
c
 Copyright by Christopher Neith George, 1999

A FRAMEWORK FOR INSTALL-TIME OPTIMIZATION

OF BINARY DYNAMIC-LINK LIBRARIES

BY

CHRISTOPHER NEITH GEORGE

B.S., University of Illinois at Urbana-Champaign, 1997

THESIS

Submitted in partial ful�llment of the requirements

for the degree of Master of Science in Electrical Engineering
in the Graduate College of the

University of Illinois at Urbana-Champaign, 1999

Urbana, Illinois

ACKNOWLEDGMENTS

The work described in this thesis has undergone many evolutions and owes many

debts to many people. I would like to thank my advisor, Professor Wen-mei Hwu, for his

teaching and advice and for giving me a chance to prove that I could get the job done.

John Gyllenhaal was a source of much advice and a fountain of valuable information re-

garding the machine description language and the IMPACT schedule manager. Matthew

Merten and I have been working side-by-side on this project for the past year and a half,

and he has been a tremendous help in working through ideas, debugging my code, and

doing anything else humanly possible to see that the project continued. Matt developed

the instruction conversion to Mcode in the x86toM module and has done the work to

incorporate object �les into the framework. Mike Thiems helped to develop much of the

framework and worked extensively on the optimizations and binary code generation in

the Lbx86 module. The decoding framework and PEwrite code were developed in the

initial phase of the project with John Sias, Guanyao Cheng, and myself, and John was

an excellent mentor. Thanks to all of the members of the IMPACT group and AMD's

Advanced Architecture Labs for their technical guidance. Special thanks go to my family

for all the years of support and encouragement.

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 PREVIOUS WORK . 4

3 PROCESS OVERVIEW . 7

4 BINARY INPUT . 11

4.1 PE File Format . 11
4.2 Dynamic-Link Libraries . 14

5 PHASE I - DECODING THE BINARY . 18
5.1 PE/DLL/OBJ File Input . 18

5.2 Instruction Information Collection . 18
5.3 Instruction Flow Decoding . 20

5.3.1 Entry point identi�cation . 24
5.3.2 Basic block formation . 25

5.4 Global Memory Map Construction . 26

5.5 Function Formation . 27
5.6 PE Table Usage . 28

5.6.1 Base relocation table . 29

5.6.2 Symbol table . 29
5.6.3 Import and export tables . 30

5.7 Jump and Call Table Discovery . 30
5.8 Callback Detection . 33
5.9 Exception Handler Identi�cation . 34

5.10 Mcode Conversion . 35

6 PHASE II - OPTIMIZATION . 38

6.1 Schedule Manager . 38
6.2 Machine Descriptions . 39

6.2.1 Anatomy of an MDES . 40
6.2.2 AMD K6-2 MDES . 41

7 PHASE III - BINARY GENERATION . 46

iv

8 RECONSTRUCTING THE BINARY . 48

8.1 Merge Modi�cations with the Original 48

8.2 Address Fixups . 49

8.3 PE Table Adjustments . 50

8.3.1 Import table �xup . 51

8.3.2 Export table �xup . 51

8.3.3 Symbol table �xup . 52

8.3.4 Base relocation table �xup . 53

9 EXPERIMENTAL RESULTS . 56

9.1 Using the Framework to Reschedule with MDES 58

9.2 Using the Framework to Optimize a DLL 60

10 CONCLUSION . 63

REFERENCES . 65

APPENDIX A BINARY DECODER STRUCTURES 67

APPENDIX B MACHINE DESCRIPTION STRUCTURE 73

APPENDIX C AMD K6-2 MACHINE DESCRIPTION 75

v

LIST OF TABLES

Table Page

5.1 Types of decode/entry points stored in EntryPt structure. 24

6.1 Types of instruction decode categories in the AMD K6-2 processor. 42

6.2 RISC86 operation groups and corresponding K6-2 execution units. 44

9.1 Benchmarks used with the optimization framework in thesis experiments. . . 57

vi

LIST OF FIGURES

Figure Page

3.1 Steps in the binary optimization framework. 8

5.1 Pseudocode algorithm for decoding one instruction in the binary. 20

5.2 Sample decoded instruction from the speedsim.dll binary. 21

5.3 Pseudocode algorithm for instruction
ow decoding. 22

5.4 Sample instruction
ow from the decoding of speedsim.dll. 23

5.5 Pseudocode algorithm for analyzing jump and call tables. 31
5.6 Sample one-level jump table from Microsoft DirectX's d3dim.dll binary. . . . 32

5.7 Pseudocode algorithm for analyzing callbacks. 33
5.8 Sample callback from Microsoft DirectX's d3dim.dll binary. 34
5.9 Suspected exception handling code from DirectX's d3dim.dll binary. 35

5.10 Some sample Mcode formats. 37

6.1 Excerpts from Resource and Resource Usage sections of K6-2 MDES. 43

6.2 Excerpts from Table Option and Reservation Table of K6-2 MDES. 45

8.1 Sample �xup �le entry from 129.compress. 49
8.2 Pseudocode algorithm for processing �xups outside the text and data. 50

8.3 Sample export �xup �le entry from speedsim.dll. 52
8.4 Pseudocode algorithm for new symbol table construction. 53

8.5 Pseudocode algorithm for new base relocation table construction. 55

9.1 Reoptimization of sample SPEC95 benchmarks using K6-2 MDES. 59
9.2 Reoptimization of speedsim.dll and speedsim.exe. 61

A.1 BinaryFileInfo structure. 68
A.2 SectionInfoNode structure. 69

A.3 EntryPt structure. 69

A.4 InstrInfo structure. 70
A.5 BlockInfo structure. 71

A.6 MemoryMap structure. 71
A.7 FunctionNode structure. 72

A.8 BaseRelocEntry structure. 72

B.1 Basic structural relationship of a machine description. Bold sections and

arrows indicate compiler-independent features. 74

vii

CHAPTER 1

INTRODUCTION

Today's computer systems have evolved from highly specialized research units into

multi-functional machines with a wide application base. Computers are equipped to ful�ll

many needs, and many di�erent machines can be supplied to satisfy the same demand.

Consequently, the application software available on the market is written and compiled

generically to run on a variety of machines in many di�erent situations.

As a result of this generic compilation, commercial compilers do not incorporate tar-

geted optimizations designed to take advantage of processor-speci�c features. The use

of a reoptimization system can allow individual users to tailor their software to the par-

ticular features of their machine. By incorporating the reoptimization into the software

installation, the additional time necessary to process the binary becomes relatively trans-

parent to the user. Furthermore, install-time optimization allows the system to analyze

the processor's features and take advantage of the information included in the binary by

the compiler, without adding overhead to the actual execution of the binary.

The IMPACT binary reoptimization framework accomplishes this static reoptimiza-

tion without the need for program source code or any sort of access to the linker or

loader. The framework can be con�gured to perform the transformations at install-time.

The framework currently targets the Intel x86 instruction set [1] plus MMX and AMD

1

3DNow! [2] extensions and executes under Microsoft's 32-bit Windows operating systems

(Windows 95/98 and Windows NT).

The framework is capable of analyzing binary executables (EXEs), object �les (OBJs),

and dynamic-link libraries (DLLs). The increasingly common trend among software

developers is to insert commonly and intensively executed code in DLLs for shared access

by many executables. Additionally, software patches and updates can be released through

DLLs rather than by supplying a new copy of the main executable. By focusing on

the optimization of DLLs, the framework can achieve a bene�t for a wide variety of

applications without having to modify the main executables. As users update their

systems, or as new enhancements reach the industry, the DLLs can be reoptimized with

relative ease.

This thesis describes the static code discovery algorithms employed by the IMPACT

binary reoptimization framework and expands upon some optimization and binary write-

back issues not explored in the theses of M.S. Thiems [3] and M.C. Merten [4]. When

taken together, the three theses provide a complete description of the methods and ben-

e�ts of the optimization framework, as well as the issues and future work involved. In

this thesis, Chapter 2 summarizes some related work in the area of optimization. Chap-

ter 3 provides an overview of the binary optimization framework. Chapter 4 describes

the format of the binary input to the optimizer. Chapter 5 details the process of code

discovery and decoding the binary. Chapter 6 explains some optimizations related to

code rescheduling based upon machine resources. Chapter 7 concerns the generation of

the optimized binary code, and Chapter 8 describes the writeback of the code to a new

2

binary �le. Chapter 9 provides some experimental results to validate the approach and

operation of the framework. Chapter 10 analyzes the impact of the work and discusses

possible future enhancements. The appendices contain the structures used to represent

the components of the binary, as well as a machine resource description for the AMD

K6-2 processor.

3

CHAPTER 2

PREVIOUS WORK

At this point, others in both industry and academia have also undertaken e�orts

to analyze executables. Researchers at Compaq's Digital Equipment Corporation have

developed the Digital FX!32 software package to allow 32-bit x86 Windows applications

to run on a Digital Alpha workstation running Windows NT [5]. FX!32 employs seven

modules to facilitate the translation. First, a transparent agent launches a 32-bit x86

application. Next, a runtime initializes the execution environment and loads the code

image along with code fragments, or jackets, allowing the use of Alpha Windows NT API

routines. An emulator then runs the x86 application.

During the �rst run of the program, the emulator executes the entire application on

the Alpha NT platform and gathers pro�le information. A translator operates in the

background and generates a translated �le image based upon the information from the

emulator. As translated code becomes available, it is fed to the emulator. On subsequent

runs of the program, the emulator serves mainly as a backup to the translated code and

activates when untranslated code is encountered. A database collects the pro�le data

from the emulator, as well as the translated code images, for further use by the system.

A server retains this database and initiates operation of the translator.

4

The FX!32 suite di�ers greatly from the framework established in this thesis. FX!32

relies on runtime pro�le data, rather than static analysis of the binary, and accomplishes

translation through examination of this pro�le data and modi�cation of the NT loader.

Furthermore, the translator relies on the insertion of jackets, or code hooks, to direct

the application to call the Alpha Windows NT API instead of the x86 API. While the

goal of both frameworks is the rapid execution of applications on a certain platform, the

translations are implemented in vastly di�erent ways. FX!32 relies heavily on the NT

loader and source code speci�c to the DEC Alpha, while the IMPACT binary translator

is a more general-purpose, nonintrusive framework that also incorporates a large number

of optimization capabilities.

The Morph system from Harvard University [6] integrates operating system and com-

piler technology to support program optimizations based upon pro�le data. While Morph

does not require application source code, it needs an intermediate-form representation to

perform its optimizations and cannot derive the intermediate form on its own. Addition-

ally, Morph requires modi�cations to the UNIX kernel to collect the pro�le data upon

which the optimizations are based.

The Morph system employs three main elements for optimization: the Morph Moni-

tor, Morph Editor, and Morph Manager. The Monitor watches the application execution

and collects pro�le data in conjunction with the modi�ed UNIX kernel. The Manager

processes the pro�le data o�-line to convert it into a form usable by the Editor. The

Editor uses the pro�le data and the supplied intermediate representation to perform op-

timizations. The compiler portion of the Morph Editor is based upon Stanford's SUIF

5

compiler [7]. This thesis proposes a binary translation and optimization framework that

creates its own intermediate representation from the supplied compiled binary and per-

forms rapid optimization at install time with no modi�cation to the operating system or

kernel.

At the University of Washington, researchers have designed an API that can be used

to develop tools for the measurement and optimization of Win32 x86 binaries. The

system, known as Etch [8], requires no source code and allows the user to analyze the

binary, evaluate program performance, and improve program performance. Etch di�ers

from the IMPACT binary optimization framework in the method of code discovery. It

also relies on outside developers to use the Etch API in their optimization e�orts, while

the IMPACT framework presents a uni�ed system of decoding, optimizing, and binary

rewriting. Additionally, Etch retains a copy of the original code in the optimized binary,

while the IMPACT binary optimizer writes one optimized binary to prevent code size

explosion.

6

CHAPTER 3

PROCESS OVERVIEW

The focus of the IMPACT binary optimization framework is to provide accurate and

reproducible function-level pro�le data for commonWin32 applications and dynamic-link

libraries and to develop an interface into x86 Portable Executable (PE) binaries for binary

reoptimization. The framework operates without any source code, and symbol informa-

tion is optional. The system functions under both Windows NT and Windows 95/98

and does not modify any kernel, loader, or system components. The binary optimiza-

tion framework is separated into four phases: decoding the binary, optimizing the code,

regenerating the new code and data bytes, and reconstructing the binary executable, as

shown in Figure 3.1.

Disassembly of the binary takes place during Phase I in the x86toM module, and, in

order to facilitate code discovery, the optimizer extracts information stored in the PE

�le headers and tables. The header contains the sizes and o�sets of the .text, .data,

and other sections. The base relocation table is extracted from the header and is used

by the optimizer to verify that addresses encountered are valid pointers and not simply

data bytes. If present, the import and export tables reveal functions imported from

external DLLs and list the addresses of functions that are being made available to other

executables. Similarly, if available, the symbol table is read in and used to ensure that all

7

File

Processing Step

Key:
PEwrite/COFFwrite

Processed Fixups

Optimized Mcode

IMPACT IR Mcode Fixups

Windows 32-bit
EXE, DLL, or OBJ

Temp. Object File

Windows 32-bit
Optimized

EXE, DLL, or OBJ

Phase I

Phase II

Phase III

x86toM - decoding

Lbx86 - optimization

Lbx86 - binary generation

Figure 3.1 Steps in the binary optimization framework.

function entry points have been examined. The pointers within the headers and tables

are adjusted during the translation process to re
ect the reordering of functions and

sections and the increase in size of the sections due to optimizations and pro�le probe

insertions.

The initial entry point extracted from the �le header and the other decode points

taken from the export table are pushed onto an entry point stack. Code discovery begins

by popping the initial entry point o� the stack, and decoding continues through the

8

corresponding basic block. If a call is encountered, the call address is explored, and the

return address is pushed on the stack for future decoding. Jump addresses are pushed

onto the stack for exploration after the current basic block has been decoded. Once

the current stream has been completely decoded, the next decode point is popped o� of

the stack. Potential callback addresses and jump table o�sets are also stored for further

exploration. Immediate operands and memory references are also pushed on the stack, so

they can be examined for addresses in the text section or tables of text section addresses

residing in the data section. The entries in the symbol and base relocation tables are

examined as a backup method to ensure that all functions have been decoded.

All instructions are fully decoded into IMPACT's intermediate Mcode representation,

a format that allows complete representation of the x86 instruction set, including MMX

and 3DNow! instruction set extensions. As instructions are decoded, functions and their

corresponding basic blocks are identi�ed and labeled. From this information, program

control
ow can be determined for use in the optimization phase.

After all functions and their constituent instructions have been converted into Mcode,

the optimizer shifts to Phase II and the Lbx86 module to perform optimizations and

code rescheduling. The information stored in the Mcode, MemoryMap, and InstrInfo

structures allows the programmer to perform any number of generic or machine-speci�c

optimizations on individual instructions, basic blocks, or functions. In addition, since

all of the functions have been separated and stored in their own individual objects,

the functions can be reordered to capitalize on machine cache size or cache boundaries.

9

Finally, the IMPACT schedule manager can employ a description of the available machine

resources and reschedule the code appropriately.

After the optimizations are complete, Phase III (also in Lbx86) of the binary optimizer

takes over to translate the Mcode into a binary object �le. Simultaneously, an equivalent

assembly �le can be output for use in debugging. After the object �le has been generated,

the PEwrite module produces a new binary executable. PEwrite creates a copy of the

original executable and inserts the new text and data sections over the original versions.

The other sections, which have not been converted to Mcode or optimized, are simply

copied from the original with pointers adjusted to correctly point to locations within the

new text and data. A new base relocation table and symbol table are created based upon

the updated executable and inserted in place of the original tables, and the other tables

and headers are adjusted to re
ect new addresses and pointer locations.

10

CHAPTER 4

BINARY INPUT

The binary optimization framework leverages o� of the information inherent in the

DLL or EXE itself for code discovery and the ensuing optimizations. Due to the di�cul-

ties inherent in decoding mixed 16- and 32-bit code, the system handles strictly 32-bit

Windows executables and dynamic-link libraries in the PE/COFF format. With the

mainstream acceptance of Windows 98 and Windows NT 4.0, the use of 16-bit libraries

has become a rarity rather than the standard, and optimizations geared toward 32-bit

code have the potential to achieve performance improvement for a widespread application

base. From the 32-bit PE �le format, the optimizer can extract information regarding

the sizes and locations of the various sections, the contents of function import and ex-

port tables, the pointers located in the base relocation table, and symbol information, if

available.

4.1 PE File Format

Under Microsoft's 32-bit operating systems, executable and object �les are organized

according to the Portable Executable (PE), or Common Object File Format (COFF),

speci�cation. The PE format is segmented into several headers, tables, and sections

that are detailed in [9] and [10]. The binary optimizer relies upon the information

11

encapsulated in the PE to decode the binary �le, to identify pointers within and among

the various sections, and to di�erentiate between instruction code bytes and data. The

header portion of the PE is made up of an MS-DOS stub program, a �le signature, a

COFF header, and an optional header.

The �le signature is used to con�rm that the �le is compiled in valid PE format.

The COFF header indicates how many sections are contained in the �le and includes

both a pointer to the symbol table and the number of entries in that symbol table. The

Characteristics variable in the �le can be used to denote that the �le is a DLL rather

than an EXE and also records the presence of a base relocation table. Additionally,

the PE image �le contains an optional (or PE) header used by the Windows linker and

loader. The optional header is always present in compiled binaries but is not needed for

object �les. The binary optimizer reads this header information to determine the relative

addresses of the initial entry point into the executable, the start of the code section, and

the start of the data section.

The optional header also includes data directory entries that provide indices into

tables that are mapped in memory for use by the system during execution. Three of those

tables are important to the operation of the optimizer: the export table, import table, and

base relocation table. While the optimizer requires the base relocation table for normal

operation, the export and import tables simply provide additional information. The base

relocation table is vital to the operation of the optimizer and is used to determine whether

bytes detected are valid pointers into the code or are data mistakenly interpreted as code

by the decoder. The export table indicates the names and o�sets of functions that are

12

being made available to other applications and is particularly useful when examining

DLLs. The import table is used to identify external DLL calls within functions and lists

the external function references, with entry point information for each reference.

The PE/COFF header can also contain a pointer to a symbol table, an optional table

that contains an array of symbol records. The records describe the symbol name, the

value of that symbol, the section in which the symbol is located, the type of the symbol,

and the number of auxiliary symbols that follow the current record. Immediately after

the symbol table lies the string table comprised of a series of null-terminated strings

pointed to by symbols in the symbol table. Symbols can represent �le names, section

names, function names, and pieces of code or data. This information can be used by the

binary optimizer to assign names to discovered functions and to con�rm that all pointers

into the code section have been explored.

Following the optional header is the section table, consisting of section header entries.

Each section header details the name, size, and starting o�set of that particular section.

For object �les, the section header also points to a listing of relocation entries for that

section. These relocation entries provide the addresses of the items that must be relo-

cated, indices for the relocated symbols in the symbol table, and the types of relocations

that should be completed.

The sections containing the actual code and data of the �le follow the headers and

are located via pointers and information discussed above in the header tables. The .edata

section of an image �le describes symbols that are exported and can be utilized by other

�les through dynamic linking. The .idata section contains information on symbols being

13

imported from other dynamically linked sources. The .rsrc section details the resource

data included in the application. The .reloc section of a binary image includes a list of all

addresses that must be �xed up if the executable cannot be loaded at its preferred address.

The .data section is comprised of blocks of initialized data bytes used by functions within

the �le, as well as index tables for indirect jumps and calls. The .text section contains the

instruction code for the application, and the initial entry point indicates where execution

begins.

Although Microsoft's compilers have set the .text and .data standards, the binary

optimization framework can also operate on �les generated by both Borland and Watcom

compilers. Borland refers to the sections as code and data, and Watcom uses auto and

dgroup. Throughout the remainder of this thesis, these sections will be referred to as the

text and data sections.

4.2 Dynamic-Link Libraries

In order to enable a large array of programs to utilize a common set of functions, the

32-bit Windows (Win32) application programming interface (API) relies upon dynamic-

link libraries (DLLs) to implement major portions of its functionality. DLLs contain

collections of separate functions without the standard Windows startup and support

code. Additionally, DLLs allow the programmer to subdivide an application into many

portions that can be individually loaded into memory as needed and, thus, minimize use

of system resources.

14

Either standalone executables or other DLLs can call the functions within the DLL,

and multiple processes can access the same DLL. In order for outside processes to utilize

functions de�ned within a DLL, they must be de�ned as EXPORT functions and listed

within the DLL's export table. Microsoft Visual C++ prefers the use of declspec (dllex-

port) before the declarations of functions exported from a DLL and declspec (dllimport)

before the corresponding declarations of functions imported from a DLL. The keywords

and the corresponding table entries alert the OS and the linker.

DLL object �les are compiled and organized in the same PE format as a regular

executable. At link time, however, the DLL object �les must incorporate information that

allows the operating system to di�erentiate between a DLL and a standard application.

Unlike a typical Win32 application that executes in its own linear address space, a DLL

should be accessible across multiple address spaces. The system, therefore, loads the DLL

into a global heap that is then memory mapped into the relevant application space(s).

When an executable contains calls to functions within a DLL, the DLL �le image can

be mapped into the caller's address space through implicit load-time linking or through

explicit runtime linking. With implicit linking at load-time, an LIB �le must be gener-

ated to list the DLL functions available to external binaries. The linker then uses the

information in the LIB �les to embed DLL information into the executable �le image.

The OS loader will load the referenced DLLs when the main application is loaded and

free them from memory only after the calling application terminates. Alternatively, us-

ing the LoadLibrary function from the Windows API, a DLL �le image can be explicitly

15

retrieved and mapped into the application space during the course of execution and then

released immediately after the application has �nished referencing it.

After mapping, the text and data sections within the DLL appear as additional text

and data sections that can be accessed by the parent application. Under 32-bit Windows,

all processes share the DLL code, but each process creates a copy of the DLL's data. The

programmer, however, can specify that global variables be shared among processes using

the same DLL.

If both a master EXE and its DLLs statically link the same standard libraries, the

linker will include separate but identical copies of the library code in both the EXE and

DLL. Additionally, it appears that the OS may have di�culty initializing static copies of

the standard C library in both the EXE and the DLL, and, thus, standard C functions

within the DLL may not execute properly. When using EXEs with DLLs, therefore, it

is important not to mix statically and dynamically linked C libraries. DLL functions

should be carefully selected not to rely on C library functions, or both the DLL and EXE

should utilize the C runtime DLL and, thus, access the same C library functions.

Under 32-bit Windows, a single main entry point is used for loading and unloading

the DLL, as opposed to multiple primary entry points under Windows 3.x. Additionally,

only the variables through which functions are externally accessed need be exported,

rather than the functions declarations themselves, and the applications using the DLL

see only generic function numbers and not actual function names.

Win32 employs dynamically linked libraries rather than statically linked libraries for

several reasons. For static linking, the linker needs both the object code (.LIB �les) for

16

the linked function and the desired location of that function in memory. The accessed

function code is integrated into the compiled executable to be run as a single unit. Dy-

namic linking does not require the library source code to be compiled with the executable

and allows library functions to be loaded at various memory locations throughout normal

system operation by using PE import tables and by postponing function resolution until

program execution.

Since DLLs are separate from the applications that reference them, DLL code can be

modi�ed without having to alter and relink the main executable. As a result, optimiza-

tions can be performed on common DLLs for a transparent bene�t to all applications

accessing those DLLS. This is the focus of the thesis and one key advantage of the

framework that has been implemented.

17

CHAPTER 5

PHASE I - DECODING THE BINARY

5.1 PE/DLL/OBJ File Input

In the �rst phase of the binary optimization framework, the x86toM module calls the

decoder to parse the binary input, whether it be an executable, dynamically-linked li-

brary, or object �le. The PE/COFF �le is memory-mapped, and information is extracted

from the �le header and placed into a BinaryFileInfo structure, detailed in Figure A.1 of

Appendix A. Symbol data, import/export functions, and other PE header information

are collected using the data structures de�ned in windows.h and winnt.h. As each section

of the binary is examined, its headers are stored in SectionInfoNode structures, shown

in Figure A.2. As the code section of the binary is disassembled, its instructions and

related data bytes are placed into various informational structures for use in conversion

and optimization.

5.2 Instruction Information Collection

When an instruction is decoded, the x86toM translator stores its components in an

internal instruction information, or InstrInfo, structure, shown in Figure A.4. This struc-

ture is utilized to ensure accurate conversion of x86 instructions to Mcode instructions,

18

as discussed in Section 5.10. The structure allows the framework to track the instruction

opcode, the general type of the instruction, and all of the operands,
ags, and descriptive

bytes of data associated with that instruction.

The DecodeOneInstr(DWORD decodeIP, InstrInfo *Instr) function in the x86toM

module parses a single instruction extracted from the bytes in the binary and �lls in the

�elds of the InstrInfo structure according to the algorithm presented in Figure 5.1. The

decode function begins with the �rst byte of the instruction and performs a series of

table lookups to determine the various components of the instruction. The tables were

compiled from the x86 instruction speci�cation establish by Intel in [1]. The decoder

steps through the bytes searching for pre�xes, addressing modes, opcode bytes (one- or

two-byte opcodes), modR/M and SIB bytes (which contain operands and displacements),

and immediates. If the opcode is 0x0F0Fh, then the instruction is an AMD 3DNow! [2]

instruction, and the immediate byte contains the actual opcode speci�er for the instruc-

tion. The decoder also obtains the
ags modi�ed by the instruction and advances the

�le pointer to the next instruction to be decoded.

Figure 5.2 reveals a sample instruction taken from speedsim.dll, a dynamically linked

library used in conjunction with the IMPACT timing simulator, speedsim.exe. The de-

coder parses this instruction based upon the Intel x86 instruction set speci�cation [1]

and determines from the opcode of 83h that it is an ADD instruction. Based on that

information, it knows that the following byte represents the register or memory operand

of the modR/M byte. Based on the value of C4h, it identi�es the ESP register. Then it

detects an immediate byte to be added to the contents of the ESP | in this case 04h.

19

DecodeOneInstruction ()f

Look up byte in x86 opcode table

If byte == pre�x

Set InstrInfo pre�x to byte and advance to next byte of �le

If two-byte opcode

Advance to next byte of �le and look in two-byte section of opcode table

If 3DNow! opcode

Set amd3d
ag to look at immed byte for real opcode

Set InstrInfo opcode to byte from opcode table and advance to next byte of �le

If opcode indicates presence of modR/M byte

If modR/M indicates presence of SIB bytef

Set InstrInfo basereg, indexreg, and scale assigned from SIB table lookup

Advance to next byte of �le

g
For each operand byte i speci�ed by modR/M f

Look up operand byte in table

Set InstrInfo opertype[i], opersize[i], and regnum[i] to table lookup values and advance
g

If displacement bytes presentf
Record number of displacement bytes present
If DWORD displacement && displacement value is a relocation

Set InstrInfo displacement to address and set InstrInfo's reloc32MemDisp
ag to 1
Else set InstrInfo displacement to bytes

g
If immediate value presentf

If amd3d == 1

Use immediate value to set InstrInfo opcode to value from 3DNow! lookup table
Else set InstrInfo immediate �eld to immediate byte

Set InstrFlags

g

g

Figure 5.1 Pseudocode algorithm for decoding one instruction in the binary.

5.3 Instruction Flow Decoding

Beginning with the initial entry point speci�ed in the �le header, code discovery

proceeds using a depth-�rst traversal of the text section according to the algorithm in

20

1000B73E : 83 C4 04 add ESP, 04h

Figure 5.2 Sample decoded instruction from the speedsim.dll binary.

Figure 5.3. The x86toM decoder parses the bytes of the �rst instruction as discussed in

Section 5.2, and, after those bytes are interpreted, the location of the next instruction is

ascertained. If the decoded instruction does not alter the control
ow, the next instruction

is assumed to begin with the next consecutive code byte and the instruction decoding

process is repeated in linear order.

Changes in control
ow throughout the binary further guide the decoding process

and organize the code into basic blocks. A basic block is de�ned as a linear series of

instructions with control
ow in at the beginning of the block and control
ow out at the

end of the block. No control
ow transfers occur inside the block itself. For a function

call, the target address is pushed onto a decode stack, and decoding continues with the

next consecutive (return) address. A function call does not signify the end of a basic block

because control will return to that next consecutive address after the called function has

completed execution. For an unconditional branch instruction, the taken address also is

pushed onto the decode stack, and decoding resumes with the fall-through path. Since the

conditional branch is a control transfer point, the fall-through path represents the start

of a new basic block for that function. For an unconditional branch, the target address

is subsequently decoded, and a new basic block begins. When a return instruction is

decoded or decoding progresses to a previously discovered instruction, the decode stack

21

Push export entry points from export table and initial entry point onto decode stack

DecodeFlowAnalysis()f

While decode stack is not emptyf

While linear, undiscovered instructionsf

DecodeOneInstruction()

If instruction is a function callf

If indirect call through memory

Examine memory location for target address

Push target address onto decode stack

Decode instruction at next consecutive (return) address

g

If instruction is a conditional branchf

If indirect call through memory

Examine memory location for target address
Push taken address onto decode stack
Decode instruction at next consecutive (fall-through) address

g
Else if instruction is an unconditional branch

If indirect call through memory
Examine memory location for target address

Decode instruction at target address

Else if instruction is a return
Pop address from decode stack and resume decoding at popped address

Else if instruction has immediate operand
If immediate is a relocatable address

Push relocatable address onto decode stack

Else continue linearly to decode next consecutive instruction
g

g

g

Push base relocation entries and repeat DecodeFlowAnalysis()

Push symbol table entries and repeat DecodeFlowAnalysis()

Figure 5.3 Pseudocode algorithm for instruction
ow decoding.

is popped, and decoding continues with that address. The Global Memory Map facilitates

the identi�cation of previously discovered code and will be discussed in Section 5.4.

22

Decoding func 1 bb 1 starting at addr 10001000h

10001000 : 55 push EBP

10001001 : 8B EC mov EBP, ESP

10001003 : 51 push ECX

10001004 : C7 45 FC 01 00 00 00 mov dword ptr [EBP-04h], 00000001h

1000100B : 83 7D 0C 00 cmp dword ptr [EBP+0Ch], 00h

1000100F : 75 10 jnz 10001021

Decoding func 1 bb 2 starting at addr 10001011h

10001011 : 83 3D 60 59 02 10 00 cmp dword ptr [10025960h], 00h

10001018 : 75 07 jnz 10001021

Decoding func 1 bb 3 starting at addr 1000101Ah

1000101A : 33 C0 xor EAX, EAX, EAX

1000101C : E9 CC 00 00 00 jmp 100010ED

Decoding func 1 bb 4 starting at addr 100010EDh

100010ED : 8B E5 mov ESP, EBP

100010EF : 5D pop EBP

100010F0 : C2 0C 00 ret 000Ch

exit pt of fn 1 bb 4.

Decoding func 1 bb 5 starting at addr 10001021h

10001021 : 83 7D 0C 01 cmp dword ptr [EBP+0Ch], 01h

...

Figure 5.4 Sample instruction
ow from the decoding of speedsim.dll.

Figure 5.4 illustrates the
ow decoding process. Instructions are disassembled linearly

through a basic block until a control
ow altering instruction is reached. In this case,

the jnz to a direct address causes the taken address of 10001021h to be pushed on the

decode stack and the fall-through path at 10001011h to be explored. When the jmp to

23

Table 5.1 Types of decode/entry points stored in EntryPt structure.

EXPORT TGT CALL TGT JCC T TGT JCC F TGT

JMP TGT JMP RM TGT CALLBACK TGT CALL SPLIT TGT

RELOC TGT EXCPT EXPR EXCPT BODY EXCPT HDLR

100010EDh is encountered, the target address is explored until the ret signals the end

of the block and the current decode path. The address on the top of the decode stack,

10001021h, is popped, and decoding continues.

5.3.1 Entry point identi�cation

In order to facilitate the control
ow decoding of the target binary, the x86toM

module employs a decode stack to store fall-through addresses, possible callback function

addresses, exported entry points, and the initial entry point for the binary. All of these

addresses, or decode points, are stored in EntryPt structures de�ned in Figure A.3.

The EntryPt structure identi�es the type of the decode point (jump target, call target,

exception handling code, relocatable address, etc), as shown in Table 5.1. Additionally,

the EntryPt stores the basic block to which it belongs, the address to be decoded, and

the identi�cation number of its parent function. The structure also tracks the address of

the instruction that generated the control
ow change.

The x86toM module must have a starting point from which to decode the binary

and statically explore the various functions. First, the entry points of functions being

exported from the binary are extracted from the export table and pushed onto the decode

stack. The initial entry point of the binary is identi�ed from the �le header and pushed

24

onto the top of the decode stack. The decoder begins by popping the decode stack and

analyzing this �rst instruction. After the �rst instruction is disassembled and stored as

an InstrInfo, the decoder determines where the next instruction must follow. As discovery

progresses, additional decode points are stored as EntryPts and pushed onto the decode

stack. Once x86toM has exhausted the current linear decode path, an EntryPt is popped

o� of the stack for further decoding. As a fallback measure, all undiscovered entries in

the base relocation table and the symbol table from the original binary may be converted

to EntryPts and pushed onto the decode stack to ensure that all of the code is discovered.

5.3.2 Basic block formation

As the static instruction stream is decoded, the instructions are grouped into basic

blocks (refer back to the algorithm in Figure 5.3) to aid in function reconstruction and

data
ow analysis. These basic blocks are stored in BlockInfo structures, shown in Fig-

ure A.5. Although superblock [11] capability and several corresponding optimizations

are currently being added to the framework, the existing framework and rescheduler rely

exclusively on basic block boundaries to perform optimizations and reorder instructions.

Thus, it is vital to reliably maintain detailed records of the basic blocks found in the

binary and to clearly de�ne the relationships between those blocks.

The example of Figure 5.4, taken from speedsim.dll, illustrates a typical basic block

analyzed by the decoder. Decoding progresses linearly until the conditional branch (jnz)

is reached. This signals a control
ow transfer and the start of another basic block within

the function.

25

During the course of decoding the binary, x86toM may discover a branch or even a call

into the middle of a previously decoded block. This new piece of control
ow information

requires that the target block be split along the target address to form two separate

blocks. The second block would begin with the target address of the branch or call.

At other times, the decoder may discover that it is translating invalid instructions or is

searching through data in the text section. At that point, the current block and references

to it must be deleted. Such deletions may reverse the e�ects of a prior block split, so

the decoder has the capability to merge blocks as well. These basic block manipulations

are facilitated by the presence of a global memory map of all basic blocks and jump/call

tables, which is discussed in Section 5.4.

5.4 Global Memory Map Construction

As basic blocks are translated and organized, they are collected into a global memory

map. This memory map is used to ensure that decoded instruction addresses lie within

the boundaries of the text section and, therefore, are likely to be valid instructions

rather than data bytes. The memory map also keeps track of all the basic blocks that

have been decoded in the binary, along with their constituent instructions, and facilitates

the insertion and removal of basic blocks. Additionally, the memory map can be used

to aid in the expansion, reduction, or splitting of existing basic blocks due to further

code discovery. In addition to storing blocks of regular code in the global memory map,

26

jump and call tables are also included. The memory map can be used to detect repeated

references to these tables and allow enlargement of the tables.

The memory map may also be used for debugging and analysis to identify areas of

code that were not explored by the static decoder. A possible extension of the decoding

framework would be to explore those unknown regions, even if the decoder cannot �nd

a connection to the discovered code. This approach has been implemented but is not

actually employed due to the extremely high risk of encountering data blocks in the

middle of the text section and mistakenly interpreting the bytes as code. See Figure A.6

for the composition of the MemoryMap object.

5.5 Function Formation

Groups of basic blocks are also analyzed to determine function boundaries, and all of

the blocks comprising a function are assigned to a FunctionNode, shown in Figure A.7.

The understanding of function boundaries enables the optimizer to rearrange the order of

functions in the output binary. Furthermore, delineation of functions allows the optimizer

to insert probe code used to extract function pro�le weights upon execution of the new

binary. As functions are identi�ed, they are placed in a FunctionTable that enables rapid

querying during analysis, optimization, and pro�ling. If symbol information is present in

the binary, function names can be associated with the FunctionNode structures.

If the decoding of one function falls through into another function, the system assumes

that the two functions are actually a single function with additional entry points within

27

the function body. The decoder integrates the two functions into a single function in the

FunctionTable to ensure proper conversion to Mcode.

The FunctionNodes also track all of the entry points and return points of the function,

as well as a list of the addresses from where the function is called. As code discovery

alters the composition of a function's basic blocks, the entry and exit point lists are

updated accordingly. The FunctionNode not only maintains a list of constituent blocks

but also stores jump/call tables that are used with the function. The block and table

information is used by x86toM to establish Mcode control
ow arcs within and among

the functions. The lists of entry and exit points are also used during Mcode conversion

to ensure that multiple entry point functions are translated correctly.

5.6 PE Table Usage

The exact structure and code layout of the target binary are hidden from the binary

optimization framework due to lack of original source code. Therefore, the techniques

used for code discovery are based upon heuristics that rely heavily upon the PE and

x86 instruction speci�cations and information inherent in the PE �le. In order to both

verify and augment the code discovery performed by the decoder, the information found

in various tables associated with the PE �le headers is utilized by x86toM.

28

5.6.1 Base relocation table

The PE base relocation table is a vital component of the x86toM decoder. In order

to properly execute almost all of the code discovery heuristics, the system must know

that the address being investigated is in fact a valid pointer to a function entry point or

other point of control transfer. All Win32 binaries have a preferred load address listed

in the �le header. The loader always attempts to map the binary image into memory

at that preferred address. However, if another binary is already mapped at that address

in the program space, the loader maps the image at a di�erent address and must adjust

absolute pointers within the binary to re
ect the new positioning. The base relocation

table lists all such addresses so that the program loader can successfully relocate the

executable or dynamically linked library in memory and �x up up the pointers within

the �le. The jump/call table and callback heuristics discussed in Sections 5.7 and 5.8,

as well as the normal decoding
ow for branches and function calls, all reference the list

of relocations to ensure that they are pursuing valid code targets.

5.6.2 Symbol table

If a symbol table is present in the original binary, the information contained in the

symbol table and the corresponding string table can be used to identify the functions

that are being decoded and can provide more detailed output and debugging information

to the user. More importantly, the function addresses in the symbol table can be used as

additional decode points in a cleanup measure to explore functions that were not already

29

discovered in the initial depth-�rst search of the binary. The addresses are pushed onto

the decode stack, and control returns to the x86toM decoder. Additionally, the symbol

information can be used to allow the user to selectively pro�le speci�c functions by name.

5.6.3 Import and export tables

The import table associated with the original binary is employed by x86toM to identify

calls to external functions in other DLLs or supplementary EXEs. When the decoder

encounters a call to an address outside of the known code space, it refers to the list of

imports to con�rm that the operation is a valid function call and to associate a DLL and

function name with that call. The decoder also analyzes the binary's export table to

identify functions that are made available to other executables. The addresses of these

functions are pushed onto the decode stack to ensure that they are decoded by x86toM.

5.7 Jump and Call Table Discovery

When the decoder encounters an indirect branch or call, the target may point to

a table of jump or call targets that is accessed through a base o�set plus some index.

Using the algorithm laid out in Figure 5.5, the x86toM decoder uses the base o�set to

iterate through the table entries and to extract all of the valid target addresses. If these

addresses lie within the bounds of the text section and are listed as relocatable pointers,

then they are pushed onto the decode stack for further code discovery.

30

However, many of these tables have a more complex instantiation and require further

exploration. While most tables begin at the base o�set and are positively indexed from

that address, some tables end at the given base o�set and are negatively indexed. The

decoder heuristically examines addresses both before and after the base o�set to locate

all valid pointers to push onto the decode stack. Often, the call or jump tables are

implemented in a two-level format, with the �rst address pointing to a secondary table

of valid function entry points. If the decoder cannot �nd any valid entries in either the

positive or negative direction of the �rst-level table, it treats the entries as pointers to

Extract displacement from instruction and convert to mapped address

Check for positively-indexed jump tablef
While assuming possible targets existf

If table entry points to a valid relocatable address

Push target address onto decode stack
Else if table entry points to an out-of-bounds address

Assume possible targets no longer exist

Advance to next table entry
g

g
If no valid entries found in the positive directionf

While assuming possible targets existf

Move back one DWORD in table
If table entry points to a valid relocatable address

Push target address onto decode stack

Else if table entry points to an out-of-bounds address

Assume possible targets no longer exist

Move back in table to previous entry

g

g

If no valid entries found in either the positive or negative directions

Assume a two-level jump table

Figure 5.5 Pseudocode algorithm for analyzing jump and call tables.

31

a second-level table and performs a similar validity analysis on the second-level table

entries.

Decoding func 67 bb 19 starting at addr 56688E29h

56688E29 : 33 C9 xor ECX, ECX, ECX

56688E2B : 8A 88 F0 94 68 56 mov CL, byte ptr [EAX+566894F0h]

56688E31 : FF 24 8D AC 94 68 56 jmp dword ptr [4*ECX+566894ACh]

check for jump table

Raw Data Dump

566894A0: 04 04 04 04 04 04 04 04 04 04 03 90 38 8E 68 56

566894B0: 07 90 68 56 07 90 68 56 1C 8F 68 56 10 91 68 56

Contains Addresses:

56688E38

56689007

56688F1C

56689110

Decoding func 67 bb 132 starting at addr 56688E38h

56688E38 : 8B 44 24 10 mov EAX, dword ptr [ESP+10h]

56688E3C : A9 30 08 00 00 test EAX, 00000830h

56688E41 : 75 07 jnz 56688E4A

Figure 5.6 Sample one-level jump table from Microsoft DirectX's d3dim.dll binary.

For an example illustrating the presence of indirect jump tables, refer to Figure 5.6.

The decoder examines the information at the o�set for the indirect jump, and, by search-

ing through the data bytes, discovers table of four jump target addresses. Upon further

examination, those target addresses all reveal valid basic blocks within the function. The

block at the �rst jump table target is shown simply as a validating example.

32

5.8 Callback Detection

If a nonbranch or noncall instruction, such as a mov or a push, has a 32-bit immediate

or memory displacement value, it is possible that the value is a pointer to a function entry

point and is being passed to the operating system or server application for later callback

execution. To ensure that these functions are detected, the decoder relies upon the

heuristic presented in Figure 5.7 to examine these instructions with 32-bit immediate or

memory displacement values. The decoder checks if the value falls within the range of

the text section and also checks if the value is a relocatable address in the base relocation

table. Alternatively, the pointer could reference a table of callback addresses. The routine

searches through the table for callbacks until a valid nonzero, nonpointer is found. These

valid addresses are pushed onto the decode stack for code discovery.

If instruction has an immediate valuef

If value at immediate target address is a relocatable
Look for code at address stored at target

Elsef

If value at target is in text section
Push target onto decode stack

Else look for table of callbacks, ignoring zero entries
g

g

Figure 5.7 Pseudocode algorithm for analyzing callbacks.

From Figure 5.8, it can be seen that what appears to be a valid address is pushed

onto the stack. When investigated by the decoder, it becomes clear that this is an entry

33

Decoding func 43 bb 1 starting at addr 5666C744h

...

5666C74E : 68 48 61 68 56 push 56686148h

...

Decoding func 45 bb 1 starting at addr 56686148h

56686148 : 55 push EBP

56686149 : 8B EC mov EBP, ESP

5668614B : 83 EC 08 sub ESP, 08h

5668614E : 53 push EBX

...

Figure 5.8 Sample callback from Microsoft DirectX's d3dim.dll binary.

point for a legitimate function in the binary. This function may not have been decoded

without the exploration of the callback address by x86toM.

5.9 Exception Handler Identi�cation

Some Win32 programs contain special code called exception handlers inserted to

correct an exception or error encountered during program execution. An exception could

be an operation such as an invalid memory access, INT 3, or division by 0. If an exception

is detected, the exception handling code block is executed to identify the exception and

to attempt to remedy the problem in order to return to normal program execution.

Under Win32, each process thread contains a thread information block (TIB) which

stores important values and settings for the thread. Included at o�set 0 in the TIB is the

head of the structured exception handling chain for that thread [12]. Win32 uses the FS

segment register to point to the TIB for the currently executing thread, so a reference to

34

FS:[0] is a reference to the head of the exception handler. The binary optimizer heuristi-

cally searches for references to the FS segment register to identify exception handlers in

the code. The binary optimizer will not perform data
ow analysis and the correspond-

ing optimizations on blocks with exception handling mechanisms because not enough

information is known about their structure and function and the resulting dependences.

...

5666C753 : 64 A1 00 00 00 00 mov EAX, dword ptr FS:[00000000h]

5666C759 : 50 push EAX

5666C75A : 64 89 25 00 00 00 00 mov dword ptr FS:[00000000h], ESP

...

Figure 5.9 Suspected exception handling code from DirectX's d3dim.dll binary.

In Figure 5.9, the manipulation of o�set 0 of the FS segment register indicates inter-

action with the exception handler. The decoder will heuristically assume that exception

handling mechanisms are present and indicate that the basic block is an exception han-

dling block. The Lbx86 optimizer will not perform optimizations on this block. Exception

handler code tends to be deliberately organized to recover from an unforeseen event, and

any sort of optimizations may unintentionally render the exception handler inoperable.

5.10 Mcode Conversion

After the binary has been decoded, the instruction information contained in each

InstrInfo is converted into the IMPACT intermediate Mcode representation for use in

code scheduling and optimization. A detailed explanation of the Mcode format and the

35

conversion from x86 instruction into Mcode can be found in [3], [4], and [13], but a

brief overview is included here for thoroughness.

Mcode is a machine-speci�c version of IMPACT's generic Lcode [14] representation,

and the version of Mcode used in the binary reoptimization framework is geared toward

the x86 architecture. It provides a method of representing all instructions in the x86

instruction set, as well as data and control
ow information. The Mcode format accom-

modates a variable number of source and destination �elds, a processor-speci�c opcode

mnemonic, a general opcode mnemonic, and an attribute list that provides additional

information to the optimizer. For the purposes of the binary optimization framework

with the x86 instruction set, a maximum of four destination �elds and seven source �elds

allows all register accesses and instructions which read or write many operands to be

explicitly detailed in Mcode.

In Mcode, each instruction is assigned a numeric processor-speci�c opcode, known

as the proc opc or popc, and this value is used to distinguish between di�erent types

of operations and resource usage. Since di�erent optimizations may require di�erent

degrees of detail regarding the instructions (e.g., identify only register-register addition

instructions or identify all addition instructions), the proc opc is separated into two �elds:

the general opcode or genopc and the variant. The genopc indicates the processor-speci�c

mnemonic, and the variant furnishes additional information about the speci�c form of

the instruction (operand types).

When the x86 instructions are converted to Mcode through x86toM, the Mcode in-

cludes only the genopc portion of the proc opc, and the variant is zero. The Lbx86

36

preprocessor examines the genopc for an instruction and calls the appropriate variant

annotation function to determine the variant from the instruction operands. Thus, the

IMPACT code scheduler will have complete information about the instruction.

Figure 5.10 provides examples of the general Mcode formats for various types of in-

structions. The Mcode format begins with an operation indicator, the identi�cation

number assigned to the operation by the scheduler, and the functional opcode mnemonic

(such as add) for that operation. The �rst set of square brackets speci�es the destina-

tion operand information and
ags to be modi�ed. The second set of square brackets

delineates the source operands and
ags to be read by the operations. The set of an-

gle brackets following the destination and source information contains the instruction

attributes, such as the genopc and the popc.

(op n opc [(reg:intel_dest)(reg:intel_src)(reg/df)(flags)]

[(reg/addr:intel_dest)(reg/addr/imm:intel_src)(reg/flags)(addr_base)

(addr_index)(addr_scale)(addr_offset)] (popc))

(a) General instructions, such as an ADD.

(op n opc [(edi/reg:intel_dest)(esi/reg:intel_src)(ecx)(flags)]

[(edi/reg:intel_dest)(esi/reg:intel_src)(ecx)() (df)(flags)] (popc))

(b) String instructions.

(op n ld_i [(reg)()()()] [()(addr)()(b)(i)(s)(o)] (popc MOV_TO_REG))

(op n st_i [()()()()] [(addr)(reg/imm)()(b)(i)(s)(o)] (popc MOV_TO_MEM))

(c) Load and store instructions.

Figure 5.10 Some sample Mcode formats.

37

CHAPTER 6

PHASE II - OPTIMIZATION

During Lbx86 Phase II, the binary optimization framework performs various instruc-

tion transformations and instruction and function reordering using the Mcode structures

which have been assembled in x86toM. Details of those optimizations can be found in

[3] and [4]. This chapter will focus on the rescheduling that occurs following the opti-

mizations discussed by Thiems and Merten.

6.1 Schedule Manager

The IMPACT compiler's scheduler manager (SM) [15] supports code analysis for tran-

formation and scheduling. It enables the system to track operand usage via dependence

arcs. SM examines one basic block at a time but employs IMPACT's data
ow analysis

tools to track which operands are live-in and live-out of the current basic block. The

Mcode represents reads and writes of instruction operands and encodes condition code

ags as registers to allow accurate dependence and data
ow analysis by SM.

After data
ow analysis has been completed, SM generates dependence arcs to branches

for operands that are live-out along that branch's taken path. Unconditional dummy

jumps are inserted by the Lbx86 preprocessor at the end of each basic block with a

38

fall-through path. This step ensures that complete live-out information is present for all

transformations. The Lbx86 postprocessor removes these dummy jumps.

6.2 Machine Descriptions

The resources of the platform on which an application is executed play a vital role

in the speed and e�ciency of that application. Furthermore, one cannot take advan-

tage of all available scheduling and optimization opportunities without considering the

con�guration of the target machine. For this reason, the IMPACT binary optimization

framework employs SM in combination with a machine description �le (MDES). The

MDES is written in the Machine Description Language [16] and represents the resources,

latencies, and dependences of a processor and its instruction set in a form that the sched-

uler can comprehend and utilize. Programmers can construct the MDES in a high-level,

easy-to-use language that is translated into a low-level format that allows rapid access

by the scheduler manager.

The availability of accurate data and control
ow information, along with complete in-

struction identi�cation, provides a framework with multiple optimization opportunities.

An important optimization opportunity is presented in the form of code rescheduling

based upon a machine description. Machine descriptions can be altered for di�erent mi-

croarchitectural implementations of the same instruction set to facilitate precise machine-

speci�c rescheduling. The machine description must classify each possible proc opc value

based upon its characteristics. It must also model the use of di�erent machine resources

39

by each instruction, and it must model the interaction between the instructions. Using

an accurate machine description, SM can avoid resource con
icts and data dependence

interlocks when scheduling the code.

6.2.1 Anatomy of an MDES

As shown in Figure B.1, an MDES is divided into several di�erent sections describing

di�erent characteristics of the target processor. A Format section describes the operands

that may be used with each processor operation. A Resource Usage section reveals

which processor resources are occupied during the execution of a particular operation.

The Latency section provides the information necessary to calculate dependence distances

between operations. The Operations section combines format, resource usage, and latency

information into descriptions of valid operations. The Registers section lists register

overlaps and helps to facilitate register allocation by the compiler. A �nal Compiler-

speci�c section allows the programmer to include any additional con�guration information

that the target compiler can utilize.

Reservation tables within the machine description detail how and when various op-

erations utilize processor resources during execution. Often, the resources listed in the

reservation tables correspond to instantiations of the target processor's scheduling rules.

By de�ning resource usages, the machine description can aid the instruction scheduler

in e�ectively ordering program operations. For example, if two instructions utilize two

separate processor resources, then they can be paired and scheduled simultaneously by

40

the processor. Without the machine description, the scheduler would not know how to

order the code e�ectively.

It is desirable for the scheduler to interact with the machine description as quickly

as possible in order to minimize the impact on optimization and overall installation

time. While traditionally the reservation tables employed in the machine description

utilize an OR-tree internal representation, an alternative representation may be made

using AND/OR-trees [17]. By more compactly representing the processor's resource con-

straints, the MDES size can be reduced, and the scheduler can more e�ciently parse the

description. In the OR-tree representation, the scheduler simply checks if the resources

for any execution options are available and subsequently schedules the operation. With

few resource constraints, this method works quite well, but the scheduler cannot use

information about why an option was not available. If an option is unavailable due to

the prior use of a particular resource, many other options will be similarly unavailable.

The new representation contains an AND-tree structure of OR-trees and allows a rapid

resource constraint check algorithm to identify available resources without unnecessary

overhead.

6.2.2 AMD K6-2 MDES

Amachine description was constructed for this thesis to model the resource constraints

of the AMD K6-2 processor and was written based upon the K6-2 optimization guide [18].

While some key resources of the K6-2 processor have been modelled in the current MDES,

41

Table 6.1 Types of instruction decode categories in the AMD K6-2 processor.

Decode Type Bytes RISC86 Ops Example

short max. 7 max. 2 ADD mreg8,reg8

long max. 11 max. 4 ADD mem8,reg8

vector complex long sequences ADC mem16/32,imm8

many other con�gurations remain to be simulated. Rescheduling results can vary greatly

based upon the degree of constraint in the machine description.

The K6-2 (and the K6) decode x86 instructions into �xed-length RISC86 operations

(Rops) and process the x86 instructions in three di�erent categories: short decode instruc-

tions, long decode instructions, and vector decode instructions, as shown in Table 6.1.

Short decodes are x86 instructions that are no longer than 7 bytes and that translate

into no more than two Rops each. Long decodes are x86 instructions that are no more

than 11 bytes in length and that translate into no more than four Rops apiece. The

K6-2 includes two short decoder units, so two short decode instructions can be decoded

simultaneously. Long decodes require both short decoders, and vector decodes need both

a vector decoder unit and an on-chip ROM. Since the instruction decode was deemed

to be a potential scheduling bottleneck, the AMD K6-2 machine description reported

in this thesis models the parallel short decoders. The excerpts from the Resource and

Resource Usage sections shown in Figure 6.1 illustrate the instantiation of the decoder

resources in the K6-2 MDES.

The RISC86 instruction set is comprised of eight operation groups, and the K6-2 has

a separate execution unit to process each group. The various groups and corresponding

42

SECTION Resource

{

slot0 (slot(0)); /* scheduling slots */

slot1 (slot(1));

decode0 (); /* 1st short decoder */

decode1 (); /* 2nd short decoder */

load_port (); /* single load unit */

store_port (); /* single store unit */

}

SECTION Resource_Usage

{

RU_slot0_t0_0 (use(slot0) time(0));

RU_slot1_t0_0 (use(slot1) time(0));

RU_decode0_t0_0 (use(decode0) time(0));

RU_decode1_t0_0 (use(decode1) time(0));

RU_load_port_t1_1 (use(load_port) time(1));

RU_store_port_t1_1 (use(store_port) time(1));

}

Figure 6.1 Excerpts from Resource and Resource Usage sections of K6-2 MDES.

execution resources are listed in Table 6.2. For evaluation purposes, the K6-2 MDES in

this thesis also constrains scheduling with one load unit and one store unit. The time(1)

shown in Figure 6.1 alerts the scheduler that the load or store instruction uses the load

or store unit in cycle 1 after the decode is completed in cycle 0. The order of resource

usage is also listed in the Reservation Table entry in Figure 6.2.

Using the decoder and one load/one store unit information, the scheduler manager

can hopefully pair applicable instructions and minimize stalls of the decode pipeline.

The full version of the AMD K6-2 MDES is included in Appendix B. Further resource

43

Table 6.2 RISC86 operation groups and corresponding K6-2 execution units.

Operation Group Execution Unit

Memory load ops load unit

Load immediate instruction control unit

Memory store ops store unit

Integer reg ops alu or alux

MMX reg ops multimedia execution unit

3DNow! reg ops AMD-3D execution unit

Floating-point reg ops floating point unit

Branch condition eval branch logic

constraints can be added to the machine description which may either improve or degrade

performance, but those experiments remain future directions of the research.

44

SECTION Table_Option

{

two_issue (one_of(RU_slot0_t0_0 RU_slot1_t0_0));

short_decode (one_of(RU_decode0_t0_0 RU_decode1_t0_0));

}

SECTION Reservation_Table

{

RL_ALL (use(two_issue));

RL_Load (use(two_issue RU_load_port_t1_1));

RL_Store (use(two_issue RU_store_port_t1_1));

RL_Short_Dec (use(two_issue short_decode));

RL_Long_Dec (use(two_issue RU_decode0_t0_0 RU_decode1_t0_0));

RL_Short_Load (use(two_issue short_decode RU_load_port_t1_1));

RL_Long_Load

(use(two_issue RU_decode0_t0_0 RU_decode1_t0_0 RU_load_port_t1_1));

RL_Short_Store (use(two_issue short_decode RU_store_port_t1_1));

RL_Long_Store

(use(two_issue RU_decode0_t0_0 RU_decode1_t0_0 Ru_store_port_t1_1));

}

Figure 6.2 Excerpts from Table Option and Reservation Table of K6-2 MDES.

45

CHAPTER 7

PHASE III - BINARY GENERATION

The process of binary generation was developed by Michael Thiems, and a detailed

discussion can be found in [3]. Only a brief overview will be presented here. After the

Mcode has been optimized by Lbx86 in Phase II, Lbx86 produces machine code output

for the text and data sections that have been translated and optimized in Phase III. The

output is generated as a temporary COFF object �le to be reintegrated with the other

sections in the �nal phase of the process. As a tool for debugging, assembly language

output is also generated. Additionally, the existing �xup �le is modi�ed to correct symbol

name changes that occurred during Mcode conversion and optimization.

First, the Phase III preprocessor removes all of the extraneous operations that were

inserted during Phases I and II to facilitate optimization and scheduling. In Phase

III, Lbx86 utilizes a database created from the IMPACT machine description language

facility. The database contains one entry for each possible value of the proc opc, and

each entry has a direct correspondence to a member of the x86 instruction set, complete

with MMX and 3DNow! extensions. The database entries are translated in advance

from high-level textual form into a low-level format much like the MDES discussed in

Chapter 6.

46

When the machine code is generated, the system must ensure that all address ref-

erences are resolved correctly. While most references can be handled through COFF

relocation entries to be completed at link time, some relative addresses within the code

section must be resolved during code generation. The binary generator accomplishes this

resolution in a series of processing passes over the program. First, instruction lengths and

spaces between functions, tables, etc., are determined. Then, further �ne-tuning passes

are performed to achieve near-optimal encoding based upon the various sizes available

for encoding the relative o�set.

A �nal pass over all the Mcode generates the binary machine code for the optimized

binary and its data. The relocation entries from the text and data sections are also

written to the object �le, along with the COFF symbol and string tables. Simultane-

ously, complete assembly code is generated to aid in debugging of the optimized binary

executable. Phase III updates some names in the �xup �le, which are used to integrate

the optimized code and data with the remaining untranslated sections in PEwrite.

47

CHAPTER 8

RECONSTRUCTING THE BINARY

The �nal phase in the binary reoptimization process is the reconstruction and writing

of the complete binary executable or dynamic-link library. The PEwrite module combines

the original executable with the optimized temporary COFF object �le, the processed

�xup �le, and the updated PE import, export, symbol, and base relocation tables. This

process simulates the work of the conventional linker to generate the optimized binary.

Since statically linked library code and system startup code reside in the optimized

object �le, no special linking is necessary, and PEwrite can perform a rapid relinking of

the binary components.

8.1 Merge Modi�cations with the Original

In order to construct and link together the new optimized binary, PEwrite begins by

copying the sections and headers of the original binary executable into the new binary to

preserve the �le and section structure and to retain the sections that were not optimized

by the framework. The optimized text and data sections are extracted from the new

temporary COFF object �le generated by Lbx86 and inserted in the new binary in place

of the original text and data sections. Additionally, the �le headers must be altered to

re
ect changes in section locations and sizes. PEwrite must ensure that proper alignment

48

is maintained through section or table placement or via padding of the a�ected sections

to arti�cially round up to the desired �le or section alignment.

8.2 Address Fixups

Since functions have been re-ordered and �le and section sizes and alignments have

been altered, pointers to old locations within the binary must be adjusted to re
ect the

new values. The optimized temporary COFF object �le contains its own symbol and

COFF relocation tables. Since the optimized text and data sections from the object �le

are copied directly into the new binary, the symbol and relocation references must simply

be adjusted for the new starting o�sets of the text and data sections. However, the point-

ers in the untranslated sections that reference the text and data must be corrected using

the information found in the �xup �le produced during the translation and optimization

of the binary.

how to fixup

FU: _section_rdata2+3164 _section_text1_29129+4

sectionfixup indicator symbol nameoffset offset

where to fixup

Figure 8.1 Sample �xup �le entry from 129.compress.

The �xup �le contains relocatable addresses from sections outside the text and data

and represents those relocations in the form shown in Figure 8.1. PEwrite parses the

�xup �le according to the method presented in Figure 8.2 and �rst searches for each FU

49

keyword signifying a �xup entry. Each �xup entry begins with section followed by a

section name indicating in which section the reference can be found. The number after

the + is the o�set that must be added to the base virtual address of the section to �nd

the pointer reference. Once PEwrite has determined where to �x up the address, the

module must decide how to �x up the pointer. The �nal portion of the �xup entry lists

the symbol name of the address to which the reference is pointing. A symbol table lookup

reveals the symbol address, and the value following the + tells PEwrite how to �x up

the pointer reference. The corrected reference is then written to the new binary.

Open pipe to processed �xup �le

Process �xups ()f
For each FU entry in �lef

Identify section where reference is found
Determine o�set into that section
Lookup up reference in symbol table

Write �xed up pointer reference to new binary
g

g

Figure 8.2 Pseudocode algorithm for processing �xups outside the text and data.

8.3 PE Table Adjustments

Just as pointers within the �le sections must be updated as a result of the e�ects of

the translation, optimization, and reordering, the pointers to and the function addresses

50

within many of the PE tables must be adjusted to ensure the correct operation of the

new binary.

8.3.1 Import table �xup

Each external function call in a binary references an entry in the import table to

determine the export ordinal of the function and the DLL which contains that function.

Since the identi�cation of the DLL and its constituent function has not changed during

the reoptimization process, the pointer from the �le header to import table simply must

be updated to record its new position in the output binary. Additionally, the pointers to

the import address table and import directory table arrays within the import table must

be correctly represented in the output binary.

8.3.2 Export table �xup

The export table is used by the OS and the linker to identify and link functions within

the binary to external binaries calling those functions. Due to function reordering and

the possible shift of section base addresses, the export table must be rebuilt so that the

exported functions and variables can be located by other binaries. In x86toM, the export

table entries were added to the �xup �le. PEwrite searches the �xup �le for entries

labeled EX and processes those values as the updated components of the new export

table. Two sample export �xup entries are shown in Figure 8.3.

First, the existing export table is copied to the new binary, and pointers from the

header to the table and its Name and Address arrays are updated appropriately. Second,

51

fixup indicator

EX: 4 _FreeSTInst

EX: 5 _section_data3+272

ordinal function symbol name

fixup indicator ordinal data symbol name

Figure 8.3 Sample export �xup �le entry from speedsim.dll.

PEwrite examines each EX entry which consists of an export ordinal and a symbol name

corresponding to an exported function or variable. The symbol must be looked up in

the new symbol table, and the new address is substituted for the original address in the

binary's export table.

8.3.3 Symbol table �xup

Realignment and function reordering also mandate the adjustment of the symbol

table, as described in Figure 8.4. The new symbol table is formed by updating symbols

from the original binary �le and the temporary COFF object �le. The symbols from

the text and data of the COFF object �le can be copied from the COFF's symbol table,

updated to re
ect the o�sets of the optimized binary, and inserted in the new symbol

table. Additionally, symbols from the other �le sections are examined and integrated into

the new symbol table, and external data symbols from the original table are updated and

added to the new symbol table. After all symbols have been added, a sorting routine

ensures proper ordering of the table. An updated string table is generated to describe

52

Open original binary symbol table

Open temporary COFF object �le symbol table

Initialize symbol table structure for new binary

Process symbols ()f

For each section in new binaryf

Search original binary symbol table for symbols in section

Look up old symbol name in new table

If not in new table

Add updated symbol to new table

g

Integrate unde�ned symbols

For each external data symbol in original tablef
If not in new table

Add update symbol to new table
g

Sort symbols
Generate updated string table for symbol entries
Write new sorted symbol table and associated string table to new binary

g

Figure 8.4 Pseudocode algorithm for new symbol table construction.

the symbols, and the new symbol and string tables are written to the new optimized

binary.

8.3.4 Base relocation table �xup

The new base relocation table can be produced based upon the COFF relocation

information contained in the optimized object �le. The PE base relocation table is a

simpli�ed version of the COFF relocation table and can be obtained by pairing down the

COFF relocation to include an o�set and a relocation type. The information is parsed

and sorted by PEwrite and written back as PE format base relocation table blocks. The

53

blocks are delineated by a starting relative virtual page address and a block size, and the

�xups for that page follow. Each �xup entry is represented by a WORD which combines

the Type �eld of the �xup and the O�set �eld of that �xup within the page. During the

generation of the new base relocation table, �xup entries are stored in BaseRelocEntry

structures shown in Figure A.8.

Additional relocations that are not included in the text and data sections of the

optimized object �le can be found by parsing both the FU and EX entries in the processed

�xup �le maintained by the binary optimization framework. PEwrite converts these

�xup entries into additional base relocations and organizes all of the relocations into

blocks based on virtual page address. Figure 8.5 illustrates the general algorithm used

to generate the new base relocation table.

54

Construct New Base Relocation Table ()f

For each section in temporary COFF object �lef

Determine number of relocations in section

For each relocation in the sectionf

Extract Virtual Address of relocation

Extract Type of relocation

Merge values to construct the combined TypeO�set �eld for entry

Mask out the Relative Virtual Address of the block in which the �xup resides
g

g
Open �xup �le
For each FU: or EX: entryf

Locate section and o�set into section for the relocation
Set Virtual Address equal to the updated o�set of the relocation
Set Type of relocation

Merge values to construct the combined TypeO�set �eld for entry
Mask out the Relative Virtual Address of the block in which the �xup resides

g
Sort relocations according to Relative Virtual Address (RVA)
All relocations with the same RVA belong in one �xup block

For each �xup blockf
Write �xup block RVA to new base relocation table in optimized binary

Calculate size of block based upon number of entries
Write size of block to new base relocation table
For each �xup entry in blockf

Write TypeO�set �eld to new base relocation table

g
If block size is an odd number

Pad with NULL entry
g

g

Figure 8.5 Pseudocode algorithm for new base relocation table construction.

55

CHAPTER 9

EXPERIMENTAL RESULTS

The install-time binary optimization framework has been implemented by members

of the IMPACT research group to validate the static approach to binary code discovery,

optimization, and writeback that has been discussed in this thesis, as well as in the theses

by Thiems [3] and Merten [4]. The project leveraged o� of the easily manipulated Mcode

format already in use with the IMPACT ILP compiler [19]. The Mcode had to be slightly

modi�ed to take into account the complete x86 instruction set and all of its variants. The

framework runs under both Windows NT and Windows 95/98 and can translate most 32-

bit Windows x86 console binaries with base relocation table information. The system can

optimize executables or dynamic-link libraries for potential performance improvement.

In order to demonstrate the feasibility of the binary install-time optimization frame-

work and illustrate the accurate translation of sample binaries, this chapter details the

results of some sample experiments performed using executables from the SPEC95 bench-

mark suite and the executable and DLL which constitute the IMPACT timing simulator.

The AMD K6 optimizations implemented by Thiems [3] and an AMD K6-2 machine de-

scription compiled for this thesis were used to demonstrate the potential for performance

improvement.

56

Table 9.1 Benchmarks used with the optimization framework in thesis experiments.

Benchmark Name Input Run with Benchmark

124.m88ksim SPEC95 clt.in reference input

129.compress SPEC95 bigtest.in reference input

130.li SPEC95 *.lsp reference inputs

speedsim simulator EXE and DLL with MSWord trace input

The experiments were performed on a 300-MHz AMD K6-2 system with 64-MB RAM

running Windows 98. The K6-2 processor implements a superscalar x86 architecture, and

its microarchitecture allows parallel short decodes and the issue of six RISC86 microoper-

ations per cycle to eight execution units. Although the K6-2 is architecturally similar to

the Intel Pentium or Pentium Pro, its distinct microarchitecture requires optimizations

di�erent from those employed by Pentium programmers. The popular Microsoft Visual

C++ 5.0 does not target code generation for the AMD K6-2, so the processor remains a

good candidate for reoptimization.

The binaries analyzed in the experiments (shown in Table 9.1) were compiled using

Microsoft Visual C++ 5.0 with optimization for maximum speed. To collect performance

data, each version of each benchmark was run three times, and the wall clock time was

recorded for each run. The average of the three times is displayed for each version of the

benchmark. The Microsoft utility timethis.exe was used to produce the wall clock time.

The results are given in terms of the speedup over the original executable or dynamic-link

library. Speedup can be calculated as

SPEEDUP =
original runtime

new runtime
: (9.1)

57

The translation process used in the reoptimization framework results in the reordering

of the functions in the binary based upon the depth-�rst traversal used to discover the

functions. The reorganization can impact program performance due to cache and paging

e�ects, but the details of these e�ects have not been thoroughly studied. Although

the reordering often inherently decreases the binary runtime, it has also been shown to

occasionally slow down the executable. Further research is necessary to determine the

causes of and potential solutions for these e�ects.

9.1 Using the Framework to Reschedule with MDES

A few of the SPEC95 applications were run through the binary optimization frame-

work to examine the bene�t of employing accurate processor machine descriptions to

facilitate improved code scheduling for faster, more e�cient program execution. The

results shown in Figure 9.1 illustrate that much remains to be learned about the rela-

tionship between the rescheduler and the processor. One possible explanation for the

behavior is also the e�ects of cache size and paging on program execution. Additionally,

the machine description does not yet have the capability to ensure that rescheduling does

not place an instruction across a cache line boundary. Instructions that span cache lines

are automatically considered to be long decode instructions, which would eliminate the

bene�t of rescheduling for two parallel short decodes. Furthermore, basic memory dis-

ambiguation capability is currently being added to the framework and was not available

for these experiments. Static code scheduling is substantially restricted by undetermined

58

dependences between memory instructions. Even limited memory disambiguation will

allow the scheduler manager more freedom in reordering those memory instructions and

their dependents.

Machine Description Rescheduling of SPEC95
Benchmarks

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s
13

0.
li

S
pe

ed
up

 O
ve

r
O

rig
in

al
 E

xe
cu

ta
bl

e

Inherent Speedup from
Function Reordering

K6 Optimizations

K6 Optis with Simple 2-
Issue Rescheduling

K6 Optis plus Modelling 1
Load and 1 Store Unit

K6 Optis plus Modelling 2
Short Decoders

K6 Optis plus Modelling 2
Short Decoders, 1 Load
Unit, and 1 Store Unit

Figure 9.1 Reoptimization of sample SPEC95 benchmarks using K6-2 MDES.

The graph shown in Figure 9.1 illustrates that a speedup does indeed result from

optimization within the framework, but the e�ect of the machine description can be

questionable in some cases. Further research is required to determine the exact e�ects

and to �nd new ways to correct for the negative e�ects. As mentioned above, the negative

59

e�ects most likely center around cache boundary and ambiguous memory dependence

issues.

Three benchmarks from the SPEC95 benchmark suite (124.m88ksim, 129.compress,

and 130.li) were optimized in a variety of ways. The �rst bar of each set represents

execution speedup from the inherent function reordering of the framework. The second

bar adds the K6-speci�c optimizations implemented by Thiems [3]. These optimizations

include replacing a reference to the esi register with [esi+0], using mov 0 to clear a

register, and replacing certain chains of instructions with a single imul operation. The

third bar performs the optimizations and reschedules based upon a simple two-issue

machine description. Bar four replaces the simple machine description with an AMD

K6-2 MDES constraining rescheduling with only one load unit and one store unit. The

next result also adds two parallel short decoders to the MDES. The �nal bar removes

the load/store constraint to only model the e�ects of the parallel short decode.

9.2 Using the Framework to Optimize a DLL

In order to demonstrate that the optimization framework can successfully translate

and optimize both 32-bit Windows EXEs and DLLs, the IMPACT timing simulator was

separated into an EXE and a single DLL. The timing simulator, speedsim, takes an input

instruction trace and processes each instruction in the trace. Speedsim models processor

resources and dependences and determines the number of processor clock cycles neces-

sary to execute the instruction stream. It has been modi�ed for the runtime optimization

60

work done in [20] to identify hot spots in the code which represent optimization oppor-

tunities. The trace piped through speedsim for this experiment was recorded by a special

hardware unit, known as SpeedTracer, that captures dynamic instruction traces on an

AMD K6 platform. The trace was taken while editing a document in Microsoft Word 97.

The instructions which read from the instruction trace pipe and disassemble each instruc-

tion were placed in the DLL. The initialization routines, main program loop, processor

constraint simulators, and hot spot detection functions resided in the EXE.

Reoptimization of Speedsim EXE & DLL Optimized
for Maximum Speed with VC 5.0

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

EXE
DLL

BOTH

S
pe

ed
up

 O
ve

r
O

rig
in

al
 E

X
E

 &
 D

LL

Conversion Only

K6-2 Rescheduling

Rescheduling Plus K6
Optimizations

Figure 9.2 Reoptimization of speedsim.dll and speedsim.exe.

The binary reoptimization framework was used to optimize the EXE and the DLL,

and performance results were recorded for each binary. The �rst set of data represents

61

the translated EXE run with the original DLL. The second set records the performance of

the translated DLL run with the original EXE. The third set records the results when the

EXE and DLL are both translated. The �rst bar in each set illustrates the performance

improvement inherent in the function reordering performed by Lbx86 and demonstrates

that even the depth-�rst reorganization can positively impact run time. The second bar in

each group shows the performance improvement resulting from instruction rescheduling

based upon the AMD K6-2 machine description discussed in Section 6.2. The �nal bar

combines the e�ects of rescheduling with the K6 optimizations implemented by Thiems

in [3].

The data clearly show that both the executable and the dynamic-link library can be

correctly translated by the framework and reexecuted. Furthermore, the results demon-

strate that signi�cant performance improvement can be gained through the DLL opti-

mization, as well as the EXE optimization. These experiments support the assertion of

this thesis that DLLs can be optimized with important bene�ts to the overall program.

62

CHAPTER 10

CONCLUSION

This thesis provides a description of the static code discovery mechanisms utilized in

the IMPACT binary reoptimization framework and discusses some of the optimization,

binary regeneration, and binary writeback issues involved in the process. Thiems [3],

Merten [4], and the present thesis represent a complete treatise on the framework and

its methodology. The system facilitates the decoding, optimization, and writeback of

binary executables, object �les, or dynamic-link libraries, and provides an extremely

exible framework for additional optimizations and even for the inclusion of run-time

information.

Although the binary reoptimizer has been implemented for the x86 architecture, its

capabilities are easily applicable to a wide variety of architectures, provided that the

corresponding instruction sets can be decoded and converted into the Mcode internal

representation. An additional machine description would ensure that the scheduler tar-

gets the di�erent processor resources. This
exibility ensures that the framework will

remain viable despite shifts in platform preference and architectural development. Al-

though some of the heuristics employed in the framework are not fool-proof, the majority

of system experiments have resulted in the successful decoding and optimization of 32-

bit Windows x86 executables and dynamic link libraries. These experiments and the

63

data presented in this thesis show that the system is indeed functional and applicable to

real-world applications.

The open-ended nature of the binary reoptimization framework allows great potential

for future work. Many classical compiler optimizations can be ported from the IMPACT

compiler to the framework, and memory disambiguation is in the process of being added

to the system. The scheduling issues surrounding the machine description and the mod-

eling of system constraints also o�er further research directions. Much work is also being

done on a runtime optimization project, and information gleaned from the runtime mon-

itoring of a binary can be utilized in a �rst or second pass of the binary reoptimizer

to further tailor performance optimizations. Furthermore, information generated by the

binary reoptimizer can be used to identify and target certain code areas during runtime

optimization.

64

REFERENCES

[1] Intel Corporation, Intel Architecture Software Developer's Manual, Volume 2: In-

struction Set Reference. Santa Clara, CA, 1997.

[2] Advanced Micro Devices, \3DNow! technology manual," Tech. Rep. 21928, Ad-

vanced Micro Devices, Sunnyvale, CA, May 1998.

[3] M. S. Thiems, \Optimization and executable regeneration in the IMPACT binary

reoptimization framework," Master's thesis, Department of Electrical and Computer

Engineering, University of Illinois, Urbana, IL, 1998.

[4] M. C. Merten, \A framework for pro�le-driven optimization in the IMPACT binary

reoptimization system," Master's thesis, Department of Electrical and Computer
Engineering, University of Illinois, Urbana, IL, 1999.

[5] R. J. Hookway and M. A. Herdeg, \Digital FX!32: Combining emulation and binary
translation," Digital Technical Journal, vol. 9, August 1997.

[6] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith, \System support for

automatic pro�ling and optimization," in Proc. of the 16th ACM Symposium of

Operating Systems Principles, October 1997, pp. 15{26.

[7] Stanford Compiler Group, \SUIF: A parallelizing and optimizing research compiler,"
Tech. Rep. CSL-TR-94-620, Stanford University, Computer Systems Laboratory,
May 1994.

[8] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and
B. Chen, \Instrumentation and optimization of Win32/Intel executables using etch,"

in Proceedings of the USENIX Windows NT Workshop, August 1997, pp. 1{7.

[9] M. Pietrek, \Peering inside PE: A tour of the Win32 portable executable format,"

Microsoft Systems Jouranl, vol. 9, pp. 15{34, March 1994.

[10] Visual C++ Business Unit, \Microsoft portable executable and common object �le
format speci�cation 4.1," tech. rep., MSDN Library, Microsoft Corporation, August

1994.

[11] W.W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,

R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,

\The Superblock: An e�ective technique for VLIW and superscalar compilation,"

The Journal of Supercomputing, vol. 7, pp. 229{248, January 1993.

65

[12] M. Pietrek, Windows 95 System Programming Secrets. Foster City, CA: IDG Books

Worldwide, 1995.

[13] R. A. Bringmann, \Template for code generation development using the IMPACT-I

C compiler," Master's thesis, Department of Computer Science, University of Illinois,

Urbana, IL, 1992.

[14] University of Illinois, Urbana, IL, IMPACT Lcode Tutorial, 1998.

[15] J. C. Gyllenhaal, \An e�cient framework for performing execution-constraint-

sensitive transformations that increase instruction-level parallelism," PhD disser-

tation, Department of Electrical and Computer Engineering, University of Illinois,

Urbana, IL, 1997.

[16] J. C. Gyllenhaal, \A machine description language for compilation," Master's thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1994.

[17] J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau, \Optimization of machine descriptions
for e�cient use," in Proceedings of the 29th International Symposium on Microar-

chitecture, December 1996, pp. 349{358.

[18] Advanced Micro Devices, \AMD-K6-2 processor code optimization application
note," Tech. Rep. 21924, Advanced Micro Devices, Sunnyvale, CA, May 1998.

[19] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT:
An architectural framework for multiple-instruction-issue processors," in Proceedings
of the 18th International Symposium on Computer Architecture, May 1991, pp. 266{

275.

[20] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and W. W. Hwu, \A

hardware-driven pro�ling scheme for identifying program hot spots to support run-
time optimization," to appear in Proceedings of the 1999 International Symposium

on Computer Architecture, Atlanta, GA, May 1999.

66

APPENDIX A

BINARY DECODER STRUCTURES

Chapter 5 details the algorithms employed by the x86toM decoder to disassemble

the binary input �le and convert its x86 instructions into the intermediate Mcode rep-

resentation used by the Lbx86 optimizer. To facilitate conversion and optimization, the

components of the binary, the functions, and the constituent blocks of x86 instructions

are all stored in various structures in memory. For completeness, these structures are

reproduced here in Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, and A.8.

67

typedef struct _BinaryFileInfo

{

HANDLE fileHandle;

HANDLE fileMappingHandle;

LPVOID fileBase; /* location at which file is memory-mapped */

PIMAGE_FILE_HEADER imgFileHdr;

PIMAGE_SECTION_HEADER origSectTable;

WORD numSections;

PBYTE stringTabBase;

struct _BinarySymbolTable *symTab; /* pointer to symbol table */

SectionInfoNode *sectList; /* list of section structures */

SectionInfoNode *processSection;

BinaryType fileType;

RelocList *relocList; /* pointer to list of relocations */

BYTE reloc_info;

DWORD imageBase;

/* general shortcut buffers to speed up section lookups */

SectionInfoNode *XLTM_buf,

*XMTL_buf,

*GSIBN_buf,

*GSIBA_buf,

*XLTON_buf;

DWORD sectionAlignment;

DWORD fileAlignment;

PIMAGE_OPTIONAL_HEADER imgOptHdr;

TableInfo tableInfo[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

} BinaryFileInfo;

Figure A.1 BinaryFileInfo structure.

68

typdef struct _SectionInfoNode

{

/* Use for the original mapped file. */

PIMAGE_SECTION_HEADER info;

/* pointer to original section information */

WORD sectionNum; /* numeric id of section */

char *Name; /* name of section */

/* Use for the new, grown sections. */

DWORD newfbase; /* new base file address of section */

DWORD newfsize; /* new file size of section */

DWORD newvbase; /* new virtual base address of section */

DWORD newvsize; /* new virtual size of section */

DWORD newrbase;

PIMAGE_RELOCATION newrelocs;

struct _SectionInfoNode *next;

} SectionInfoNode;

Figure A.2 SectionInfoNode structure.

typedef struct EntryPt

{

EntryType type; /* type of entry pt (CALL, Jcc, JMP, etc.) */

BlockInfo *block; /* ptr to bock jumped/called from */

DWORD nextIP; /* IP of next instruction to be decoded */

DWORD origin; /* address of instruction that generated EP */

DWORD fnid; /* numeric id of parent function */

DWORD cbid; /* numeric id of parent block */

} EntryPt;

Figure A.3 EntryPt structure.

69

typedef struct InstrInfo

{

OPC_ENUM opcode;

BYTE *instrPtr; /* address of current instruction in virtual RAM */

BYTE addrmode; /* selects addressing mode (16- or 32- bit) */

OPERAND_ENUM opertype[3];/* specifies type of operand */

BYTE opersize[3]; /* specifies operand size (8-, 16- or 32- bit) */

REG_ENUM regnum[3]; /* specifies actual register numbers for operands */

BYTE immediate[4]; /* instruction immediate value */

BYTE displacement[6]; /* displacement value for the operation */

BYTE numDispBytes;

REG_ENUM basereg; /* base reg of the SIB */

REG_ENUM indexreg; /* index reg of the SIB */

BYTE scale; /* scale value of the SIB */

BYTE InstrLen; /* overall length (in bytes) of the instruction */

OPC_ENUM prefix; /* instruction prefix value */

OPC_ENUM segOveride;

FLAG_ENUM InstrFlags;

BYTE immdOfst;

BYTE dispOfst;

BYTE reloc32Imm;

BYTE reloc32MemDisp;

int amd3d; /* Is this a 3DNow instruction? */

} InstrInfo;

Figure A.4 InstrInfo structure.

70

typedef struct _BlockInfo

{

struct _BlockInfo *next; /* pointer to next block */

struct _BlockInfo *prev; /* pointer to prev block */

DWORD start; /* starting address of block */

DWORD length; /* length of block */

DWORD relocatedStart; /* start of block after probe ins. */

int delta; /* change in size of this block */

DWORD fnid; /* Mcode function id */

DWORD cbid; /* Mcode control block id */

BlockType type; /* block type (jmp tbl, reg code, etc.) */

RelocNode *relocs; /* linked-list of immediate addresses in

block that may need fixup after probe

insertion */

L_Datalist *datalist;

DWSNode *jump_rg_targets; /* only for tables that are out of bounds */

DWSNode *jump_rg_conds; /* only for tables that are out of bounds */

} BlockInfo;

Figure A.5 BlockInfo structure.

typedef struct _MemoryMap

{

BlockInfo *headBlock; /* 1st block of memory map */

BlockInfo *currBlock; /* pointer to current block of memory map */

/* current block is block being modified by

the decoder */

BlockInfo *tailBlock; /* last block of memory map */

BlockInfo **blockArray; /* array for shortcut table which allows easy

and rapid block lookup */

DWORD chunkSize, /* spacing (bytes) of shortcut entries */

arraySize, /* size of shortcut table */

baseOfst, /* base of mapped memory section */

length; /* length of mapped memory section */

} BlockMap;

Figure A.6 MemoryMap structure.

71

typedef struct FunctionNode

{

DWORD fnid; /* numeric id of the function */

DWSNode *headEntryPt; /* pointer to list of function entry points */

DWSNode *headExitPt; /* pointer to list of function exit pointers */

DWSNode *calledFrom; /* pointer to list of function call sites */

CBNode *headCB; /* pointer to list of constituent blocks in function */

CBNode *tailCB;

int entryCount; /* count of entry points listed in headEntryPt array */

int exitCount; /* count of exit points listed in headExitPt array */

int cbCount; /* count of constituent blocks in headCB array */

int lastCbidAssigned; /* last cb id assigned for function */

char *name; /* dynamically allocated fn name */

/* FunctionTable supports function lookup, addition, merging, and deletion */

struct FunctionTable *table; /* for deletion of function */

struct FunctionNode *nextFunction; /* for table's contents list */

struct FunctionNode *prevFunction;

/* hash table allows rapid and easy access to functions in table using id */

struct FunctionNode *nextHash; /* for table's hash table */

struct FunctionNode *prevHash;

int livePoints; /* number of entry points pending */

DWSNode *pushedLoc; /* pointers pushed to stack */

char poison; /* if function is invalidated, poison

flag is set to true. */

L_Func *mcodeFn; /* pointer to mcode structure for function */

int numberOfJumpTables; /* number of jump tables used by function */

} FunctionNode;

Figure A.7 FunctionNode structure.

typedef struct _BaseRelocEntry

{

DWORD VirtualAddress; /* complete virtual address of fixup */

DWORD RVA; /* relative virtual address of fixup page */

WORD Type; /* type of fixup (HIGHLOW == 3, ABSOLUTE == 0) */

WORD TypeOffset; /* combination of type and offset into virtual page */

} BaseRelocEntry;

Figure A.8 BaseRelocEntry structure.

72

APPENDIX B

MACHINE DESCRIPTION STRUCTURE

Chapter 6 described the format of a machine description used by the scheduler man-

ager to reschedule instructions for a target processor. Figure B.1 illustrates the various

sections of a machine description and identi�es the relationships between the machine

description components.

73

Operation

Registers FlagsOperations

Register_File

Register

Register_Class

IMPACT_Operation

Scheduling_Alternative

Parameter

IMPACT_Operation_Flag

IMPACT_Alt_Flag

Format

Field_Type

Operation_Format

Latency

Operand_Latency

Operation_Latency

Resource Usage

Resource

Resource_Usage

Resource_Unit

Table_Option

Reservation_Table

Figure B.1 Basic structural relationship of a machine description. Bold sections and
arrows indicate compiler-independent features.

74

APPENDIX C

AMD K6-2 MACHINE DESCRIPTION

The experiments presented in this thesis utilize a machine description which re
ects

the resources and constraints of the AMD K6-2 microprocessor. The machine description

�le is included below for reference, and the description re
ects the dual short decode units,

the single load unit, and the single store unit.

75

AMD K6-2 machine description.

#

Author: Christopher N. George with John Gyllenhaal

Date: 3/19/99

#

$include "${IMPACT_REL_PATH}/mdes/structure/structure_IMPACT.hmdes2"

SECTION Parameter

{

processor_model

(value("superscalar"));

customization_headers

(value("defs"

"${IMPACT_REL_PATH}/src/include/Lcode/l_opc.h"

"${IMPACT_REL_PATH}/src/include/Lcode/limpact_phase1.h"

"${IMPACT_REL_PATH}/src/include/machine/m_spec.h"

"${IMPACT_REL_PATH}/src/include/machine/m_bx86.h"

"${IMPACT_REL_PATH}/src/include/Lcode/l_flags.h"));

}

SECTION Field_Type

{

Lit ();

Label ();

NULL ();

REG ();

ANY (compatible_with(Lit Label NULL REG ANY));

}

/* Allow any instruction format */

SECTION Operation_Format

{

IOI_ANY (pred() src(ANY ANY ANY ANY ANY ANY ANY)

dest(ANY ANY ANY ANY));

}

SECTION Resource

{

/* Minimum requirement, one scheduling slot */

slot0 (slot(0));

slot1 (slot(1));

slot2 (slot(2));

decode0 (); /* 1st short decoder */

76

decode1 (); /* 2nd short decoder */

load_port (); /* single load unit */

store_port (); /* single store unit */

}

SECTION Resource_Usage

{

RU_slot0_t0_0 (use(slot0) time(0));

RU_slot1_t0_0 (use(slot1) time(0));

RU_slot2_t0_0 (use(slot2) time(0));

RU_decode0_t0_0 (use(decode0) time(0));

RU_decode1_t0_0 (use(decode1) time(0));

RU_load_port_t1_1 (use(load_port) time(1));

RU_store_port_t1_1 (use(store_port) time(1));

}

SECTION Resource_Unit

{

}

SECTION Table_Option

{

two_issue (one_of(RU_slot0_t0_0 RU_slot1_t0_0));

three_issue (one_of(RU_slot0_t0_0 RU_slot1_t0_0 RU_slot2_t0_0));

short_decode (one_of(RU_decode0_t0_0 RU_decode1_t0_0));

}

SECTION Reservation_Table

{

// RL_ALL (use(RU_slot0_t0_0));

RL_ALL (use(two_issue));

RL_Load (use(two_issue RU_load_port_t1_1));

RL_Store (use(two_issue RU_store_port_t1_1));

// RL_ALL (use(three_issue));

RL_Short_Dec (use(two_issue short_decode));

RL_Long_Dec (use(two_issue RU_decode0_t0_0 RU_decode1_t0_0));

RL_Short_Load (use(two_issue short_decode RU_load_port_t1_1));

RL_Long_Load (use(two_issue RU_decode0_t0_0 RU_decode1_t0_0

RU_load_port_t1_1));

RL_Short_Store (use(two_issue short_decode RU_store_port_t1_1));

RL_Long_Store (use(two_issue RU_decode0_t0_0 RU_decode1_t0_0

RU_store_port_t1_1));

}

77

SECTION Operand_Latency

{

s0 (time(0));

d1 (time(1));

p0 (time(0));

ss0 (time(0));

sd0 (time(0));

}

SECTION Operation_Latency

{

Lat_ALL (dest(d1 d1)

src(s0 s0 s0 s0)

pred(p0)

mem_dest(sd0)

ctrl_dest(sd0)

sync_dest(sd0)

mem_src(ss0)

ctrl_src(ss0)

sync_src(ss0));

}

SECTION Scheduling_Alternative

{

ALT_ALL (format(IOI_ANY)

resv(RL_ALL)

latency(Lat_ALL));

ALT_Load (format(IOI_ANY)

resv(RL_Load)

latency(Lat_ALL));

ALT_Store (format(IOI_ANY)

resv(RL_Store)

latency(Lat_ALL));

ALT_Short_Dec (format(IOI_ANY)

resv(RL_Short_Dec)

latency(Lat_ALL));

ALT_Long_Dec (format(IOI_ANY)

resv(RL_Long_Dec)

78

latency(Lat_ALL));

ALT_Short_Load (format(IOI_ANY)

resv(RL_Short_Load)

latency(Lat_ALL));

ALT_Long_Load (format(IOI_ANY)

resv(RL_Long_Load)

latency(Lat_ALL));

ALT_Short_Store (format(IOI_ANY)

resv(RL_Short_Store)

latency(Lat_ALL));

ALT_Long_Store (format(IOI_ANY)

resv(RL_Long_Store)

latency(Lat_ALL));

}

SECTION Operation

{

OP_ALL (alt(ALT_ALL));

OP_Load (alt(ALT_Load));

OP_Store (alt(ALT_Store));

OP_Short_Dec (alt(ALT_Short_Dec));

OP_Long_Dec (alt(ALT_Long_Dec));

OP_Short_Load (alt(ALT_Short_Load));

OP_Long_Load (alt(ALT_Long_Load));

OP_Short_Store (alt(ALT_Short_Store));

OP_Long_Store (alt(ALT_Long_Store));

}

SECTION IMPACT_Operation

{

$include "classify_decode"

}

classify_decode

associate operations with AMD K6-2 machine resources and operations

#

Author: Christopher N. George with John Gyllenhaal and Mike Thiems

79

Date: 3/19/99

#

$include "${IMPACT_REL_PATH}/mdes/structure/structure_IMPACT.hmdes2"

// Ignored ops

$for (NAME in

P_WAIT

P_DIRECTIVE

)

{

${NAME} (op(OP_Long_Dec) flags(IGNORE));

}

// Synchronization ops

$for (NAME in

P_F2XM1

P_FABS

P_FADD_REG_REG

P_FADDP

P_FCHS

P_FCMOVB

P_FCMOVBE

P_FCMOVE

P_FCMOVNB

P_FCMOVNBE

P_FCMOVNE

P_FCMOVNU

P_FCMOVU

P_FCOM_REG_REG

P_FCOMI

P_FCOMIP

P_FCOMP_REG_REG

P_FCOMPP

P_FCOS

P_FDECSTP

P_FDIV_REG_REG

P_FDIVP

P_FDIVR_REG_REG

P_FDIVRP

P_FFREE

P_FINCSTP

P_FLD_REG_REG

P_FLDLG2

80

P_FLDLN2

P_FLDL2E

P_FLDL2T

P_FLDPI

P_FLDZ

P_FLD1

P_FMUL_REG_REG

P_FMULP

P_FNOP

P_FPATAN

P_FPREM

P_FPREM1

P_FRNDINT

P_FSCALE

P_FSETPM

P_FSIN

P_FSQRT

P_FST_REG_REG

P_FSTP_REG_REG

P_FSUB_REG_REG

P_FSUBP

P_FSUBR_REG_REG

P_FSUBRP

P_FTST

P_FUCOM

P_FUCOMI

P_FUCOMIP

P_FUCOMP

P_FUCOMPP

P_FXAM

P_FXCH

P_FYL2X

P_FYL2XP1

)

{

${NAME} (op(OP_Short_Dec) flags(SYNC));

}

// Synchronization ops

$for (NAME in

P_HLT

P_MOV_SREG_SREG_REG

P_FCLEX

81

P_FINIT

P_FPTAN

P_FSINCOS

P_FSTSW_REG_REG

P_FXTRACT

)

{

${NAME} (op(OP_Long_Dec) flags(SYNC));

}

// JSR ops

$for (NAME in

P_CALL_REL_NEAR

)

{

${NAME} (op(OP_Short_Dec) flags(JSR NI));

}

// JSR ops

$for (NAME in

P_CALL_REG_NEAR

)

{

${NAME} (op(OP_Long_Dec) flags(JSR NI));

}

// JSR with LOAD ops

$for (NAME in

P_CALL_MEM_NEAR

)

{

${NAME} (op(OP_Long_Load) flags(JSR EXCEPT LOAD NI));

}

// RTS ops

$for (NAME in

P_RET_WITH_IMM

P_RET_NO_IMM

P_RETF_WITH_IMM

P_RETF_NO_IMM

)

{

${NAME} (op(OP_Long_Dec) flags(RTS NI));

82

}

// JUMP ops

$for (NAME in

P_JMP_REL_NEAR

)

{

${NAME} (op(OP_Short_Dec) flags(JMP NI));

}

// JUMP ops

$for (NAME in

P_JMP_REG_NEAR

)

{

${NAME} (op(OP_Long_Dec) flags(JMP NI));

}

// JUMP with LOAD ops

$for (NAME in

P_JMP_MEM_NEAR

)

{

${NAME} (op(OP_Long_Load) flags(JMP EXCEPT LOAD NI));

}

// Conditional branch ops

$for (NAME in

P_JA_CBR

P_JAE_CBR

P_JB_CBR

P_JBE_CBR

P_JG_CBR

P_JGE_CBR

P_JL_CBR

P_JLE_CBR

P_JO_CBR

P_JNO_CBR

P_JP_CBR

P_JNP_CBR

P_JS_CBR

P_JNS_CBR

P_JZ_CBR

83

P_JNZ_CBR

P_LOOP_CBR

)

{

${NAME} (op(OP_Short_Dec) flags(CBR NI));

}

// Conditional branch ops

$for (NAME in

P_JCXZ_CBR

P_LOOPZ_CBR

P_LOOPNZ_CBR

)

{

${NAME} (op(OP_Long_Dec) flags(CBR NI));

}

// LOAD ops

$for (NAME in

P_ADD_REG_MEM

P_AND_REG_MEM

P_CMP_MEM_IMM

P_CMP_MEM_REG

P_CMP_REG_MEM

P_MOV_REG_MEM_ACC

P_MOV_REG_MEM

P_MOVSX_REG_MEM

P_MOVZX_REG_MEM

P_OR_REG_MEM

P_POP_eSP

P_POP_REG

P_SUB_REG_MEM

P_XOR_REG_MEM

P_MOVD_REG_MEM

P_MOVQ_REG_MEM

P_PACKSSDW_REG_MEM

P_PACKSSWB_REG_MEM

P_PACKUSWB_REG_MEM

P_PADDB_REG_MEM

P_PADDD_REG_MEM

P_PADDW_REG_MEM

P_PADDSB_REG_MEM

P_PADDSW_REG_MEM

84

P_PADDUSB_REG_MEM

P_PADDUSW_REG_MEM

P_PAND_REG_MEM

P_PANDN_REG_MEM

P_PCMPEQB_REG_MEM

P_PCMPEQD_REG_MEM

P_PCMPEQW_REG_MEM

P_PCMPGTB_REG_MEM

P_PCMPGTD_REG_MEM

P_PCMPGTW_REG_MEM

P_PMADDWD_REG_MEM

P_PMULHW_REG_MEM

P_PMULLW_REG_MEM

P_POR_REG_MEM

P_PSUBB_REG_MEM

P_PSUBSB_REG_MEM

P_PSUBSW_REG_MEM

P_PSUBUSB_REG_MEM

P_PSUBUSW_REG_MEM

P_PSUBD_REG_MEM

P_PSUBW_REG_MEM

P_PUNPCKHBW_REG_MEM

P_PUNPCKHWD_REG_MEM

P_PUNPCKHDQ_REG_MEM

P_PUNPCKLBW_REG_MEM

P_PUNPCKLWD_REG_MEM

P_PUNPCKLDQ_REG_MEM

P_PXOR_REG_MEM

P_PAVGUSB_REG_MEM

P_PF2ID_REG_MEM

P_PFACC_REG_MEM

P_PFADD_REG_MEM

P_PFCMPEQ_REG_MEM

P_PFCMPGE_REG_MEM

P_PFCMPGT_REG_MEM

P_PFMAX_REG_MEM

P_PFMIN_REG_MEM

P_PFMUL_REG_MEM

P_PFRCP_REG_MEM

P_PFRCPIT1_REG_MEM

P_PFRCPIT2_REG_MEM

P_PFRSQIT1_REG_MEM

P_PFRSQRT_REG_MEM

85

P_PFSUB_REG_MEM

P_PFSUBR_REG_MEM

P_PI2FD_REG_MEM

P_PMULHRW_REG_MEM

)

{

${NAME} (op(OP_Short_Load) flags(EXCEPT LOAD));

}

// LOAD ops

$for (NAME in

P_ADC_REG_MEM

P_BOUND

P_BSF_REG_MEM

P_BSF_REG_MEM_BIG

P_BSR_REG_MEM

P_BSR_REG_MEM_BIG

P_BT_MEM_IMM

P_BT_MEM_REG

P_BT_REG_MEM

P_BTC_REG_MEM

P_BTR_REG_MEM

P_BTS_REG_MEM

P_CMPS_REPZ

P_CMPS_REPNZ

P_CMPS_REP

P_CMPS_NO_REP

P_DIV_MEM_32

P_DIV_MEM_8

P_DIV_MEM_16

P_IDIV_MEM_32

P_IDIV_MEM_8

P_IDIV_MEM_16

P_IMUL_REG_MEM_IMM

P_IMUL_MEM_32

P_IMUL_MEM_8

P_IMUL_MEM_16

P_IMUL_REG_MEM

P_LEAVE

P_LODS_REPZ

P_LODS_REPNZ

P_LODS_REP

P_LODS_NO_REP

86

P_MUL_MEM_32

P_MUL_MEM_8

P_MUL_MEM_16

P_OUTS_REPZ

P_OUTS_REPNZ

P_OUTS_REP

P_OUTS_NO_REP

P_POPA

P_POPF

P_PUSH_MEM

P_SBB_REG_MEM

P_SCAS_REPZ

P_SCAS_REPNZ

P_SCAS_REP

P_SCAS_NO_REP

P_TEST_MEM_IMM

P_TEST_MEM_REG

P_TEST_REG_MEM

P_XLAT

P_PREFETCH_MEM_8

)

{

${NAME} (op(OP_Long_Load) flags(EXCEPT LOAD));

}

// Synchronizing LOAD ops

$for (NAME in

P_FADD_REG_MEM

P_FCOM_REG_MEM

P_FCOMP_REG_MEM

P_FDIV_REG_MEM

P_FDIVR_REG_MEM

P_FIADD_REG_MEM

P_FIADD_REG_MEM_BIG

P_FICOM_REG_MEM

P_FICOM_REG_MEM_BIG

P_FICOMP_REG_MEM

P_FICOMP_REG_MEM_BIG

P_FIDIV_REG_MEM

P_FIDIV_REG_MEM_BIG

P_FIDIVR_REG_MEM

P_FIDIVR_REG_MEM_BIG

P_FILD_MEM

87

P_FILD_MEM_BIG

P_FIMUL_REG_MEM

P_FIMUL_REG_MEM_BIG

P_FISTP_MEM

P_FISTP_MEM_BIG

P_FISUB_REG_MEM

P_FISUB_REG_MEM_BIG

P_FISUBR_REG_MEM

P_FISUBR_REG_MEM_BIG

P_FLD_REG_MEM

P_FLDENV_MEM

P_FLDENV_MEM_BIG

P_FMUL_REG_MEM

P_FSUB_REG_MEM

P_FSUBR_REG_MEM

)

{

${NAME} (op(OP_Short_Load) flags(EXCEPT LOAD SYNC));

}

// Synchronizing LOAD ops

$for (NAME in

P_LDS

P_LES

P_LFS

P_LGS

P_LSS

P_MOV_SREG_SREG_MEM

P_POP_CS

P_POP_SS

P_POP_DS

P_POP_ES

P_POP_FS

P_POP_GS

P_FBLD

P_FLD_REG_MEM_BIG

P_FLDCW

P_FRSTOR_MEM

P_FRSTOR_MEM_BIG

P_FSAVE_MEM

P_FSAVE_MEM_BIG

P_FSTENV_MEM

P_FSTENV_MEM_BIG

88

)

{

${NAME} (op(OP_Long_Load) flags(EXCEPT LOAD SYNC));

}

// STORE ops

$for (NAME in

P_ADC_MEM_IMM

P_ADC_MEM_REG

P_ADD_MEM_IMM

P_ADD_MEM_REG

P_AND_MEM_IMM

P_AND_MEM_REG

P_ARPL_MEM_REG

P_BTC_MEM_IMM

P_BTC_MEM_REG

P_BTR_MEM_IMM

P_BTR_MEM_REG

P_BTS_MEM_IMM

P_BTS_MEM_REG

P_DEC_MEM_IMM

P_ENTER

P_INC_MEM_IMM

P_INS_REPZ

P_INS_REPNZ

P_INS_REP

P_INS_NO_REP

P_MOV_MEM_IMM

P_MOV_SREG_MEM_SREG

P_MOVS_REPZ

P_MOVS_REPNZ

P_MOVS_REP

P_MOVS_NO_REP

P_NEG_MEM_IMM

P_NOT_MEM_IMM

P_OR_MEM_IMM

P_POP_MEM

P_PUSH_CS

P_PUSH_SS

P_PUSH_DS

P_PUSH_ES

P_PUSH_FS

P_PUSH_GS

89

P_PUSH_REG

P_PUSH_IMM

P_PUSHA

P_PUSHF

P_RCL_MEM_BY_1

P_RCL_MEM_BY_IMM

P_RCL_MEM_BY_CL

P_RCR_MEM_BY_1

P_RCR_MEM_BY_IMM

P_RCR_MEM_BY_CL

P_ROL_MEM_BY_1

P_ROL_MEM_BY_IMM

P_ROL_MEM_BY_CL

P_ROR_MEM_BY_1

P_ROR_MEM_BY_IMM

P_ROR_MEM_BY_CL

P_SAL_MEM_BY_1

P_SAL_MEM_BY_IMM

P_SAL_MEM_BY_CL

P_SAR_MEM_BY_1

P_SAR_MEM_BY_IMM

P_SAR_MEM_BY_CL

P_SHR_MEM_BY_1

P_SHR_MEM_BY_IMM

P_SHR_MEM_BY_CL

P_SBB_MEM_IMM

P_SBB_MEM_REG

P_SETA_MEM_IMM

P_SETAE_MEM_IMM

P_SETB_MEM_IMM

P_SETBE_MEM_IMM

P_SETG_MEM_IMM

P_SETGE_MEM_IMM

P_SETL_MEM_IMM

P_SETLE_MEM_IMM

P_SETO_MEM_IMM

P_SETNO_MEM_IMM

P_SETP_MEM_IMM

P_SETNP_MEM_IMM

P_SETS_MEM_IMM

P_SETNS_MEM_IMM

P_SETZ_MEM_IMM

P_SETNZ_MEM_IMM

90

P_SHLD_MEM_BY_IMM

P_SHLD_MEM_BY_CL

P_SHRD_MEM_BY_IMM

P_SHRD_MEM_BY_CL

P_STOS_REPZ

P_STOS_REPNZ

P_STOS_REP

P_STOS_NO_REP

P_SUB_MEM_IMM

P_SUB_MEM_REG

P_XADD_MEM_IMM

P_XADD_MEM_REG

P_XADD_REG_MEM

P_XCHG_MEM_REG

P_XCHG_REG_MEM

P_XOR_MEM_IMM

P_XOR_MEM_REG

P_CPUID

)

{

${NAME} (op(OP_Long_Store) flags(EXCEPT LOAD STORE));

}

// STORE ops

$for (NAME in

P_MOV_MEM_REG_ACC

P_MOV_MEM_REG

P_MOVSX_MEM_IMM

P_MOVSX_MEM_REG

P_MOVZX_MEM_IMM

P_MOVZX_MEM_REG

P_OR_MEM_REG

P_MOVD_MEM_REG

P_MOVQ_MEM_REG

)

{

${NAME} (op(OP_Short_Store) flags(EXCEPT LOAD STORE));

}

// Synchronizing STORE ops

$for (NAME in

P_FIST

P_FST_MEM_REG

91

P_FST_MEM_REG_BIG

P_FSTP_MEM_REG

P_FSTP_MEM_REG_BIG

)

{

${NAME} (op(OP_Short_Store) flags(EXCEPT STORE SYNC));

}

// Synchronizing STORE ops

$for (NAME in

P_FBSTP

P_FSTCW

P_FSTSW_MEM_REG

)

{

${NAME} (op(OP_Long_Store) flags(EXCEPT STORE SYNC));

}

// JSR with SYNC ops

$for (NAME in

P_INTP_I_3

P_INTP_I_OTHER

P_INTO

)

{

${NAME} (op(OP_Long_Dec) flags(JSR SYNC NI));

}

// The rest

$for (NAME in

P_AAA

P_AAD

P_AAM

P_AAS

P_ADC_REG_IMM_ACC

P_ADC_REG_IMM

P_ADC_REG_REG

P_ARPL_REG_REG

P_BSF_REG_REG

P_BSF_REG_REG_BIG

P_BSR_REG_REG

P_BSR_REG_REG_BIG

P_BSWAP

92

P_BT_REG_IMM

P_BT_REG_REG

P_BTC_REG_IMM

P_BTC_REG_REG

P_BTR_REG_IMM

P_BTR_REG_REG

P_BTS_REG_IMM

P_BTS_REG_REG

P_CBW

P_CLC

P_CLD

P_CLI

P_CMC

P_CWD

P_DAA

P_DAS

P_DIV_REG_32

P_DIV_REG_8

P_DIV_REG_16

P_IDIV_REG_32

P_IDIV_REG_8

P_IDIV_REG_16

P_IMUL_REG_REG_IMM

P_IMUL_REG_32

P_IMUL_REG_8

P_IMUL_REG_16

P_IMUL_REG_IMM_SPC

P_IMUL_REG_REG

P_INP_REG_IMM

P_INP_REG_REG

P_LAHF

P_MOV_SREG_REG_SREG

P_MUL_REG_32

P_MUL_REG_8

P_MUL_REG_16

P_OUTP_REG_IMM

P_OUTP_REG_REG

P_RCL_REG_BY_1

P_RCL_REG_BY_IMM

P_RCL_REG_BY_CL

P_RCR_REG_BY_1

P_RCR_REG_BY_IMM

P_RCR_REG_BY_CL

93

P_ROL_REG_BY_1

P_ROL_REG_BY_IMM

P_ROL_REG_BY_CL

P_ROR_REG_BY_1

P_ROR_REG_BY_IMM

P_ROR_REG_BY_CL

P_SAHF

P_SBB_REG_IMM_ACC

P_SBB_REG_IMM

P_SBB_REG_REG

P_SETA_REG_IMM

P_SETAE_REG_IMM

P_SETB_REG_IMM

P_SETBE_REG_IMM

P_SETG_REG_IMM

P_SETGE_REG_IMM

P_SETL_REG_IMM

P_SETLE_REG_IMM

P_SETO_REG_IMM

P_SETNO_REG_IMM

P_SETP_REG_IMM

P_SETNP_REG_IMM

P_SETS_REG_IMM

P_SETNS_REG_IMM

P_SETZ_REG_IMM

P_SETNZ_REG_IMM

P_SHLD_REG_BY_IMM

P_SHLD_REG_BY_CL

P_SHRD_REG_BY_IMM

P_SHRD_REG_BY_CL

P_STC

P_STD

P_STI

P_TEST_REG_IMM_ACC

P_TEST_REG_IMM

P_XADD_REG_IMM

P_XADD_REG_REG

P_XCHG_REG_REG_ACC

P_XCHG_REG_REG

P_EMMS

P_FEMMS

P_RDMSR

P_RDPMC

94

P_RDTSC

)

{

${NAME} (op(OP_Long_Dec));

}

// The rest

$for (NAME in

P_ADD_REG_IMM_ACC

P_ADD_REG_IMM

P_ADD_REG_REG

P_AND_REG_IMM_ACC

P_AND_REG_IMM

P_AND_REG_REG

P_CMP_REG_IMM_ACC

P_CMP_REG_IMM

P_CMP_REG_REG

P_DEC_REG_IMM

P_DEC_REG_IMM_BIG

P_INC_REG_IMM

P_INC_REG_IMM_BIG

P_LEA

P_MOV_REG_IMM

P_MOV_REG_REG

P_MOVSX_REG_IMM

P_MOVSX_REG_REG

P_MOVZX_REG_IMM

P_MOVZX_REG_REG

P_NEG_REG_IMM

P_NOP

P_NOT_REG_IMM

P_OR_REG_IMM_ACC

P_OR_REG_IMM

P_OR_REG_REG

P_SAL_REG_BY_1

P_SAL_REG_BY_IMM

P_SAL_REG_BY_CL

P_SAR_REG_BY_1

P_SAR_REG_BY_IMM

P_SAR_REG_BY_CL

P_SHR_REG_BY_1

P_SHR_REG_BY_IMM

95

P_SHR_REG_BY_CL

P_SUB_REG_IMM_ACC

P_SUB_REG_IMM

P_SUB_REG_REG

P_TEST_REG_REG

P_XOR_REG_IMM_ACC

P_XOR_REG_IMM

P_XOR_REG_REG

P_MOVD_REG_REG_BIG

P_MOVD_REG_REG

P_MOVQ_REG_REG_BIG

P_MOVQ_REG_REG

P_PACKSSDW_REG_REG

P_PACKSSWB_REG_REG

P_PACKUSWB_REG_REG

P_PADDB_REG_REG

P_PADDD_REG_REG

P_PADDW_REG_REG

P_PADDSB_REG_REG

P_PADDSW_REG_REG

P_PADDUSB_REG_REG

P_PADDUSW_REG_REG

P_PAND_REG_REG

P_PANDN_REG_REG

P_PCMPEQB_REG_REG

P_PCMPEQD_REG_REG

P_PCMPEQW_REG_REG

P_PCMPGTB_REG_REG

P_PCMPGTD_REG_REG

P_PCMPGTW_REG_REG

P_PMADDWD_REG_REG

P_PMULHW_REG_REG

P_PMULLW_REG_REG

P_POR_REG_REG

P_PSLLW_REG_BY_IMM

P_PSLLW_REG_BY_MEM

P_PSLLW_REG_BY_REG

P_PSLLD_REG_BY_IMM

P_PSLLD_REG_BY_MEM

P_PSLLD_REG_BY_REG

P_PSLLQ_REG_BY_IMM

P_PSLLQ_REG_BY_MEM

P_PSLLQ_REG_BY_REG

96

P_PSRAD_REG_BY_IMM

P_PSRAD_REG_BY_MEM

P_PSRAD_REG_BY_REG

P_PSRAW_REG_BY_IMM

P_PSRAW_REG_BY_MEM

P_PSRAW_REG_BY_REG

P_PSRLD_REG_BY_IMM

P_PSRLD_REG_BY_MEM

P_PSRLD_REG_BY_REG

P_PSRLQ_REG_BY_IMM

P_PSRLQ_REG_BY_MEM

P_PSRLQ_REG_BY_REG

P_PSRLW_REG_BY_IMM

P_PSRLW_REG_BY_MEM

P_PSRLW_REG_BY_REG

P_PSUBB_REG_REG

P_PSUBSB_REG_REG

P_PSUBSW_REG_REG

P_PSUBUSB_REG_REG

P_PSUBUSW_REG_REG

P_PSUBD_REG_REG

P_PSUBW_REG_REG

P_PUNPCKHBW_REG_REG

P_PUNPCKHWD_REG_REG

P_PUNPCKHDQ_REG_REG

P_PUNPCKLBW_REG_REG

P_PUNPCKLWD_REG_REG

P_PUNPCKLDQ_REG_REG

P_PXOR_REG_REG

P_PAVGUSB_REG_REG

P_PF2ID_REG_REG

P_PFACC_REG_REG

P_PFADD_REG_REG

P_PFCMPEQ_REG_REG

P_PFCMPGE_REG_REG

P_PFCMPGT_REG_REG

P_PFMAX_REG_REG

P_PFMIN_REG_REG

P_PFMUL_REG_REG

P_PFRCP_REG_REG

P_PFRCPIT1_REG_REG

P_PFRCPIT2_REG_REG

P_PFRSQIT1_REG_REG

97

P_PFRSQRT_REG_REG

P_PFSUB_REG_REG

P_PFSUBR_REG_REG

P_PI2FD_REG_REG

P_PMULHRW_REG_REG

)

{

${NAME} (op(OP_Short_Dec));

}

98

