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1. INTRODUCTION

The goal of this thesis is to analyze performance and cost tradeoffs of the execution
stage in superscalar or VLIW microprocessors. In such wide-issue processors, certain
resources are seldom used. An example of this is the eighth branch unit of an eight-
issue processor. This resource is used only if eight branch instructions are in the issue
window, which is a rare occurrence. Relatively few functional units can thus achieve very
good performance. The IMPACT C compiler, developed at the University of Illinois at
Urbana-Champaign, is a versatile tool that generates code and does scheduling for several
different processor types with a varying number of resources such as registers, functional
units, and issue widths. With the scheduled code, a close approximation of the cycle
count and, hence, relative performance of several different processor configurations is
obtained. IMPACT can be used to find the point at which adding resources does not
increase performance significantly.

In designing a microprocessor, it is necessary to balance the increasing hardware cost

with the benefits of obtaining a higher performance. The performance/cost ratio should



be maximized, and a minimum performance goal should be set as a specification. Because
the cost of a chip is directly proportional to its area, one way to determine the cost is
to multiply the number of each component by its area, and then add the resulting areas.
This cost method, which will be referred to as the simplex method, can be generated
very quickly. The best resource configuration in terms of functional units for both four-
and eight-issue superscalar processors was found using the simplex cost method and
performance numbers generated from IMPACT.

The simplex cost method does not take into account the cost of routing block com-
ponents together or the cost of extra multiplexors needed to choose the set of functional
units that the instruction flows through. An attempt was made to improve the simplex
cost method by including these factors. Instead of a pure mathematical formulation, the
execution stage was isolated from the rest of the chip, and a tool was built which took a
processor description and generated a layout for it. This layout includes the multiplexors
and the routing cost and gives the area cost of the execution stage. This cost is then
put in a mathematical formulation estimating the size of the entire chip. This tool, the
Hardware GENerator for the EXecution unit (HGENEX), gives a nonfunctioning layout
because it does not implement the functional units with working logic. It was designed to
give an idea of the relative cost of various functional unit configurations in the execution
stage.

Experiments using the HGENEX method were performed on a few resource config-

urations, and the results were compared to those for the simplex method and to a chip



micrograph of the PowerPC 604 to see if the tool obtained a realistic layout. One goal of
these comparisons was to determine whether HGENEX has the potential to be a useful
cost analysis tool. Another goal was to determine the problems associated with HGENEX
to see if they could be eliminated in future versions of the tool. If such a tool could give
a good cost estimate of an implementation, it would eventually be incorporated into the
IMPACT framework to provide the architect the ability to determine the performance
and cost benefits of various decisions. After careful analysis, it was discovered that more
work is needed to expand and improve HGENEX to make this a reality.

This thesis is divided into ten chapters. Much of Chapter 2 was taken from [4] and
gives an overview of the IMPACT compiler used to generate the performance numbers.
Chapter 3 describes the parameters for the performance experiments and the method-
ology required to find the best configuration. In Chapter 4, the simplex cost method is
described in detail, and the experimental results finding the best resource configuration
are given in Chapter 5. Chapter 6 describes the HGENEX tool in detail, while Chapter 7
shows how to use it. In Chapter 8, the simplex method cost numbers are compared to
HGENEX’s numbers, and problems with the HGENEX method are evaluated. Chap-
ter 9 describes future changes that would improve HGENEX, and Chapter 10 contains

the conclusions.



2. OVERVIEW OF IMPACT

The IMPACT compiler is a generalized C and FORTRAN compiler that can gen-
erate optimized code for various architectures and machine resource configurations. It
also implements new research code optimizations in order to analyze their effect on per-
formance. Figure 2.1 shows a block diagram of the compiler. It is divided into three
distinct parts, based on the intermediate code representation used in translation from C
code to machine-specific assembly code. The highest level of intermediate representation
is called PCode and is parallel-C code with intact loop constructs. Memory system opti-
mizations, loop transformations, and general dependence analysis take place at this level.
The next level of intermediate representation is called Hcode; it is a simplified form of C
with only simple if-then-else and goto control flow constructs. Statement-level profiling,

profile-guided code layout, and function inline expansion are performed at this level.
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The final and lowest code representation is called Lcode. Lcode is a generalized
register transfer language. It is similar to most RISC instruction-based assembly lan-
guage. Lcode is divided into two parts: machine independent Lcode and machine spe-
cific code known as Mcode. Machine independent Lcode instructions must eventually
be mapped to Mcode before the compilation process is finished. At the machine inde-
pendent Lcode level, several machine independent classic optimizations are performed.
These include constant propagation, forward copy propagation, backward copy propa-
gation, common subexpression elimination, redundant load elimination, redundant store
elimination, strength reduction, constant folding, constant combining, operation folding,
operation cancellation, code reordering, dead code removal, jump optimization, unreach-
able code elimination, loop invariant code removal, loop global variable migration, loop
induction variable strength reduction, loop induction variable elimination, and loop in-
duction variable reassociation. Additionly, interprocedural safety analysis is performed,
which includes identifying safe instructions for speculation and function calls that do not
modify memory.

Superblock and hyperblock compilation techniques are also performed at the Lcode
level. Superblock support includes superblock formation using execution profile infor-
mation, superblock classical optimization, and superblock instruction-level parallelism
(ILP) optimization. If predicated execution support is available, then hyperblocks are

used instead of superblocks. All superblock optimizations have been modified to operate



on hyperblocks. Furthermore, optimizations specific to hyperblocks exploiting predicated
execution are available.

The major components of Mcode generation are the scheduler and the register alloca-
tor. Scheduling is performed using either acyclic global scheduling or software pipelining
with modulo scheduling. Acyclic global scheduling is applied before register allocation
(prepass scheduling) and after register allocation (postpass scheduling) to generate an
efficient schedule for the code. Software pipelining is applied on certain loops identified
at the Pcode level. Graph coloring based register allocation is utilized for all target archi-
tectures. For each target architecture, a set of specially tailored peephole optimizations
are performed. These peephole optimizations are designed to remove inefficiencies during
Lcode to Mcode conversion, take advantage of specialized opcodes available in the archi-
tecture, and remove inefficient code inserted by the register allocator. Execution profile
information is also used if available.

IMPACT must compile code for a specific processor, which is described in great detail
by the Machine DEScription (MDES) [1]. The MDES contains information on available
functional units, size of the register files, instruction latencies, instruction input and
output constraints, addressing modes, and pipeline constraints. The MDES is used by
the optimization phases to determine if such transformations would be beneficial. The
scheduler and register allocator rely on the MDES to generate correct and efficient code.
The MDES is also used as an input to HGENEX, linking it with the rest of the IMPACT

framework.



3. PERFORMANCE EXPERIMENTS

3.1 Introduction

In a VLIW or superscalar microprocessor, design of the execution stage is of utmost
importance, because it consumes a large portion of the IC area. For most application
programs, having as many of each type of functional unit as the issue width of the proces-
sor is wasteful, because it is very unlikely there will be so many instructions demanding
a specific type of resource and being able to issue simultaneously. For this reason, one
must decide how many of each type of functional unit are needed. Having more func-
tional units reduces resource constraints and improves performance, but will also raise
the chip’s cost by increasing the number of transistors needed for implementation. At
some point, there are diminishing returns when it is too expensive to increase perfor-
mance by adding functional units. The goal of the following experiments was to find
this point and maximize the performance/cost ratio in four- and eight-issue superscalar

Microprocessors.



3.2 Experiment

To obtain performance numbers, the IMPACT compiler framework was used to com-
pile and schedule several integer and floating point benchmarks. The processor model
used for these compilations was an in-order issue superscalar processor with one delay
slot. The HP PA-RISC instruction set was assumed by the compiler and scheduler. Also
included in the processor model was the assumption of 64 integer registers, 64 floating
point registers, 32 double-precision floating point registers, and perfect instruction and
data caches. Hence, cache and memory effects are ignored by these simulations. All
instruction throughput is dependent only upon availability of resources to the scheduler
and the parallelism in the instruction stream. The performance numbers were gener-
ated with scheduled code. Although more accurate and precise results could have been
obtained with a simulation of the program, this would have been too time consuming.

Four- and eight-issue machines were examined. The machines had four different
types of functional units: integer units (IALUs), floating point units (FALUs), load/store
memory units, and branch units. Integer units executed all integer operations including
adds, subtracts, multiplies, divides, shifts, rotates, compares, and logical operations;
floating point units executed all floating point instructions; branch units executed all
control flow instructions; and load/store units executed all memory operations. The
machines also had fully pipelined units so that any unit could process a new instruction on
each clock cycle. Instruction latencies of the HP PA-RISC 7100 processor were assumed

in determining dependencies. These latencies are given in Table 3.1. All units were
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completely independent of each other and each instruction used only one functional unit.
Therefore, any n instructions that use different functional units and are not dependent
on each other may execute simultaneously. Likewise, any n instructions that use the
same resource and are not dependent on each other may execute simultaneously if there
are n or more of that type of resource available. This is assuming a processor with an

issue width greater than or equal to n.

Table 3.1: Instruction Latencies

Function Latency [Function Latency
Int ALU 1 FP ALU 2
memory load 2 FP multiply 2
memory store 1 FP divide (single-precision) 8
branch 1/ 1 slot |FP divide (double-precision) 15

The scheduler used in the experiments assumes the general speculation model, which is
the most aggressive available. In this model, a potentially excepting instruction is allowed
to be moved before a conditional branch, in which case it is replaced by a nonexcepting
form of the instruction. An example of such a case is a division by zero, which would be
avoided by taking a branch. The disadvantage of this model is that errors are hidden by
the nonexcepting form of the instruction. If the branch were not taken, the code would not
execute correctly, since the exception would not be handled. The restricted speculation
model prevents such instructions from being moved before conditional branches so that
such errors are avoided. The HP Precision Architecture is one of several architectures that

provides nonexcepting instructions in support of the general speculation model, because
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it gives an instruction schedule with the most parallelism possible. For this reason, the
general speculation model was used.

The entire SPEC92 benchmark suite, as well as nine other commonly used non-
numeric programs, was compiled and scheduled to obtain performance numbers for the
experiment. This resulted in 29 total benchmarks, providing a realistic mix of actual
processor applications. These benchmark programs are broken into integer and floating
point benchmarks and are described in Tables 3.2 and 3.3. The performance and cost
numbers obtained were put into a spreadsheet, which in turn calculated speedups and
performance/cost ratios. Speedups were found by dividing the number of clocks cycles
of the given configuration by the number of clock cycles of a machine with a minimum
resource configuration. Such a machine has only one of each type of functional unit and
has the minimum absolute cost and performance obtainable for a working superscalar
machine of the given issue width. Cost numbers were also normalized to this minimum

machine configuration.

3.3 Searching for the Best Configuration

For a four-issue processor with four types of functional units, there are 4* = 256 re-
source configurations, and for an eight-issue processor with four types of functional units,
there are 8* = 4096 resource configurations. It would be infeasible to run IMPACT and
generate a schedule for each permutation of resource configurations for all 29 benchmarks.

Likewise, it would be infeasible to run a cost analysis tool for each possibility. Therefore,
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Table 3.2: Floating Point Benchmarks

Floating Point Benchmarks |Benchmark Description
spice analog circuit simulation
doduc nuclear engineering monte carlo simulation
mdljdp2 quantum chemistry studying atom motion (double precision)
waveb relativistic electromagnetic particle-in-cell simulation
tomcatv vectorized mesh generation
ora wave tracing through optical system
alvinn autonomous land vehicle in a neural net
ear medical simulation
mdljsp2 guantum chemistry studying atom motion (single precision)
swm256 shallow water model
su2cor elementary particle masses using quark-gluon theory
hydro2d galactic jets using hydrodynamical Navier Stokes equations
nasa7 NASA kernels
fpppp performance simulation on the 2 electron integral derivative

to eliminate simulations that had low performance and high cost, a branch and bound
algorithm was used to reduce the simulations to a reasonable number. For these experi-
ments, the simplex cost method was used (see Chapter 4), and the spreadsheet directly
calculated the cost numbers.

The first way to reduce the number of experiments was to find the performance of
the complete configuration (i.e., n of each type of resource for an n-issue machine). This
configuration has the best performance because it is never resource constrained. By
applying this maximum possible performance number to all permutations of resource
configurations, and given the cost numbers, an upper bound on the performance/cost
ratio is achieved. For each actual simulation run, a true performance/cost ratio is found.
All configurations whose upper bound on performance/cost is less than the largest true

ratio may be discounted.
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Table 3.3: Integer Benchmarks

Integer Benchmarks Benchmark Description
espresso truth table minimization
li lisp interpreter
egntott boolean equation minimization
compress compress files
sc spreadsheet
ccep GNU C preprocessor
cmp compare files
eqgn format math formulas for troff
grep string search
lex lexical analyzer generator
gsort quick sort
tbl format tables for troff
wc word count
yacc parser generator

The second way to reduce the number of experiments is to place a new upper bound on
those permutations with the same or fewer functional units of each type than that of an
actual simulation. For example, if the {1234} configuration (this notation means 1 branch
unit, 2 memory units, 3 IALUs, and 4 FALUs) was simulated, then all permutations with
1 branch unit, 2 or fewer memory units, 3 or fewer IALUs, and 4 or fewer FALUs have
an upper bound on performance equal to that of the {1234} configuration. This would
also mean that all such permutations have a new upper bound of performance/cost. If
this new bound fell below that of some prior simulation, then the permutation could be
eliminated. By proper choice of simulation runs, the number of required simulations was
reduced from 256 to 32 for a four-issue machine and from 4096 to 52 for an eight-issue

machine.
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4. SIMPLE COST ANALYSIS

The simplest way of doing a cost analysis for the execution stage of a superscalar or
VLIW architecture is to find an equation in which various parameters are input and the
total area of the unit is output. This method, referred to as the simplex method in this
thesis, may not be extremely accurate, but it may be close enough without going into
the detail of building the entire chip. A possibly better way of performing cost analysis
would be to build a very simple version of the chip, which would not have to be fully
functional. This method, HGENEX, is described in detail in Chapter 6 and is not yet
at the point of generating good cost numbers. Also, because of the great number of
permutations possible for four- and eight-issue processors and the large amount of time
required to run simulations using a better cost analysis model, it would not have been
feasible to use HGENEX even if it proved highly superior to the simplex method. Thus,
the simplex method was used to determine the best resource configurations with highest

performance/cost ratios.
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The basic model to determine the cost of an arbitrary resource configuration of a
superscalar microprocessor is found by multiplying the number of each resource type
with the chip area required by the resource. The area for the fetch, decode, and issue
stages, the register files, the control logic, and the instruction and data caches is also
added to obtain the total chip area. All areas for nonexecution stages are assumed to
be constant with issue width, except for the fetch, decode, and issue stages, which are
assumed to increase in area with the square of the issue width. The reason for this is
that dependency checking is an O(n?) algorithm, so it is assumed that it will take O(n?)
space on the chip, where n represents the issue width of the processor. Therefore, going
from a four-issue machine to an eight-issue machine increases the chip area for the issue
unit by a factor of four. The actual equations used for such cost calculation are given
in Figure 4.1. The numbers generated are normalized with respect to a machine with a
minimum configuration (one of each resource). Therefore, the final areas are relative to
such a machine and are not the actual physical area in mm?.

Ideally, since the HP PA-RISC instruction set was used, HP functional units would
be used to determine the appropriate chip area for an implementation. This would give a
more accurate idea of the actual size of such units, since these units are designed for the
Precision Architecture’s instruction set. Unfortunately, the HP functional units are not
completely independent of each other. For example, the integer units perform branch

address calculation [2]. Hence, there is no true branch unit. Also, the PA-7100 is a

two-issue machine that can issue two instructions only if one is an integer and the other
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Four-Issue:
A (1 - El'%)(Chipif;iu) + BiBArea + MiMArea + [i[Area + Fz'FArea
rea = —PC60]
CthArea

Eight-Issue:
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Area =

Chip',5%% = Area of the PowerPC 604 in mm?
B; = Number of Branch Units

M; = Number of Memory Units

I; = Number of Integer Units

F; = Number of Floating Point Units
B jrea = Area for a Branch Unit in mm
M preq = Area for a Memory Unit in mm
Iprea = Area for a Integer Unit in mm?
F prea = Area for a Floating Point Unit in mm
Issue g = Area for an Issue Unit in mm? for a Four-Issue Machine

Fx9, = Percent of Chip Area for Execution Unit

2
2

2

Figure 4.1: Equations for Simple Cost Analysis

is a floating point instruction. These abnormalities make the PA-7100 a poor choice for
finding areas for various functional unit areas.

Several architectures were examined to find independent branch, memory, integer,
and floating point units. The architecture that most closely resembled the processor
description used in the performance analysis was the PowerPC 604 [3]. Using the chip
micrograph, each of these units was measured with a ruler. Although this method intro-
duces some inaccuracies, it was the best given the limited information on the processor
implementaion. The sizes found are given in Table 4.1. These sizes were used in both

the simplex and HGENEX methods for cost analysis.
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Table 4.1: PowerPC 604 Parameters

Burea = 12.51mm? = 12, 510, 000\?

Mareq = 11.26mm? = 11,260, 000 \*

Livea = 14.95mm? = 1/, 950, 000 \?

Fiarea = 20.50mm? = 20, 500, 000\*
ChiphC8% = 195.92mm? = 195, 920, 000\*

Issue greq = 24.03mm? = 24, 030, 000 \?

Exg, = 30.2%
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5. EXPERIMENTAL RESULTS

5.1 Introduction

Using the search methods described in Chapter 3, the entire set of processor config-
urations was examined and the best performance/cost configurations were found. There
were 29 cost/performance numbers for each resource configuration simulated, one for each
benchmark run. Instead of averaging the performance of the entire set of benchmarks and
obtaining a single performance/cost ratio, the benchmarks were broken into two different
groups: integer and floating point benchmarks. The integer benchmarks use almost no
floating point instructions. Hence, these benchmarks would tend to eliminate all floating
point units, because they would not help performance and would increase cost. Thus,
the results would be skewed based on the ratio of the number of integer to floating point
benchmarks used in the experiment. To eliminate this problem, the benchmarks were
grouped so that performance for integer and floating point code would not be compared.

Two resource configurations with the best performance/cost ratios were obtained. The
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first was for integer applications and the second for scientific floating point intensive
applications. All cost numbers were obtained using the simplex cost method.

Also included in the next sections are the percentages of maximum possible perfor-
mance achieved with the given configurations. The maximum performance is obtained
with the {4444} configuration. Both the performance/cost ratio and the percentage of
maximum performance are very important to a designer. A configuration may give an
excellent ratio, but if its maximum performance percentage is low, then the inexpensive
machine will have a poor performance. Thus, the percentage of maximum performance
should be bounded when choosing a configuration, so that a minimum performance could
be achieved. In a commercial system, this bound would be enforced by a minimum target

performance given in the specification.

5.2 Four-Issue Performance

Table 5.1 shows the simulations with the best performance/cost cost ratios for a
four-issue machine. The configuration with the best ratio for the integer benchmarks is
{2221}, and the configuration with the best ratio for the floating point benchmarks is
{1211}. The notation {4321} means 4 branch units, 3 memory units, 2 integer ALUs,
and 1 floating point ALU. Both configurations are highlighted in bold in the table. While
these two cases are indeed the best ratios for a four-issue machine, the other configu-
rations included in Table 5.1 do not necessarily have the next best performance/cost

ratios of all possible configurations because an exhaustive search was not done. Other
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configurations may have similar performance/cost ratios, but they were not simulated.
The configurations in Table 5.1 were the best of the small number of simulations done.
Since their performance/cost ratios are close to that of the optimal configuration, these
ratios give an idea of the best configurations possible. Most configurations with high
ratios for integer benchmarks had a low floating point performance/cost ratio, but had
good absolute floating point performance numbers. The configurations with high ratios
for floating point benchmarks had low integer performance/cost ratios and poor absolute

integer performance numbers.

Table 5.1: Performance and Cost for a Four-Issue Machine

Resource Configuration Percent of Maximum Performance Performance/Cost Ratio
Branch  Memory IALU FALU Integer Floating Point Integer Floating Point
2 2 2 1 85.1% 87.7% 1.38 1.01
3 2 2 1 89.2% 87.7% 1.37 0.96
3 3 2 1 92.3% 89.1% 1.36 0.93
3 2 3 1 92.8% 89.1% 1.35 0.92
4 2 2 1 91.8% 87.7% 1.34 0.91

Best Configurations for Integer Benchmarks

1 2 1 1 56.7% 81.9% 1.04 1.07
1 2 2 1 69.6% 87.0% 1.19 1.06
1 2 2 2 69.6% 94.9% 1.09 1.06
2 2 2 1 85.1% 87.7% 1.38 1.01

Best Configurations for Floating Point Benchmarks

While the {1211} resource configuration achieved the best performance/cost ratio for
floating point benchmarks, it had a very poor integer performance and a mediocre floating
point performance. Hence, it would not be a good choice in designing a high-performance
microprocessor. With a minimum bound of 85% on the maximum performance percent-
age, the {2221} configuration meets performance goals, has the best performance/cost

ratio for integer benchmarks, and has a fairly high ratio for floating point benchmarks.
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Therefore, it would be a much better choice for a high-performance processor. If the
machine’s purpose was for floating point applications only, then the best choice would be
the {1222} configuration because it has a high floating point performance and achieves

a near-optimal performance/cost ratio.

5.3 Eight-Issue Performance

Table 5.2 shows the simulations with the best performance/cost ratios for an eight-
issue machine. The {4431} configuration achieved the best ratio for integer benchmarks
and is highlighted in bold in the table. This configuration had 88.5% of the maximum
performance for integer benchmarks and 81.6% for floating point benchmarks. Several
other resource configurations achieved near-optimal performance/cost ratios for integer
benchmarks. The {5431} configuration, for example, had a slightly lower ratio, but had
a higher percentage of maximum performance for integer benchmarks. Both configu-
rations would be good choices for designing a high-performance microprocessor. While
the absolute floating point performance is around 80% for all high ratio configurations
running integer code, the performance/cost ratio is very low for floating point bench-
marks. The results also show that branch units are more important than other kinds
of functional units for integer code, because more of them are needed on average in the
optimal configurations.

The {2322} configuration had the best performance/cost ratio for floating point

benchmarks and is also highlighted in bold in Table 5.2. This configuration had an
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Table 5.2: Performance and Cost for an Eight-Issue Machine

Resource Configuration Percent of Maximum Performance Performance/Cost Ratio
Branch Memory IALU FALU Integer Floating Point Integer Floating Point
4 4 3 1 88.5% 81.6% 1.63 0.97
4 3 3 1 85.8% 80.4% 1.62 0.98
5 3 3 1 87.7% 80.4% 1.61 0.95
5 4 3 1 93.7% 81.6% 1.61 0.93
4 3 4 1 87.7% 81.0% 1.60 0.95
4 4 4 1 90.9% 81.6% 1.60 0.93

Best Configurations for Integer Benchmarks

2 3 2 2 70.0% 92.0% 1.40 1.19
1 2 2 2 53.8% 85.9% 1.16 1.19
1 3 2 2 55.3% 88.3% 1.15 1.18
2 2 2 2 66.8% 87.1% 1.38 1.16
1 4 2 2 56.1% 89.6% 1.13 1.16
2 3 3 2 75.5% 92.6% 1.45 1.15

Best Configurations for Floating Point Benchmarks

absolute performance of 92.0% of the maximum possible performance for floating point
benchmarks and 70.0% for integer benchmarks. The {2332} configuration had a slightly
lower performance/cost ratio for floating point benchmarks, but it had a higher ratio for
integer code and had better absolute performance than the {2322} configuration. The
remaining configurations had very poor absolute integer performance. Since configura-
tions {2332} and {2322} had poor integer performance and poor performance/cost ratios
for integer benchmarks, they would not be good choices for a general purpose micropro-
cessor. They would, however, be good choices for a processor running primarily scientific
code.

In summary, for an eight-issue machine, the {4431} and {5431} resource configura-
tions had the best performance/cost ratios and absolute performance for integer bench-
marks. The {2322} and {2332} configurations had the best absolute performance and

performance/cost ratios for floating point benchmarks. Unlike a four-issue machine,
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finding a resource configuration for an eight-issue machine that gives good integer and
floating point performance/cost ratios and absolute performance numbers is impossible.
Thus, in choosing the resource configuration of a processor the applications being run
must be considered. Processors built for integer code will not run floating point code
efficiently because the code will need more floating point units, and the other units will
not be fully utilized. Processors built for floating point code will not fully utilize the

floating point units and will be lacking other functional units when running integer code.
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6. THE HGENEX TOOL

6.1 Introduction

Chapter 4 describes a simple way to estimate the cost of a superscalar or VLIW
machine. The areas of the functional units are multiplied by the number of such units,
and these areas are then summed with the area for the fetch, issue, and decode stages,
and the control and miscellaneous periphery logic. This final area in mm? is then divided
by the area of a minimum configuration (one for each functional unit) to achieve a final
area ratio. Such a method does not include the cost of interconnection or the extra
components required to switch between functional units used.

To take these considerations into account, the HGENEX tool was created to esti-
mate chip area by creating a layout instead of using a purely mathematical formulation.
Working logic was not implemented for the functional units and only the execution stage
was considered for layout. To obtain total chip area, the layout area was included in a

mathematical formula that summed areas for all top-level components. HGENEX starts
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with a Machine DEScription (MDES) containing enough information for a compiler,
such as IMPACT, to create an instruction schedule. From this MDES, HGENEX de-
termines how functional units are connected and creates structural VHDL code. Then,
either Synopsys Design Analyzer or Mentor Graphics Autologic takes the VHDL files to
a schematic. Using Mentor Graphics DVE, a design viewpoint is created to be used in
Mentor Graphics layout tool, IC Station. Three phases are needed to achieve the transla-
tion from MDES to layout: VHDL synthesis, schematic synthesis, and layout synthesis.

Figure 6.1 illustrates the complete process of this translation.

6.2 VHDL Synthesis

The first stage of synthesis is to generate synthesizable VHDL files to be used by
other commercial CAD tool systems to create a schematic and then a layout of the
execution stage. To begin, the high-level MDES (HMDES) is translated into a more
useful form, the low-level MDES (LMDES). This form can be used by other systems,
such as IMPACT. Information on such a translation and on using an MDES in general
is found in [1]. HGENEX calls a function that will load the LMDES information into a
data structure. HGENEX then takes this information, processes it, and builds its own
data structure to specify how certain resources are connected to each other. Two VHDL
files are generated: one that defines various entities or resources used, and another that
defines how they are connected. These VHDL files synthesize into a schematic using

either the Mentor Graphics Autologic or the Synopsys Design Analyzer synthesis tool.
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@ Lmdes_build LMDES File

MDES

HGENEX
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Mentor Graphics'
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Figure 6.1: Complete Process: MDES to Layout

Design Viewpoint
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A third file, called the resource file, is also generated for layout synthesis. In addition to
generating these files, HGENEX also outputs the number and type of extra multiplexors
needed, as well as the number of wire interconnections required in the design. This
gives an idea of the relative costs involved between different designs and also gives an
idea of the run time requirement of the schematic and layout phases. Figure 6.2 shows
an example output of the HGENEX tool when running the {1111} configuration for a

four-issue machine.

Done building Data Structures
Finished Extracting Resource Sizes from Database
Wire Count: 896

Multiplexor Count:
64 Bit Mux 2 X 4: 5

Finished Building VHDL Files

Figure 6.2: Example of HGENEX Output

The HGENEX program uses the Resources and ResTables sections of the MDES. The
Resources section defines every resource used by IMPACT when the MDES is used for
scheduling and simulation. The number of each type of resource is also defined. HGENEX
can ignore any resource that the user decides is not an actual piece of hardware and is
used only for scheduling purposes, such as modeling interlocks. The ResTables section

defines the clock cycle at which a resource will be used in the execution stage of the
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pipeline. This information helps determine how resources are connected. An example
of the HMDES Resources and ResTables sections is shown in Figure 6.3. This HMDES
will be used to demonstrate what the HGENEX tool does and how a layout is finally
generated. A more complicated example is given in the appendices.

The MDES ResTables section is broken into instruction groupings. Each instruction
grouping is simply a group of several different instructions that use the same resources at
the same clock cycle when they execute. Therefore, they flow through the same path in
the execution stage. HGENEX looks at each instruction grouping separately; it uses the
simple algorithm that any resource being used on clock cycle n connects to all resources
being used on clock cycle n + 1. All connections are stored, and the final resource
connections are the union of all of the connections for each resource for all instruction
groupings.

Every resource does not have to be used in a single clock cycle. Resources can take
several clock cycles, and different instruction groupings may use resources for different
amounts of time. To handle these cases, every resource is broken into resource stages. See
Figure 6.4 for an illustration of this idea. Each of these stages takes a single clock cycle
for the operands to traverse through it. For example, in Figure 6.4, resource A is used
for four clock cycles and resource B is used on the third cycle by an instruction. There
should be a connection from resource A to resource B so that the instruction’s operands
can go to both resources A and B on the third cycle. Without breaking the resources into

stages, the connectivity cannot be defined because resource A is a complete unit that has
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# Enumerate resources
(Resources declaration
slot[0..3]
Hialu_O
Hfalu_0
Hfalu_0
Hmem_0O
Hbranch
out
end)

(ResTables declaration
RL_IAlu ( # integer alu op

(slot 0)
(Hialu_0 0)
(out 1)
)
RL_IBr ( # control transfer instr
(slot 0)
(Hbranch 0)
(out 1)
)
RL_FPAlu ( # single/double precision fp alu op
(slot 0)
(Hfalu_0 0)
(out 1)
)
RL_Load ( # load instruction
(slot 0)
(Hmem_0 0)
(out 1)
)
RL_Store ( # store instruction
(slot 0)
(Hmem_0 0)
(out 1)
)

end)

Figure 6.3: Example HMDES Resources and Reservation Table Declarations
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only one input and output. With stages, the connectivity can easily be specified. Some
instructions may use a resource for several cycles and simply flow multiple times through
the same hardware. A division unit is such an example. While breaking the unit into
stages allows for fully pipelined resources, it will greatly replicate hardware, thus giving
a very pessimistic area estimation. This problem can be overcome by specifying smaller
area sizes for each stage (see Section 6.4) so that when all of the areas for these stages

are summed, the final area will correspond to the actual area of the resource in question.

Undefined Connectivity Defined Connectivity Using Stages
Stage 1 Stage 2 Stage 3 Stage 4
Slot—y A: Cycles 1-4—> Slot—y A: Cycle 1|—y{ A: Cycle 2 A: Cycle 3 A: Cycle 41—
—> B: Cycle 3 Stage 1
B: Cycle 3—

Figure 6.4: Breaking Resources into Stages

The simple algorithm of connecting all resources used on cycle n to each resource
used on cycle n 4 1 is slightly pessimistic, since there could be an instruction that uses
two different paths through the execution stage simultaneously. Presently, each stage
between these two paths would be cross connected. For example, for two given resources
A and B, each with two stages, HGENEX will connect stage 1 of resource A to stage 2
of both resources A and B, as well as stage 1 of resource B to stage 2 of both resources
A and B. This is illustrated in Figure 6.5. These two paths may not ever have to

exchange information with each other, and hence, the extra connections are unnecessary
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and wasteful. Unfortunately, the present MDES is limiting in that exact connectivity
cannot be specified and a general algorithm must be used. Since some resources may
exchange information, it is better to be pessimistic and assume complete connectivity,
even though some connections might not be needed. At present, HGENEX also does this
for multiple resources of the same type. This allows instructions to change from resource
to resource of the same type within the execution stage. Although this could be useful
for extremely complex datapath design, it is generally not needed and gives an overly
pessimistic view of the connections required. Future versions of HGENEX should remove

this feature.

Resource A Resource A
Stage 1 Stage 2
Resource B Resource B
Stage 1 Stage 2

Figure 6.5: Cross Connecting for Multiple Paths Through the Datapath

All resources have only one input and one output and thus only process the data given
to them. Switching between inputs is done with the use of external multiplexors. If there
is only one resource to connect, it is connected directly with a bus. If there are several
resources needing to connect, an m X n multiplexor is placed at the resource’s input. m
represents the number of select lines of the multiplexor and n the number inputs, so that

n = 2™. Each of the inputs are really buses of the appropriate size. The smallest possible
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multiplexor is used, and the excess lines are tied to ground. Multiplexor control lines are
defined and are present in the schematic.

All operands are assumed to have been decoded. Each bus line contains all of the
operands that a resource will need. Hence, a machine that is 32 bits wide and whose
arithmetic logic units will operate on two 32-bit operands should have 64-bit bus widths.
This is specified in a separate parameter file (see Chapter 7 for details). The execution
stage has global inputs called slots that connect it to the issue unit in the previous
pipeline stage. The slots contain all of the operands needed for execution. Every path
through the datapath connects to a slot. Also, there are global outputs called out buses
that contain the processed data. All of the possible paths of the datapath connect to one
or more out buses. HGENEX can handle multiple input slots or out buses.

HGENEX generates three files from scratch. Two of these files contain VHDL code,
while the third assists the layout tool. The first VHDL file, called the entity file, puts
a dummy behavioral description for each of the functional units, defining each of these
components for the synthesis tool. Also, this file contains a synthesizable behavioral
description of the needed multiplexors. The second VHDL file, called the connectivity
file, is a structural description of how the basic components defined by the entity file are
connected. Creating this file is the main purpose of HGENEX. The third file created is
a resource file used by IC Station and other Mentor Graphics tools in preparation for
layout. This file contains all of the cells to be created and the sizes of all of the functional

units to be used in the design. These sizes are obtained from a database file that must
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be created by the user. All sizes are specified in mm?. Chapter 7 contains details of the
actual use of HGENEX. Figure 6.6 shows the entity file; Figure 6.7 shows the VHDL file;

and Figure 6.8 shows the resource file for the example HMDES given in Figure 6.3.

6.3 Schematic Synthesis

The VHDL files generated by HGENEX can be used in a synthesis tool to obtain a
schematic. Two tools that HGENEX supports are Synopsys Design Analyzer and Mentor
Graphics Autologic. However, the VHDL file that each tool will need is slightly different.
Hence, HGENEX needs to know the tool for which it is creating VHDL code. This
is specified along with other parameters in the parameter file. If Autologic is used to
synthesize schematics, a schematic ready for layout will be produced. A script can be
written to automate this part of the design. Unfortunately, Autologic does not synthesize
as well as the Synopsys tools do, nor does it support various VHDL constructs that would
be necessary if the functional units were to be implemented with working logic. Hence,
a script automating the schematic synthesis using Autologic was not written.

The Synopsys Design Analyzer provides a better logic design for the multiplexors and
allows for more control of the logic being created. Unfortunately, the schematics gener-
ated are not compatible with the Mentor Graphics layout tool. Therefore, a translation
tool, called db2eddm, is used to translate the schematics to the Mentor Graphics format,
eddm. A script was written to automate this process. This script used default options in

Synopsys to generate the schematics. These options include medium effort by the design
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ENTITY mux2S_64B IS
PORT (i0, i1, i2, i3: IN BIT_VECTOR(63 DOWNTO 0);
sel: IN BIT_VECTOR(1 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END mux2S_64B;
ARCHITECTURE rtl OF mux2S_64B IS BEGIN
WITH sel SELECT o <=
i0 WHEN "00",
il WHEN "O1",
i2 WHEN "10",
i3 WHEN OTHERS;
END rtl;

ENTITY Hialu_0_0_S1 IS
PORT (i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END Hialu_0_0_S1;
ARCHITECTURE behavior OF Hialu_0_0_S1 IS BEGIN
o <= NOT 1i;

END behavior;

ENTITY Hbranch_0_S1 IS
PORT (i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END Hbranch_0_S1;
ARCHITECTURE behavior OF Hbranch_0_S1 IS BEGIN
o <= NOT 1i;
END behavior;

ENTITY Hfalu_0_0_S1 IS
PORT (i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END Hfalu_0_0_S1;
ARCHITECTURE behavior OF Hfalu_0_0_S1 IS BEGIN
o <= NOT 1i;

END behavior;

ENTITY Hmem_0_O0_S1 IS
PORT (i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END Hmem_0_0_S1;
ARCHITECTURE behavior OF Hmem_0_0_S1 IS BEGIN
o <= NOT 1i;

END behavior;

Figure 6.6: Example Entity VHDL File
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ENTITY execute IS
PORT(slot_in0,slot_inl,slot_in2,slot_in3: IN BIT_VECTOR(63 DOWNTO O);
icp0, icpl, icp2, icp3, icp4, icpb, icp6, icp7, icp8, icp9: IN BIT;
outputO: OUT BIT_VECTOR(63 DOWNTO 0));
END execute;
ARCHITECTURE structure OF execute IS
COMPONENT Hialu_0_0_S1
PORT(i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END COMPONENT;
COMPONENT Hbranch_0_S1
PORT(i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END COMPONENT;
COMPONENT Hfalu_0_0_S1
PORT(i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END COMPONENT;
COMPONENT Hmem_0_0_S1
PORT(i: IN BIT_VECTOR(63 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END COMPONENT;
COMPONENT mux2S_64B
PORT(i0O, i1, i2, i3: IN BIT_VECTOR(63 DOWNTO O0);
sel: IN BIT_VECTOR(1 DOWNTO 0); o: OUT BIT_VECTOR(63 DOWNTO 0));
END COMPONENT;
SIGNAL GROUND, sig4, sigb, sig6, sig7, sig8, sig9, siglO, sigll:
BIT_VECTOR(63 DOWNTO 0);
BEGI
MO : mux2S_64B PORT MAP (i0 => slot_inO, il => slot_inl, i2 => slot_in2,
i3 => slot_in3, sel(l) => icp0, sel(0) => icpl,o => sig4);
CO : Hialu_0_0_S1 PORT MAP (i => sig4, o => sigh);
M1 : mux2S_64B PORT MAP (i0 => slot_in0O, il => slot_inl, i2 => slot_in2,
i3 => slot_in3, sel(1l) => icp2, sel(0) => icp3, o => sigb);
Cl : Hbranch_0_S1 PORT MAP (i => sig6, o => sig7);
M2 : mux2S_64B PORT MAP (i0 => slot_inO, il => slot_inl, i2 => slot_in2,
i3 => slot_in3, sel(1) => icp4, sel(0) => icp5, o => sig8);
C2 : Hfalu_0_0_S1 PORT MAP (i => sig8, o => sig9);
M3 : mux2S_64B PORT MAP (i0 => slot_in0O, il => slot_inl, i2 => slot_in2,
i3 => slot_in3, sel(1l) => icp6, sel(0) => icp7, o => sigl0);
C3 : Hmem_0_0_S1 PORT MAP (i => sigl0, o => sigll);
M4 : mux2S_64B PORT MAP (i0 => sigh, il => sig7, i2 => sig9, i3 => sigll,
sel(1) => icp8, sel(0) => icp9, o => output0);
END structure;

Figure 6.7: Example Connectivity VHDL File
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"buswidth" 64
"Hialu_0_0_S1" 14.950000

"Hbranch_0_S1" 12.510000
"Hfalu_0_0_S1" 20.500000

"Hmem_0_0_S1" 11.260000
"end"

"mux2S_64B_0"
"mux2S_64B_1"
"mux2S_64B_2"
"mux2S_64B_3"
"mux2S_64B_4"

"final_end"

Figure 6.8: Example Resource File

compiler and a balanced logic depth. Once the schematics are generated, the design is
ready for layout. Figure 6.9 shows the schematic of the synthesized VHDL code given in

Figures 6.6 and 6.7

6.4 Layout Synthesis

The layout phase uses the schematics generated in the previous phases and the re-
source file generated by HGENEX and produces a complete layout of the design. Before
actual layout, some preliminary steps are taken to ensure proper functioning of the layout
tool. Here, any previous cells or design viewpoints are deleted using Mentor Graphics
Design Manager (DMGR). Next, a design viewpoint is created for the components used
in the design. The Mentor tool Design Viewpoint Editor (DVE) is used for this purpose.
The design viewpoint contains the technology information that the design will be mapped

to and also a pointer to the logic schematic. All layouts were created using the MOSIS
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Figure 6.9: Schematic of Example Design
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1.2 micron, two-level metal process. Areas obtained from HGENEX used units of \? to
be process independent.

The Mentor Graphics tool IC Station does the actual layout. Each multiplexor has
a full logic schematic. This schematic goes through the layout tools, and a layout rep-
resenting the schematic’s logic is created from the MOSIS cmosn standard cell library.
The following steps are used to make the layout for each multiplexor and the final exe-
cute stage of the pipeline: Load Design Rules, Autofloorplan, Autoplace Standard Cells,
Autoroute All, Minimize Vias, Left Compaction, and Downward Compaction. Each of
these functions is executed with the default options except for the compaction. Only
routing channels were compacted, so that the routing and the instantiated cells would
not overlap, thereby shorting wires.

The functional units have specified sizes and are not implemented in logic. Hence, a
rectangle of the appropriate size is generated and placed in both the first level of metal
(metall) and the polysilicon (poly) layers. Ports are then placed on the left and right
sides for the in and out ports, respectively. They are placed in the second level of metal
(metal2) layer and are evenly spaced across the entire height of the cell. Power and
ground ports are also included and are placed in the metall layer. Hence, a dummy
layout cell is used for the functional units. However, the size of the cell corresponds
to the area specified in the database file. Thus, despite the fact that the layout is not

a functioning chip, a good estimation of area is generated. A script automates this
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entire process. Figure 6.10 shows the layout for the example. The area turns out to be

296, 811, 3922,
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Figure 6.10: Layout of Example Design
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7. USING HGENEX

7.1 Introduction

This chapter describes how to use the HGENEX tool. The HMDES must be slightly
modified to make the tool function properly. These modifications are relatively minor.
A parameter file must be present to give HGENEX needed information. A database
file must also be created to specify sizes of the various functional units. Finally, certain
environment variables, files, and directory structures must be set up so that the scripts

in the schematic and layout phases will run properly.

7.2 MDES Alterations

The LMDES file must be built from its corresponding HMDES file before HGENEX

can run. This file must also be placed in the same directory as the HGENEX executable
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file. The name of the LMDES file is specified in the HGEN_PARMS parameter file de-
scribed in Section 7.3. To build the LMDES file, the function Lmdes_build is executed at
the UNIX cshell prompt: Lmdes_build { HMDES filename} { LMDES filename to build}.

The first change needed for the MDES is that a resource called “out” must be specified
in the Resource section of the HMDES file. The name is fixed and must be out just like
the slot resource. The out resource is the output or result bus of the execution stage.
The HGENEX tool uses this information to create output ports in the schematic and
layout. Having one simple output bus or several output buses in which different paths
through the execution stage go to different output buses is possible. The same path may
also go to several different output buses. The out resource is similar in analogy to the
slot resource that defines the input ports of the schematic and layout.

The present MDES requires that slots be the first resource used by an instruction
grouping in the MDES ResTables section. The HGENEX tool has the additional require-
ment that for each instruction grouping in the ResTables section, the out resource(s) is
specified. The clock cycle when this resource is used must be one greater than the last
clock cycle of the last functional unit used. Figure 7.1 shows an improperly specified
HMDES ResTables section with out bus problems. In the RL_ALU instruction grouping,
the out resource should be used on clock cycle 4. The out resource is missing in the
RL_IBr instruction grouping. Figure 7.2 shows a corrected form of the MDES.

Certain resources in the ResTables section of the HMDES are not real physical hard-

ware resources. These resources model certain constraints that the hardware places on
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RL_IAlu (
(slot 0)
(Hialu_0 0..3)
(out 3)
)
RL_IBr (
(slot 0)

(Hbranch 0)

Figure 7.1: Example of an Improperly Specified HMDES ResTables Section: Out Bus
Problems

RL_IAlu (
(slot 0)
(Hialu_0 0..3)
(out 4)

RL_IBr (
(slot 0)
(Hbranch 0)
(out 1)

Figure 7.2: Corrected HMDES ResTables Section
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RL_IAlu (
(slot 0)
(Hialu_0 0..2)
(idummy_0 3)
(Hialu_1 4..5)
(idummy_1 5)
(out 6)

Figure 7.3: Example of an Improperly Specified HMDES ResTables Section: Hardware
Use Problems

the compiler and are needed for compilation, but should not be included in the layout
that HGENEX eventually produces. To solve this problem, HGENEX ignores all re-
sources that do not start with a capital H, except the slot and out resources. An integer
unit, salu, is thus called Hialu in Figures 7.1 and 7.2, with the H standing for hardware.

Also, all clock cycles from 0 to the cycle used by the out resource(s) must be used by at
least one hardware resource. There cannot be a clock cycle in which only nonhardware
resources are used. This will cause HGENEX to give an error. Figure 7.3 shows an
improperly specified ResTables section with hardware usage problems. Here clock cycle
3 is being used only by the idummy resource, which is not a physical hardware resource.

Figure 7.4 shows one way of correcting the HMDES.

7.3 HGEN_PARMS

The file HGEN_PARMS' contains various parameters that must be specified before
HGENEX can run. A sample HGEN_PARMS is given in Figure 7.5. All seven parameters

are mandatory. The format of the parameters are as follows: parameter = value. There
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RL_IAlu (
(slot 0)
(Hialu_0 0..3)
(idummy_0 3)
(Hialu_1 4..5)
(idummy_1 5)
(out 6)

Figure 7.4: Corrected HMDES ResTables Section

must be a space after parameter and before value. There should also be an end of line
character after value. Unlike other IMPACT parameter files, there is no semicolon after
each parameter.

The first parameter, bus_width, is the width of the operand buses in bits that connect
all of the resources together. Only a single value can be specified for all buses. Typical
values would be 32, 64, or 128 bits. The parameter cad_tool is needed to tell the VHDL
generator which CAD tool to generate VHDL for. Use mentor for Mentor Graphics
Autologic or synopsys for the Synopsys Design Analyzer. The [mdes parameter states
which LMDES file to use. The parameter vhdl_file is the name of the file that will contain
the structural VHDL connecting the multiplexors and functional units after HGENEX
is run (the connectivity file). The next parameter, entity_file, is the name of the new file
HGENEX will create containing the definitions of the new hardware resources or entities
(the entity file). To avoid confusion, it is recommended that entity file and vhdl_file
have very similar names. For example, an E could be used in the name to designate

the entity_file. The resource_file parameter specifies the name of the resource file to
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be generated by HGENEX. Each of these files is generated in the directory where the

HGENEX executable is located.

bus_width = 64

cad_tool = Synopsys

Imdes = HP_4i1111.1mdes
vhdl_file = HP_4i1111.vhdl
entity_file = HP_4i1111E.vhdl
resource_file = HP_4il111l.res
database_file = Database

Figure 7.5: Example HGEN_PARMS File

Another file that is needed in addition to HGEN_PARMS is the database file whose
name is specified by the parameter database_file. This file must be in the same directory
as the HGENEX executable. Sizes of all of the hardware resources (given in mm?) are
specified in the database file needed by HGENEX to generate the resource file used by
IC Station. The database file could contain the sizes of hundreds of different resources.
HGENEX will search through the file and extract the sizes of only those functional units
used in the particular design. Each resource should have a size for every stage that will
be created by HGENEX, since every functional unit will be broken down into stages. A
stage is specified with an S and then a number for the stage. Therefore, Hialu_0 stage 5
would become Hialu 0S5 in the database file.

The format of the file is resource = size. There must be a space after resource and
before size. There must be an end of line character after size. An example database
is given in Figure 7.6. After the MDES has been altered, the database file updated to

contain the appropriate sizes of all of the resources used, and the HGEN_PARMS file set
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to the desired values, the HGENEX executable file is ready to run. This executable is

named hgenex.

Hialu_0_0_S1 14.95
Hialu_0_0_S2 14.95
Hialu_0_1_S1 14.95
Hialu_0_1_S2 14.95
Hbranch_0_S1 12.51
Hfalu_0_0_S1 20.5

Hfalu_0_1_S1 20.5

Hmem_0_0_S1 11.26
Hmem_0_1_S1 11.26
Hmem_0_2_S1 11.26

Figure 7.6: Example of a Database File

7.4 Schematic and Layout Scripts

To run the next phases of the HGENEX tool, an extensive setup procedure must be
performed. These two phases must be run on machines installed with Mentor Graphics.
Hence, files created by HGENEX may have to be transferred to different machines.
Several environment variables must be set in order to use the Mentor tools for layout and
the Synopsys tools for synthesis. Mentor variables are set up by running the VLSI class
setup script ece325. The .cshrc must be modified to add certain environment variables
for Synopsys. In addition, a file called .synopsys_dc.setup must be added to set up
Synopsys specific parameters. To map the schematics from Synopsys tools to Mentor
tools, a cmosn toolkit was purchased. This caused Synopsys to use the MOSIS cmosn

library and technology to transfer the design to Mentor Graphics. An executable called
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cmosn_new.sdb and a map file for transferring symbols to the cmosn library must be
placed in a working directory where the tools will perform their tasks. Finally, the
AMPLE userware file blocks should also be placed in the working directory alongside the
cmosn setup file.

A symbolic link should be made from the home directory to the working directory,
which is probably called ece325.work if the ece325 script was used. Several directories
should be made in this working directory. The first is the synlib directory, which will
contain the Synopsys’ analysis of the VHDL files. A sre directory should be created
to contain the files created from the VHDL generation phase of HGENEX. Hence, src
should be loaded with the appropriate entity and connectivity VHDL files and resource
files. A db and a eddm directory should be created to contain the db file created by
Synopsys and the eddm Mentor schematics. Finally a library directory should be made
which will contain a copy of the cmosn library. This library should be copied from the
$CMOSN_LIB/physical_lib directory in Mentor using Design Manager. This is needed to
add the block cells created by the layout script to the library so that the final hierarchical
design may be created. Figure 7.7 shows the directory structure and other files needed
to run the schematic and layout scripts.

To run the schematic phase of the tool, one simply invokes the script synthesize with
certain specified arguments. Two arguments are necessary: the design and the directory.
The design argument must be first and is the name of the design to be synthesized. By

default, the design name is the name of the VHDL file without the .vhdl ending. The
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entity file is assumed to be the design name with an E.vhdl ending. The rest of the
arguments must have a specifier. The directory argument has a -dir specifier and is
the name of the symbolic link from the directory containing the synthesize script to the
working directory. Therefore, to invoke the schematic script on the design HP_4i1111,
using the runl link to the working directory containing all of the setup directories, one
executes the command synthesize HP_411111 -dir runl at the UNIX cshell prompt.

Other parameters that can be specified are the name of the db file to be generated
using the -db specifier, the name of the connectivity VHDL file using the -connect spec-
ifier, the name of the entity VHDL file using the -entity specifier, and the name of the
resource VHDL file using the -resource specifier. Once invoked, the script will synthe-
size the VHDL files and place the corresponding design in the db file. The script will
also call a translation program, Synopsys db2eddm, which will create Mentor Graphics
components and schematics. The design is ready for layout.

To run the layout phase of the tool, one invokes the script make_layout. The two
arguments needed for this script are the name of the resource file and the name of the link
to the working directory. Both arguments must have specifiers with -resource specifying
the name of the resource file and -dir specifying the link to the working directory. Thus,
to make a layout of the HP_4i1111 design with run1 as a link to the working directory, one
would execute the command: make_layout -resource HP_4i1111.res -dir runl at the UNIX
cshell prompt. The layout script will invoke the Mentor tools needed for layout. Block

cells that had sizes specified in the database file are created first, and then multiplexors
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are created using standard cells. All of these components are placed in the final layout
and are routed together. This final layout is in a cell called execute. The entire process
can take several hours to finish. Right now the HGENEX tool and the schematic/layout
scripts are run on different file systems. The scripts must be modified if all needed tools

are on one system.
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8. COMPARISON OF HGENEX TO SIMPLEX COST ANALYSIS

8.1 Introduction

This chapter compares the simplex cost analysis method to the HGENEX cost analysis
method. If the simplex method and the HGENEX tools achieve similar cost ratios, then
generating layouts to estimate cost is not worth the trouble. However, if HGENEX
produces different but reasonable results, it may be useful to have a tool that can estimate
cost by generating a layout. Such a tool can also be much expanded and improved to

become more useful to the architect.

8.2 HGENEX vs. Simplex Method

The HGENEX tool creates a layout for the functional units used in the processor. It
does not generate a layout for other portions of the chip, such as the fetch, decode, and
issue stages. Therefore, these other sizes must be added to the area HGENEX produces

to determine a final layout size for HGENEX. Figure 8.1 gives equations determining total
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chip area based on the equations in Chapter 4. Table 8.1 shows the comparison between
the simplex method and HGENEX. This table shows the relative costs compared to a
minimum configuration as well as the performance/cost ratios of each method. Two of
the resource configurations have the best performance/cost ratios for four-issue machines
and are highlighted in bold in the table. The {4431} and {2322} configurations were
the optimal resource configurations for an eight-issue processor and were not able to be

created because of hardware constraints set by the machines generating the layouts.

Four-Issue:
Area — (1 - Ex%)(Chipif;iM) + HGNEXArea
(1 — Ezg,)(Chiplipee ) + HGNEX 5os¢

Eight-Issue:

(1 — Exg)(Chipht) + 3 x Issue greq + HGENEX freq

Area = . ﬁggﬂ Base
(1 — Exg)(Chipyrey ') + 3 X Issue preg + HGENEX oo

Chip', S = Area of the PowerPC 604 in \2
Issue greq = Area for an Issue Unit in A\? for a Four-Issue Machine

Fx9, = Percent of Chip Area for Execution Unit

HGENEX B%¢ — HGENEX Area in A2 with One of Each Functional Unit

Area

HGENEX 4,., = HGENEX Area in A? for the Design

Figure 8.1: Equations for HGENEX Cost Analysis

As shown in Table 8.1, the areas generated from HGENEX are very high compared to
those for the simplex method. The performance/cost ratios are also very different. The

simplex method predicts that the {1222} configuration will cost more than the {2221}
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configuration because the area of a floating point unit is more than that of a branch unit.
However, Table 8.1 shows that HGENEX predicts the {2221} configuration will require
more area. From the layout in Figure 6.10, it can be seen that routing and multiplexors
make up the majority of the area. In addition, there is a great deal of space that is not
used for anything. However, the layout of the PowerPC chip micrograph shows that very
little space is wasted and the routing, while expensive, does not take up more area than
the functional units. This seems to indicate that the results generated by HGENEX need
more work to become valid. The improvements necessary for this are described in the

next section.

Table 8.1: Comparison of the HGENEX and Simplex Cost Models

Resource Configuration HGENEX Performance/Cost Simplex Performance/Cost
Branch  Memory IALU FALU | HGENEX Cost Simplex Cost Integer Floating Point Integer Floating Point

1 1 1 1 1.00 1.00 1.00 1.00 1.00 1.00

2 2 2 1 1.85 1.20 0.89 0.65 1.38 1.01

1 2 1 1 1.67 1.06 0.66 0.68 1.04 1.07

1 2 2 2 1.76 1.24 0.77 0.74 1.09 1.06

8.3 Limitations and Problems with HGENEX

One major problem apparent from the layout in Figure 6.10 is the large amount of
area in which there are no components and very little routing. In the full chip imple-
mentation, more effort would go into floorplanning to eliminate such empty space. Any
remaining unused areas would be filled by other components not part of the execution

stage. Eliminating this wasted area would greatly improve HGENEX. This could be
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achieved by better floorplanning algorithms in the layout tool or by subtracting the un-
used space from the total area. Another problem is that a two-level metal interconnect
was used for the routing. State of the art processes use a four-level metal interconnect.
Routing in these processes is much less expensive because wires can be placed on top of
each other.

Finally, the areas for the functional units are obtained by a real and very aggressive
implementation. The multiplexor areas, however, are obtained from a standard cell
design. In a real design most of the datapath would be implemented in a full custom
design style. Hence, the sizes of the multiplexors relative to the functional units are
not accurate. A more accurate layout for the execution stage would be generated if the
same design style was used throughout this part of the chip. The problem with the full
custom implementation is that automatic layout tools route the interconnect and give a
larger layout than one done by hand. Hence, a fully standard cell design or functional
unit areas based on such a design would cause HGENEX to give more accurate results.
Such areas would only be accurate relative to others generated by HGENEX. Only the
database file would need to be changed, and the present HGENEX could provide a better
cost analysis than the simplex method. Whether this is truly the case is still unknown

at this time.
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9. FUTURE WORK

Chapter 8 showed that it is not clear whether the HGENEX tool presently provides
a better cost model than does the simplex method for a superscalar microprocessor.
While HGENEX includes the cost of peripheral multiplexor components, as well as the
interconnection cost, the routing takes up too much area and the multiplexors and func-
tional units were implemented in two different design styles, making their relative areas
incorrect. More experiments need to be done using sizes of functional unit implemented
with standard cells. Assuming that such new experiments yield encouraging results for
HGENEX, further improvements could be made so that the tool would provide an even
better cost estimate and could be expanded to eliminate all mathematical formulations
for cost. Ideally, an HMDES file would be input, and a complete chip layout using a stan-
dard cell design style and working logic would be output. A path toward this eventual
goal is presented.

First, the execution stage, as presently defined, does not have any input control

signals. The first change would be to add an input control field specifying the control
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for each of the functional units and would be quite straightforward. This could be added
to HGEN_PARMS and would tell the schematic and synthesis tools to add extra ports
and interconnections for the signals. This would probably not impact the size of the
chip greatly, but the routing cost would increase because there would be more wires to
interconnect and hence more constraints.

Another improvement would be to alter HGENEX so that multiple components with
more than one stage would not be cross-connected, as illustrated in Figure 6.5. This
could be an option in HGEN_PARMS. An even better, but more difficult solution, would
be to change the MDES allowing for more precise connectivity information. The simple
connectivity algorithm could be eliminated because exact connections would be specified.
However, modifying the MDES would be very challenging since it is presently used by
IMPACT and such changes could cause problems for the compiler. Another change
would be to compress the stages so that a 15-stage floating point division unit with
only one input and output for each stage, for example, would be compressed to a single
component. This would reduce the number of components and the wiring required for
the design, greatly speeding up the run time of the synthesis.

The functional units are currently specified in a database file containing sizes of each
stage and resource. Instead of simple size information, a complete and working layout
could be constructed out of standard cells if the appropriate specifications were input.
A file would specify the exact functionality of an integer arithmetic unit and HGENEX

could output a standard cell design that would be fully functional. While this would not
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give accurate cost information in absolute terms because the standard cell design would
take up more area than an aggressive implementation, it would give an accurate cost
relative to other standard cell-based designs. This feature could also help the designer
to achieve proper functionality and testing of new architectural features.

In Chapter 8, it was seen that a two-level metal process makes the routing of the
components very expensive. State-of-the-art processes used in the PowerPC architecture
use a four-level metal process [3]. Going to a process with more metal layers will reduce
the interconnect area required because more levels can be used to do horizontal and
vertical routing. Thus, if a state-of-the-art process using more interconnect levels were
used with HGENEX, the routing costs would be much less pessimistic. To implement a
new process with HGENEX, another standard cell library and process technology would
have to be used in IC Station.

Finally, more areas of the microprocessor could be incorporated into the HGENEX
tool. The fetch, issue, and decode stages would be generated along with the control
section of the processor given the instruction set and available resources. All of these
macro cells could then be put together so that an estimate of total chip area could be
achieved, eliminating the need for a mathematical formulation to add in the areas of the
other units. This would aid the architect in weighing the tradeoffs of various architectural

features.
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10. CONCLUSIONS

This thesis described two methods of determining cost for superscalar microproces-
sors: the simplex cost method (Chapter 4) and the HGENEX method (Chapter 6). The
simplex method was based solely on a mathematical formula, while the HGENEX method
tried to estimate cost by generating a layout for the execution stage, a crucial part of
the IC. HGENEX produced layouts that were much larger than areas predicted by the
simplex formula. The layout was not realistic because a two-level metal process was used,
thereby overestimating routing costs, and the sizes of the components used were based
on different design styles. More experiments are needed to determine whether HGENEX
can produce more accurate cost numbers than the simplex method.

Performances of different superscalar microprocessors were also evaluated using the
IMPACT compiler. The clock cycle count was estimated from the instruction schedule
the compiler produced. Performance data were combined with cost data obtained from
the simplex method to generate performance/cost ratios. The highest ratio was found for

all possible configurations of four-issue and eight-issue superscalar processors assuming
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branch, memory, integer ALU, and floating point ALU functional units. The configu-
ration with the highest ratio for a four-issue machine running integer benchmarks was
{2 branch, 2 memory, 2 TALU, 1 FALU}. When running floating point benchmarks, the
best configuration was {1211}. For an eight-issue machine using the same functional
units, the configuration with the highest performance/cost ratio for integer benchmarks
was {4431}. For floating point benchmarks, it was {2322}. All such configurations
achieved at least 80% of the maximum possible performance (n-issue width, with n of

each functional unit) when running one particular type of benchmark.
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APPENDIX A. COMPLEX EXAMPLE: HMDES

To illustrate HGENEX’s ability to be versatile and also to handle more complicated
examples, a complete design from MDES to layout is shown. All intermediate steps such
as the VHDL files, resource file, and schematic are also included. Here the Resource and

ResTables sections of the HMDES file are shown.

(Resources declaration
slot[0..1]
Hialu_0[0..1]
Hfalu_O
Hmem_0[0..1]
Hbranch
out[0..1]

end)

(ResTables declaration

RL_INOP (
(slot 0)
(out 1)
)
RL_IAlu (
(slot 0)

(Hialu_0 0..3)
(out 4)



RL_ICmp (
(slot 0)
(Hialu_0 0)
(Hbranch 0..1)
(out 2)
)
RL_IBr (
(slot 0)
(Hbranch 0)
(out 1)
)
RL_IBr2 (
(slot 0)
(Hbranch 0)
(Hmem_0 1)
(out 2)
)
RL_FPAlu (
(slot 0)
(Hfalu_0 0)
(out 1)
)
RL_FPMul2 (
(slot 0)
(Hfalu_0 0..1)
(out 2)
)
RL_FPAluMul (
(slot 0)
(Hfalu_0 0)
(Hialu_0 0)
(out 2)
)
RL_FPMul3 (
(slot 0)
(Hfalu_0 0)
(out 1)
)
RL_FPDivS (
(slot 0)

(Hfalu_0 0)



end)

RL_FPDivD

RL_Load

RL_Store

N\

(out 1)

(slot 0)
(Hfalu_0 0..4)
(out 5)

(slot 0)
(Hmem_0 0..1)
(out 2)

(slot 0)
(Hmem_0 0)
(Hfalu_0 1)
(out 2)

65
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APPENDIX B. COMPLEX EXAMPLE: ENTITY FILE

This is the entity VHDL file that HGENEX creates from the MDES file given in

Appendix A. The entity file defines all of the components to be used in the design.

ENTITY mux1S_4B IS
PORT (i0, i1 : IN BIT_VECTOR (3 DOWNTO 0);
sel : IN BIT,;
0 : OUT BIT_VECTOR (3 DOWNTO 0));
END mux1S_4B;

ARCHITECTURE rtl OF mux1S_4B IS
BEGIN
WITH sel SELECT
o <=
i0 WHEN °’0’,
il WHEN OTHERS;
END rtl;

ENTITY mux2S_4B IS
PORT (i0, i1, i2, i3 : IN BIT_VECTOR (3 DOWNTO 0);
sel : IN BIT_VECTOR (1 DOWNTO 0);
0 : OUT BIT_VECTOR (3 DOWNTO 0));
END mux2S_4B;
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ARCHITECTURE rtl OF mux2S_4B IS
BEGIN
WITH sel SELECT
o <=

i0 WHEN "00",

il WHEN "O1",

i2 WHEN "10",

i3 WHEN OTHERS;
END rtl;

ENTITY mux3S_4B IS
PORT (io, i1, i2, i3, i4, i5, i6, i7 : IN BIT_VECTOR (3 DOWNTO 0);
sel : IN BIT_VECTOR (2 DOWNTO 0);
0 : OUT BIT_VECTOR (3 DOWNTO 0));
END mux3S_4B;

ARCHITECTURE rtl OF mux3S_4B IS
BEGIN
WITH sel SELECT
o <=
i0 WHEN "000",
il WHEN "0O01",
i2 WHEN "010",
i3 WHEN "011",
i4 WHEN "100",
i5 WHEN "101",
i6 WHEN "110",
17 WHEN OTHERS;
END rtl;

ENTITY mux4S_4B IS
PORT (io, i1, i2, i3, i4, i5, ie6, i7, i8, i9, i10, il1, i12,
i13, i14, i15 : IN BIT_VECTOR (3 DOWNTO 0);
sel : IN BIT_VECTOR (3 DOWNTO O0);
0 : OUT BIT_VECTOR (3 DOWNTO 0));
END mux4S_4B;

ARCHITECTURE rtl OF mux4S_4B IS
BEGIN
WITH sel SELECT
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o <=
i0 WHEN "0000",
il WHEN "0001",
i2 WHEN "0010",
i3 WHEN "O0O11",
i4 WHEN "0100",
i5 WHEN "O0101",
i6 WHEN "0110",
i7 WHEN "O111",
i8 WHEN "1000",
i9 WHEN "1001",
i10 WHEN "1010",
ill WHEN "1011",
i12 WHEN "1100",
i13 WHEN "1101",
il4 WHEN "1110",
i15 WHEN OTHERS;
END rtl;

ENTITY Hialu_0_0_S1 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hialu_0_0_S1;

ARCHITECTURE behavior OF Hialu_0_0_S1 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hialu_0_0_S2 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hialu_0_0_S2;

ARCHITECTURE behavior OF Hialu_0_0_S2 IS
BEGIN

o <= NOT 1i;

END behavior;
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ENTITY Hialu 0_0_S3 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hialu_0_0_S3;

ARCHITECTURE behavior OF Hialu_0_0_S3 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hialu_0_0_S4 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END Hialu_0_0_S4;

ARCHITECTURE behavior OF Hialu_0_0_S4 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hialu 0_1_S1 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hialu_O_1_S1;

ARCHITECTURE behavior OF Hialu_0_1_S1 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hialu 0_1_S2 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hialu_0_1_82;

ARCHITECTURE behavior OF Hialu_0_1_S2 IS
BEGIN

o <= NOT 1i;

END behavior;
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ENTITY Hialu_0_1_S3 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hialu_0_1_83;

ARCHITECTURE behavior OF Hialu_0_1_S3 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hialu_0_1_S4 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hialu_0_1_54;

ARCHITECTURE behavior OF Hialu_0_1_S4 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hbranch_0_S1 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END Hbranch_0_S1;

ARCHITECTURE behavior OF Hbranch_0_S1 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hbranch_0_S2 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END Hbranch_0_S2;

ARCHITECTURE behavior OF Hbranch_0_S2 IS
BEGIN
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o <= NOT 1i;
END behavior;

ENTITY Hmem_0_0_S1 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hmem_0_0_S1;

ARCHITECTURE behavior OF Hmem_0_0_S1 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hmem_0_0_S2 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hmem_0_0_S2;

ARCHITECTURE behavior OF Hmem_0_0_S2 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hmem_0_1_S1 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END Hmem_0_1_S1;

ARCHITECTURE behavior OF Hmem_0_1_S1 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hmem_0_1_S2 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hmem_0_1_S2;
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ARCHITECTURE behavior OF Hmem_0_1_S2 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hfalu 0_0_S1 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hfalu_0_0_S1;

ARCHITECTURE behavior OF Hfalu_0_0_S1 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hfalu 0_0_S2 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hfalu_0_0_S2;

ARCHITECTURE behavior OF Hfalu_0_0_S2 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hfalu_0_0_S3 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hfalu_0_0_S3;

ARCHITECTURE behavior OF Hfalu_0_0_S3 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hfalu_0_0_S4 IS

PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
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END Hfalu_0_0_54;

ARCHITECTURE behavior OF Hfalu_0_0_S4 IS
BEGIN

o <= NOT 1i;

END behavior;

ENTITY Hfalu_0_0_S5 IS
PORT (i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));

END Hfalu_0_0_S5;

ARCHITECTURE behavior OF Hfalu_0_0_S5 IS
BEGIN

o <= NOT 1i;

END behavior;
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APPENDIX C. COMPLEX EXAMPLE: CONNECTIVITY FILE

This is the connectivity VHDL file that HGENEX creates from the MDES file given

in Appendix A. The connectivity file specifies how all components are connected.

ENTITY execute IS
PORT (slot_inO, slot_inl : IN BIT_VECTOR (3 DOWNTO O);
icp0O, icpl, icp2, icp3, icp4,
icpb, 1icp6, icp7, icp8, icp9, icplO0,
icpll, icpl2, icpl3, icpl4, icplb, icpl6,
icpl7, icpl8, icpl9, icp20, icp21l, icp22,
icp23, icp24 : IN BIT;
outputO, outputl : OUT BIT_VECTOR (3 DOWNTO 0));
END execute;

ARCHITECTURE structure OF execute IS

COMPONENT Hialu_0_0_S1
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hialu_0_0_S2
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;

COMPONENT Hialu_0_0_S3
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PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hialu_0_0_S4
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hialu_0_1_S1
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hialu_0_1_S2
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hialu_0_1_S3
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hialu_0_1_S4
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hbranch_0_S1
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hbranch_0_S2
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hmem_0_0_S1
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hmem_0_0_S2
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hmem_0_1_S1

PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
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END COMPONENT;
COMPONENT Hmem_0_1_S2
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hfalu_0_0_S1
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hfalu_0_0_S2
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hfalu_0_0_S3
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hfalu_0_0_S4
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT Hfalu_0_0_S5
PORT(i: IN BIT_VECTOR (3 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;

COMPONENT mux1S_4B

PORT(i0: IN BIT_VECTOR (3 DOWNTO 0); il:

sel: IN BIT;

o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT mux2S_4B

PORT(i0: IN BIT_VECTOR (3 DOWNTO 0); il:

i2: IN BIT_VECTOR (3 DOWNTO 0); i3:
sel: IN BIT_VECTOR (1 DOWNTO 0);
o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;
COMPONENT mux3S_4B

PORT(i0: IN BIT_VECTOR (3 DOWNTO 0); il:

i2: IN BIT_VECTOR (3 DOWNTO 0); i3:
i4: IN BIT_VECTOR (3 DOWNTO 0); ib:
i6: IN BIT_VECTOR (3 DOWNTO 0); i7:
sel: IN BIT_VECTOR (2 DOWNTO 0);

IN BIT_VECTOR (3 DOWNTO 0);

IN BIT_VECTOR (3 DOWNTO 0);
IN BIT_VECTOR (3 DOWNTO 0);

IN BIT_VECTOR (3 DOWNTO 0);
IN BIT_VECTOR (3 DOWNTO 0);
IN BIT_VECTOR (3 DOWNTO O0);
IN BIT_VECTOR (3 DOWNTO 0);
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o: OUT BIT_VECTOR (3 DOWNTO 0));
END COMPONENT;

NENT mux4S_4B

PORT(i0: IN BIT_VECTOR (3 DOWNTO 0); il: IN BIT_VECTOR (3 DOWNTO 0);
i2: IN BIT_VECTOR (3 DOWNTO 0); i3: IN BIT_VECTOR (3 DOWNTO 0);
i4: IN BIT_VECTOR (3 DOWNTO 0); i5: IN BIT_VECTOR (3 DOWNTO 0);
i6: IN BIT_VECTOR (3 DOWNTO 0); i7: IN BIT_VECTOR (3 DOWNTO 0);
i8: IN BIT_VECTOR (3 DOWNTO 0); i9: IN BIT_VECTOR (3 DOWNTO 0);
i10: IN BIT_VECTOR (3 DOWNTO 0); ill: IN BIT_VECTOR (3 DOWNTO 0);
i12: IN BIT_VECTOR (3 DOWNTO 0); i13: IN BIT_VECTOR (3 DOWNTO 0);
i14: IN BIT_VECTOR (3 DOWNTO 0); i15: IN BIT_VECTOR (3 DOWNTO 0);
sel: IN BIT_VECTOR (3 DOWNTO 0);

o: OUT BIT_VECTOR (3 DOWNTO 0));

END C

SIGNA

BEGIN
MO :

Co
C1
C2
Cc3
M1

C4 :
M2
C5
M3
C6
M4
c7
M5

C8
M6

OMPONENT;

L GROUND, sig2, sig3, sig4, sigh, sig6, sig7, sig8, sig9, siglo,
sigll, sigl2, sigl3, sigl4, sigl5, sigl6, sigl?, sigl8, sigl9,
sig20, sig2l, sig22, sig23, sig24, sig2b, sig26, sig27, sig2s,

sig29, sig30, sig31l

: BIT_VECTOR (3 DOWNTO 0);

mux2S_4B PORT MAP (i0 => slot_in0, il => slot_inl, i2 => sig27,
i3 => GROUND, sel(1) => icpO, sel(0) => icpl, o => sig2);

: Hialu_0_0_S1 PORT MAP (i => sig2, o => sig3);
: Hialu_0_0_S2 PORT MAP (i => sig3, o => sig4);
: Hialu_0_0_S3 PORT MAP (i => sig4, o => sigh);
: Hialu_0_0_S4 PORT MAP (i => sigh, o => sigh);
: mux2S_4B PORT MAP (i0 => slot_inO, il => slot_inl, i2 => sig27,

i3 => GROUND, sel(1) => icp2, sel(0) => icp3, o => sigT7);

Hialu_0_1_S1 PORT

: mux1S_4B PORT MAP
: Hialu_0_1_S2 PORT

: mux1S_4B PORT MAP
: Hialu_0_1_S3 PORT

: mux1S_4B PORT MAP
: Hialu_0_1_S4 PORT

: mux1S_4B PORT MAP

o => siglh);

: Hbranch_0_S1 PORT
: mux2S_4B PORT MAP

GROUND, sel(1l) =>

MAP (i
(10 =>
MAP (i
(10 =>
MAP (i
(10 =>
MAP (i
(10 =>

MAP (i
(10 =>

=> §ig7, o => sig8);

sig3, il => sig8, sel =>icp4, o => sig9);
=> sig9, o => sigl0);

sig4, il => sigl0, sel =>icp5, o => sigll);
=> gigll, o => sigl2);

sigh, il => sigl2, sel =>icp6, o => sigl3);
=> sigl3, o => sigld);

slot_inO, il => slot_inl, sel =>icp7,

=> siglh, o => sigl6);
sig3, il => sig8, i2 => sigl6, i3 =>

icp8, sel(0) => icp9, o => sigl7);



C9
M7

C10
C11
M8

C12
M9

C13
M10

C14

C15
C16
C17
C18
M11

M12

: Hfalu_0_0_S2 PORT MAP (i => sig27, o
: Hfalu_0_0_S3 PORT MAP (i => sig28, o => sig29);
: Hfalu_0_0_S4 PORT MAP (i => sig29, o
: Hfalu_0_0_S5 PORT MAP (i => sig30, o => sig31);
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: Hbranch_0_S2 PORT MAP (i => sigl7, o => sigl8);
: mux2S_4B PORT MAP (i0 => sigl6, il => slot_inO, i2 => slot_inl,

i3 => GROUND, sel(1) => icpl0, sel(0) => icpll, o => sigl9);

: Hmem_0_0_S1 PORT MAP (i => sigl9, o => sig20);
: Hmem_0_0_S2 PORT MAP (i => sig20, o => sig21);
: mux2S_4B PORT MAP (i0 => sigl6, il => slot_inO, i2 => slot_inl,

i3 => GROUND, sel(1) => icpl2, sel(0) => icpl3, o => sig22);

: Hmem_0_1_S1 PORT MAP (i => sig22, o => sig23);

: mux1S_4B PORT MAP (i0 => sig20, il => sig23, sel =>icpl4,

0 => sig24);

: Hmem_0_1_S2 PORT MAP (i => sig24, o => sig2b);
: mux2S_4B PORT MAP (i0 => slot_in0O, il => slot_inl, i2 => sig20,

i3 => sig23, sel(1l) => icplb, sel(0) => icpl6, o => sig26);
Hfalu_0_0_S1 PORT MAP (i => sig26, o => sig27);
=> 5ig28);

=> $ig30);

: mux4S_4B PORT MAP (i0 => sig6, il => sigl4, i2 => sigl8, i3 =>

sigl6, i4 => sig20, ib5 => sig23, i6 => sig27, i7 => sig28,

i8 => sig3, i9 => sig8, i10 => sigdl, ill => sig2l, i12 =>
sig25, i13 => GROUND, i14 => GROUND, il5 => GROUND, sel(3) =>
icpl7, sel(2) => icpl8, sel(l) => icpl9, sel(0) => icp20, o =>
output0) ;

: mux4S_4B PORT MAP (i0 => sig6, il => sigl4, i2 => sigl8, i3 =>

sigl6, i4 => sig20, ib5 => sig23, i6 => sig27, i7 => sig28,

i8 => sig3, 19 => sig8, 110 => sig3l, i1l => sig2l, il12 =>
sig25, i13 => GROUND, i14 => GROUND, il5 => GROUND, sel(3) =>
icp21, sel(2) => icp22, sel(1l) => icp23, sel(0) => icp24, o =>
outputl) ;

END structure;

—-— Wire Count: 144

—-- Multiplexor Count:

-— 4 Bit Mux 2 X 2: b
-— 4 Bit Mux 3 X 4: 6
-- 4 Bit Mux 5 X 16: 2
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APPENDIX D. COMPLEX EXAMPLE: RESOURCE FILE

This is the resource VHDL file that HGENEX creates from the MDES file given in
Appendix A. The resource file specifies the components and their sizes to the Mentor

Graphics layout tool, IC Station.

"buswidth" 4

"Hialu_0_0_S1" 4.950000
"Hialu_0_0_S2" 4.950000
"Hialu_0_0_S3" 4.950000
"Hialu_0_0_S4" 4.950000
"Hialu_0_1_S1" 4.950000
"Hialu_0_1_S2" 4.950000
"Hialu_0_1_S3" 4.950000
"Hialu_0_1_S4" 4.950000
"Hbranch_0_S1" 2.510000
"Hbranch_0_S2" 2.510000
"Hmem_0_0_S1" 1.260000
"Hmem_0_0_S2" 2.260000
"Hmem_0_1_S1" 3.260000
"Hmem_0_1_S2" 4.260000
"Hfalu_0_0_S1" 3.500000
"Hfalu_0_0_S2" 3.500000
"Hfalu_0_0_S3" 3.500000



"Hfalu_0_0_S4" 3.500000
"Hfalu_0_0_S5" 3.500000
"end"

"mux1S_4B_0"
"mux1S_4B_1"
"mux1S_4B_2"
"mux1S_4B_3"
"mux1S_4B_4"
"mux2S_4B_0"
"mux2S_4B_1"
"mux2S_4B_2"
"mux2S_4B_3"
"mux2S_4B_4"
"mux2S_4B_5"
"mux4S_4B_0"
"mux4S_4B_1"

"final_end"
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APPENDIX E. COMPLEX EXAMPLE: SCHEMATIC

This is the schematic of the synthesized VHDL files given in Appendices B and C.

icpd>

sepal>
sep2>

sepe>

sepil>

T puxts_aghs 1
-1
v

slot_ina(3:B >

lot_in(3: D>

ieps>

epB >l

==

R ==

Hfplog o AP.l. 03

Hfple B o Lapg

mux45_4B

o> outputicaiay

nux4S_1B

scp120>

o> outputacare
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APPENDIX F. COMPLEX EXAMPLE: LAYOUT

This is the final layout generated from the schematic in Appendix E. The area of this

layout is 155, 602, 1922,

Hiolu 01 52 =
[RIT A =" =2
Hiolu 0151
W 051 lt-tlmB Hialu 0.0 63
Hralu §0.81
Hiolu 0 052
Hialu 4 081
H 181
Hiolu 0 054

Hiolu 0 1 54




