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1. INTRODUCTION

Superscalar and very long instruction word (VLIW) processors provide signi�cant

performance improvements over scalar processors by simultaneously executing multiple

instructions. The e�ectiveness of these processors depends on the ability of compilers

to provide su�cient instruction-level parallelism (ILP) in program code. However, re-

cent studies show that conventional code optimization and scheduling methods cannot

provide enough ILP to obtain a sustained speedup of more than two for nonnumeric

programs [1],[2],[3]. The high frequency of conditional branch instructions in nonnumeric

programs is mostly responsible for these poor results.

Branch instructions impede the ability of the compiler to extract ILP in several ways.

Branches impose restrictions on the ability of the compiler to move code. Moving in-

structions before branches is termed speculation. Speculation is di�cult to perform

across many branches. Special techniques are usually necessary to handle exceptions

that speculated instructions may falsely introduce during execution. In addition, not all

instructions are easily speculated. Speci�cally, speculating stores to memory and branch
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instructions is particularly problematic. These code motion limitations limit the freedom

of the compiler to schedule independent instructions together.

Another way in which branches adversely a�ect ILP is their long latency. As ma-

chines take on longer pipelines, the time between the execute stage and the fetch stage

is increased. This extra time translates into large bubbles in the pipeline whenever a

branch is encountered. A common technique to reduce the e�ect of branch latency is

branch prediction. Branch prediction eliminates pipeline bubbles by speculatively exe-

cuting one branch destination path. However, some branches have poor predictability,

thus reducing the gains obtained by branch prediction. Branch mispredictions penalize

performance by creating many wasted cycles, which amortize away any gains obtained

through ILP.

The �nal reason branches impede ILP so severely is that frequent branches in the

instruction stream place an upper limit on the potential ILP. A superscalar or VLIW

processor must likely execute multiple branches per cycle to sustain the execution of mul-

tiple instructions per cycle. Assuming that an instruction stream contains 25% branches,

an 8-issue superscalar processor must have the capability to sustain at least two branches

per cycle. If a given 8-issue processor can only execute a single branch each cycle, its

maximal performance would be resource limited to four instructions per cycle. Handling

multiple branches per cycle requires additional pipeline complexity, as well as designing

multiported branch prediction structures such as the branch target bu�er (BTB). For this

reason, it is likely that most future generation ILP processors will have limited branch
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handling capabilities. In high issue rate processors, it is less expensive to duplicate arith-

metic function units than to predict and execute multiple branches per cycle. Adding

extra functional units to compensate for limited branch hardware, if possible, is quite

appealing.

Extracting ILP in nonnumeric programs requires that their branch characteristics be

improved. One method of achieving this is a technique known as predicated execution.

Predicated execution refers to the conditional execution of an instruction based on the

value of a Boolean source operand, referred to as the predicate [4],[5]. Such architectural

support allows the compiler to use an if-conversion algorithm to convert undesirable

conditional branches into predicate de�ne instructions and instructions along alternative

paths of each branch into predicated instructions [6],[7],[8],[9],[10].

Predicated execution facilitates code motion by removing branches and forming struc-

tures known as hyperblocks. A hyperblock is a structure formed by combining basic

blocks from many paths of execution together. Hyperblocks are optimized and scheduled

easily as a unit [9]. The branch misprediction penalty problem can also be alleviated by

predicated execution. With predication, many hard to predict branches are eliminated

through if-conversion. If the remaining branches are easily predicted, near perfect branch

prediction is obtained. Finally, the removal of branches improves the branch handling

complexity by reducing the number of branches that must be executed every cycle.

In addition to improving the branch characteristics of nonnumeric programs, pred-

ication enables a new class of optimizations, which previously were di�cult or even
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impossible to perform. This thesis describes a set of such optimizations and explores one

such optimization, loop peeling, in detail.

1.1 Related Work

Loop peeling, as studied in this thesis, was originally mentioned in [11]. Mahlke's

Ph.D. thesis discusses the possibility of performing loop peeling automatically [12]. In

fact, performance gains obtained in [12] are due in part to the automatic loop peeling

heuristic and optimization developed as part of this work.

The fully resolved predication techniques and other height reduction techniques are

studied in [13], and node splitting is brie
y mentioned in [11]. Reverse if-conversion,

discussed in [14], inspired the idea of partial reverse if-conversion. Discussions that the

author had with members of the IMPACT compiler group inspired the ideas of pro�le

independent hyperblock selection and optimization during scheduling.

1.2 Organization of this Work

The following chapter provides an overview of the IMPACT compiler used to study

the e�ectiveness of the techniques presented in this thesis. Chapter 3 provides a detailed

discussion of loop peeling and how, together with predication, it is an e�ective technique

to extract ILP from programs. This chapter also evaluates loop peeling on an experimen-

tal level and demonstrates its e�ectiveness in real programs. A preliminary study of a
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suite of advanced predication compilation techniques is presented in Chapter 4. Finally,

Chapter 5 �nishes this work with concluding remarks.
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2. OVERVIEW OF THE IMPACT COMPILER

All of the compiler techniques necessary to e�ectively utilize speculative and pred-

icated execution are implemented within the framework of the IMPACT compiler. A

block diagram of the IMPACT compiler is presented in Figure 2.1. The compiler is di-

vided into two distinct parts based on the level of intermediate representation (IR) used.

The highest level IR, Pcode, is a parallel C code representation with loop constructs

intact. In Pcode, memory dependence analysis [15],[16], loop-level transformations [17],

and memory system optimizations [18],[19] are performed. Additionally, pro�le-guided

code layout and function inline expansion are performed at this level [20],[21],[22].

The lowest level IR in the IMPACT compiler is referred to as Lcode, which is a

generalized register transfer language similar in structure to most load/store processor

assembly instruction sets. Lcode is logically subdivided into two subcomponents, the

machine independent IR, Lcode, and the machine speci�c IR,Mcode. The data structures

for both the Lcode and Mcode are identical. The di�erence is that Mcode is broken down

such that there is a one-to-one mapping between Mcode instructions and the target
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machine's assembly language instructions. Therefore, to convert Lcode to Mcode, the

code generator breaks up Lcode instructions into one or more instructions that directly

map to the target architecture. Lcode instructions are broken up for a variety of reasons

including limited addressing modes, limited opcode availability, ability to specify a literal

operand, and �eld width of literal operands.

At the Lcode level, all machine independent classic optimizations are applied [23].

These optimizations include constant propagation, forward copy propagation, backward

copy propagation, common subexpression elimination, redundant load elimination, re-

dundant store elimination, strength reduction, constant folding, constant combining,

operation folding, operation cancelation, code reordering, dead code removal, jump opti-

mization, unreachable code elimination, loop invariant code removal, loop global variable

migration, loop induction variable strength reduction, loop induction variable elimina-

tion, and loop induction variable reassociation. Additionally, at the Lcode level, inter-

procedural safety analysis is performed [24], including the identi�cation of safe instruc-

tions for speculation and function calls that do not modify memory (side-e�ect free).

Superblock and hyperblock compilation techniques are performed exclusively at the

Lcode level. Superblock formation using execution pro�le information, superblock clas-

sical optimization, and superblock ILP optimization are all supported. When predicated

execution support is available in the target architecture, hyperblocks, rather than su-

perblocks, are used as the underlying compilation structure. All superblock optimiza-

tion techniques have been extended to operate on hyperblocks. In addition, a set of
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hyperblock-speci�c optimizations is employed to further exploit predicated execution

support. The focus of this thesis is centered around enhancing this set of hyperblock-

speci�c optimizations.

Code generation in the IMPACT compiler is performed at the Lcode level. The two

largest components of code generation are the instruction scheduler and register allocator.

Scheduling is performed via either acyclic global scheduling [24],[25] or software pipelin-

ing using modulo scheduling [26]. For the acyclic global scheduling, code scheduling is

applied both before register allocation (prepass scheduling) and after register allocation

(postpass scheduling) to generate an e�cient schedule. For software pipelining, loops

targeted for pipelining are identi�ed at the Pcode level and marked for pipelining. These

loops are then scheduled using software pipelining, and the remaining code is scheduled

using the acyclic global scheduler. In addition to control speculation, both scheduling

techniques are capable of exploiting architectural support for data speculation to achieve

more aggressive schedules [16],[27],[28].

Graph coloring-based register allocation is utilized for all target architectures [29].

The register allocator employs execution pro�le information, if it is available, to make

more intelligent decisions. For each target architecture, a set of specially tailored peep-

hole optimizations is performed. These peephole optimizations are designed to remove

ine�ciencies during Lcode to Mcode conversion, to take advantage of specialized op-

codes available in the architecture, and to remove ine�cient code inserted by the register

allocator.
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A detailed machine description database, Mdes, for the target architecture is also

available to all Lcode compilation modules [30]. The Mdes contains a large set of infor-

mation to assist with optimization, scheduling, register allocation, and code generation.

Information, such as the number and type of available function units, size and width

of register �les, instruction latencies, instruction input/output constraints, addressing

modes, and pipeline constraints, is provided by the Mdes. The Mdes is queried by the

optimization phases to make intelligent decisions regarding the applicability of transfor-

mations. The scheduler and register allocator rely more heavily on the Mdes to generate

e�cient and correct code.

Seven architectures are actively supported by the IMPACT compiler. These include

the AMD 29K [31], the MIPS R3000 [32], the SPARC [33], the HP PA-RISC, and the

Intel X86. The other two supported architectures, IMPACT and HPL Playdoh [34], are

experimental ILP architectures. These architectures provide an experimental framework

for compiler and architecture research. The IMPACT architecture is a parameterized su-

perscalar processor with an extended version of the HP PA-RISC instruction set. Varying

levels of support for speculative execution and predicated execution are available in the

IMPACT architecture. For this thesis, all experiments utilize the IMPACT architecture

with varying parameters.
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3. HYPERBLOCK LOOP PEELING

Creation of a hyperblock consists of two parts: the �rst is block selection. Block

selection is the process of deciding which blocks in a region to include in a hyperblock.

Conventional techniques for if-conversion predicate all blocks within a single-loop nest

region together [35]. However, for hyperblocks, a subset of these blocks is chosen in order

to achieve the best possible performance. Including too few or too many blocks reduces

the e�ectiveness of the formed hyperblock in various ways.

After block selection, hyperblock formation is performed by if-converting the selected

blocks together. Before if-conversion, two conditions must be satis�ed.

� Condition 1: There exist no incoming control 
ow arcs from blocks not selected to

any selected blocks except the entry block.

� Condition 2: There exist no loops inside the selected blocks that do not include

the entry block.
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Figure 3.1: Example weighted control 
ow graph to illustrate hyperblock loop peeling:
(a) original graph, (b) graph after loop peeling, and (c) graph after loop
peeling, tail duplication, and if-conversion.

Together these conditions insure that the hyperblock has a single entry point and that any

instruction in the hyperblock is fetched no more than one time before the hyperblock is

exited. Condition 1 is handled routinely by tail duplication. Condition 2 can be satis�ed

by a transformation known as loop peeling.

Loop peeling is the process of converting the �rst N iterations of a loop into acyclic

code. Figure 3.1 demonstrates this process. Figure 3.1(a) shows the original control 
ow

graph with a dotted line indicating the region chosen by block selection for inclusion

into a hyperblock. Block B is a self loop in this region. In order to satisfy Condition 2,

this loop is peeled with N = 2. To peel a loop, N copies of the loop are made. These

copies are exactly the same as the original loop with one exception. The loop backedge

destination is changed to point to the next iteration instead of to the header of the loop.

Note that the original loop remains untouched, which is necessary for the cases where
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the loop iterates more than N times. The original copy of the loop is now only executed

when the number of iterations exceeds the number of peels. For this reason, the original

copy is called the recovery loop. Figure 3.1(b) shows the resulting control 
ow graph

after loop peeling.

After loop peeling, the control 
ow graph in Figure 3.1(b) satis�es Condition 2. Before

the hyperblock is formed, tail duplication must be performed to eliminate the control 
ow

arc into block C. Once tail duplication is complete, if-conversion can be performed. The

resulting hyperblock is shown in Figure 3.1(c).

While loop peeling itself is simple, knowing when and how much to peel is a com-

plicated problem. The ability to peel makes block selection more di�cult. Determining

the number of times to peel is crucial to obtaining good performance. Too few peels

will result in a hyperblock that seldom completes, while too many peels will result in an

increased cycle count for completion of the hyperblock. Resource utilization, dependence

height, and the loop's behavior must all be considered. The remainder of this chapter

addresses these issues.

3.1 Opportunities for Hyperblock Loop Peeling

Rather than peeling loops for inclusion into a hyperblock, it is possible to perform

block selection so that nested loops are not selected. However, this algorithm limits

opportunities in hyperblock formation. To understand why block selection should be
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allowed to include loops for peeling, it is important to study the potential bene�ts of

loop peeling.

The goal of hyperblock formation is to choose a few, very likely straight-line paths

and combine them into a single fetch stream. In general, these paths may or may not

have loops. Loop peeling allows loops to be converted into straight-line paths. In this

way, frequently executed paths are handled in a uniform manner regardless of the loops

they may contain.

When a loop is frequently invoked, yet iterated upon no more than a few times per

invocation, it may not be possible to enhance the loop's ILP with conventional tech-

niques. This situation is due to the fact that many conventional ILP loop optimizations,

such as software pipelining and loop unrolling, rely on loops to iterate many times upon

each invocation. These transformations also require that each iteration of the loop is

not very sequential since they overlap iterations to increase throughput. However, if the

loop is sequential, the iterations cannot be overlapped. Additionally, if the loop iterates

infrequently for each invocation, there may not be enough iterations to overlap, let alone

amortize any start-up costs involved. Loop peeling is not subject to these constraints.

Loop peeling enhances the ILP of these troublesome loops by overlapping their execu-

tion with the rest of the path chosen during block selection. Thus very sequential loop

iterations are executed simultaneously with other code.

Even when a loop is well-behaved and a good candidate for software pipelining or

loop unrolling, loop peeling may have an advantage. Sometimes, the path surrounding
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Figure 3.2: Barrier to code motion.

the loop has undesirable characteristics. For example, it may be very sequential or it

may not be possible to overlap it with other portions of the region. In this case, loop

peeling could provide useful work for overlap with the code of the surrounding region.

Loops on frequently executed paths create arti�cial barriers to code motion for practi-

cal reasons. Figure 3.2 shows a hypothetical loop nest. Since scheduling and optimization

across control blocks is di�cult, the inner loop creates an arti�cial barrier to code mo-

tion. No longer can the outer loop be treated as a single unit as it has e�ectively been

converted into two separate acyclic code regions. If any or all of these blocks are very

sequential, it is necessary to overlap code from each block to create a packed path with

high ILP and short cycle count. However, the arti�cially created barrier to code motion

keeps these blocks separate and sparse, resulting in poor performance.
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It is clear from this discussion that there are situations where loop peeling is desirable

and others where it is not. Determining which loops to peel is the challenge. The

decision to peel a loop must be made before the hyperblock is formed. At this point, it

is unclear whether peeling will have the desired e�ect. Depending on the quality of the

code optimizations performed after the hyperblock is formed, the choice may be a success

or failure. A good heuristic is the best that can be hoped for given this environment.

Advanced techniques, such as partial reverse if-conversion and node splitting, which can

potentially reduce the dependence on heuristics, are discussed in Chapter 4.

Before the algorithms used in the IMPACT hyperblock formation module are pre-

sented in Section 3.4, rough guidelines for �nding good candidates for peeling will be

presented.

Low iteration count loops are generally good candidates for peeling. Consider a loop

that iterates three or fewer times per invocation. Since there are only a few iterations, the

number of peels is minimal. These peels are likely to be simultaneously executable with

other code in the selected traces. Additionally, since the number of iterations is usually

less than the number of peels, the program is unlikely to exit the hyperblock before

completion. As mentioned earlier, unrolling and software pipelining cannot enhance this

loop's performance because it does not have a high iteration count.

A loop that has a low iteration count on some invocations and a very high iteration

count on others is also a good candidate for loop peeling. The low iteration count invo-

cations have the same advantages discussed earlier. The high iteration count invocations
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will always exit to the recovery loop. Whenever the recovery loop is executed, it is likely

that the loop will still need to iterate for many iterations. For this reason, high iteration

count loop transformations are still e�ective. The high iteration count recovery loop can

be optimized while safely ignoring the low iteration count cases. Any start-up penalty

will be amortized in all cases. In e�ect, the loop is versioned. The peeled loop is the

version for low iteration counts, whereas the recovery loop is the version for high iteration

counts.

Even when the loop does not have a low iteration count component or the behavior

of the loop is simply unknown, it may still be wise to peel it. If the code surrounding

the loop is sparse, peeling o� a few iterations to utilize resources will increase ILP. In

this case, determining the number of times to peel is more di�cult. The dependence

height and resource usage of the resulting peels must be matched carefully with the

characteristics of the surrounding code. The process is made more di�cult since the

result of further transformations and optimizations must be considered.

In all cases, the number of times to peel a loop is critical. Too few iterations result

in the recovery loop being entered too often, resulting in an ine�ective hyperblock. Too

many peels result in many useless instructions wasting fetch resources or in an unneces-

sarily increased dependence height.
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p < last;
p += CC−>wsize)

LG:

LA: if (( p[0] & (0x2000) ))
{

/* INNER LOOP */

/* OUTER LOOP */

do {
if ( p[i_] & ~r[i_])  break;

}while(−−i_ > 0);
if ( i_ != 0 )

goto false1;
continue;
false1:
CC−>active_count−−,  ( p[0] &= ~(0x2000));

}

LB:

LC:
LD:

LF:

LE:

p = CC−>data, last = p + CC−>count * CC−>wsize; for (

{

register int i_ = ( p[0] & 0x03FF ); 

}

Figure 3.3: Source code of a loop nest in elim lowering from 008.espresso.

3.2 An Example Code Segment

In order to gain a better understanding of how peeling works, a code example is

presented. Figure 3.3 shows the C source code to an important loop nest in elim lowering

from the SPEC-92 benchmark 008.espresso. The inner loop in this code only iterates an

average of 2.6 times per invocation. However, this inner loop accounts for a signi�cant

portion of the entire benchmark's running time. In addition to being invoked quite

frequently, the outer loop iterates an average of 626 times per invocation causing the

inner loop to be invoked frequently. The outer loop would have been ideal for loop

unrolling or software pipelining if not for the inner loop.
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1 LA: r98 = MEM[R1]
2 r99 = r98 & 8192
3 branch (r99 == 0), LG
4 LB: r11 = r98 & 1023
5 r115 = r11 << 2
6 r124 = r115 + r1
7 r125 = r115 + r2
8 LC: r56 = MEM[r124]
9 r124 = r124 - 4
10 r58 = MEM[r125]
11 r125 = r125 - 4
12 r59 = -1 XOR r58
13 r60 = r56 & r59
14 branch (r60 != 0), LE
15 LD: r11 = r11 -1
16 branch (r11 > 0), LC
17 LE: branch (r11 == 0), LG
18 LF: r137 = r137 - 1
19 r64 = r98 & -8193
20 MEM[r1] = r64
21 LG: r1 = r1 + r101
22 branch (r1 < r3), LA

Figure 3.4: Intermediate representation of elim lowering loop before peeling.

Figure 3.4 is the IMPACT compiler generated intermediate representation of the loop

nest. The inner loop is highlighted showing that the inner loop consists of nine operations

and has a dependence height of �ve cycles. Without further transformation, this inner

loop would have an IPC of less than two and would be unable to fully utilize wider-issue

processors. In addition to the serial nature of the inner loop, the inner loop contains two

hard to predict branches. These branches, instructions 14 and 16, are hard to predict

because of the low iteration count behavior of the loop. These branches are not strongly

biased in the way a frequently taken backedge would be, such as instruction 22, for

example.

The outer loop is also quite serial with a total of 13 instructions; its dependence height

is seven cycles. Without loop peeling, this code segment would have been optimized and
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scheduled in three parts. In Figure 3.5, the three portions are shown. Basic blocks A

and B make up the �rst control block corresponding to the top portion of the outer loop.

Basic blocks C and D form the inner loop. The bottom portion of the outer loop consists

of basic blocks E, F, and G.

The characteristics of this loop nest indicate that the inner loop is a good candidate

for peeling. With an average iteration count of 2.6, the inner loop could be peeled three

times to capture 90% of all of the loop's invocations. Its small size means that peeling

the loop three times would not oversaturate available resources in an 8-issue machine.

Figures 3.6 and 3.7 show the loop nest after loop peeling. While the actual code is

peeled four times, the �gures show a version of the loop nest peeled twice for demon-

stration purposes. The �rst peel, instructions 8 through 16, must always execute. The

predicate P130 corresponds to the condition of the branch instruction 3 in Figure 3.4.

When P130 is TRUE, the inner loop is not bypassed, and the �rst iteration of the in-

ner loop will execute. For this reason, the �rst iteration is predicated on P130. P134

corresponds to the branch condition in instruction 14 in Figure 3.4. The second peeled

iteration is predicated on P135 and P130. These predicates are analogous to P130 and

P134 with the added backedge condition. If the two peeled loop iterations are insuf-

�cient to satisfy the number of iterations, control is directed to the recovery loop by

branch instruction 25.

After peeling, the control 
ow graph has been converted to a single loop with one

backedge and one exit edge. Certainly, this resulting loop is more conducive to further
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ow graph of elim lowering loop before peeling.
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1 LA: r98 = MEM[R1]
2 r99 = r98 & 8192
3 (p130) = (r99 == 0)
4 r11 = r98 & 1023 (p130)
5 r115 = r11 << 2 (p130)
6 r124 = r124 - 4 (p130)
7 r125 = r125 - 4 (p130)
8 r56 = MEM[r115 + r1] (p130)
9 r124 = r124 - r115 (p130)
10 r58 = MEM[r115 + r2] (p130)
11 r125 = r125 + r115 (p130)
12 r59 = -1 XOR r58 (p130)
13 r60 = r56 & r59 (p130)
14 (p134) = (r60 == 0) (p130)
15 (p135) = (r11 > 1) (p134)
16 r11 = r11 -1 (p134)
17 r56 = MEM[r124] (p135)
18 r124 = r124 - 4 (p135)
19 r58 = MEM[r125] (p135)
20 r125 = r125 -4 (p135)
21 r59 = -1 XOR r58 (p135)
22 r60 = r56 & r59 (p135)
23 (p136) = (r60 == 0) (p135)
24 r11 = r11 -1 (p136)
25 branch (r11 > 0), EXTRA (p136)
26 (p133) = (r11 != 0) (p130)
27 r137 = r137 - 1 (p133)
28 r64 = r98 & -8193 (p133)
29 MEM[r1] = r64 (p133)
30 r1 = r1 + r101
31 branch (r1 < r3), LA

Figure 3.6: Intermediate representation of elim lowering loop after peeling.
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Figure 3.7: Control 
ow graph of elim lowering loop after peeling.
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0 top
1
2 top top
3 top top
4 peel 1 top peel 1 top
5 peel 2 peel 2 peel 3 peel 3 peel 4 peel 4
6 peel 1
7 peel 1 peel 2 peel 3 peel 4
8 peel 1 peel 2 peel 3 peel 4
9 peel 1 peel 1
10 peel 2
11 peel 2 peel 2
12 peel 3
13 peel 3 peel 3
14 peel 4
15 peel 4
16 bottom extra
17 bottom bottom bottom
18 backedge

Figure 3.8: Schedule of elim lowering loop after peeling four times.

optimization. However, even without further optimization, the resulting loop has more

desirable characteristics. As is shown in Figure 3.8, many peeled loop iterations are

executed concurrently. The �rst iteration is dependence height limited and takes six

cycles. However, each additional iteration overlaps most of its previous iteration, taking

only two more cycles. Thus, four iterations take up 12 cycles, only double the cycle count

of a single iteration. Additionally, the top and bottom parts of the outer loop segment do

overlap with the peels. Unfortunately, in this example the outer loop overlaps a relatively

small amount in comparison with other loops. Even with the peeling, the loop is still

dependence height limited. Further optimizations such as unrolling will be applied to

alleviate this problem.
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The �nal optimized code segment's cycle count has dropped from 6.70 million cycles

to 2.46 million cycles due to loop peeling. Loop peeling has increased the instructions per

cycle (IPC) by the overlapping of parts of the inner loop. However, the most interesting

change is observed when branch prediction is modeled. The number of mispredictions

is reduced from 182,000 to only 16,000. This reduction in mispredictions is the e�ect

of removing the hard to predict inner loop branches. In a machine with a large branch

misprediction penalty, this reduction in mispredictions can have an even more profound

e�ect on the cycle count.

3.3 Loop Iteration Histogram Pro�ling

An important characteristic to consider when deciding which loops to peel and how

many times to peel them is the iteration histogram. The iteration histogram is a count of

the number of times a loop is iterated each time it is invoked. Figure 3.9 shows an Lcode

loop header basic block with loop iteration histogram information. This basic block

corresponds to the header of the inner loop in the 008.espresso code segment discussed

previously. The iteration header attribute indicates that each time the loop was entered

it had only four di�erent iteration counts. It also indicates that this loop was pro�led

only once. The four iter N attributes indicate the number of times the loop iterated N

times when it was invoked. In this case the loop had one iteration before exiting in 3400

of its invocations. It also had two iterations in 57,481 of its invocations, three iterations

in 52,233 of its invocations, and four iterations in 13,849 of its invocations.
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(cb 11 330457.000000 [(flow 1 13 125018.000000)(flow 0 12 205439.000000)]

<(iteration_header (i 4)(i 1))

(iter_1 (f2 3400)(f2 3400))

(iter_2 (f2 57481)(f2 57481))

(iter_3 (f2 52233)(f2 52233))

(iter_4 (f2 13849)(f2 13849))>)

(op 77 ld_i [(r 56 i)] [(r 124 i)(i 0)])

(op 177 add [(r 124 i)] [(r 124 i)(i -4)])

(op 79 ld_i [(r 58 i)] [(r 125 i)(i 0)])

(op 179 add [(r 125 i)] [(r 125 i)(i -4)])

(op 80 xor [(r 59 i)] [(i -1)(r 58 i)])

(op 81 and [(r 60 i)] [(r 56 i)(r 59 i)])

(op 82 bne [] [(r 60 i)(i 0)(cb 13)])

Figure 3.9: Lcode example of loop iteration count histogram pro�ling.

These attribute values are obtained by dynamic pro�ling. Pro�ling is performed by

running the benchmark with probes in the code to report its behavior. Each iter N

attribute contains at least two numbers. The �rst number is the average number of

invocations among all pro�le runs. The subsequent numbers are the per run count. In

this case, only one pro�le run was taken; hence, there are only two numbers, both of

which are equal.

Once collected, this loop iteration pro�le information is used to decide when and how

much to peel a loop. One concern over utilizing pro�le information is that it may not

accurately re
ect the behavior of the program with di�erent input sets. If the pro�le

information used in loop peeling decisions does not match the behavior of the program,

performance su�ers. To quantify this e�ect and justify the use of pro�ling information in

loop peeling decisions, the e�ect of di�erent input sets will be studied as part of future
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research. It is suspected that, while the actual iteration count may vary by a small

amount, infrequently iterated loops will remain infrequently iterated for most input sets.

The next section discusses the algorithms used in the loop peeling decisions. These

algorithms assume that pro�le information is a good estimate for most input sets.

3.4 Loop Peeling Selection Heuristic

With loop peeling, knowing exactly when and how much to peel is impossible since

optimizations and scheduling performed after peeling can radically change the character-

istics of the loop. For this reason, the peeling decision must be a heuristic.

One way to decide when to peel is to �gure out how much peeling would make sense

for a particular loop. If the number of peels is reasonable, then peeling that loop may

be a wise decision. However, if the number of peels is zero or is very large, then peeling

could be detrimental. Deciding how much to peel involves several issues. Peeling too

few times would mean that the recovery loop would be invoked too often, making the

original hyperblock ine�ective. Peeling too many times may introduce many useless

instructions into the hyperblock. These useless instructions saturate the fetch resources

and increase the cycle count of the hyperblock. The currently implemented heuristic

shown in Figure 3.10 attempts to balance these concerns to �nd the best number of

peels. It also indirectly determines if a loop is a candidate for peeling. If a good number

of peels cannot be found, the loop is not peeled.
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�nd num peel(loop)
f

if(contains jsr(loop))
f

return 0;
g

total invocations = compute total invocations(loop);
total peelable invocations = compute total peelable invocations(loop);
iteration size = compute iteration size(loop);

overall coverage = 0;
peelable coverage = 0;

for(cur num peel = 0;
cur num peel < CONSIDER INFINITY ITERATIONS;
cur num peel = cur num peel + 1)

f

overall coverage = overall coverage +
(iter count[cur num peel] / total invocations);

incremental peelable coverage =
iter count[cur num peel] / tot peelable iter;

peelable coverage = peelable coverage + incremental peelable coverage;

if (overall coverage < MIN OVERALL COVERAGE)
continue;

if (incremental peelable coverage < MIN PEELABLE INCREMENTAL COVERAGE)
continue;

if (peelable coverage < MIN PEELABLE COVERAGE)
continue;

if ((cur num peel � iteration size) > MAX OPS IN PEELED LOOP)
break;

return cur num peel;
g

return 0;
g

Figure 3.10: Heuristic to compute number of times to peel a loop.
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The current heuristic will return 0, meaning that the loop should not be peeled if it

contains a jsr. Jsr's limit code motion in hyperblocks. For this reason, it is usually not

desirable to create multiple calls to functions in a hyperblock by peeling the loop. If the

loop does not contain a jsr, it still needs to be further considered.

The heuristic uses �ve tunable parameters in order to �nd the best number of times

to peel. The logic behind each of these parameters is discussed in turn. The value used in

the IMPACT compiler for each of these parameters was determined by testing the code

on the SPEC-92 benchmark suite.

The �rst parameter, CONSIDER INFINITY ITERATIONS, is the upper bound on

the number of peels. In e�ect, this parameter chooses a threshold at which point a high

iteration count loop transformation, such as software pipelining or loop unrolling, is a

better choice. The value of this parameter is normally around six or eight. This parameter

is critical since the heuristic works by considering each number of peels starting at zero

up to CONSIDER INFINITY ITERATIONS, until the �rst case is found that satis�es

all of the other parameters.

Another parameter is MAX OPS IN PEELED LOOP. This parameter is the maxi-

mum number of operations the peeled loop code can have. The number of operations in

a peeled loop code segment is considered to be the number of instructions in a loop mul-

tiplied by the number of peels. If this number exceeds MAX OPS IN PEELED LOOP,

the loop is considered to be a bad candidate for peeling, and the loop is not peeled.
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In actuality, a large number of operations in a peeled loop code segment are not nec-

essarily detrimental. However, the number of operations is used as a rough estimate

of the dependence height and resource usage a peel may consume. Future implemen-

tations of the loop peeler will likely directly consider dependence height. In addition

to being more representative of the actual code characteristics, considering dependence

height would enable the use of loop peeling in a sparse outer loop case. The value of

MAX OPS IN PEELED LOOP is usually around 36.

The MIN OVERALL COVERAGE is the minimum number of invocations by per-

centage that a peeled loop needs to execute without needing the recovery code. The

coverage a peeled loop has is computed by adding all of the invocation counts for each

iteration count from zero to the number of peels currently under consideration and

dividing by the total number of invocations of the loop. If this number is less than

MIN OVERALL COVERAGE, the loop is not peeled, and a larger peel count is then

considered. This parameter is usually set to 0.75, which means that 75% of all invocations

need to be covered.

MIN PEELABLE COVERAGE andMIN PEELABLE INCREMENTAL COVERAGE

relate the invocation count coverage to the total peelable invocations. The total pee-

lable invocation is the number of invocations with iteration counts less than CON-

SIDER INFINITY ITERATIONS. MIN PEELABLE COVERAGE is the minimum ra-

tio of coverage that would be provided by the peeled loop code using the currently

considered peel count and the total peelable invocations. It is usually set to 0.85 or 85%.
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MIN PEELABLE INCREMENTAL COVERAGE is the minimum amount of extra cov-

erage provided solely by the currently considered peel count. It is usually set to 0.1 or

10%.

As mentioned earlier, the current heuristic does not consider the dependence height of

the loop directly. It uses the operation count as a rough measure. Using the dependence

height directly together with the operation count, the scheduling constraints on the

resulting code could be estimated accurately. In addition to improved accuracy, using

dependence directly may enable peeling to be used in more situations. As was discussed

in Section 3.1, it is desirable to peel a loop regardless of its iteration characteristics if the

code surrounding the loop is sparse. Future versions of the loop peeling heuristic could

compute the dependence height of the surrounding code, as well as the loop itself, to �nd

more cases where peeling is appropriate.

3.5 Peeled Loop Optimizations

Classical loop optimizations are designed to process loop structures. When a loop is

peeled, it looses its loop structure and is treated like acyclic code. In addition to acyclic

code optimizations, a peeled loop should be subject to optimizations that would have

been applied to the original loop. To get loop optimizations to operate on the peeled

iterations, these optimizations must be modi�ed as is done in the case of unrolled loops.

Fortunately, not all loop transformations need reimplementation. Many have straight-

line code equivalents that have the same e�ect. For example, invariant code removal in
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loops has the same e�ect as common subexpression elimination in acyclic code. Two

important optimizations, accumulator expansion and induction variable elimination, have

no acyclic equivalents in the IMPACT compiler after the loop peeling phase. These

straight-line equivalent optimizations have not been implemented because natural code

rarely has opportunities for them. However, loop peeling creates many such opportunities

as a side e�ect. The next two sections will discuss these optimizations in turn.

3.5.1 Accumulator expansion

An accumulator is a variable that is repeatedly updated during the execution of a loop.

Consider the code in Figure 3.11. The variable sum is an accumulator because its �nal

value is the sum of all calls to the function result. Unfortunately, when an accumulator

exists in a peeled or unrolled loop, the dependence height of the loop may be unnecessarily

extended. Consider the sample loop after peeling, but before if-conversion, as shown in

Figure 3.12. One reason why this peeled code segment is very serial is that each update

of sum cannot proceed until the previous update is performed. Accumulator expansion

is an optimization technique that is applied in situations such as these to reduce the

dependence height.

Figure 3.13 shows the same peeled loop after accumulator expansion. The variable

sum is replaced by three variables, one for each peeled iteration. Once this is done, no de-

pendences exist between any of the accumulation statements related to the accumulation

variable. Note that extra instructions need to be added to accomplish this task. Each



33

for(indx = 0; indx < max; indx++)
f

sum = sum + result(indx);
g

Figure 3.11: Loop with accumulator variable.

indx = 0;
sum = sum + result(indx);
indx = indx + 1;
if(indx >= max) goto exit;
sum = sum + result(indx);
indx = indx + 1;
if(indx >= max) goto exit;
sum = sum + result(indx + 2);
indx = indx + 1;
if(indx < max) goto extra iteration loop;

Figure 3.12: Loop with accumulator variable after peeling.
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sum1 = 0;
sum2 = 0;
sum3 = 0;
indx = 0;
sum1 = sum1 + result(indx);
indx = indx + 1;
if(indx >= max) goto exit;
sum2 = sum2 + result(indx);
indx = indx + 1;
if(indx >= max) goto exit;
sum3 = sum3 + result(indx);
indx = indx + 1;
if(indx < max) goto extra iteration loop;

exit:
sum = sum1 + sum2 + sum3;

Figure 3.13: Loop with accumulator variable after accumulator expansion.

of the extra accumulators must be initialized to zero. Additionally, the sum, which still

must be computed, uses an extra statement to combine the partial sums. In optimizing

this code segment, accumulator expansion is not su�cient by itself. There still remain

other properties that arti�cially increase the dependence height of the peeled loop. These

properties are addressed later.

It is extremely di�cult to �nd all cases where accumulator expansion can be applied.

However, a conservative search algorithm can extract the most important cases. Fig-

ure 3.14 shows the algorithm used in the IMPACT compiler. A search for instructions

meeting certain criteria is applied to each peeled loop in the program. Accumulator reg-

isters are found by looking at each de�nition of all variables in the peeled loop. If all of
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FOR EACH peeled loop:
FOR EACH register, rX, where all de�nitions are in any of the forms,
f rX = rX + Y ; rX = rX � Y ; rX = rX � Y ;
rX = rX=Y ; rX = Y + rX; rX = Y � rX g:

Add rX to the list of accumulators.

FOR EACH rX in the list of accumulators:
IF rX is de�ned by only one instruction THEN

remove rX from the list of accumulators.
IF rX is used by operations of di�erent accumulator forms THEN

remove rX from the list of accumulators.

Accumulator Expansion Consideration:
FOR EACH rX in the list of accumulators:

IF rX is used in an instruction which is not of accumulator form THEN

Goto Induction Variable Elimination Consideration.
IF Y in each instruction is the same and is a numeric constant
AND each instruction is either an add or subtract THEN

Goto Induction Variable Elimination Consideration.
Perform accumulator expansion.
Continue with next peeled loop.

Induction Variable Elimination Consideration:
FOR EACH rX in the list of accumulators:

IF Y in each accumulator instruction is the same and is a numeric constant
AND each instruction is either an add or subtract THEN

Continue with next peeled loop.
IF an accumulator instruction is conditionally executed within each iteration THEN

Continue with next peeled loop.
Perform induction variable elimination.

Figure 3.14: Algorithm for applying accumulator expansion and induction variable elim-
ination.
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the de�nitions of a variable are of the forms listed in Figure 3.14, the variable is added

to the list of accumulators. At this point, the list of accumulators contains all potential

accumulator variables. However, not all of the accumulators in this list will match the

additional criteria needed for correct application of accumulator expansion.

Each accumulator in the list of accumulators must meet the following criteria. If

an accumulator is de�ned by only one instruction, then no optimization is possible.

Accumulator expansion applied to a single accumulation instruction has no e�ect. For

this reason, all accumulator variables de�ned by only one instruction are removed from

the list of accumulators. Another criteria for accumulator expansion is that all of the

de�nitions of the accumulator variable are performed by the same operation type because

accumulator expansion is only applicable to one operator. For example, it is unclear how

accumulator expansion could be applied to an accumulator that had two de�nitions of

the forms rX = rX + Y and rX = rX=Z.

As will be discussed further in the next section, accumulators can be optimized in

another way known as induction variable elimination. Induction variable elimination

optimizes some accumulators more e�ciently than accumulator expansion. To select the

optimization to which each accumulator is subjected, more criteria are applied. If the ac-

cumulator is used in an instruction that does not possess one of the original forms shown

in the �gure, then accumulator expansion cannot be applied safely. However, induction

variable elimination does not su�er from this restriction, so it is considered for applica-

tion. Additionally, if the accumulator instructions are addition or subtraction operations
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and all have the same numeric constant, then induction variable elimination should be

used �rst since it can generate more e�cient code than the more general accumulator

variable expansion optimization. If these two criteria do not redirect consideration for

optimization to induction variable elimination, then accumulator expansion is applied.

3.5.2 Induction variable elimination

Before the algorithm used to determine whether or not to apply induction variable

elimination is considered, an example is presented to illustrate what induction variable

elimination does. Figure 3.15 shows the example presented in the previous section af-

ter accumulator variable expansion and further optimization. Notice that even though

accumulator expansion removed the output dependences among the accumulation in-

structions, it did not remove the dependences among the induction variable indx. Each

increment of indx is dependent on the previous increment instruction. However, this

dependence chain is breakable. At each increment instruction, the result of the com-

putation can be computed simultaneously when it is realized that each instruction is

incremented by the same numeric constant. Figure 3.16 shows the result of induction

variable elimination on the code. Uses of indx are replaced by a new variable that con-

tains the new calculated value. Notice that all uses of indx are replaced by di�erent

variables depending on their relative position to the original increment instructions. For

example, all instructions after the �rst, but before the second, increment instruction have
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indx = 0;
sum1 = result(indx);
indx = indx + 1;
if(indx >= max) goto exit;
sum2 = result(indx);
indx = indx + 1;
if(indx >= max) goto exit;
sum3 = result(indx);
indx = indx + 1;
if(indx < max) goto extra iteration loop;

exit:
sum = sum1 + sum2 + sum3;

Figure 3.15: Loop with accumulator variable after accumulator expansion and constant
propagation.

indx0 = 0;
indx1 = indx0 + 1;
indx2 = indx0 + 2;
indx3 = indx0 + 3;

sum1 = result(indx0);
if(indx1 >= max) goto exit;
sum2 = result(indx1);
if(indx2 >= max) goto exit;
sum3 = result(indx2);
if(indx3 < max) goto extra iteration loop;

exit:
sum = sum1 + sum2 + sum3;

Figure 3.16: Loop with induction variable elimination.
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indx replaced with indx1. Similarly, all instructions after the second, but before the third,

increment instruction had indx replaced with indx2.

Induction variable elimination takes advantage of the fact that for each peeled loop

iteration, the number of iterations preceding it is known. If an induction calculation is

performed in every iteration, this fact is used to calculate the induction variable value

for each peeled iteration in advance. The most important application is to eliminate de-

pendences between address increment, load chains because many important loops access

arrays based on an induction variable. If the address of each array access is computed

early, then all of the loads can be moved earlier. Since most loads start long dependence

chains, moving the loads early can be very e�ective in removing much of the dependence

height in a peeled loop body.

Before applying induction variable elimination, the code must meet a few criteria.

These criteria are shown at the bottom of Figure 3.14. Induction variable elimination as

currently implemented only supports addition and subtraction with a uniform constant.

A test in the algorithm veri�es that this condition is met by checking the form of the

induction variable instructions being considered. If a peeled loop meets this criteria,

one �nal test is performed. If an induction variable is conditionally incremented in

each iteration, it cannot be safely optimized because the induction variable elimination

optimization needs to compute the �nal expression for each induction variable at compile

time. Since the conditional execution of any induction variable instruction may make

the expression uncomputable, the optimization is not performed.
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sum1 = result(0);
if(1 >= max) goto exit;
sum2 = result(1);
if(2 >= max) goto exit;
sum3 = result(2);
if(3 < max) goto extra iteration loop;

exit:
sum = sum1 + sum2 + sum3;

Figure 3.17: Loop with induction variable elimination.

Figure 3.17 shows the example after further classical optimizations are performed.

Note that the only dependences in the code before exit are control dependences. These

control dependences are eliminated later by if-conversion.

3.6 Advanced Hyperblock Loop Peeling

While loop peeling as described is very e�ective in dealing with some kinds of loops,

two techniques presented in this section enhance its e�ectiveness even further. The �rst

technique, called hyperblock reentry, is a method to reduce the code expansion caused

by loop peeling. The second technique, nested loop peeling, allows loop peeling to be

applied to deeply nested loops.

As was mentioned in the beginning of this chapter, loop peeling usually requires

tail duplication. Figure 3.18(a) shows a loop nest before loop peeling. Figure 3.18(b)

shows the peeled loop nest with the tail duplicated portion of the outer loop. This tail

duplicated segment of code may make the resulting code less e�ective. Tail duplication
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Figure 3.18: Control 
ow graph illustrating hyperblock reentry: (a) original graph, (b)
graph after loop peeling, and (c) graph after loop peeling and hyperblock
reentry.

causes extra code expansion, which can result in poor instruction cache performance.

Also, tail duplicated code is generally less optimal than on-trace code as less overlapping

is possible with other code.

Hyperblock reentry controls the problems caused by tail duplication. Hyperblock

reentry, as shown in Figure 3.18(c), eliminated the duplicated portion of the outer loop

by jumping back into the hyperblock. Thus hyperblock reentry reduces the code expan-

sion due to tail duplication by eliminating the need for it. It also provides an entry back

into the already optimized hyperblock. By jumping back into an already optimized hy-

perblock, compile time is not wasted optimizing the infrequently executed tail duplicated

code segment.

While hyperblock reentry improves the situation for loops that can already be peeled,

another technique, known as nested loop peeling, actually allows loop peeling to be used
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in more situations. A real example in which nested loop peeling is very e�ective is shown

in Figure 3.19. This loop nest contains three loops. The outermost loop with header

block 17 is considered to be the outer loop and the header of the formed hyperblock.

Block 18 is the header of the middle loop, and it is peeled twice. However, in order for a

loop to be peeled, it must be an innermost loop. To transform the middle loop into an

innermost loop, the innermost loop, blocks 19 and 20, is �rst peeled three times. Then,

the new inner loop is peeled twice. The �nal peeled hyperblock is shown at the right of

the �gure, complete with the associated recovery loop.

Notice that to reduce the code expansion, a single copy of the recovery loop nest

is necessary. Three exits from the hyperblock each jump to the correct portion of the

recovery loop nest. In this case, the tail duplicated code consists of blocks 29 and 23.

3.7 Experimental Evaluation

Figure 3.20 shows the speedup obtained through the use of loop peeling for �ve

benchmarks. Of these benchmarks only yacc and 008.espresso showed more than a 5%

performance improvement. This result is due to the fact that the performance improve-

ment obtained with loop peeling is highly dependent on the structure of the frequently

iterated loops. In 008.espresso, for example, the most time-consuming loop is also a

good candidate for peeling. However, in other benchmarks, most of the time is spent in

loops that are not good candidates for loop peeling. These loops are poor candidates

because they may not have a nested loop structure visible to the compiler. Region-based
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Figure 3.20: Speedup obtained with the use of loop peeling.

compilation may expose more opportunities for peeling as it can expose more of these

loop nests [36].

The speedup numbers obtained in Figure 3.20 were generated by compiling multiple

times with di�erent sets of parameters for loop peeling selection. The best parameter

setting for each function was then selected to compose the �nal result. The di�erence

between this number and the best parameter setting for an entire benchmark is a good

measure for how well the selection heuristic models the resulting code. For 008.espresso,

the best per function cycle count was 101 million cycles, but the best per benchmark

cycle count was 110 million cycles. Since 008.espresso without peeling is 140 million

cycles, the heuristic lost 25% of the performance due to inaccuracy. In fact, if a per

loop nest number were obtained, a more optimal cycle count would have been computed,
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CONSIDER INFINITY ITERATIONS 6
MAX OPS IN PEELED LOOP 36
MIN OVERALL COVERAGE 0.60
MIN PEELABLE COVERAGE 0.80
MIN PEELABLE INCREMENTAL COVERAGE 0.20

Figure 3.21: Parameter settings yielding the best overall performance.

further illustrating performance loss due to the heuristic. Clearly, there is a need for a

more accurate peeling selection heuristic. The heuristic discussed earlier, which takes

into account dependence height, would be able to recover some of this lost performance.

In no case did the peeling heuristic take advantage of loop versioning and the sparse

outer loop cases discussed in Section 3.1. A more robust peeling selection heuristic that

took these cases into account would likely realize larger performance gains.

Since it is di�cult to study the characteristics of benchmarks with each function

using di�erent parameters, a single set of parameters will be used for all benchmarks.

The parameter settings used to get the best overall performance are shown in Figure 3.21.

One criticism of loop peeling is that it may cause signi�cant code growth. This code

growth originates from the multiple copies of peeled loops generated by peeling. However,

measurements made on the amount of code growth show that it is very small. Figure 3.22

shows the relative code size before and after peeling. For all of the benchmarks, program

size did not increase by more than 6%. In fact, for 022.li, the operation count was

actually reduced. This anomaly is due to the unrolling done after loop peeling. Loop

peeling a�ects the characteristics of loops that may be unrolled. If loop peeling makes
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Figure 3.22: Loop peeling's e�ect on code size.

the loop more dense, the loop unrolling heuristic will unroll that loop less. Since the code

growth that loop unrolling creates exceeds that of loop peeling, some loops may actually

end up smaller than without loop peeling. Another factor that keeps code growth low is

the MAX OPS IN PEELED LOOP parameter. Here it is set to 36 operations, meaning

that no peeled loop exceeds 36 operations.

To better understand why benchmarks obtain di�erent speedups due to loop peeling,

two representative benchmarks are studied. The characteristics of 008.espresso and cccp

are shown in Figure 3.23. The benchmark 008.espresso achieves a 38.6% speedup, while

the benchmark cccp is sped up by less than 1%. This di�erence in performance is due

to the fact that the peelable loops in 008.espresso are the most frequently executed.

The execution frequency of the peeled loops is indicated by the average iteration count
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Characteristic 008.espresso cccp

Benchmark Speedup 38.6% 0.4%
Average Total Iteration Count 69288 178
Average Size 11.27 5.68
Average Coverage 0.99 0.98
Average Peels 3.16 2.77

Figure 3.23: Characteristics of two benchmarks.

shown in Figure 3.23. The average iteration count of the peelable loops in 008.espresso

is hundreds of times larger than the average iteration count in cccp. The average size,

coverage, and number of peels have a much smaller e�ect on the performance. Even if

the loops in cccp could be peeled optimally, their net e�ect on performance is still limited

by the average iteration count.
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4. ADVANCED HYPERBLOCK OPTIMIZATIONS

This chapter presents a preliminary study of some advanced hyperblock optimization

techniques. The techniques introduced here will be quantitatively assessed by imple-

menting them in the IMPACT compiler. This chapter merely presents the motivation

behind this future work.

4.1 Fully Resolved Predicates

A superblock is a single-entry, multiple-exit region of code. Superblocks provide an

e�cient foundation for all phases of ILP compilation, including optimization, scheduling,

and register allocation. They are formed by combining the most frequently taken path

through a trace into one block. Hyperblocks are a generalized form of superblocks that

allow multiple paths of execution through the use of predication.

By their nature, typical hyperblocks and superblocks include many infrequently taken

exit branches. These infrequently taken branches impede code motion, increase the

dependence height of the execution path, and increase the resource height of the block by
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consuming valuable branch resources. Note that elimination of these branches by merging

in their taken paths results in a performance penalty since they are easily predicted and

rarely taken. While removing these branches with if-conversion is unwise, we can still

use predication to eliminate their negative e�ects.

Traditional if-conversion uses both predicates and branches to guard execution of

operations in the resultant hyperblock. As a result, some control dependences remain in

a completely predicated hyperblock. This type of if-conversion creates partially resolved

predicates (PRPs). PRPs need control dependences created by the remaining branches

to maintain code correctness. Alternatively, if-conversion can also be applied to create

fully resolved predicates (FRPs). With FRPs, all instructions are guarded by predicates

even if they were originally guarded by branches. The end result is a hyperblock with

no control dependences remaining. In e�ect, all instructions can be scheduled without

concern for the location of branches. Data dependences become the only concern during

optimization and code scheduling.

Figure 4.1 illustrates the di�erence between a PRP predicated block and an FRP

predicated block. The �gure shows four blocks to be included in a hyperblock. In both

the PRP and the FRP hyperblocks, both basic blocks, B and C, are predicated on the

condition of the branch in block A. Block B contains another branch that, if taken,

directs the 
ow of control outside of the hyperblock. In the PRP case, block D need

not be predicated since its execution is guarded by the branch in B. In the FRP case, a

predicate is created for block D regardless. The value of p3, the predicate for block D,
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Figure 4.1: Example of partially and fully resolved predicates.

is cond1jjcond2 since D will only be executed when control enters C or control enters B,

and the branch in B is not taken.

Fully resolved predicates have interesting bene�ts when there is a need to speculate

instructions above branches. Most models of control speculation incur a cost of some

form or another to speculate an instruction. This cost is due to the fact that a specu-

lated instruction should not produce any irreversible side e�ects when it would not have

normally executed. For example, an instruction should not cause an exception when it

was not supposed to execute. Since execution of all instructions is determined solely

by predicates, instructions can be placed in any order as long as data dependence is

respected. The need for a costly speculation model is reduced.

Moving instructions, which could potentially except or which could change memory

state above branches, is important for obtaining high levels of instruction-level paral-

lelism. While most speculation models adequately address the speculation of potentially
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Taken
CB 6: Frequency

1 r35 = MEM[r34] branch r34 >= r37, CB 95 14
2 r34 = r34 + 1
3 branch r35 == 10, CB 11 4035
4 branch r35 == 0, CB 11 0
5 branch r33 >= r57, CB 11 0
6 MEM[r33] = r35 r33 = r33 + 1 jump CB 6 101148

Figure 4.2: Original scheduled superblock code segment.

excepting instructions, speculating stores requires even more hardware or cannot be per-

formed at all. FRP predicated hyperblocks are not subject to this restriction. Stores,

like any other instruction, can be moved freely above branches.

No speculation model alone could handle the reordering of branches. Reordering

of branches requires complicated compilation techniques and costly code duplication.

Branches like all other instructions can be naturally handled by an FRP predicated

hyperblock.

An example of FRP predication applied to a real code segment is shown in Figure 4.2.

This code segment is from the function execute in the grep benchmark. This inner loop

accounts for about 40% of the total execution of the program. A 3-issue, one branch-

per-cycle machine with HP PA-7100 latencies is assumed for the schedule.

One thing to notice about this code segment is that all of the branches in this code

segment are easily predicted. As indicated by the taken frequency column, the branches

are almost never taken. The backedge jump, by necessity, is always taken when reached.
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Taken
CB 6: Frequency

1 r35 = MEM[r34] (p0ut, p1uf) = (r34 >= r37)
2 r34 = r34 + 1 (p1) jump CB 95 (p0) 14
3 (p2ut, p3uf) = (r35 == 10) (p1)
4 (p4ut, p5uf) = (r35 == 0) (p3) jump CB 11 (p2) 4035
5 (p6ut, p7uf) = (r33 >= r57) (p5) jump CB 11 (p4) 0
6 MEM[r33] = r35 (p7) r33 = r33 + 1 (p7) jump CB 6 (p7) 101148
7 jump CB 11 (p6) 0

Figure 4.3: Scheduled FRP predicated hyperblock.

On average, six cycles are needed to complete one iteration of this loop. If the uncon-

ditional backedge could be promoted above one or more of the other branches, then the

average iteration cycle count would be reduced as well.

FRP predication is applied to this code segment, which results in the schedule shown

in Figure 4.3. The �rst thing to notice is the introduction of predicate de�ning instructions.1

These instructions use the conditional expressions previously contained in the branch in-

structions of Figure 4.2 to compute and write values into predicate registers. These

predicates are then used to guard the execution of instructions previously guarded by

branches. Since a predicate must be de�ned at least one cycle before it is used, the entire

schedule is increased by one cycle. To o�set this performance penalty, the backedge is

moved up one cycle, to its original position. The net performance change is 0.99, a slight

loss. This loss is due to the �rst and second branches moving down one cycle.

If the backedge could be moved up more, the FRP predicated case would realize a

performance win. The reason that the backedge cannot be moved up further is because

1The predicate de�ning instructions used here are based upon the HPL Playdoh architecture, which
is de�ned in detail in [34]. UT writes the result value of the comparison. UF writes the complement of
the comparison's result. Both UT and UF write FALSE if the input predicate is FALSE. AC only writes
FALSE if both the input predicate and result of comparison are FALSE. Otherwise, AC does nothing.
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of the dependence chain created by the predicate de�ning instructions. This dependence

chain is highlighted. The value in p7 is needed by the backedge branch. To calculate p7,

p5 must be calculated. In turn, to calculate p5, p3 must be computed. If p7 could be

calculated more quickly, the backedge could be scheduled earlier. While there are many

simple examples that demonstrate the bene�t of FRPs directly, this example was chosen

because it motives the discussion on height reduction contained in the next section.

4.2 Height Reduction

A fairly common technique to reduce dependence height is arithmetic height reduc-

tion. Arithmetic height reduction takes an imbalanced tree of computation and converts

it to a minimum height tree. For example, (((a � b) � c) � d) becomes ((a � b) � (c � d)).

Assuming single cycle latency for multiplication, this transformation reduces the depen-

dence height from three to two cycles. A chain of predicate de�nitions can also be height

reduced. However, since multiple OR and AND type predicate de�ning instructions with

the same destination can be executed in a single cycle, the height of computation can be

dramatically reduced.

Figure 4.4 shows the code segment after height reduction. Since it is desirable to move

the backedge as early as possible, the compiler reduces the height of p7's computation.

This height-reduced computation is shown shaded in grey. With the value of p7 calculated

in cycle 3, the backedge is scheduled in cycle 4. The net performance gain is 46% for a

single iteration. It is interesting to note that this performance gain is magni�ed by loop
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Taken
CB 6: Frequency

1 r35 = MEM[r34] (p0un, p1uc) = (r34 >= r37) (p7uc) |= (r34 >= r37)
2 r34 = r34 + 1 (p1) (p7ac) |= (r33 >= r57) jump CB 95 (p0) 14
3 (p2ut, p3uf) = (r35 == 10) (p1) (p7ac) |= (r35 == 10) (p7ac) |= (r35 == 0)
4 MEM[r33] = r35 (p7) r33 = r33 + 1 (p7) jump CB 6 (p7) 101148

5 (p4ut, p5uf) = (r35 == 0) (p3) jump CB 11 (p2) 4035
6 (p6ut) = (r33 >= r57) (p5) jump CB 11 (p4) 0
7 jump CB 11 (p6) 0

Figure 4.4: Scheduled FRP predicated hyperblock with height reduction.

unrolling in a wider machine. The original unpredicated code segment cannot be reduced

to fewer then six cycles per iteration due to the limited branch resources. However, the

height-reduced code ultimately results in fewer than four cycles per iteration.

Arithmetic height reduction is usually a win since it uses a similar amount of instruc-

tion resources but reduces the dependence height. The bene�t of the height reduction

technique shown here is not always guaranteed. This transformation and other height

reducing transformations trade dependence height for operation count. A balance must

be made to properly apply height reduction to obtain the best performance. The plan

to address this problem is discussed later.

4.3 Node Splitting

Hyperblocks are formed by taking multiple paths through the control 
ow graph and

combining them into a single entry block. Execution of these separate paths is then

guarded by predicates. In general, these paths do not have the same dependence height

or resource requirements. If two of these paths share a common data
ow merge point,
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Figure 4.5: Node splitting concept.

then that merge point must be scheduled after the end of the longer of the two paths. In

e�ect, the compiler is penalizing the shorter path for the sake of the longer path.

A typical situation is shown in the left side of Figure 4.5. There are two paths of

execution through this loop: path ABC and path AC. Path ABC is necessarily longer

than path AC. In the �nal scheduled code, block C cannot be scheduled before the end

of block B, which leaves a gap between A and C that penalizes performance every time

the program takes path AC.

We can remedy the situation by node splitting. Block C is duplicated as shown in

the right side of Figure 4.5. This duplicate block is named C'. In the node split code,

block C can now be scheduled immediately after block A.

Figures 4.6-4.8 show an example of node splitting from a function named compress in

the benchmark compress. Note that in Figure 4.6 there are two virtual paths that exist

in this predicated code segment. One path includes the instruction in cycle 3; the other

does not. Notice that when this instruction is not executed, the instructions in cycles 4-7
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1 r9 = r9 - r12
2 (p1uf) = (r9 < 0)
3 r9 = r9 + r13 (p1)
4 r10 = r9 << 2
5 r114 = MEM[r10]
6
7 branch (r14 <> r8) CB 38

Figure 4.6: Node splitting example: original code segment.

CB 38:
1 r9 = r9 - r12
2 (p1uf, p2ut) = (r9 < 0)
3 r110 = r9 << 2 (p2) r9 = r9 + r13 (p1)
4 r114 = MEM[r110] (p2) r10 = r9 << 2 (p1)
5 r14 = MEM[r10] (p1)
6 branch (r114 <> r8) CB 38 (p2)
7 branch (r14 <> r8) CB 38 (p1)

Figure 4.7: Node splitting example: after node splitting.

r1312 = r13 - r12
CB 38:

1 r9 = r9 - r12 r1009 = r9 + r1312
2 r110 = r9 << 2 (p1uf, p2ut) = (r9 < 0) r10 = r1009 << 2
3 r114 = MEM[r110] (p2) r9 = r1009 (p1) r14 = MEM[r10] (p1)
4 r10 = r9 << 2 (p1)
5 branch (r114 <> r8) CB 38 (p2) branch (r14 <> r8) CB 38 (p1)

Figure 4.8: Node splitting example: after node splitting and further optimization.
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were delayed a cycle for no real reason. Figure 4.7 shows the code after node splitting. A

copy of the shaded region in Figure 4.6 was made and started a cycle earlier. Notice that

this saves one cycle every time p1 evaluates to FALSE. The resulting code has a very

small performance gain. A code segment with more disparate path heights may seem to

be a better example of node spitting. However, this code segment was chosen because it

also illustrates another secondary bene�t of node splitting.

When the original code segment is optimized, it remains relatively unchanged. How-

ever, when the node split code is optimized, a drastically di�erent code segment results.

This resulting code segment is shown in Figure 4.8. The reason so much more optimiza-

tion is performed lies in the fact that for both paths the exact expression of R9 is known.

In the left path of Figure 4.7, R9 is unchanged. In the right path, R9 is incremented by

R13. This information is used by the compiler to perform expression optimization that

was not possible without node splitting. The resulting code takes only �ve cycles per

iteration, down from seven cycles.

4.4 Partial Reverse If-Conversion

Hyperblock formation is done by considering each path for inclusion in the hyperblock.

If the anticipated bene�t of including a path outweighs its potential harm, it is included.

Unfortunately, this decision cannot possibly be based upon all of the pertinent informa-

tion at hyperblock formation time. Optimizations in phases after hyperblock formation

may change the resource utilization or dependence height of the resulting code.
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If hyperblocks are aggressively formed by including extra paths, more optimizations

may be possible. Additionally, the larger scheduling scope could expose more instruction-

level parallelism. Conversely, the aggressively formed hyperblock might also result in a

longer schedule length if extra optimization opportunities are unrealized. Too many

paths can saturate the processor's available resources, or the dependence height of some

paths may penalize other paths as was demonstrated in the node splitting example.

The solution to this problem is to form aggressive hyperblocks for better optimization

potential yet have a way to minimize or eliminate any performance penalties that may

result. A study of a method called partial reverse if-conversion (PRIC) is planned.

By giving the hyperblock formation heuristic the tendency to aggressively include

paths, large performance wins result when optimization potential is realized. To account

for the cases in which optimizations are not e�ective, partial reverse if-conversion excludes

the portions of paths that are the cause of poor performance. Since the scheduler is the

earliest phase of the compiler that knows exactly what the instruction schedule will look

like, partial reverse if-conversion will most likely be guided by the scheduler. Optimization

during scheduling, including PRIC, is discussed as part of Section 4.6.

The concept of partial reverse if-conversion is illustrated in Figure 4.9. The left-hand

side of the �gure shows a control 
ow graph before if-conversion. The current conservative

IMPACT hyperblock formation algorithm will form a hyperblock with only path ABD.

Path C will be excluded since it has a relatively low execution frequency and its height

could penalize path ABD. An aggressive hyperblock formation algorithm would include
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Figure 4.9: Partial reverse-if conversion concept.

paths ABD and ACD. There are two scenarios for what can happen in the following

phases of the compiler. In the �rst scenario, both paths are optimized, and the resulting

schedule is a win for both paths. In the second scenario, the schedule of ACD remains

relatively large compared to ABD. In this case, path ABD is unnecessarily penalized. To

remedy this situation, PRIC is applied.

The right-hand side of Figure 4.9 shows the code after PRIC. During scheduling,

block A and the top portion of blocks B and C are scheduled in priority order. As the

�nal instruction from block B is placed, the scheduler notices that the remaining height

of C is large. The PRIC heuristic decides to insert a branch that jumps to the portion of

C remaining, C", which is located in another part of the program. Block D may then be

tail duplicated, or block C" can conclude with a jump back into the original hyperblock.

An inspection of the schedules for the IMPACT compiler suggests that PRIC should

be very e�ective. When some selected regions are formed into aggressive hyperblocks, the

resulting performance of the benchmark is markedly improved. In addition, some regions
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formed with the current IMPACT compiler have poor performance due to aggressive

formation. PRIC would rectify this situation.

4.5 Pro�le Independent Hyperblock Selection

The current IMPACT compiler uses pro�ling to determine the behavior of the code it

compiles. Frequently executed regions revealed by pro�ling are given priority in the opti-

mizations performed. In general, pro�les based on one input set are useful in predicting

the program's behavior with new input sets. In a research compiler such as IMPACT,

pro�ling allows the researcher to e�ectively test a new optimization. If a heuristic is used

to determine the behavior of a program, then the test of the new optimization may be

a�ected by the e�ectiveness of the pro�le heuristic. In e�ect, pro�ling creates one less

heuristic dimension. The IMPACT compiler framework allows the use of a static pro�ler

when available.

Despite the advantages of dynamic pro�ling, applications exist for compilers where

dynamic pro�ling is inappropriate. In fact, most commercial compilers do not support

dynamic pro�ling at all. For this reason, it is important to study ways to make IMPACT's

predicate optimizations pro�le independent.

There are many ways to avoid the use of dynamic pro�le information. Static pro�ling,

as applied to superblock formation, has been studied by Hank [37]. This paper shows

that static pro�ling is e�ective yet not as e�ective as dynamic pro�ling. Hyperblock

formation has some interesting di�erences to superblock formation that could make it an
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interesting application of static pro�ling. Superblock formation requires that the bias of

a branch be determined by the static pro�ler. However, hyperblock formation has the

option of including multiple paths if a bias cannot be determined. This freedom reduces

the need for a highly accurate static pro�le estimate and could make static pro�ling more

competitive to dynamic pro�ling.

Execution pro�ling is not the only valuable measure in making optimization decisions.

Dependence height and resource utilization can also be used to enhance the performance

of programs. For example, comparing the heights of paths considered for inclusion in

a hyperblock is important. Guiding optimizations by dependence height and resource

utilization requires information about the machine being compiled for. Since good com-

pilers are portable, it is wise to use a universal machine description language to detail

the target machine to the compiler. The next section details future research into driving

optimization with machine descriptions.

4.6 Optimization at Schedule Time

While a machine description-driven optimization can do a satisfactory job of estimat-

ing the �nal schedule length of a code segment, the �nal schedule length cannot be known

before scheduling is performed. Since the scheduler knows exactly what resources remain

available, it could also know which optimizations would bene�t the �nal schedule. This

knowledge makes the scheduler ideal for directing optimizations.
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The problem with optimization at schedule time is that code already scheduled may

have to change when an optimization is performed. In this environment, the scheduler

must be able to unschedule operations and continue scheduling after a transformation

without having to restart from the beginning. It also requires that alternatively schedul-

ing and optimizing converges on a solution. Satisfying these requirements is the major

challenge in e�ectively guiding optimizations at schedule time.

While optimization during scheduling is more accurate for some optimizations, it

is essential for others. Partial reverse if-conversion is basically not possible without

guidance from the scheduler. During partial reverse if-conversion, the location at which

one path extends the length of another path must be known. This location is determined

at schedule time. Therefore, PRIC must be guided by the scheduler. It is for this reason

that a scheduler framework that allows optimization at schedule time must be developed.
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5. CONCLUSIONS

This thesis has described advanced hyperblock optimizations. Loop peeling was cho-

sen as the representative optimization for detailed study. This detailed study showed

how a concept such as loop peeling could be applied in practice. It demonstrated how

an optimization applied alone may decrease performance yet expose opportunities that

eventually lead to overall code speedup. The other optimizations presented in this thesis

will be analyzed through further study and implementation in a similar manner. The

end result will be an advanced second-generation compiler for machines with predication

support.

This work, combined with the work of others in the �eld, shows that predication is

an extremely valuable tool in extracting instruction-level parallelism from programs.
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