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1. INTRODUCTION

Recently, there has been a great deal of research on superscalar and VLIW (Very

Large Instruction Word) processors to increase the computational performance. This

performance improvement is only possible if the program is able to utilize the additional

resources in these superscalar processors. In scienti�c programs, su�cient parallelism

between instructions can be exposed by scheduling and optimization. On the other

hand, many real nonscienti�c applications have insu�cient instruction level parallelism

to be able to utilize many of the resources that exist in superscalar machines due to the

large number of conditional branches, data dependencies between instructions, and small

number of instructions within each basic block.

Predicated execution is an e�cient method to handle conditional branches. Predi-

cated or guarded execution refers to the conditional execution of instructions based on

the value of a Boolean predicate register. When this predicate is set to true, the instruc-

tion is executed normally. When the predicate is set to false, the instruction is treated as

no op. Predicated execution enables the compiler to eliminatemany conditional branches

within the program.
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In order to e�ciently perform optimization and scheduling on the predicated code, a

new structure called hyperblock is introduced and discussed in detail. Implementation

issues regarding the hyperblock structure are presented in this thesis.

1.1 Related Works

Control and data dependencies have been studied by many researchers. Towle dis-

cussed many techniques for increasing the parallelism within a program [1]. The central

idea is to transform control and data dependencies within a program into an equivalent

program with the smallest execution time. Before applying the transformation technique,

a data dependence graph is built. If the dependence graph is acyclic, techniques such as

assignment reordering, variable renaming, statement substitution, and redundant state-

ment removal can be used. Assignment reordering can be used to reduce the height of an

expression tree, thus decreasing the execution time of that expression. Variable renam-

ing, statement substitution, and redundant statement removal can be used to remove

output and anti-dependencies and potentially increase the parallelism within the code.

If the data dependence graph is cyclic, then the wavefront or recurrence method can be

used to improve the code.

Towle also discussed vectorizing DO loops with if statements using the distribution

algorithm. The algorithm divides loops into four types. Type 1 DO loops contain if

statements which are una�ected by the execution of the loops. Type 2 DO loops require

some mode bits to be set or reset prior to the execution of the main loop. The hardware

has to check for these mode bits and execute the elements of the loop according to

individual bit value. Type 3 DO loops require both paths of the if path to be executed.

Then these computations are merged to get the correct result at the end of the loop. The

last type of DO loops with if statements must be executed serially.
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The Program Dependence Graph (PDG) is introduced to represent data and control

dependencies in a single graph [2]. The PDG allows incremental optimization by modi-

fying the PDG as necessary after each transformation. Optimizations which previously

require both data and control dependency graphs can now be easily applied using just

one combined graph. Ferrante et al. also presented an algorithm to compute the control

dependencies in a control 
ow graph and convert the control information into the control

dependency subgraph of the PDG. Even though this control dependence subgraph is an

accurate representation of the control dependencies in the graph, much of the information

about the original control 
ow information is lost. Thus, an approximate graph of the

control dependencies based on hammock scheme can be built to help in reconstruction of

the original 
ow graph. The data dependence subgraph of the PDG can be constructed

by associating statements and predicates as the nodes of the graph.

Using the PDG, Park and Schlansker proposed an algorithm to convert control de-

pendencies into data dependencies [3]. The control dependency algorithm from PDG

is used to compute the dependencies between basic blocks in a program. This control

dependency information can be used to remove branch statements in basic blocks. Then

these blocks can be merged into a single structure that is executed sequentially when the

structure is entered. This technique of converting control to data dependency is called

if-conversion [1, 4]. The main problem in if-conversion is the assignment of a predicate

for each basic block and the placement of the instructions to set these predicates. The

predicate is used to determine if a basic block should be executed. A basic block is

executed if its corresponding predicate is determined to be true. After assigning the

predicates for the basic blocks, new predicate de�ne statements are placed in the appro-

priate location to selectively turn on these predicates. The R-K algorithm presented by

Park and Schlansker e�ciently computes the control dependencies within a set of selected
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basic blocks for if-conversion. Then the control dependencies are decomposed into two

functions. One function assigns the predicates to the basic blocks. The other determines

the placement of the predicate de�ne statements within the basic blocks.

Predicated execution is implemented in the Cydra 5 Supercomputer, which is a VLIW

multiprocessor system using directed-data
ow architecture [5]. Each instruction word

contains seven operations, each of which may be individually predicated. An additional

source operand added to each operation speci�es a predicate located with the predicate

register �le. The predicate register �le is an array of 128 1-bit registers. Within the

processor pipeline after the operand fetch stage, the predicate speci�ed by each operation

is examined. If the content of the predicate register is `1', the instruction is allowed to

proceed to the execution stage; otherwise, it is squashed. Software pipelining taking

advantage of predicated execution support is implemented in the Cydra 5 compiler [8].

A technique for overlapping loops on a pipelined multiple issue processor machine is

discussed in [6]. This scheme consists of if-conversion of the inner loops. With special

hardware support, these predicated loops can be overlapped and executed more e�ciently.

A technique is presented to overlap DO loops, WHILE loops, REPEAT-UNTIL loop, and

loops with multiple number of exits. Eager execution is introduced to allow an instruction

to be executed before the value of the predicate associated with the instruction is known.

Another technique similar to the predicated execution scheme is discussed by Hsu

and Davidson in [7]. This scheme with modest hardware support is called the guarded

execution. The motivation is that with a longer instruction pipeline and also multiple in-

struction issue machines beyond a certain level, it becomes more di�cult to achieve much

of the potential performance. This is mainly due to programs with a small number of in-

structions in each basic block, data dependencies between instructions, and conditional

branch instructions. Because of the uncertainty of the conditional branches, pipelines
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with longer stages are not able to achieve much higher performance. Their solution is

to use guarded store and jump operations in the branch delay slots. This allows some

useful instructions to be issued while waiting for the branch to be resolved. The guarded

instructions are made up of regular store or jump instructions associated with a Boolean


ag, which determines if these instructions should be executed or not. Using the guarded

instruction technique, performance improvement is observed even in programs with many

data dependencies and large number of branches.

1.2 Organization of the Thesis

This thesis is divided into six chapters. Chapter 2 describes about the compiler mod-

i�cations to support predicated execution. Chapter 3 discusses the hardware support

requirements for predicated execution. Chapter 4 is the main focal point of this thesis

and contains compiler techniques for hyperblock formation, optimization, and scheduling.

Chapter 5 presents some performance results to evaluate the e�ectiveness of the hyper-

block technique compared to other schemes, and Chapter 6 provides some concluding

remarks.
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2. OVERVIEW OF THE COMPILER

A high level diagram showing the components of the modi�ed back-end of the IM-

PACT compiler to support predicated instructions is presented in Figure 2.1. Box A is

the pro�le-based block selection. It takes a pro�led intermediate code and selects the

basic blocks for if-conversion based on the pro�led weight, the instruction characteristics,

and the size of the basic blocks. Box B consists of code transformations which alter the

program to facilitate better predication. The code transformation techniques include tail

duplication, node splitting, and loop peeling. Box C takes a set of blocks with control

dependencies and converts the control dependencies within this set of blocks into data

dependencies. After if-conversion, each set of blocks is predicated into one single block

referred to as a hyperblock. Box D contains a predication-speci�c optimizer for increas-

ing the instruction level parallelism within each hyperblock. The optimizations include

instruction promotion, instruction promotion with renaming, and instruction merging.

Box E is the conventional optimizer with modi�cation to support predicated instructions.

The optimizations include loop unrolling, register renaming, classical optimization, and

loop optimizations. After optimization, the code is re-pro�led using other input data
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Figure 2.1: A block diagram of the compiler to support predicated execution.
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shown in box F
1. Then, the re-pro�led, optimized, predicated intermediate code is used

as input to the code scheduler and register allocator illustrated in box G. The �nal output

is the optimized code scheduled for a speci�c architecture model.

2.1 Lcode Modi�cations

The intermediate instruction is based on a low-level machine-independent code called

Lcode [9] with modi�cation to support predicated instructions. Each Lcode operation is a

RISC-like assembly instruction to facilitate easier code generation to di�erent target ma-

chines. The Lcode changes consist of adding a predicate �eld for all existing instructions

to specify a predicate register. An empty predicate �eld indicates that the instruction

is always executed. Another change to the Lcode includes a new set of operations to

de�ne the predicate registers according to a speci�ed condition. There is one-to-one

correspondence of each predicate de�ne operation to each regular compare and branch

instruction. This allows the predication algorithm, which will be described in detail in

Chapter 3, to e�ciently convert branch instructions to predicate de�ne operations. A

new instruction is added to Lcode to clear the value of the speci�c predicate register.

Other new instructions are added to Lcode to allow predicate register spilling. The last

change to Lcode includes an additional predicate merge instruction. This instruction is

used to assist the reverse translation algorithm to simplify the translation routine. The

reverse translation is used to convert predicated instructions back to ordinary operations

on architectures without predicated execution hardware support but still want to take

advantage of the bene�ts of scheduling and optimization within the predicated code.

The modi�cations to the existing Lcode are listed below.

1. Predicate de�ne instructions

1This stage is optional. If precise running time is not required, box F can be skipped.
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� Format : opcode (pred dest) (src1 src2) (pred use) (ext)

� Opcode : Compare and set predicate register.

{ pred gt, pred lt, pred le, pred ge, pred ne, pred eq .

{ pred gt u, pred lt u, pred le u, pred ge u.

{ pred gt f, pred lt f, pred le f, pred ge f, pred ne f, pred eq f.

{ pred gt f2, pred lt f2, pred le f2, pred ge f2, pred ne f2, pred eq f2 .

� Pred dest : The predicate register to hold the comparison result.

� Operation : Compare src1 with src2 and set true and false parts of a predicate
register.

� Pred use : Null �eld means always true. Instruction can use the true or false
form of the predicate.

� Ext : List of additional information for the scheduler, register allocator, opti-
mizer, and reverse conversion.

{ (pd #) predicate destination virtual register, used by post-pass scheduler
and reverse translator after register allocation.

{ (pc #) predicate compare. Indicates the identity of the original branch for
which the predicate compare was generated. Multiple predicate compare
instructions with the same # are from the same branch.

{ (ppt weight) The weight of the true path of the original branch.

{ (ppf weight) The weight of the false path of the original branch.

{ (pt/pf #) The virtual number of the predicate virtual register used to
predicate the execution of the current instruction. Pt means using true
part and pf means false part.

� Example :
(op 29 pred gt ((r 5 p)) ((r 2 i)(i 5)()) (()) ((pd 5)(pc 3)(ppt 0)(ppf 0))).

2. Predicate clear instruction

� Format : pred clear (pred dest) (()()()) () ()

� Operation : Clears both the true and false parts of the predicate register.

� Pred dest : The predicate register to be cleared.

� Example :
(op 5 pred clear ((r 4 p)) (()()()) (()) ()).

3. Predicate load/store instruction

� Format : opcode (pred dest) (src1 src2 src3) () ()

� Opcode : pred ld and pred st.
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� Operation : Used by the register allocator to load and store predicate register
values.

� Pred dest : The predicate register for pred ld.

� Pred use : The source operands for pred ld and pred st.

� Example :
(op 5 pred ld ((r 4 p)) ((mac $SP i)(i 20)()) (()) ()).

4. Predicate merge instruction

� Format : pred merge () (()()()) (pred use) (ext)

� Operation : Compare src1 with src2.

� Pred use : Null �eld means always true. Instruction can use the true or false
form of the predicate.

� Ext : List of additional information for reverse conversion.

{ (pm #) one of the predicate registers that participates in the merge. The
appearance terminates the lifetime of the virtual register and merges the
true and false paths of the predicate registers into one.

{ (pt/pf #) The virtual number of the predicate virtual register used to
predicate the execution of the current instruction. Pt means using true
part and pf means false part.

� Example :
(op 36 pred merge (()) (()()()) ((r 8 pt)) ((pm 6)(pm 7)(pt 8))).

5. Other instructions

� Format : opcode (dest) (src1 src2 src3) (pred use) (ext)

� Operation : Original operation if predicate is true. nop if predicate is false.

� Pred use : Null �eld means always true. Instruction can use the true or false
form of the predicate.

� Ext : in addition to the other extension usages :

{ (pt/pf #) The virtual number of the predicate virtual register used to
predicate the execution of the current instruction. Pt means using true
part and pf means false part.

� Example:
(op 13 add ((r 3 i)) ((r 3 i)(i 1)()) ((r 7 pt)) ((pt 7))).
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2.2 Software Modi�cations

New algorithms are added to the existing IMPACT-I compiler to support predicated

execution. The additional modules include an algorithm to select favorable blocks for

predication, if-conversion routine to convert control dependencies to data dependencies,

and optimizer to allow speculative execution. Another modi�cation includes extending

the conventional optimizer to support predicated instructions. Register allocation is

modi�ed to support predicate registers, minimize the number of predicate register usages,

and minimize the register spill instructions. The code scheduler is changed to support

scheduling of the predicated instructions by removing excess dependencies of predicate

instructions on alternate paths. After the excess dependencies are removed, the same

dependence analysis routines are used to �nd an e�cient scheduled code.
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3. HARDWARE SUPPORT

In addition to compiler support for predicated execution, some special architectural

support is also required. The hardware must allocate enough spaces to store the pred-

icate values. Even though the existing general purpose registers can be used to store

these values, there are two problems of using general purpose registers. First, each pred-

icate value requires only 1 bit. Therefore, storing the value in a typical 32-bit general

purpose register can be very wasteful. Second, because many of the predicate values

and their comlementary values are used (representing the true and false paths of an if

statement), more e�cient and convenient hardware support should be used to represent

the complementary values. A new predicate register �le design is discussed to address

these problems.

Another hardware support includes providing some new instructions to set these pred-

icate registers. These predicate registers are used by all instructions; thus, an extension

has to be added to the instruction �eld to specify a predicate register. And lastly, the

hardware must contain some logic to nullify any side e�ects of the instruction if the

instruction is not supposed to be executed.
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Figure 3.1: A superscalar processor pipelined model with a predicate register �le.

A high-level superscalar processor pipelined model used to support predicated exe-

cution is shown in Figure 3.1. This model is a statically scheduled multiple instruction

issue machine. The model consists of �ve pipelined stages [10]. A predicate register �le

is added to store the value of the predicates. The write-back stage can write the result

to the predicate register �le. Later, these values can be read before the memory access

stage to squash out the instructions that are not supposed to be executed.

Each predicate register consists of two bit Boolean 
ags. These two Boolean 
ags are

set to complementary values by any predicate set instructions. Thus, the three possible

states of each predicate register are false-false, false-true, and true-false. An instruction

can be predicated on the true form or false form of the predicate register.
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Predicate registers may be set to false-false by the pred clear instruction. Other

predicate set instructions may be used to set a particular predicate register to true-

false or false-true conditionally depending on the result of the comparison. For example,

'pred gt p1, r0, 0' instruction can set the predicate register, p1, to true-false if r0 is

greater than zero. Otherwise, p1 is set to false-true.

This type of predicate register �le is used to reduce the number of instructions required

to set a predicate register and to reduce the 
ow dependence length from the setting of

the predicate register to its �rst use.

Other techniques can be used to reduce the 
ow dependence length even further.

Figure 3.2(a) shows the data 
ow dependency from instruction 1 to instructions 2 and

3. In this pipelined processor example, instruction 2 or 3 can only be issued two cycles

later after the predicate register is written back to the predicate register �le1. With some

simple hardware, this data dependency distance can be reduced. Figure 3.2(b) describes

the execution sequence of the same three instructions on an architecture with predicate

register forwarding logic. Since the result of the predicate is known at the end of the

instruction execute stage, the result can be forwarded to the memory write stage of the

other two instructions. This scheme allows an instruction which is 
ow dependent on the

predicate register of a previous instruction to be issued two cycles earlier with enough

resources on this processor pipelined model. The experimental result illustrating the

e�ectiveness of the register forwarding scheme is discussed in Chapter 5.

1In this example, assume the instruction can only update the state of the machine during the MEM

and WB stages.
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IF ID EX MEM WBpred_set p1

IF ID EX MEM WBadd r1, r1, 1 if p1

IF ID EX MEM WBsub r2, r3, r4 if p1

IF ID EX MEM WBsub r2, r3, r4 if p1

IF ID EX MEM WBadd r1, r1, 1 if p1

IF ID EX MEM WBpred_set p1

(a)

(b)

1 2 3 4 5 6 7

1 2 3 4 5

Figure 3.2: Example of predicate register forwarding. (a) Without forwarding. (b) With
forwarding.
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4. HYPERBLOCK FORMATION AND OPTIMIZATION

A hyperblock is a set of predicated basic blocks in which control may only enter from

the top, but may exit from one or more locations. A single basic block in the hyperblock

is designated as the entry. Control 
ow may only enter the hyperblock at the entry.

Figure 4.1 illustrates a segment of an original control 
ow graph after block selection (a),

after tail duplication (b), and after if-conversion (c). Figure 4.2 illustrates a segment of

assembly code before and after hyperblock formation. This example assumes L5 is not

an important block and it is not predicated within the main hyperblock.

Like hyperblock, a superblock is a block of instructions such that control can only

enter from the top but may exit frommore than one location [11]. But unlike hyperblock,

the instructions within each superblock do not contain any predicated instructions. A

superblock can be seen as a special case of hyperblock where only one path of the basic

blocks is combined.

One bene�t of the hyperblock scheme is the 
exibility to combine one or more control

paths. Other schemes such as trace scheduling [12] and superblock scheme can only

optimize along a single path of control. In a program where branches are not heavily

biased toward any direction, schemes which only concentrate on one main path will
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Figure 4.1: An example of hyperblock formation. (a) Original program after block selec-
tion. (b) After tail duplication. (c) After if-conversion.
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L8:

L8:

(b) (c)

1

2 3

4

5 6

7

(a)

L1: load r1, MEM(A)
    ble r1, 0, L3

L3: add r4, r4, 1
    add r2, r1, 1

L4: ble r4, 0, L6

L5: add r4, r4, 1
    store MEM(r4),r2
    jump L7

L6: sub r4, r4, 1
    store MEM(r4),r2

L7: bne r4, 0, L1

L5: add r4, r4, 1
    store MEM(r4), r2
    bne r4, 0, L1
    jump L8

1010

1010

191

1 19

19
1

L2: add r2, r1, 1

    add r4, r4, r2
    jump L4

    load r3, MEM(B)
    load r4, MEM(r6)

L1: load r1, MEM(A)
    pred_le p1, r1, 0
    add r2, r1, 1 (p1 F)

    add r4, r4, r2 (p1 F)
    add r4, r4, 1 (p1 T)
    add r2, r1, 1 (p1 T)
    bgt r4, 0, L5
    sub r4, r4, 1
    store MEM(r4), r2
    bne r4, 0, L1

    load r3, MEM(B) (p1 F)
    load r4, MEM(r6) (p1 F)

Figure 4.2: A program segment before and after hyperblock formation. (a) Original
control 
ow graph. (b) Original program segment. (c) After hyperblock
formation.

miss optimization opportunities across other paths. Hyperblock techniques, on the other

hand, are structured for multiple paths. Thus, optimization and scheduling will be able

to bene�t more by looking across multiple numbers of important paths.

4.1 Block Selection

An important issue in hyperblock formation is deciding which blocks should be pred-

icated together. One scheme is to predicate all blocks together in an inner-most loop [6].

With a limited number of resources (fetch units or functional units), this technique may

degrade performance in a control intensive code where multiple numbers of paths are

conditionally executed at the same time.

There are three important factors when deciding a basic block for inclusion into a

hyperblock. The �rst factor is to use pro�le information to assist in the selection of the

basic blocks for if-conversion. A pro�le-based algorithm selectively removes paths that
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are not executed often. Figure 4.1 shows a piece of pro�led control 
ow graph. The

number associated with each basic block indicates the execution frequency of that block.

In this example, the path consists of block F and is executed less frequently. Therefore,

it is not included in the formation of the main hyperblock which includes blocks A, B,

C, D, and E.

The second factor is to select the basic blocks based on the size of the basic blocks.

Basic blocks that are larger should have lower priority for predication than smaller blocks.

Finally, the instructions within each basic block are important in deciding which

block should be predicated. Procedure calls and unresolvable memory access instruc-

tions should have less priority for inclusion due to the fact that these instructions can

potentially limit the optimization and scheduling.

A heuristic function used to approximate the criteria for selecting a basic block is

shown below. This heuristic function takes the execution frequency, basic block size, and

instruction characteristic within the basic block into consideration.

BSVi = (K � weight bbi
size bbi

�
size main path1

weight main path1
� bb chari)

The block selection value, or BSV, is calculated for each basic block to indicate its

importance. A larger BSV value indicates that the basic block is more important for

inclusion. The weight and the size of each basic block are normalized against the main

path of the basic blocks. The variable bb chari is the basic block characteristic of each

basic block. The maximum value of bb chari is 1. Blocks containing procedure calls or

unresolvable memory references have bb chari less than 1. K is a machine-dependent

constant. Machines that have a higher issue rate have a higher K value to allow more

basic blocks to be selected for if-conversion. An algorithm for block selection is shown in

Figure 4.3.
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block selection()
f

Determine the header block, bb1. Usually the header block of a loop.
selected set = set of basic blocks on the main path starting from bb1

calculate all BSV of blocks not in selected set

done = false
while (not done) f

done = true
for each successors, bbi, of blocks in selected set

if (BSVi > threshold and bbi is not in selected set) f
selected set = selected set+ fbbig
done = false

g

g

g

return selected set

g

Figure 4.3: Block selection algorithm.

4.2 Code Transformation

After the blocks are selected, two conditions must be true before the selected blocks

can be if-converted and transformed into a hyperblock.

Condition 1 : No incoming arc from outside the basic blocks to blocks to be predi-

cated other than to the entry block.

Condition 2 : No nested inner loop inside the blocks to be predicated.

These conditions ensure that the hyperblocks are entered only from the entry blocks

and also that the instructions in a hyperblock are executed at most once before the

hyperblock is exited. Techniques used to satisfy conditions 1 and 2 are called tail du-

plication and loop peeling, respectively. If a group of basic blocks satis�es the above

two conditions, these blocks can be if-converted easily using the if-conversion algorithms

described later.
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4.2.1 Tail duplication

Tail duplication is used to transform programs to satisfy condition 1 for if-conversion.

As mentioned before, condition 1 basically means that if the predicated blocks are to be

executed the control must begin at the entry block. If a selected group of blocks violates

condition 1, then the original program must be transformed to satisfy this condition.

The tail duplication algorithm transforms the control 
ow graph by �rst marking all

of the 
ow edges that violate condition 1. Then all of the basic blocks that are to be

predicated are marked if the 
ow arcs can reach them before reaching the entry block.

Finally, all the marked blocks are duplicated, and the marked 
ow arcs now adjusted

to point to the duplicated blocks which correspond to the original blocks. Figure 4.1(a)

shows that the control 
ow from block F to block E is a side entrance to the main

hyperblock and must be eliminated. Figure 4.1(b) shows the 
ow graph after block

E is duplicated. The control from F to E now changes to duplicated block E. A tail

duplication algorithm is presented in Figure 4.4.

4.2.2 Loop peeling

To satisfy condition 2, another transformation called loop peeling is used. Loop

peeling peels o� iterations of inner loops that are nested within the selected blocks for

predication. After peeling o� iterations of a loop, the outer blocks can satisfy condition 2

for if-conversion. When the inner loop blocks and the outer loop blocks are transformed

into hyperblocks, loop unrolling can then be easily applied to these hyperblocks. Fig-

ure 4.5(a) shows two loops, one nested within another. After loop peeling is applied,

the outer loop can be predicated together as shown in Figure 4.5(b). Loop peeling is

accomplished by �rst detecting loops nested in the selected blocks for predication. The

loop detection algorithm is described in more detail in [13]. After the blocks in the nested
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tail duplication(set of bb)
f

Let set of bb be the blocks that are selected for hyperblock formation.
and bb1 is the entry of the hyperblock.

done = false
while (not done) f

done = true
for each basic block in set of bb, bbi f

if (bbi 6= bb1)
mark each bbi that has predecessor not in set of bb g

for each basic block in set of bb, bbi f
if (bbi is marked) f

if bbi is not duplicated yet
duplicate bbi

else
use previously duplicated bbi

change all incoming 
ow arcs of basic blocks not in set of bb from
pointing to bbi to duplicate bbi.

done = false
g

g

g

g

Figure 4.4: An algorithm for tail duplication.
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Figure 4.5: An example of loop peeling.
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loop peeling(set of bb)
f

Let set of bb be the blocks that are selected for hyperblock formation.
and bb1 is the entry of the hyperblock.
for each inner loop in set of bb, loopi f

k = expected number of times loopi is executed each time through the loop
if (k > MAX NUM PEELS) k = MAX NUM PEELS
duplicate loopi k times
change the loop back arc from last duplicated loopi to the

original header block of loopi
add the duplicated loopi to set of bb

g

g

Figure 4.6: An algorithm for loop peeling.

loops are detected, several iterations are peeled o�. Finally, all loopback 
ow arcs to the

original nested loops are modi�ed to point to the target of the duplicated loops. An

algorithm for loop peeling is shown in Figure 4.6.

4.2.3 Node splitting

After tail duplication and loop peeling, another technique called node splitting can

be applied to a segment of the program. This technique duplicates the basic blocks

that are at a merge point of two or more blocks. Node splitting is especially e�ective

at higher issue rates in control intensive programs where control and data dependencies

limit the number of independent instructions. Node splitting can also be e�ectively

applied to a basic block where one incoming path to this block contains a longer chain

of dependencies than the other incoming paths. Node splitting these blocks e�ectively

improves the performance since the execution time will no longer be dictated by the

path with a longer chain of dependencies. Figure 4.7(a) shows an example of a 
ow
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A A

B BC C

D D D’

(a) (b)

Figure 4.7: An example of node splitting.

graph before node splitting. Figure 4.7(b) shows the 
ow graph after the node splitting

is applied to block D.

There are also disadvanges to node splitting. This technique can cause large code

expansion. Heuristics need to be added to the algorithm to prevent node splitting if a

basic block does not bene�t from it. One heuristic function is shown below.

FSVi = (K � weight flowi

size flowi
�

size main path1
weight main path1

� bb chari)

�FSVi = max(abs(FSVj � FSVk)) and FSVj; FSVk target same bbi

The 
ow selection value, or FSV, is calculated for each 
ow edge in the set of blocks

selected for if-conversion that contains two or more incoming edges. Larger FSV implies

the importance of the 
ow edge. Weight flowi is the number of times the control 
ow

through edges traversed. Size flowi is the number of instructions on the path from the

entry block to the point where the 
ow edge is taken. bb chari and K are the same

parameters used in calculating BSV for block selection.

After the FSVs are computed, the node splitting is processed starting from the basic

block with highest �FSVi. High �FSVi indicates highly unbalanced control 
ow path.

Thus, basic blocks with the highest di�erence should be node split �rst. The algorithm
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node splitting(set of bb)
f

Let set of bb be the blocks that are selected for hyperblock formation.
and bb1 is the entry of the hyperblock.

merge set= set of blocks that has two or more predecessors excluding bb1
done = false
while (merge set is not empty and not done) f

calculate FSV of all source edges of blocks in merge set

calculate � FSV for each block in merge set

bbi = block with largest � FSV
done = true
if (weight bbi > threshold1 and �FSVi > threshold2) f

done = false
num = number of predecessors(bbi)
duplicate bbi num� 1 times
modify each predecessor of original bbi to point to di�erent copy of bbi

g

update merge set

g

g

Figure 4.8: An algorithm for node splitting.

continues until there are no more blocks with two or more incoming edges, no � FSV

above a certain threshold, or no basic blocks with weight above a minimum threshold.

An algorithm for node splitting is presented in Figure 4.8.

4.3 If-Conversion

If-conversion is a process in which conditional branches are selectively removed by

converting control dependencies to data dependencies. In this section, three if-conversion

algorithms for predicating a group of blocks into a hyperblock are presented. Algorithm 1

predicates blocks by associating a predicate with each conditional 
ow edge. Operations

inside a basic block are conditionally executed when one of the predicates associated with
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the 
ow edge into the block is set to TRUE. Algorithm 2 predicates blocks by associating

a predicate directly with each basic block. Operations are conditionally executed when

the predicate associated with this block is set to TRUE. Lastly, algorithm 3 also associates

a predicate with basic blocks similar to algorithm 2. However, this algorithm reduces the

number of predicate assignments and de�nitions [3].

Branch instructions can be classi�ed into three types: forward, backedge, and exit.

A forward branch has a target basic block in the same hyperblock excluding the entry

basic block. A backedge branch has a target in the entry block of the same hyperblock.

An exit branch has a target outside the hyperblock.

The if-conversion algorithms described in this section convert all forward branches.

The backward and exit branches are not converted because if-converting these branches

may cause performance degradation due to execution of extra useless predicated instruc-

tions.

4.3.1 Dominator and post dominator

Before the if-conversion algorithm can predicate a group of blocks, dominator and

post-dominator information of these blocks must be computed. A basic block, bbi, dom-

inates another block, bbj; if bbj is visited, then bbi must also be visited [13]. Figure 4.9

shows an iterative algorithm which computes the dominator information of a group of

basic blocks. This algorithm assumes that bb0 is the initial basic block of the group. In

Figure 4.10, block A dominates A, B, C, and D. Block B dominates B and D. Block C

and D dominate only themselves.

After dominator information is calculated, the post dominator of these basic blocks

must also be computed. A basic block, bbi, post dominates another block, bbj; if bbj is

executed, bbi is also executed. Before computing the post dominators of the basic blocks,
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compute dominator(set of bb)
f

S
= the set of all basic blocks in set of bb

dom(bb0) = fbb0g
for all basic blocks 2 set of bb, bbi f

post dom(bbi) =
S

g

change = 1
while (change 6= 0) f

change = 0
for all basic blocks 2 set of bb, bbi, (i 6= 0) f

old = dom(bbi)
dom(bbi) =

T
(dom(bbj)); bbj a predecessor of bbi

dom(bbi) = dom(bbi) + fbbig
diff = old� dom(bbi)
if (diff 6= 0) then change = change + 1

g

g

g

Figure 4.9: Algorithm for �nding dominators.
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Figure 4.10: A simple control 
ow graph.
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all exit branches and backedge branches are marked and eliminated from the computation

of the post dominator information.

The algorithm similar to the iterative algorithm used to compute dominator infor-

mation is shown in Figure 4.11. The exit branches and backedge branches are removed

from the computation of post dominator information to facilitate better utilization of the

predicate registers. For example, Figure 4.10 shows a simple control 
ow graph of four

basic blocks within a hyperblock. In this example, blocks B and C are predicated with

complementary predicate registers. Even though basic block D is control dependent on

the branch condition in B, it can use the same predicate register as B if the backedge

branch in B is not if-converted. After removing the exit branch 5 and backedge branches

3 and 6, the post dominator of the blocks can be calculated. In this case, D is the post

dominator of D and B. A, B, and C post-dominate only themselves.

4.3.2 Algorithm 1 : Association of 
ow arc

This if-conversion algorithm is a very simple scheme but not very e�cient in terms

of predicate register usage and de�ne operations. In this algorithm, a predicate register

is used to hold the value of the computation from the conditional 
ow arcs. The basic

blocks are if-converted according to a topological order starting from the entry basic

block which is predicated with the constant TRUE predicate. Two basic blocks can

share the same predicate register if they have the same control dependencies. Two basic

blocks have the same control dependencies if the �rst block dominates the second and

the second post-dominates the �rst.

To generate a predicate register for a particular basic block that does not have the

same control dependencies with a basic block already predicated, a new predicate register

is allocated. The predicate 
ag is set to TRUE if any one of the incoming 
ow arcs are
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compute post dominator(set of bb)
f

S
= the set of all basic blocks in set of bb

for all basic blocks 2 set of bb, bbi f
post dom(bbi) =

S

g

mark o� all exit and backedge 
ow arcs

change = 1
while (change 6= 0) f

change = 0
for all basic blocks 2 set of bb, bbi, (i 6= 0) f

old = dom(bbi)
dom(bbi) =

T
(dom(bbj)); bbj a successor of bbi

and 
ow arc from bbi to bbj is not marked o�
dom(bbi) = dom(bbi) + fbbig
diff = old� dom(bbi)
if (diff 6= 0) then change = change + 1
g

g

g

g

Figure 4.11: Algorithm for �nding post dominators.
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predication 1(set of bb)
f

Compute dominator(set of bb)
Compute post dominator(set of bb)
Examine basic blocks in the topological order.
Assign a predicate register to each conditional forward 
ow arc.
for each basic block, bbi f

if (there exist bbj such that bbj comes before
bbi in topological sort and bbj dominates bbi and bbi

post-dominate bbj)
bbi use the same predicate register as bbj

else f
assign a new predicate register to bbi
Add ORing instructions to set the predicate if any one 
ow arc is true

g

Convert forward branch in bbi to predicate set operations
Predicate all other instructions in bbi with the register assigned to it

g

Add operations to reset predicate registers
g

Figure 4.12: Algorithm 1 for if-conversion.

predicated to TRUE. Thus, to enable the operations in a basic block, the algorithm

generates the `OR' instructions which set the predicate register of the basic block if one

of the registers associated with the 
ow arcs is set.

After forward branches are converted to the predicate 
ag de�ne operations, the basic

block is predicated using the predicate register assigned. Also, the predicate registers

that are de�ned within the context of another predicate register must be reset at the

entry block. This prevents a predicate register from being used prior to being de�ned.

Figure 4.12 contains a simple high level description of this algorithm.
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4.3.3 Algorithm 2 : Association of basic blocks

The second algorithm for predicating a group of basic blocks works similarly to the

�rst algorithm. But unlike the �rst algorithm which associates a predicate register with

each 
ow edge, this scheme uses the 
ow edges to directly set the predicate register of the

target basic block. This scheme is more e�cient because no predicate register is needed

to store the conditions of the 
ow edges.

Like the �rst algorithm, each basic block is predicated in turn whenever its pre-

decessors are all predicated excluding the entry block, since the entry block is always

predicated with constant TRUE. Two basic blocks can use the same predicate registers

if the �rst block dominates the second block while the second post dominates the �rst.

Next, in a topological sort, the basic block that uses a predicate register in the earliest

instance has to add predicate de�ne operations prior to using the predicate value. Each

incoming forward 
ow arc is converted to a predicate de�ne operation. A conditional


ow arc sets the predicate register according to its condition. An unconditional 
ow arc

sets the predicate register to constant TRUE, since execution of the basic block that

contains an unconditional 
ow arc implies that the target basic block is also executed.

The predicate de�ne operations always inherit the predicate value of source block of the


ow arc.

At the beginning of the predicated block, predicate registers which may be used prior

to de�ne instruction are reset. Figure 4.13 shows this algorithm.

4.3.4 Algorithm 3 : RK algorithm

The third algorithm for predication is based on the work from [3]. In any if-conversion

algorithm there are two main questions that must be solved. First, the algorithm must

be able to assign predicates to basic blocks. And second, the algorithm must be able to
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predication 2(set of bb)
f

Compute dominator(set of bb)
Compute post dominator(set of bb)
Examine basic blocks in the topological order.
for each basic block, bbi f

if (there exist bbj such that bbj comes before
bbi in topological sort and bbj dominates bbi and bbi

post-dominate bbj)
bbi use the same predicate register as bbj
Remove all incoming forward branches to bbi

else f
assign a new predicate register to bbi
Convert all incoming forward branch to bbi to predicate set operations

g

Predicate all other instructions in bbi with the register assigned to it
g

Add operations to reset predicate registers
g

Figure 4.13: Algorithm 2 for if-conversion.
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place predicate de�ne operations. Algorithms 1 and 2 presented in the previous sections

compute the assignment and the placement, although not very e�ciently.

The RK algorithm, on the other hand, is an e�cient algorithm which minimizes the

number of predicate usages and number of de�ne operations. This algorithm formulates

two functions called R and K. Function R is responsible for assignment of predicates

and function K is required for the placement of the predicate de�ne operations. Then if-

conversion can be divided into several stages: compute the post dominator information,

compute the control dependencies between instructions, decompose the control depen-

dencies into R and K functions, add some de�ne operations for those predicates that may

be used before de�ned, convert conditional branches, and compact the basic blocks into

one single block of code.

The function R is derived by assigning one predicate register to all of the basic blocks

with the same control dependencies. Function K is derived directly from the control

dependency information. Each distinct set of control dependencies determines the place-

ment of the predicate de�ne operations of its associated predicate. On machines with

the complementary predicate register �le described in Chapter 2, two basic blocks with

complementary control dependencies can be assigned true and false forms of the same

predicate register to reduce the number of predicate register usages and the number of

de�ne operations.

The augment function of the RK algorithm uses the data 
ow equations and solves

for the predicates which may be used before de�ned, and inserts resets (pred clear in-

structions) to these predicates in the entry block of the hyperblock. After R and K are

determined, conditional branches are removed and instructions are predicated based on

their assigned predicate. Figure 4.14 shows if-conversion based on the RK algorithm.
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predication 3(set of bb)
f

Compute post dominator(set of bb)
Compute control dependencies(set of bb)
Decompose control dependencies(set of bb)
Augment K(set of bb)
for each basic block, bbi f

use the predicate register assigned in R
for each forward conditional 
ow arc use K to determine which predicates

are dependent on this arc. And add the predicate de�ne operation.
Remove all forward branches
predicate this basic block with the assigned register

g

g

Figure 4.14: RK algorithm for if-conversion.

4.3.5 Comparison of the three algorithms

Figure 4.15 shows the total cycle time for issue 2 machine using the three schemes

on four benchmarks: cmp, compress, grep, and wc. The resulting speedup is normalized

to the execution time of the hyperblock scheme using algorithm 1 if-conversion (ARC).

The �gure shows that RK outperforms both the BB and ARC algorithms. However,

at issue rate 4 and higher, virtually identical performances for the three schemes are

observed. One explanation is that at low issue rate, there are a fewer number of empty

slots available for scheduling. Thus, since the RK algorithm produces the least number of

predicate uses and de�ne operations than the other two schemes, it's more bene�cial than

the other schemes. On the other hand, at higher issue rates the extra predicate de�ne

instructions produced by ARC and BB do not degrade the performance signi�cantly since

there are more empty slots available for these excess instructions.
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Figure 4.15: Normalized execution time of the three if-conversion schemes.

4.4 Predication-speci�c Optimizations

In this section, three optimization techniques speci�c to the predicated code are pre-

sented. Instruction promotion is used to speculatively execute instructions before the

predicate value associated with the instruction is known. Renaming the register is used

in conjunction with promotion to speculatively execute more instructions. Instruction

merging can be used to remove redundant operations.

4.4.1 Instruction promotion

Promotion of predicated instruction removes the 
ow dependency between the predi-

cated instruction and the predicate de�ne operation which sets the predicate value. This

technique enables speculative execution of instruction by removing the predicate associ-

ated with the instruction. Instructions with long latencies can be scheduled earlier with

this technique. By issuing long latency instruction earlier, other instructions which de-

pend on the completion of this instruction may also be initiated earlier. Instructions can

be executed speculatively if the result value from executing this instruction later found

not required does not a�ect the execution of subsequent instructions. Another prob-

lem of speculative execution is correct detection of exceptions. Exceptions generated
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instruction promotion 1()
f

for each instruction, op(x), in the hyperblock f
if all the following conditions are true:

1. op(x) is predicated.
2. op(x) has a destination register.
3. there is a unique y such that dest(y) = pred(x) in fop(y); y < xg.
4. dest(x) is not live at op(y).
5. dest(j) 6= dest(x) in fop(j); j = y + 1 : : : x� 1g.

then do:
set pred(x) = pred(y)

g

g

Figure 4.16: Type 1 instruction promotion algorithm.

from instructions that are not supposed to be executed should be ignored. With non-

trapping hardware, instructions that are speculatively executed can use the nontrapping

instruction equivalent of the normal instruction. If a precise exception is desired, sentinel

scheduling can be used to accurately report the exceptions when the instructions that

cause the exceptions are supposed to be executed [14]. Two algorithms for instruction

promotion are utilized based on the characteristic of the predicate de�ne operation.

Type 1 promotion operates on predicated instructions only if the predicate is de�ned

by only one predicate de�ne instruction. The algorithm in Figure 4.16 is used for in-

struction promotion. A predicated instruction can be promoted if the instruction has a

destination register that is not live at the unique operation which de�nes the predicate

used by this instruction.

Figure 4.17(b) shows an example code after instruction promotion optimization from

the original code shown in Figure 4.17(a). The arrow in Figure 4.17(b) indicates the

promoted instruction. Speculatively executing this promoted load instruction allows the

instruction to be scheduled before the predicate de�ne instruction. By scheduling this
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L1: load r1, MEM(A)
    pred_le p1, r1, 0
    add r2, r1, 1 (p1 F)

    add r4, r4, r2 (p1 F)
    add r4, r4, 1 (p1 T)
    add r2, r1, 1 (p1 T)
    bgt r4, 0, L5
    sub r4, r4, 1
    store MEM(r4), r2
    bne r4, 0, L1

(b)

    load r3, MEM(B)
load r4, MEM(r6) (p1 F)

L1: load r1, MEM(A)
    pred_le p1, r1, 0
    add r2, r1, 1 (p1 F)

    add r4, r4, r2 (p1 F)
    add r4, r4, 1 (p1 T)
    add r2, r1, 1 (p1 T)
    bgt r4, 0, L5
    sub r4, r4, 1
    store MEM(r4), r2
    bne r4, 0, L1

    load r3, MEM(B) (p1 F)

(a)

load r4, MEM(r6) (p1 F)

L1: load r1, MEM(A)
    pred_le p1, r1, 0

    bgt r4, 0, L5
    sub r4, r4, 1
    store MEM(r4), r2
    bne r4, 0, L1

    add r2, r1, 1

    add r4, r5, r2 (p1 F)
    add r4, r4, 1 (p1 T)

(d)

    load r3, MEM(B)
load r5, MEM(r6)

L1: load r1, MEM(A)
    pred_le p1, r1, 0
    add r2, r1, 1 (p1 F)

    add r4, r4, 1 (p1 T)
    add r2, r1, 1 (p1 T)
    bgt r4, 0, L5
    sub r4, r4, 1
    store MEM(r4), r2
    bne r4, 0, L1

    add r4, r5, r2 (p1 F)

(c)

    load r3, MEM(B)
load r5, MEM(r6)

Figure 4.17: An example of code segment after each optimization. (a) Original code.
(b) After instruction promotion. (c) After renaming/promotion. (d) After
merging.

load instruction earlier, other instructions that use the result of the load can also be

scheduled sooner. This results in a more compact code which translates into higher

performance.

Predicated instruction can still be promoted if there are multiple numbers of oper-

ations which de�ne the predicate used by an instruction. Type 2 promotion operates

by promoting instruction above all the relevant predicate de�ne operations as shown in

Figure 4.18. A predicated instruction can be promoted to the constant TRUE predicate,

if the destination register of this instruction is not live at any of the relevant predicate

de�ne operations.
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instruction promotion 2()
f

for each instruction, op(x), in the hyperblock f
if all the following conditions are true:

1. op(x) is predicated.
2. op(x) has a destination register.
3. there exists more than one y such that dest(y) = pred(x)

in fop(y); y < xg

4. dest(x) is not live at any instructions which either de�ne pred(x)
or de�ne an ancestor of pred(x) in the PHG.

5. dest(j) 6= dest(x) in fop(j); j = y + 1 : : : x� 1g.
then do:

set pred(x) = ;
g

g

Figure 4.18: Type 2 instruction promotion algorithm.

4.4.2 Renaming and promotion

Many operations cannot be promote and speculatively executed due to the desti-

nation variable of the instruction live on the alternate paths. A solution is to rename

the destination registers of this instruction and rename all subsequent source registers

which can only be reached by the same value de�ned by this instruction. Then another

instruction may have to be added to preserve the original value of the register if the

path containing the renamed register is taken. An example is presented in Figure 4.17(c)

which shows the program after renaming and promotion is applied to Figure 4.17(b).

The destination register of the promoted instruction is renamed from R4 to R5 and the

subsequent instruction which uses R4 is also renamed R5. The algorithm for renaming

with promotion is shown in Figure 4.19.
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renaming and promotion()
f

for each instruction, op(x), in the hyperblock f
if all the following conditions are true:

1. op(x) cannot be promoted by either type 1 or type 2.
2. there exists src(k) = dest(x) in fop(k); k > xg.

op(x) dominates op(k).
3. dest(x) 6= dest(z) in fop(z); z = x+ 1 : : : y � 1g.

then do:
Rename dest(x)
Rename all op(y) with src(y) = dest(y) and op(x) dominates op(y)
Add new instruction, op(z), to move the value from new register

to old register
pred(z) = pred(x)
pred(x) = ;

g

g

Figure 4.19: Renaming and instruction promotion algorithm.

4.4.3 Instruction merging

Instruction merging combines two instructions in a hyperblock with complementary

predicates into a single instruction which will execute whether the predicate is true or

false. Identical instructions with complementary predicates can be merged if the same

de�nition of source register values reaches both instructions. Instructions that satisfy

these conditions are merged by promoting one instruction and deleting the complemen-

tary instruction. This process of instruction merging is similar to elimination of partial

redundancies discussed in [15]. An example of instruction merging is shown in Fig-

ure 4.17(d). In this example, the two ADD instructions with identical operands and

complementary predicates are merged. The algorithm for instruction merging is de-

scribed in Figure 4.20.
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instruction merging 1()
f

for each instruction, op(x), in the hyperblock f
if all the following conditions are true:

1. op(x) can be promoted with type 1 promotion
2. op(y) can be promoted with type 1 promotion
3. op(x) is identical operation as op(y)
4. pred(x) is complement form of pred(y)
5. same de�nition reaches source register in op(x) and op(y)
6. op(x) is placed before op(y)

then do:
promote op(x)
delete op(y)

g

g

Figure 4.20: Type 1 instruction merging algorithm.

Another merging optimization can be applied if there are two identical instructions

with one dominating the other and there are no other operations between these two

instructions which can modify the destination registers used by this pair of instructions.

The optimization function is shown in Figure 4.21.

4.5 Predicate Hierarchy Graph

An important issue in the hyperblock optimization and scheduling is the reconstruc-

tion of the control 
ow information from the hyperblock structure. The control 
ow

information can be used to determine if two predicated instructions can ever be executed

when the hyperblock is entered each time. One method is to build a predicate hierarchy

graph (PHG) similar to the RK graph. The graph is a representation of the Boolean

equations under which all predicates are de�ned. The PHG is an acyclic graph and con-

tains two types of nodes: the register and condition. Figure 4.22(a) shows an example of
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instruction merging 2()
f

for each instruction, op(x), in the hyperblock f
if all the following conditions are true:

1. op(x) dominates op(y)
2. op(x) is identical operation as op(y)
3. same de�nition reaches source register in op(x) and op(y)
4. dest(x) 6= dest(z) in fop(z); z = x+ 1 : : : y � 1g

then do:
delete op(y)

g

g

Figure 4.21: Type 2 instruction merging algorithm.

a control 
ow graph. C1 to C6 are the conditions in which the 
ow edge is taken. P1 to

P4 are the predicate registers used for this example. Figure 4.23 lists the predicate de-

�ne operations that are created when the basic blocks from the above control 
ow graph

are if-converted. Figure 4.22(b) shows the PHG graph reconstructed from the predicate

de�nitions in Figure 4.23.

The control 
ow information can be determined from the PHG graph. To determine

if two predicates can ever be true at the same time, the PHG is used to �nd the Boolean

expression for each predicate. If ANDing the two Boolean expressions can be simpli�ed

to 0, the corresponding predicates are never both true for each entry into the hyperblock.

For example, with Figure 4.23, p3 and p4 can both be true each time the hyperblock

is entered. To determine this, the Boolean equations for p3 and p4 are examined using

the PHG from Figure 4.22(b). From the graph, p3 = (c1 � c2 bar) + (c1 bar � c3) and

p4 = (c3�c1 bar)+(c1). These two predicates may be true at the same time if p3�p4 cannot

be simpli�ed to 0. In this case, p3 �p4 = ((c1 � c2 bar)+(c1 bar � c3)) � ((c3 � c1 bar)+(c1))
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1

2 3

4 5

6

7

c1

0

c1

p1 p1_bar

p2 p3 p4

(a) (b)

p1 p1_bar

p2 p3

p4

c1_bar

c1_bar

c2
c2_bar

c3
c3_bar

c1

c2 c2_bar c3 c3

Figure 4.22: (a) Control 
ow graph and the (b) PHG graph.

pred clear p4
1: pred set p1  c1

pred set p4  c1
2: pred set p2  c2 (p1)

pred set p3  c2 bar (p1)
3: pred set p3  c3 (p1 bar)

pred set p4  c3 (p1 bar)

Figure 4.23: Predicate de�ne operations added to the blocks.
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is control path(p1, p2)
f

for each term of the SOP of p1, termi f

for each term of the SOP of p2, termj f

if ((termi � termj) can not be simpli�ed to 0)
return false

g

g

return true
g

Figure 4.24: Algorithm for �nding control path.

cannot be simpli�ed to 0. Thus, any two instructions predicated with p3 and p4 are on

a control path.

Another example, using Figure 4.23 again, p2 and p1 bar cannot both be true at the

same time. Using the PHG, p2 = (c2 � c1) and p1 bar = c1 bar. Now, p2 � p1 bar =

(c2 � c1) � c1 bar which can be simpli�ed to 0. Thus, any two instructions predicated with

p2 and p1 bar are independent. An algorithm to check for the control 
ow information

between two predicate registers is shown in Figure 4.24.

4.6 Conventional Optimizations

Other optimizations for nonpredicated code can also be extended to predicated code in

the hyperblock using the control 
ow information. Most optimization works by increasing

the instruction level parallelism within the program. Loop unrolling can be used to

overlap di�erent iterations of frequently executed loops to increase the performance of

the program [16]. Register renaming is used to remove the anti, output, and control

dependencies between instructions. Classical optimizations [17], [13] can also be applied

to the hyperblock.
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Optimization on a hyperblock is more e�ective than traditional global optimization

techniques, because traditional techniques must be conservative and consider all control

paths between basic blocks. Superblock optimization considers only a single path at

a time. But, many of the early branch exits in a superblock can potentially limit a

large portion of the performance improvement. The hyperblock, on the other hand, can

optimize across multiple numbers of paths. Thus, there are more potential performance

improvements using the hyperblocks.

4.7 Scheduling

After the hyperblock is optimized, the code must be scheduled according to the archi-

tecture speci�cations. The hyperblock scheduler is based on superblock scheduler. The

code scheduling consists of two steps: dependence graph construction and list scheduling.

The dependence graph is built by checking for 
ow, anti, output, and control dependen-

cies between two instructions in each hyperblock. Dependencies between predicated

instructions within a hyperblock can be removed if the predicate registers associated

with the pair of instructions cannot both be true when the hyperblock is entered. Some

control dependencies may be eliminated with available hardware support for speculative

execution. For example, the dependencies between a branch and an instruction following

the branch can be eliminated, if the hardware consists of nontrapping instructions and

the destination of the instruction is not used before it is rede�ned when the branch is

taken. After the appropriate dependencies are removed, list scheduling is used to schedule

the code appropriately according to a set of parameters including instruction latencies,

resource constraints, and the reduced dependence graph.



46

5. PERFORMANCE EVALUATION

The performance of the hyperblock formation and optimization techniques has been

evaluated on a DEC 3100 workstation using the code generator for the MIPS R2000

processor [18]. The code generator is modi�ed to convert the predicated intermediate

code to the MIPS assembly code. Table 5.1 shows the benchmark programs used for the

evaluation. Most benchmarks are commonly used Unix programs. The size column gives

the length of each benchmark measured in numbers of lines of code. A set of input data

has been selected to pro�le every benchmark. Table 5.2 gives a brief description of the

characteristics of the selected input data sets.

5.1 Methodology

The hyperblock technique described in the previous chapter has been implemented

in the IMPACT-I compiler. The compiler is a prototype optimizing compiler designed

to generate e�cient code for VLIW and superscalar processors. The compiler utilizes a

machine description �le to generate code for a parameterized superscalar processor.

The microarchitecture model uses RISC-like assembly language similar to the MIPS

R2000 instruction set. Further, the architecture is assumed to have a CRAY-1 style
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Table 5.1: Benchmarks.

name size description

cccp 4787 GNU C preprocessor
cmp 141 compare �les
compress 1514 compress �les
eqntott 3461 Boolean minimization
espresso 6722 Boolean minimization
grep 464 string search
lex 3316 lexical analysis program generator
li 7747 Lisp interpreter
qsort 136 quick sort program
tbl 2817 format tables for tro�
wc 120 word count
yacc 2303 parsing program generator

Table 5.2: Input data for pro�ling.

name input description

cccp 20 C source �les (100 - 5000 lines)
cmp 20 similar / di�erent �les
compress 20 C source �les (100 - 5000 lines)
eqntott 5 Boolean equations
espresso 20 Boolean functions (original espresso benchmarks)
grep 20 C source �les (100 - 5000 lines) with various search strings
lex 5 lexers for C, Lisp, Pascal, awk, and pic
li 5 Gabriel benchmarks
qsort 1 sort 1024 numbers
tbl 20 tro� �les (100 - 4000) lines
wc 20 C source �les (100 - 5000) lines
yacc 10 grammars for C, Pascal, pic, eqn, awk, etc.
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Table 5.3: Instruction latencies.

Function Latency Function Latency

Int ALU 1 FP ALU 3
Int multiply 3 FP conversion 3
Int divide 10 FP multiply 3
branch 1 / 1 slot FP divide 10
memory load 2 memory store 1

interlocking and deterministic instruction latencies (Table 5.3). A set of nontrapping

instructions is assumed to be provided by the architecture for speculative execution. The

architecture also contains an in�nite number of predicate registers to support predicated

execution. The performance result derived from execution-driven simulation is assumed

to have a 100% cache hit rate.

5.2 Results

In this section the performance of the hyperblock technique is examined for VLIW and

superscalar processors with issue rates 2, 4 and 8. The issue rate is the maximumnumber

of instructions the processor can fetch and issue per cycle. The speedup is compared to

that for the base machine with issue rate of 1 using basic block scheduling. No limitation

has been placed on the combination of instructions that can be issued in the same cycle.

Figure 5.1 shows the e�ectiveness of the partial predication by selectively excluding

unimportant basic blocks from hyperblock formation. Predication-speci�c optimizations,

promotion and merging, are not used for this comparison. Across all benchmarks, par-

tial predication (PP) outperforms both basic block scheduling (O) and full inner-loop

predication (IP). For some benchmarks, cccp and compress, IP does not do as well as

basic block scheduling at any issue rates. Also, full inner loop predication of compress,
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Figure 5.1: Performance comparison of basic block scheduling (O), innermost loop pred-
ication (IP), and partial predication (PP).

espresso, grep, lex, qsort, and yacc does not perform as well as the basic block scheme

of the same benchmarks at lower issue rates. This can be attributed to the fact that

IP combines all basic blocks in a loop together which �lls up the available instruction

slots. On the other hand, when the issue rate is increased su�ciently, this problem is

alleviated.

Figure 5.2 represents the performance with and without predicate-speci�c optimiza-

tions. The graph indicates that performance improvement is possible by speculatively

executing instructions using the instruction promotion optimization technique. An aver-

age of 11% speedup is observed for partial predication with speculative execution (PO)

over partial predication (PP), and approximately 6% speedup is noted for inner-loop

predication with speculative execution (IO) over inner-loop predication (IP). Thus, spec-

ulative execution is an important source of performance improvement regardless of the

base scheme.

A performance comparison of the basic block, superblock, and hyperblock schemes is

illustrated in Figure 5.3. At issue 8, hyperblock technique (PO) outperforms both the

superblock (T1) and basic block (O) techniques in all benchmarks except grep. At lower
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Figure 5.2: Performance comparison of inner loop predication (IP), inner loop predica-
tion with speculative execution (IO), partial predication (PP), and partial
predication with speculative execution (PO).
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Figure 5.4: Performance of predicated execution with and without predicate register for-
warding.

issue rates, however, the performance of the superblock is somewhat better than for the

hyperblock. This can be expected, because the hyperblock technique examines multiple

paths. Thus, there are not enough instruction slots available at the lower issue rates.

When the resources are greater, hyperblock provides better performance improvement

since independent instructions in the hyperblock are able to utilize more of the resources

concurrently than other schemes.

The e�ectiveness of the predicate register forwarding scheme discussed in Chapter 2 is

shown in Figure 5.4. The �gure indicates that predicate register forwarding hardware can

be used to increase the performance of architecture with predicated execution. Average

speedups of about 12% at issue 8, 9% at issue 4, and 3% at issue 2 are observed by

comparing the same machine architecture with and without the forwarding hardware

support. This technique is more e�ective at higher issue rates because more instructions

are able to use the forwarding mechanism and, thus, can be scheduled earlier and give

higher performance improvement.

Another source of measurement is the code size expansion shown in Figure 5.5. This

�gure represents the size of code expansion normalized to program size of the original
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for each mispredicted branch. Also, the compiler predicts the direction of all branches

using pro�le information.

The branch penalties of the basic block (O), superblock (T1), hyperblock with inner

loop predication (IP), and hyperblock with partial predication (PO) schemes are shown in

Figure 5.7. The penalty cycle time is normalized to the branch penalty cycle time of the

basic block scheme. The �gure shows that superblock reduces the branch penalty on the

average by 10%. Hyperblock schemes, on the other hand, are able to reduce the branch

penalty by an average of about 25% with reductions as high as 80% for some benchmarks.

The branch penalty is reduced signi�cantly in the hyperblock scheme, because it is able

to remove much of the frequently executed branches in the programs by if-conversion.

From this �gure, predicated execution with the hyperblock scheme is shown to be very

e�ective for reducing the branch penalty, especially on machines with a high penalty for

a mispredicted branch target.
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6. CONCLUSIONS

This thesis discusses e�ective compiler techniques for superscalar processors with

predicated execution support. A structure called hyperblock is used to represent each

group of predicated basic blocks. The hyperblock representation allows a conventional

optimizer and scheduler to support predicated instructions with minor software modi�-

cations.

Many algorithms are described here to support hyperblock formation and optimiza-

tion. Block selection, tail duplication, loop peeling, node splitting, and if-conversion

algorithms are used for the formation of hyperblocks. Hyperblock-speci�c optimizations

include instruction promotion and merging. Promotion allows instructions to be spec-

ulatively executed and removes the 
ow dependency between the instruction and its

predicate de�ne operation. This creates more opportunities for compact scheduled code

and improves the performance of the program. Instruction merging is used to reduce

redundant instructions across di�erent paths of control.

The pro�le information and instruction characteristics are used to improve the if-

conversion technique by selecting basic blocks that are more bene�cial for predication.

Experiments have shown that these techniques can improve the program performance
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signi�cantly. More detailed work to �nd a good heuristic function for block selection can

help to further improve the performance of predicated execution.
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