
DATA DEPENDENCE ANALYSIS FOR FORTRAN PROGRAMS

IN THE IMPACT COMPILER

BY

GRANT EDWARD HAAB

B.S., University of Illinois at Urbana-Champaign, 1990

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

iii

ACKNOWLEDGEMENTS

I would �rst like to thank my advisor, Professor Wen-mei Hwu, for his guidance and

support. I consider myself very fortunate to have the opportunity to work with someone

of his caliber.

This project would not have been possible without the support of the entire IMPACT

research group. Nancy Warter, Krishna Subramanian, Ben-Chung Cheng and David

August helped me to develop the Pcode module, which is based on the Hcode module

developed by Pohua Chang. Krishna Subramanian, Sadun Anik, Yoji Yamada, Dan

Lavery, Teresa Johnson and Professor Chung-Ta King developed optimizations and code

transformations using the Pcode dependence analysis package. David Gallagher built

a C-language dependence analysis package using much of my existing implementation

and propagated the data dependence information through the Hcode and Lcode modules.

Thanks to everyone in the IMPACT research group who contributed to this work through

discussions, comments, and implementation.

Two other research groups �gured prominently in the development of the IMPACT

data dependence analyzer. Many thanks to Professor William Pugh and his research

group for developing the Omega data dependence test and for their many comments,

iv

suggestions, and bug �xes. In addition, thanks to Bob Rau, Mike Shlansker and Vinod

Kathail of Hewlett-Packard Laboratories for their valuable insights regarding data de-

pendence analysis and code optimization.

Thanks to the Fannie and John Hertz Foundation, which awarded me a Graduate

Fellowship, providing generous �nancial support for my graduate studies.

Finally, I would like to thank my spouse Matthew, my brothers Greg, Galen, and

Gavin, Matt's sister Jennifer and brother in-law Michael, my parents, Paul and Kathy,

and Matt's parents Paul and Joann, for their love and support during my graduate

studies.

v

DEDICATION

To my spouse Matthew Hesson-McInnis for your love, friendship and support.

vi

TABLE OF CONTENTS

Page

1. INTRODUCTION : 1

2. DATA DEPENDENCE ANALYSIS BACKGROUND : : : : : : : : : : : : 3

2.1 Data Dependence Analysis Concept : : : : : : : : : : : : : : : : : : : 3
2.2 Value-Based and Memory-Based Data Dependences : : : : : : : : : : 4
2.3 Loop-Carried Data Dependences : 5

2.3.1 General loop-carried dependence analysis problem : : : : : : : 6
2.3.2 Speci�c example problem solution : : : : : : : : : : : : : : : : 9
2.3.3 Data dependence abstractions : : : : : : : : : : : : : : : : : : 10

3. IMPACT COMPILER OVERVIEW : 15

3.1 The Front-End Compiler Modules : 17
3.1.1 The f2c Fortran to C language translator : : : : : : : : : : : 17

3.1.2 IMPACT preprocessing : 18

3.1.3 Intermediate representation generation : : : : : : : : : : : : : 20
3.2 The Pcode Compiler Module : 20

3.2.1 Intermediate representation : : : : : : : : : : : : : : : : : : : 20
3.2.2 Analysis tools : 22

3.2.3 Transformations and optimizations : : : : : : : : : : : : : : : 25

3.3 The Hcode Compiler Module : 26
3.4 The Lcode Compiler Module : 26

3.5 Architectures Supported by the Compiler : : : : : : : : : : : : : : : : 27

4. VARIABLE REFERENCE ANALYSIS : 28

4.1 Access Table Data Structures : 28

4.1.1 Variable entry data structure : : : : : : : : : : : : : : : : : : 30

4.1.2 Variable type data structure : : : : : : : : : : : : : : : : : : : 32

4.1.3 Variable access data structure : : : : : : : : : : : : : : : : : : 34

vii

4.2 Variable Aliasing Considerations : 36

4.2.1 Aggregate variable aliasing : 37

4.2.2 Function formal parameter aliasing : : : : : : : : : : : : : : : 38

4.2.3 Function call side e�ects and aliases : : : : : : : : : : : : : : : 39

4.2.4 Equivalenced variable disambiguation : : : : : : : : : : : : : : 41

4.3 Array Reference Delinearization : 44

4.3.1 Formal parameter delinearization : : : : : : : : : : : : : : : : 48

4.3.2 Local and common block array delinearization : : : : : : : : : 54

4.4 Array Reference Subscript Analysis : : : : : : : : : : : : : : : : : : : 61

4.4.1 Conversion to a�ne representation : : : : : : : : : : : : : : : 62

4.4.2 Identi�cation of modi�ed variables : : : : : : : : : : : : : : : 67

5. DATA DEPENDENCE ANALYSIS : 70
5.1 The Omega Data Dependence Test : : : : : : : : : : : : : : : : : : : 71
5.2 Loop Preparation : 73

5.2.1 Loop standardization : 74
5.2.2 Loop nesting determination : : : : : : : : : : : : : : : : : : : 76
5.2.3 Loop bound analysis : 76

5.3 Reference Ordering Determination : 78
5.3.1 Non-loop-carried reachable control
ow analysis : : : : : : : : 79

5.3.2 Intra-expression execution order analysis : : : : : : : : : : : : 82
5.4 Data Dependence Graph Generation : : : : : : : : : : : : : : : : : : 83

5.4.1 Pairwise reference intersection : : : : : : : : : : : : : : : : : : 84

5.4.2 Omega Test driver : 87
5.4.3 Data dependence graph representation : : : : : : : : : : : : : 90

6. CONCLUSIONS : 93

REFERENCES : 94

viii

LIST OF TABLES

Table Page

2.1: Data Dependence Relation Types. : : : : : : : : : : : : : : : : : : : 4
5.1: Orders of Evaluation for Expression Operands. : : : : : : : : : : : : : 83

ix

LIST OF FIGURES

Figure Page

2.1: Code Fragment for Loop-carried Dependence Analysis Problem. : : : 7
2.2: Code Fragment for Dependence Problem Example. : : : : : : : : : : 10
3.1: Organization of the IMPACT Compiler. : : : : : : : : : : : : : : : : 16

4.1: Organization of the Access Table Data Structures. : : : : : : : : : : 29
4.2: F2c Translation of Common Blocks and Complex Variables. : : : : : 31

4.3: F2c Translation of Equivalenced Arrays of Di�erent Type. : : : : : : 32
4.4: F2c Translation of O�set Equivalenced Arrays. : : : : : : : : : : : : 42
4.5: Array Linearization Example. : 45

4.6: F2c Linearization of Formal Parameter Arrays. : : : : : : : : : : : : 49
4.7: Formal Parameter Array Delinearization Example. : : : : : : : : : : 50

4.8: F2c Linearization of Formal Parameter Arrays with Constant Dimension
Size. : 53

4.9: F2c Linearization of Local Arrays. : : : : : : : : : : : : : : : : : : : 55

4.10: Local Array Delinearization Example. : : : : : : : : : : : : : : : : : 57
4.11: Algorithm for Building an A�ne Expression. : : : : : : : : : : : : : 63

4.12: Algorithm for Determining Whether an Expression Is Linear. : : : : 64

4.13: Algorithm for Finding the Coe�cient of an A�ne Term. : : : : : : : 66
5.1: Algorithm for Calculating Reaching Basic Blocks. : : : : : : : : : : 81

5.2: Algorithm for Intersecting References in Access Table. : : : : : : : : 85
5.3: Algorithm for Preparing Reference Pairs for the Omega Test. : : : : 88

1

1. INTRODUCTION

Optimizing compilers have progressed to the point that they require detailed pro-

gram information to perform aggressive optimization. Program transformations prove

invaluable for memory system optimization and program parallelization. To transform

programs without invalidating their results, an optimizing compiler must establish the

data dependence relationships among the variables accesses in the program. Data de-

pendence relationships summarize the
ow of values through the program and provide

constraints on program restructuring.

For Fortran programs, the transformations rely heavily on the dependence relation-

ships of array variables in the presence of nested loops. Although a standard data
ow

analysis can determine some of these relationships for scalar variables, more sophisticated

techniques must be utilized for array variables to take into account the array subscript

information and loop bound and nesting information.

This thesis presents the design and implementation of an e�ective data dependence

analysis package for Fortran programs within the framework of the IMPACT compiler [1].

2

The data dependence analysis package is built around the Omega Test [2], which solves

linear diophantine equations to determine the program data dependence relationships.

However, extensive program analysis and data structure preparation are necessary pre-

requisites for a data dependence analyzer to provide useful information for loop transfor-

mations. Subscript-by-subscript data dependence analysis for arrays, handling of array

subscript variables that are not loop indices, and variable aliasing considerations are a

few of the features which must be present to e�ectively analyze real programs. Fur-

thermore, the program references must be organized, classi�ed, and analyzed before data

dependence analysis is applied. Finally, a data dependence analyzer must be able to store

the analysis results in a reasonably compact and e�ective representation. The IMPACT

data dependence analysis package satis�es all these requirements and provides compiler

writers with an e�ective analysis framework for enabling valid program transformations

for optimization.

The rest of this thesis is organized into several chapters. Chapter 2 presents the for-

mal background material for a clearer understanding of data dependence analysis. An

overview of the IMPACT compiler focusing on the modules relevant to data dependence

analysis is given in Chapter 3. Chapter 4 presents the variable reference analysis process,

which is necessary to support data dependence analysis as well as program transforma-

tions. The array data dependence analysis process is detailed in Chapter 5. Finally,

Chapter 6 presents conclusions.

3

2. DATA DEPENDENCE ANALYSIS BACKGROUND

Data dependence analysis is a very broad topic which is summarized here for the

reader's understanding. A more detailed discussion of the concepts introduced here can

be found in the following references: [3], [4], [5], [6].

2.1 Data Dependence Analysis Concept

Data dependences are relationships between two accesses to the same memory location

in a program and usually indicate the order in which these accesses must be executed for

correct program results. A data dependence exists from memory reference A to memory

reference B if the references access the same memory location and there exists a possible

execution path through the program from reference A to reference B. Table 2.1 shows the

four possible data dependence types depending on whether the references to A and B are

read accesses or write accesses. Also shown in Table 2.1 is the symbolic representation

of the dependence relation denoted by the symbol �.

4

Table 2.1: Data Dependence Relation Types.

Reference A Reference B Dependence Type Dependence Relation

write read Flow A �f B

write write Output A �o B

read write Anti A �a B

read read Input A �i B

Flow dependences are the only \true" dependences in the sense that they represent

the
ow of information from a write to a read of the same memory location. Output and

anti-dependences are due only to the reuse of memory locations present in imperative,

sequential languages such as Fortran and C. Since these dependences can always be elim-

inated in a semantically valid way by introducing new variables into the program, they

are sometimes referred to as arti�cial dependences. Program transformations need not

consider input dependences in order to insure that correct program results are obtained

for Von Neumann computers. Input dependences do, however, impart information on

the temporal order of read references to the same memory location, which proves useful

for some memory optimizations such as scalar replacement [7].

2.2 Value-Based and Memory-Based Data Dependences

The de�nition of data dependence given in Section 2.1 is that of a memory-based data

dependence. Memory-based dependences indicate that the associated pair of references

access the same memory location, but imply nothing about the values which are accessed.

Value-based data dependences, on the other hand, indicate that the same value in memory

is accessed by both references involved in the dependence. Thus, the de�nition of data

5

dependence is extended in the following manner: A value-based data dependence exists

from reference A to reference B if, and only if, a memory-based data dependence exists

from A to B, and the memory location accessed by references A and B is not modi�ed

along any possible execution path in the program from reference A to reference B.

For scalar variables, value-based dependences are easily identi�ed using a reaching

de�nitions and uses data
ow analysis [8]. Memory-based dependences can then be

calculated by taking the transitive closure of the set of value-based dependences. In

contrast, determination of value-based dependences for array variables requires more

sophisticated and computationally expensive analysis techniques [9], [10].

While many program optimizations, such as code scheduling, require only memory-

based dependences for validity checking, some require value-based dependences. De-

termination of value-based dependences are necessary for optimizations such as scalar

replacement [7], which require knowledge of the
ow of values from one reference to

another.

2.3 Loop-Carried Data Dependences

To insure the validity of a loop transformation, the compiler designer often requires

information about which loop iterations of the loops in a nest are involved in the depen-

dence relations for references in the loop nest. Speci�cally, data dependences which occur

from a reference of a loop iteration to another reference in another iteration are called

6

loop-carried dependences. If the loop iterations may be reordered by a program trans-

formation, the iteration ordering speci�ed by the loop-carried data dependences must

be respected to insure the validity of the transformation. Data dependences which do

not span more than one iteration of any loop enclosing both references are termed non-

loop-carried dependences. Data dependences between both scalar references and array

references may be of either type: loop-carried or non-loop-carried.

2.3.1 General loop-carried dependence analysis problem

In this section, we describe a general loop-carried data dependence analysis problem

for a loop nest and show how the system of equations and inequalities for solving this

problem is determined.

In Figure 2.1, a fragment of code is given to describe the data dependence analysis

problem in general. Although most of the language constructs in the code fragment

follow Fortran syntax, array reference subscripts are enclosed in square braces, following

C syntax, to ease the identi�cation and separation of the subscripts. Only the code

relevant to the analysis problem is shown | other loops and statements may exist between

the lines shown. The code fragment is a nest of loops containing two references to the

same m-dimensional array, a. All capitalized variables and functions are important in

de�ning the data dependence analysis problem. Note that the subscripts on the index

variables indicate how deeply the associated loops are nested. Only reference A is nested

within the loops with index variables In+1; : : : ; In+p, and only reference B is nested

7

do I1 = L1; U1
. . .

do In = Ln(I1; : : : ; In�1); Un(I1; : : : ; In�1)

do In+1 = Ln+1(I1; : : : ; In); Un+1(I1; : : : ; In)
. . .

do In+p = Ln+p(I1; : : : ; In+p�1); Un+p(I1; : : : ; In+p�1)

reference A: a[S1(I1; : : : ; In+p)] : : : [Sm(I1; : : : ; In+p)]

enddo In+p
...

enddo In+1

do I
0

n+1 = L
0

n+1(I1; : : : ; In); U
0

n+1(I1; : : : ; In)
. . .

do I
0

n+p
0 = L

0

n+p
0 (I1; : : : ; In; I

0

n+1; : : : ; I
0

n+p
0

�1
); U

0

n+p
0 (I1; : : : ; In; I

0

n+1; : : : ; I
0

n+p
0

�1
)

reference B: a[S
0

1(I1; : : : ; In; I
0

n+1; : : : ; I
0

n+p
0)] : : : [S

0

m
(I1; : : : ; In; I

0

n+1; : : : ; I
0

n+p
0)]

enddo I
0

n+p
0

...

enddo I
0

n+1

enddo In
...

enddo I1

Figure 2.1: Code Fragment for Loop-carried Dependence Analysis Problem.

within the loops with index variables I
0

n+1; : : : ; I
0

n+p
0 . Both references are nested within

the loops with index variables I1; : : : ; In. Each array subscript for each reference and

each upper and lower loop bound is a function of the enclosing-loop index variables.

Since each reference is accessed multiple times during the execution of the loop nest,

each access instance is uniquely identi�ed by a vector of the values of the enclosing-loop

indices called the iteration vector. Suppose that the iteration vectors for references A and

8

B are de�ned as ~{ � hi1; : : : ; in+pi and ~{
0

� hi
0

1; : : : ; i
0

n+p
0 i, respectively, such that the

lower-case letters represent speci�c instances of the corresponding index variable. Note

that the access instance values for the outermost n loops in the nest may be di�erent for

the two references, which is represented by the i1; : : : ; in values for reference A, and the

i
0

1; : : : ; i
0

n values for reference B.

To determine the speci�c instances of reference A and reference B that are involved

in a dependence from reference A to reference B, the following constraints are imposed

to generate a system of equations and inequalities:

1. The instance ~{ of reference A must occur temporally before the instance ~{
0

of

reference B during program execution.

2. Each element of~{ and~{
0

must be within the range of its corresponding loop bounds.

3. The element of array a accessed by instance ~{ of reference A must be the same

element of array a accessed by instance ~{
0

of reference B.

These constraints can be formulated mathematically as

1. hi1; : : : ; ini � 1 hi
0

1; : : : ; i
0

ni; or equivalently,2 ~{(1:n) � ~{
0

(1:n)

2. Lh(~{(1:h�1)) � ih � Uh(~{(1:h�1)); 8h 2 [1 : n+p]
V

L
0

h(~{
0

(1:h�1)) � i
0

h � U
0

h(~{
0

(1:h�1)); 8h 2 [1 : n+p
0

]

1The symbol \�" represents the lexicographic ordering relation. This relation is parallel to dictionary
ordering if each letter corresponds to a vector element value.

2Only loop indices common to both references determine execution ordering of reference A instances
with respect to reference B instances.

9

3. Sh(~{) = S
0

h(~{
0

); 8h 2 [1 : m]

The system of equations and inequalities generated above can sometimes be solved for

~{ and ~{
0

over the set of integers using integer programming techniques if all the S array

subscript functions and L and U loop bound functions are linear functions of the loop

indices. This set of solutions completely enumerates the data dependences involving

these two references within the loop nest, such that ~{ provides the loop index values at

reference A, which is the source of the data dependence, and ~{
0

provides the loop index

values for reference B, which is the destination.

2.3.2 Speci�c example problem solution

The concepts just explained in Section 2.3.1 are more easily grasped through the

solution of a speci�c example. The code fragment shown in Figure 2.2 is a triply nested

loop with constant loop bounds containing two array references. We wish to determine

the pairs of iteration vectors for which a data dependence from reference A to reference B

exists.

The iteration vectors for referencesA andB are~{ � hi1; i2; i3i and~{
0

� hi
0

1; i
0

2; i
0

3i,

respectively. The three constraints described earlier generate the following set of equa-

tions and inequalities involving ~{ and ~{
0

:

1. i1 < i
0

1

W
(i1 = i

0

1

V
i2 < i

0

2)
W

(i1 = i
0

1

V
i2 = i

0

2

V
i3 < i

0

3)

2. 1 � i1; i
0

1 � 10
V

1 � i2; i
0

2 � 10
V

1 � i3; i
0

3 � 10

3. i1 + 1 = i
0

1

V
i2 = i

0

2

V
i3 � 1 = i

0

3

10

do I1 = 1; 10

do I2 = 1; 10

do I3 = 1; 10

reference A: a[I1 + 1][I2][I3 � 1]

reference B: a[I1][I2][I3]

enddo I3

enddo I2

enddo I1

Figure 2.2: Code Fragment for Dependence Problem Example.

The solution set for the dependence analysis problem can be expressed in terms of

pairs of iteration vectors of the form (~{; ~{
0

), such that the iteration vectors represent the

source and destination of the data dependence, respectively. For this speci�c example,

the solution set can be expressed as follows:

S = f (hi1; i2; i3i; hi1 + 1; i2; i3 � 1i) : 1 � i1 � 9 ^ 1 � i2 � 10 ^ 2 � i3 � 10g

Often, the solution set will contain multiple iteration vector pairs with a speci�c pat-

tern similar to the one given above. However, much more complicated solution sets are

certainly possible and do arise in practice.

2.3.3 Data dependence abstractions

Although the method of describing a loop-carried data dependence using the exact

solution set yields the most speci�c information, more compact abstractions of the data

11

dependence information often prove adequate for most optimizing compiler applications.

Furthermore, representing the exact solution set can be prohibitively expensive in cases

where the solution set is not uniform enough to represent compactly, as it is in the

dependence problem example presented in Section 2.3.2. Finally, direct enumeration of

all possible solutions may not be possible since the solution set may be in�nite due to

symbolic loop bounds. In addition, as the level of information contained in the abstraction

increases, the time complexity of the analysis algorithm tends to increase. Sometimes

direct enumeration of a �nite solution set is also prohibitively expensive in terms of the

execution time of the analysis algorithm.

The most common data dependence abstractions are distance vectors and direction

vectors, which are detailed enough to enable many transformations and optimizations,

but require very little space to represent. Often, the iteration vectors of a pair in the

data dependence problem solution have a constant vector di�erence, which is the case for

the solution presented in Section 2.3.2. These data dependences are called uniform data

dependences, and can be represented compactly by the vector di�erence of the iteration

vectors. More precisely, the distance vector (or di�erence vector) elements for a given

data dependence are calculated by subtracting an element in the source iteration vector

from the corresponding element in the destination iteration vector, for all elements of

the iteration vectors representing loops enclosing both references. For the code fragment

given in Figure 2.1, the distance vector is de�ned as follows:

~D �~{
0

(1:n) �~{(1:n)

12

This abstraction is called a distance vector because it represents the \distance" in

terms of loop index values between the source and destination access instances for all loops

which enclose both references involved in the dependence.3 For the example dependence

problem given in Figure 2.2, ~D = h1; 0;�1i, and the data dependence relation is speci�ed

mathematically as A �h1;0;�1i B.

In the case of non-uniform data dependences, distance vectors become impractical

to store because a single dependence may be represented by many di�erent vectors.

Fortunately, a further abstraction of the distance vector called the direction vector can

represent sets of distance vectors compactly. For many transformations, the important

information is the arithmetic sign of the di�erence of the iteration vectors.

The direction vector elements for a given data dependence are calculated by deter-

mining the sign of the result of subtracting an element in the source iteration vector

from the corresponding element in the destination iteration vector, for all elements of

the iteration vectors representing loops enclosing both references. For the code fragment

given in Figure 2.1, the direction vector is de�ned as follows:

~d � �(~{
0

(1:n) �~{(1:n)) j �(j) �

8><
>:

+; if j > 0
0; if j = 0

�; if j < 0

Therefore, the direction vector's elements are elements of the set f+; 0;�g. For the

example dependence problem given in Figure 2.2, ~d = h+; 0;�i, and the data dependence

relation is speci�ed mathematically as A �h+;0;�i B.

3Actually, this is only one possible de�nition of dependence distance. For loops which are not nor-
malized to have an index increment of one, several di�erent de�nitions are useful [11].

13

The data dependence analysis algorithm need not determine distance vectors in order

to calculate direction vectors. In fact, some algorithms determine if solutions can exist to

the set of equations and inequalities when relations are added to constrain the problem

to a speci�c direction vector. If solutions can exist, then that direction vector is added

to the solution set. Furthermore, direction vectors can be represented compactly as bit

vectors with three bits per direction vector element, which represent all possible subsets

of the set f+; 0;�g. This allows direction vectors to be combined in such a way that

a single vector element can represent more than one possible direction. More precisely,

elements of the set, f+; 0; �; 0+; 0�; +�; 4�g, represent possible direction combinations

for extended direction vectors, such that:

0+ � (0 _ +);

0� � (0 _ �);

+� � (+ _ �);

� � (+ _ 0 _ �)

For example, the extended direction vector, h+; 0+; �i, represents the following set of

simple direction vectors:

fh+; 0; +i; h+; 0; 0i; h+; 0; �i; h+; +; +i; h+; +; 0i; h+; +; �ig

Many other data dependence abstractions exist. Those presented in this section

are some of the most popular, since they represent a good balance of the opposing

4It is di�cult to imagine how this combination might occur in practice. However, since it can be
represented with no loss of compactness, it is included for completeness.

14

properties of preciseness and compactness. A more detailed discussion of data dependence

abstractions and the transformations they enable is found in [12].

15

3. IMPACT COMPILER OVERVIEW

The IMPACT compiler is a prototype compiler for C and Fortran programs with spe-

cial language and optimization support for compiling programs for multiple-issue proces-

sors and shared-memory multiprocessors. IMPACT compiles code for several commercial

microprocessors, as well as experimental superscalar and VLIW architectures. A block

diagram showing the organization of the IMPACT compiler is presented in Figure 3.1.

The compiler is divided into three primary modules based on the level of the interme-

diate representation (IR) used. The Pcode module employs a high-level IR consisting of

an abstract syntax tree (or AST) representation of the C language. The medium-level

IR, employed by the Hcodemodule, is based on a control
ow graph data structure but ex-

pressions are represented as AST s [13]. Finally, the Lcode module utilizes a generalized

register-transfer language similar in structure to most load/store-processor instruction

sets. In addition, several front-end compiler modules perform the tasks of language con-

version, language preprocessing, and IR generation. All of these compiler modules as

well as the supported architectures are described in more detail in the sections following.

16

Peephole
Optimization

Acyclic Scheduling

Register Allocation

Software Pipelining

Superblock
Formation

Hyperblock
Formation

ILP Code
Optimization

Classic Code
Optimization

Sun SPARC

Intel x86HP PlayDoh

AMD 29K MIPS R3000 HP PA-RISC

IMPACT

Function Inline
Expansion

Basic Block Profiling

Code Layout

Loop
Transformations

Memory System
Optimizations

Parallel Loop
Identification

Code Restructuring

Hcode

Mdes

Lcode
 Code
Generation

Fortran 77
 Source

Pcode

Generate IR

Preprocess

F2C

C / Charlie C
 Source

Supported Architectures

Analysis Tools

Control-flow
Analysis

Data Dependence
Analysis

Data-flow Analysis

Interprocedural Alias,
Side-effect Analysis

Variable Reference
Analysis

Optimization

Figure 3.1: Organization of the IMPACT Compiler.

17

3.1 The Front-End Compiler Modules

IMPACT is capable of compiling both C [14], [15] and Charlie C languages directly.

The Charlie C language is a block-parallel C language extension that supports loop-

level parallelism as well as microtasking [16]. Compilation of Fortran 77 [17] source

is accomplished by �rst translating it to standard C via the program f2c [18]. The

preprocessing module possesses C include �le and macro preprocessing capabilities as well

as facilities to annotate f2c-translated source code to recover array dimension information

which would otherwise be lost in the f2c translation process. Finally, the last front-end

compiler module parses C or Charlie C and generates the Pcode IR.

3.1.1 The f2c Fortran to C language translator

Since the IMPACT compiler intermediate representations are based on the C pro-

gramming language, Fortran programs cannot be directly compiled without modifying

the syntax and semantics of the IR. Although modi�cation of the intermediate represen-

tations is perhaps a better long-term strategy, we decided to use a public domain Fortran

to C language translator in order to be able to compile Fortran code in the short-term.

However, f2c obscures the variable reference and aliasing convention semantics of the

Fortran source code. Therefore, to facilitate accurate dependence analysis and e�ec-

tively optimize the translated code, the IMPACT compiler recovers as much as possible

of the original Fortran semantics.

18

One syntactic change that f2c makes is to linearize all multidimensional arrays to

one dimension, since array access semantics di�er between Fortran and C. In Fortran,

multidimensional arrays are stored in column-major order in memory, while in C, they

are stored in row-major order. When a multidimensional array is also accessed via a

single-dimension address calculation, the semantics of array layout dictate which array

element is accessed. To prevent incompatibilities between the Fortran and C array layout

semantics, f2c converts all multidimensional arrays to single-dimensional arrays which are

accessed using explicit address calculations.1

3.1.2 IMPACT preprocessing

For data dependence analysis to be e�ective, multidimensional array references are

delinearized by the Pcode module, making the original array reference subscripts available

for the analysis. However, for local and global arrays, the size of each array dimension

must be known in order for delinearization to proceed correctly. F2c places the original

array dimension-size information in C language comments after the corresponding array

declaration. This dimension size information must be preserved down to the Pcode mod-

ule, which necessitates a preprocessing module to convert the comments into Charlie C

language pragmas before they are destroyed by the C language preprocessor.

1Actually, arrays are linearized for another reason also. According to the standard C language
de�nition, the declarations of formal function parameters which are n-dimensional arrays must specify
the last n� 1 dimension sizes as integer constant expressions (which can be evaluated at compile time).
However, Fortran allows all dimension sizes to be declared as variables (which are usually also formal
function parameters). Linearizing multidimensional arrays easily circumvents this C language restriction.

19

The IMPACT preprocessing module accomplishes the usual C language source pre-

processing while preserving the array dimension size information generated by f2c. First,

the source �le is preprocessed by the target machine C compiler to expand macros and

included source �les, but comment deletion is suppressed. Next, local and global vari-

able declarations as well as global structure de�nitions are scanned for the presence of

comments of the form: /* was [<dim 1 size>][<dim 2 size>]...[<dim n size>] */.

The comments are then converted to delinearization pragmas which are placed just before

the variable declaration occurs in the source �le. These pragmas contain the original ar-

ray dimensions and a string which represents the complete variable access string textually

(including struct and/or union �elds). This string is necessary to match pragmas to the

associated array since Fortran common blocks are translated to C structure constructs

that contain the common block arrays as �elds (see Section 4.1.1), and pragmas may only

be attached to entire variable declarations | in this case, structure variable declarations.

Finally, the source �le is again preprocessed by the target machine C compiler to remove

all comments.

One other function the IMPACT preprocessor performs is to identify the source lan-

guage of the �le (either C or Fortran) so that the Pcode module can appropriately analyze

the variable references according to the source language semantics. Other syntactic code

analyses and transformations can be added easily to the IMPACT preprocessing module

since it is written in the report-generation language perl .

20

3.1.3 Intermediate representation generation

The intermediate representation generation module for the IMPACT compiler con-

verts preprocessed C or Charlie C code into the Pcode intermediate representation. In

addition, this module performs limited syntactic and semantic checking and attaches

each Charlie C pragma to the lexically nearest function, global variable, local variable,

or program statement (depending on the pragma type) which follows the pragma.

3.2 The Pcode Compiler Module

The Pcode compiler module performs high-level analyses, transformations, and opti-

mizations which bene�t from explicit source-level information. Furthermore, the Pcode

intermediate representation facilitates the manipulation of hierarchical program struc-

tures such as loops and blocks of statements. The following sections discuss the inter-

mediate representation, analysis tools, and transformations and optimizations present in

the Pcode compiler module.

3.2.1 Intermediate representation

The highest-level IR, Pcode [19], is an abstract syntax tree which closely mimics the

nested-statement syntax of the Charlie C language. The tree contains three kinds of

nodes: function, statement, and expression.

Each function node contains information speci�c to a C language function such as

a list of formal parameters, function pragmas, and the type of data returned by the

21

function, as well as a pointer to the compound statement node representing the body of

the function.

Statement nodes represent C statements, and may contain pointers to children state-

ment nodes, representing the nested statement structure of C . The type of the statement

determines what type of information is present in the statement node as well as the

node type (statement or expression, but not function) and number of its child nodes.

A compound statement node, for example, represents the C curly-brace construct and

contains a list of the local variables declared within its scope as well as a pointer to a list

of statements contained lexically within it.

An expression node represents a C language expression such as a function call or vari-

able assignment. These expression nodes are used to represent all C -language operators,

numeric constants, and variables. Again, the type of the expression node determines the

speci�c information present in the node as well as the number of expression node children

it possesses. Expression nodes may not contain statement or function nodes as children.

A symbol table is maintained at the level of the source function and contains variable,

structure, union and enumeration declaration information. Local variable names are

appended with a unique lexical scope identi�er to insure they have unique names in the

symbol table used for the entire function. Therefore, symbol tables are not necessary for

each scope in a source code function.

An additional integral component of the Pcode IR is the control
ow graph, which is

composed of blocks of straight-line code called basic blocks. Directed arcs representing

22

the
ow of control of the program connect the basic blocks to form a directed, cyclic

control
ow graph for a function. Each basic block is subdivided into one or more
ow

nodes, which represent units of code which execute sequentially. Expression statements

are represented by a single
ow node in the control
ow graph, while complex statements,

such as loops, are represented by several
ow nodes. Pointers exist from the statement

nodes to the associated
ow node(s) and from each
ow node back to its associated

statement node. Expression-level
ow of control, such as that present in conditional

expressions and short-circuit evaluation operators, is not represented in the control
ow

graph.

The control
ow graph representation is utilized for data
ow analysis, unstructured

loop detection and nesting determination, and data dependence analysis. Since the con-

trol
ow information is utilized by nearly every Pcode module functionality, the control

ow graph is maintained as part of the intermediate representation. However, since it can

be easily and e�ciently constructed, the control
ow graph is not modi�ed after every

code transformation, but is instead reconstructed at the end of each transformation.

3.2.2 Analysis tools

The Pcode module analysis tools are utilized by nearly every code restructuring op-

timization and transformation, to insure their validity and e�cacy. Furthermore, many

of the analysis tools are used by other analysis tools in a layered manner.

23

Control
ow analysis is perhaps the most important analysis tool since nearly all other

analysis tools utilize it. It consists of control
ow graph construction, loop detection

and nesting determination (used mostly for unstructured loops), and non-loop-carried

reachable control
ow analysis used by data dependence analysis (see Section 5.3.1).

During control
ow graph construction, unreachable code is removed from the Pcode IR,

which is necessary for some data
ow analyses to function correctly.

The control
ow graph also provides a structural framework on which to build data

ow information. Data
ow analysis determines the
ow of program values, variables, and

expressions throughout the control
ow graph. Traditional types of data
ow information

are computed including sets of reaching de�nitions and uses, available de�nitions and

uses, and live variables [8], for each basic block and/or
ow node in the control
ow

graph.

The data
ow analyses are performed by request from other analyses or transforma-

tions, and the resulting information, represented as sets, is stored in the
ow nodes and

basic blocks. The convention for preventing the use of stale information in the Pcode

module is to remove all information that a particular IR modi�cation could render in-

correct. Therefore, other analyses or transformations can safely utilize any data
ow

information provided that it is still available in the control
ow graph. Data
ow infor-

mation is also removed automatically from the control
ow graph whenever the variable

access table (explained below) is destroyed.

24

The next two analysis tools, variable reference analysis and data dependence analysis,

are the subject of this thesis and are explained in detail in the succeeding chapters.

Variable reference analysis builds a variable access table containing information for each

distinct variable reference in the source function. Pointers between each entry in the

variable access table and the associated variable access expression in the abstract syntax

tree are provided. Because the variable access table contains general information about

the variable references, it is utilized by not only data dependence analysis, but also data

ow analysis and other transformations and optimizations.

Data dependence analysis calculates dependence distance and direction vectors for all

data-dependent pairs of variable accesses in the function. The resulting data dependences

are represented as annotated arcs between pairs of entries in the variable access table,

forming a data dependence graph for the entire function. Options passed to the data

dependence analyzer determine whether dependences are to be calculated for pairs of

variables with no common loops and whether non-loop-carried dependences are to be

calculated between variable accesses within the same expression statement. This allows

the transformation that uses the data dependence information to tailor the scope and

granularity of the information to its speci�c needs.

As with data
ow information, dependence information must be destroyed if it is

rendered incorrect by a program transformation. The easiest way to prevent use of

stale data dependence or data
ow information is to destroy the variable access table.

We have found that rebuilding the data dependence information after each program

25

transformation is a reasonably e�cient strategy for a prototype compiler. Although

incremental update of data dependence information is possible, it is currently a topic of

ongoing research, and is not supported by the Pcode module.

Finally, interprocedural alias and side-e�ect analysis generates a list of aliased vari-

ables and side e�ects for function calls [20]. Data dependence analysis uses this infor-

mation to determine variable aliasing and function call side e�ect relationships, which is

explained in Section 4.2.

3.2.3 Transformations and optimizations

The Pcode module contains several code restructuring transformations and optimiza-

tions which utilize the analysis tools frequently.

General purpose loop transformations currently implemented include loop distribu-

tion or loop �ssion (with statement reordering), loop interchange (for loop nests with

rectangular iteration spaces), loop skewing, and loop reversal [21]. These loop transfor-

mations are typically exploited as tools to improve the applicability of other transforma-

tions and optimizations.

Memory system optimizations include loop blocking (also called iteration space tiling)

to improve cache access locality [22], software prefetching, and data relocation and pre-

fetching [23], a hardware-assisted form of software prefetching which simultaneously re-

locates array data to reduce cache mapping con
icts.

26

Parallel loop identi�cation is currently limited to loops which can be software pipe-

lined in the Lcode module. Aggressive automatic loop parallelization for shared-memory

multiprocessors would require implementation of data dependence breaking transforma-

tions and other supporting transformations and analyses. Multiprocessor loop paral-

lelization has not been a major focus of the IMPACT compiler research group up to this

point in time.

3.3 The Hcode Compiler Module

The Hcode module performs pro�ling at the level of the basic block. Additionally,

pro�le-guided code layout and function inline expansion are performed by the Hcode

module [24], [25]. Eventually, all the functionality provided by this module will be relo-

cated to the Pcode and Lcode modules. For instance, function inline expansion will be

moved to the Pcode module in order to apply high-level optimizations across function

call boundaries.

3.4 The Lcode Compiler Module

The �nal module in the IMPACT compiler is referred to as the Lcode module. Us-

ing the Lcode IR, all machine-independent classic optimizations are applied [26]. Su-

perblock [27] and hyperblock [28] compilation techniques are also performed using the

Lcode IR.

27

All code generation in the IMPACT compiler is also performed using the Lcode mod-

ule. Scheduling is performed via either acyclic global scheduling [29], [30] or software

pipelining using modulo scheduling [31]. Graph-coloring-based register allocation is uti-

lized for all target architectures [32]. In addition, for each target architecture, a set of

specially tailored peephole optimizations are performed.

A detailed machine description database, Mdes, for the target architecture is also

available to all Lcode compilation modules [33].

3.5 Architectures Supported by the Compiler

Several architectures are supported by the IMPACT compiler. These include the

AMD 29K [34], MIPS R3000 [35], Sun SPARC [36], HP PA-RISC, and Intel x86. The

other two supported architectures, IMPACT and HP Labs' PlayDoh [37], are experimen-

tal architectures incorporating instruction-level parallelism.

28

4. VARIABLE REFERENCE ANALYSIS

The data dependence analyzer in the IMPACT compiler relies on detailed analysis of

the program variable references. This reference analysis recovers the variable reference

semantics of the original Fortran source code and gathers detailed information about ref-

erenced variables and their relationships. Since other analysis tools, optimizations, and

transformations use much of this variable reference information, reference analysis is a

distinct phase of the Pcode module which may be invoked independently of data depen-

dence analysis. However, most of the variable reference preparation for data dependence

analysis is performed during the reference analysis phase. The information gathered by

reference analysis is stored in a data structure called the access table.

4.1 Access Table Data Structures

The access table consists of a hierarchy of data structures that organize the variable

accesses within a function, as shown in Figure 4.1. At the highest level of the hierarchy,

each variable referenced in the function is represented by an entry in the access table,

29

Variable Entries

Variable Types

Variable Accesses

Figure 4.1: Organization of the Access Table Data Structures.

called a variable entry. Within each variable entry is a list of variable types, which

represent the di�erent data types used when referencing the variable in the function.

Fortran equivalence constructs create the need for distinct variable types, which will

be explained in more detail in Section 4.1.2. Each variable type contains a list of variable

access structures, which consist of information speci�c to a particular variable reference

in the source function.

To build the access table, each variable reference in the program is separately analyzed

and the resulting information placed in the appropriate data structures in the access table.

New data structures in the access table are allocated as needed during this process. Note

that variables which are never referenced in the function being analyzed are not allocated

a variable entry in the access table. Each of the access table data structures is explained

in more detail in the following sections.

30

4.1.1 Variable entry data structure

The access table is implemented as a hash table, keyed on the variable name. The

f2c-translation process sometimes places groups of Fortran code variables in the same C

code aggregate variable. Consequently, the access table di�ers from the Pcode symbol

table in that a variable entry exists for each distinct array and scalar variable referenced

in the original Fortran source code. Furthermore, the symbol table contains information

about the variable declarations, whereas the access table contains information about the

actual variable references.

F2c converts Fortran common blocks and variables of type complex (as shown in

Figure 4.2(a)) to C -language structures (as shown in Figure 4.2(b)). Therefore, a

variable reference in the original Fortran code is sometimes represented in the C code by

a reference to a �eld of a structure. Furthermore, as shown in Figure 4.2(b), references

may occur to both an entire complex variable (cb.c) and the real and/or imaginary

parts of the same variable (cb.c[0].i and cb.c[0].r). For this reason, structure element

references and references to entire structures are assigned unique variable entries in the

access table. The hash key for the variable entry is a string consisting of the (aggregate)

variable name appended to a dot-separated-list of the structure �eld names present in the

reference of that variable. The presence of array indexing in the variable references has

no e�ect on the variable entry hash keys themselves since references to the same array

are associated with the same variable entry data structure. For example, in Figure 4.2,

references to the array of complex values, such as cb.c.[1].r, are grouped in the access

31

COMMON /CB/ C, D, R, M
COMPLEX C(10)
DOUBLE PRECISION D(10)
REAL R(10)
LOGICAL M(10)

IF (M(1)) C(1) = C(2) + C(3)

CALL FOO(C(1), R(2), D(1))
STOP

(a)

typedef struct f

oat r, i;

g complex;
struct f

complex c[10];
double d[10];

oat r[10];
int m[10];

g cb;
main() f

complex q;

if (cb.m[0]) f
q.r = cb.c[1].r + cb.c[2].r,
q.i = cb.c[1].i + cb.c[2].i;
cb.c[0].r = q.r,
cb.c[0].i = q.i;

g
foo(cb.c, &cb.r[1], cb.d);

g

(b)

Figure 4.2: F2c Translation of Common Blocks and Complex Variables.

table under the variable entry with hash key cb.c.r, as if they were actually referencing

parallel arrays of real or imaginary values, e.g., cb.c.r[1].

As an example, the hash keys for the variable entries for the code in Figure 4.2(b)

are the following: cb.c, cb.c.i, cb.c.r, cb.d, cb.m, cb.r, q.i, q.r,1 and foo. Note that

function calls are also assigned a variable entry in the access table, in order to represent

the variable references implicit in function call side e�ects. Further details are provided

in Section 4.2.3.

1The variable q is an f2c-generated temporary that enforces proper order of evaluation for expressions
involving complex values.

32

DOUBLE PRECISION D(10)
REAL R(20)
EQUIVALENCE (D(1), R(1))

D(2) = 1.0
R(3) = 0.0
STOP

(a)

main()
f

double equiv[10];

equiv[1] = 1.0;
((
oat �)equiv)[2] = 0.0;

g

(b)

Figure 4.3: F2c Translation of Equivalenced Arrays of Di�erent Type.

The access table variable entries contain information regarding the variables refer-

enced in the function including whether each variable is local, global, a function name,

or a formal parameter. Another �eld in the variable entry indicates whether the vari-

able is ever referenced using an array index in the function | if not, the variable can

be treated as a scalar for data
ow and data dependence analyses. Other �elds related

to variable alias analysis are described in Section 4.2. Additionally, each variable entry

contains a pointer to a linked list of variable type data structures.

4.1.2 Variable type data structure

The Fortran programming language provides a construct, called equivalence, which

can be used to reference the same memory location using variables of di�erent type.

Equivalence constructs are often used in this manner so that an array of complex

numbers may also be referenced as an array of alternating real and imaginary
oating-

point numbers. Another use of equivalence constructs allows arrays to be reused in

di�erent parts of a function, even if their element types are di�erent. In Figure 4.3(a),

33

the array is referenced both as D, an array of double precision
oating-point numbers,

and as R, an array of single precision
oating-point numbers.

Fortran equivalenced arrays are converted by f2c to an array of one of the types de-

clared in the equivalence construct, and C pointer manipulation and casts are used to

reference this array with di�erent data types, as shown in Figure 4.3(b). If an array is

referenced with di�erent data types of di�erent sizes, the corresponding array elements

referenced using these two types do not reside in the same place in memory. For example,

if variable data types are ignored, the two references to the equiv array in Figure 4.3(b)

seem to access di�erent memory locations since the array subscripts di�er. However, be-

cause the type sizes of the array elements di�er, the references actually access overlapping

memory locations, assuming that data of type double requires twice as much memory

to represent as data of type
oat. Variable references are grouped into separate variable

type data structures based on the type to which the reference is cast to streamline the

process of data dependence analysis. When comparing references to array elements of

di�erent types, the data dependence analyzer ignores the subscript expressions in order

to produce conservative results.

The variable type data structure contains information describing the type of the cast

if one is present. The absence of the type cast represents references of the declared

variable type in the C source code. Also included in the variable type data structure

is a linked list of variable access data structures, one for each reference to the variable

34

with the given type cast. Section 5.4.1 describes how this information is used to generate

correct data dependence analysis results.

4.1.3 Variable access data structure

Each variable access data structure contains information speci�c to a single lexical

variable reference in the f2c-translated source function. Pointers between the variable

access data structure and the Pcode variable expression node link the reference in the IR

and in the access table.

General information is gathered by variable reference analysis, such as whether the

variable reference is a write, read, or both (as is the case for the variables which are

pre/post-incremented/decremented, or for variables on the left-hand side of compound

assignment operators such as \+="). For subscripted variable references, a �eld in the

variable access data structure speci�es the extent of the access. For instance, since all

variables are passed by reference in Fortran, a subscripted array reference that is an

actual parameter to a function implies that the function may access any element of the

array by subscripting the formal parameter. In the translated C code, this actual param-

eter reference includes an address operator, \&", which implies that a pointer to an array

element is passed to the function (see Figure 4.2). Consequently, data dependence anal-

ysis treats the reference as a potential access to any element of the array by disregarding

the subscripting expression.

35

In addition, information related to the loops enclosing the reference is kept in the

data structure for the purposes of dependence analysis. The loop-nesting depth of the

reference is present as well as whether or not the reference is to a loop index variable

in one of the enclosing loops. If the reference is to a loop index variable, the loop-

nesting depth of the corresponding loop is also recorded. Loop-nesting depth is de�ned

for variable references as the number of loops enclosing a given variable reference, and

for a given loop in a nest, the number of loops enclosing the given loop plus one.

One other �eld in the variable access data structure is a pointer to a linked list of

array subscript data structures which contain information pertaining to a single subscript

for an array reference. In the C code, array references possess only one subscript due

to the e�ects of f2c array linearization. However, for array references which were multi-

dimensional in the original Fortran source code, the single subscript expression is split

into multiple subscript expressions during array reference delinearization, which is the

subject of Section 4.3. After array reference delinearization, each subscript expression

is converted into a linear function of the loop index variables and symbolic constants,

which is discussed in more detail in Section 4.4. After this array subscript processing,

each array subscript data structure contains a pointer to the root of the corresponding

subscript expression in the Pcode abstract syntax tree, as well as a �eld containing the

linear representation of the subscript expression.

36

4.2 Variable Aliasing Considerations

Variable reference analysis must determine whether variables are aliased in order for

data dependence and data
ow analyses to give valid results. Variable aliasing occurs

when two or more logical variables can access the same location in memory. If data

dependence analysis did not take into account variable aliasing, dependences between

aliased variables would not be found, and invalid code transformations may reverse the

order of the references to aliased variables.

In Pcode variable reference analysis, aliasing relationships between referenced vari-

ables are represented by an undirected graph, such that the nodes represent variable

entries in the access table, and the edges represent the possibility of variable aliasing

between the variable entries they connect. The alias graph is constructed by comparing

each pair of variable entries in the access table and connecting them with an edge if they

could possibly be aliased. More precise aliasing information, such as the di�erence in

starting addresses of aliased array variables, has not been included in the alias graph

since it is usually not known at compile time.

Variables may be aliased due to explicit source language aliasing constructs or the

f2c translation processes. In the case of source language aliasing constructs, correct

construction of the alias graph ensures that any further analysis and transformations

take into account the possibility that aliased variable references map to the same location

in memory. Sections 4.2.1{4.2.3 describe the conditions under which such aliasing edges

are added between pairs of variables in the alias graph. If the aliasing is a result of

37

the language translation process obscuring references to physically distinct variables,

the variable reference analysis must determine which of the variables was referenced

in the original source, which is called variable disambiguation. Section 4.2.4 describes

the disambiguation of equivalenced variables which are aliased by f2c source language

translation.

4.2.1 Aggregate variable aliasing

As described in Section 4.1.1, a single variable entry in the access table exists for each

referenced �eld of a structure variable as well as for references to the structure variable

itself (if such a reference exists). Since an access to the structure variable may reference

the same memory location as an access to one of the �elds of the structure variable, the

entries representing these two accesses should be connected by an alias edge in the alias

graph. However, accesses to di�erent �elds of the same structure variable should not

be aliased, since these accesses reference distinct memory locations. For example, after

alias graph construction, the set of pairs of aliased variable entries for the source code

shown in Figure 4.2(b) is as follows: f(cb.c, cb.c.i), (cb.c, cb.c.r)g.

The condition for aggregate variable aliasing between a pair of variable entries is that

one variable entry's hash key be a substring of the other variable entry's hash key, and

the character following the common substring in the longer hash key be a dot. The last

part of the condition is to ensure that a pair of variable entries with hash keys var and

38

varr are not aliased, but hash keys var and var.r imply that the variable entries are

aliased.

Although union constructs are also present in f2c-translated source code, they are

only generated when the same common block is de�ned di�erently by two or more source

functions. In this case, the di�erent common block de�nitions (each declared as a struc-

ture) are declared as �elds in the union declaration, insuring that access to the common

block by di�erent functions reference the same block of memory. However, since refer-

ences to di�erent �elds of the union only occur in separate source functions, there is no

need to alias union �eld references unless function inlining is implemented. Implemen-

tation of union �eld reference aliasing is rather simple, and this form of aliasing also

applies to variable reference analysis of C-language source code.

4.2.2 Function formal parameter aliasing

In the C language, calling a function with two actual parameters which are pointers to

the same variable is not prohibited by the language de�nition. However, in Fortran, the

language de�nition states that formal function parameters cannot be aliased, in order that

optimizations may be applied more widely. Therefore, formal parameters to a function

are not aliased during alias graph construction unless the programmer of the source code

includes a pragma for the function describing which formal parameters are aliased.

Another Fortran language restriction prevents a global variable from being referenced

directly in a function to which it is also passed as an actual parameter. Hence, formal

39

parameters are not aliased to global variables, which often results in signi�cantly greater

opportunity for code restructuring.

4.2.3 Function call side e�ects and aliases

Function call sites present an obstacle to code restructuring transformations because

the functions called may have side e�ects, such as modi�cation of the actual parameters,

modi�cation of global program variables, and/or access to an input/output device. If the

code is restructured without regard to these side e�ects, incorrect program execution may

occur. Although one approach to this problem is to forbid transformation of any code

region which contains function calls, this approach limits the e�ectiveness of restructuring

transformations, especially in the presence of library function calls which have no relevant

side e�ects.

To increase the e�ectiveness of restructuring transformations and optimizations, vari-

able reference analysis summarizes the e�ects of function call side e�ects in the access

table and alias graph. By including function calls in the access table, as mentioned

in Section 4.1.1, an alias may be created between a function call and a reference to a

global variable which is also modi�ed in the called function. In addition, function call

variable entries for functions which modify the same global variable or access the same

input/output device are aliased. The data dependence analyzer inserts appropriate de-

pendences between these aliased variables; therefore, restructuring transformations need

not explicitly check whether function calls have side e�ects, but need only check that

40

data dependences do not prevent valid transformation. Since input dependences do not

prohibit code reordering, but all other types of dependences do, function calls with no

side e�ects are noted as read accesses in the access table, while those for functions with

side e�ects are noted as write accesses.

The function information table, which summarizes function call side e�ects, is queried

to obtain speci�c side-e�ect information during variable reference analysis. The current

implementation of the function information table includes only f2c library functions but

may be extended to include programmer-de�ned functions gathered via interprocedural

analysis. The variable name of the function is used as a hash key to access the speci�c

information in the function. Currently, the function information is limited to bits speci-

fying whether or not the function modi�es any parameter, modi�es any global variable,

or accesses any input/output device. Therefore, if the information bits in a table entry

are all zero, the function corresponding to that entry is entirely free of side e�ects. If the

function variable name is not found in the table, all possible side e�ects are assumed to

exist.

During access table construction, the function information table is queried to deter-

mine whether or not an actual parameter variable passed to a function may be modi�ed

during the function call. In C , this information could be determined by whether or not

the variable or a pointer to the variable is passed as an actual parameter to the function.

However, since the calling convention is call-by-reference in Fortran programs, f2c always

passes an actual parameter variable pointer to the function. If the information returned

41

by the function information table indicates that the function may modify any parameter,

the actual parameter variable reference is recorded as both a write access and a read

access, indicating that the parameter variable could be both read and written during

the function execution. If the function does not modify any parameter, the reference is

recorded as a read access only.

In the absence of interprocedural side-e�ect analysis, aliases involving function calls

are determined as follows: All variable entries for function calls which may reference

any global variable are aliased to all global variable entries. Furthermore, all variable

entries for function calls which may reference any global variable are aliased together, as

are those entries for function calls which access input/output devices. Although these

aliasing criteria appear very conservative, less conservative criteria require interprocedu-

ral analysis [20] to identify which global variables are modi�ed and which input/output

devices are accessed by each user function.

4.2.4 Equivalenced variable disambiguation

Fortran language programmers sometimes declare local \work" arrays which are sub-

divided into smaller arrays via insertion of equivalence constructs. Often the program-

mer subdivides the work array into temporary arrays whose contents are used only during

the scope of a logical region2 of the function, thus conserving memory space by allowing

temporary arrays used in separate logical regions to overlap memory.

2For example, a logical region usually consists of a set of lexically consecutive loop nests which utilize
some non-overlapping set of temporary arrays.

42

REAL A(50), B(50), C(100)
EQUIVALENCE (C(1), A(1))
EQUIVALENCE (C(51), B(1))

A(1) = 0 /* region 1 */
B(1) = 1
� � �
C(1) = 2 /* region 2 */
STOP

(a)

main()
f

oat equiv[100];

equiv[0] = 0.0;
(equiv+50)[0] = 1.0;
� � �
equiv[0] = 2.0;

g

(b)

Figure 4.4: F2c Translation of O�set Equivalenced Arrays.

Unfortunately, f2c-translation e�ectively aliases the work array and all equivalenced

temporary arrays. For example, Figure 4.4(a) shows a work array, C, which is subdivided

into temporary arrays A and B. Array A maps to array elements C(1:50), and array

B maps to array elements C(51:100) in memory. The arrays A and B are utilized

during the �rst logical region of the main program, and the array C is used during the

second logical region. However, references to the arrays A, B, and C in the Fortran

code (Figure 4.4(a)) are translated to references to the single array equiv in the C code

(Figure 4.4(b)). Thus, the arrays in the original Fortran source are e�ectively aliased by

the language translation process.

Since references to the equiv array with di�erent o�sets exist in the translated source

code, these references must be partitioned by o�set value in order for data dependence

analysis to produce correct results. In Figure 4.4(b), for example, a simple array subscript

comparison indicates that the �rst two references to the equiv array are data dependent

even though they do not reference the same location in memory. Although the o�set could

43

be incorporated into the array subscripts, the use of multidimensional arrays prohibits

a general solution of this type, since array subscript linearization has serious drawbacks

as will be discussed in Section 4.3. Instead, a separate access table variable entry is

allocated for each o�set to the referenced variable, and the separate entries are accessed

using the o�set value as part of the hash key. In Figure 4.4(b), two variable entries are

allocated for variable equiv, one with o�set zero and the other with o�set 50. Next, all

access table entries for a single array variable referenced with di�erent o�sets are aliased

together during alias graph construction. Therefore, the subscripts of array references

are used to prove independence of two references to the original array A, but all data

dependences are generated between references to A and references to B regardless of

array reference subscripts.

Unfortunately, this organization of the access table to ensure correctness of data de-

pendence analysis produces overly conservative results, since a data dependence cannot

exist between a reference to A and a reference to B (unless array A is referenced out

of bounds, which is a semantic violation in Fortran). To disambiguate or unalias ref-

erences to array A and array B in the f2c-translated code, the Pcode module includes

an equivalence construct disambiguation parameter specifying whether array references

with di�erent o�sets are to be aliased during alias graph construction. If the variable en-

tries with di�erent o�sets are not aliased, dependence analysis treats the variable entries

as non-intersecting arrays with regard to memory layout.

44

Unfortunately, using the \no aliasing" value for the disambiguation parameter is some-

times unsafe since references to arrayB are not aliased to references to arrayC; therefore,

no data dependences are found even though they may exist between the references to the

arrays. Furthermore, the f2c-translated code provides no information to distinguish the

references to array A from the references to array C, so array B cannot be aliased to

array C without also being aliased to array A. Fortunately, for the benchmarks compiled

by IMPACT so far, the references to overlapping arrays occur only within separate logi-

cal regions and the code reordering transformations do not reorder entire loop nests. For

several benchmarks, the use of this potentially unsafe disambiguation has proven quite

e�ective for code optimization.

4.3 Array Reference Delinearization

Array linearization is the process of collapsing a multidimensional array into one

with a single dimension. Compilers often perform this transformation before machine

code generation in order to map a multidimensional array onto the computer memory,

which is addressed in a manner similar to a single-dimensional array. As described in

Section 3.1.1, f2c linearizes all multidimensional arrays in order to accommodate Fortran

and C language di�erences in mapping multidimensional arrays to memory. In addition,

programmers, as well as C and Fortran compilers, sometimes perform array linearization

of source-level code [38].

45

foo (int U,
oat a[][10]) f
int I,J;

for (I=0; I<U; I++) f
for (J=0; J<U; J++) f

ref A: a[I][J] = : : : ;
ref B: : : : = a[I][J];

g
g

g

(a)

foo (int U,
oat a[]) f
int I,J;

for (I=0; I<U; I++) f
for (J=0; J<U; J++) f

ref A: a[10�I + J] = : : : ;
ref B: : : : = a[10�I + J];

g
g

g

(b)

Figure 4.5: Array Linearization Example.

Although some compilers choose to linearize all arrays in order to simplify the interme-

diate representation, the accuracy of data dependence analysis may decrease signi�cantly

due to the combining of array reference subscript expressions. Figure 4.5(a) shows a C-

language function with a two-dimensional array referenced in a double-loop nest. Data

dependence analysis for references A and B can easily determine that the only existing

dependence is A �
f

h0; 0i B (using the dependence distance vector abstraction of the de-

pendence relation).3 Therefore, no data dependence exists between di�erent iterations

of the loops in the nest.

Figure 4.5(b) shows the same function with array a linearized to a single dimension.

In the linearized case, the subscript expressions have been collapsed into a single ex-

pression, which a�ects the data dependence analysis problem constraints. The system of

3Here, the assumption is made that arrays must be referenced within the declared array bounds,
which is an entirely reasonable assumption for Fortran programs.

46

equations and inequalities (numbered according to the constraints given in Section 2.3.1)

representing the potential
ow dependence in terms of iteration vectors hi; ji of reference

A and hi
0

; j
0

i of reference B are as follows:

1. i � i
0 W

(i = i
0 V

j � j
0

)

2. 0 � i; i
0

� U
V

0 � j; j
0

� U

3. 10i+ j = 10i
0

+ j
0

The solution set for this analysis problem consists of in�nitely many pairs of iteration

vectors as follows:

S = f (hi; ji; hi + n; j � 10ni) : n � 0 ^ i � 0 ^ j � 10n g

Since not all the distance vectors for the solution pairs are identical, the
ow dependence

is not a uniform data dependence and cannot be represented compactly using the depen-

dence distance vector abstraction. The direction vector abstraction of the dependence

relation is A �
f

fh+;�i; h0; 0ig B, which indicates that data dependences may exist between

di�erent iterations of the loops in the nest.

The data dependence relation for the linearized array references is much less accurate

than that for the original array references because two subscript expressions each con-

taining a single loop-index variable have been combined into a single subscript expression

containing both loop index variables. The false data dependences are calculated in the

linearized case because di�erent combinations of index variable values (e.g., hI; Ji = h1; 0i

and hI; Ji = h0; 10i) could reference the same array element given that the upper bound

47

of loop index variable J is unknown at compile time, but only one combination of in-

dex variable values may reference each element of the array in the nonlinearized case

regardless of the loop index upper bounds. Although these false data dependences are

calculated for linearized arrays only when certain loop index bounds are unknown at

compile time, this case occurs frequently enough in Fortran programs to restrict the ap-

plication of certain code transformations and optimizations. In addition, the e�ciency

of most data dependence analysis algorithms decreases as a result of array linearization.

Therefore, array linearization should usually be avoided in order to increase the accuracy

and e�ciency of data dependence analysis.

Array delinearization is the process by which linearized single-dimensional array ref-

erences are translated back to multidimensional array references. Typically, the program

array references are not actually transformed, but rather the array references are delin-

earized for the purpose of program analyses such as data dependence analysis. In fact,

actual code transformation of arrays from linearized to delinearized form may not be

possible, which is the case for f2c-translated code, since multidimensional arrays may

have adjustable dimensions in Fortran, but not in C. Although general algorithms to

delinearize array references exist [38], they assume that array dimension sizes are un-

known, making them ine�cient for delinearizing array references for f2c-translated code.

Fortunately, f2c leaves enough clues in the translated C code to simplify the process of

delinearization of array references in most cases.

48

The next two sections describe the IMPACT compiler algorithm for recovering the

original array subscript expressions from the f2c-translated code. First, Section 4.3.1 de-

scribes the process of delinearization for formal parameters. Next, Section 4.3.2 describes

how to convert the problem of local and common block delinearizations to that of formal

parameter delinearization.

4.3.1 Formal parameter delinearization

In Fortran, formal parameters that are arrays are frequently dimensioned using other

formal parameters as shown in Figure 4.6(a). For array dimension sizes which are not

known at compile time, the f2c-translated array reference subscripts contain references to

\dimension" variables which hold dimension sizes computed in the function prologue, as

shown in Figure 4.6(b). A C code array subscript expression is generated by multiplying

each Fortran code subscript expression by the product of the sizes of the dimensions to

the left of the original subscript expression and summing these products. The sum of

products is then factored to remove redundant multiplications by the same dimension

variable, resulting in the subscript expression for array c shown in Figure 4.6(b).

Since array subscript indexing begins at any integer for Fortran code and at zero for

C code, f2c o�sets the array variable pointer by enough elements to make up for the

di�erence in all dimensions combined. The o�set is calculated in an analogous manner

to the linearization of array subscripts, except the subscript values used are the lower

bound indices in the Fortran code for each dimension. However, the o�set is not used

49

SUBROUTINE FOO(C, N1, N2, N3, N4)

REAL C(�)
INTEGER N1, N2, N3, N4

INTEGER I, J, K

DIMENSION C(N1, N2, 0:N3, N4)

DO K = 1, N4

DO J = 1, N2

DO I = 1, N1

C(I, J, 0, K) = 0.0

ENDDO

ENDDO

ENDDO

RETURN

(a)

foo(c, n1, n2, n3, n4)

oat �c;
int �n1, �n2, �n3, �n4;

f
int i, j, k;

int c dim1, c dim2, c dim3, c o�set;

c dim1 = �n1;
c dim2 = �n2;
c dim3 = �n3 + 1;

c o�set = c dim1 � (c dim2 � c dim3 + 1) + 1;

c �= c o�set;

for (k = 1; k <= �n4; ++k) f
for (j = 1; j <= �n2; ++j) f

for (i = 1; i <= �n1; ++i) f
c[i + (j + k � c dim3 � c dim2) � c dim1] = 0.0;

g
g

g
g

(b)

Figure 4.6: F2c Linearization of Formal Parameter Arrays.

by delinearization since only the relative indices between two array accesses are relevant

for dependence analysis.

Delinearization of arrays that are formal parameters consists of partitioning the lin-

earized array reference subscript expression tree into several subexpression trees based

on the location of the dimension variables, such that each subexpression tree corresponds

to an array subscript in the original Fortran code. Figure 4.7(a) shows the linearized

subscript expression tree for the array reference c shown in Figure 4.6(b). Small circles

represent binary operations while rectangles represent variables or constants in the ex-

pression tree. Each subscript expression is enclosed in a dotted ellipse for clarity. The

50

i *

+

c_dim1+

j *

c_dim2*

k c_dim3

sub 0

c[i+(j+k*c_dim3*c_dim2)*c_dim1](a)

i *

+

c_dim1+

j *

c_dim2

k

0

sub 1

sub 0

c[i+(j+0*c_dim2)*c_dim1][k](b)

i *

+

c_dim1j

k

0

sub 2

sub 1

sub 0

c[i+j*c_dim1][0][k](c)

i

j

k

0

sub 3

sub 2

sub 0

sub 1

c[i][j][0][k](d)

Figure 4.7: Formal Parameter Array Delinearization Example.

51

delinearization algorithm is divided into two phases: the search for the dimension vari-

ables in the subscript expression tree, and the partitioning of the expression tree into

delinearized subexpressions.

The search for the dimension variables consists of a depth-�rst traversal of the nodes

in the original subscript expression tree. Subtrees that represent embedded array ref-

erences are not searched since they are delinearized separately. When a variable ex-

pression is encountered, the variable name is checked to see if it has a su�x of the form:

dim<integer>, which is due to the stylized way f2c generates dimension variable names.

If so, a pointer to the expression tree node containing the dimension variable is saved in

a dimension variable array indexed by the dimension variable number. The search phase

of the algorithm is necessary to order the dimension subscripts by number for the next

phase of the algorithm.

In the next phase of the delinearization algorithm, the dimension variable array is

stepped through from the largest-numbered dimension variable to the smallest-numbered.

Figure 4.7 illustrates the process of partitioning the subscript expression tree into delin-

earized subscripts (in column-major order, in order to ease comparison to the original

Fortran code), one subscript at a time. In the �rst step, shown in Figure 4.7(b), the vari-

able k is identi�ed as the subscript corresponding to dimension variable c dim3, since

they share a common parent multiply operation. Because the parent of the multiplication

expression is another multiplication expression, indicating that an explicit original sub-

script value is missing from the linearized subscript expression, the child multiplication

52

expression is replaced with the constant zero and dimension variable three is discarded. In

the next step, shown in Figure 4.7(c), zero is identi�ed as the subscript corresponding to

dimension variable two. However, since the parent of the multiplication expression is now

an addition expression (and the original subscript is explicit), the addition expression is

replaced by its left operand, the variable j, and the multiplication expression is discarded

along with dimension variable two. The last step, illustrated in Figure 4.7(d), proceeds

in a similar manner to the previous step, and the residual expression tree becomes the

left-most subscript in the delinearized array reference.

If the Fortran array reference contains subscripts with the lower bound index in the

last dimensions (e.g. C(I, J, 0, 0)), the f2c-translated subscript expression will contain

too few dimension variables.4 Since the dimension variables for all but one of the original

array dimensions are always declared in the translated code, the symbol table can be

searched to check for missing higher-numbered dimension variables. Then, an extra zero

subscript is added to the right side of this delinearized array reference for each dimension

variable which is declared but not present in the translated array reference subscript

expression.

The delinearization process just described for formal parameter arrays dimensioned by

other variables whose values are not known at compile-time (called adjustable dimensions)

is fairly simple because the original subscript expression subtrees are clearly marked by

the presence of dimension variables in the linearized subscript expression. However, as

4If this situation occurs in any dimensions but the last, no dimension variables will be missing in the
linearized subscript expression, as illustrated in Figure 4.7(a).

53

SUBROUTINE FOO(C, N2, N3)

REAL C(�)
INTEGER N2, N3

INTEGER I, J, K

DIMENSION C(10, N2, N3)

DO K = 1, N3

DO J = 1, N2

DO I = 1, 10

C(I, J, K) = 0.0

ENDDO

ENDDO

ENDDO

RETURN

(a)

foo(c, n2, n3)

oat �c;
int �n2, �n3;

f
int i, j, k;

int c dim2, c o�set;

c dim2 = �n2;
c o�set = (c dim2 + 1) * 10 + 1;

c �= c o�set;

for (k = 1; k <= �n3; ++k) f
for (j = 1; j <= �n2; ++j) f

for (i = 1; i <= 10; ++i) f
c[i + (j + k � c dim2) � 10] = 0.0;

g
g

g
g

(b)

Figure 4.8: F2c Linearization of Formal Parameter Arrays with Constant Dimension Size.

shown in Figure 4.8, if an array subscript other than the right-most one (for Fortran

code) is dimensioned by a constant value, no dimension variable is declared for that

subscript, and the constant value itself is instead used as the multiplier for the dimension

size in the array references. The right-most array subscript dimension is not needed to

calculate the linearized array reference subscript expression, and hence plays no part in

array delinearization. Fortunately, if the missing variables are ignored during the second

phase, the delinearization algorithm described above still applies. However, the subscript

dimensioned by the constant value will remain linearized with the next subscript to the

right in the resulting partially delinearized array reference. For example, the reference

to array c in Figure 4.8 becomes the reference c[i + j�10][k] after delinearization. Since

the subscripts for all references to the array are delinearized in a consistent manner, the

54

partial delinearization will result in valid data dependence analysis, although some false

dependences may be calculated, as described earlier in this section. Modi�cation of the

f2c translator to generate dimension variables for constant dimension sizes is necessary

to eliminate the false dependences calculated because of partially delinearized references.

4.3.2 Local and common block array delinearization

The delinearization of arrays local to a function and arrays contained within com-

mon blocks proceeds in a di�erent manner than for formal function parameter arrays.

Since all array dimension sizes must be constant values known at compile time, f2c does

not generate dimension variables during the language translation process. Instead, the

linearized subscript expression contains the integer constants representing the dimension

sizes.

Figure 4.9 illustrates the process of f2c local array linearization. Note that for local

and common block arrays, f2c preserves the original array dimensions in a comment after

the array declaration. One obvious di�erence from the linearization of formal parameter

arrays is that the o�set due to di�erences in index lower bounds for Fortran and C is

present in the linearized array subscript expression since its value is known at compile

time. This o�set is calculated using the same method described in Section 4.3.1. To

delinearize local and common block array references, the array dimension sizes must be

preserved through the IMPACT front-end compiler modules to the Pcode module, as

described in Section 3.1.2.

55

SUBROUTINE FOO()

REAL C(10,20,30,40)
INTEGER I, J, K

DO K = 0, 29
DO J = 1, 20

DO I = 1, 10
C(I, J, K+1, 2) = 0.0

ENDDO
ENDDO

ENDDO
RETURN

(a)

foo()
f

oat c[240000] /� was [10][20][30][40] �/;
int i, j, k;

for (k = 0; k <= 29; ++k) f
for (j = 1; j <= 20; ++j) f

for (i = 1; i <= 10; ++i) f
c[i + (j + (k + 61) � 20) � 10 � 6211] = 0.0;

g
g

g
g

(b)

Figure 4.9: F2c Linearization of Local Arrays.

In f2c-translated code, a dimension constant may be folded with other dimension

constants, with other constants from the original subscript expressions (as shown in

Figure 4.9 for dimension constant 30 and subscript expression constants one and two),

or with the o�set constant. Since constant folding makes the process of delinearization

much more complicated if not impossible in some cases, the f2c translator was modi�ed to

prevent the folding of relevant constants within array subscript expressions. If constant

folding is suppressed during f2c translation, the array reference shown in Figure 4.9(b)

becomes

c[i+ (j+ ((k+ 1) + 2 � 30) � 20) � 10� 6211]

Note that all useful dimension constants and subscript constants are now represented

explicitly in the linearized subscript expression.

56

This delinearization process is more complicated than for delinearization of formal pa-

rameters, as described in Section 4.3.1, because the dimension constants in the linearized

subscript expression must be distinguished from one another and from other integer con-

stants present in the original subscript expressions. However, if the dimension constants

are identi�ed and replaced by the appropriate dummy dimension variables, the delin-

earization algorithm for formal parameter arrays may be applied directly. Figure 4.10(a)

illustrates the linearized array subscript expression tree for the array reference c given

above (with constant folding suppressed), and Figure 4.10(b) shows the linearized sub-

script expression after replacement with dummy dimension variables. The algorithm to

identify and convert the dimension constants to dummy dimension variables is divided

into three phases: gathering the potential dimension paths, selection of the path which

matches the known dimension constants, and replacement of the selected dimension con-

stants with corresponding dummy dimension variables.

In the �rst phase of the algorithm, all potential dimension paths are enumerated in

order to simplify determination of the actual dimension constants. A potential dimension

constant is de�ned as any integer constant which is a child of a multiplication operator in

the subscript expression tree. No other integer constants are considered potential dimen-

sion constants since suppression of constant folding prevents other operators from being

parents of true dimension constants. For example, 10, 20, 2, and 30 are the potential

dimension constants present in the subscript expression tree shown in Figure 4.10(a). A

potential dimension path is de�ned as an ordered list of potential dimension constants

57

i *

+

10+

j *

20

6211

-

+

2 30k 1

+ *

c[i+(j+((k+1)+2*30)*20)*10-6211](a) c[i+(j+((k+1)+2*_dim3)*_dim2)*_dim1-6211](b)

i *

+

_dim1+

j *

_dim2

6211

-

+

2 _dim3k 1

+ *

c[i-6211][j][k+1][2](c)

2

sub 3

k 1

+

sub 2

j

sub 1

i 6211

-

sub 0

c[i-1][j-1][k][1](d)

1

sub 3

j 1

-

sub 1

k

sub 2

i 1

-

sub 0

Figure 4.10: Local Array Delinearization Example.

58

encountered as children of multiplication operators along a path from a potential dimen-

sion constant to the root of the subscript expression tree. The set of potential dimension

paths in the example subscript expression tree shown in Figure 4.10(a) is as follows:

f(10); (20; 10); (2; 20; 10); (30; 20; 10)g

The procedure to determine the potential dimension paths consists of a depth-�rst

traversal of the subscript tree and a walk to the root of the subscript expression tree each

time a potential dimension constant is encountered to record the potential dimension

path beginning with that dimension constant. If the number of potential dimension

constants in a potential dimension path is not equal to the number of array dimensions

minus one, the path is discarded. Consequently, the set of potential dimension paths

found by the algorithm for the example subscript expression tree in Figure 4.10(a) is as

follows:

f(2; 20; 10); (30; 20; 10)g

The second phase of conversion to dummy dimension variables consists of the identi�-

cation of the potential dimension path containing the actual dimension constants. First,

the actual dimension sizes for all but the right-most array dimension are extracted from

the delinearization pragma (see Section 3.1.2) found in the symbol table entry for the

array variable. Next, the potential dimension constants for each potential dimension

path are matched to the extracted array dimension sizes in reverse order.

Since constant folding is suppressed in the f2c translator, at least one potential di-

mension path must match the extracted dimension sizes completely. For the example in

59

Figure 4.10(a), the matching potential dimension path is (30; 20; 10) since the original

array dimensions are c[10][20][30][40]. If there is more than one matching potential

dimension path, then one of the potential dimension paths is chosen arbitrarily. This

situation arises, for example, if the array reference in Figure 4.9(a) had instead been

C(I;J;K+ 1; 30), such that the right-most subscript consists of an integer constant

with the same magnitude as the size of the second-to-last array dimension.

The third phase of the conversion algorithm consists of the actual conversion of the

dimension constants along the chosen dimension path to the corresponding dummy di-

mension variables as shown in Figure 4.10(b). The dummy dimension variables are

temporary variables used for convenience; they allow the delinearization algorithm for

formal parameter arrays to be applied directly to the converted subscript expression. Fig-

ure 4.10(c) shows the results of applying this delinearization algorithm to the subscript

expression tree shown in Figure 4.10(b).

Since array delinearization is applied consistently and since the o�set constant is

the same for all references to the same array, the array reference may at this point be

considered delinearized for the purposes of data dependence analysis. In fact, a constant

o�set applied consistently to the same subscript of all references to a given array does not

a�ect data dependence analysis results. However, the linearized constant o�set (6211 in

Figure 4.10(b)) calculated from the di�erence in lower bounds using all subscripts is now

located entirely in the leftmost subscript.

60

Because of the di�culty in associating these subscript expressions with those in the

original Fortran code while examining access table listings, the delinearized subscripts are

each adjusted by compensating o�sets, such that each resulting subscript is individually

o�set with the Fortran default lower bound of one. The linearized o�set, !, introduced by

f2c is calculated for an array dimensioned in Fortran as A(d1; d2; : : : ; dn) via the following

formula:

! = 1 +
n�1X
i=1

iY
j=1

dj

This linearized o�set, 6211 for the example in Figure 4.9, is added to the left-most

subscript expression, and the value of one is subtracted from each subscript in the delin-

earized reference. Figure 4.10(d) shows the resulting array reference after this subscript

adjustment process is performed (and constant folding is applied to the resulting expres-

sions). Note that each subscript index is now one less than in the original code shown in

Figure 4.9(a).

Unfortunately, if an array is dimensioned in the Fortran source with a subscript

index lower bound other than one, the adjustment process described above will not

result in each subscript having the correct delinearized o�set. Since f2c-converted code

contains no information about the subscript index lower bounds, exact delinearization of

the linearized o�set is not possible without extensive modi�cation of the f2c translator.

However, as mentioned above, data dependence analysis is not a�ected by this adjustment

process, and should still produce correct results.

61

Although correct and complete delinearization for data dependence analysis is real-

izable using the algorithms described above when the original array dimension sizes are

known, arrays for which dimension size information is unavailable after f2c translation

cannot be delinearized using these algorithms. For example, f2c does not generate di-

mension size information for equivalenced arrays which are o�set in memory, described in

Section 4.2.4. Unfortunately, multidimensional o�set equivalenced arrays do occur in real

programs, and the f2c translator requires extensive modi�cation to generate dimension

size information in order to delinearize these references. However, the current delineariza-

tion algorithms are successful in delinearizing the vast majority of multidimensional array

references.

4.4 Array Reference Subscript Analysis

After array reference delinearization, each array subscript index expression is trans-

formed to a canonical representation to simplify and enable further analyses and trans-

formations. Data dependence analyses typically require that array subscript expressions

be represented in terms of a linear (or a�ne) function of the enclosing loop index vari-

ables and symbolic constants. Furthermore, certain array optimizations require that

array references be expressed in a�ne form to be considered for transformation. Sec-

tion 4.4.1 discusses the conversion of array subscript index expressions to a canonical

62

a�ne representation, and Section 4.4.2 presents the method, for the purpose of data de-

pendence analysis, to distinguish symbolic constants from variables which are modi�ed

in the function.

4.4.1 Conversion to a�ne representation

The purpose of the �rst phase of array reference subscript analysis is to convert each

subscript index expression into a canonical a�ne representation, if possible, described by

the following arithmetic expression:

c0 + c1v1 + c2v2 + � � �+ cnvn;

such that the c symbols represent integer constants or coe�cients and the v symbols

represent scalar program variables. Although algebraic simpli�cation of the subscript

expression would yield the desired arithmetic expression, a more direct approach is em-

ployed to convert a subscript expression.

Figure 4.11 presents the algorithm Affine Expression which takes an expression

tree, T , as an argument and returns either an a�ne expression, if a canonical a�ne

representation exists for T , or a pre-de�ned constant, not affine, otherwise. An a�ne

expression is a data structure that consists of a �eld for an array of a�ne terms, term[],

and a �eld specifying the number of a�ne terms, num terms, present in the a�ne ex-

pression. An a�ne term is itself a data structure consisting of an integer coe�cient

�eld, coef , and a �eld which is a pointer to the variable access in the access table,

63

Affine Expression(T)

1 A Allocate(a�ne expr)

2 A:num terms 1

3 A:term[0]:var access nil

4 if Linearity(A; T) � 1 /� Constant or Linear Expression �/
5 k Coefficient(T; nil)

6 A:term[0]:coef k

7 for i 1 to A:num terms

8 A:term[i]:coef Coefficient(T; A:term[i]:var access) � k

9 tag(var entry(A:term[i]:var access)) not found

10 return A

11 else

12 for i 1 to A:num terms

13 tag(var entry(A:term[i]:var access)) not found

14 Free(A)

15 return not affine

Figure 4.11: Algorithm for Building an A�ne Expression.

var access. Thus, the a�ne expression data structure embodies all of the characteristics

of the canonical a�ne representation, as given above.

The �rst three lines of algorithm Affine Expression perform the allocation of

an a�ne expression data structure, initialize num terms, and set the constant term

var access pointer to nil since the constant term, term[0], has no associated variable.

If the expression tree is a linear function, as determined by algorithm Linearity, the

coe�cients are determined in lines 5-8 via the algorithm Coefficient, and the a�ne

expression is returned. However, if the expression tree is not a linear function, then the

a�ne expression is deallocated and the value not affine is returned. The details of

64

Linearity(A, T)

1 case opcode(T) of

2 integer:

3 return 0 /� Constant Expression �/
4 variable:

5 v var access(T)

6 if tag(var entry(v)) = not found

7 tag(var entry(v)) found

8 A.term[A.num terms].var access v

9 A.num terms A.num terms + 1

10 return 1 /� Linear Expression �/
11 negate:

12 return Linearity(A, �rst oper(T))

13 add:

14 return Max(Linearity(A, �rst oper(T)), Linearity(A, second oper(T)))

15 subtract:

16 return Max(Linearity(A, �rst oper(T)), Linearity(A, second oper(T)))

17 multiply:

18 return Linearity(A, �rst oper(T)) + Linearity(A, second oper(T))

19 default:

20 return 2 /� Non-linear Expression �/

Figure 4.12: Algorithm for Determining Whether an Expression Is Linear.

the two algorithms, Linearity and Coefficient, called from Affine Expression

are explained below to further the understanding of the creation of the a�ne expression.

Figure 4.12 shows the algorithm Linearity, which takes an a�ne expression, A, and

an expression tree, T, as arguments, and returns whether or not the expression tree can

be represented using an a�ne expression data structure. The algorithm performs two

logical functions while traversing the entire expression tree once.

First, Linearity determines the number of terms in the a�ne expression by counting

the unique program variables accessed within the expression tree. Each time a variable

65

reference is found in the expression tree (line 4 of Figure 4.12), the corresponding variable

access is located in the access table. Each variable entry in the access table contains a

�eld, tag, indicating whether or not an instance of that particular variable has already

been found in the expression tree traversal. Each time a new variable reference is encoun-

tered (line 6), the variable entry is tagged found (line 7), and the number of terms in

the potential a�ne expression is increased by one (line 9). Additionally, a pointer to the

variable access in the access table is stored in the appropriate a�ne term data structure

to identify the variable corresponding to that term (line 8). Note that the variable entry

tags which may be marked found by Linearity are reset to not found in lines 9 and

13 of algorithm Affine Expression (Figure 4.11).

The second logical function of Linearity is to determine whether the expression tree

describes a linear function of scalar variables. To simplify the determination, however,

the return value of Linearity was chosen as the degree of the polynomial described

by the expression tree. Therefore, an integer constant node is of degree zero (line 3),

a variable node is of degree one (line 10), and any inherently non-linear expression tree

node, i.e., a function call operator or array index operator, is assigned degree two (line

20), implying non-linearity. To calculate the polynomial degree for the whole expression,

the leaf node polynomial degrees are combined through the parent arithmetic opera-

tors: negation, addition, subtraction, and multiplication. For an addition/subtraction

operator, the polynomial degree of the add/subtract expression is the maximum of the

polynomial degrees of the operator's operand expressions (lines 14 and 16). However, for

66

Coefficient(T , v)

1 case opcode(T) of

2 integer:

3 return value(T)

4 variable:

5 if var entry(v) = var entry(var access(T))

6 return 1

7 else

8 return 0

9 negate:

10 return �Coefficient(�rst oper(T), v)
11 add:

12 return Coefficient(�rst oper(T), v) + Coefficient(second oper(T), v)

13 subtract:

14 return Coefficient(�rst oper(T), v) � Coefficient(second oper(T), v)

15 multiply:

16 return Coefficient(�rst oper(T), v) � Coefficient(second oper(T), v)

Figure 4.13: Algorithm for Finding the Coe�cient of an A�ne Term.

a multiplication operator, the resulting polynomial degree is the sum of the polynomial

degrees of the operand expressions (line 18).

If the Linearity algorithm determines that the expression tree is a constant or linear

function of the variables (line 4 of Figure 4.11), then the coe�cient of the variable stored

in each a�ne term is calculated from the expression tree by the algorithm Coefficient

given in Figure 4.13. Coefficient takes as arguments an expression tree, T, and an

optional pointer, v, to a variable access in the access table, and works by evaluating the

expression tree with the variables set to either the value one or the value zero. If all

variable values are set to zero by passing nil for v, as in line 5 of Affine Expression,

the result of evaluating the expression tree is the value of the constant term in the a�ne

67

expression. However, if v is not nil, all instances of the variable v evaluate to one, and

all other variables evaluate to zero as shown in lines 5-8 of the algorithm Coefficient.

In this case, the value returned by Coefficient is the constant term value plus the

coe�cient of the variable v. Therefore, the constant term value, k, is subtracted from

the coe�cient for v before the coe�cient is stored in the appropriate a�ne term data

structure, as shown in line 8 of the algorithm Affine Expression.

Note in lines 7 and 8 of algorithm Affine Expression that Coefficient is called

once for each unique variable in the expression tree. Thus, the expression tree is traversed

as many times as there are terms in the resulting a�ne expression. Although the run-

time complexity of the algorithms presented in this section seems to be greater than

that of an equivalent algebraic manipulation implementation, the complexity may not be

the determining factor for the execution time, since the individual subscript expressions

tend to have a small number of terms. Furthermore, the constant cost of algebraic

manipulation may be larger because of the allocation and freeing of expression nodes

required during the simpli�cation process.

4.4.2 Identi�cation of modi�ed variables

Although the array subscript expressions are converted to an a�ne representation,

this representation includes not only loop index variables and symbolic constants but

also variables which may not have constant values during some part of the function exe-

cution, called modi�ed variables. The presence of these modi�ed variables may prohibit

68

correct dependence analysis if they are not identi�ed, since the Pcode data dependence

analysis phase assumes all non-index variables are symbolic constants. Furthermore, ar-

ray optimizations and transformations may require that symbolic constants and modi�ed

variables be distinguished.

For the purpose of analysis and optimization, the same variable may be identi�ed as

a symbolic constant within a speci�ed lexical region of a source function and a modi�ed

variable within another region. For modi�ed variable identi�cation, the IMPACT data

dependence analyzer considers each loop nest in a function as a separate region, and the

remaining code which is not enclosed within a loop is also considered one region, called

the top-level region. Section 5.4.2 presents the motivation for this choice of region for

data dependence analysis.

The �rst step of modi�ed variable identi�cation is to construct, for each variable, a set

of regions within which that variable is modi�ed. Each variable entry data structure in

the access table contains a �eld which identi�es the set of regions for which that variable

is modi�ed. The loop nest regions are numbered in lexical order, and these numbers are

used to identify the regions in a region set. During access table generation, whenever

a write access is added to the access table, the number of the region within which the

access occurs is added to the region set for the variable written.

In the second step of modi�ed variable identi�cation, region sets are merged for

aliased variables. An alias between two variables implies that a write to one variable is

a potential write to the aliased variable. Therefore, during alias graph construction, the

69

region sets for the two aliased variables are combined using the union operation as the

alias edge is added to the alias graph.

At this point, all variables in the access table are identi�ed by region as either symbolic

constants or (potentially) modi�ed variables. However, for all array access subscripts,

data dependence analysis needs to know if the subscript contains at least one modi�ed

variable. Therefore, after conversion of each subscript expression to a�ne representation,

each subscript data structure in the variable access data structure is marked with a value

indicating whether the subscript contains variables modi�ed in the region containing

the array access, and whether the subscript contains variables modi�ed in the top-level

region. (Loop index variables for loops which enclose the array reference are excluded

from consideration as modi�ed variables.) How this information is used to guide data

dependence analysis is discussed in Section 5.4.2.

70

5. DATA DEPENDENCE ANALYSIS

After the variable reference analysis has been performed, the data dependence analysis

phase is invoked to gather information about the loops in the program and calculate

the data dependence information. The Omega Test [2], developed by William Pugh

at the University of Maryland, is employed to generate and solve the data dependence

equations and inequalities in order to �nd the distance and direction vectors for a pair of

variable references. The data dependence analysis phase gathers the remaining necessary

information and applies the Omega Test to appropriate pairs of references in the variable

access table. Virtually all of the information calculated in the variable reference analysis

phase is utilized by the data dependence analysis phase, along with loop information

and information about the execution order of variable references determined in the data

dependence analysis phase itself. The sections of this chapter describe, respectively, the

Omega Test, loop preparation, determination of the execution order of variable references,

and the generation of the data dependence information.

71

5.1 The Omega Data Dependence Test

The Omega Test is an integer programming algorithm tailored to solve data depen-

dence analysis problems e�ciently. It is based on an extension of Fourier-Motzkin variable

elimination, a linear programming method, to integer programming. The Omega Test

determines whether an integer solution exists to a set of linear equations and inequalities,

generated by the three constraints for data dependence given in Section 2.3.1.

If no solution exists, the Omega Test reports that no data dependence exists; other-

wise, the set of linear equations and inequalities is symbolically projected onto a set of

new variables which represent the elements of the dependence distance/direction vector.

Symbolic projection eliminates designated variables from an integer programming prob-

lem and creates a set of projected problems in terms of the remaining variables, such

that the projected problems have the same integer solutions as the original problem [2].

By selective application of symbol projection, the elements of the direction vector can

be determined much more e�ciently than deciding whether dependences exist for each

possible direction vector separately.

Typically, data dependence tests have relied on loop normalization, which converts a

loop into one with a constant lower bound and unit step, to simplify data dependence

testing. However, loop normalization can result in data dependences with non-integral

dependence distances, which often go undetected using traditional data dependence test-

ing [11]. The Omega Test uses the de�nition of dependence distance which uses the

di�erence in the values of the index variables (sometimes called dependence di�erence),

72

so that loop normalization need not be applied. However, this de�nition of dependence

distance is problematic for loops with negative step, since distance/direction vectors

are not guaranteed to be lexicographically positive [2]. Indeed, the validity of several

common loop transformations cannot be determined without the assumption that dis-

tance/direction vectors are always lexicographically positive for real data dependences.

Therefore, the Omega Test currently may be applied only to loops with constant positive

step. (Loops with step which cannot be exactly determined at compile time are excluded

since the step at run time may be negative.) Although this restriction diminishes the

applicability of the Omega Test to certain loops, no dependences remain undetected due

to nonintegral dependence distance.

The Omega Test also performs value-based dependence analysis [9], [10] for code which

contains only if and for C language control
ow constructs; break, continue, return

and goto constructs are not handled directly by the Omega Test interface. Although

application of the test to code containing the excluded constructs is possible in certain

cases, applying version 2.0.1 of the Omega Test to arbitrarily complex patterns of these

control constructs is currently infeasible.

Version 2.0.1 of the interface to the Omega Test for data dependence analysis consists

of three parts:

1. Functions which access information about variable references and loops.

2. Data structures which transfer information to and from the Omega Test.

3. Driver code which applies the Omega Test to pairs of variable references.

73

The functions which access information are often represented by C language preprocessor

macros which directly access the variable reference information gathered by the reference

analysis phase described in Chapter 4. Although the Omega Test Interface provides sam-

ples of such functions, the functions were adapted to work with the Pcode IR. The a�ne

representation for array subscripts, loop bound information, and dependence distance

and direction vectors are examples of data structures which communicate information

between the Omega Test and the data dependence analyzer. The Omega Test driver

code must be adapted to the particular form of variable access data structure employed

by the dependence analyzer. The driver code adaptation for the Pcode data dependence

analyzer is discussed in more detail in Section 5.4.

5.2 Loop Preparation

Loop-carried data dependence analysis requires information about loops which enclose

the variable references to be analyzed. Speci�cally, this loop preparation process consists

of three components:

1. Standardization of loops to a format suitable for data dependence analysis.

2. Determination of nesting relationships among standardized loops.

3. Analysis of loop bound expressions.

The three sections which follow describe each of these components, respectively.

74

5.2.1 Loop standardization

Loop-carried data dependence analysis typically places certain restrictions on the

properties of loops recognized by the analysis. For example, many data dependence an-

alyzers require that loop index variables are increased or decreased by a constant step

size at the end of each iteration, which is enforced by the Fortran do loop semantics.

However, the Fortran do while loop does not always contain a recognizable index vari-

able, rendering such a loop unrecognizable by many dependence analyzers. The loop

standardization procedure standardizes certain loops in the f2c-generated source code to

a type of loop called a Parloop, which has the same semantics as the Fortran-style do

loop.

The Pcode data dependence analyzer employs three criteria for loop standardization:

1. The loop must originate from a Fortran do loop.

2. The loop must have a positive step size known at compile time.

3. The loop must not be nested more deeply than six levels.

The �rst criterion insures that the loop has an identi�able index variable. Although

some while loops may also have identi�able index variables, the current implementation

of the data dependence analyzer does not include this capability.

The second criterion insures that the distance/direction vector representation is lexi-

cographically positive, as described above in the introduction to Section 5.1. This crite-

rion could be circumvented by converting loops with negative step to loops with positive

75

step of the same magnitude | a process similar to loop normalization, but without the

problems described above. Since loops with negative step occur infrequently in practice,

this circumvention has not yet been implemented in the data dependence analyzer.

The third criterion is a result of the restrictive data structure that the Omega Test

uses to represent direction vectors. The data structure is represented as a bit vector

which must �t in a 32-bit integer. Because many of the bits are reserved for value-based

dependence analysis
ags, only six 3-bit direction vectors are supported. This restriction

can be relaxed to 10 levels of loop nesting by rede�ning the bit vector �elds, or even more

levels by rede�ning the data structure for direction vectors. However, the later requires

modi�cations to nearly all of the Omega Test source code.

Loops which meet all three criteria can be handled by the dependence analyzer and

are standardized to Parloop format. During this standardization process, the initial,

�nal, and increment values of the index variable are identi�ed from the C language for

loop header expressions and stored in �elds of the Parloop data structure, which is a

statement node of the Pcode IR. In addition, the index variable itself is stored in a �eld

of the Parloop data structure for easy identi�cation.

Loops which fail to meet any of the three standardization criteria are not recognized

as loops for the purpose of loop-carried data dependence analysis. Data dependence

analysis may still be applied to loop nests containing non-standardized loops, but the

data dependence direction and distance vectors will contain a missing entry for each non-

standardized loop. Many program transformations and optimizations must take into

76

account the missing vector entries when testing for validity, which may unnecessarily

prevent these transformations and optimizations. Furthermore, any non-standardized

loop index/induction variable appearing in an array subscript is treated as a modi�ed

variable, which results in even more conservative data dependence analysis. Expanding

the number of standardizable loops is an area of ongoing research.

5.2.2 Loop nesting determination

Data dependence analysis for a pair of variable references requires access to loop

bound and step information for all loops which enclose the reference pair. Hence, each

standardized loop is linked via a pointer to its nearest-enclosing, or parent, standardized

loop. The parent standardized loop is located by following statement parent pointers

upward through the AST until a standardized loop is encountered. Furthermore, the

nesting depth of each standardized loop is annotated to the Parloop data structure before

dependence analysis begins. Non-standardized loops are skipped when generating these

parent pointers and depth annotations since they have no corresponding entries in the

data dependence distance/direction vectors. The standardized loop parent pointers and

depth annotations directly provide the necessary loop nesting information to the Omega

Test interface.

5.2.3 Loop bound analysis

The Omega Test requires that each loop bound expression be a linear combination

of the outer enclosing loop index variables and symbolic constants in order to generate

77

index variable constraints for the data dependence analysis problem. Hence, upper and

lower bounds of standardized loops are converted to an a�ne representation as described

previously in Section 4.4.1.

The Omega Test also accepts certain cases of min and max functions as part of the

a�ne representation for loop bounds. One max function may be present in a positive

arithmetic term or one min function in a negative arithmetic term for the loop lower

bound. Conversely, one min function may be present in a positive term or one max

function in a negative term for the loop upper bound. If these conditions do not hold, the

loop bound is marked non-a�ne and the corresponding constraint on the index variable

is not generated by the Omega Test.

A loop bound which contains a min or max function accepted by the Omega Test

as an a�ne representation generates the conjunction of two separate constraints for the

loop index variable. For instance, for a loop with upper bound, min(a, b), and index

variable, i, the constraints generated for constraint two of Section 2.3.1 are as follows:

1. i � a

2. i � b

The restrictions for min and max functions to be handled only in certain contexts are

necessary since the Omega Test solves the conjunction of several constraints | disjunc-

tions of constraints are not handled.

The representation for an a�ne expression containing a min or max function is just

two a�ne expressions: one representing the a�ne expression if the result of the min

78

or max function is the �rst argument of the function, and one representing the a�ne

expression if the result is the second argument. Modi�cations for the a�ne representation

algorithms to incorporate handling of min and max functions are straightforward and

are not presented in this thesis.

Modi�ed variables which appear in loop bounds are detected during variable refer-

ence analysis according to the process described in Section 4.4.2. Any modi�ed variable

appearing in a loop bound causes the data dependence analyzer to mark the bound as

non-a�ne, thereby preventing the Omega Test from generating the corresponding in-

dex variable constraint for that bound. Although overly conservative data dependences

may be generated from using this approximation, it prevents the data dependence an-

alyzer from treating the modi�ed variable as a symbolic constant. Treating modi�ed

variables as symbolic constants could cause some data dependences to have incorrect

direction/distance vector information, and could cause other data dependences to go

undetected.

5.3 Reference Ordering Determination

For loop-carried data dependence analysis, the mathematical formulation of constraint

one given in Section 2.3.1 completely determines the temporal ordering between the two

references undergoing analysis, since the two references are from di�erent iterations of

at least one of the common enclosing loops. However, the iteration vectors are identical

for the non-loop-carried data dependence case (the case for which the distance vector

79

is all zeros), which necessitates the use of control
ow and expression tree analyses to

determine the execution ordering of references. The next two sections describe each of

these analyses in detail.

5.3.1 Non-loop-carried reachable control
ow analysis

Since the control
ow graph is constructed at the granularity of the statement level

of the Pcode AST, control
ow information is su�cient to determine the reference order-

ing information between references in di�erent expression trees. To determine whether

reference A can precede reference B during the execution of a single iteration of their

innermost enclosing loop, L, we need only determine whether there is a control
ow path

from A to B which does not include the loop back-branch of L. If so, the dependence

analyzer must consider the possibility that reference B is data dependent on reference A.

If not, the reference B cannot be data dependent on reference A in the non-loop-carried

sense. As an example of the latter case, two references in di�erent branches of an if

statement have no control
ow path between them, so there is no need to consider the

possibility of non-loop-carried dependence.

To determine whether or not there is a control
ow path from one point in a function

to another, control
ow analysis is employed to calculate all the reachable control
ow

nodes at each control
ow node in the function. However, since it is trivial to determine

reachability within each basic block, the reachable control
ow analysis is performed at

the granularity of basic blocks. In addition, since the criteria for determining reference

80

ordering are with respect to the innermost loop (L) enclosing both references, the reach-

ability information for each basic block must be calculated with respect to each enclosing

standardized loop as well as the entire function (for the case where there are no common

enclosing loops for the reference pair). Since standardized loops can be nested only six

levels deep, each basic block contains an array of six sets of reaching basic block iden-

ti�ers, such that the array index value is the depth of the standardized loop for which

each set corresponds.

Figure 5.1 provides the algorithm for calculating the reaching basic block sets. The

algorithm is formulated similar to a forward data
ow analysis, and takes a Pcode function

data structure as an argument. Line 10 of Figure 5.1 shows that the reaching basic blocks

for the current basic block are the immediate predecessor basic blocks in the current

Parloop plus the union of all of their reaching basic blocks. Before the algorithm is

invoked, all reaching basic block sets are initialized to the empty set. The reaching basic

block sets are calculated repeatedly until there are no more changes to any set. Note

that line 7 of the algorithm prevents reaching basic blocks from traversing the loop back-

branch for the current Parloop by inhibiting the data
ow calculation for the loop header

basic block.

Lines 14{23 of Reaching Basic Blocks calculate the reaching basic blocks for the

entire function. The di�erences from the previous calculation are that no loop back-

branches are ignored and the loop nesting depth is set at zero.

81

Reaching Basic Blocks(F)

1 for each P 2 parloops(F)

2 D loop nesting depth(P)

3 Change true

4 while Change = true

5 Change false

6 for each B 2 basic blocks(P)

7 if : is header bb for loop(B; P)

8 R ;
9 for each B0 2 predecessor(B)

T
basic blocks(P)

10 R R
S
fB0g

S
reaching bb's(B0; D)

11 if R 6= reaching bb's(B; D)

12 reaching bb's(B; D) R

13 Change true

14 Change true

15 while Change = true

16 Change false

17 for each B 2 basic blocks(F)

18 R ;
19 for each B0 2 predecessor(B)

20 R R
S
fB0g

S
reaching bb's(B0; 0)

21 if R 6= reaching bb's(B; 0)

22 reaching bb's(B; 0) R

23 Change true

Figure 5.1: Algorithm for Calculating Reaching Basic Blocks.

Although the algorithm could be modi�ed to calculate the information for all loop

nests simultaneously, preventing the reaching basic blocks from propagating outside of

their enclosing Parloops adds computational complexity to the algorithm. If the unneces-

sary propagation of reaching basic blocks is not prevented, the sets become unnecessarily

large, resulting in slower set operations and wasted storage space.

To determine if reference A may precede reference B within the execution of the

same iteration of their innermost enclosing Parloop, L, the data dependence analyzer

82

�rst checks whether or not A and B are in the di�erent basic blocks of L. If so, A may

precede B if the basic block containing A is present in the set of reaching basic blocks

at the nesting depth of L for the basic block containing B. If A and B are in the same

basic block, but di�erent
ow nodes within that basic block, a simple traversal of the

ow-node list will determine the possible ordering of reference for A and B. However, if

A and B are within the same control
ow node, then the expression corresponding to

that
ow node must be analyzed to determine the reference ordering, as discussed in the

next section.

5.3.2 Intra-expression execution order analysis

If two references, A and B, are contained within the same expression AST, a method

for determining the execution ordering of A and B other than control
ow analysis must

be employed to determine whether non-loop-carried data dependences can exist from one

reference to the other. The execution ordering for two references can be determined by

examining the type of operation which constitutes their nearest common ancestor in the

expression tree.

Table 5.1 speci�es the orders of evaluation for the operand expressions of binary and

ternary C language operations. The relation, \�", speci�es that evaluation of the ex-

pression on the left side occurs before evaluation of the right-side expression. Hence,

references in the left-side expression will execute before references in the right-side ex-

pression. The relation, \?", speci�es that the order of evaluation of the operands is not

83

Table 5.1: Orders of Evaluation for Expression Operands.

Operation Type Example Expression Order of Evaluation

Assignment 1 � = � � � �

Logical � && � � � �

Sequential 2 �; � � � �

Other Binary 3 �+ � � ? �

� � �

Conditional � ? � :
 � �

� 6�
 ^
 6� �

mandated by the C language; therefore, no non-loop-carried dependence is generated

between the references. Similarly, no non-loop-carried dependence is generated between

references contained in the second and third operands of the conditional operator, since

only one of the operands is evaluated each time the conditional expression is evaluated.

5.4 Data Dependence Graph Generation

The �nal step of data dependence analysis is to generate and record the data depen-

dence information for pairs of variable references. The data structure chosen to represent

the dependence information is a directed graph, such that the nodes represent program

references and arcs represent data dependences between them. To generate this informa-

tion, one must �rst iterate through all pairs of possibly data-dependent references in the

1For the compound assignment operators, (+=, �=, �=, ==, %=, <<=, >>=, &=, ^=, and j=),
the left-hand-side write reference (in �) must execute after any of the references on the right-hand side
(in �); however, the left-hand-side read reference may execute either before or after references on the
right-hand side.

2Argument expressions for a function call invocation are not necessarily sequentially evaluated. Ref-
erences within di�erent argument expressions may execute in any order.

3This order of evaluation applies to any binary operation in the C programming language whose
speci�c operation type does not appear in Table 5.1.

84

access table. This iterative process of \intersecting" each program reference with other

program references is described in Section 5.4.1. Preparation of each pair of references

for application to the Omega Test is accomplished by the Omega Test driver, which is

described in Section 5.4.2. Finally, a more detailed description of the data dependence

graph representation is given in Section 5.4.3.

5.4.1 Pairwise reference intersection

Figure 5.2 contains the algorithm for reference intersection, which takes the access

table as an argument. The subroutine Test Driver performs the �nal preparation and

calls the Omega Test for the variable accesses speci�ed by the �rst and second arguments.

The third argument is the data dependence type for A1 � A2, and the fourth argument

is the type for A2 � A1. (Input-type data dependences are not typically calculated.)

Macros subscript list, last subscript, and next subscript are utilized to manipulate data

structures represented as linked lists. Lines 1{10 intersect references from the same

variable entry and the same variable type data structures. Since the subscript expressions

for these accesses are directly comparable, subscript expression lists remain attached to

the pair of accesses and, thus, are passed to the Omega Test to generate constraints.

Although pairwise reference intersection seems to be straightforward, aliased variables

complicate the process signi�cantly. Recall from Section 4.1.2 that references to variables

of di�erent types which overlap in memory are organized by data type in the access table.

Those array references which are placed under di�erent variable type data structures but

85

Intersect References(AT)
1 for E1 �rst entry(AT) to last entry(AT)
2 for T1 �rst type(E1) to last type(E1)
3 for A1 �rst access(T1) to last access(T1)
4 for A2 �rst access(T1) to A1

5 if is read(A1) ^ is write(A2) ^ A1 6= A2

6 Test Driver(A1, A2, anti, flow)
7 if is write(A1) ^ is read(A2)
8 Test Driver(A1, A2, flow, anti)
9 if is write(A1) ^ is write(A2)
10 Test Driver(A1, A2, output, output)

11 for T2 next type(T1) to last type(E1)
12 for A1 �rst access(T1) to last access(T1)
13 S1 subscript list(A1)
14 subscript list(A1) nil

15 for A2 �rst access(T2) to last access(T2)
16 S2 subscript list(A2)
17 subscript list(A2) nil

18 if is read(A1) ^ is write(A2)
19 Test Driver(A1, A2, anti, flow)
20 if is write(A1) ^ is read(A2)
21 Test Driver(A1, A2, flow, anti)
22 if is write(A1) ^ is write(A2)
23 Test Driver(A1, A2, output, output)
24 subscript list(A2) S2

25 subscript list(A1) S1

26 for E2 �rst aliased entry(E1) to last aliased entry(E1)
27 for T1 �rst type(E1) to last type(E1)
28 for T2 �rst type(E2) to last type(E2)
29 for A1 �rst access(T1) to last access(T1)
30 S1 subscript list(A1)
31 subscript list(A1) nil

32 for A2 �rst access(T2) to last access(T2)
33 S2 subscript list(A2)
34 subscript list(A2) nil

35 if is read(A1) ^ is write(A2)
36 Test Driver(A1, A2, anti, flow)
37 if is write(A1) ^ is read(A2)
38 Test Driver(A1, A2, flow, anti)
39 if is write(A1) ^ is write(A2)
40 Test Driver(A1, A2, output, output)
41 subscript list(A2) S2

42 subscript list(A1) S1

Figure 5.2: Algorithm for Intersecting References in Access Table.

86

under the same variable entry data structures are implicitly considered to be aliased,

and subscript information cannot be directly compared during data dependence analysis.

Lines 11{25 intersect references from the same variable entry and di�erent variable type.

Note that lines 13{14 and 16{17 accomplish the removal of all subscript expressions

for both aliased accesses to prevent the direct comparison of subscripts, and lines 24{25

reattach the subscript expressions after the intersection process is complete. This process

eliminates the constraints for the data dependence problem generated by the subscript

expressions and results in conservative dependence analysis for aliased variable references.

Although the subscript expressions for variable references of di�erent data types but the

same type size could be directly compared, no machine-speci�c information about simple

type sizes is available for the Pcode module at this time.

Section 4.2 discussed the conditions for explicit aliasing of two variable entry data

structures using the alias graph. Since information about the amount of overlap is un-

available, the subscript information for explicitly aliased variables again cannot be used

to calculate the data dependences. Lines 26{42 intersect references from di�erent variable

entries, while lines 30{31, 33{34, and 41{42 accomplish the removal and reattachment of

subscript expressions for the same reason as described above.

The algorithm also contains several re�nements to insure that no two accesses are

intersected more than once with the same dependence type. Lines 4 and 11 accomplish

this duplication prevention by careful selection of the loop bounds. Although not specif-

ically illustrated, the macros �rst aliased entry and last aliased entry on line 26 provide

87

a mechanism to avoid traversing the same undirected alias arc in both directions. Recall

from Section 4.1.3 that a static reference may actually represent both a read and a write

access (for static references on the left-hand side of the compound assignment operators,

for example). Therefore, the �nal condition for the if statement on line 5 insures that

the subroutine calls on lines 6 and 8 don't produce duplicate intersections for this case.

5.4.2 Omega Test driver

The Test Driver subroutine prepares and sends a pair of program references to the

Omega Test, which generates the data dependence information between that pair. As

shown in Figure 5.3, the subroutine takes as arguments a pair of accesses, and the types

of the possible dependences from the �rst to the second access and from the second to

the �rst.

The �rst two lines of the algorithm prevent dependences between index variable ini-

tialization accesses and read accesses of the index variable inside its corresponding loop.

These dependences are not calculated since high-level transformations typically do not

rely on them to guarantee correctness. However, low-level scheduling and optimizations

may require them since the accesses involving the index variable are no longer ordered

by the semantics of the Parloop.

Loop nesting depths for each access and the common enclosing loop nesting depth for

both accesses are calculated in lines 3{5 of the algorithm. Loop nesting depth is a macro

which merely accesses the correct �eld of the variable access data structure generated

88

Test Driver(A1, A2, T12, T21)

1 if (T12 = flow ^ is index(A2)) _ (T12 = anti ^ is index(A1))

2 return

3 D1 loop nesting depth(A1)

4 D2 loop nesting depth(A2)

5 D12 Common Loop Nesting Depth(A1, A2)

6 S1 �rst subscript(A1)

7 S2 �rst subscript(A2)

8 while S1 6= nil ^ S2 6= nil

9 S1 next subscript(S1)

10 S2 next subscript(S2)

11 if S1 6= nil _ S2 6= nil _ entire extent(A1) _ entire extent(A2)

12 S1 subscript list(A1)

13 S2 subscript list(A2)

14 subscript list(A1) nil

15 subscript list(A2) nil

16 else

17 S10 �rst subscript(A1)

18 S20 �rst subscript(A2)

19 N 1

20 while S10 6= nil ^ S20 6= nil

21 if (D12 = 0 ^ (func mod var(S10) _ func mod var(S20))) _
(D12 6= 0 ^ (loop nest mod var(S10) _ loop nest mod var(S20)))

22 AE1[N] a�ne expr(S10)

23 AE2[N] a�ne expr(S20)

24 a�ne expr(S10) not affine

25 a�ne expr(S20) not affine

26 else

27 AE1[N] nil

28 AE2[N] nil

29 S10 next subscript(S10)

30 S20 next subscript(S20)

31 N N + 1

32 Omega Test(A1, A2, T12, T21, D1, D2, D12)

33 if S1 6= nil _ S2 6= nil _ entire extent(A1) _ entire extent(A2)

34 subscript list(A1) S1

35 subscript list(A2) S2

36 else

37 S10 �rst subscript(A1)

38 S20 �rst subscript(A2)

39 N 1

40 while S10 6= nil ^ S20 6= nil

41 if AE1[N] 6= nil _ AE2[N] 6= nil

42 a�ne expr(S10) AE1[N]

43 a�ne expr(S20) AE2[N]

44 S10 next subscript(S10)

45 S20 next subscript(S20)

46 N N + 1

Figure 5.3: Algorithm for Preparing Reference Pairs for the Omega Test.

89

during variable reference analysis. The algorithm Common Loop Nesting Depth is

not given, since it is relatively trivial given that each access contains a pointer to its

nearest enclosing Parloop and each Parloop data structure contains loop nesting depth

and parent Parloop �elds, as described in Section 5.2.2.

Lines 8-15 of the algorithm perform temporary removal of all subscript expressions

for both accesses if certain conditions hold, as given on line 11. The �rst pair of condi-

tions speci�es that if the two accesses have a di�erent number of subscripts, then their

subscripts cannot be used by the Omega Test to constrain the data dependence problem.

(The while loop on lines 8{10 iterates through the subscript expressions of both accesses

simultaneously until the end of either list is reached.) For example, if one of the accesses

is a single-dimensional access of a single array element, and another access is to the entire

array (e.g., the array pointer being passed to a function as in call by reference), then

subscripts cannot be compared pairwise between the two references, and the only option

is to eliminate them from consideration. The second pair of conditions speci�es that if

the extent of either access is not constrained to a single array element, as explained in

Section 4.1.3, then none of the subscripts may be used for the data dependence test. Lines

12-15 accomplish the actual removal and temporary storage of the unused subscripts.

If the subscripts are not temporarily removed, lines 17-31 perform the necessary

preparations for the subscripts containing modi�ed variables. The while loop on line 20

iterates through the subscripts for accesses A1 and A2 simultaneously using the variables

S1 0 and S2 0, respectively. If the common enclosing loop-nesting depth is zero, then either

90

subscript containing variables modi�ed in any region in the function (see Section 4.4.2)

will render both subscripts useless to the Omega Test, which contains no method to cor-

rectly handle modi�ed variables (other than index variables). Although using the entire

function as a region is overly conservative, strict determination of whether the modi�ed

variable is updated along any path between the two accesses seems unwarranted, since

most high-level transformations apply to single-loop nests instead of top-level function

statements or adjacent loop nests. However, if the accesses are within a common loop

nest, the pair of subscripts being examined must be ignored only if either of them con-

tains a variable modi�ed in that loop nest. Although the choice of the loop nest as a

region is again overly conservative, the Omega Test provides no mechanism to handle

a more speci�c region. In either case described above, the corresponding subscripts for

each access are essentially ignored by temporarily assigning them a non-a�ne status, as

shown in lines 22-25. The Omega Test then ignores these non-a�ne subscript pairs when

generating data dependence analysis constraints.

Line 32 invokes the Omega Test itself, passing the accesses, dependence types, and

loop nesting depths as arguments. The remaining lines of the algorithm restore the

removed subscripts or a�ne expressions back to the pair of accesses.

5.4.3 Data dependence graph representation

As the Omega Test detects each data dependence, it calls an interface subroutine

which stores the data dependence information in the data dependence graph. The data

91

dependence graph consists of the variable access data structures which represent graph

nodes, and the data dependence data structures which represent the arcs between the

nodes. For convenience, the data dependence data structures will be referred to as

dependence arcs, and the variable access data structures as access nodes. Since the data

dependence graph contains data structures for both nodes and arcs, the dependence arcs

are linked to the access nodes using three sets of pointers. First, each dependence arc

contains source and destination pointers to the corresponding access nodes at the tail

and head, respectively, of the data dependence arc. Next, each access node contains

pointers to a pair of unordered arc lists, one for incoming arcs and the other for outgoing

arcs. Finally, the dependence arcs contain pointers to construct the links for this pair of

unordered arc lists. This form of graph data structure allows easy traversal of the nodes

and connecting arcs.

The data dependence abstraction utilized is a combination of dependence distance

and direction vectors. The distance vector gives the di�erence in index variable values

for each enclosing Parloop and is represented by an array of signed integers such that

the number of elements equals the number of enclosing Parloops. Since the Omega Test

does not enumerate the possible solutions for non-uniform data dependences, only one

distance vector can be generated for each call to the Omega Test. Consequently, if more

than one possible distance vector exists, the Omega Test returns a single distance vector,

such that the vector entries which can take on multiple values are given a special value

signifying an \unknown" distance. However, a single call to the Omega Test may generate

92

several instances of direction vectors, each representing a di�erent loop which carries the

data dependence. In this case, each direction vector is reported as a separate dependence

arc. Direction vectors are represented in the dependence arc as bit vectors containing

up to six �elds of three bits each, one bit for each possible direction. Macro functions

are provided to manipulate and test the direction vectors. In addition, the number of

enclosing Parloops is also recorded in the dependence arc to identify which entries of the

distance and direction vectors are utilized.

An additional entry, the data dependence threshold [11], is provided in the dependence

arc and represents the number of loop iterations between the source and destination of

the dependence for the loop which carries the dependence. Note that the data depen-

dence threshold can be obtained by dividing the distance by the step for the loop which

carries the dependence. If the distance for the carrying loop is unknown, the dependence

threshold is marked with the same \unknown" value. If the data dependence is not loop

carried, then the threshold value is zero.

Finally, a 32-bit vector is provided for marking dependences for transformations.

The meaning assigned to the �elds in this vector is left to the transformation author's

discretion.

93

6. CONCLUSIONS

This thesis has described, in detail, the variable reference analysis and data depen-

dence analysis packages that generate data dependence relationships for Fortran pro-

grams. Although solution of the mathematical equations of the data dependence problem

is essential for data dependence analysis of Fortran programs, correct and e�cient pro-

gram variable and loop analysis must be employed to obtain accurate data dependence

relationships. Variable aliasing analysis and modi�ed variable detection are essential

components for interfacing IMPACT data dependence analysis to data dependence test-

ing software. Furthermore, correct delinearization of array references is important to

obtain accurate data dependence relationships for programs with linearized array ref-

erences. The IMPACT data dependence analyzer provides the requisite algorithms for

generating accurate data dependence relationships for real Fortran programs, enabling

compiler writers to implement valid program transformations and optimizations.

94

REFERENCES

[1] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT:

An architectural framework for multiple-instruction-issue processors," in Proceedings
of the 18th Annual International Symposium on Computer Architecture, (Toronto,
Canada), pp. 266{275, June 1991.

[2] W. Pugh, \A practical algorithm for exact array dependence analysis," Communi-

cations of the ACM, vol. 35, pp. 102{114, August 1992.

[3] U. Banerjee, Dependence Analysis for Supercomputing. Boston, MA: Kluwer Aca-
demic Publishers, 1988.

[4] M. J. Wolfe, Optimizing Supercompilers for Supercomputers. Cambridge, MA: The

MIT Press, 1989.

[5] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers. New
York, NY: ACM Press, 1991.

[6] U. Banerjee, Loop Transformations for Restructuring Compilers: The Foundations.
Boston, MA: Kluwer Academic Publishers, 1993.

[7] D. Callahan, S. Carr, and K. Kennedy, \Improving register allocation for subscripted

variables," in Proceedings of the ACM SIGPLAN '90 Symposium on Compiler Con-

struction, pp. 53{65, 1990.

[8] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and

Tools. Reading, MA: Addison-Wesley, 1986.

[9] W. Pugh and D. Wonnacott, \Eliminating false data dependences using the Omega
Test," in Proceedings of the SIGPLAN '92 Conference on Programming Language

Design and Implementation, pp. 140{151, June 1992.

[10] W. Pugh and D. Wonnacott, \Going beyond integer programming with the Omega

Test to eliminate false data dependences," Tech. Rep. CS-TR-2993, Department of
Computer Science, University of Maryland, College Park, December 1992.

95

[11] W. Pugh, \The de�nition of dependence distance," Tech. Rep. CS-TR-2992, De-

partment of Computer Science, University of Maryland, College Park, November

1992.

[12] M. Wolfe, \Experiences with data dependence abstractions," in Proceedings of the

1991 International Conference on Supercomputing, pp. 321{329, June 1991.

[13] P. P. Chang, \The Hcode language and its environment." IMPACT compiler doc-

umentation, Center for Reliable and High-performance Computing, University of

Illinois, Urbana, IL, 1989.

[14] B. W. Kernighan and D. M. Ritchie, The C programming language. Englewood

Cli�s, NJ: Prentice Hall, 1978.

[15] B. W. Kernighan and D. M. Ritchie, The C programming language. Englewood
Cli�s, NJ: Prentice Hall, 2nd ed., 1988.

[16] N. J. Warter, P. P. Chang, S. Anik, G. E. Haab, S. A. Mahlke, W. Y. Chen, and

W. W. Hwu, \Charlie C: A reference manual." IMPACT compiler documentation,
Center for Reliable and High-performance Computing, University of Illinois, Urbana,

IL, 1991.

[17] American National Standards Institute, New York, NY, American National Standard

Programming Language FORTRAN, 1978. ANSI X3.9-1978.

[18] S. I. Feldman, D. M. Gray, M. W. Maimore, and N. L. Schryer, \A Fortran-to-C
converter," Computing Science Tech. Report 149, AT&T Bell Laboratories, Murray

Hill, NJ, June 1990.

[19] N. J. Warter and G. E. Haab, \Pcode manual." IMPACT compiler documentation,
Center for Reliable and High-performance Computing, University of Illinois, Urbana,

IL, 1991.

[20] D. M. Gallagher, \Memory disambiguation to facilitate instruction-level parallelism
compilation," Ph.D. dissertation, Department of Electrical and Computer Engineer-

ing, University of Illinois, Urbana, IL, 1995.

[21] K. Subramanian, \Loop transformations for parallel compilers," M.S. thesis, De-

partment of Computer Science, University of Illinois, Urbana, IL, 1993.

[22] S. Anik, \Architectural and software support for executing numerical applications
on high performance computers," Ph.D. dissertation, Department of Electrical and

Computer Engineering, University of Illinois, Urbana, IL, 1993.

[23] Y. Yamada, \Data relocation and prefetching for programs with large data sets,"

Ph.D. dissertation, Department of Computer Science, University of Illinois, Urbana,

IL, 1995.

96

[24] P. Chang, \Compiler support for multiple instruction issue architectures," Ph.D.

dissertation, Department of Electrical and Computer Engineering, University of Illi-

nois, Urbana, IL, 1991.

[25] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Pro�le-guided automatic

inline expansion for C programs," Software Practice and Experience, vol. 22, pp. 349{

370, May 1992.

[26] S. A. Mahlke, \Design and implementation of a portable global code optimizer," M.S.

thesis, Department of Electrical and Computer Engineering, University of Illinois,

Urbana, IL, 1991.

[27] W.W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,

R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
\The superblock: An e�ective technique for VLIW and superscalar compilation,"
Journal of Supercomputing, vol. 7, pp. 229{248, Jan. 1992.

[28] S. A. Mahlke, \Exploiting instruction level parallelism in the presence of conditional
branches," Ph.D. dissertation, Department of Electrical and Computer Engineering,

University of Illinois, Urbana, IL, 1995.

[29] P. P. Chang, D. M. Lavery, and W. W. Hwu, \The importance of prepass code
scheduling for superscalar and superpipelined processors," Tech. Rep. CRHC-91-18,

Center for Reliable and High-Performance Computing, University of Illinois, Urbana,
IL, May 1991.

[30] R. A. Bringmann, \Enhancing instruction level parallelism through compiler-
controlled speculation," Ph.D. dissertation, Department of Computer Science, Uni-
versity of Illinois, Urbana, IL, 1995.

[31] N. J. Warter, \Modulo scheduling with isomorphic control transformations," Ph.D.

dissertation, Department of Electrical and Computer Engineering, University of Illi-

nois, Urbana, IL, 1993.

[32] R. E. Hank, \Machine independent register allocation for the IMPACT-I C com-

piler," M.S. thesis, Department of Electrical and Computer Engineering, University

of Illinois, Urbana, IL, 1993.

[33] J. C. Gyllenhaal, \A machine description language for compilation," M.S. thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana,

IL, 1994.

[34] R. A. Bringmann, \Template for code generation development using the IMPACT-I

C compiler," M.S. thesis, Department of Computer Science, University of Illinois,
Urbana, IL, 1992.

97

[35] W. Y. Chen, \An optimizing compiler code generator: A platform for RISC perfor-

mance analysis," M.S. thesis, Department of Electrical and Computer Engineering,

University of Illinois, Urbana-Champaign, Illinois, 1991.

[36] R. G. Ouellette, \Compiler support for SPARC architecture processors," M.S. thesis,

Department of Electrical and Computer Engineering, University of Illinois, Urbana,

IL, 1994.

[37] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL PlayDoh architecture speci�ca-

tion: Version 1.0," Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto,

CA 94303, February 1994.

[38] V. Maslov, \Delinearization: An e�cient way to break multiloop dependence equa-

tions," in Proceedings of the SIGPLAN '92 Conference on Programming Language

Design and Implementation, pp. 152{161, June 1992.

