes: (a) original C source code, (b)
Lcode pseudo-code, (c) after lea optimization, (d) after merging into complex
addressing mode.

The primary impact of complex addressing modes is on the memory disambiguation

performed during code scheduling. Memory disambiguation attempts to prove that two

memory instructions always refer to different memory addresses. If the load and store

instructions can be disambiguated, then the load can be scheduled ahead of the store. If a

load inside a loop can be disambiguated from all of the stores in the loop, then it may be

possible to pull the load outside the loop during a loop-invariant code removal

optimization.

Because the five-operand complex addressing mode differs from the standard Lcode

format, the x86 code generator requires a custom memory disambiguation routine. The

x86 memory disambiguation maps the complex memory format into two operands, and

uses the same heuristics as the Lcode routine. The scale and index registers, which are not

used in the Lcode heuristics, are required to be identical. For example, x86 memory

addresses that are different offsets from the same register can be disambiguated if the base

operands are the same, the offsets are different, and the index and scale factors for the two

addresses are identical.

26

4.2 CISC Instructions

All arithmetic and logic instructions in the x86 instruction set support memory-to-

register and register-to-memory operations, in addition to the register-to-register operations

supported by traditional RISC architectures. Memory-to-register instructions load one of

the operands from memory, perform the appropriate operation with a register operand, and

store the result in the register. Register-to-memory instructions load one of the operands

from memory, perform the appropriate operation with a register operand, and store the

result back into the memory location. Because the memory-to-register and register-to-

memory instructions are unique to older architectures such as the x86 and 68K, they are

referred to as CISC instructions.

Figure 4.3 shows the formation of a memory-to-register CISC instruction.

R1 <- (mem); TEMP <- (mem);
R2 <- R2 - R1; R2 <- R2 - (mem); R2 <- R2 - TEMP;

(a) (b) (c)

Figure 4.3: Formation of a memory-to-register CISC instruction: (a) original code, (b)
after CISC conversion, (c) after decoding into K5 ROPs.

The single CISC instruction in Figure 4.3(b) will require fewer bytes than the two

instructions in Figure 4.3(a). The real advantage, however, of the CISC instruction is the

reduction in register pressure since the instruction directly accesses one of its operands

from memory and does not require that it first be loaded into a register. On the K5, the

CISC instruction will be decoded into a load ROP and a subtract ROP, as shown in

Figure 4.3(c). The ROPs use one of the internal registers of the K5, labeled as TEMP in

Figure 4.3(c). The disadvantage of the CISC instructions is that the ROPs within the CISC

27

instruction cannot be scheduled to eliminate true dependences. For example, the subtract

ROP in Figure 4.3(c) is dependent on the load ROP, and will not execute until the load

ROP completes. If the CISC instruction was not formed, the scheduler might be able to

move the load ahead of the subtract, and the subtract could execute immediately after

issuing.

One solution to the scheduling problem is to only merge CISC instructions if the

scheduling opportunities do not materialize. The optimization merges only immediately

adjacent load and ALU instructions. However, we have found that the scheduler is

frequently overaggressive, and so a more aggressive conversion to CISC instructions

actually helps by limiting scheduling freedom. Thus, the optimization that is currently

implemented is capable of merging load instructions that have been separated from the

ALU instruction by the scheduler. To prevent the CISC optimization from negating

register allocation by converting all instructions to CISC operations, a heuristic disables the

CISC conversion if the load destination is used three or more times.

Figure 4.4 shows the formation of a register-to-memory CISC instruction.

R1 <- (mem) TEMP <- (mem);
R1 <- R1 - R2; (mem) <- (mem) - R2; TEMP <- TEMP - R2;
(mem) <- R1; (mem) <- TEMP;

(a) (b) (c)

Figure 4.4: Formation of a register-to-memory CISC instruction: (a) original code, (b)
after CISC conversion, (c) after decoding into K5 ROPs.

Again, the CISC instruction in Figure 4.4(b) has a more efficient encoding and uses

fewer registers than the original code in Figure 4.4(a). The K5 will translate the CISC

instruction into three ROPs and use an internal temporary register, as shown in

Figure 4.4(c). The register-to-memory CISC conversion suffers from the same scheduling

28

problems as the memory-to-register CISC. However, since the register-to-memory CISC

instruction stores the result back to memory, multiple uses of the load destination are much

less likely. Nevertheless, the register-to-memory CISC optimization uses the same

heuristic as the memory-to-register CISC optimization.

Both of these optimizations restrict the pairing abilities on a Pentium processor and

may cause performance degradation. On the 486, which does not pair instructions, and on

the K5, which has a more general decode mechanism, CISC instructions improve

performance by reducing register pressure and, to some extent, by encoding the

instructions more efficiently. Further research is necessary to explore the trade-offs

between scheduling and CISC instructions. As the scheduler improves and incorporates

register pressure heuristics appropriate for the x86, the current heuristics may have to be

revised to make this optimization less aggressive.

4.3 Elimination of Redundant Compare Instructions

All x86 arithmetic and logic instructions modify the system flags register used for

conditional branching. Occasionally, the ALU instruction sets the flags correctly for a

subsequent conditional branch instruction, and the intervening compare can be deleted.

Figure 4.5 shows an example of a sequence in which the compare instruction can be

deleted.

29

I0: add %eax, $5 I0: add %eax, $5
I1: cmp %eax, $0 I1:
I2: jge loop I2: jge loop

 (a) (b)

Figure 4.5: Elimination of redundant compare instructions: (a) original code, (b) after
compare elimination.

As discussed in Section 3.3, compare-branch instructions are not split into two

instructions until after post-pass code scheduling has occurred. After the splitting, another

pass through the code deletes the unnecessary compares. A compare is considered

unnecessary if

1. One of the operands of the compare is a constant zero,

2. The other operand of the compare is the destination of a preceding ALU instruction,

3. No other instruction writes to the flags register between the ALU instruction and the

compare, and

4. The preceding ALU instruction correctly sets the conditions needed by the

subsequent branch instruction.

The last condition is necessary because some ALU instructions (such as multiply)

destroy the flags but do not set any of them correctly, and other operations (such as logic

and shift instructions) do not set all of the flags. Another more subtle problem involves the

incl and decl instructions, which do not set the carry flag but are otherwise identical to

"addl $1, %reg" and "subl $1, %reg" instructions. A branch such as jge that requires the

carry condition flag cannot use the flags register as set by these instructions.

To maximize the opportunities for eliminating redundant compare instructions, two

optimizations are performed at earlier stages in the compilation path to create as many

compare zero instructions as possible. First, compare-zero instructions can sometimes be

produced by applying the transformation shown in Figure 4.6 below.

30

I0: R1 <- R2; I0: R1 <- R2;
I1: R1 <- R1 - C1; I1: R1 <- R1 - C1;
I2: Jcc R2, C1, LOOP I2: Jcc R1, $0, LOOP

 (a) (b)

Figure 4.6: Example of creating compare-zero instructions: (a) original Mcode, (b) after
make compare zero optimization.

C1 is a typically a constant operand, although the optimization does not require it to be

so. The Jcc instruction (I2) refers to any conditional jump instruction that compares R2 to

C1. Since instruction I1 sets R1 to (R2 - C1), if R2 is equal to C1, then R1 must be equal

to zero. The optimization changes the jump instruction so the comparison is between R1

and zero instead of R2 and C1. At the time this optimization is performed, compare-

branch pairs have not been split. Thus this optimization, referred to as make_cmp_zero,

changes the branch instruction. When the branch is split, a compare-zero operation will be

created. If the conditions listed above can be met, then the compare can be deleted.

This optimization introduces an additional dependence on R1 between I1 and I2, but it

frequently eliminates a comparison instruction. Also, I2 is often the only use of R2, and

thus instruction I0 can be eliminated through copy propagation. Figure 4.7(b) shows the

code which is frequently produced by this optimization after compare elimination and copy

propagation.

31

I0: movl %ebx, %eax
I1: addl %ebx, $1 I1: addl %eax, $1
 cmpl %ecx, $1 I2: jne loop
I2: jne loop

(a) (b)

Figure 4.7: Results of make compare zero optimization: (a) original assembly, (b)
optimized assembly.

Table 4.1 shows three simple instruction transformations that create additional

compare-zero instructions.

Table 4.1: Transformations to create compare-zero instructions.

Original Code Compare-zero code

cmpl $-1, %reg
jg label

cmpl $0, %reg
jge label

cmpl $1, %reg
jl label

cmpl $0, %reg
jle label

cmpl $-1, %reg
jb label

cmpl $0, %reg
jbe label

Table 4.1 uses the standard x86 notation for conditional branches: jg refers to a signed

branch-greater-than instruction, jge is a signed branch-greater-than-or-equal instruction,

and jb is an unsigned branch-less-than instruction. Consider the transformation for

instruction jg. This transformation compares two integers, and therefore any number that

is greater than negative one is either a zero or a number greater than zero. The optimization

is done as part of the make_cmp_zero optimization described above, and relies on

subsequent passes to create and then delete the redundant compare instruction if possible.

32

4.4 Instruction Size Optimizations

CISC architectures such as the x86 were designed with a tight encoding to minimize

the instruction size, leading to more efficient use of instruction caches. For some

operations, the x86 supports more than one opcode that accomplish nearly identical results.

The smaller instructions may have an impact on performance for cache-intensive

programs. This section discusses transformations that utilize the smaller instruction

opcodes when appropriate. Typically, the smaller instructions affect different bits in the

flags register, and thus care must be taken that the optimization does not change the

meaning of the original code.

4.4.1. movl $0, %reg instruction

The "movl $0, %reg" operation requires five bytes because a full 32-bit constant zero

must be encoded in the instruction. A smaller sequence, requiring only two bytes, is

shown in Figure 4.8 below.

movl $0, %eax xorl %eax, %eax
(b8 00 00 00 00) (31 c0)
5 bytes 2 bytes

 (a) (b)

Figure 4.8: Transformation of movl to xorl: (a) original code, (b) smaller code.

The xorl operation destroys the flags register, whereas the original movl instruction

does not. Thus, care must be taken to ensure that the flags are not live across the original

instruction. Phase II transforms movl instructions to xorl operations after compare

33

instructions are deleted, because it is preferable to eliminate the compare rather than use the

smaller instruction in the case where the flags are live across the movl instruction.

4.4.2. movl $-1, %reg instruction

This instruction requires five bytes because a full 32-bit negative one must be included

in the opcode. A smaller sequence using a sign-extended immediate constant, requiring

only three bytes, is shown in Figure 4.9 below.

movl $0, %eax orl $1, %eax
(b8 ff ff ff ff) (83 c8 ff)
5 bytes 3 bytes

 (a) (b)

Figure 4.9: Transformation of movl to orl: (a) original code, (b) smaller code.

This optimization takes advantage of the fact that the x86 supports a sign-extended

immediate orl operation, but not a sign-extended immediate mov. It can be applied to any

mov instruction with a constant in the range -1 to -255. Again, the optimized code

destroys the flags register and the same precautions discussed in Section 4.4.1 must be

applied here as well.

4.4.3. cmpl $0, %reg instruction

If the branch instruction that uses the result of a compare-with-zero instruction is a jne

or jeq instruction, then the smaller sequence shown in Figure 4.10 below may be used.

34

cmpl $0, %eax testl %eax, %eax
(83 f8 00) (85 c0)
3 bytes 2 bytes

 (a) (b)

Figure 4.10: Transformation of cmpl to testl: (a) original code, (b) smaller code.

The test instruction performs a nondestructive bitwise and operation, setting the zero

flag in the condition codes register but not modifying either of the source operands. The

test instruction in Figure 4.10 sets the zero flag in the flags register if eax is zero but clears

it otherwise. The conversion to test instructions occurs during the pre-pass optimization

pass in Phase II of the code generator.

4.4.4. addl $1, %reg / subl $1, %reg instructions

An add or subtract instruction in which one of the source operands is a constant with a

value of one may be more efficiently coded using the incl and decl instructions, as shown

in Figure 4.11 below.

addl $0, %eax incl %eax
(83 c0 01) (40)
3 bytes 1 byte

 (a) (b)

Figure 4.11: Transformation of addl to incl: (a) original code, (b) smaller code.

The incl and decl instructions require only one byte. On a Pentium processor, single-

byte instructions may execute more efficiently since they can pair with other instructions

immediately after being fetched from memory. Other instructions can pair only if they are

fetched from the instruction cache.

35

The smaller instructions do not set the carry flag in the condition flags register, and thus

unsigned branches cannot delete a compare instruction if the preceding operation is an incl

or decl. This problem is solved by performing the translation before compare-branch

splitting and by modifying the redundant compare optimization so that it does not

inappropriately delete compare instructions when the flags are set by incl or decl

instructions.

36

5. ADDITIONAL X86 OPTIMIZATIONS

Previous chapters focused on creating a functional x86 code generator and on

optimizing the code generator to use some of the architectural features in the x86. This

chapter describes additional machine-specific optimizations, focusing on instruction

selection, improvements to relieve register pressure, and the control of superscalar

optimizations.

Optimizations discussed in the beginning of this chapter utilize specific x86 instructions

such as lea, test, setcc, and sbb. The lea instruction can be used as a three-operand add or

shift operation, and is also useful for performing constant multiply instructions. The test

instruction masks bits in a register, and may eliminate mov-and sequences introduced in

Phase I to support the two-operand format. The setcc and sbb instructions are used to

eliminate branches by predication.

Other transformations remove inefficient code introduced in earlier compilation stages.

For example, Lcode follows all character load instructions with an "and $255, %reg"

instruction to clear the rest of the register. Since the x86 supports a zero-extend character

load operation, the and instruction is redundant. Other examples, including improved bit

field handling and multiple return statements, are discussed below.

Many of these optimizations produce good general-purpose improvements, but have

not been implemented in the general optimizers because they provide relatively small gains

37

on wide-issue machines. For example, almost all machines have zero-extend character

load instructions, but much more performance can be gained from good scheduling and

superscalar transformations than from removing a single instruction. In fact, some

superscalar optimizations are register intensive and have a negative impact on performance

with the limited number of x86 registers. Section 5.9 discusses how these register-

intensive superscalar optimizations were controlled and, in some cases, disabled.

Next, strategies for handling the register pressure problem are discussed. Section 5.10

presents an argument for the caller-save register convention. Section 5.11 describes the use

of the base pointer as the seventh general-purpose register. Under some circumstances,

even the stack pointer can be used as a general-purpose register. Section 5.12 describes

these circumstances and the methods for using the stack pointer as the eighth register.

Section 5.13 describes an optimization to eliminate flow dependences in the function

prologue. Finally, Section 5.14 describes the use of compiler built-in functions to further

improve performance on the benchmarks that use them.

5.1 Load-Effective Address Instruction

The load effective address (lea) instruction is designed to calculate a complex address

by adding base plus scaled index plus constant offset in a single cycle. It is also the only

three-operand instruction in the x86 instruction set and can sometimes be used as a three-

operand add or shift to eliminate an otherwise necessary mov instruction. Figure 5.1

shows an example of an lea add optimization to remove an unnecessary mov instruction.

38

I0: movl %ebx, %eax
I1: addl %ecx, %eax I1: lea [%ebx+%ecx], %eax
... ...

 (use of %ebx) (use of %ebx)

 (a) (b)

Figure 5.1: Lea add optimization: (a) original code, (b) after lea optimization.

The use of ebx in the sequence shown in Figure 5.1 prevents copy propagation from

eliminating the move instruction. The three-operand lea instruction adds ebx and ecx

together as base and index registers and stores the result of this "address calculation" in

eax. Because the lea is a three operand instruction, the movl instruction (I0) used to

shuffle the operands for the two-operand add is no longer necessary and will be deleted as

dead code.

The lea instruction generates an address generation interlock (AGI) on the 486 and

Pentium processors. An AGI occurs when the instruction preceding an lea or a memory

instruction writes to one of the registers (either base or index) used in the address

calculation. For example, an AGI exists on the eax register in the following example:

add $5, %eax
lea [%eax], %ebx

The AGI occurs between instructions that issue on consecutive cycles on the 486 and

Pentium processors. On a 486 processor, AGI can occur only between immediately

adjacent instructions. On the Pentium, with its two superscalar integer pipes, instructions

may have to be separated by up to three intervening instructions to avoid AGI. The K5

does not suffer from the AGI problem, but lea instructions are executed in the load/store

unit. This may cause a bottleneck if the code around the lea contains a large number of

memory instructions. For these reasons, a standard add instruction is preferable to the lea

39

if the preceding mov instruction can be eliminated by copy propagation. In the IMPACT

x86 code generator, copy propagation runs before the lea optimization so that copy

propagation has priority over the lea transformation.

Frequently, the lea instructions created are actually address computations and can be

merged into complex addressing modes in subsequent memory instructions. Figure 5.2

shows a frequently occurring example.

I0: mov $iob_buf, %eax
I1: add $16, %eax I1: lea %eax, $iob+16

 (a) (b)

Figure 5.2: Common address calculation with lea instruction: (a) original code, (b) after
lea optimization.

The code in Figure 5.2 is generated by calls to the getc and putc system macros. A

subsequent load or store instruction uses the address to move a character from or to the

system buffer at iob_buf+16. The optimization that creates complex addresses for

memory instructions will recognize the lea instruction as an address calculation and may be

able to merge it into the memory instruction. To further facilitate complex address

merging, left-shifts of one, two, or three are converted during Phase I annotation into lea

instructions using the scale factor to multiply the index operand by two, four, or eight.

This annotation may also eliminate a mov instruction with the three-operand lea.

5.2 Constant Multiply Instructions

The conversion of multiply instructions with constant operands into a series of less

expensive add, shift, and subtract operations is a traditional code optimization. The

optimization is motivated by the long latency of multiply instructions (ten to eleven cycles

40

on a Pentium). On the x86 architecture, the add and shift operations can frequently be

combined into lea instruction, further improving the effectiveness of this optimization. The

IMPACT x86 code generator uses two algorithms to convert constant multiply instructions

into a more efficient sequence of simpler instructions. The first is a version of the

modified Booth's algorithm [15] that identifies strings of ones in the binary representation

of the constant and then converts each string into a series of simple operations. The

operations for each string can then be added to produce the final result. The second

algorithm attempts to factor the constant into numbers that can be easily generated by a

sequence of three or fewer simple instructions, and then multiplies the factors to get the

final result.

Figure 5.3 shows an example of the Booth's algorithm approach for converting

constant multiply instructions into a sequence of simpler operations.

R1 <- R2 * 23; I0: R1 <- R2 ;
I1: R1 <- R1 << 3;
I2: R1 <- R1 - R2;
I3: R3 <- R2 << 5;
I4: R1 <- R1 + R3;

 (a) (b)

Figure 5.3: Example of Booth's algorithm: (a) constant multiply instruction, (b) sequence
of simpler operations for performing the multiply.

The binary representation of twenty-three is "101112." Booth's algorithm breaks the

binary representation of the number into strings of ones. For example, "10111" is broken

into

23 = 101112 = 001112 + 100002 .

41

For each string, the algorithm performs the multiplication by left-shifting the

multiplicand by the number of bits in the string, and then subtracting the original

multiplicand. For example, the multiplication by seven in the above example would be

performed as

x * (111 2) = x * (1000 2 - 0001 2) = x * (8 - 1).

Figure 5.3 shows how "10002" and "00012" are each computed with simple shift

instructions. Instruction I0 and I1 serve to copy the original number and multiply it by

10002. Instruction I2 subtracts the original number to complete the multiply by seven.

For long strings, Booth's Algorithm uses substantially fewer instructions than a straight-

forward shift and add sequence for each bit. For example, the above multiplication by

seven could also be performed somewhat inefficiently as

x * (111 2) = x * (001 2 + 010 2 + 100 2).

Booth's algorithm will calculate the contribution of all strings and add them together.

In this case, the only other string is "100002". Since it contains only one bit, this number

can be efficiently calculated with a single shift instruction rather than the shift-add-subtract

sequence shown above for the string of seven. Instruction I3 from Figure 5.3 performs

the shift to multiply the original number by sixteen, and instruction I4 adds the partial

sums to produce the final result.

Lea instructions can be useful for combining mov-shift sequences such as instructions

I0 and I1 in Figure 5.3, and for combining mov-add sequences that are also frequently

produced by the multiply algorithm. Another special-case optimization is to replace

arithmetic left-shifts with add instructions. For example, consider

42

R1 <- R1 << 1.

This operation is identical to

R1 <- R1 + R1.

 However, both the Pentium and the K5 have a shifter capable of executing the first

instruction in only one of their two integer units. The second instruction can be executed in

either integer unit, and is therefore more desirable.

The second multiplication algorithm breaks the constant into factors that can be easily

generated by a few instructions. Easily generated factors include powers of two, powers of

two plus one, and powers of two minus one. Any power of two can be computed with a

single arithmetic left shift. Powers of two plus or minus one can be calculated by copying

the number, left-shifting it, and then adding or subtracting the original number. For

example, Figure 5.4 shows a multiplication by thirty-three using this technique.

R1 <- R2 * 33; I0: R1 <- R2 ;
I1: R1 <- R1 << 5;
I2: R1 <- R1 + R2;

 (a) (b)

Figure 5.4. Easily generated multiply by thirty-three: (a) constant multiply instruction, (b)
sequence of simpler operations.

The lea instructions provide additional easily generated numbers, since they can

perform a shift and addition in the same instruction. For example, a multiply by nine can

be done with one lea instruction:

43

R1 <- R2 + R2 *8;

Similarly, two lea instructions can perform a multiply by seventeen:

R1 <- R2 + R2 *8;

R1 <- R1 + R2 *8;

The factoring constant multiply algorithm searches for factors in the constant by

starting with large powers of two and working down to smaller numbers. Factors are

pushed onto a stack as they are found. If the constant can be factored into easily generated

numbers, then the factors are popped from the stack and converted into an appropriate

sequence of simple operations. Figure 5.5 shows an example of the factoring algorithm.

R1 <- R2 * 155; I0: R1 <- R2 + R2 *4 ;
I1: R3 <- R1;
I2: R1 <- R1 << 5;
I3: R1 <- R1 - R3;

 (a) (b)

Figure 5.5: Example of factoring algorithm: (a) constant multiply instruction, (b)
sequence of simpler operations for performing the multiply.

The second algorithm factors 155 as thirty-one times five. Instruction I0 performs the

multiply by five. Instructions I1, I2, and I3 multiply the result of instruction I0 by thirty-

one to produce the final result.

The cost for a multiply instruction has rapidly decreased in recent processor generations

due to much better multiplication hardware. For example, on the 486, multiply instructions

have a latency of thirteen to forty-two cycles, since the 486 uses an early-out algorithm.

44

On the Pentium, the latency is least ten cycles. On the K5, a multiply takes only four

cycles. The reduction in multiply latencies lessens the effectiveness of this optimization.

Additionally, multiply instructions on the K5 are executed in the infrequently used floating

point unit, making the threshold for a useful optimization even lower. The simple

operations used to calculate the multiply tend to form a chain of dependent operations,

implying that even a superscalar processor such as the K5 will serialize and execute only

one instruction per cycle during the dependent chain.

Determining the optimal sequence of simple operations for performing a constant

multiply is believed to be an NP-complete problem [16]. To prevent this optimization

from converting constant multiply instructions into less efficient sequences of simple

operations, each algorithm computes a cost function for the number of instructions it

expects to generate for the given constant. If the cost of the best algorithm is below the

threshold for the target processor, it is run again to perform the transformation. An

optimal algorithm might combine the two techniques so that the number could be factored

into constants that were computed with Booth's algorithm. However, this appears to

provide marginal gain over the straightforward approach of two separate algorithms,

especially considering the low multiplication latency of the modern processors.

5.3 Bit Masking with Test Instruction

Bit masking operations are typically done with the "&" operation in the C source code,

and appear in Lcode as and opcodes. After conversion to Mcode, a mov instruction may

be added to support the two-operand format. If the operand that is being masked is needed

after the and instruction, the mov cannot be eliminated by copy propagation. This can

happen if more than one bit test is performed on the same source operand. The test

45

instruction performs a nondestructive and operation: the condition codes are set correctly,

but the original operand is not modified. Figure 5.6 illustrates the effectiveness of the test

instruction. Code in the "espresso" benchmark from the SPECint92 suite [17] performs a

sequence of bit tests similar to that shown in Figure 5.6.

I0: movl %r1, %r2; I0: testl %r1, $1
I1: andl $1, %r2; I1: jne label_1
I2: jne label_1 I2: testl %r2, $2
I3: movl %r1, %r2; I3: jne label_2
I4: andl $2, %r2;
I5: jne label_2

(a) (b)

Figure 5.6: Example showing effectiveness of test instruction optimization: (a) bit-
masking with and instruction, (b) bit-masking with test instruction.

The test instruction is similar to a compare in that its only effect is to modify the flags

register. Thus, it suffers from the same scheduling problems as standard compare

instructions: the scheduler must be prevented from inserting instructions that modify the

flags between the test and the branch that uses the flags. To solve this problem, the test

optimization tags the branch instruction with a test_compare attribute. When the compare-

branch pair with a test_compare attribute is split, a test instruction is generated instead of

the standard cmp operation.

5.4 X86 Predication

As wide-issue x86 microprocessors such as AMD's K5 and Intel's P6 become

available, mispredicted branches are becoming increasingly expensive. For example, the

P6 has a branch misprediction penalty of at least eleven cycles. These microprocessors

46

speculatively execute past branches, and rely on accurate branch prediction so that the

results computed by the speculatively executed instructions can be used. One way for the

compiler to improve the branch prediction accuracy is with intelligent code layout [18] so

that the most frequently executed branch direction is the fall-through path. Another

technique is to eliminate the branches entirely with predication.

The x86 supports predication with the setcc instruction, and in some special cases, the

sbb instruction. The setcc instruction sets the destination byte if the condition specified in

the instruction is met, but clears the byte if not. Figure 5.7 shows an example of

predication using the setcc instruction.

 testl $1, %R1; testl $1, %R1;
 jeq label; setne %R3;
 addl $1, %R2; addl %R3,%R2;
label:

(a) (b)

Figure 5.7: Predication using the setcc instruction: (a) original code, (b) after predication.

The setcc instruction modifies only the least significant byte in R3, so an extra

instruction may have to be added to clear the upper part of the register. The original code in

Figure 5.7 requires two instructions if the branch is taken, and three if not. After

predication, three instructions are always required; however, predication eliminates the

branch and the misprediction penalties. A more typical case might involve loading a

register, adding one, and then storing the register back to memory in the fall-through path

of the branch, as shown in Figure 5.8.

47

 testl $1, %R1; testl $1, %R1;
 jeq label; setne %R3;
 movl (), %R2; movl (), %R2;
 addl $1, %R2; addl %R3, %R2;
 movl %R2,(); movl %R2, ();
label:

 (a) (b)

Figure 5.8: More typical example of predication using the setcc instruction: (a) original
code, (b) after predication.

In this case, the predicated code always requires five instructions, whereas the original

code requires five instructions for the fall-through path but only two instructions when the

branch is taken. The predicated code still avoids the branch penalty, which may be

sufficiently substantial to justify the optimization. Additionally, superscalar processors

such as the K5 have many functional units, and five instructions are not equivalent to five

cycles. In this example, the code will execute in four cycles since the load is independent

of the first two instructions and can execute in parallel. However, accurate profile

information is required to identify sequences for which profiling is appropriate. In the

above code, if the branch is taken nearly all of the time, predication is not a good choice.

On the other hand, if the branch is taken closer to half of the time, it will probably be

difficult to predict, the fall-through path will be executed frequently, and predication will

improve performance.

Figure 5.9 shows the use of the sbb to eliminate branch instructions using another

form of predication. Instruction I0 sets the carry flag if R1 is greater than R2. The sbb

instruction subtracts its first operand from the second operand, and then subtracts a

constant one if the carry flag is set. Since the first and second operands are R3 in

instruction I1 in Figure 5.9, I1 will set R3 to negative one if the carry flag is set, or zero if

the carry flag is clear. Finally, instruction I2 sets R3 to positive one if it is zero, but does

48

not change R1 if it is negative one. This has the same effect as the code in Figure 5.9(a),

but requires fewer instructions and eliminates two branches.

 cmpl %R1, %R2 I0: cmpl %R1, %R2
 jg label1 I1: sbb %R3, %R3
 movl $-1, %R3 I2: orl $1 , %R3
 jmp label2
label1:
 movl $1, %R3
label2:

 (a) (b)

Figure 5.9: Predication using the sbb instruction: (a) original code, (b) optimized code.

The opportunities for sbb predication are limited, and the example in Figure 5.9 seems

contrived and unlikely to occur. However, sequences like this are frequently used in

comparison functions passed to the qsort library function. For example, the strcmp

library call could benefit from this optimization. Unlike the setcc predication example

above, sbb predication does not require profile information to be effective, since the fall-

through and taken path both execute the same number of instructions. When the

conditions are met, the optimization will always improve performance.

5.5 Zero-Extended Loads

To guarantee compatibility with all architectures, the HtoL conversion process follows

all unsigned character loads with an "and $255, %reg" operation. The and instruction

clears the upper part of the register, preserving only the byte loaded by the ld_uc

instruction. Many architectures, including the x86, support a zero-extended character load

instruction that makes the and instruction useless. Since the HtoL conversion process

places the and instructions immediately following the ld_uc operation, it is relatively

49

simple to detect this situation and delete the redundant and operations during Phase I

annotation.

5.6 Bit Field Handling

Figure 5.10 shows another example of inefficient code introduced by the Lcode

conversion. The code is generated for C source code that uses bit fields.

andl $8, %eax andl $8, %eax
sarl $3, %eax
jne label jne label

 (a) (b)

Figure 5.10: Better bit field handling: (a) original code, (b) after optimization.

If eax is not live on either path of the branch, then the optimization can eliminate the

right-shift. This simple optimization performed during Phase II pre-pass peephole

optimizations. If multiple bit field operations exist, then the test optimization discussed

earlier may convert the and instructions into test operations.

5.7 Pointer Post-Increment

Figure 5.11 shows another example of inefficient code introduced by the Lcode

conversion. The code is generated from pointer post-increments in code such as "*ptr++".

50

I0: R1 <- (ptr); I0: R1 <- (ptr);
I1: R2 <- R1; I4: R3 <- (R1);
I2: R1 <- R1 + 1; I2: R1 <- R1 + 1;
I3: (ptr) <- R1; I3: (ptr) <- R1;
I4: R3 <- (R2);

 (a) (b)

Figure 5.11: Pointer post-increment optimization: (a) original code, (b) optimized code.

The optimized code schedules instruction I4 above the pointer increment instruction I2,

provided that the addresses in instructions I4 and I5 can be disambiguated. Instruction I1

is then no longer necessary (provided R2 is not live outside the sequence shown above)

and can be deleted. Since the optimized code in Figure 5.11(b) is closer to the original

source than the code in Figure 5.11(a), I4 and I5 always reference different addresses and

the optimization is legal.

5.8 Multiple Return Statements

Lcode functions are limited to a single epilogue block containing the function cleanup

and return statement. The single epilogue restriction is necessary for dataflow analysis and

for the trace selection and tail duplication algorithms used in superblock formation. For

functions that have multiple return statements, the Lcode contains jump instructions that

branch to the common epilogue control block. Since the function cleanup on the x86

typically requires a single instruction to deallocate the stack frame, more efficient code can

be generated by replacing the jump instruction with a copy of the epilogue. To minimize

the interaction of this optimization with other parts of the IMPACT environment, it is

performed at the end of Phase II after register allocation and post-pass scheduling.

51

5.9 Controlling Inappropriate Superscalar Optimizations

 Some register-intensive optimizations in the machine independent optimizers have

severely detrimental effects on the x86 architecture. For example, Lopti can perform

strength reduction on operations that are linear functions (add, subtract, multiply) of

induction variables within a loop by replacing the linear function with an increment of a

new loop induction variable [19]. Figure 5.12 shows an example of this transformation.

loop: ... loop: ...
R2 <- R1 * 160; R2 <- R2 + 160;
...
R1 <- R1 + 1; R1 <- R1 + 1;
jge loop; jge loop;

(a) (b)

Figure 5.12: Induction variable strength reduction for multiply instructions: (a) original
code, (b) after induction variable strength reduction.

In Figure 5.12, the multiply of the induction variable R1 is replaced by a less expensive

addition operation. Unfortunately, the code in Figure 5.12(b) increases register pressure by

extending the live range of R2 so that it is live for the entire loop body. Additionally, the

machine-independent version of this optimizations performs strength reduction for all

linear functions, including add, subtract, and shift instructions to break flow dependences

and increase scheduling freedom. On the x86 architecture, the advantages of additional

scheduling freedom are greatly outweighed by the disadvantages of increased register

pressure. In fact, many of the linear functions that are candidates for induction variable

strength reduction are multiplies of two, four, or eight that would otherwise be merged into

complex addressing modes and executed at no cost. These multiply instructions are

common in loops that access memory using the induction variable as an array index.

52

Strength reductions such as the one in Figure 5.12 above are beneficial since they

reduce the cost of performing the multiply operation. To reap these benefits but avoid the

penalties associated with strength reduction for simple linear functions, Lopti now

performs strength reduction only for complicated multiply instructions when the target

architecture is the x86. Because Lopti is a machine-independent optimizer, it is important

to make these changes as unobtrusive as possible. Fortunately, the machine specification

(mspec) mentioned in Chapter 2 provides a convenient mechanism for describing

machine-specific features, such as the scaled address modes supported by the x86. Lopti

selects the algorithm to use for induction variable strength reduction based on the mspec

information: if scaled address modes are supported, then only multiply instructions can be

strength reduced. Otherwise, all linear functions of induction variables are candidates.

5.10 Register Saving Convention

Research has shown that the best register-saving convention is a mix of callee-save and

caller-save registers [20]. However, this research was conducted on machines that have

significantly more (at least 50%) registers than the x86. Still, the standard x86 UNIX

register-saving convention follows this guideline and designates some of the x86 registers

(eax, ebx, ebx) as caller-save and the others as callee-save.

The x86 IMPACT code generator designates all registers as caller-save. Since the

architecture has so few registers, it seems likely that any reasonably large-sized function

will use all of them. IMPACT aggressively inlines smaller functions to create larger

functions that require more registers. Also, registers are allocated in a round-robin fashion

to maximize the opportunities for post-pass scheduling. These optimizations tend to

increase the number of registers that are used in a function, and the majority of functions

53

use all of the available registers and generate spill code to compensate. The caller-save

register convention is easier to implement than a hybrid technique, and several examples in

the SPECint92 suite clearly benefit from the caller-save convention. For example, consider

the function "eval" from the sc benchmark, shown in Figure 5.13.

double
eval(e)
 register struct enode *e;
{
 switch (e->op) {

...
 case '+': return (eval(e->left) + eval(e->right));
 case '-': return (eval(e->left) - eval(e->right));

 case '=': return (eval(e->left) == eval(e->right));

...
 }

}

Figure 5.13: A section of the "eval" function from the SC benchmark.

Each case in the switch statement makes a recursive call to eval until the leaves in the

expression tree are reached. With the caller-save register convention, no registers have to

be maintained across the function calls. The standard hybrid register-save convention must

save the scratch registers each time the eval is called, which can be significant because

evaluating the case block does not require many other instructions.

Library functions called from IMPACT-compiled functions still use the hybrid

register-save convention. Thus it is not necessary to save registers that are designated as

callee-save in the hybrid calling convention (eax, ebx, and edx) across library function

calls. Since the register allocator is not able to distinguish between library and other

function calls, the redundant spill operations are removed in a separate pass in the code

54

generator. This function uses a table of library function names to determine whether the

function call is to a library routine or a procedure that is part of the program being

compiled.

5.11 The Seventh Register

Figure 5.14 shows a standard x86 function entry and exit using the esp register as a

base pointer, and Figure 5.15 shows the stack frame that is allocated by the standard

function entry.

pushl %ebp movl %ebp, %esp
movl %esp, %ebp popl %ebp
subl $24, %esp ret

 (a) (b)

Figure 5.14: Base pointer stack frame: (a) function entry, (b) function exit.

Saved EBP

Return Addr

EBP

Incoming
 Parms

 Spill Space

ESP

Local Vars

FP Regs

Outgoing
 Parms

 Higher
Addresses

 Lower
Addresses

Figure 5.15: Stack frame layout for with base pointer stack frame.

55

Incoming parameters are accessed as positive offsets from the base pointer starting at

ebp+8. Local variables, register spill locations, and floating point variables are accessed at

negative locations from the ebp register. Outgoing parameters are pushed onto the stack

before a function call, moving the stack pointer down as each argument is pushed. After

the function returns, the stack pointer must be adjusted to deallocate the outgoing

arguments and return the stack pointer to its original location. Figure 5.16 shows an

example of a function call using the base pointer stack frame.

pushl $msg
pushl %ebx
pushl $_stderr
call _fprintf
addl $12, %esp

Figure 5.16: Function call using base pointer stack frame.

The base pointer and the stack pointer perform redundant functions in the stack frame

shown in Figure 5.15. Since the stack frame size is known at compile time, incoming

parameters, local variables, spill code, and floating point registers can all be accessed using

fixed offsets from the stack pointer, freeing up the base pointer for use as another general-

purpose register. At function entry, a single subtract instruction allocates the space on the

stack. At function exit, the stack frame is deallocated by adding the size of the stack frame

to the stack pointer.

However, the stack pointer can no longer move during outgoing parameter calls (i.e.,

push instructions cannot be used), since local variables and other values on the local stack

frame would no longer be at the same offset from the stack pointer. To solve this problem,

an area for outgoing parameters is reserved when the stack frame is allocated, as shown in

Figure 5.17.

56

Return Addr

Incoming
 Parms

 Spill Space

ESP

Local Vars

FP Regs

Outgoing
 Parms

 Higher
Addresses

 Lower
Addresses

Figure 5.17: New stack frame.

The outgoing parameter area must be large enough to accommodate the largest number

of parameters to any function called from the function allocating the stack frame.

Fortunately, this information is calculated during CtoH conversion, and is accessible

through a define operation in the Lcode representation. Figure 5.18 shows a function call

with the new stack frame.

movl $msg, 8(%esp)
movl %ebx, 4(%esp)
movl $_stderr, (%esp)
call _fprintf

Figure 5.18: Function call using new stack frame.

Since the stack frame is statically allocated during function entry, parameters no longer

have to be deallocated after a function call. This eliminates the addl instruction that was

necessary in Figure 5.16 above. In addition, the movl instructions in the new stack frame

57

may be cheaper to execute than pushl, since the movl needs only a store operation while

the pushl requires a store operation and an operation to update the stack pointer. The K5 is

one such processor that will execute movl instructions faster than pushl instructions. The

movl instructions are larger than the pushl instructions (three bytes instead of one byte),

but code expansion is less important than the savings in CPU cycles. Additionally, since

the new stack frame uses fewer instructions for function entry and exit, and requires no

cleanup after a function call, the code size may not be significantly different.

The real gain from the new stack frame is the availability of ebp as the seventh general-

purpose register. It is important to view the additional register not as merely a gain of one

register, but as a sixteen percent increase in the number of registers in the machine. The

seventh register reduces spill code and improves the effectiveness of aggressive

optimizations.

5.12 The Eighth Register

With the base pointer reclaimed as a general-purpose register, the only remaining

register is the stack pointer, which appears to be necessary for accessing local variables and

making function calls. This section describes a strategy for using the stack pointer as a

general-purpose register by placing the local variables, spill space, and floating point

registers in a static stack frame.

At function entry, the current stack pointer is saved in a global label. Incoming

parameters to the function are accessed at positive offsets from the stack pointer and are

loaded into registers. Once the incoming parameters have been loaded, the esp register

may be allocated as a general-purpose register. However, the esp register cannot be used

as an index register in a complex memory mode. This problem is handled using the

58

ill_reg mechanism described in Section 3.5. Local variables and spill space accesses are

converted from stack pointer references to fixed offsets from a GLOBAL_STACK_PTR.

The GLOBAL_STACK_PTR is a label that points to a large statically allocated section of

memory, as shown in Figure 5.19 below.

 Spill Space

Local Vars

FP Regs

Outgoing
 Parms

Return Addr

Incoming
 Parms

ESP

 Higher
Addresses

 Lower
Addresses

GLOBAL_
STACK_PTR

Figure 5.19: Eighth register stack frame.

As long as the eighth register function is a leaf function (i.e., the function contains no

call instructions), the stack pointer is not required until the end of the function and can be

allocated as a general-purpose register. The epilogue restores the original stack pointer,

pops the return address from the original stack, and returns to the calling function. Even

nonleaf functions can use the eighth register if the original stack pointer is restored before

the outgoing parameters are pushed onto the stack. If the esp register is in use at the time

of the function call, the register allocator will insert the necessary spill code to save it before

the saved stack pointer is reloaded. Figure 5.20 shows an example of a function call from

an eighth register function in which the esp register is live at the time of the call.

59

I0: movl %esp, GLOBAL_STACK_FRAME+76;

I1: movl SAVED_STACK_PTR, %esp
I2: pushl %ebx
I3: pushl $5
I4: call _foo

I5: movl GLOBAL_STACK_FRAME+76, %esp

Figure 5.20: Function call from eighth register function.

Instructions I0 and I6 are only necessary when esp is live at the time of the function

call. Instruction I1 restores the original stack pointer that was saved in the function

prologue. Instructions I2 and I3 push the outgoing parameters onto the stack. Since the

function prologue does not allocate stack space for the outgoing parameters, pushl

instructions are required to store the argument and update the stack pointer. This technique

is similar to the function call used in the base pointer stack frame described in Section 5.11,

and suffers from many of the same disadvantages. However, unlike the base pointer stack

frame, parameters do not need to be deallocated since the original stack pointer is not

needed after the function returns. If another function call must be made, the original stack

pointer can be loaded from the SAVED_STACK_POINTER location.

The main caveat in the function call strategy described above is that no eighth register

function can ever call another eighth register function, since they both use the same global

stack frame. The callee function would overwrite the local variables and spilled registers of

the caller function. One solution to this problem is to use local static stack frames for each

eighth register function, but this has a negative effect on data cache performance. Another

solution is to guarantee that the functions called from an eighth register function are not

also eighth register functions. This requires a complicated call graph analysis and a

heuristic for selecting the eighth register functions. The current implementation does not

use the call graph, but simplifies the problem by transforming only leaf functions and

60

functions that call only library routines. Future work may implement a more aggressive

algorithm if the technique significantly improves performance.

When using the stack pointer as a general-purpose register, the effect of interrupts for

handling I/O events and task switching must be considered. Since the esp register will

most likely not point to the user stack, it might be possible for interrupts that save state

information on the stack to crash the system. Fortunately, the x86 UNIX implementations

execute interrupts at a different processor privilege level. When the interrupt occurs, the

processor switches to a new stack when it changes privilege level [3]. The stack swapping

is completely transparent, and the value of esp in the user program is completely isolated

from the stack environment of the interrupt.

Eighth register functions are only slightly more expensive than the standard seventh

register functions described in the previous section. At function entry, the eighth register

function uses a store instruction to save the stack pointer instead of a subtract operation to

allocate the stack frame. At function epilogue, the eighth register function loads the saved

stack pointer while the standard function deallocates the stack frame with an add operation.

The overhead for function calls requires an extra load instruction to restore the saved stack

pointer and extra overhead because push instructions must be used instead of stores for the

outgoing parameters. This overhead makes it desirable to limit the number of calls in

eighth register functions.

 Since the stack frame is global for all eighth register functions, the impact on cache

performance is probably negligible. Private static stack frames might decrease the cache hit

ratio by reducing the frequency of stack references, and this should be considered if the

optimization is made more aggressive.

61

5.13 Improved Function Entry

The new stack frame described in Section 5.11 decrements the stack pointer at function

entry and then loads the incoming parameters from the stack. Because the stack pointer is

decremented first, the function entry creates a flow dependence between the allocation

instruction and the instructions that load the incoming parameters. Figure 5.21 shows this

dependence, along with a simple instruction reordering to eliminate it.

I0: subl $40, %esp I0: movl 4(%esp), %edi

I1: movl 44(%esp), %edi I1: movl 8(%esp), %esi
I2: movl 48(%esp), %esi I2: subl $40, %esp

 (a) (b)

Figure 5.21: Scheduling function entry to remove flow dependence: (a) original function
entry, (b) improved function entry.

The improved function entry replaces the true dependence on the esp register between

instruction I0 and the other two instructions with an anti-dependence. The anti-dependence

can be eliminated by register renaming in the K5 hardware, and will execute in one cycle as

opposed to two in the original code.

5.14 Built-in Compiler Functions

Library functions that are very small can be dominated by the function call overhead.

For functions such as strcmp and strlen, it may be beneficial for the compiler to

automatically inline them as compiler built-in functions. Other compilers (such as gcc) use

compiler built-ins to utilize the special string-handling instructions of the x86, such as

movs and scas. On processors such as the K5 and P6, these instructions trap to microcode

62

routines and are likely to be more expensive than sequences of simple instructions. Profile

information indicates that strings passed to strcmp and strlen are typically very short

(approximately four characters), which implies that the function call overhead may be

significant.

Built-in functions are implemented by replacing the function call in Phase II annotation

with a sequence of simpler operations that perform the same function. Annotation is done

very early in Phase II, and thus the instructions that store outgoing parameters and move

the function result are easy to locate and integrate into the inlined code. The code for the

built-in function may be optimized and scheduled with the surrounding code by later

passes in Phase II.

Another important built-in function is alloca, used in the gcc benchmark from the

SPECint92 suite [17]. Alloca allocates temporary space on the local stack frame that is

automatically freed when the function exits. A function to emulate this behavior is

included with the gcc benchmark, but it is rather slow. The code uses malloc to allocate the

memory, and employs a heuristic to determine approximately when the function has ended

and the memory should be deallocated. If alloca is implemented as a built-in function, only

a few instructions are required to move the stack pointer to allocate the requested memory.

Since the built-in alloca function moves the stack pointer, the function cannot reference

the local stack frame at fixed offsets from the esp register. Thus, the function must use the

base pointer stack frame described in the beginning of Section 5.11. However, the alloca

stack frame uses a shifting outgoing parameter space so that push instructions and

outgoing parameter deallocation are not necessary. Figure 5.22 shows the alloca stack

frame.

63

Return Addr

Incoming
 Parms

 Spill Space

EBP

Local Vars

FP Regs

Outgoing
 Parms

 Higher
Addresses

 Lower
Addresses

ESP

Return Addr

Incoming
 Parms

 Spill Space

EBP

Local Vars

FP Regs

Outgoing
 Parms

ESP

ptr

Alloca
Block

 (a) (b)

Figure 5.22: The alloca stack frame: (a) before alloca call, (b) after alloca call.

The alloca call returns a pointer (marked as "ptr" in Figure 5.22) to the beginning of the

outgoing parameters section using an lea instruction. The stack pointer is moved

downward by subtracting the size of the alloca request. Because outgoing parameters are

accessed with positive offsets from the stack pointer, this effectively moves the outgoing

parameter space with the stack pointer. Since the outgoing space has been allocated in the

stack frame, arguments can be passed without using pushl instructions, and the parameter

space does not need to be deallocated. Local variables, spill space, and floating-point

registers are all accessed using negative offsets from the base pointer.

Since IMPACT uses a caller-save convention, spill code must be inserted to maintain

the base pointer across function calls. The register allocator will not insert this spill code

64

for macro registers, so the save and restore instructions are explicitly inserted by the code

generator.

65

6. PERFORMANCE EVALUATION

The performance of the IMPACT x86 code generator was evaluated on a 90 MHz

Pentium system running Unixware version 1.1. Table 6.1 shows the hardware features of

the evaluation machine.

Table 6.1: Hardware features of evaluation machine.

Processor: 90 MHz Intel Pentium

Main Memory: 48 MB RAM

Cache: 256K L2

Disk: 520 MB Connor IDE

Tables 6.2 and 6.3 below show the performance of the Intel Reference C Compiler

(version 2.0.8) and GNU gcc (version 2.5.8) compared to the IMPACT x86 compiler.

Intel publishes SPEC results with the Intel Reference C Compiler. The flags specified in

the SPEC reports for the compiler (-tp p5 -ip -dn) are used here. These flags specify the

Pentium as the target processor (-tp p5), interprocedural analysis for inlining and function

cloning (-ip), and static linking (-dn). Additionally, the Intel Reference compiler supports

feedback directed optimizations (profiling), as does IMPACT. The "Intel Profile" column

in Table 6.2 reflects the performance of the compiler when the benchmarks are profiled on

66

the same inputs used for IMPACT profiling. The programs are recompiled using the Intel

feedback-directed optimizations. The "IMPACT Profile" columns in Tables 6.2 and 6.3

reflect the performance of the IMPACT compiler using feedback-directed superscalar

optimizations (with the Ltrace superscalar optimizer). The baseline IMPACT numbers use

profile information for inline function expansion and classic code optimizations. The flags

used for gcc specify the highest level of optimization for the compiler (-O2 -fomit-frame-

pointer -m486 -static). Gcc does not optimize specifically for the Pentium, and thus the

machine type was specified as 486 (-m486).

The benchmarks used in the evaluation include the six benchmarks from the

SPECint92 benchmark suite [17] and five other common application programs. Table 6.2

shows the speedup comparison for the three Unixware compilers, and Figures 6.1 and 6.2

show graphs that present the same information.

Table 6.2: Speedup comparison of Unixware compilers.

Benchmark Intel Intel
Profi le

IMPACT IMPACT
Profi le

gcc

espresso 1.00 1.11 1.00 1.02 0.82
l i 1 .00 1.00 1.15 1.21 0.83
eqntott 1 .00 1.00 1.11 1.12 0.61
compress 1.00 0.99 0.96 0.96 0.92
sc 1.00 1.02 1.04 1.06 0.35
gcc 1.00 0.99 1.10 1.10 1.13
SPEC Avg. 1 .00 1.02 1.06 1.08 0.78

cmp 1.00 0.97 0.84 1.10 0.90
eqn 1.00 1.10 0.75
grep 1.00 1.04 0.82 0.87 0.75
lex 1 .00 0.99 0.95 1.00 0.95
wc 1.00 1.09 1.17 1.19 0.75
Application Avg. 1 .00 1.02 0.96 1.05 0.82

Total Avg. 1 .00 1.02 1.01 1.07 0.80

67

Relative Performance of Unixware Compilers
for SPEC Benchmarks

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

e
sp

re
ss

o li

e
q

n
to

tt

co
m

p
re

ss sc g
cc

S
P

E
C

 a
vg

Intel

Intel Prof.

IMPACT

IMPACT Prof.

gcc

Figure 6.1: Relative performance of Unixware compilers for SPEC benchmarks.

Relative Performace of Unixware Compilers
for Selected Applications

0.00

0.20

0.40

0.60

0.80

1.00

1.20

cmp eqn grep lex w c App
avg

Intel

Intel Prof.

IMPACT

IMPACT Prof.

gcc

Figure 6.2: Relative performance of Unixware compilers for selected applications.

68

The Intel Reference Compiler failed to correctly compile the eqn application program.

Therefore the eqn speedup in the above graph uses IMPACT as the reference. Also, the

Intel Reference Compiler failed when compiling eqntott with profile information, and thus

the eqntott performance without profiling was used in Table 6.2 and Figure 6.1. The Intel

Reference Compiler failed when using feedback-directed optimizations and interprocedural

analysis (-ip) for the espresso and gcc benchmarks, and thus interprocedural analysis was

disabled to generate the numbers for these benchmarks in the "Intel Profile" column. Due

to time constraints, the IMPACT numbers for the gcc benchmark in Table 6.2 and Figure

6.1 above do not use feedback-directed superscalar optimizations. Finally, the gcc

compiler uses an additional flag (-fwritable-strings) to correctly compile some badly

written code in the sc benchmark. This may partially explain the especially poor

performance of the gcc compiler on the sc benchmark.

The IMPACT x86 compiler exceeds all Unixware compilers when compiling for the

SPEC benchmarks, and is very competitive with the Intel Reference Compiler for the

selected application benchmarks. When the IMPACT superscalar optimizations are

enabled, IMPACT is the fastest compiler for nine of the eleven benchmarks programs and

the fastest in both the SPEC average and the application average. The results are even

more impressive considering that IMPACT does no special scheduling for the Pentium

processor. The IMPACT executables used in this study were scheduled for the 486

processor. On new processors such as the K5, we expect that better scheduling and

IMPACT's advantage in superscalar optimizations will further widen the gap between

IMPACT and the other compilers.

Table 6.3 compares the performance of gcc and IMPACT on the Linux operating

system for the SPEC benchmarks, and Figure 6.3 shows a graph that presents the same

information.

69

Table 6.3: Speedup comparison of Linux compilers.

Benchmark gcc IMPACT IMPACT
Profi le

espresso 1.00 1.18 1.18
l i 1 .00 1.39 1.43
eqntott 1 .00 1.74 1.76
compress 1.00 1.14 1.13
sc 1.00 3.44 3.53
gcc 1.00 1.04 1.04

avg. 1 .00 1.66 1.68

Relative Performance of Linux Compilers for
SPEC Benchmarks

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

e
sp

re
ss

o li

e
q

n
to

tt

co
m

p
re

ss sc g
cc

S
P

E
C

 a
vg

gcc

IMPACT

IMPACT Prof.

Figure 6.3: Relative performance of Linux compilers for SPEC benchmarks.

Table 6.3 shows that IMPACT is more than 60% faster than gcc for the SPEC

benchmarks. As mentioned previously, a large part of this advantage is due to the tuning

70

in the IMPACT x86 code generator for the SPEC suite. Also, gcc appears to have some

difficulty in producing an efficient executable for the sc benchmark.

71

7. CONCLUSIONS AND FUTURE WORK

This thesis discusses the modifications made to the IMPACT compiler to produce

efficient code for the x86 architecture. The thesis is intended to be used as the reference

document for the IMPACT x86 code generator for future work on the project. The

performance of the IMPACT x86 compiler is shown to exceed that of several

commercially and publicly available compilers for the Pentium processors, including the

compiler that Intel uses for generating SPEC performance numbers. It is expected that the

performance gap will widen when IMPACT is run against these compilers on superscalar

x86 machines such as the AMD K5.

The basic optimizations in the code generator are reaching a state of diminishing

returns. The work described in this thesis has brought the code generator to the point at

which it is extremely competitive with other compilers for 486 and Pentium machines.

Future work will focus on register pressure heuristics to guide superscalar optimizations

and on effective scheduling for superscalar x86 processors. As the x86 market moves

towards wide-issue superscalar processors such as the AMD K5 and the Intel P6, these

superscalar optimizations will become increasingly important.

72

REFERENCES

[1] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, "IMPACT:
An architectural framework for multiple-instruction-issue processors," in
Proceedings of the 18th International Symposium on Computer Architecture, pp.
266-275, Toronto, Canada, May 1991.

[2] Intel486 Microprocessor Family Programmer's Reference Manual. Intel Co., 1992.

[3] Pentium Processor User's Manual, Volume 3: Architecture and Programming
Manual. Intel, Co., 1993.

[4] W. M. Johnson, Superscalar Microprocessor Design. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1991.

[5] W. F. Dugal, "Code scheduling and optimization for a superscalar x86
microprocessor," M.S. thesis, Department of Electrical and Computer Engineering,
University of Illinois, Urbana, IL, 1995.

[6] R. A. Bringmann, "Template for code generation development using the IMPACT-I
C compiler," M.S. thesis, Department of Computer Science, University of Illinois,
Urbana, IL, 1992.

[7] S. A. Mahlke, "Design and implementation of a portable global code optimizer,"
M.S. thesis, Department of Electrical and Computer Engineering, University of
Illinois, Urbana, IL, 1991.

[8] W. W. Hwu and P. P. Chang, "Efficient instruction sequencing with inline target
insertion," IEEE Transactions on Computers, vol. 41, pp. 1537-51, December 1992.

[9] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, "The superblock: An effective technique for VLIW and superscalar
compilation," The Journal of Supercomputing, vol. 7, pp. 229-248, January, 1993.

73

[10] P. P. Chang and W. W. Hwu, "The Lcode language and its environment," Center for
Reliable and High-Performance Computing, University of Illinois, Urbana, Internal
Report, April 1991.

[11] P. P. Chang, D. M. Lavery, and W. W. Hwu, "The importance of prepass code
scheduling for superscalar and superpipelined processors," Center for Reliable and
High-Performance Computing, University of Illinois, Urbana, Tech. Rep. CRHC-91-
18, May 1991.

[12] R. E. Hank, "Machine independent register allocation for the IMPACT-I C
compiler," M.S. thesis, Department of Electrical and Computer Engineering,
University of Illinois, Urbana, IL, 1993.

[13] Intel Co., "Optimizations for Intel's 32-Bit Processors," Intel Co., Application Note
AP-500, Intel Co., February 1994.

[14] D. A. Patterson, "Reduced instruction set computers," Communications of the ACM,
vol. 28, pp. 8-21, January 1985.

[15] A. D. Booth, "A signed binary multiplication technique," Quarterly Journal of
Mechanics and Applied Mathematics, vol. 4, no. 4, pp. 81-85, August 1984.

[16] Y. Wu, "Strength reduction of multiplications by integer constants," ACM SIGPLAN
Notices, vol. 30, no. 2, February 1995.

[17] SPEC Benchmark Suite, 1992.

[18] S. McFarling and J. L. Hennessy, "Reducing the cost of branches," in Proceedings of
the 13th International Symposium on Computer Architecture, pp. 296-403, Tokyo,
Japan, June 1986.

[19] P. P. Chang, S. M. Mahlke, and W. W. Hwu, "Using profile information to assist
classic code optimizations," Software: Practice and Experience, vol. 21, pp. 1301-
21, December 1991.

[20] J. W. Davidson and D. B. Whalley, "Methods for saving and restoring register
values across function calls," Software: Practice and Experience, vol. 21, pp. 149-
65. February 1991.

