
LANALYSIS: A PERFORMANCE ANALYSIS TOOL
FOR THE IMPACT COMPILER

BY

DEREK MING CHO

B.S., University of Illinois, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

iii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Professor Wen-mei Hwu, for his guidance

and support, and for giving me the chance to mature and develop new skills under his

supervision. I am grateful to all members of the IMPACT research team for their advice

and friendship, and I would like to offer special thanks to Rick Hank, Dan Lavery, John

Gyllenhaal, Roger Bringman, and Dave Gallagher for their contributions and help with

my various projects. Additionally, I would like to extend my heart-felt appreciation to

all the friends who have made my college career and life so enjoyable. We will all keep

in touch. Finally, I would like to thank my family: Alfred and Mona, Deidre, Brynna,

and Wendy, for their love and support throughout the years; and I would like to

especially dedicate this work to my sister Brynna who has endured many hardships and

deserves all the happiness in the world.

iv

TABLE OF CONTENTS

 Page

1. INTRODUCTION... 1
1.1 Organization of the Thesis... 1
1.2 Motivation for the Project.. 2

2. OVERVIEW OF THE IMPACT COMPILER... 4
2.1 The IMPACT Compilation Process ... 4
2.2 The Lcode Intermediate Code Representation.. 7

3. FUNCTIONALITY OF THE LANALYSIS TOOL .. 9
3.1 Basic Organization.. 9
3.2 Getting Started .. 12
3.3 Current Functionality of the Lanalysis Tool... 14

3.3.1 Functions with text output only... 14
3.3.2 Functions with graphical output .. 23

3.4 Lanalysis Usage... 32

4. IMPLEMENTATION OF LANALYSIS... 34
4.1 Overview of Tcl and the Tk Toolkit .. 34
4.2 Organization of the Lanalysis Program Module ... 35
4.3 Organization of the “lanalysis” Tk/Tcl Script .. 42
4.4 Organization of the Ldag Program Module.. 48
4.5 The Interface and Communication Between Lanalysis Modules 52

5. ADDING FEATURES TO LANALYSIS ... 56
5.1 Software Design for Expandability .. 56
5.2 A Procedure for Adding Standard Lanalysis Commands.................................. 57
5.3 Useful Lanalysis Features .. 58

6. CONCLUSIONS AND FUTURE WORK... 60

REFERENCES ... 63

v

LIST OF FIGURES

Figure Page

2.1 IMPACT compiler organization ... 5
2.2 Example Lcode function... 7
3.1 Lanalysis main screen... 10
3.2 Required Lanalysis STD_PARMS section.. 13
3.3 Default STD_PARMS settings ... 13
3.4 Control flow graph ... 24
3.5 Control flow graph one nesting level deep.. 26
3.6 Dependence arc graph .. 29
3.7 Scheduled dependence constraint tool... 31
4.1 “Frequent” data structure.. 38
4.2 “Looplist” data structure... 39
4.3 “Regionlist” data structure.. 39
4.4 “Functionlist” data structure ... 40
4.5 Lanalysis data structure organization .. 42
4.6 Ldag communication files: (a) input, (b) output... 52
4.7 Program communication paths ... 55

1

1. INTRODUCTION

The IMPACT C compiler is a state of the art optimizing research compiler being

developed at the University of Illinois at Urbana-Champaign. It has gained recognition

in the computer industry as a useful tool for exploring new computer architectures as

well as for producing highly efficient code for existing microprocessors. The IMPACT

project is constantly evolving and improving due to the hard work of many talented

researchers. In the past, the complexity of the IMPACT compiler and its output have

been a burden on the compiler writers themselves. Manual evaluation of code produced

by the compiler can be an extremely slow and tedious process. This thesis will introduce

an automated performance analysis tool, called Lanalysis, which has become an

invaluable resource to researchers working with the IMPACT compiler.

1.1 Organization of the Thesis

This thesis is divided into six chapters. The remainder of this chapter will

describe the motivation and the need for the compiler performance analysis tool. The

second chapter will give an overview of the IMPACT C compiler project and provide an

understanding of how and where the analysis tool fits into the project and its

development. The third chapter will serve as a user’s manual for the performance

2

analysis tool by describing, in detail, all of the tool’s functionality. The fourth chapter

will provide a detailed account of the performance tool’s implementation. The various

software components and their interactions will be thoroughly described. The fifth

chapter will examine the design of the tool with respect to easy extension of its

functionality. A procedure for adding analysis functions will be presented, and useful

interface conventions will be shown. Finally, the sixth chapter will discuss conclusions

and possible future directions for this compiler performance analysis tool.

1.2 Motivation for the Project

The IMPACT C compiler is a large software package to which contributions are

made by numerous research team members. A significant percentage of these

contributions and refinements comes as a result of iterative implementation and testing of

new compiler features. Consequently, the development time for new code optimizations

can be very slow as a result of repeated manual inspection of the compiler’s output.

Detailed inspection of the compiler’s performance involves examination of the

compiler’s intermediate representation of an executable program. This representation

will be discussed in a later chapter, and it will become clear that hand evaluation of this

code can be an extremely time-consuming task. For instance, if a compiler writer is

working on an optimization dealing with large program loops, merely locating all the

code associated with a particular loop can require an unreasonable amount of time. The

actual analysis of the code will also be very tedious and slow without the help of a

convenient evaluation tool. This thesis will present a new module to the IMPACT

compiler package called Lanalysis, pronounced, “el - analysis.” Lanalysis is a tool which

facilitates faster and easier analysis of the IMPACT compiler’s output.

3

Lanalysis has proven to be an extremely useful addition to the IMPACT compiler

framework. It has greatly eased many types of code analysis for the output produced by

various modules of the compiler. As a result, compiler writers are able to more quickly

evaluate their programming efforts; and since implementation of code optimizations is

usually an iterative process, the speed of development of new compiler features can be

greatly enhanced.

4

2. OVERVIEW OF THE IMPACT COMPILER

IMPACT is an acronym for the Illinois Microarchitecture Project utilizing

Advanced Compiler Technology [1]. The IMPACT C compiler represents the state of

the art for computer code generation. This compiler system includes many optimization,

profiling, simulation, and code generation modules. The compiler can produce

optimized code for multiple target architectures. These architectures include AMD 29K,

MIPS R3000, SPARC, HP PA-RISC, and Intel X86. In addition to targeting existing

architectures, the IMPACT compiler can produce code for hypothetical “IMPACT”

processor organizations. Experimental architectures can be defined through the IMPACT

tools, and the code produced allows researchers to evaluate the performance of new

machine designs. The following two sections will describe the IMPACT compilation

process and introduce the Lcode intermediate code representation.

2.1 The IMPACT Compilation Process

During compilation using the IMPACT compiler, a “C” language source program

is processed by multiple compiler modules. Additionally, the source code is transformed

through several intermediate code representations. Figure 2.1 displays a block diagram

of the IMPACT compiler system organization.

5

Figure 2.1: IMPACT compiler organization.

The IMPACT compilation process begins by preprocessing the source code and

performing the conversion to the highest level intermediate code representation called

Pcode. Pcode is a parallel “C” code representation in which loop structures are intact.

6

Dependence analysis [2], parallelization, loop transformations, and memory system

optimizations can be performed on functions at the Pcode representation level.

Pcode functions are next translated into the Hcode format. Hcode is a flattened

“C” representation containing only basic if-then-else and goto control flow constructs.

Profiling probes may be inserted into the Hcode which is then reverse translated to “C”

and compiled. The resulting executable will produce a profile database [3] which is

merged back into the Hcode representation. In addition to program execution profiling,

profile-guided code layout and function inline expansion [4] may be performed at the

Hcode level.

After processing is completed at the Hcode representation level, the code is

translated to the Lcode format. Lcode is a machine-independent assemblylike

representation similar to many load/store RISC instruction sets. The Lcode intermediate

format will be more fully described in the next section. Many optimizations can be

performed by various IMPACT modules to code in the Lcode representation. These

include numerous classical code optimizations [3], superblock formation optimizations

[5], hyperblock formation optimizations, and instruction level parallelism optimizations.

Each of these modules takes Lcode files as input and produces more highly optimized

Lcode as output.

Once the machine-independent optimizations are performed, the Lcode functions

are converted to machine-specific Lcode, which is named Mcode. The Mcode

representation is implemented in the Lcode format, but in Mcode a one-to-one mapping

exists between the target assembly language instructions and the instructions contained in

the intermediate form. At the Mcode level, machine-specific peephole optimizations,

register allocation, code scheduling, and final assembly language emission can be

performed. After assembly language files are produced, a host assembler for the targeted

machine can assemble and link the final executable.

7

2.2 The Lcode Intermediate Code Representation

Lcode is a text-based intermediate code format used by many modules of the

IMPACT compiler [6]. Lcode operations resemble the instruction set of many RISC

load/store architectures. Lcode and machine-specific Lcode, or Mcode, are the lowest

level code representations used in the IMPACT compilation system. Lcode files are

implemented completely in ASCII text. These files serve as the input and output of

many optimization modules and provide an efficient means of communication between

IMPACT compiler stages. Furthermore, Lcode and Mcode files are used as the input to

the Lanalysis performance analysis tool. Figure 2.2 shows an example Lcode function.

(ms text)
(global _nt_compar)
(function _nt_compar 183.000000 <(FUNC (s "nt_compar")(i 136))(FILE (s "nt.c"))>)
 (cb 1 183.000000 [(flow 0 2 183.000000)])
 (op 1 define [(mac $tm_type i)] [(mac $IP i)(i 4)] <(tm (i 300))>)
 (op 2 define [(mac $tm_type i)] [(mac $IP i)(i 8)] <(tm (i 301))>)
 (op 3 define [(mac $return_type i)] [])
 (op 4 define [(mac $local i)] [(i 0)])
 (op 5 define [(mac $param i)] [(i 8)])
 (op 6 prologue [] [])
 (op 7 ld_i <F> [(r 2 i)] [(mac $IP i)(i 4)] <(tm (i 300))>)
 (op 8 ld_i <F> [(r 3 i)] [(mac $IP i)(i 8)] <(tm (i 301))>)
 (cb 2 183.000000 [(flow 1 3 183.000000)])
 (op 9 ld_i [(r 4 i)] [(r 3 i)(i 0)])
 (op 10 mov [(r 5 i)] [(r 4 i)])
 (op 11 st_i <F> [] [(mac $OP i)(i 4)(r 5 i)] <(tm (i 300))>)
 (op 12 mov [(r 6 i)] [(r 2 i)])
 (op 13 st_i <F> [] [(mac $OP i)(i 0)(r 6 i)] <(tm (i 301))>)
 (op 14 jsr [] [(l _strcmp)] <(tm (i 300)(i 301))(ret (mac $P0 i))(param_size (i 8))>)
 (op 15 mov [(r 7 i)] [(mac $P0 i)])
 (op 16 mov [(r 1 i)] [(r 7 i)])
 (op 17 mov [(mac $P0 i)] [(r 1 i)])
 (cb 3 183.000000 [])
 (op 18 epilogue [] [])
 (op 19 rts [] [] <(tr (mac $P0 i))>)
(end _nt_compar)

Figure 2.2: Example Lcode function.

8

Lcode files may hold one or more Lcode functions, and each function contains a

structured list of control blocks and operations. Lcode functions, control blocks, and

operations are all annotated with additional compiler information. The execution profile

weights are provided for all Lcode entities, and branch target and direction statistics are

listed for each control block. In addition, each Lcode construct may be annotated with

extra attributes defined during various compilation stages.

When Lcode function files are read into Lanalysis or any other IMPACT module,

the information contained in the file is arranged into standard memory data structures

common to all IMPACT programs. These data structures may then be manipulated to

perform compiler code optimizations. The Lanalysis program performs all of its

performance analysis using information extracted from these data structures.

Many stages of compiler optimizations are performed after the original

conversion to Lcode. The Lanalysis performance tool can analyze Lcode produced from

any one of these optimization stages. Certain types of information that Lanalysis can

display may not be available from Lcode taken from an early compilation module;

however, execution profile statistics as well as control flow structures should be available

even at the earliest Lcode representation stage.

9

3. FUNCTIONALITY OF THE LANALYSIS TOOL

The Lanalysis compiler performance analysis tool provides a wealth of automated

and interactive analysis functions. This functionality has enabled compiler writers to

quickly examine code produced by new optimizations and be presented with information

that was previously time-consuming or nearly impossible to collect. The functionality

includes the collection and evaluation of profiling statistics for functions, regions, loops,

and individual control blocks within a compiled program; the visual presentation of

program control flow graphs of functions, regions, and loops; graphical displays of

dependence arcs from one operation to another within control blocks; the interactive

analysis of dependence constraints among operations scheduled for a particular machine;

calculation of dynamic operation counts and CPU cycle counts from programs as a whole

down to individual control blocks; and many other useful data collection functions. This

chapter will examine, in detail, the existing features of the Lanalysis tool. This chapter

has been designed and can be viewed as the Lanalysis User’s Manual.

3.1 Basic Organization

Lanalysis has been designed as an interactive information collection and

presentation tool. Once a user has loaded a set of IMPACT Lcode files into memory,

10

many types of information can be extracted from the compiled code. The interactive

nature of this analysis tool has been augmented through the implementation of a

Graphical User Interface or GUI. The typical invocation of actions through pull-down

menus and dialogue boxes found in mainstream applications is also available to the

Lanalysis user. In addition, most commands may be executed directly by manually

entering the command names at the Lanalysis user prompt. Some functions, namely

those which produce graphical output, must be invoked through the pull-down menus

provided by the GUI. The main Lanalysis information screen can be seen in Figure 3.1.

Figure 3.1: Lanalysis main screen.

11

In addition to the use of Lanalysis through the graphical user interface, there are

two alternative methods of using the tool. One is to use Lanalysis interactively in a text-

only mode, which is quite similar to the normal use of the program. The other method is

to use Lanalysis in a non-interactive manner in which a script of Lanalysis commands is

fed to the tool and is executed automatically. The output may be written to a single or

multiple text files. Instructions for the various methods of using the Lanalysis tool will

be presented in Section 3.4.

Another notable feature of the Lanalysis tool is that it can make direct use of

another IMPACT module called Lpretty, which is a program that can “pretty print”

IMPACT Lcode files. The way in which a standard Lcode file is printed is based upon a

template that can be defined by the individual user. There are numerous ways in which

Lpretty can format and accentuate particular pieces of information contained in an Lcode

file, and several useful print templates have been defined. From within the Lanalysis

tool, an existing Lpretty template may be selected. If a user chooses to merely print an

Lcode function or control block from within Lanalysis, the tool will automatically use

Lpretty and the template chosen by the user to format the Lcode text. This can be very

useful; especially to IMPACT users who are accustomed to viewing Lcode using their

own personal Lpretty template.

An issue that Lanalysis users should be aware of is that many of the tool’s

analysis functions are only useful if the Lcode is annotated with particular pieces of

information. This may require that the Lcode being examined has passed through

specific modules of the IMPACT compiler. For example, many Lanalysis functions

assume that the code contains execution profile information. This would require that the

profiling steps in the IMPACT compile path have been performed. Almost every

Lanalysis command assumes the existence of execution profile information. The

12

descriptions provided for each Lanalysis function will include any assumptions of

additional information availability made by the tool.

3.2 Getting Started

In order to run Lanalysis successfully, there are several things that must be

configured correctly. First of all, Lanalysis and its supporting software have been

compiled for both the Sun and Hewlett-Packard workstations, so the user will have to run

the executable on one of these machines. Also, it is recommended that Lanalysis be

displayed on a color monitor since much of the graphical output is color coded to convey

certain types of information. Second, the user should insure that the needed software is

available and visible from the present working directory. Finally, the input files and

IMPACT standard parameter file must be produced and configured correctly.

The software needed to run Lanalysis consists of the following: Lanalysis, wish,

lanalysis, Ldag, and Lpretty. Lanalysis is the main module of the package; it performs

all the major analysis and calculation functions provided by the tool. The wish program

is an interpreter for scripts written in the Tk/Tcl programming language. This is used to

interpret and execute commands contained in lanalysis, which is a Tk/Tcl script that

implements the graphical user interface and produces all of the tool’s graphical output.

Ldag is a module which computes the layout of directed acyclic graphs. It has actually

been enhanced in order to handle cyclic graphs, so the name of the module is slightly

misleading. This program is used by Lanalysis to produce various types of directed

graphs. Lpretty was described previously and is called by Lanalysis to format raw Lcode

function text for display. These modules are more fully described in Chapter 4.

Lanalysis takes IMPACT Lcode files as input. These files are produced as a

result of partial IMPACT compilation of a “C” program. The options specified in the

13

parameter file (STD_PARMS) used during this compilation should also be set in the

STD_PARMS file used by Lanalysis. In particular, it is important that the processor

architecture and model specifications, as well as the IMPACT machine description file

[7], are set equivalently in both standard parameter files. Usually, the same

STD_PARMS file is used during compilation and examination with the Lanalysis tool.

Additionally, Lanalysis requires that a specific Lanalysis section be present in the

STD_PARMS file. The lines shown in Figure 3.2 should be included in any

STD_PARMS file used with Lanalysis.

(Lanalysis rel_parms/LANALYSIS_DEFAULTS
end)

Figure 3.2: Required Lanalysis STD_PARMS section.

The default Lanalysis settings are shown in Figure 3.3. The default parameter

values may be changed by adding specific parameter definitions to the Lanalysis section

of the STD_PARMS file being used. This method of parameter assignment is common

to all IMPACT compiler modules.

examine_zero_cycle_dependences = no;
use_cyclic_dependence_graphs = no;
non_interactive_mode = no;
template = old;

Figure 3.3: Default STD_PARMS settings.

Once the mentioned environment requirements are met, the user is ready to begin

work with Lanalysis. The following section will list and describe all of the existing

14

functionality of the tool. Normal use of the of the performance analysis tool is invoked

by entering “lanalysis” at the UNIX prompt.

3.3 Current Functionality of the Lanalysis Tool

As mentioned earlier in this chapter, there are several methods of using the

Lanalysis tool. The complete functionality of Lanalysis is not available to every method

of the tool’s use. This section will be divided into two subsections. The first will

document all features of the tool which provide only text output. These features are

available to every method of using Lanalysis. The name of each command will be given

in bold print and will be followed by its description. The second subsection will describe

the analysis functions which provide graphical output. These functions are available only

through the use of Lanalysis under the graphical user interface.

3.3.1 Functions with text output only

load - This command loads Lcode files into the Lanalysis tool. It takes one argument

which is the name of an Lcode file. This name can contain the usual UNIX wildcard

characters which allow the user to load multiple files with a single command. Files must

be loaded before any analysis can be performed.

startfile - This command is used to start an output file to which all text output will be

written. This command takes one argument which is the name of the output file.

endfile - This command will close the output file started with startfile . The text output

will no longer be written to the file.

15

reset - This command will restart the Lanalysis tool. All functions in memory as well

as information collected will be discarded.

quit - This statement will end an Lanalysis session by exiting the tool.

settemplate - This command will set the template to be used by Lpretty for displaying

Lcode text. The template name must be defined in the “style file” being used by Lpretty.

See the on-line Lpretty documentation for more information on this. The default

template is “old”.

? - Entering a question mark will display a list of all commands available at the

Lanalysis command line.

list - This command will list all functions that have been loaded into memory. The

order of the list is determined by each function’s dynamic operation count (or dynamic

weight). Functions with the highest dynamic operation count will be at the top of the list.

Other information included in this list are the sum of the dynamic weights of all

functions in memory, the dynamic weight percentage of individual functions with respect

to the total sum, the estimated CPU cycle count of each function, the number of dynamic

register spill code operations in each function, the name of each function, and the name

of the Lcode file from which each function was loaded. The availability of some of these

statistics is dependent upon the IMPACT compile path. Profile information must exist.

Register allocation must be performed for spill code information. Code must be

scheduled for a particular machine for CPU cycle counts to exist.

16

listbycyc - This command presents the same information as the list command; however,

the list is ordered by the CPU cycle counts of each function. Also, the total CPU cycle

count and individual function percentages are based on cycle counts rather than dynamic

operation counts. It can be useful to compare these results to results from the list

command. Code must be scheduled for CPU cycle counts to exist.

formlistfunc - This produces exactly the same information as the list command, but the

output is formatted differently, providing more explicit statistic identification. Each

piece of information is listed on a separate line, and complete labels are given.

formlistfunccyc - This produces the same information as the listbycyc command, but

the output is formatted differently, providing more explicit statistic identification. Each

piece of information is listed on a separate line, and complete labels are given.

listfuncweights - This command lists the static weights of each function. These are the

number of times each function was called for the particular input profiled. The order of

this list is determined by the dynamic operation count of each function.

listfuncspills - This function lists the number of register spill code operations in each

function as well as the percentage of each function accounted for by spill code. The

order of the list is determined by the dynamic operation count of each function. Register

allocation must have been performed.

totalspillcount - This command returns the total number of spill code operations from

all functions in memory, and is useful for evaluating register pressure for a program as a

whole. Register allocation needed.

17

setcurrent - This command is used to choose the function in memory to be examined

by subsequent commands. It takes one argument which is the function’s i.d. number.

This number is determined by the function’s placement in the dynamic operation count

list. Use the list command to determine a function’s i.d. number.

setfnbyname - This function is equivalent to the setcurrent command, but the

command’s argument is the actual name of the function being selected rather than its i.d.

number.

current - This returns the name and number of the current function being analyzed.

print - This command will display the Lcode text of the current function. The text will

be formatted according to the Lpretty template selected.

operweights - This function will display the profile weights of each operation in the

current function. The profile weights of each control block can also be viewed with this

command.

totaldynopcount - This statement will return the total dynamic operation count of all

functions loaded in memory. This information is also available from the list command,

but this command is useful if the entire function list is not required.

totalcyclecount - This command will return the total CPU cycle count of all functions

loaded in memory. This information is also available from the listbycyc command, but

this command is useful if the entire function list is not required. Code must be

scheduled.

18

setcurrentregion - This command is used to set the current region, within the current

function, that will be examined by subsequent commands. It takes one argument which

is the i.d. number of the region being selected. Note that a current function must be

selected in order for this command to have any meaning. Also, it is necessary to have

function regions formed during the IMPACT compile path.

regioncalcn - This command will return a list of regions from within the current

function. The command takes one argument which is the number of regions to be

returned. The list will be ordered by the number of dynamic operations in each region.

Therefore, providing an arguments of “5” would return the top five regions. Information

contained in the list will include the i.d. number of each region, name of the function

from which the region came, the dynamic weight of each region, and the percentage of

the dynamic weight with respect to the weight of the entire current function. Region

formation required.

regioncalcalln - This command will return a list of regions similar to that produced by

the regioncalcn function, but this will be a list of regions from all functions in memory.

It takes one argument which is the number of regions to be returned. The region weight

percentage will be given with respect to the weight of all functions in memory. Region

formation required.

setcurrentloop - This command is used to set the current loop, from within the current

function, that will be examined by subsequent commands. It takes one argument which

is the i.d. number of the loop being selected. Note that a current function must be

previously selected for this command to have any meaning.

19

loopcalcn - This command will return a list of loops from within the current function.

The command takes one argument which is the number of loops to be returned. The list

will be ordered by the number of dynamic operations contained in each loop.

Information contained in this list will include the i.d. number of each loop, the name of

the function in which each loop is contained, the file from which that function was

loaded, the i.d. of the loop header control block, flags set for the loop header control

block, attribute values from the loop header control block, the dynamic operation count

of each loop, the dynamic operation count percentage with respect to the current function

for each loop, the dynamic register spill code count from each loop, the CPU cycle count

for each loop, and the nesting level of the individual loops.

loopcalcalln - This command will return a list of loops similar to that produced by the

loopcalcn function, but this will be a list of loops from all functions in memory. It takes

one argument which is the number of loops to be returned. The loop weight percentage

will be given with respect to the weight of all functions in memory.

loopcyccalcn - This command returns a list with the same information returned by

loopcalcn, but the list’s order is determined by each loop’s CPU cycle count as opposed

to dynamic operation count. The command takes one argument which is the number of

loops to be returned. Also, the cycle count percentage will be given in place of the

dynamic weight percentage. Code must be scheduled.

loopcyccalcalln - This command will return a list of loops similar to that produced by

the loopcyccalcn function, but this will be a list of loops from all functions in memory.

It takes one argument which is the number of loops to be returned. The loop cycle count

percentage will be given with respect to the total cycle count of all functions in memory.

20

printlooptabn - This command will return the same information as the loopcalcn

function, but the output will consist of pieces of information separated by TAB

characters. This is useful if the output is written to a file that will be loaded into some

sort of spreadsheet program. The command takes one argument which is the number of

loops to be returned.

printlooptaballn - This command returns a list of loops similar to the TAB formatted

list returned by printlooptabn , but this will be a list of loops from all functions in

memory. The command takes one argument which is the number of loops to be returned.

The loop percentages will be given with respect to all functions loaded.

setcurrentcb - This command is used to set the current control block, from within the

current function, that will be examined by subsequent commands. It takes one argument

which is the i.d. number of the control block being selected. Note that a current function

must be previously selected for this command to have any meaning.

printcb - This command will display the Lcode text for the current control block. The

text will be formatted according to the current Lpretty template selected. Note that a

current control block must be selected for this command to produce any output.

cbcyclecount - This function will return the calculated CPU cycle count of the current

control block. The code must be scheduled for a machine for this command to be

meaningful.

docfrequentn - This command will return a list of control blocks from within the

current function. The command takes one argument which is the number of control

21

blocks to be returned. The list will be ordered by the dynamic operation count of each

control block. Information contained in this list will include the i.d. number of each

control block, the function in which the control block is located, the dynamic operation

count of each control block, the dynamic operation count percentage of each control

block with respect to the function containing the block, the CPU cycle count of each

control block, the number of dynamic register spill code operations in each control block,

flags set for each control block, and attribute values associated with each control block.

docfrequentalln - This command will return a list of control blocks similar to that

produced by the docfrequentn function, but this will be a list of control blocks from all

functions in memory. It takes one argument which is the number of blocks to be

returned. The control block dynamic weight percentage will be given with respect to the

weight of all functions in memory.

cycfrequentn - This command returns a list of control blocks with the same information

returned by docfrequentn, but the list’s order is determined by each control block’s CPU

cycle count as opposed to dynamic operation count. The command takes one argument

which is the number of control blocks to be returned. Also, the cycle count percentage

will be given in place of the dynamic weight percentage. Code must be scheduled.

cycfrequentalln - This command will return a list of control blocks similar to that

produced by the cycfrequentn function, but this will be a list of control blocks from all

functions in memory. It takes one argument which is the number of blocks to be

returned. The control block CPU cycle count percentage will be given with respect to

the cycle count of all functions in memory.

22

mostfrequentn - This command returns a list of control blocks with much of the same

information returned by docfrequentn. The difference is that raw profile weight of the

control blocks is used in place of the dynamic operation count; the latter is the sum of the

profile weights of all operations contained in the block. The list is ordered by the profile

weights of the control blocks. The command takes one argument which is the number of

control blocks to be returned. The weight percentage is given with respect to the sum of

the profile weights of all control blocks in the function.

mostfrequentalln - This command will return a list of control blocks similar to that

produced by the mostfrequentn function, but this will be a list of control blocks from all

functions in memory. It takes one argument which is the number of blocks to be

returned. The control block weight percentage will be given with respect to the sum of

the profile weights of all control blocks from all functions in memory.

dependenceinfo - This command will print the dependence information for the current

control block using the standard IMPACT dependence printing functions. The Lcode

text for each operation in the control block will be printed along with a list of the

operation’s input and output dependences and level in the dependence graph. A current

control block must be selected for this command to be meaningful.

utilization - This command will return a text-based representation of the control

block’s scheduled operations. It will also return the percentage of issue slots filled for

the particular machine as a measure of the resource utilization of the code. The code

must be scheduled for this command to return meaningful information.

23

In addition to these text-based commands, the following are also available:

loopcalc, loopcalcall, printlooptab, printlooptaball, loopcyccalc, loopcyccalcall,

mostfrequent, mostfrequentall, docfrequent, docfrequentall, cycfrequent, and

cycfrequentall. These commands return exactly the same information as the similarly

named commands ending with “n,” but these commands do not let the user specify the

number of items to include in the information list. These commands can return

extremely long lists, so they should be used only if the complete information lists are

needed.

3.3.2 Functions with graphical output

This subsection will describe the Lanalysis functions which produce graphical

output and which may only be invoked through the menus provided by the graphical user

interface. These functions fall into three categories: control flow graphs, dependence arc

graphs, and analysis of dependence constraints for a given control block schedule. The

interactive functionality of these tools will be presented.

The first group of graphical Lanalysis functions deals with the production of

program control flow graphs. These control flow graphs are generated and displayed

such that each node of the directed graph corresponds to an individual basic block of the

function’s code. Each node will be labeled with the i.d. number of the basic block it

represents and will be connected to other nodes by directed arcs which indicate the

execution path of the function. Forward branching arcs are displayed in cyan, and

backward branching arcs are displayed in red.

Control flow graphs may be produced for a variety of program constructs.

Graphs may be generated for functions as a whole, regions of functions, and individual

loops within functions. The commands used to invoke these functions are located inside

24

the “Function”, “Region”, and “Loop” pull-down menus. To produce a control graph of

a function, that function must be previously selected as “current” by the user. When

graphing a region, a current function and current region within that function must be

selected. Similarly, when graphing a loop, a current function and current loop within the

function must be selected. A typical control flow graph can be seen in Figure 3.4.

Figure 3.4: Control flow graph.

25

Control flow graphs for both functions and loops may be displayed to a specified

loop nesting level. This allows users to reduce the size of the graphs by a significant

amount which can make their viewing more manageable. If this option is selected, the

user will be prompted for the loop nesting level to which individual control blocks will

be displayed. The default level is “1” which corresponds to code at the outermost nesting

level. Loops which are nested beyond the value specified will be condensed and

displayed as a single highlighted node in the graph. An example of a function graphed to

one nesting level can be viewed in Figure 3.5. Note that the node labeled “L4”

represents a more deeply nested program loop.

Once a control flow graph is produced for a particular program structure, several

things may be done with the graph. First of all, the graph can be adjusted visually for

optimal viewing. The window in which the graph is displayed may be resized, the user

can zoom the image both in and out, and the graph’s vertical scale can be independently

adjusted to the viewer’s taste. Second, the user may produce both Postscript and Color

Postscript files from the control flow graph which may then be sent to a printer. The

Postscript files produced will contain whatever portion of the graph is visible at the time

the files are generated. The resizing and printing options are available through the pull-

down menu in the graph window. Lastly, additional information may be obtained

through interactive examination of the control flow graph. Individual nodes in the graph

are produced as “buttons” which may be activated using the mouse. Selecting a node

representing a control block with the left mouse button will create a resizable window

containing the Lcode text for that control block. This text will be formatted according to

the current Lpretty template. The user may view profile information, branch direction

statistics, as well as the control block’s code through the use of this feature. Selecting a

node representing a collapsed loop of a greater nesting level will produce a control graph

of that loop to the next nesting level. If such a node is selected with the middle mouse

26

button, the user will be prompted for the number of nesting levels to include. All the

functionality available to the original graph will also exist for the new control flow

graph.

Figure 3.5: Control flow graph one nesting level deep.

27

The next type of Lanalysis functionality that produces graphical output deals with

the creation of dependence arc graphs, which may be produced for code contained in a

single control block. Lanalysis can create directed graphs for control blocks in which

each node of the graph represents a single operation, and arcs between nodes represent

dependences between operations. Nodes in the graph will be labeled with the i.d.

number of the particular operation it represents.

Dependence arc graphs can be used to display information for a variety of

dependence types. In order to display a dependence arc graph, a current function and a

current control block within that function must be selected. Next, “Dependence Arc

Graph” should be selected from the control block pull-down menu. At this point, a

window will appear which allows the user to select the types of code dependences to be

displayed. The choices include: register flow, register anti, register output, memory

flow, memory anti, memory output, control, and synchronization dependences. Once the

dependence types have been chosen, a window containing the graph will appear. The

arcs in the graph will be color coded to identify the type of dependence arc they

represent. This window may be resized, and the view may be adjusted in the same

fashion as for control flow graphs. The same Postscript printing functions are available.

Several interactive analysis functions can be performed on these dependence arc

graphs. The nodes representing operations are “buttons” that can be activated with the

mouse. Selecting an operation using the left button of the mouse will produce a resizable

window containing the Lcode text for that operation as well as a list of all incoming and

outgoing dependence arcs. The dependence types, source and destinations, distances, and

iteration distances will be displayed for each dependence arc in the list. Note that

iteration distance is only meaningful if cyclic dependence graphs are produced; this will

be discussed in this section. Through the use of the center mouse button, the maximum

dependence height and path between two operations can be found. This is accomplished

28

by pressing the center mouse button on an operation, and then pressing the center mouse

button on a second operation. The first operation will be highlighted in blue, and the

second will be colored grey. All operations on the maximum height dependence path

between the two operations will be highlighted in red. Additionally, a window which

contains a description of this dependence chain will be produced. It should be noted that

only dependence arcs of the types selected for the graph will be examined in the

dependence path calculations. Pressing the right mouse button will clear all highlighted

operations. An example of a dependence arc graph can be seen in Figure 3.6.

Both cyclic and acyclic dependence analysis may be performed for code

contained in a control block. The default analysis type is non-cyclic. Cyclic dependence

analysis can be useful for code on which software pipelining optimizations have been

performed. There is a parameter, “use_cyclic_dependence_graphs”, which can be set in

the Lanalysis section of the STD_PARMS file, that controls the type of dependence

analysis performed. This parameter may be set interactively using the “change

parameters” option under the “miscellaneous” pull-down menu.

The third graphical Lanalysis tool deals with the analysis of dependence

constraints for a given control block schedule. A graphical representation of scheduled

operations may be produced for code contained in a single control block. A grid with as

many slots as the issue width of the targeted machine will be filled with operations,

reflecting the utilization of issue slots for each cycle of program execution. Data

dependence constraints between operations may be examined for insight into scheduling

choices made by the compiler.

Creating graphical control block schedules is a simple process. First of all, a

current function and control block within that function must be selected. Also note that

the code in the current function must have been scheduled for a particular machine

during compilation. Next, the user should select “Graphical Dependence Tool” from the

29

control block pull-down menu. This will create a window in which the control block’s

schedule will be displayed. Spaces in the grid representing the control block will be

filled with scheduled operations whose opcode strings and i.d. numbers will be displayed.

The window and the graphics displayed may be resized in the same way the control flow

and dependence arc graphs could be adjusted.

Figure 3.6: Dependence arc graph.

30

Once the control block’s schedule is produced on the screen, there are several

interactive analysis tools that can be useful. The first feature is activated through use of

the left mouse button. By single clicking on a grid square representing a particular

operation, that operation and all operations with dependence relations will be

highlighted. The original operation selected will be colored cyan. Operations dependent

on the original will be colored in red, and operations on which the original is dependent

will be colored in purple. Additionally, there are two distinct shades of red and two

distinct shades of purple. Operations dependent on the selected operation which are

forced into their scheduled execution cycle by the dependence arc length from the

selected operation are colored a dark red. Dependent operations which are not forced

into their scheduled execution cycle by the selected operation are colored a lighter red.

Operations on which the original is dependent, whose connecting dependence arcs are of

a cycle distance which forces the original operation into its scheduled execution cycle are

colored a dark purple. Operations on which the original is dependent, but whose

dependence arcs do not force the original operation into its scheduled cycle are colored a

light purple. The information provided by this functionality provides a very efficient

method of examining dependence constraints between scheduled operations. Using the

left mouse button to double click on an operation provides the same graphical

information; and, in addition, a window containing the operations Lcode text and

descriptions of all incoming and outgoing dependence arcs will be created. Figure 3.7

shows an example of this tool’s operation.

31

Figure 3.7: Scheduled dependence constraint tool.

The middle mouse button provides another type of information. The middle

mouse button can be clicked within a row representing an execution cycle, and

operations issued in or before the selected cycle whose latencies push the issue time of

dependent operations to a cycle after the selected cycle will be highlighted in blue. If the

middle mouse button is double clicked in an issue cycle, the same operations will be

32

colored blue, and the dependent operations in the following cycle will be colored grey.

The user can use this feature to quickly identify the reasons for empty issue slots. A

parameter can be set which allows this function to include zero cycle dependences in its

analysis. In this case, operations with completion times greater than the selected cycle,

which have dependent operations that can actually be scheduled in the same cycle, will

also be identified by this procedure. The parameter used to set this option is named,

“examine_zero_cycle_dependences”. It may be set in the STD_PARMS file or set

interactively using the “Change Parameters” feature. Pressing the right mouse button

over any part of the control block schedule will unhighlight all colored operations. This

set of Lanalysis functionality can be very useful for researchers examining or

implementing IMPACT scheduling heuristics.

3.4 Lanalysis Usage

There are three methods in which Lanalysis can be used. The first and usual

method involves running the tool under the control of the graphical user interface. This

usage is invoked by typing “lanalysis” at the UNIX prompt. All functionality of the tool

is available when it is used in this fashion. The second method of using Lanalysis is to

run the program without the control of the graphical user interface. This is accomplished

by entering “Lanalysis” at the UNIX prompt. By running Lanalysis in this manner, the

user forfeits all functionality which provide graphical output. However, all the

commands which produce text output can be used at the Lanalysis command line. This

method can be useful for users who do not need the extra functionality or cannot display

graphics, and it can be useful while debugging new Lanalysis features. The last and

more complicated procedure for using Lanalysis is to have it execute in a non-interactive

fashion. This is accomplished by first setting the standard parameter

33

non_interactive_mode to on in the STD_PARMS file. Next, a file must be created which

contains a list of valid text-output Lanalysis commands. There should be one command

on each line of the file. Finally, the user should execute Lanalysis such that the

command file is fed to the program as input. This can be done using the “<“ UNIX

operator. Each Lanalysis command in the file will be executed, and the appropriate

output will be produced. Non-interactive use of Lanalysis can also be achieved through

the use of a script called “get_stats”. This script will automatically run Lanalysis in the

non_interactive mode. The script will allow the user to provide an Lcode file name or

multiple file name specification, a STD_PARMS file name, and a command file name as

arguments. This can be useful when examining multiple sets of Lcode files. When

Lanalysis is executed using this script, the command file provided must begin with the

line: “load SED_FILE_SPEC”. This line will be automatically altered by the “get_stats”

script in order to load all the files specified by the user.

34

4. IMPLEMENTATION OF LANALYSIS

The Lanalysis performance analysis tool is comprised of several separate program

modules. The software designed for this tool include Lanalysis, lanalysis, and Ldag,

which were briefly described in Chapter 3. This chapter will describe the implementation

of each of these modules as well as the operation of the system as a whole. Lpretty is an

IMPACT tool used in conjunction with Lanalysis; however it was developed separately.

Therefore its implementation will not be described. Lanalysis and Ldag are written in

the “C” programming language, and lanalysis is a script written in the Tk/Tcl

programming language. The first section of this chapter will provide an overview of the

Tk/Tcl toolkit. The following three sections will discuss the organization and

implementation of the Lanalysis, lanalysis, and Ldag program modules. The final

section of this chapter will provide an understanding of the interface and communication

between the various Lanalysis modules.

4.1 Overview of Tcl and the Tk Toolkit

Tcl and the Tk toolkit are the main components of a software package developed

at the University of California at Berkeley [8]. This package provides a programming

system for the design and development of graphical user interface applications. The

35

Tk/Tcl tools were selected for the Lanalysis project because the use of these tools can

greatly speed the development time for X Windows-based graphical user interfaces.

Tcl is a simple scripting language designed for controlling and extending

applications. The name stands for “Tool command language.” Tcl scripts can include

many of the usual programming constructs such as variables, arrays, if-then constructs,

looping, and procedures. Programs written in the Tcl language can be interpreted and

executed by a program called wish which is included in the Tk/Tcl package. The Tcl

language allows these programs to run child processes and communicate with other

programs. Tk is an extension to Tcl which provides an interface to the X Windows

system. Commands in the Tk toolkit may be included in Tcl scripts and enable

programmers to quickly implement Motif-like user interfaces. There are Tk commands

which produce graphical buttons, pull-down menus, dialogue boxes, scrollbars, text,

graphics, etc. The software, lanalysis, is a script written in the Tk/Tcl language. It is

responsible for the graphical user interface to the Lanalysis tool and will be described in

Section 4.3. For more information on the Tk/Tcl tools, see [8].

4.2 Organization of the Lanalysis Program Module

Lanalysis is the “C” program which can be considered the main module of the

Lanalysis package. It is responsible for all the major analysis and calculation functions

provided by the tool. This section will describe all the major features of the

implementation of this program.

The Lanalysis program is currently divided into nine program files and one

header file. These files include l_analysis.h, l_analysis.c, cbs.c, controlgraph.c, current.c,

depschedgraph.c, load.c, loops.c, misc.c, and regions.c. The first file, l_analysis.h,

contains definitions of the data structures used in the program as well as assignments of

36

command codes for all the functions available in the Lanalysis tool. The file l_analysis.c

contains the main loop of the program. The files regions.c, loops.c, and cbs.c contain

functions which perform calculations of Lcode region, loop, and control block data,

respectively. The file controlgraph.c holds functions which produce control flow graphs

for the various Lcode constructs. The depschedgraph.c file contains functions that

implement the scheduled dependence examination tools as well as the dependence arc

graphing functions. Functions which read in and organize Lcode files are located in

load.c. The file current.c provides functions for selecting and displaying Lcode

constructs marked as “current” within the Lanalysis tool. Finally, the misc.c file contains

extra functions used by Lanalysis which don’t fall into a particular category, but are

essential to the program’s operation.

Lanalysis is a standard Lcode program. Like normal IMPACT Lcode modules, it

is compiled with the IMPACT Lcode program files. Therefore, all the data structures

defined within the IMPACT Lcode framework are available to the Lanalysis program;

these standard data structures are used wherever possible. The entry point to the

Lanalysis program is the function “L_gen_code”, which is called from the IMPACT

l_main.c file. L_gen_code can be considered the “main” function of the Lanalysis

software, and this function contains the main program loop of the tool.

The main loop of the Lanalysis tool is a while statement which prompts the user

for commands, interprets the commands, and calls functions which produce the requested

output. Commands are read in from the standard input as strings, and are converted to a

unique integer number by the “convertcom” function. A switch statement calls the

desired functions based on the value of the command’s integer code. In most cases, a

function written specifically for each command is invoked from that command’s area of

the switch statement; however, in some cases a separate function is not used, and the

command’s actions are executed inside the switch statement. Once the desired function

37

or functions produce their output, a special end marking string is emitted, the user is

given another prompt, and the program waits for the next command. Special strings,

such as the one just mentioned, are used to communicate with the graphical user interface

and will be discussed in more detail in Section 4.5.

A convention concerning the naming of commands and functions was followed

during the development of the Lanalysis program. Lanalysis user command names were

chosen to reflect the functionality of the command. Some of these command names are

quite long, but users are not required to memorize or even type these commands because

they can be selected automatically through the use of the graphical user interface. This

will be described in a later section. The user commands are named entirely with lower

case characters. The corresponding integer command code labels were defined as the

same word, but completely capitalized. Finally, the actual “C” language function names

were chosen to be exactly the same as the corresponding lower-case user command

names. It was not necessary to follow this naming convention, but with the great number

of Lanalysis commands implemented, this convention does eliminate the potential for

unnecessary confusion.

Much of the main functionality of the Lanalysis tool involves the collection and

organization of Lcode based upon annotated profiling statistics. There are Lanalysis

commands which create ordered lists of various Lcode constructs and display all or part

of these lists to the user. These lists typically contain more information than is contained

in the standard Lcode data structures. Therefore, additional Lanalysis data structures

were defined for the implementation of these ordered lists.

There are currently four major categories of lists that the Lanalysis tool creates.

These include lists of Lcode functions, regions, loops, and control blocks. Four data

structures are defined to be used as nodes in linked lists which hold the collected

information. The first structure created is used to implement lists of most frequently

38

executed control blocks. In addition to a pointer to the actual Lcode control block data

structure, this new data structure can hold the name of the function in which the block is

located, the dynamic operation count of operations it contains, a cycle count calculated

from scheduler information, and a sum of dynamic register spill operations. The data

structure definition can be seen in Figure 4.1.

typedef struct Frequent {
 double cbweight; /* weight of the cb - sort by this */
 char *funcname; /* function block is in */
 L_Cb *cb; /* pointer to the control block */
 struct Frequent *nextfr; /* pointer to next most frequent */
 double cyclecount; /* cpu aprox cycle count */
 double spillcount; /* dynamic spill oper count */
} Frequent;

Figure 4.1: “Frequent” data structure.

Another data structure defined for use with Lanalysis lists holds information

concerning Lcode program loops. This structure is designed to contain a pointer to the

actual Lcode loop structure, the dynamic operation count inside the loop, the CPU cycle

count calculated for the loop, the name of the function the loop is in, attributes associated

with the function containing the loop, the name of the file the loop came from, a pointer

to the loop header control block, the loop’s nesting level, the loop i.d. number, and the

number of dynamic spill operations within the loop. This data structure definition can be

seen in Figure 4.2.

39

typedef struct Looplist {
 double dynopcnt; /* dynamic op count (sort by this) */
 double loopercent; /* loop percentage */
 double loopcycpercent; /* loop percentage by cycle count */
 char *funcname; /* name of func that loop is in */
 char *filename; /* file that function is from */
 L_Cb *loopheadcb; /* loop header cb */
 int nesting_level; /* loop nesting level */
 L_Attr *attr; /* function attributes */
 struct Looplist *nextloop; /* pointer to next loop */
 struct Looplist *nextloopbycyc; /* next loop in CPU cycle count order*/
 int id; /* loop id number */
 L_Loop *loop; /* pointer to loop (added 10/18/94) */
 double cyclecount; /* cpu aprox cycle count */
 double spillcount; /* dynamic spill count */
} Looplist;

Figure 4.2: “Looplist” data structure.

The next data structure used by Lanalysis is designed to hold information for a

list of Lcode regions. This structure contains the dynamic operation count with the

region, the name of the function containing the region, and the region number. This

structure’s definition can be seen in Figure 4.3.

typedef struct Regionlist {
 double regionweight; /* Dynamic weight of region */
 char *funcname; /* function region is in */
 int region; /* region number */
 struct Regionlist *nextregion; /* pointer to next region */
} Regionlist;

Figure 4.3: “Regionlist” data structure.

The last major data structure is used to hold the list of Lcode functions which are

loaded into the tool. This data structure is defined to include a pointer to the actual

Lcode function structure, the dynamic operation count of the function, the i.d. number of

the function in the ordered list of functions, the name of the file the function came from,

40

the execution cycle count of the function, the number of dynamic spill code operations in

the function, and pointers to lists of regions, loops, and control blocks contained in the

previously defined structures. The definition for the “Functionlist” data structure can be

seen in Figure 4.4.

typedef struct Functionlist {
 double funcweight; /* Dynamic weight of function */
 int funcnumber; /* Number of function in list */
 L_Func *func; /* pointer to function structure */
 Regionlist *regionlist; /* pointer to list of regions */
 Looplist *loops; /* pointer to list of loops */
 Frequent *freqlist; /* pointer to list of most freq cbs */
 Frequent *docfreqlist; /* list of most freq cbs by dynopcnt*/
 Frequent *cycfreqlist; /* list of cbs by approx cycle count*/
 char *filename; /* file function came from */
 struct Functionlist *nextfn; /* pointer to next function */
 struct Functionlist *nextfnbycyc; /* used for cycle count order list */
 double cyclecount; /* cpu aprox cycle count */
 double spillcount; /* dynamic spill oper count */
} Functionlist;

Figure 4.4: “Functionlist” data structure.

The function, region, loop, and control block data structure types are organized in

memory in a way which facilitates logical access to the stored information. The entry

point to the entire data structure is a pointer to the linked list of function information

nodes. This list begins with a “dummy” node and is followed by nodes created for each

Lcode function read into the Lanalysis tool. Each one of these function nodes contains

pointers to linked lists of the region, loop, and control block structure types which hold

information related to the regions, loops, and control blocks contained inside the

particular function the node represents. The linked lists for regions, loops, and control

blocks are also headed with a “dummy” node. Information held in the “dummy” nodes

usually reflects a sum of the statistics held in the remainder of the list. Inspection of the

41

Lanalysis source code will provide detailed information on how information is collected

and stored in this data structure. In addition to the data structure just described, three

additional linked lists are created by the Lanalysis tool. These are ordered lists of

regions, loops, and control blocks, but members of these lists are taken from all the

functions loaded into memory rather than one particular function. The information in

these lists is used when collecting data for entire programs instead of single functions. A

block diagram of the major Lanalysis data structures can be seen in Figure 4.5.

There are several special functions written for the Lanalysis tool. These include

functions that replace existing IMPACT or “C” functions, as well as some important

additional functions. A function called “print2” replaces the usual “C” language “printf”

statements in cases where the text being printed is the output of an Lanalysis user

command. The “print2” function behaves the same as “printf”, but if there is an output

file started by the user, this function will print to that file as well as the standard output.

The standard IMPACT “L_warn” and “L_punt” functions have been replaced with

functions which additionally produce control strings which communicate with the

graphical user interface. The same has been done for the “M_punt” function. Finally,

there is a function named “reset_tcl” which places the Tk/Tcl graphical user interface

into its original starting state. This function is used when the Lanalysis tool is restarted

by the user.

42

Figure 4.5: Lanalysis data structure organization.

4.3 Organization of the “lanalysis” Tk/Tcl Script

The Tk/Tcl script lanalysis is responsible for implementing the graphical user

interface to the Lanalysis program module. The Lanalysis graphical environment

includes many pull-down command menus, status indicators, and a scrolling text window

43

for Lanalysis output. Additionally, the lanalysis script creates and displays all of the

tool’s non-textual interactive functionality. This section will describe the organization of

this Tk/Tcl script.

The lanalysis script is interpreted by a program called wish which is included in

the Tk/Tcl software package. The first line of the executable script will invoke the wish

program. This first line should be configured with the correct location of the wish

executable for the particular machine and environment the user is working with. The

remainder of the script will read by wish as input and will define the graphical user

interface.

The first portion of the lanalysis script creates the Lanalysis display. To begin

with, all the fonts and colors used by the program are specifically defined so that they

remain constant across various workstation platforms. From this point on, any reference

to a particular color or font should be made through the defined Tcl variable. Once this

is done, the layout of the Lanalysis main screen is created. The “current” status labels,

pull-down command menus, main text window and scroll bars, etc. are all specified and

placed using simple Tk/Tcl commands.

After the Lanalysis display has been built, many Tcl procedures are defined

which are responsible for the functionality of the interface. The important procedures

will be described shortly; but first, the very end of the lanalysis script will be discussed.

The last couple lines of the Tk/Tcl script invokes the main Lanalysis executable and

creates a UNIX pipe to and from the program’s input and output. This will serve as the

main communication link between the two program modules. The graphical user

interface will send Lanalysis commands to the main program and will receive and display

the output it generates. Details of the communication between Lanalysis modules will be

described more fully in Section 4.5.

44

The most important lanalysis procedures include those which send and receive

information to and from the Lanalysis program, the procedures which create control flow

and dependence arc graphs, and the procedures which implement the scheduled

dependence constraints examination tool. The procedures “invoke”, “menex”,

“menex2”, “invoke1”, “invoke2”, and “menexargs” are all designed to send commands to

the main Lanalysis program and then process the received output. The “invoke”

procedure grabs the text at the user prompt and sends it to the Lanalysis pipe. It then

places the generated output in the main text window. This procedure also scans the

output for certain control strings which will be processed but not displayed in the text

window. Section 4.5 will include a full description of such control string sequences.

The procedures “menex” and “menex2” are usually called when a user selects a

command from the pull-down menus. These procedures actually insert the appropriate

command strings at the Lanalysis prompt, and then call the “invoke” procedure to have

them executed. The “menexargs” function creates a window which prompts the user for

an additional argument to a command, and then calls the “menex2” procedure which

sends the original command and its argument into the execution pipe. The “invoke1”

and “invoke2” procedures are equivalent to the “menex” and “menex2” functions, but the

commands themselves are not printed to the Lanalysis screen. These functions are useful

for sending Lanalysis commands that produce output used by the interactive graphical

tools. These commands are typically sent repeatedly as the user interacts with various

tools; therefore, displaying these commands or their output would merely fill the main

text window with useless information.

The next major procedure is called “graphics”. It is responsible for creating and

manipulating directed graphs. These graphs are of two types: the control flow graphs

and the dependence arc graphs. The “graphics” function sends a command to the

Lanalysis module requesting the specification for a particular graph. This specification is

45

then sent to the Ldag module for processing. The Ldag program calculates coordinates

for the layout of the graph which are fed back to the lanalysis “graphics” procedure

which creates the display. Again, details of the communication between Lanalysis

modules will be covered in Section 4.5.

The “graphics” procedure takes three arguments: the command sequence that

will be sent to the main Lanalysis program, the name of the window that will hold the

graph, and a flag identifying the graph as a control flow graph or as a dependence arc

graph. There are several Tk/Tcl functions which are used to construct the first argument

to the “graphics” procedure when the Lanalysis command requires extra arguments or

configurations. These extra functions are required particularly when creating control

flow graphs to a specified nesting level.

The “graphics” procedure begins by sending its first argument to the Lanalysis

program. Next, the window which will contain the graph is constructed. A pull-down

menu containing commands for resizing the graph image and for producing Postscript

output of the image is created, as well as the scrollable canvas on which the graph will be

plotted. Once the display window is created, the procedure feeds the output generated by

Lanalysis to the Ldag program and then reads in the generated graph layout. The graph

layout will be a list of nodes and arcs with sets of coordinates specifying their placement

on the graph canvas. Predefined strings and characters will identify the type of node or

arc to be displayed, and the “graphics” procedure will color code or format the output

accordingly. These type identifier strings will be described in Section 4.4, which covers

the Ldag program module.

Inside the loop which processes the output of the Ldag module, the bindings for

mouse click actions are defined for each node in the graph. The mouse functionality will

depend on the type of graph being produced. For control flow graphs, the left and

middle mouse buttons will be active and execute commands depending on the type of

46

node selected. Pressing the left button on a node representing a control block will send

commands to Lanalysis and execute functions to produce a resizable text window which

will contain the control block’s Lcode returned from the main program. This Lcode will

be formatted using the Lpretty print template which is currently active. Pressing the left

mouse button over a node which represents a collapsed loop of a greater nesting level

will send Lanalysis commands and call procedures which produce another window

containing the control flow graph of that loop to the next nesting level. Selecting such a

node with the middle mouse button will produce a similar result, but a procedure which

prompts the user for the number of nesting levels to display will be invoked instead of

defaulting to one additional level. If a dependence arc graph is being generated, all three

mouse buttons will have actions bound to them. All nodes in this type of graph represent

individual operations within a control block. Selecting a node with the left mouse button

sends commands to Lanalysis and calls a procedure to display the operation’s

dependence information in a text window. The middle mouse button will send Lanalysis

commands and call the procedure “depheight” which displays the dependence chain

between two operations. The right mouse button executes commands that clear all nodes

highlighted by the middle mouse button use. See Chapter 3 for details of the tools

functionality from the user’s point of view.

The final major lanalysis procedure is called “util_graph”. It is responsible for

implementing the scheduled dependence constraint analysis tool. This tool creates a

graphical representation of the current control block’s schedule and allows dependence

arcs between scheduled operations to be interactively examined. The function

“util_graph” takes two arguments which are the Lanalysis command name to be executed

and the name of the window in which the control block’s schedule will be displayed.

The procedure begins by sending its first argument as a command to the Lanalysis

module. Next, the window containing the tool is defined and displayed. A pull-down

47

command menu similar to that used in the “graphics” procedure is created for resizing

the image and creating Postscript output. The canvas and scroll bars are specified

similarly as well. Once the window is in place, the output of the Lanalysis program is

processed creating the graphical schedule. First, the height and width of the control

block’s schedule are read by the procedure, and text labels for the issue slot columns and

execution cycle rows are created. Next, a doubly nested for loop fills the issue slots for

all execution cycle rows with the scheduled operations. Each line received from the

main program’s output contains the Lcode operation’s i.d. and opcode which will be

placed in the graphical schedule. If a slot is not filled by the IMPACT scheduler,

Lanalysis will output “empty” on the line which corresponds to that particular issue slot.

While the loop executes, filling execution slots with scheduled operations,

bindings for mouse actions are defined for each issue slot. Functionality is defined for

all three mouse buttons. Pressing the left mouse button over a scheduled operation will

send commands and call procedures which highlight operations connected by dependence

arcs. Double clicking the left mouse button on an operation will additionally execute

commands to create a text window which will contain descriptions of these dependences.

Activating the middle mouse button over a particular issue time row will call procedures

to highlight operations whose dependence arcs cross that issue time. Double clicking the

middle button will additionally cause the operations at the ends of these arcs to be

identified. The right mouse button will clear all highlighted operations. Chapter 3

describes the usefulness of these features in more detail. These mouse button bindings

typically involve sending Lanalysis commands which will return operation i.d. numbers

to highlight. Then Tk/Tcl procedures which change the background color of rectangles

in the schedule grid are invoked to highlight the specified operations.

48

4.4 Organization of the Ldag Program Module

Ldag is the Lanalysis module which calculates the layout for both control flow

graphs and dependence arc graphs. This program is actually a modified version of

“xmdag” written by TUBITAK Software. This free software was obtained from the

internet. It was necessary to modify the “xmdag” program for use with the Lanalysis

tool, and the resulting program was named Ldag. This section will describe the changes

and enhancements made to the original software and will describe the operation of the

Ldag program.

Xmdag was originally designed to create directed acyclic graphs from a

specification of nodes and their children provided as input to the program. The graph

would be displayed using X Windows graphics commands. Changes in the Ldag

program include the replacement of the original program’s inefficient graph levelizing

algorithm, the addition of the ability to handle directed cyclic graphs, the addition of the

ability to differentiate between different “types” of directed arcs, and the replacement of

the program’s graphical output with a text-based output that can be read by the lanalysis

module.

The original graph levelization algorithm provided in the “xmdag” program was

grossly inefficient. Levelization of very complicated IMPACT control flow structures

could require hundreds of megabytes of memory and as much as an hour to complete.

The reasoning for the original choice of algorithm was never fully understood, but it was

apparent that a different algorithm would be needed for use with the Lanalysis tool. The

replacement algorithm was a recursive depth first search function which could levelize

even complicated graphs extremely quickly.

The capability to handle directed graphs which contain cycles was achieved in

two different ways. The first was to have Lanalysis label backward branching arcs as

49

such and actually have Ldag treat them as forward arcs during the layout of the graph. In

this case, Lanalysis would list the parent node as a child of the real child node, and mark

it with a character signaling the reverse relation. The arc would be labeled as a “back

edge” by the Ldag program, and when it is displayed by the lanalysis script, the arrows

indicating the arcs direction would be reversed and the color of the arc would be

changed. This was acceptable for most cases of cyclic control flow graphs, but there

were cases in which Lanalysis could not detect and label backward arcs which caused the

Ldag program to fail. Therefore, the Ldag module was enhanced so that it could detect

and treat backward branching arcs on its own. During levelization of the graph, if an arc

creating a cycle is detected, the parent node of the arc will be added to the children list of

the child node, and the child node will be removed from the children list of the real

parent node. The new arc in the children list of the child node will be marked as a “back

edge,” but will be treated as a forward branch by the layout algorithm. With this change,

Ldag can handle graphs containing cycles whether they are marked or not. The original

method for graphing backward branching arcs was left in place because backward

branches labeled by Lanalysis are truly backward loop branches. Ldag would produce

correct output of graphs without the “back edge” markings from Lanalysis, but the layout

of the graphs could differ from what would be naturally visualized since the selection of

edges to be marked as backward branching would depend on the order in which nodes

are visited by the depth first search.

In addition to marking arcs as backward and forward edges of a graph, the need

to label multiple types of edges was encountered as a result of creating dependence arc

graphs. Currently, Lanalysis can display eight types of dependences in a directed graph.

The Ldag program has to hold “type” information for each edge in the dependence graph.

For dependence arc graphs, Lanalysis will identify the dependence type for each edge in

the graph. Ldag will carry this information, and the list of arcs output to the lanalysis

50

script will contain labels identifying graph edge types. The actual format of the labels

used in the input and output to Ldag will be described later in this section.

The final change made in the Ldag program to be mentioned is the replacement

of X Windows graphics output with the output of text that will be processed by the

“graphics” procedure in the lanalysis script. Ldag will produce a list of graph nodes with

coordinates and a list of graph arcs with types and coordinates as its output. The format

of the program’s output will be discussed shortly.

The Ldag program module accepts a graph specification in a simple definition

format, calculates the layout of the graph, and encodes this layout in a simple output

format. The input to the Ldag program is a file which contains a list of nodes and their

children. Nodes may be named integers or strings, with the following exceptions. The

node names may not begin with capital or lowercase letters “A” through “I”, and they

may not begin with an asterisk. These characters are used by Ldag as markings of graph

edge types. The Lanalysis tool will only label nodes with integers, with the exception

that nodes representing collapsed loops in a control flow graph will consist of an “L”

followed by an integer i.d. Each line of the input file will contain a node label followed

by a colon which is followed by a list of children nodes separated with commas. The

line will be terminated with a semicolon. Spaces should not be included in any part of

any input line. The special characters, upper and lowercase “A” through “I” and the

asterisk, may be placed immediately in front of a node label in the children list of a

parent node. When Ldag is used to create control flow graphs, the asterisk is the only

necessary special character. Placing an asterisk in front of a node in the children list of a

parent indicates that the child is really the parent in the graph and that the edge between

the two nodes is a backward branching arc. The edges between parent nodes and

unmarked children nodes will be treated as forward branching arcs. When Ldag is used

to create dependence arc graphs, the upper and lowercase letters “A” through “I” are used

51

to label arcs to all children nodes. The letters “A” through “I” are used to identify arc

types in a dependence arc graph. Capital letters are used to label forward going edges,

and lowercase letters are used to label backward going arcs in the same way that the

asterisk was used for control flow graphs.

The output generated by the Ldag program is formatted to be processed by the

“graphics” procedure in the lanalysis script. Each line of output generated for a directed

graph consists of a type identifier word followed by four numbers separated by spaces.

Each output line represents either a node or an arc of the graph, and the set of four

numbers is interpreted accordingly. If the line represents a graph node, the identifier

word will be “NODE”. The following two numbers are the coordinates of the upper left

corner of the box which will represent the node in the graph. The next number is the i.d.

label for the node. The last number is usually zero unless the node has an outgoing arc to

itself. In this case, the fourth number will be an integer between one and ten which

signals the type of the self-connecting arc. If the Ldag output line represents an arc, the

identifier word will be “FORWARD” or “BACK” for control flow graphs. These will

define the arc as a forward or backward edge. For dependence arc graphs, the identifier

word could be “ARC_A” through “ARC_I” or “BARC_A” through “BARC_I”. These

identifiers will define forward and backward arcs of types “A” through “I”. For all lines

representing arcs, the first two numbers are the coordinates of the beginning of the arc,

and the last two numbers are the coordinates of the end of the arc. After all node and arc

definitions are output by the program, Ldag produces a final line containing the string

“*ENDOUT” which signals the end of the output. An example Ldag input and output

are shown in Figure 4.6. Note that type identifiers for both control flow and dependence

arc graphs are used in this example in order to demonstrate their operation. The input

file used here would not be created by Lanalysis for any actual case.

52

NODE 400 15 1 0
NODE 400 115 2 0
NODE 500 215 3 10
NODE 300 315 4 0
NODE 400 415 5 0
FORWARD 414 45 414 115
FORWARD 414 45 499 115
FORWARD 414 145 514 215

1:2,3; BARC_B 411 145 296 215
2:3,b4,*5; BACK 417 145 402 215
3:*3,4,5; FORWARD 499 115 514 215
4:D5; BARC_B 296 215 311 315

BACK 402 215 402 315
FORWARD 514 245 314 315
FORWARD 514 245 499 315
ARC_D 313 345 413 415
BACK 402 315 417 415
FORWARD 499 315 414 415
*ENDOUT

 (a) (b)

Figure 4.6: Ldag communication files: (a) input, (b) output.

4.5 The Interface and Communication Between Lanalysis Modules

There are four program modules which work together to implement the Lanalysis

performance analysis tool. These are the programs Lanalysis, lanalysis, and Ldag, along

with the additional IMPACT program Lpretty. These four modules communicate with

each other in a fashion that is automatic and transparent to the Lanalysis user. This

section will describe the communication links between each module of the tool.

Most of the communication between Lanalysis modules takes place between the

Lanalysis program and the lanalysis script. These two modules send information back

and forth frequently during normal use of the tool using the graphical user interface. As

described in Section 4.3, the lanalysis script opens a UNIX pipe to and from the

Lanalysis program’s input and output. This pipe is treated as a file which is assigned to a

53

Tcl variable. The lanalysis script writes to and reads from this file in order to

communicate with the main program. The typical communication sequence is as

follows. The script writes an Lanalysis command to the UNIX pipe file. This is received

as the standard input by the Lanalysis program. Lanalysis produces its output and writes

it to the standard output, which in this case is the communication pipe. The lanalysis

script reads the output and prints it to the user screen until the special “*ENDOUT”

string is reached. This string is placed at the end of the output by the Lanalysis module.

While the output is read and placed on the text screen, it is also being scanned for

special purpose strings. If the string “*@CONTROL@*” is encountered, the next line of

output will be read, but it will be evaluated as a Tcl command script. Through the use of

this string, the Lanalysis program can send commands which can perform any action

within the graphical user interface. Multiple Tcl commands may be sent separated by

semicolons, but they must all reside on one line of the output. In several cases, Lanalysis

sends text which is not meant to be displayed in the main text window of the tool. In

these cases, temporary UNIX files are created to hold the information, and the lanalysis

script will open these files to access the data. In such cases, the Lanalysis program has to

communicate the name of the temporary file created so that the script can access it

correctly. When the script encounters the string “*@FILENAME@*”, the next line of

output will be read into the Tcl variable “tmp_file_name”. The next line provided by

Lanalysis would be, of course, the name of the file created. The lanalysis script can then

use the name stored in the variable to open the temporary file. The “*@CONTROL@*”

string may be used to achieve the same result as the “*@FILENAME@*” process and

since any Tcl commands may be sent to the user interface, it is the only control string

required to communicate with the Tcl program. The “*@FILENAME@*” control string

is left as an artifact of an earlier version of the tool, but it is much less flexible than its

successor.

54

The use of temporary files is especially prominent in the interactive graphical

functions. In some cases, several temporary files are opened and written to at once, and

the graphical user interface is sent several file names in order to open the files. After the

information is read from the files and processed, the lanalysis script removes the files

from the disk. Temporary file communication is used by Lanalysis to provide

specifications for graph creation, lists of graph entities to highlight, text that will be

displayed in windows other than the main text screen, titles for control flow and

dependence arc graphs, as well for providing input files for Ldag and Lpretty.

Temporary files are created to hold the input for both the Ldag and Lpretty

program modules. When Lpretty is used, Lanalysis provides the input in a temporary

file. Then it executes Lpretty so that its output can be read out of a UNIX pipe and be

processed by the tool. After the Lpretty program executes, the pipe is closed, and the

temporary input file is deleted. The input to the Ldag module is also provided in a

temporary file. Lanalysis creates and fills this temporary file and then communicates the

file name to the lanalysis script. The script executes Ldag using the temporary file as

input, and opens a pipe from its output. The graphing procedure reads the output from

this pipe and displays the produced graph. The pipe is then closed and the temporary file

is removed. Figure 4.7 displays the communication interactions between all four

Lanalysis modules.

55

Figure 4.7: Program communication paths.

56

5. ADDING FEATURES TO LANALYSIS

The program modules designed for the Lanalysis performance analysis tool were

designed to easily accommodate the addition of new functionality. As the Lanalysis tool

becomes more popular with researchers working with the IMPACT compiler, the need

for additional functionality will undoubtedly become apparent. This chapter will provide

a procedure for creating new Lanalysis commands and will describe existing Lanalysis

features which can be useful to future extensions to the tool.

5.1 Software Design for Expandability

There are several key design choices which promote the ability to quickly make

enhancements to the Lanalysis software package. First, the design of the main Lanalysis

program loop as a large “C” switch statement allows for the easy addition of extra

command cases. The programmer merely has to add a case to the switch statement for

each new Lanalysis command. Second, the use of the Tk/Tcl tools for creating the

graphical user interface enables the programmer to rapidly define new pull-down menu

command options and eases the creation of more complicated graphical tools. Finally,

the design of the communication link between the graphical user interface and the main

Lanalysis program allows the output of most tool functions to be implemented with

57

simple printing statements which can be fed directly to the user interface display. Also,

the ability for the Lanalysis program to send Tcl commands to directly define variables

and control virtually any aspect of the user interface ensures that a communication

barrier will never prevent exotic functionality from being created.

5.2 A Procedure for Adding Standard Lanalysis Commands

The addition of new commands to the Lanalysis tool is an extremely simple

process. This section will describe a detailed procedure for augmenting the Lanalysis

tool with new user commands.

The first thing that should be done when creating a new Lanalysis command is to

choose a unique name for the command. The name should reflect the functionality of the

command, and it is beneficial if the name is not too complicated if it is a command that

users may want to manually enter at the Lanalysis prompt. Once the command name is

selected, the numerical code for the command has to be defined in the “l_analysis.h”

header file. This should be done in the section of the file labeled “command codes.” The

actual code number can be one greater than the code for the last command created, and

the defined identifier should be the name of the command completely capitalized. This is

done to remain consistent with the naming convention discussed in Section 4.2. Once the

command code is defined, another “else if” clause has to be added to the “convertcom”

function in the “l_analysis.c” program file. This clause will contain code that will return

the command’s numerical code if the command string is input to the tool. Next, an

additional case should be added to the switch statement in the main loop of the program.

The identifier for the command code should be used as the “value” of this new case. The

functions that will be called for this new command will be placed in the newly created

case area of the switch statement. In most cases, one “C” function named exactly like the

58

name of the command is called to produce the desired output. Consequently, the next

task is to create the actual function that implements the result of the new command. If

the output of the new command is merely textual information, the text should be created

using the “print2” function. As previously described, this behaves exactly like the

standard “printf” function, but prints to an additional file if an output file is being written

to by the tool. If the new command is designed to interact with the graphical user

interface, control strings may be sent to the lanalysis script, temporary file

communications may be needed, and the appropriate processing procedures may have to

be created in the lanalysis script. See Section 4.5 for more details. The last step in the

addition of new Lanalysis commands is to place the command in one of the user interface

pull-down menus. This is easily accomplished by adding a new line to the appropriate

menu definition. If the new command is part of a larger interactive tool, it probably does

not require an entry in the pull-down menus. For example, the command which displays

a control block when its node is clicked on in a control flow graph does not appear in any

menu, and users are not expected to execute this command from the user prompt.

Commands that can be entered manually by a user should also be described in the

“printhelp” function located in the “misc.c” program file.

5.3 Useful Lanalysis Features

In addition to the expandability traits mentioned in Section 5.1, several features

currently exist that may be useful to additional functionalities of the Lanalysis software.

These features are all part of the lanalysis script module, and could be useful to future

interactive analysis tools.

A Tcl procedure called “textwindow” is currently used by multiple tools and will

certainly be useful to additional analysis functions. This procedure creates a resizable

59

window in which any type of text can be printed. The procedure will open the temporary

file indicated by the “tmp_file_name” Tcl variable and place the text contained in the file

in the newly formed window. This procedure could be used whenever auxiliary

information is requested that does not have to be displayed in the main Lanalysis screen.

Another group of reusable Tcl procedures are those which fill particularly tagged

graphics entities with specified colors. These are used to highlight boxes in the

dependence arc graphs and graphical control block schedules. When these graphics

entities were created, they were tagged with unique i.d. numbers. Lanalysis can send a

list of i.d. numbers through a temporary file, and these procedures will highlight the

indicated objects with the specified color.

The last multipurpose Tcl procedure worth mentioning is the “graphics”

procedure which creates the control flow graphs and dependence arc graphs. This

procedure is reusable in the sense that it will create directed graphs that could represent

anything. Any graph with nodes and directed edges between them can be displayed by

the “graphics” procedure.

60

6. CONCLUSIONS AND FUTURE WORK

Lanalysis is an interactive performance analysis tool designed to analyze the

output of the IMPACT C compiler. Through the use of this tool, researchers are able to

efficiently examine important aspects of code produced by the compiler, and compiler

writers are provided with a powerful tool for evaluating the performance of new or

experimental compiler optimizations. As a result, both code analysis time and IMPACT

development speed can be greatly enhanced.

This thesis introduced the Lanalysis tool. The complete functionality of the

program was documented in the third chapter, which should be viewed as the Lanalysis

user’s manual. The fourth and fifth chapters of the thesis provided a detailed description

of the tool’s implementation and information concerning the simple expandability of the

tool’s functionality. These two chapters are intended to be very useful to programmers

who choose to create future extensions to the Lanalysis tool.

Many ideas for additional Lanalysis features have been conceived, but have yet to

be implemented. This thesis will end with the presentation of several ideas for

functionalities that would further augment the already useful performance analysis tool.

Some of these ideas will require enhancements from the compiler, but others do not and

can be implemented purely within the Lanalysis software.

61

The ability to display Lcode function call graphs was an anticipated addition to

the Lanalysis tools. This capability would be extremely simple to implement because the

existing procedure for displaying control flow graphs and dependence arc graphs could

easily be used to create graphs representing function call structures. This, however,

would require that the functional call information be annotated by the compiler in the

Lcode read by Lanalysis. When this information becomes available, Lanalysis could

quickly be adapted to present these graphs.

Another useful addition to the tool would be an improvement to the directed

graph display procedure. In some cases, the layout of complicated control flow

structures provided by Ldag can be quite congested which can cause their viewing to be

difficult. One solution to this problem could be to add the ability to interactively

rearrange the placement of nodes in the graph by hand. The flexibility of the Tk/Tcl

programming language should enable this sort of ability to be implemented entirely in

the lanalysis script module.

An extremely important enhancement to Lanalysis would be the added ability to

retrieve and display the exact location inside the “C” language source file which led to

the production of selected Lcode operations. Viewing these lines of “C” source code

would enable users to better understand the purpose of the Lcode operations generated by

the compiler. This functionality would require that source file line numbers be annotated

to operations in the Lcode files.

In some cases, it would be nice to make comparisons between the code produced

for different machine architectures. Presently, the Lanalysis tool can only examine code

produced for one machine description during a single session, based on the architecture

and machine description specified in the standard parameter file. The ability to specify

these Lcode configurations from within the Lanalysis tool would enable users to make

side by side comparisons of Lcode produced for different machines. This would be very

62

useful for researchers evaluating new architectural features and would provide insights

into the impact of machine architecture on compiled code.

A final thought for an Lanalysis enhancement would be the addition of the ability

to automatically execute IMPACT compilation steps from within the tool’s user

interface. This would allow users to interactively perform optimizations on code loaded

into the tool. The results of optimizations or compilation steps could then be

immediately examined and evaluated.

The creator of Lanalysis hopes that the tool’s growing use will continue in the

future and hopes that the tool will constantly evolve to meet the ever-changing needs of

IMPACT researchers in the years to come.

63

REFERENCES

[1] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu,
“IMPACT: An architectural framework for multiple-instruction-issue
processors,” in Proceedings of the 18th International Symposium on Computer
Architecture, Toronto, Canada, May 1991, pp. 266-275.

[2] G. E. Haab, “Design and implementation of a data dependence analyzer for
fortran programs in the impact compiler,” M.S. thesis, Department of Electrical
and Computer Engineering, University of Illinois, Urbana, IL, 1994.

[3] S. A. Mahlke, “Design and implementation of a portable global code optimizer,”
M.S. thesis, Department of Electrical and Computer Engineering, University of
Illinois, Urbana, IL, 1991.

[4] W. W. Hwu and P. P. Chang, “Efficient instruction sequencing with inline target
insertion,” IEEE Transactions on Computers, vol. 41, pp. 1537-51, December
1992.

[5] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringman, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, “The superblock: An effective technique for VLIW and
superscalar compilation,” The Journal of Supercomputing, vol. 7, pp. 229-248,
January 1993.

[6] P. P. Chang and W. W. Hwu, “The Lcode language and its environment,” Center
for Reliable and High-Performance Computing, University of Illinois, Urbana,
IL, Internal Report, April 1991.

[7] J. C. Gyllenhaal, “A machine description language for compilation,” M.S. thesis,
Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1993.

[8] J. K. Ousterhout, Tcl and the Tk Toolkit. Reading, MA: Addison-Wesley
Publishing Co., 1994.

