
DYNAMIC CONTROL OF COMPILE TIME USING
VERTICAL REGION-BASED COMPILATION

BY

JAYMIE LYNN BRAUN

B.S., University of Iowa, 1995

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1998

Urbana, Illinois

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Wen-Mei Hwu, for providing me with

the resources, support, and guidance necessary to complete my master's thesis. He is

an extremely caring teacher and a positive and motivating in
uence on the students he

teaches and advises.

I would like to thank Richard Hank, upon whose doctoral work this thesis is built. He

always had time to answer my questions and to talk about possible research directions.

I would also like to thank the members of the IMPACT research group for their

assistance. This includes Dan Connors, Teresa Johnson, David August, Brian Deitrich,

Ben Chung, and John Gyllenhaal. All of these people assisted me whenever I need help.

Finally, I would like to thank my family and friends, without whom I could never

have made it to the place I am today. Thank you to my mother and father for always

letting me make my own decisions, and for supporting me and believing in me no matter

what those decisions were. Dan Connors and Robb Shimon were always there to talk

with or just to listen during my time at Illinois, and both are wonderful friends. Finally,

thank you to Tom, for caring about me, hanging on through the good and bad, loving

me unconditionally, and providing me with the balance I so desperately need in my life.

iv

TABLE OF CONTENTS

Page

1. INTRODUCTION : 1

2. BACKGROUND : 4
2.1 Overview of the IMPACT Compiler : : : : : : : : : : : : : : : : : : : 5
2.2 Region-Based Compilation : 8

2.2.1 Region-based optimization : 10
2.2.2 Region-based compilation management : : : : : : : : : : : : : 14

3. DYNAMIC COMPILE-TIME CONTROL : : : : : : : : : : : : : : : : : : 21
3.1 Algorithm : 22

3.1.1 Levels of optimization : 26
3.1.2 Region selection scope : 29
3.1.3 Memory requirements : 31

4. EXPERIMENTAL PERFORMANCE EVALUATION : : : : : : : : : : : : 33
4.1 Choosing a Pivot Point : 33
4.2 Finding Appropriate Compile Time : : : : : : : : : : : : : : : : : : : 35
4.3 Dynamic Compile Time Algorithm Evaluation : : : : : : : : : : : : : 36

4.3.1 Distribution of optimization level over program : : : : : : : : 39
4.3.2 Accuracy of algorithm : 40

4.4 Comparison of Performance : 45
4.5 Global versus Function Scope : 46

5. CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 48

REFERENCES : 50

v

LIST OF TABLES

Table Page

3.1: Levels of Optimization. : 30

vi

LIST OF FIGURES

Figure Page

2.1: The IMPACT compiler. : 6
2.2: Horizontal function-based compilation of a function. : : : : : : : : : : 11
2.3: Horizontal region-based compilation of a function. : : : : : : : : : : : 11
2.4: Vertical region-based compilation of a function. : : : : : : : : : : : : 12
2.5: Specialized vertical region-based compilation of a function. : : : : : : 13
2.6: Global specialized vertical region-based compilation of a function. : : 13
2.7: Vertical region-based compilation of a function. : : : : : : : : : : : : 14
2.8: Pro�le-sensitive region formation algorithm. : : : : : : : : : : : : : : 17
2.9: Selected basic blocks of region in program CFG. : : : : : : : : : : : : 19
2.10: Region boundary conditions. : 20
3.1: Dynamic compile-time, level-determination algorithm. : : : : : : : : : 24
3.2: Piecewise linear function used to control compile time. : : : : : : : : 25
3.3: Adjusted slope cushion used with piecewise linear function. : : : : : : 27
3.4: (a) Global versus (b) function seed selection scope. : : : : : : : : : : 31
4.1: Comparison of pivot points. : 34
4.2: IPC of qsort. : 36
4.3: IPC of 129.compress. : 37
4.4: IPC of cmp. : 37
4.5: IPC of grep. : 38
4.6: IPC of tbl. : 38
4.7: IPC of wc. : 39
4.8: Distribution of optimization levels over qsort. : : : : : : : : : : : : : : 40
4.9: Distribution of optimization levels over 129.compress. : : : : : : : : : 41
4.10: Distribution of optimization levels over cmp. : : : : : : : : : : : : : : 41
4.11: Distribution of optimization levels over grep. : : : : : : : : : : : : : : 42
4.12: Distribution of optimization levels over yacc. : : : : : : : : : : : : : : 42
4.13: Distribution of optimization levels over tbl. : : : : : : : : : : : : : : : 43
4.14: Distribution of optimization levels over wc. : : : : : : : : : : : : : : : 43

vii

4.15: Accuracy of dynamic compile-time control. : : : : : : : : : : : : : : : 44
4.16: Performance of dynamic compile-time control. : : : : : : : : : : : : : 46
4.17: Global versus function seed selection scope. : : : : : : : : : : : : : : : 47

1

1. INTRODUCTION

In an e�ort to extract higher levels of instruction-level parallelism (ILP) from pro-

grams and meet the needs of today's wide-issue machines, compilers are employing ag-

gressive global optimizations and scheduling techniques. The application of these trans-

formations to a program is a time-intensive task. Compilers also often employ aggressive

procedure inlining in order to obtain a more global view of a program and expose cyclic

code. This process increases the size of the functions in a program. In a traditional com-

piler, this may cause the optimization and scheduling of a function to become intractable

as the memory and time compilation requirements increase.

A viable alternative to the traditional compilation method is region-based compi-

lation. In region-based compilation, the basic compilation unit is changed from the

function, which is de�ned by the software developer, to a section of the program's con-

trol
ow graph chosen by the compiler. This section of the graph is referred to as a

region. Allowing the compiler to repartition the program into regions provides it with

the freedom to control the content of the collection of basic blocks which it will compile

2

together. The compiler can choose to exclude certain hazards from a region, such as

a subroutine call, or infrequently executed basic blocks which may limit optimization.

Region-based compilation also allows dynamically related portions of the control
ow

graph to be compiled together. Finally, region-based compilation allows the compiler to

control the size of the region it selects, and therefore the time and memory requirements

of the algorithm used to apply aggressive optimizations to the region.

This thesis utilizes vertical region-based compilation in a method for dynamically

controlling the compile time of a program. Under this model, the compiler attempts to

extract a high level of ILP from a program by taking a completely global view of its

structure and then selecting the most important portions of the program to be compiled

�rst. As it compiles the regions in order of descending pro�le frequency, it reduces

the aggressiveness of the optimizations applied to the regions in order to meet a user-

speci�ed target compilation time. The goal of the technique is to extract nearly all of

the performance from the program, which is possible when aggressive optimizations are

applied over its entire CFG, while controlling the amount of time spent compiling the

program. Under this model, the greatest percentage of time is spent compiling the most

important regions, as indicated by the pro�le information, and very little time is spent

compiling the remainder of the program. With this approach, we hope to �nd the point

where increasing the compile time further provides little or no performance bene�t to the

compiled program. In taking a dynamic approach to this, the compiler is able to adjust

3

the level of optimization applied to each region as it compiles the program and gauges

the amount of time required to compile the more important regions.

Chapter 2 presents region-based compilation and some of its bene�ts, and also gives

an overview of the Illinois Microarchitecture Project Utilizing Advanced Compiler Tech-

nology (IMPACT) compiler which is used through out this thesis. Chapter 3 illustrates

the dynamic-based compilation procedure developed for this thesis and presents the dif-

ferent compilation options which can be exercised under this model. Chapter 4 illustrates

the results of using compile-time control and presents a viable setting for the module.

Finally, Chapter 5 contains a conclusion and proposes directions for future work.

4

2. BACKGROUND

In a traditional compiler, the unit of compilation is the function. This unit is a direct

re
ection of the way in which the developer of the program decides to divide its func-

tionality in order to facilitate the reuse and readability of code. The function provides

a convenient way to partition a program for compilation because it clearly establishes

self-contained segments with well de�ned calling conventions between them. These con-

ventions allow the compiler to process each function separately without maintaining any

state information between them. However, it does not necessarily follow that the parti-

tion chosen by the developer in the interest of code clarity is the best choice over which

the compiler should apply optimizations, scheduling, and register allocation. Often, these

divisions force the compiler to consider too much code at once, causing the aggressiveness

of optimizations to be scaled back in the interest of time and memory conservation.

This chapter will provide background on a method of compilation in which the com-

piler is able to repartition the code within a program. These newly de�ned segments,

called regions, replace the function as the primary unit of compilation. The framework of

5

region-based compilation utilized in this thesis was developed by Richard Hank upon the

IMPACT compiler platform. For a more comprehensive explanation of the process, the

reader is referred to [1], [2]. Prior to the presentation of the region selection algorithm,

a brief overview of the IMPACT compiler is presented to facilitate understanding of how

region-based compilation works within the IMPACT framework.

2.1 Overview of the IMPACT Compiler

The IMPACT compiler is an retargetable optimizing C-compiler developed at the Uni-

versity of Illinois. A block diagram of the IMPACT compiler is presented in Figure 2.1.

The compiler is divided primarily into two sections, distinguished by the form of interme-

diate representation (IR) used in each. The level of IR closest to the source code is called

Pcode. It is a parallel C code representation with its loop constructs intact. The following

functions are performed within Pcode: memory dependence analysis [3], [4], statement-

level pro�ling and function inlining [5], [6], [7], [8], loop-level transformations [9], and

memory system optimizations [10].

The lower level of IR in IMPACT is referred to as Lcode. This is a machine-

independent instruction set implemented as a generalized register transfer language sim-

ilar to most load/store architecture instruction sets. At this level, all machine indepen-

dent optimizations [11] are applied. These include constant propagation, forward copy

propagation, backward copy propagation, common subexpression elimination, redundant

6

HP PA-RISC

MIPS

SPARC

IMPACT

AMD 29K

HP PLAYDOH

Intel X86

The IMPACT Compiler

PCODE

FRONT END
Basic Block
Profiler

Function Inline
Expansion

Interprocedural
Analysis

Dependence
Analysis

Procedure
Inlining

Peephole
Optimization

Acyclic Code
Scheduling

Register
Allocation

Modulo
Scheduling

C / Fortran
 Source

BACK END

LCODE

Code
Layout

Classic Code
Optimization

Superblock
Formation

Hyperblock
Formation

ILP Code
Optimization

MDES

TI C3x/C4x

Region
Compilation

Figure 2.1: The IMPACT compiler.

7

load elimination, redundant store elimination, strength reduction, constant folding, con-

stant combining, operation folding, operation cancellation, code reordering, dead code

removal, jump optimization, unreachable code elimination, loop invariant code removal,

loop global variable migration, loop induction variable strength reduction, loop induction

variable elimination, and loop induction variable reassociation. Additionally, advanced

ILP compilation techniques, such as superblock formation and optimization [12] are per-

formed on the Lcode representation of the program.

Region-based compilation, as utilized in this thesis, is also performed at the Lcode

level. Prior to processing, each region is encapsulated in such a way as to allow the

existing IMPACT transformations, originally designed to be applied to functions, to

be applied directly to a region. A detailed explanation of region selection, extraction,

optimization and reintegration is presented in Section 2.2.

Once the Lcode is optimized, it is translated into assembly language. IMPACT sup-

ports the generation of code for several architectures through distinct code generators.

The most actively supported architectures are the Sun SPARC [13], the HP PA-RISC,

and the Intel X86. There are also two experimental ILP architectures supported, IM-

PACT and HPL Playdoh [14]. These architectures provide an experimental framework

for compiler and architecture research. The IMPACT architecture is a parameterized su-

perscalar processor with an extended version of the HP PA-RISC instruction set. Varying

levels of support for speculative execution and predicated execution are available. In this

thesis, all experiments utilize the IMPACT architecture.

8

The two most signi�cant components of the code generators are the register allocator

and the instruction scheduler. These modules are common to all of the code generators in

IMPACT. Register allocation is performed using graph coloring [15], [2]. Several di�er-

ent code scheduling models exist, including acyclic global scheduling [16], [17], software

pipelining using modulo scheduling [18], [19], and sentinel scheduling [20].

A detailed machine description database, Mdes, is referenced throughout the com-

pilation process by various IMPACT modules [21]. This database contains information

such as the number and type of functional units available, the size and width of register

�les, instruction latencies, instruction input/output constraints, addressing modes, and

pipeline constraints. The information is used to guide optimization, scheduling, register

allocation, and code generation.

2.2 Region-Based Compilation

In any compilation framework, there are three basic components. These include the

compilation unit selection, transformation, and state maintenance. The maintenance of

state insures that separately compiled portions of the program can be reconciled into a

program which is functionally correct.

In a traditional compiler, the unit of compilation is the function. A prede�ned suite of

phase-ordered transformations is applied to each function. The maintenance of state be-

tween the functions is trivial due to the well de�ned calling conventions between function

boundaries.

9

In a region-based compiler, the selection and state maintenance components become

more complex. A region is de�ned as an arbitrary subgraph of the global control
ow

graph chosen by the compiler. Under this de�nition, a function can be considered a

region, while it does not necessarily follow that a region is a function. In choosing a

region, the compiler is able to take into consideration and control the region size and

characteristics. Allowing the compiler to limit the size of the compilation unit reduces

the importance of the time and memory complexity of the transformations applied to

a region. Under this framework, the compiler is often able to apply more aggressive

transformations to the regions than would be possible in a traditional compiler where

the compilation unit is larger.

Another bene�t of region-based compilation is that the compiler is able to select

compilation units which re
ect the dynamic behavior of the program using pro�le infor-

mation. Finally, the compiler is able to exclude basic blocks from a region which may

contain hazards. A function call is such a hazard in that it may present an obstacle

to aggressive optimization and scheduling due to the unknown memory footprint of the

function call.

The problems of a function-based compiler are further aggravated in the presence of

aggressive inlining. Pro�le-base inlining is often employed by a compiler to gain a broader

global view of a program and to reduce the e�ects of interprocedural coupling [1], [2], [5],

[6], [7], [8]. Inlining often exposes memory aliasing, optimization opportunities, or cyclic

control
ow structures which were hidden in the original program by procedure calls. The

10

price of aggressive inlining, however, is an increase in the size of a program's functions.

In a traditional, function-based compiler, this increase in function size may cause the

time and memory requirements of aggressive transformations to become intractable as

both these resource usages are related in a nonlinear fashion to the problem size. If this

is the case, the bene�t which was exposed by inlining can't be taken advantage of as

intended [22], [23], [24].

In a region-based compiler, much of the adverse e�ect of inlining is alleviated by the

compiler's ability to control the region size.

2.2.1 Region-based optimization

In a conventional compilation environment, each program function is completely pro-

cessed before the compiler proceeds to the next function. A phase-ordered suite of opti-

mizations, register allocation, and scheduling are all applied in a horizontal fashion, as

illustrated in Figure 2.2. There is very little freedom to adjust the level of optimization

applied to di�erent parts of a function because distinct segments are di�cult to identify

and categorize.

Region-based compilation provides the compiler with more freedom. Compilation can

proceed in a horizontal fashion, as in function-based compilation, illustrated in Figure 2.3,

or a vertical component can be added to the compilation processes, as in Figure 2.4. In

this model, the compiler is allowed to select a region, apply optimizations to it, allocate

its registers, and schedule it before proceeding to the selection of the next region. The

11

Classical Optimization

ILP Optimization

Prepass Scheduling

Register Allocation

Postpass Scheduling

Function A Function B

Figure 2.2: Horizontal function-based compilation of a function.

Classical Optimization

ILP Optimization

Prepass Scheduling

Register Allocation

Postpass Scheduling

Function A Function B

Region Selection R1 R2 R3

R1 R2 R3

R1 R2 R3

R1 R2 R3

R1 R2 R3

R1 R2 R3

R4 R5

R4 R5

R4 R5

R4 R5

R4 R5

R4 R5

Figure 2.3: Horizontal region-based compilation of a function.

12

Classical Optimization

ILP Optimization

Prepass Scheduling

Register Allocation

Postpass Scheduling

Function A Function B

Region Selection R1 R2 R3

R1 R2 R3

R1 R2 R3

R1 R2 R3

R1 R2 R3

R1 R2 R3

R4 R5

R4 R5

R4 R5

R4 R5

R4 R5

R4 R5

Figure 2.4: Vertical region-based compilation of a function.

level of optimization applied to each region can also be adjusted depending on the region's

characteristics, as shown in Figure 2.5. This allows the compiler to focus on aggressively

optimizing the most frequently executed portions of the program and less time on the

remainder of the code. Note that under this compilation model, basic blocks in di�erent

regions but within the same function may be in di�erent phases of compilation at any

given time. This allows the compiler the freedom to push any compensation code it

generates outside the current region to be optimized into a di�erent region later. Finally,

the region compilation process can be taken to a completely global scope as in Figure 2.6.

Under this model, seeds, which are the root of region selection, can be chosen from any

function at any time during the compilation process. The compiler need not complete

the compilation of one function before continuing onto the next. This process will be

13

Classical Optimization

ILP Optimization

Prepass Scheduling

Register Allocation

Postpass Scheduling

Function A Function B

Region Selection R1 R2 R3

R2

R2

R1 R2 R3

R1 R2 R3

R1 R2 R3

R4 R5

R4

R4

R4 R5

R4 R5

R4 R5

R3

Figure 2.5: Specialized vertical region-based compilation of a function.

Classical Optimization

ILP Optimization

Prepass Scheduling

Register Allocation

Postpass Scheduling

Function A Function B

Region Selection R1 R2 R3

R2

R2

R1 R2 R3

R1 R2 R3

R1 R2 R3

R4 R5

R4

R4

R4 R5

R4 R5

R4 R5

R3

Figure 2.6: Global specialized vertical region-based compilation of a function.

14

discussed further in Chapter 3 as it is employed in the process of dynamic compile-time

control.

2.2.2 Region-based compilation management

The implementation of region-based compilation requires the addition of a distinct

phase to the compilation process: region selection. Under this framework, illustrated in

Figure 2.7, a compilation manager chooses and applies the appropriate transformations

to a region before reintegrating the region back into the function. The goal of region

selection is to divide a function into the best possible compilation units to which to

apply aggressive transformation. The utility of a region can be measured in two ways.

First, the region should be able to be e�ectively compiled. The main region characteristic

which a�ects this measure is size. By making sure that the region is reasonably sized, we

Region ManagerLcode
Regionized
Lcode

Local Opti

ILP Opti

Prepass Sched

Regalloc

Postpass Sched

Figure 2.7: Vertical region-based compilation of a function.

15

can ensure that aggressive transformations can be applied to the region when desired.

The second measure of the region is the quality of code which the compiler produces

when operating over the regions. This can be controlled by taking into consideration

the program's dynamic behavior, hazards, and control
ow structure, as well as the

dependence height of the operations within the region. Exclusion of basic blocks which are

infrequently executed and which may preclude the application of certain transformations

is often bene�cial. The use of pro�le information in the region selection process allows the

compiler to apply transformations over compilation units which are more representative

of the dynamic behavior of the program.

The algorithm used for region selection is a generalization of the pro�le-based trace

selection algorithm used within IMPACT [25]. The di�erence between the two algorithms

is that the region selection algorithm is able to expand a region along multiple control

ow paths, while the trace selection algorithm is limited to a single path.

There are four basic steps to the region selection algorithm. First, a seed basic block

is selected. This is the most frequently executed block in the program, based on pro�le

weight, which is not already in a region. Once this block is chosen, a path of desirable

successors is chosen from the seed. A basic block is deemed desirable for inclusion in the

region based on the execution frequency of the basic block and the size of the region.

A basic block y is a desirable successor of basic block x if two conditions are met.

First, block y is likely to be executed when the
ow of control leaves block x. This is

considered likely if the control
ow transition from block x to block y, W (x ! y), is at

16

least (T � 100)% of the weight of block x, W (x), where T is a threshold value de�ned

by the compiler. Secondly, the execution frequency of y must be at least (Ts � 100)% of

the execution frequency of s, the seed basic block. This condition prevents the inclusion

of an irrelevant block to the region. These conditions are summarized by

Succ(x; y) =

W(x! y)

W(x)
� T

!
&&

W(y)

W(s)
� Ts

!
(2.1)

After the path of desirable successors is found, a path of desirable predecessors is

found in the same way growing backward from the seed basic block. The equation which

governs a predecessor's inclusion in the path is

Pred(x; y) =

W(y ! x)

W(y)
� T

!
&&

W(y)

W(s)
� Ts

!
(2.2)

The �nal step in the region selection algorithm is to expand the region along multiple

paths of control. This is done by considering the successors of every basic block already

in the region for inclusion until no more basic blocks meet the conditions stipulated

in Equation 2.1. The four steps of the region selection algorithm are summarized in

Figure 2.8.

After a region is selected, the compilation manager chooses the level of transforma-

tions to be performed based upon the characteristics of the region.

The �nal issue that the compilation manager must contend with is the maintenance

of states between regions. Recall that the region is an arbitrary subgraph of the program

17

1. Select the most frequently executed block not yet in a region

2. Select a path of desirable successors of the seed block.

while (y 3 R && Succ(x; y)) f

R = R [fyg

x = y

y = most frequent successor of x

g

3. Select a path of desirable predecessors of the seed block.
x = seed

y = most frequent predecessor of x

while (y 3 R && Pred(x; y)) f

R = R [fyg

x = y

y = most frequent predecessor of x

g

4. Select all desirable successors of blocks within the region.

stack = R

while (stack 6= ;) f

x = Pop(stack)
for each successor of x, y 3 R f

if (Succ(x; y)) f

R = R [fyg

Push(stack,y)

g

g

g

Figure 2.8: Pro�le-sensitive region formation algorithm.

18

control
ow graph. In contrast to a function, which has a clearly de�ned calling conven-

tion at its entrance and exit, a region has live variables which span its multiple entry and

exit points. Figure 2.9 illustrates a possible region chosen from a portion of a function's

CFG. Live variable information across the entrance and exit boundaries of the region is

dynamic. As transformations are applied to a region, the data
ow information for each

of the basic blocks and its neighbors has the potential to change. When the region is

reintegrated into the function, the modi�ed data
ow information must be updated ac-

cordingly. The region manager must also store information about register allocation and

scheduling decisions made at the boundaries to ensure the correct reintegration of the

region into the function. Finally, the compiler needs to know if there is potential for an

ambiguous store across a boundary so that it can preclude the application of an illegal

transformation if the possibility of memory aliasing exists.

The compilation manager, as implemented in the IMPACT compiler, encapsulates a

region in such a way that it has the same properties as a function and thus can have

transformations originally designed for functions directly applied to it. This encapsula-

tion captures the live-variable information, the control
ow of the region, and possible

ambiguous memory references.

To encapsulate a region, boundary control blocks are added at every entry and exit

point into and out of the region. A prologue and epilogue are also added to each region.

The encapsulation of the region presented in Figure 2.9 is shown in Figure 2.10. Control

ow is added to the encapsulated region, taking advantage of the control
ow relationships

19

A

B

C

D E

F

G

H

I J

K

L

M N

O

P

Q

Figure 2.9: Selected basic blocks of region in program CFG.

between the entry and exit boundary blocks. If an exit block dominates an entry block,

a control
ow arc may be added between them. Any remaining exit blocks which do not

dominate an entry are connected to the epilogue. Finally, any entry blocks which are

reachable from outside the region are connected to the prologue. Note in Figure 2.10

that entry block K need not be connected to the prologue because it is dominated by

exit block H. The same condition holds true for entry block F, exit block C, and block

N, which is both an exit and an entry block. In order to encapsulate this region, the

only thing that remains to be done is to connect entry block A to the prologue, and exit

block Q to the epilogue.

Live-variable information is conveyed to each transformation through the use of

dummy operations placed in the boundary condition blocks. An explicit reference is

20

A

B

C

F

G

H

K

L

M N

O

P

Q

Epilogue

Prologue

Figure 2.10: Region boundary conditions.

made to all variables which are live across the boundary. Finally, if there is potential for

an ambiguous store across a boundary, this is placed as an attribute to the boundary to

preclude any illegal memory transformation.

The �nal point to note about the boundary condition blocks is that they may be used

as place holders for any compensation code that is generated during transformation and

pushed out into an uncompiled region during reintegration.

21

3. DYNAMIC COMPILE-TIME CONTROL

To extract a greater degree of ILP from programs, compilers are forced to take a more

global view of the program. This includes the application of global optimizations and

scheduling. In addition, the compiler attempts to reduce the interprocedural coupling in

a program in order to bene�t from interprocedural optimization opportunities. Reduction

in the coupling between procedures may also expose the true cyclic nature of the program

providing more opportunities for the application of loop transformations. Inlining is a tool

commonly used to achieve the bene�ts noted above. However, as inlining is applied and

global transformations are utilized, the time and memory requirements of a conventional

compiler increase in a fashion nonlinear to function size. This often forces the compiler

to scale back optimizations it wishes to apply to a function in the interest of time and

memory conservation.

When the compiler applies less aggressive transformations to a function, the bene�t

of inlining is often lost. The compiler may even produce poorer quality code than if the

original source code had been used. Ideally, the compiler would be able to extract all the

22

performance out of a program, as would be possible with aggressive compilation, while

containing the compilation time.

The goal of this thesis is to explore this possibility. By focusing the majority of

the compilation time on aggressively optimizing the most frequently executed portions

of a program, and the remainder on less important portions, code can be produced in a

reasonable compilation time which extracts nearly all the performance of the aggressively

optimized functions. Region-based compilation is a key element in this process because

it allows the compiler to focus on arbitrary portions of the control
ow graph and apply

varying levels of optimizations to these segments based upon the characteristics of the

region, the time which has already been spent compiling the program, and the percentage

of the program which still needs to be processed.

3.1 Algorithm

The region compilation manager within IMPACT has been extended to perform dy-

namic compile-time control of vertical region-based compilation. Under this model, the

manager is responsible for selecting a region, extracting the region, guiding it through

the appropriate transformations and then reintegrating the transformed region into the

function from which it was extracted. This algorithm is based on two user-speci�ed

parameters: �rst, a target compilation time, and second, a pivot point. For instance,

one can specify that x% of the program be compiled in y% of the target compile time

and the rest of the program compiled in the remaining time. As the compilation of the

23

program progresses, the compile time manager evaluates how much of the program has

been compiled and what percentage of the target compile time has been expended, and

uses this information to choose a level of optimization for each selected region.

The �rst task of the compile time manager is to prescan all of a functions in the

program. It does this to obtain a global portrait of the program and to locate its most

important portions. For the purposes of this thesis, importance is measured solely by the

execution frequency of a block. Once this is done, the manager selects what it considers

to be the most important region in the program. The level of optimization to be applied

to this region is chosen in the following way. The user speci�es a maximum compilation

time for the compile-time manager. This is the time this program would take to compile

if the greatest level of optimizations was applied uniformly to it. If the target compile

time is more than 60% of the maximum compilation time, then the most aggressive level

of optimizations available is applied to this region. If this percentage is less than 60%, a

sliding scale is used to determine the level of optimizations to be applied to this region.

This scale is included in Figure 3.1. The reason for this step is to prevent the �rst

region from always being compiled at the highest level of optimization and potentially

shooting the actual compile time over the target compile time before the dynamic compile-

time algorithm has a chance to be applied. The levels of optimizations available to the

manager will be more thoroughly explained in Section 3.1.1. When this region has been

completely compiled and reintegrated, the manager chooses the next most important

region to be compiled. At this point, the compile-time manager evaluates the percentage

24

1. If this is the �rst region compiled

starget = s1

pmaxtime = ttarget=tmax

lnew = 0

If pmaxtime < 10%
lnew = 0

If pmaxtime < 20%

lnew = 1

If pmaxtime < 30%

lnew = 2

If pmaxtime < 40%

lnew = 3

If pmaxtime < 50%

lnew = 4

If pmaxtime < 60%

lnew = 5
lnew = 6

2. scur = ptime=pcompiled

3. If ptime > ppercenttime

starget = s2

sadjtarget = starget

4. else sadjtarget = ppercenttime=ptime � starget=2

5. pgreater = (scur � sadjtarget)=sadjtarget
6. If pgreater > 100%

lnew = 0

7. If 100% < pgreater < 75%

lnew = lnew � 4
8. If 75% < pgreater < 50%

lnew = lnew � 3

9. If 50% < pgreater < 25%

lnew = lnew � 2

10.If 25% < pgreater < 0%

lnew = lnew � 1

11.return lnew

Figure 3.1: Dynamic compile-time, level-determination algorithm.

25

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 82 90 100

Pivot Point

Slope I

Slope II
p
er
ce
n
ta
g
e
o
f
ti
m
e

percentage of program compiled

Figure 3.2: Piecewise linear function used to control compile time.

of the program compiled, the percentage of the target time expended, and the current

optimization level to determine whether to apply the same level of transformation to this

region, or to apply a lower level of transformation. The manager makes this decision in

the following manner. The pivot point and the target compilation time, as speci�ed by

the user, are used to construct a piecewise linear function as in Figure 3.2. This function

is composed of two lines with two respective slopes. The �rst slope is the target slope

of compilation during the �rst compilation portion, and the second is the target slope of

compilation for the remainder of the program. The goal of the compilation manager is

to follow the slopes of these lines as closely as possible.

26

The algorithm used to dynamically track the piecewise function is outlined in Fig-

ure 3.1. The algorithm evaluates its position in an x-y graph after the compilation of

each region is complete. In this coordinate system, the x axis is the percentage of the

program compiled. An estimate of this is made by dividing the number of basic blocks

which have been compiled by the number of basic blocks in the program. The y coordi-

nate of the graph is the percentage of the target compile time which has been expended.

Once this point has been located in the graph, a line is drawn from the origin through

the point, and the slope of this line in calculated. At this point, an adjusted target slope

is calculated. This slope takes into consideration how far along we are in the compilation

process and allows for a greater variation from the target slope the further we are from

the pivot point. The adjusted slope is calculated by taking the target percent time and

dividing it by the current percent time and then taking this ratio and multiplying it by

the target slope. This creates a threshold cushion as illustrated in Figure 3.3. If the

slope of the line is more than 100% greater than the adjusted target slope, then the

compilation level is dropped to level zero. A sliding scale is again used in this case to

decide how many notches the current optimization level should be lowered by.

3.1.1 Levels of optimization

The optimization process within the IMPACT compiler is iterative. It involves the

process of searching for optimization opportunities, the application of the transformation,

27

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 90 10080

adjusted slope
p
e
rc
e
n
ta
g
e
o
f
ti
m
e

percentage of program compiled

Figure 3.3: Adjusted slope cushion used with piecewise linear function.

and the upkeep of the data
ow information in light of these transformations. The suite

of optimizations include local, global [11], jump, and loop transformations.

The following local optimizations are performed: constant propagation, forward copy

propagation, memory copy propagation, common subexpression elimination, redundant

load elimination constant folding, strength reduction, constant combining, arithmetic op-

eration folding, branch operation folding, operation cancellation, dead-code removal, and

code reordering. The following global optimizations are performed: constant propaga-

tion, forward copy propagation, backward copy propagation, memory copy propagation,

28

common subexpression elimination, redundant load elimination, redundant store elimi-

nation, and dead-code elimination. The following loop optimizations are performed: in-

variant code motion, global variable migration, branch simpli�cation, induction variable

strength reduction, and induction variable elimination. The following jump optimizations

are performed: dead block removal, branch elimination, branch to jump optimization,

merge always successive blocks, branch target expansion, branch prediction, and combine

labels.

The IMPACT compiler also has the ability to perform superblock formation and op-

timization [26]. A superblock is a single-entry, multiple-exit path of basic blocks through

a function which are combined into a single control
ow block. This combination has

the potential to produce optimization and code motion opportunities. Once a superblock

has been formed, a specialized suite of transformations is applied to it to take advantage

of these new opportunities.

In the context of superblock formation, the process of tail duplication has been em-

ployed to eliminate side entrances from a superblock so that the optimizer need not take

them into consideration [27]. This same technique can also be applied to eliminate side

entrances from arbitrary regions. Tail duplication duplicates all blocks within a region

that are reachable from a side entrance, thus eliminating the entrance.

There are seven levels of optimization available to the compile time compilation man-

ager. At Level 0, no optimizations are applied to the region. At Level 1, dead block

removal, local optimizations, and dead code removal are performed. Level 2 adds global

29

optimizations to the suite. Level 3 applies jump optimizations, while Level 4 adds loop

optimizations to the suite of transformations. Level 5 applies tail duplication to the re-

gions to remove any side entrances from the region. Finally, in Level 6, the highest level

of optimization, superblock formation and optimization are applied after the optimiza-

tions in Level 4 are complete. Table 3.1 summarizes the optimizations performed at each

level.

3.1.2 Region selection scope

An additional option of the compile-time manager is control of the region seed selec-

tion scope. A program can be compiled using either a global or a function scope. If the

program is compiled with a global scope, a seed basic block from which to grow a region

can be chosen from any function in the program. Under this model, a region is selected

based upon that seed. The region is then compiled and reintegrated back into its parent

function. At this point, the manager is again able to select a seed from any function

in the program. Conversely, if the manager is limited to a function scope, the function

with the greatest execution weight not already compiled is selected. Seed selection then

occurs exclusively within this function until it is completely compiled. This limits the

granularity of the compilation process, as illustrated in Figure 3.4.

Within the context of both function and global seed selection scope, Region 1 is chosen

as the most important portion of the program. However, if the dynamic compilation

time controller is operating under the function seed selection scope, then the selection

30

Table 3.1: Levels of Optimization.

Level Optimizations

0 no optimizations
1 dead block removal

local optimization
dead code removal

2 dead block removal
local optimization
global optimization

3 dead block removal
local optimization
global optimization
jump optimization

4 dead block removal
local optimization
global optimization
jump optimization
loop optimization

5 dead block removal
local optimization
global optimization
jump optimization
loop optimization
tail duplication

6 dead block removal
local optimization
global optimization
jump optimization
loop optimization

superblock formation and optimization

31

A

B
C

D

5

3

1

4

2

B

(a) (b)

C

D

1

4
2

3

5

A

Figure 3.4: (a) Global versus (b) function seed selection scope.

of the next seed must continue in function A until the function is completely compiled.

Conversely, with global seed selection scope, the compiler is able to choose the second

region from functionD and the third from functionC. Its selection scope is not limited as

with function-based seed selection scope. The disadvantage of utilizing global selection

scope is that is can be a memory-intensive functionality. This issue is addressed in

Section 3.1.3. The e�ects of these two seed selection scopes will be will be further studied

in Chapter 4.

3.1.3 Memory requirements

As mentioned in Section 3.1, the compile-time manager must access all of the �les

in a program at initialization in order to perform a prescan of the functions and their

32

execution weights. This obviously provides the potential for dynamic compile-time man-

agement to require a great deal of memory. Under ideal circumstances, we would like to

see every function remain in memory from the point when it is loaded for prescanning

until it is completely compiled. However, with a large program, this may obviously be-

come too memory intensive. To avoid this problem, a memory management algorithm

is implemented within the compile-time manager which maintains an LRU stack. When

the memory usage exceeds a user-de�ned maximum value, the manager closes the least

recently accessed �le. This will be reopened when and if necessary. This option will not

be fully explored in this thesis, but merits mention as a memory control feature.

33

4. EXPERIMENTAL PERFORMANCE EVALUATION

This chapter evaluates the e�ectiveness of the dynamic compile-time algorithm pro-

posed in Section 3.1. First, in Section 4.1, an investigation is performed on how di�erent

pivot points a�ect the performance of the algorithm. In Section 4.2, the point is identi�ed

at which increasing the compile time further has a negligible e�ect on the performance.

The chapter then studies the accuracy of the algorithm in Section 4.3. In Section 4.4,

a comparison between benchmarks compiled using dynamic compile time control and

traditional compilation is performed. Finally, in Section 4.5, the relative merits of global

and function seed selection scope are studied.

In this thesis, select integer benchmarks from SPEC95 and several UNIX utilities are

utilized. Static performance numbers are used to measure performance.

4.1 Choosing a Pivot Point

As mentioned in Section 3.1, a pivot point is one of the key parameters supplied by

the user. This point will specify, for instance, that x% of the program should be compiled

34

in y% of the target compile time. To determine an appropriate value at which to set

this pivot point for the remainder of the tests performed in the thesis, the performance

benchmarks were compile at several di�erent pivot points. The target compile time

was set to be the time used during traditional compilation of this program at a level of

optimization comparable to Level 3.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

12
9.

co
m

pr
es

s

1
3

0
.li

13
2.

ijp
eg

cm
p

g
re

p

le
x

qs
or

t

tb
l

w
c

ya
cc

benchmark

IP
C

10 70

15 90

10 90

20 70

20 80

20 90

5 70

5 80

5 90

10 80

Figure 4.1: Comparison of pivot points.

Figure 4.1 shows the results of these tests. The x axis of this graph is the benchmark

compiled. The y axis is the CPI of each benchmark at a speci�c pivot point. The value

of the pivot point is represented by the shade of the bar. There are ten pivot points

35

shown in this graph. In the legend, the �rst number is the percentage of the program

compiled and the second is the percentage of the total compilation time. It appears

that for the pivot points chosen there is no di�erence in performance for some of the

benchmarks shown and a marginal increase in performance for 129.compress, qsort, and

yacc with a 20/90 pivot point. This pivot point speci�es that the goal of the compiler

was to compile 20% of the program in 90% of the total compilation time. This was the

pivot point chosen to be utilized for the remainder of the thesis.

4.2 Finding Appropriate Compile Time

Using the pivot point chosen in Section 4.1, each benchmark is again compiled. In

this experiment, the target compile time is incremented from minimum to maximum and

the progress is charted. Figure 4.2 shows the results of this for the benchmark qsort.

The x axis on this graph is the percentage of maximum compile time, and the y axis is

the CPI of the program when compiled at target time. The minimum time used for this

experiment is the time taken to compile the function using region-based compilation if

there are no optimizations done on the program. The maximum compile time, conversely,

is the time required to compile the program applying optimizations comparable to Level 7

in the traditional framework. It can be seen from Figure 4.2 that there is an elbow in the

graph. This elbow is the point where increasing the compile time of the program further

has little or no e�ect on its performance. For the benchmark qsort, this point appears

to be when the target compile time is about 37% of the maximum compile time. To

36

increase the compile time beyond this point gains no performance and actually decreases

performance slightly in this case. The same elbow can be found for the benchmarks

129.compress, cmp, grep, yacc, tbl, and wc in Figures 4.3-4.7.

0

0.5

1

1.5

2

2.5

0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 1.00
percent of maximum time

IP
C

Figure 4.2: IPC of qsort.

4.3 Dynamic Compile Time Algorithm Evaluation

This section evaluates the algorithm used to dynamically control the compile time of

a benchmark. The algorithm is judged primarily in two ways. First, the distribution of

the number of regions compiled at each optimization level is presented in Section 4.3.1.

Second, in Section 4.3.2, the accuracy of the algorithm in meeting the target compile

time is explored.

37

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0
.1

8

0
.2

4

0
.2

9

0
.3

5

0
.4

1

0
.4

7

0
.5

3

0
.5

9

0
.6

5

0
.7

1

0
.7

6

0
.8

2

0
.8

8

0
.9

4

1
.0

0

percent of maximum time

IP
C

Figure 4.3: IPC of 129.compress.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0.20 0.40 0.60 0.80 1.00
percent of maximum time

IP
C

Figure 4.4: IPC of cmp.

38

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0
.1

2

0
.1

8

0
.2

4

0
.2

9

0
.3

5

0
.4

1

0
.4

7

0
.5

3

0
.5

9

0
.6

5

0
.7

1

0
.7

6

0
.8

2

0
.8

8

0
.9

4

1
.0

0

percent of maximum time

IP
C

Figure 4.5: IPC of grep.

0.9

0.95

1

1.05

1.1

1.15

1.2

0.12 0.22 0.32 0.42 0.51 0.61 0.71 0.81 0.90 1.00
percent of maximum time

IP
C

Figure 4.6: IPC of tbl.

39

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 1.00
percent of maximum time

IP
C

Figure 4.7: IPC of wc.

4.3.1 Distribution of optimization level over program

In order to ensure that the algorithm is evenly distributing the number of regions

compiled at each level over the target compilation time, Figure 4.8 is introduced. This

graph presents the number of regions compiled at each optimization level for qsort. Each

bar represents the distribution of regions compiled at a given target time. Note that

as the compilation time increases, so does the level of optimizations applied to the pro-

gram. This is the behavior we would expect to occur when the algorithm was func-

tioning correctly. This same quality can be observed in the rest of the benchmarks in

Figures 4.9-4.14.

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

8

0
.2

7

0
.3

6

0
.4

5

0
.5

5

0
.6

4

0
.7

3

0
.8

2

0
.9

1

1
.0

0

percent of maximum time

pe
rc

en
t o

f r
eg

io
ns

level 6
level 5
level 4
level 3
level 2
level 1
level 0

Figure 4.8: Distribution of optimization levels over qsort.

4.3.2 Accuracy of algorithm

The success of the algorithm at meeting the target compile time is presented in

Figure 4.15. On this graph, the x axis contains each benchmark and the y axis is a ratio

of the actual compile time to the target compile time. Di�erent shades of bars represent

the increasing target compile time, so the leftmost bar for each benchmark is at the

minimum target compile time, while the rightmost bar is at the maximum compile time.

Some of the benchmarks have fewer bars because they were compiled over a smaller span

of minimum compile time to maximum compile time, allowing fewer data points to be

gathered. It can be seen that in most cases the dynamic compile-time algorithm comes

very close to the target time. The ability of the algorithm to meet the target compile

41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

8

0
.2

4

0
.2

9

0
.3

5

0
.4

1

0
.4

7

0
.5

3

0
.5

9

0
.6

5

0
.7

1

0
.7

6

0
.8

2

0
.8

8

0
.9

4

1
.0

0

percent of maximum time

pe
rc

en
t o

f r
eg

io
ns

level 6
level 5
level 4
level 3
level 2
level 1
level 0

Figure 4.9: Distribution of optimization levels over 129.compress.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.20 0.40 0.60 0.80 1.00

percent of maximum time

pe
rc

en
t o

f r
eg

io
ns

level 6
level 5
level 4
level 3
level 2
level 1
level 0

Figure 4.10: Distribution of optimization levels over cmp.

42

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

2

0
.1

8

0
.2

4

0
.2

9

0
.3

5

0
.4

1

0
.4

7

0
.5

3

0
.5

9

0
.6

5

0
.7

1

0
.7

6

0
.8

2

0
.8

8

0
.9

4

1
.0

0

percent of maximum time

pe
rc

en
t o

f r
eg

io
ns

level 6
level 5
level 4
level 3
level 2
level 1
level 0

Figure 4.11: Distribution of optimization levels over grep.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

1

0
.1

9

0
.2

7

0
.3

5

0
.4

3

0
.5

1

0
.5

9

0
.6

8

0
.7

6

0
.8

4

0
.9

2

1
.0

0

percent of maximum time

pe
rc

en
t o

f r
eg

io
ns

level 6
level 5
level 4
level 3
level 2
level 1
level 0

Figure 4.12: Distribution of optimization levels over yacc.

43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

2

0
.2

2

0
.3

2

0
.4

2

0
.5

1

0
.6

1

0
.7

1

0
.8

1

0
.9

0

1
.0

0

percent of maximum time

pe
rc

en
t o

f r
eg

io
ns

level 6
level 5
level 4
level 3
level 2
level 1
level 0

Figure 4.13: Distribution of optimization levels over tbl.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
.1

8

0
.2

7

0
.3

6

0
.4

5

0
.5

5

0
.6

4

0
.7

3

0
.8

2

0
.9

1

1
.0

0

percent of maximum time

pe
rc

en
t o

f r
eg

io
ns

level 6
level 5
level 4
level 3
level 2
level 1
level 0

Figure 4.14: Distribution of optimization levels over wc.

44

tim
e
is
lim

ited
b
y
th
e
gran

u
larity

of
th
e
region

s.
It

is
im

p
ossib

le
for

th
e
com

p
ile-tim

e

con
trol

algorith
m
,
w
h
en

it
ap
p
lies

an
op
tim

ization
to

a
region

,
to

p
red

ict
h
ow

lon
g
th
at

op
tim

ization
w
ill

req
u
ire

T
h
e
cases

w
h
ere

th
e
target

an
d
actu

al
com

p
ile

tim
e
d
i�
er

b
y
a

great
d
eal

are
ty
p
ically

d
u
e
to

a
large

region
w
h
ich

th
e
com

p
iler

d
eem

ed
very

im
p
ortan

t

an
d
op
tim

ized
h
eav

ily,
ex
p
en
d
in
g
a
lot

of
th
e
target

com
p
ile

tim
e.

W
h
en

th
is
is
th
e
case,

th
e
d
y
n
am

ic
com

p
ile

tim
e
algorith

m
is

often
u
n
ab
le

to
m
eet

th
e
target

com
p
ile

tim
e

b
ecau

se
to
o
m
u
ch

of
th
e
tim

e
h
as

b
een

ex
p
en
d
ed

on
on
e
region

,
leav

in
g
to
o
little

tim
e

to
com

p
ile

th
e
rest

of
th
e
region

s,
even

at
op
tim

ization
L
evel

0.
T
h
is
is
m
ost

ob
v
iou

sly

th
e
case

for
th
e
b
en
ch
m
ark

tb
l.

0 1 2 3 4 5 6 7

129.compress

cmp

grep

qsort

wc

tbl

yacc

b
e

n
ch

m
a

rk

actual time/target time

F
igu

re
4.15:

A
ccu

racy
of

d
y
n
am

ic
com

p
ile-tim

e
con

trol.

45

4.4 Comparison of Performance

The goal of the dynamic compile time algorithm is to extract nearly all the ILP from

a program, which is possible with aggressive optimizations in a more reasonable compile

time. Figure 4.16 exhibits the e�ectiveness of the algorithm in doing this. In this �g-

ure, four sets of bars are present for each benchmark. Each set contains two bars. The

�rst set represents compilation at optimization Level 3 under the traditional framework.

The second represents compilation at optimization Level 4 under the traditional frame-

work. The third is the performance of dynamic compile-time control, while the fourth

is optimization at Level 4 with superscalar optimizations applied under the traditional

framework. The �rst bar in each set represents the percentage of the time taken at the

respective optimization level to compile the benchmark at optimization Level 4 and ap-

ply superscalar optimizations under the traditional compilation framework. The second

bar in each set represents the percentage of the ILP for the program when compiled at

the respective level of the ILP when compiled at optimization Level 4 with superscalar

optimizations applied under the traditional framework. The x axis contains each bench-

mark and the y axis contains the percent. It can be seen from this graph that in many

cases the dynamic compile-time algorithm was successful in extracting a high level of

ILP in less time than was required to apply both superscalar optimizations and Level 4

optimizations.

From this �gure, we can conclude that the dynamic compile-time control provides the

exibility to specify a reasonable compile time and extract as much performance at that

46

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12
9.

co
m

pr
es

s

cm
p

g
re

p

le
x

q
so

rt

tb
l

w
c

benchmark

pe
rc

en
t o

f m
ax

im
um O3 time

O3 IPC
O4 time
O4 IPC
DCTC time
DCTC IPC
O4/super time
O4/super IPC

Figure 4.16: Performance of dynamic compile-time control.

compile time as possible. Consider again the benchmark qsort. It can be seen that the

dynamic compile-time algorithm was able to extract 85% of the maximum ILP in only

33% of the time it took to compile the program at optimization Level 4 with superscalar

optimizations under the traditional framework. Other benchmarks which performed well

were wc, tbl, and grep.

4.5 Global versus Function Scope

As mentioned in Section 3.1.2, the global view the compiler takes during the dynamic

compile time process can be limited to a function scope. Figure 4.17 shows the results

of imposing this limitation. In most cases, the IPC that is extracted by the dynamic

47

compile-time algorithm when limited to the function scope is less than that produced

with a global seed selection scope. This is due to the inability of the algorithm to evaluate

all the functions in the program at the same time. In some cases, however, the function

scope dynamic compile-time algorithm does out perform the global scope algorithm. This

is a phenomenon which needs to be explored further.

0

0.5

1

1.5

2

2.5

12
9.

co
m

pr
es

s

cm
p

g
re

p

le
x

q
so

rt

tb
l

w
c

ya
cc

benchmark

IP
C

global DCTC
function DCTC

Figure 4.17: Global versus function seed selection scope.

48

5. CONCLUSIONS AND FUTURE WORK

As stated in Chapter 3, the goal of this thesis is to focus the majority of the compila-

tion time on aggressively optimizing the most frequently executed portions of a program

while spending less time on the remainder of the program. By doing this and dynamically

adjusting the optimizations applied to meet a target compilation time, it was hoped that

nearly optimal-quality code could be produced in a more reasonable time. Under the

traditional compilation model, the same suite of transformations is applied to an entire

function, or even an entire program. This increases the compilation time of a program in

fairly large intervals. The dynamic compile-time algorithm introduces an alternative to

this model. Using region-based compilation, the dynamic compile time controller is able

to apply varying levels of optimization to di�erent regions of the program, processing the

sections of a program from most to least important and scaling back the optimizations

it applies based on how long compilation has taken thus far.

In this regard, the dynamic compile-time controller has had some success. It is able

to produce code in less time than it would take the traditional compiler to apply Level

49

4 and superscalar optimizations while extracting nearly all the ILP. It should be noted

here that while this algorithm has evolved signi�cantly from its initial implementation,

it should be studied further to gain a better understanding of why it performs extremely

well on some benchmarks and not as well on others. This knowledge would allow the

dynamic compile-time algorithm to be �ne-tuned to perform well on a wider span of

programs.

Overall, the concept has shown potential as a tool to control the increasing compile

time of programs while maintaining the quality of the code produced. Further investiga-

tion of the algorithm itself, the memory requirements of the procedure, and global versus

function seed selection scope is in order.

50

REFERENCES

[1] R. E. Hank, \Region based compilation," Ph.D. dissertation, Department of Elec-
trical and Computer Engineering, University of Illinois, Urbana, IL, 1996.

[2] R. E. Hank, W. W. Hwu, and B. R. Rau, \Region-based compilation: An introduc-
tion and motivation," in Proceedings of the 28th Annual International Symposium

on Microarchitecture, pp. 158{168, December 1995.

[3] G. E. Haab, \Data dependence analysis for Fortran programs in the IMPACT com-
piler," M.S. thesis, Department of Electrical and Computer Engineering, University
of Illinois, Urbana, IL, 1995.

[4] D. M. Gallagher, \Memory disambiguation to facilitate instruction-level parallelism
compilation," Ph.D. dissertation, Department of Electrical and Computer Engineer-
ing, University of Illinois, Urbana, IL, 1995.

[5] B.-C. Cheng, \Pinline: A pro�le-driven automatic inliner for the impact compiler,"
M.S. thesis, Department of Electrical and Computer Engineering, University of Illi-
nois, Urbana, IL, 1997.

[6] W. W. Hwu and P. P. Chang, \Achieving high instruction cache performance with
an optimizing compiler," in Proceedings of the 16th International Symposium on

Computer Architecture, pp. 242{251, May 1989.

[7] P. P. Chang, \Compiler support for multiple instruction issue architectures," Ph.D.
dissertation, Department of Electrical and Computer Engineering, University of Illi-
nois, Urbana, IL, 1991.

[8] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Pro�le-guided automatic
inline expansion for C programs," Software Practice and Experience, vol. 22, pp. 349{
370, May 1992.

[9] K. Subramanian, \Loop transformations for parallel compilers," M.S. thesis, De-
partment of Computer Science, University of Illinois, Urbana, IL, 1993.

51

[10] S. Anik, \Architectural and software support for executing numerical applications
on high performance computers," Ph.D. dissertation, Department of Electrical and
Computer Engineering, University of Illinois, Urbana, IL, 1993.

[11] S. A. Mahlke, \Design and implementation of a portable global code optimizer," M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1991.

[12] W.W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
\The Superblock: An e�ective technique for VLIW and superscalar compilation,"
The Journal of Supercomputing, vol. 7, pp. 229{248, January 1993.

[13] R. G. Ouellette, \Compiler support for SPARC architecture processors," M.S. thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1994.

[14] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL PlayDoh architecture spec-
i�cation: Version 1.0," Hewlett-Packard Laboratories, Palo Alto, CA, Tech. Rep.
HPL-93-80, February 1994.

[15] R. E. Hank, \Machine independent register allocation for the IMPACT-I C com-
piler," M.S. thesis, Department of Electrical and Computer Engineering, University
of Illinois, Urbana, IL, 1995.

[16] R. A. Bringmann, \Compiler-Controlled Speculation," Ph.D. dissertation, Depart-
ment of Computer Science, University of Illinois, Urbana, IL, 1995.

[17] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \The im-
portance of prepass code scheduling for superscalar and superpipelined processors,"
IEEE Transactions on Computers, vol. 44, pp. 353{370, March 1995.

[18] N. J. Warter, \Modulo scheduling with isomorphic control transformations," Ph.D.
dissertation, Department of Electrical and Computer Engineering, University of Illi-
nois, Urbana, IL, 1993.

[19] D. M. Lavery and W. W. Hwu, \Unrolling-based optimizations for modulo schedul-
ing," in Proceedings of the 28th International Symposium on Microarchitecture,
pp. 327{337, November 1995.

[20] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, \Sen-
tinel scheduling for VLIW and supercalar processors," in Proceedings of the 5th

International Conference on Architectural Support for Programming Languages and

Operating Systems, pp. 238{247, October 1992.

52

[21] J. C. Gyllenhaal, \A machine description language for compilation," M.S. thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1994.

[22] R. Allen and S. Johnson, \Compiling C for vectorization, parallelization, and inline
expansion," in Proceedings of the ACM SIGPLAN 1988 Conference on Programming

Language Design and Implementation, pp. 241{249, June 1988.

[23] W. W. Hwu and P. P. Chang, \Inline function expansion for compiling realistic C
programs," in Proceedings of the ACM SIGPLAN 1989 Conference on Programming

Language Design and Implementation, pp. 246{257, June 1989.

[24] J. W. Davidson and A. M. Holler, \Subprogram inlining: A study of its e�ects
on program execution time," IEEE Transactions on Software Engineering, vol. 18,
pp. 89{101, February 1992.

[25] P. P. Chang and W. W. Hwu, \Trace selection for compiling large C application
programs to microcode," in Proceedings of the 21st International Workshop on Mi-

croprogramming and Microarchitecture, pp. 188{198, November 1988.

[26] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery, \The superblock: An e�ective structure for VLIW and superscalar compila-
tion," tech. rep., Center for Reliable and High-Performance Computing, University
of Illinois, Urbana, IL, February 1992.

[27] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist
classic code optimizations," Software Practice and Experience, vol. 21, pp. 1301{
1321, December 1991.

