
SUPPORTING PREDICATED EXECUTION: TECHNIQUES AND TRADEOFFS

BY

JAMES EARL MCCORMICK, JR.

B.S., University of Illinois, 1994

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

ABSTRACT

Predicated execution is the ability to associate a predicate, or guard, with an instruction and

to use that predicate to determine whether the instruction executes or not. Much of the research

to date on predicated execution assumes a high level of architectural support for predicated

execution and focuses developing techniques to exploit these capabilities. Researchers have

shown that predicate execution is a very useful tool in exposing and exploiting instruction

level parallelism. Unfortunately, there are several factors that make it very di�cult to develop

a processor with a high level of architectural support for predicated execution. A big factor

is that the importance of backward compatibility means that support for predication would

usually have to come as an extension on an existing instruction set. Another factor is that

some features which are assumed in a high level of support for predicated execution are di�cult

and costly to implement. Given these factors, techniques have to be developed that support

predicated execution at various levels of performance and cost, and the tradeo�s among these

techniques and levels of predication support need to be studied. This thesis discusses several

existing techniques and presents several new techniques that support various levels of predicated

execution and discusses the tradeo�s among these techniques and levels of support.

iii

ACKNOWLEDGMENTS

There are many people who have contributed signi�cantly to this work and without whom

it would not have been possible. I can't mention everyone, but I'll try to mention those who

contributed most.

My advisor, Professor Wen-mei Hwu, has helped to create a wonderful learning environment

and allowed me to be part of it. He provided me with the resources and opportunities to learn

and pushed me to use them to the best of my ability. I have bene�ted much from his advice

and insight.

Scott Mahlke (now at HP Laboratories) pointed me down this path of research and has

guided and contributed to my e�orts every step of the way. He patiently answered many

questions and helped me solve many problems. His hyperblock research and tools have been the

basis for much of this research.

Rick Hank (now at HP Laboratories) has helped me solve many problems and answered

many of my questions. He provided me with helpful advice along the way. He wrote the HP

PA-RISC code generator and emulation support that was used in this research.

Many other people in the IMPACT research group have contributed to this work in various

ways including providing a wonderful learning environment and developing various parts of the

IMPACT compiler and associated tools.

My wife Iris has been a great encouragement to me. She carried more than her share of the

load when I was overloaded even though she too is in graduate school. She listened to me even

when I talked about my research. Her love and friendship have helped me survive.

iv

My parents put me through undergraduate school with considerable sacri�ce, and have

contributed to my life in too many ways to mention. Without them, I would not be who I am

or where I am.

All of these opportunities and people did not come into my life by chance. My strength

does not come from myself. These things came from my God and Savior, the Maker of Heaven

and Earth. Therefore, I intend to use what I have gained for Him.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION : 1
1.1 Predicated Execution Background : 1

1.1.1 Motivation for predicated execution : 1
1.1.2 De�nition of predicated execution : 2
1.1.3 Bene�ts : 3

1.2 Support for Predicated Execution : 3
1.2.1 Processors/architectures with predicated execution support : : : : : : : : 3
1.2.2 Motivation for research : 4

2 ARCHITECTURAL SUPPORT : 6
2.1 Background : 6
2.2 Extensions for the Full Predication Model : 8
2.3 Extensions for Partial Predication : 10

3 COMPILER SUPPORT : 12
3.1 Background : 12
3.2 Compiler Support for the Full Predication Model : : : : : : : : : : : : : : : : : : 13
3.3 Compiler Support for Partial Predication : 15

3.3.1 Predicate promotion : 15
3.3.2 Basic conversions : 17
3.3.3 Optimizing the CMOV code : 23

3.4 Benchmark Examples : 28
3.4.1 Example loop from wc : 28
3.4.2 Example loop from grep : 30

4 EXPERIMENTAL EVALUATION : 33
4.1 Methodology : 33
4.2 Results : 35

4.2.1 Bene�ts of predicated execution : 35
4.2.2 Conditional move vs. full predication : 41

5 AN INTERMEDIATE DESIGN POINT : 44
5.1 Motivation : 44
5.2 Architectural Extensions and Compiler Support : : : : : : : : : : : : : : : : : : : 46
5.3 Experimental Evaluation : 46

6 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH : : : : : : : : 53
6.1 Conclusions : 53
6.2 Suggestions for Further Research : 54

REFERENCES : 56

vi

LIST OF TABLES

Table Page

2.1 Predicate de�nition truth table. : 9

4.1 Comparison of branch statistics: number of branches (BR), mispredictions (MP),
and misprediction rate (MPR). : 37

5.1 Comparison of branch statistics: number of branches (BR), mispredictions (MP),
and misprediction rate (MPR). : 45

vii

LIST OF FIGURES

Figure Page

2.1 Example of predication, (a) source code, (b) assembly code, (c) assembly code after
if-conversion. : 10

3.1 Example of predicate promotion. : 17
3.2 Basic conversions assuming non-excepting instructions available. : : : : : : : : : : : 19
3.3 Basic conversion for a jsr instruction. : 22
3.4 Basic conversion without non-excepting instructions. : : : : : : : : : : : : : : : : : : 23
3.5 Example loop segment from wc. : 29
3.6 Example loop segment from grep. : 31

4.1 E�ectiveness of FP and CMP support for an 8-issue, 1-branch processor. : : : : : : : 35
4.2 E�ectiveness of FP and CMP support with 2-branch issue capability. : : : : : : : : : 36
4.3 E�ectiveness of FP and CMP support with 10-cycle branch misprediction penalty. : 38
4.4 E�ectiveness of FP and CMP support with better (two-level) branch predictor. : : : 39
4.5 E�ectiveness of FP and CMP support with 16K instruction and data caches. : : : : 40
4.6 E�ectiveness of FP and CMP support with only 4-issue capability. : : : : : : : : : : 40
4.7 Dynamic instruction count comparison. : 41
4.8 E�ectiveness of FP and CMP support with 16-issue capability. : : : : : : : : : : : : 43

5.1 E�ectiveness of FP and CMP support for an 8-issue, 1-branch processor. : : : : : : : 47
5.2 Dynamic instruction count comparison. : 48
5.3 E�ectiveness of FP and CMP support with only 4-issue capability. : : : : : : : : : : 48
5.4 E�ectiveness of FP and CMP support with 16-issue capability. : : : : : : : : : : : : 49
5.5 E�ectiveness of FP and CMP support with 2-branch issue capability. : : : : : : : : : 51
5.6 E�ectiveness of FP and CMP support with 16K instruction and data caches. : : : : 51
5.7 E�ectiveness of FP and CMP support with 10-cycle misprediction penalty. : : : : : 52
5.8 E�ectiveness of FP and CMP support with a better (two-level) branch predictor. : : 52

viii

CHAPTER 1

INTRODUCTION

1.1 Predicated Execution Background

In the unending quest to squeeze more performance out of microprocessors, researchers

and designers are working to expose and exploit ever-increasing amounts of instruction level

parallelism (ILP). Exposing large amounts of ILP is primarily the job of the compiler. Exploiting

the exposed ILP is primarily the job of the processor architecture. However, these two jobs are

not completely separable. The architecture and the compiler must work together in order to

exploit large amounts of ILP. One area of research where such joint compiler and architecture

work is particularly evident and e�ective is predicated execution, also referred to as guarded

execution.

1.1.1 Motivation for predicated execution

Exposing and exploiting signi�cant amounts of ILP are di�cult tasks. A number of ar-

chitectural and compiler techniques that expose and exploit ILP have been suggested. These

techniques have been somewhat successful. However, to fully utilize 4 to 8 or more functional

units per cycle, one must overcome a number of signi�cant obstacles.

From an architectural perspective, branches remain a signi�cant problem. Much general

purpose code is control intensive code, in which branches make up as much as 40% of the

instructionmix. While branch prediction [2], [3], [4] and run-time speculation have been e�ective

1

at exposing and exploiting some ILP across branches, the cost and di�culty of doing good

branch prediction, among other things, limit most architectures to handling only one branch

per cycle. In code with 40% branches, such a constraint would limit IPC to 2.5. In addition, in

many architectures, a large performance penalty is paid for each mispredicted branch. Clearly,

in order to increase IPC up to 4 or 8 branches must be dealt with.

From a compiler perspective, branches are an obstacle to exposing ILP in several ways.

First of all, while quite a bit is known about optimizing under the constraints of data
ow,

not as much is known about optimizing under the constraints of control
ow. Second, schedul-

ing simultaneously across multiple important control
ow paths is very di�cult. Scheduling

simultaneously across multiple paths is important when paths of similar execution frequency

overlap. Paths like these are caused by conditional branches which are not heavily biased one

way or the other. Interestingly, these branches are also the hardest to predict and therefore,

cause a signi�cant amount of performance loss due to branch misprediction penalties. Compiler

techniques such as trace scheduling [5], superblock scheduling [6], loop unrolling, loop peeling,

and software pipelining [7] all focus on scheduling single cyclic or acyclic paths. Branches, then,

are a big obstacle to exposing and exploiting ILP and must be dealt with. Predicated execution

alleviates some of the di�culties which branches impose on exposing and exploiting ILP.

1.1.2 De�nition of predicated execution

Predicated execution is conditional execution of instructions based upon a Boolean value

called a predicate. We say that an instruction is predicated , or guarded , when it has a cor-

responding predicate. A predicated instruction with a true predicate executes normally. A

predicated instruction with a false predicate is nulli�ed, and thus prevented from modifying

2

the processor state. An instruction that de�nes a predicate is called a predicate de�nition

instruction. Predicated execution requires both architectural and compiler support.

1.1.3 Bene�ts

Predicated execution is a powerful technique with many bene�ts. One major bene�t is

that predicated execution combined with if-conversion allows the removal of branches from

the dynamic instruction stream. Removing these branches reduces the number of branches the

processor encounters each cycle. The importance of this is that many processors are very limited

in their branch issue rate. In addition, removing branches from the dynamic instruction stream

tends to reduce the number of branch mispredictions and the associated misprediction penalty.

The second major bene�t is that with predicated execution multiple paths of control can be

overlapped into a single instruction stream. This overlap allows optimization and scheduling

along multiple paths simultaneously. The third major bene�t is that the conversion of control

ow to data
ow through if-conversion enables optimizations which were not feasible in the

control
ow domain. These additional optimizations are due to the fact that optimizing data

dependences is more understood than optimizing control dependences.

1.2 Support for Predicated Execution

1.2.1 Processors/architectures with predicated execution support

A number of processors and architectures have included various kinds of predicated execu-

tion support. Some vector machines such as CRAY-1 used a vector mask register to control

the issue of instructions. A number of current processors and architectures (Pentium Pro, DEC

Alpha, SPARC V9) support conditional move instructions. The Multi
ow Trace 300 series

3

machines supported a select instruction which selects one of two source operands to copy to

the destination operand. The HP PA-RISC architecture [8] supports instruction nulli�cation

by which some instructions can squash the execution of the next instruction.

The Cydra 5 had extensive predication support [9], [10]. The predication support in the

Cydra 5 was mainly used to enhance the ability of modulo scheduling to expose ILP across loop

iterations in numerical code. Each instruction in this architecture had a predicate operand. The

predicates were de�ned by compare operations and special loop control instructions. Instruction

predicates were stored in a separate predicate register �le called the iteration control register , or

ICR. The predicates were referenced relative to the iteration frame pointer, allowing a distinct

set of physical registers to be used by each iteration of a loop. The predicates served two general

purposes. One set of predicates kept track of those iterations of the loop which were executing.

The value of these predicates was controlled by the the special loop control instructions. The

idea is that, with help from the compiler, code from di�erent iterations of the loop could

execute simultaneously. The other predicates were used to determine which path through the

loop would be executed. These predicates were de�ned by compare instructions. The Cydra 5

had the most extensive support for predication of any implemented architecture to date.

1.2.2 Motivation for research

Much of the research to date on predicated execution assumes a very high level of archi-

tectural support for predicated execution and focuses developing techniques to exploit these

capabilities. This research has shown that predicate execution is a very useful tool in exposing

and exploiting instruction level parallelism. Unfortunately, there are several factors which make

it very di�cult to develop a processor with a very high level of architectural support. A big

4

factor is that the importance of backward compatibility means that support for predication

would usually have to come as an extension on an existing instruction set. Another factor is

that some features which are assumed in a very high level of support for predicated execution

are di�cult and costly to implement. Given these factors, techniques have to be developed

which support predicated execution at various levels of performance and cost, and the tradeo�s

among these techniques and levels of predication support need to be studied. This thesis dis-

cusses some of the possible architectural and compiler support options for predicate execution

and brie
y mentions some of the previous research in this area. Some new compiler techniques

that support various levels of predicated execution are presented. Experimental results are

presented and used to explore tradeo�s in the area of architectural and compiler support for

predicated execution.

Chapter 2 discusses various design parameters of architectural support for predicated exe-

cution and presents the features used for the experiments in this thesis. Chapter 3 contains a

general discussion of compiler support for predicated execution and then presents the compiler

techniques used in the experiments. Chapter 4 presents experiments and the results. This

information is used to discuss tradeo�s in the compiler and architectural support. The knowl-

edge gained in Chapter 4 is used to choose a new con�guration of architectural and compiler

support for predicated execution. This new con�guration is presented in Chapter 5 along with

corresponding experimental results. Finally, Chapter 6 summarizes the ideas discussed in this

thesis and suggests areas for further research.

5

CHAPTER 2

ARCHITECTURAL SUPPORT

This chapter discusses architectural support for predicated execution. Section 2.1 discusses

some of the possible parameters involved in choosing architectural support for predicated ex-

ecution. Sections 2.2 and 2.3 present two di�erent levels of architectural support used in the

experiments in this thesis.

2.1 Background

Many possible varieties of architectural support exist for predicated execution. The choice

of the architectural support to provide is based on balancing the performance potential, cost,

and impact of the support on the instruction set architecture (ISA). A number of general style

choices exist. One choice is deciding on what predicate de�nition instructions to supply in the

ISA. This choice can greatly a�ect the e�ciency of the predicated execution as well as the cost

of the architectural support.

A second choice is whether to support full or partial predication [1]. Full predication sup-

port refers to architectural support which allows any instruction (or most instructions) to be

predicated. Partial predication support refers to architectural support which allows only a lim-

ited subset of instructions to be predicated. Full predication support provides more
exibility

and more potential bene�t, while partial predication support is less costly to implement and

has less of an impact on the ISA.

6

A third choice is how to associate the predicates with the predicated instructions. One

approach is to make the predicate an operand on the predicated instruction [11]. Another

approach is to have some kind of mask register which holds the predicates and associates the

predicates with the instructions based on instruction arrangement [12]. The �rst approach will

be referred to as operand-speci�ed predicates (OSP), and the second approach will be referred

to as mask-speci�ed predicates (MSP). OSP is the more
exible of the two approaches. This

approach requires a register to hold the predicate and a source operand on the instruction to

specify the predicate register. The advantage of OSP is that the predicates can be manipulated

in much the same manner as other operands. The MSP approach is less
exible because of

the association between the mask and the instruction arrangement. This association limits the

range over which a predicate may be live and constrains the ability to dynamically rearrange

instructions. However, the MSP approach has less of an impact in the ISA.

A fourth choice is how to suppress instructions with false predicates. In the convert-to-

NOP model instructions with false predicates are converted to NOPs at issue time. In the data

selection model, the predicate selects either the original destination value or the new destination

value generated by the predicated instruction. The main disadvantage of the convert-to-NOP

model is that the predicated instruction cannot be issued until its predicate is ready. The

main disadvantage of the data selection model is that arti�cial
ow dependences are created

for instructions whose predicates do not overlap. These arti�cial
ow dependences can have a

serializing e�ect on instruction execution that reduces the bene�t of predicated execution.

Several experimental models with various levels of predication support are used in this

thesis. All of the models in this thesis are based on a generic ILP processor (either VLIW or

superscalar) with in-order issue and register interlocking. A generic load/store ISA is assumed.

7

In addition, the baseline architecture is assumed to have support for speculative execution

in the form of non-excepting, or silent, versions for each instruction. The next two sections

will present the instruction set and micro-architecture extensions used to support predicated

execution by the Full Predication and Conditional Move Predication models.

2.2 Extensions for the Full Predication Model

The experimental model with the most extensive support for predication in this thesis will

be referred to as the Full Predication (FP) model. The FP instruction set includes signi�cant

extensions to the base ISA in an e�ort to support predicated execution with maximum
exibility

and e�ciency. The extensions to the instruction set for predication support are those of the HP

PlayDoh Architecture [11]. The �rst extension is that all instructions are predicated. In addition

to each instruction having a predicate operand, the FP set includes a number of instructions for

de�ning predicates. It contains a predicate de�nition instruction for each comparison opcode

in the base instruction set. The format of a predicate de�nition instruction is shown below.

pred <cmp> Pout1<type>, Pout2<type>, src1, src2 (Pin)

The comparison, <cmp>, can be ge, lt , eq , etc. The predicate de�nition instruction has up

to two predicate destinations, Pout1 and Pout2 . Predicate de�nition instructions can also be

predicated as represented by Pin in the instruction format. The predicate <type> represents

the rules that are used to assign the predicate value based on the comparison of src1 and src2

and the value of the incoming predicate, Pin. There are six predicate types in the FP instruction

set. These types are unconditional (U), OR, and AND along with their complements. Table 2.1

shows the rules for assigning predicate values associated with these six types. An unconditional

8

Table 2.1 Predicate de�nition truth table.
Pout

Pin Comparison U U OR OR AND AND

0 0 0 0 - - - -
0 1 0 0 - - - -
1 0 0 1 - 1 0 -
1 1 1 0 1 - - 0

type predicate is always assigned a value regardless of the value of the incoming predicate,

Pin. An unconditional type predicate is assigned a 1 i� the incoming predicate, Pin, is true

and the result of the comparison is true. Otherwise it is assigned a 0. An OR-type predicate

is assigned a 1 i� the incoming predicate is true and the result of the comparison is true.

Otherwise it remains unchanged. Since OR-type predicate de�nitions can only set a predicate

to 1, OR-type predicates must be initialized to 0 before they are de�ned and used. An important

characteristic of the semantics for the OR-type predicate de�nitions is that multiple OR-type

predicate de�nitions with the same destination register can be executed simultaneously since

the order of de�nition does not matter.

The FP instruction set also includes a pred set instruction and a pred clear instruction. The

pred set instruction simultaneously sets all predicates to 1 and the pred clear simultaneously

clears all predicates to 0.

A number of micro-architecture features are assumed for the FP architecture. First, all

of the predicates are stored in a predicate register �le of 1-bit registers. Second, the convert-

to-NOP method is used for suppression of execution for an instruction with a false predicate.

Instructions with false predicates are converted to NOPs in the decode/issue stage of the pipeline

before they are issued. The next stage is the execute stage. This stage completely executes

predicate de�nition instructions. Register bypassing logic sends the new predicate de�nitions

9

if (a&&b) beq a,0,L1 pred clear
j = j + 1; beq b,0,L1 pred eq p1OR,p2U ,a,0

else add j,j,1 pred eq p1OR,p3U ,b,0 (p2)
if (c) jump L3 add j,j,1 (p3)
k = k + 1; L1: pred ne p4U ,p5U ,c,0 (p1)

else bne c,0,L2 add k,k,1 (p4)
k = k � 1; add k,k,1 sub k,k,1 (p5)

i = i+ 1; jump L3 add i,i,1
L2:
sub k,k,1

L3:
add i,i,1

(a) (b) (c)

Figure 2.1 Example of predication, (a) source code, (b) assembly code, (c) assembly code
after if-conversion.

to the decode/issue stage in time for the suppression of instructions with false predicates.

Therefore, the dependence distance between the de�nition of a predicate and its use is just one

cycle.

Figure 2.1 contains a simple code segment in three representations: source code (a), base

instruction set (b), and FP instruction set (c).

2.3 Extensions for Partial Predication

The experimental model with the least support for predication in this thesis will be referred

to as the Conditional Move Predication (CMP) model. The CMP instruction set has only two

additional instructions over the base instruction set. The �rst additional instruction is the

conditional move, or cmov , instruction. The semantics for this instruction are shown below.

The cmov instruction is very similar to a predicated move instruction. The main di�erence is

that the predicate of a cmov instruction is a value held in the least signi�cant bit of an integer

10

register. The integer register which holds the predicate is denoted cond . If the least signi�cant

bit of cond is a 1 (predicate = true), then value in src is copied to dest . Otherwise, dest is

unmodi�ed.

cmov dest,src,cond

if (cond) dest = src

The second added instruction is the complemented cmov , or cmov, instruction. This instruction

is very similar to the cmov instruction. The semantics are shown below. The di�erence between

the cmov instruction and the cmov is that for the latter case, the least signi�cant bit of cond is

considered to hold the complement of the predicate. In other words, a 0 in the least signi�cant

bit of cond causes the value in src to be copied to dest .

cmov dest,src,cond

if (!cond) dest = src

As with the predicated instructions in the FP architecture, the dependence distance between

the de�nition of the cmov condition, cond , and the use of the condition by a cmov instruction

is 1. Similarly, cmov instructions with false predicates are nulli�ed in the issue/decode stage.

The minor ISA extensions required for CMP support provide a natural way for existing ISAs

to incorporate partial predication. The two source operands and one destination operand �t

well into current 3 operand ISAs. In fact, as mentioned in Section 1.2.1, a number of instruction

sets already provide similar instructions.

11

CHAPTER 3

COMPILER SUPPORT

3.1 Background

Compiler support for predicated execution involves techniques to convert code from one

level of predication to another. Techniques that convert unpredicated code to predicated code

are generally based on a concept called if-conversion. The term if-conversion is generally used

to mean the conversion of control dependence to data dependence through the use of Boolean

instruction guards. If-conversion was �rst introduced by Allen et al. [13]. They presented some

techniques to eliminate some control
ow in loop bodies by converting it to explicit data
ow

which computed explicit Boolean expressions for when each instruction should execute. The

execution of these instructions was guarded by an if statement based on the corresponding

Boolean expression. Park and Schlansker [14] presented an if-conversion technique which con-

verts low level unpredicated code to low level predicated code. Their technique eliminates all

control
ow within the region of if-conversion. They present e�cient semantics for predicated

execution and show that based upon those semantics, their if-conversion technique has the

following characteristics:

1. It minimizes the number of predicates in use and thus the number of predicate

de�ning operations.

2. It can be applied to any
ow graph (including cyclic and irreducible).

3. The time complexity, O(n2), is dominated by computation of control dependences.

12

Mahlke et al. [15] introduced a comprehensive set of techniques for generating e�cient fully

predicated code from unpredicated code. These techniques will be discussed in detail in Sec-

tion 3.2. Warter and Hwu [16] introduced a technique called reverse if-conversion for converting

predicated code into unpredicated code. This technique allowed unpredicated code to be con-

verted to predicated code and back. The reason for this process is that some optimizations are

possible in predicated code that are not possible in unpredicated code.

Th next two sections present the compiler support of predicated execution used by the FP

and CMP models. For both models, the code is compiled from the source code to the generic

baseline instruction set. Then, Mahlke's hyperblock techniques are applied to transform the

code into the FP instruction set. The FP code is fully optimized. Then, for the CMP model,

new compilation techniques are used to convert the FP code into CMP code. This compilation

path is a new method of compiling for architectures with limited predication support such as a

conditional move instruction. It has the advantage of being able to apply a more sophisticated

conceptual framework to exposing ILP and optimizing the code. Section 3.2 discusses the

hyperblock techniques, and Section 3.3 presents the techniques for converting FP code into

CMP code. The �nal section in this chapter contains two examples which illustrate some of

the characteristics of this compiler support.

3.2 Compiler Support for the Full Predication Model

The compiler support for the FP model is based on the hyperblock techniques in [15]. These

hyperblock techniques are motivated by two problems with conventional compiler support for

13

predicated execution. First, conventional if-conversion combines all paths of control regardless

of their execution frequency and size. This approach results in a large number of useless in-

structions being executed. Second, speculative execution is di�cult to combine with predicated

execution. Hyperblock techniques solve these problems by very carefully choosing and forming

regions on which to perform if-conversion. A hyperblock is de�ned to be a collection of con-

nected basic blocks in which control may only enter from the top, but may exit from one or

more locations. All control
ow between the basic blocks in a hyperblock is eliminated through

if-conversion. Heuristics are used to choose which paths to include in the hyperblock. These

heuristics attempt to balance between two occasionally con
icting priorities. The �rst priority

is to include only the frequently executed paths. The second priority is to avoid saturating the

processor resources. The result is a structure called a hyperblock which will allow simultaneous

optimization of the most important paths. This technique tends to eliminate branches which

are not heavily biased in either direction. In addition, compiler-controlled speculation is made

much easier by the fact that hyperblocks do not have any side entrances.

Hyperblock formation is done in the following three steps:

1. Use tail duplication and loop peeling to remove all side entrances

from basic blocks which are to be formed into a hyperblock.

2. Apply node splitting to eliminated dependences created by

control path merges.

3. Use if-conversion to replace the set of selected basic blocks

with a hyperblock.

These hyperblock techniques are discussed more thoroughly in [15].

14

3.3 Compiler Support for Partial Predication

The compiler support for the CMP model consists of a set of conversions and optimizations

that transforms a program that uses the FP instruction set to an equivalent program that uses

the CMP instruction set. The two general categories of instructions from the FP set which

must be converted are predicated instructions and predicate de�nition instructions. The predi-

cate de�nition instructions are basically complex logical instructions. They are converted into

several standard logic instructions. The general approach for converting predicated instruc-

tions is to perform the operation speculatively, putting the result in a temporary register, and

then using a conditional move to copy the result into the original destination. The conver-

sions for both of these types of instructions have three important features. First of all, since

many instructions are speculated, the e�ciency of these conversions requires some architectural

support for speculative execution. Second, each instruction conversion increases the number

of instructions. Third, each instruction conversion increases the dependence height associated

with the original instruction from one to two. The transformation from fully predicated code

to cmov predicated code occurs in three general steps: predicate promotion, basic conversions,

and peephole optimizations.

3.3.1 Predicate promotion

Predicate promotion is the process of removing the data dependence between a predicate

de�nition instruction and a predicated instruction. Removing such a dependence allows the

predicated instruction to be moved ahead of the predicate de�nition. This process of predicate

promotion and code reordering is equivalent to breaking the control dependence between a

branch and a subsequent instruction by moving that instruction ahead of the branch. Both

15

processes result in speculative execution of the previously dependent instruction. Speculative

execution can be used to e�ectively reduce the dependence height along important paths. This

advantage of speculative execution comes at a cost, one of which is the execution of some

useless instructions. Another cost of speculative execution is that it occasionally requires the

addition of move instructions to accomplish register renaming. Speculation can also a�ect the

performance of the instruction and data caches.

Speculation is employed in the FP code through predicate promotion. The tradeo�s are

slightly di�erent for predicate promotion than for control speculation because predicated in-

structions that are nulli�ed also waste execution resources. For the FP code, heuristics are used

to balance the tradeo�s involved. Predicate promotion is even more bene�cial for CMP code

than for FP code. The reason is that predicate promotion often completely eliminates the pred-

icate on an instruction. Because, in general, each conversion of a predicated instruction into

an equivalent representation in the CMP instruction set increases the number of instructions,

removal of predicates through predicate promotion can increase the e�ciency of the resulting

CMP code. Also, the cost of occasionally inserting register renaming moves is not a factor in

CMP code because such a move would have been inserted in the conversion from FP code to

CMP.

The bene�ts of predicate promotion for CMP code are illustrated in Figure 3.1. The top

left quadrant shows FP code before predicate promotion. The top right quadrant shows the

CMP code that would result from conversion of the individual predicated instructions. These

conversions will be discussed more fully in the next section. Applying predicate promotion to

the code in the top left quadrant produces the code in the bottom left quadrant. The code in

the bottom right quadrant then shows the CMP code that would result from conversion of the

16

Note: non-excepting instructions
 assumed.

before
promotion

after
promotion

partially
predicated code

fully
predicated code

load x
y = 2x+3

operation:

load
mul
add

load
mul
add

temp1,addrx,offx (Pin)
temp2,temp1,2 (Pin)
y,temp2,3 (Pin)

temp2,temp1,2
y,temp,2,3 (Pin)

temp1,addrx,offx

load
cmov
mul
cmov
add
cmov

temp3,addrx,offx
temp1,temp3,Pin
temp4,temp1,2
temp2,temp4,Pin
temp5,temp2,3
y,temp5,Pin

load
mul
add
cmov

temp1,addr,offx
temp2,temp1,2
temp3,temp2,3
y,temp3,Pin

Figure 3.1 Example of predicate promotion.

instructions in the bottom left quadrant. In this example, applying predicate promotion before

the conversion from FP code to CMP code reduces the number of instructions in the CMP code

from six to four. Because of its great bene�t for CMP code, additional predicate promotion is

performed before the conversion from FP code to CMP code.

3.3.2 Basic conversions

After predicate promotion, the compiler uses a set of transformations, referred to as basic

conversions, to map individual instructions from the FP instruction set to the CMP instruction

set. The basic conversions must map two general categories of instructions which exist in the

FP instruction set but not in the CMP instruction set: predicated instructions and predicate

de�nition instructions. The semantics of a predicated instruction requires that, in the presence

of a true predicate, the program produce the same results as if the instruction were not predi-

cated. In the presence of a false predicate, the instruction should have the same e�ect on the

results as if it did not exist. An instruction may a�ect the results of a computation in two ways.

17

First, an instruction may produce a value which is subsequently used by other instructions to

a�ect the �nal result of the program. Second an instruction may cause a program terminating

exception such as divide-by-zero, illegal memory address, over
ow, or under
ow. The basic

conversions must insure that the CMP code will follow these intended semantics. Careful con-

sideration must also be given to the semantics of predicate de�nition in both the FP and CMP

architectures when creating these basic conversions. A predicate register in the FP architecture

is a 1-bit register. In the CMP architecture, the least signi�cant bit of integer register is used to

hold a 1-bit predicate. Although the semantics of the cmov instruction depend only on the least

signi�cant bit of the integer register holding the predicate, the basic conversions will maintain

the convention of using an integer 0 for a false predicate and an integer 1 for a true predicate.

The peephole optimization section will show that relaxing this convention can provide some

optimization opportunities.

The basic conversions are considerably simpli�ed if the underlying processor has full support

for speculative execution. In particular, if the processor has non-excepting, or silent, versions

of each instruction, the basic conversions can be much more e�cient. The basic conversions

can be more e�cient in this case because they do not have to generate tests to avoid unwanted

exceptions. Figure 3.2 shows some representative examples of the basic conversions in this case.

In these examples, the registers named Pin and Pout are predicate registers in the FP code (on

the left) and integer registers in the CMP code (on the right). At this point in the compilation

process these registers are still virtual registers, and so they are simply renamed.

Example conversions for two predicate de�nition instructions are shown in Figure 3.2. The

�rst predicate de�nition is an unconditional (U), type predicate de�nition with an incoming

predicate, Pin, based on a less-than comparison. If the incoming predicate, Pin, is 1 and the

18

sub rtemp, $safe, off
cmov rtemp, addr, Pin
store rtemp, off, src

store addr, off, src (Pin)

jump label (Pin) bne Pin, 0, label

blt src1, src2, label (Pin) ge rtemp, src1, src2
blt rtemp, Pin, label

pred_lt PoutOR, src1, src2 (Pin)
lt rtemp, src1, src2
and rtemp, Pin, rtemp
or Pout, Pout, temp

pred_lt PoutU, src1, src2 (Pin) lt rtemp, src1, src2
and Pout, Pin, rtemp

predicate definition instructions

arithmetic & logic instructions

memory instructions

branch instructions

Fully Predicated Code

jsr label (Pin) beq Pin, 0, NEXT
jsr label
 NEXT:

add dest, src1, src2 (Pin) add rtemp, src1, src2
cmov dest, rtemp, Pin

div dest, src1, src2 (Pin) div rtemp, src1, src2
cmov dest, rtemp, Pin

Basic Conversions,
Non-excepting Instructions

load dest, addr, off (Pin) load rtemp, addr, off
cmov dest, rtemp, Pin

Figure 3.2 Basic conversions assuming non-excepting instructions available.

19

comparison is true, this instruction puts a 1 in Pout ; otherwise, it puts a 0 in Pout . In the

CMP code, the less-than comparison is performed �rst, placing the result (1 for true, 0 for false)

into a temporary register, rtemp. The incoming predicate, Pin, is then and-ed with the result

of the comparison, and the result is placed in Pout . The second predicate de�nition example

is that of an OR-type predicate. The di�erence between an OR-type and a U -type predicate

de�nition is that in the cases in which the U -type de�nition writes a 0 into Pout , the OR-type

de�nition does not write anything into Pout leaving the original value of Pout unchanged. The

equivalent CMP code for the OR-type predicate de�nition is similar to that for the U -type

de�nition. A comparison and an and instruction are used to produce the same 0 or 1 result,

and then this result is or -ed with the previous value of the predicate to produce the �nal value

of the predicate. Thus, a predicate value of 1 cannot be changed to a 0 by this code. Predicate

de�nition instructions can have two destinations. In such a case, the instruction is converted

as if it were two separate predicate de�nition instructions. The basic conversion for a predicate

de�nition instruction in the FP instruction set can produce from one to six instructions in the

CMP instruction set.

The most e�cient and straightforward basic conversions are for predicated instructions with

register destinations as shown by the predicated add conversion in Figure 3.2. In the CMP code,

the add is executed speculatively with the result going into a temporary register, rtemp. A

cmov instruction is then used to move the result from the temporary register, rtemp, to the

original destination, dest , based on the value of Pin, the original predicate.

The basic conversions for instructions with memory destinations are somewhat more com-

plicated. Because the CMP instruction set does not have a conditional store instruction, the

store must occur regardless of the value of the original predicate. Instead, the approach taken

20

is to conditionally modify the address of the store instruction so that the memory destination is

the original memory destination in the case of a true predicate and a di�erent unused memory

location in the case of a false predicate. The predicated store conversion in Figure 3.2 gives an

example of such a conversion. In the CMP code, the o�set, o� , is subtracted from an unused,

safe address, safe addr , so that safe addr - o� is placed in rtemp1 . The purpose of doing this

subtraction is that now if the value in rtemp1 is used as the base address of the store, the

resulting memory address will be safe addr . The next instruction is a cmov which overwrites

the value in rtemp1 with the original base address, addr , if the original predicate, Pin, is true.

The resulting value in rtemp1 is then used as the base address of an unconditionally executed

store.

Example conversions for predicated branch instructions are also shown in Figure 3.2. A

predicated unconditional branch is converted into a conditional branch that tests the value of

the predicate, Pin, and branches when the predicate is not 0. A predicated conditional branch

is implemented in two instructions. The �rst instruction is a comparison which is opposite to

that of the comparison in the original conditional branch. This comparison places a 0 in rtemp

if the original comparison would have been true. The branch should be taken if and only if the

predicate is true and the original comparison would have been true. Equivalently, the branch

should be take if and only if Pin is 1 and rtemp is 0. Since Pin and rtemp can only take on

the values 1 and 0, the branch should be taken if and only if rtemp is less than Pin. Therefore,

the last instruction in the CMP code is a conditional branch which is taken when rtemp is less

than Pin. Predicated subroutine calls cannot be handled directly in the CMP set, so the basic

conversion for predicated subroutine calls resorts to reverse-if conversion. An example is shown

in Figure 3.3. The branches produced by this conversion are the only ones that occur in the

21

instructions
jsr label (Pin)
more instructions

instructions
bne Pin,0,new_cb

jsr label

more instructions

Figure 3.3 Basic conversion for a jsr instruction.

CMP code but not in the FP code.

All of the conversions in Figure 3.2 depend on the existence of non-excepting or silent

versions of all of the instructions. Conversions are also possible in the case where these silent

instructions do not exist. The conversions in this case, however, have the additional overhead

of making sure that speculated instructions do not cause exceptions which could alter the

result of the program. Figure 3.4 shows some examples of the basic conversions when non-

excepting versions of the instructions are not available. Predicate
oating-point instructions

can be converted if a
oating-point conditional move exists. (Otherwise, branches will have

to be inserted through reverse if-conversion.) The conversions for predicated
oating-point

instructions must produce code that will prevent an over
ow or under
ow exception when the

original predicate is false. This is done by conditionally moving a value, safe val , into one of

the operands so that the instruction is guaranteed not to produce an exception. Similarly, the

conversions for predicated divides must use a safe value to avoid a divide-by-zero exception.

22

pred_lt_f PoutU, src1, src2 (Pin) mov rtemp1, $safe_val
cmov_f rtemp1, src2, Pin
lt_f rtemp2, src1, rtemp1
and Pout, Pin, rtemp2

predicate definition instructions

arithmetic & logic instructions

memory instructions

Fully Predicated Code Basic Conversions,
Non-excepting Instructions

load dest, addr, off (Pin) sub rtemp1, $safe_addr, off
cmov rtemp1, addr, Pin
load rtemp2, rtemp1, off
cmov dest, rtemp2, Pin

div_f dest, src1, src2 (Pin) mov rtemp1, $safe_val
cmov_f rtemp1, src1, Pin
div_f rtemp2, src1, rtemp1
cmov dest, rtemp2, Pin

Figure 3.4 Basic conversion without non-excepting instructions.

Illegal memory address exceptions must also be prevented in the conversions for predicated

loads.

3.3.3 Optimizing the CMOV code

The basic conversions in the previous section focused on converting individual instructions

from the FP instruction set to the CMP instruction set. The conversions could be more e�cient

if they considered more than one instruction at a time. The peephole optimizations presented

in this section attempt to use a more global understanding of the basic conversions to increase

the e�ciency of the CMP code. The instructions generated by the basic conversions are marked

as they are generated, since certain assumptions can be made about these instructions which

may not necessarily be made in general. The original FP code is already highly optimized, so

23

the peephole optimizations need only focus on eliminating ine�ciencies in the basic conversions.

Full optimization of the code resulting from the predicate de�nition conversions requires the

ability to complement predicates. Complementing predicates in the CMP instruction set is

tricky, so this issue is discussed prior to presenting the peephole optimizations.

3.3.3.1 Complementing predicates

Predicates fundamentally only hold one bit of information. However, in the CMP instruction

set, the predicates are stored in integer registers. The comparison instructions in the base

instruction set which are used in de�ning predicates assign a 1 or 0 to their integer destination

registers. It would be possible to de�ne a false predicate as the integer 0 and a true predicate as

the integer 1, but then bitwise logical inversion would no longer complement the predicate. Fully

optimizing the predicate de�nitions requires the ability to complement predicates with logical

instructions. Therefore, predicates are de�ned to be the value stored in the least signi�cant

bit of the integer predicate register. With this de�nition, bitwise logical inversion will now

complement the predicate.

The basic conversions, however, operate under the more restrictive assumption that all

bits other than the least signi�cant bit are 0's (i.e., the value in an integer predicate register

can be only 0 or 1). This restriction is not a di�culty for the basic conversions because

the need to complement the predicate never arises. In reality, only the basic conversions for

predicated conditional and unconditional branches rely on this assumption (see Figure 3.2). The

instructions resulting from these conversions depend on the integer predicate register containing

precisely a 1 or 0. In order to allow predicates to be freely complemented, the instructions which

rely on the predicate register containing precisely a 0 or 1 are preceded by an and instruction

24

which masks o� all but the lowest bit of the integer predicate register. This masking allows

predicates to be freely complemented with bitwise logical instructions and thus facilitates the

optimization of the predicate de�nition code. Adding these masks turns out to be mostly for

conceptual purposes and ease of implementation, since most of these mask instructions can be

removed after optimization of the predicate de�nition instructions.

3.3.3.2 Peephole optimizations

Classic Optimizations. The FP code often contains multiple predicate de�nitions which

are very similar. The basic conversions handle each predicate de�nition individually, and as a

result, they frequently introduce redundant comparison and logic instructions. Some of these

redundancies can be eliminated using common subexpression elimination, copy propagation,

and dead code removal. Figure 3.2 gives such a case. The example has two predicate de�nitions

which are identical except for predicate type. In this example, the basic conversions produce

two compare instructions, two and instructions, and an or instruction. The compares and and

would be redundant.

Redundant Complementary Comparison Elimination. It turns out that there is

only one type of redundancy produced by the basic conversions for predicate de�nitions which

cannot be removed by classical common subexpression elimination. If the type of one of the

predicate de�nitions in Figure 3.2 were complemented, the two comparisons on the right would

be complementary. These comparisons would usually be redundant. If all uses of the result

of one of these comparison instructions can be complemented, then one of the comparisons

can be eliminated. A comparison instruction can be complemented if each use of its result

can be complemented. Cmov instructions and logical instructions are the only two types of

25

instructions that use results of comparisons produced by the basic conversions. The predicate

input of a cmov instruction can be complemented by changing the cmov to a cmov instruction.

This use of the cmov is necessary for full optimization of the predicate de�nitions and is the

main bene�t of having a cmov instruction in the CMP instruction set. The base instruction

set has a full set of bitwise logic instructions including: and , or , nand , nor , and compl , and

or compl . (Compl means that the bitwise complement is taken of the second input before it is

used.) These are the only logic instructions which used the outputs of the comparisons being

discussed. The inputs to any of these logical instructions can be individually complemented

by using a di�erent instruction in this set. Therefore, the comparisons produced by the basic

conversion of predicate de�nition instructions can always be complemented. An optimization

called redundant complementary comparison elimination searches for these redundancies and

removes them.

Predicate De�nition Height Reduction. In the FP instruction set, the execution se-

mantics of OR-type predicate de�nitions is very e�cient. A sequence of OR-type prediction

de�nition instructions which all write the the same destination can be executed in one cycle.

However, such a sequence of instructions results in a sequential chain of dependent instructions

in the cmov predicated instruction set. The dependence height of this sequential chain of in-

structions can be reduced by applying associativity rules to the sequential chain of instructions.

In this way, a chain of dependent instructions is converted into a binary tree of instructions,

and the dependence height is reduced from n to log2(n). This optimization is called predicate

de�nition height reduction, and an example is given in Section 3.4.

Branch Predicate Mask Elimination. After optimization of the predicate de�nition

instructions, almost all of the mask instructions which were introduced to allow complementa-

26

tion of predicates can be removed. The mask instructions were inserted in front of code which

expected the value in a predicate register to be exactly a 0 or 1. If the compiler can determine

the values of the upper bits of an integer predicate register, then the corresponding mask can

be eliminated and the code can be modi�ed, if necessary, to check for a new value.

The values of the upper bits of an integer predicate register can be determined at compile

time. In addition, these bits will either be all 1's (negative polarity) or all 0's (positive polarity).

The basic conversions produce code in which the value in an integer predicate register is always

initialized to either a 1 or 0. Therefore, the polarity of the values in all predicate registers is

originally positive. After initialization, the value in a predicate register is modi�ed only by

bitwise logical combination with the values in other predicate registers and bitwise complemen-

tation. If the polarity of a value in an integer predicate register is know, then the polarity of

its bitwise complement is also know. Similarly, if the polarities of two predicate registers are

know, the polarity of their logical combination is know.

The predicate de�nition graph is a structure which enables the polarity of these upper bits

to be determined. This graph is a binary tree in which the nodes represent instructions and

the arcs represent data
ow dependences. The root of the tree is the previous de�nition of the

predicate register of interest. The children of a node are the previous de�nitions of each each

source operand. The polarity of the leaf nodes is always known, and the polarity resulting from

any logical operation of registers with known polarities can always be determined. Therefore,

the polarity of any predicate register can be determined by building the predicate de�nition

graph and traversing it in depth-�rst order, determining the polarity of each node along the

way. This method only works for predicate registers which are completely de�ned in the same

block in which the predicate register is used. Most of the time this is the case. Through the

27

use of the predicate de�nition graph, most of the mask instructions can be eliminated. This

optimization is called branch predicate mask elimination.

3.4 Benchmark Examples

To more clearly understand the e�ectiveness of predicated execution support and the per-

formance tradeo�s of FP vs. CMP support, two examples from the set of benchmarks are

presented. The �rst example is from wc and the second is from grep. These benchmarks were

chosen because they are relatively small, yet control-intensive, so they clearly illustrate the

e�ectiveness of FP and CMP support.

3.4.1 Example loop from wc

Figure 3.5(a) shows the control
ow graph for the most important loop segment from the

benchmark wc. The control
ow graph is augmented with the execution frequencies of each

control transfer for the measured run of the program. This loop is characterized by small basic

blocks and a large percentage of branches. The loop segment contains 13 basic blocks with a

total of 34 instructions, 14 of which are branches. The performance of an 8-issue ILP processor

without predicated execution support is limited by this high frequency of branches. Overall, a

speedup of 2.0 is achieved for an 8-issue processor over a 1-issue processor (See Figure 4.1).

The assembly code after hyperblock formation for the loop segment is shown (b) and (c)

of Figure 3.5 for the FP and CMP models, respectively. The issue cycle is given to the right

of each assembly code instruction. Note that the assembly code is not reordered based on the

issue cycle for ease of understanding. The schedule assumes a 4-issue processor which can issue

4 instructions of any type except branches, which are limited to 1 per cycle. With both FP and

28

pred_ge p1 ,p2 ,32,r2

pred_ge p1 ,p3 ,r2,127 (p2)

pred_eq p4 ,0,r4 (p3)

pred_eq p5 ,p6 ,r2,10 (p1)

pred_eq p7 ,r2,10 (p1)

pred_eq p5 ,p8 ,r2,32 (p6)

add r5,r5,1 (p4)

add r4,r4,1 (p4)

add r6,r6,1 (p7)

mov r4,0 (p5)

OR U

OR U

U

OR U

U

OR U

pred_eq p5 ,r2,9 (p8)OR

r7,r7,1

r3,r3,1

ld_uc r2,r3,−1

r1,r1,−1

add

add_u

add

beq

A

CB

14

14

105K

105K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

61K 16K

16K

4K 24K

4K 22K
2K

252K

28K

0

2

3

4

5

0

6

7

2

4

4

5

5

5

2

3

2

8 cycles

7

Note: 4−issue, 1−branch machine assumed for scheduling

issue cycle

issue cycle

r1,0,blockC

r2,−1,EXIT

blockA

blt

EXIT

blockA:

jump

(b) fully predicated hyperblock code (c) partially predicated code(a) basic block control flow block

blockA: blt
ld_uc
beq
ge
or
ge
nor
and
or
eq
and_compl
eq
and_compl
and
or
eq
nor
and
add
cmov
add
cmov
add
cmov
eq
and_compl
or

cmov
add
add_u
add
jmp

or

r1,0,blockC
r2,r3,−1
r2,−1,EXIT
r12,32,r2
r11.r11.r12
r30,r2,127
r13,r30,r12
r31,r30,r12
r11,r11,r31
r32,0,4
r14,r32,r13
r33,r2,10
r16,r11,r33
r17,r11,r33
r15,r15,r17
r34,r2,32
r18,r34,r16
r41,r34,r16
r35,r5,1
r5,r35,r14
r36,r4,1
r4,r36,r14
r37,r6,1
r6,r37,r17
r38,r2,9
r39,r38,r18
r40,r41,r39
r15,r40,r15
r4,0,r15
r7,r7,1
r3,r3,1
r1,r1,−1
blockA

0
0
2
2
3
2
3
3
4
0
4
2
5
5
6
3
6
6
0
5
1
5
1
6
4
7
8
9
10
4
7
7
10

11 cycles

Figure 3.5 Example loop segment from wc.

CMP support, all of the branches except three are eliminated using hyperblock formation. The

three remaining branches (conditional branch to block C, conditional branch to EXIT, and the

loop backedge) are highly predictable. Therefore, virtually all the mispredictions are eliminated

with both FP and CMP support in this loop. The resulting performance is increased by 27%

with CMP support and 120% with FP support. (See Figure 4.1).

As with many benchmarks, the number of instructions increases signi�cantly going from FP

code to CMP code. The FP code in Figure 3.5(b) consists of 18 instructions, and the CMP code

in Figure 3.5(c) consists of 33 instructions. In some cases, especially with lower issue widths,

this increase in the number of instructions saturates the processor issue resources and increases

the execution time. The execution time does increase in this example from 8 cycles to 11 cycles,

but the reason for this is a little more subtle. The increase in execution time is a result of an

increase in dependence height. The height of the longest dependence chain in the CMP code

29

is 11 cycles. In both the FP and CMP code, the longest dependence chain contains several

predicate de�nitions. These predicate de�nitions are one instruction each and take one cycle in

the FP code. In addition, the dependence distance between two OR-type predicate de�nition

instructions with the same destination register is 0. In other words, two such predicate de�nition

instructions can be executed in the same cycle. In the CMP code, each predicate de�nition

requires from 1 to 3 sequential instructions, and the OR-type predicate de�nitions do not have

any special semantics which allow them to executed more e�ciently. The greater e�ective

dependence height of predicate de�nitions increases the height of the longest dependence chain

in the CMP code and thus increases the execution time. For the entire benchmark execution,

a similar trend is observed, and the speedup increases from 2.5 for the CMP model to 4.4 for

the FP model. (See Figures 4.1 p. 35 and 4.7 p. 41).

3.4.2 Example loop from grep

Figure 3.6 shows the assembly code for the most important loop segment from the bench-

mark grep. The base processor model, which does not support any predicated execution,

employs speculative execution in conjunction with superblock ILP compilation techniques to

achieve the schedule shown in Figure 3.6(a) [6]. Each of the conditional branches in the �gure

are infrequently taken, thus the sequence of instructions iterates very frequently. Overall, grep

is dominated by an extremely high frequency of branches. This high frequency of branches is

the performance bottleneck of this loop since only one branch resource is available. However,

the branches are highly predictable. Thus, hyperblock compilation techniques focus on reducing

this branch bottleneck for processors with limited branch resources.

30

ld_c r3,r1,−3
eq r7,r3,10
eq r8,0,r3
ge r9,r4,r5

ld_c r13,r1,−2
eq r17,r13,10
eq r18,0,r13
ge r19,r4,r15

ld_c r23,r1,−1

st_c r4,−2,r3
st_c r4,−1,r13
st_c r4,0,r23
add r4,r4,3
add r1,r1,3

iter 1

iter2

iter3

or−tree

bge r1,r2,cb158

ld_c r3,r1,−3

beq r3,10,cb159

beq 0,r3,cb160

bge r4,r5,cb161

st_c r4,−2,r3

bge r1,r12,cb162

ld_c r13,r1,−2

beq r13,10,cb163

beq 0,r13,cb164

bge r4,r15,cb165

st_c r4,−1,r13

bge r1,r22,cb166

ld_c r23,r1,−1

beq r23,10,cb167

st_c r4,0,r23

beq 0,r23,cb168

bge r4,r25,cb269

add r1,r1,3

add r4,r4,3

cb6

iter 1

iter2

iter3

ORpred_ge p1 ,r1,r2

pred_eq p1 ,r3,10OR

pred_eq p1 ,0,r3OR

pred_ge p1 ,r4,r5OR

pred_ge p1 ,r1,r12OR

pred_eq p1 ,r13,10OR

pred_eq p1 ,0,r13OR

pred_ge p1 ,r4,r15OR

pred_ge p1 ,r1,r22OR

pred_eq p1 ,r23,10OR

pred_eq p1 ,0,r23OR

pred_eq p1 ,r4,25OR

pred_clear p1

iter 1

iter2

iter3

ld_c r3,r1,−3

0

4

0

1

1

3

1

1

3

1

1

1

3

3

1

5
5
5

4

5

7

9

6

10

11

12

13

12

0
0

3

0

0

4

4

4
5
5
5

6
6
7

8

0

2

4

0

8

8

0

12

12

14 cycles

0

2

2

0

2

2

0

3

4
4
4

6 cycles

2
2

2
2

3
3

3

4

5

9

8
8
8

9
9

10 cycles

issue cycle

issue cycle

issue cycleNote: 4−issue,1−branch assumed for scheduling

(a) superblock code (c) partially predicated code

jump

jumb cb6

jump cb293 (p1)

ld_c r23,r1,−1

ld_c r13,r1,−2

add r4,r4,3
add r1,r1,3

st_c r4,−2,r3
st_c r4,−1,r13
st_c r4,0,r23

ge r6,r1,r2

ge r16,r1,r2

ge r26,r1,r2

ge r29,r4,r25
eq r28,0,r23
eq r27,r23,10

bne r400,0,cb293

or r101,r7,r8
or r102,r9,r16
or r103,r17,r18
or r104,r19,r26
or r105,r27,r28
or r200,r29,r100
or r201,r101,r102
or r202,r103,r104
or r300,r105,r200
or r301,r201,r202
or r400,r300,r301

or r100,r6,r7

jump cb6

(b) fully predicated hyperblock code

Figure 3.6 Example loop segment from grep.

With FP support, the compiler is able to combine the branches into a single exit branch

using OR-type predicate de�nitions. Since OR-type predicate de�nitions can be issued simul-

taneously, an extremely tight schedule can be achieved. The execution time is dramatically

reduced from 14 to 6 cycles with full predicate support. With CMP support, the same trans-

formations are applied. Therefore, the same number of branches is eliminated. However, the

representation of OR-type predicates is less e�cient with CMP support. In particular, the

logical or instructions cannot be simultaneously issued. The predicate de�nition height reduc-

tion discussed previously in Section 3.3.3.2 is applied to reduce the dependence height of the

sequence and improve performance. In the example, CMP support improves performance from

31

14 to 10 cycles. Overall for the �nal benchmark performance, CMP support and FP support

improve performance by 47% and 93% respectively, over the base code.

32

CHAPTER 4

EXPERIMENTAL EVALUATION

4.1 Methodology

The techniques discussed in this thesis are evaluated using emulation-driven simulation.

The benchmarks studied are 023.eqntott, 026.compress, 052.alvinn, 056.ear, and 072.sc from

the SPEC92 suite and the UNIX utilities cccp, cmp, eqn, grep, lex, qsort, tbl, wc, and yacc.

The benchmarks are compiled into the generic instruction set with varying levels of support for

predication (i.e., the baseline instruction set, the FP instruction set, and the CMP instruction

set). Register allocation and scheduling are performed, producing code which could be run on

an architecture with the corresponding instruction set. Then the code is prepared for emulation

on a HP PA-RISC processor by running a second phase of register allocation and generating

PA-RISC assembly code. The emulation of the varying levels of predicate support is done using

the bit manipulation and conditional nulli�cation capabilities of the PA-RISC instruction set

[8]. Predicates in the FP model are emulated by reserving n of the callee-saved registers and

accessing them as 32 x n 1-bit registers. The emulation of the code veri�es correct execution

and generates an instruction trace for the simulator. The simulator uses the trace information

generated by the emulator in addition to detailed modeling of the prefetch and issue unit,

the instruction and data caches, the branch target bu�er, and hardware interlocks in order to

provide accurate performance information. We call this technique emulation-driven simulation.

33

Three processor models are evaluated in the next section. The baseline processor, referred to

as Superblock , is a k-issue processor. It can issue any mix of k instructions, with the exception

that it can only issue one branch per cycle. The instruction set for this processor is a generic

load/store ISA. The instruction and data caches are either perfect or 16K direct mapped caches

with 32 byte blocks. The data cache is a blocking cache with a write through, no write allocate

policy and a miss penalty of 12 cycles. For dynamic branch prediction, the baseline processor

has a 1K entry BTB with a 2-bit counter predictor and a misprediction penalty of 2 cycles.

The baseline processor also has the option of a 10-cycle misprediction penalty, referred to

as large mp, or a two-level branch prediction scheme. This processor is assumed to have an

unlimited number of registers. It does not have any support for predicated execution, but it

does have support for speculative execution in the form of non-excepting or silent versions of all

instructions. The code compiled for this processor is obtained using Superblock ILP compilation

techniques.

The processor model with the most extensive support for predicate is referred to as the

Full Prediction (FP) model. The FP processor has, in addition to the features of the baseline

processor, the extensive architectural support for predicated execution described in Section 2.2.

The code compiled for this processor is obtained using the Hyperblock compilation techniques

discussed in Section 3.2.

The third processor model is referred to as the Conditional Move Predication (CMP) model.

The CMP processor has in addition to the features of the baseline processor predicated execution

support in the form of the cmov and cmov instructions as discussed in Section 2.3. The code

compiled for this processor is converted from the code for the FP processor using the basic

conversions and optimizations of Section 3.3.

34

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.1 E�ectiveness of FP and CMP support for an 8-issue, 1-branch processor.

Performance information is provided for these models in terms of speedup, which is calcu-

lated by dividing the cycle count for a 1-issue baseline processor by the cycle count of a k-issue

processor of the speci�ed model.

4.2 Results

4.2.1 Bene�ts of predicated execution

Figure 4.1 shows the performance results on an 8-issue, 1-branch architecture for each level

of predication support. For the results in this �gure, perfect caches, a 2-bit counter branch

predictor, and a 2-cycle branch misprediction penalty are assumed. The speedup for the CMP

model is on average1 38% higher than the speedup for the Superblock model, and the speedup

1Averages reported refer to the arithmetic mean. When average percentages are reported, the percentage is

computed for each benchmark before the arithmetic mean is taken.

35

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.2 E�ectiveness of FP and CMP support with 2-branch issue capability.

for the FP model is on average 79% higher than the speedup for the Superblock model. Clearly,

support for predicated execution has some major performance bene�ts. All of the other �gures

in this section will vary by one parameter from Figure 4.1.

Some of the bene�ts of predicated execution are discussed in Section 1.1.3. One of these

bene�ts is the ability to eliminate branches from the dynamic instruction stream. Since many

processors are issue-limited by branches (as is the processor in Figure 4.1), eliminating branches

from the dynamic instruction stream can signi�cantly increase the issue rate. Figure 4.2 demon-

strates this with performance results for an 8-issue, 2-branch architecture. CMP and FP have

speedups 2% and 34% greater than Superblock, respectively. Addition of a second branch issue

capability helped Superblock model narrow the performance gap with the predication models.

Although all of the models actually perform better with the 2-branch issue capability, the per-

36

Table 4.1 Comparison of branch statistics: number of branches (BR), mispredictions (MP),
and misprediction rate (MPR).

Benchmark Superblock Conditional Move Predicated Move Full Predication
BR MP MPR BR MP MPR BR MP MPR BR MP MPR

023.eqntott 313M 43M 13.85% 55M 6818K 12.33% 54M 7139K 13.27% 50M 6919K 13.81%

026.compress 12M 1283K 10.67% 9333K 873K 9.36% 9272K 863K 9.31% 9229K 846K 9.17%

052.alvinn 461M 1075K 0.23% 75M 1122K 1.49% 74M 1050K 1.41% 74M 1050K 1.41%

056.ear 1540M 65M 4.19% 446M 15M 3.34% 442M 15M 3.36% 443M 16M 3.64%

072.sc 22M 1193K 5.39% 11M 896K 8.29% 12M 861K 7.36% 12M 878K 7.42%

cccp 921K 65K 7.09% 538K 66K 12.27% 535K 65K 12.20% 538K 65K 12.15%

cmp 530K 4395 0.83% 27K 31 0.12% 27K 31 0.12% 27K 31 0.12%

eqn 7707K 574K 7.45% 4535K 530K 11.70% 4498K 500K 11.12% 4535K 536K 11.82%

grep 663K 9660 1.46% 171K 20K 11.73% 171K 20K 11.73% 171K 20K 11.73%

lex 14M 235K 1.65% 3091K 209K 6.76% 2996K 186K 6.21% 2994K 193K 6.46%

qsort 8781K 1357K 15.45% 6059K 617K 10.18% 6073K 614K 10.11% 6129K 609K 9.93%

tbl 610K 38K 6.31% 432K 39K 9.12% 417K 38K 9.09% 417K 38K 9.02%

wc 478K 33K 6.85% 224K 57 0.03% 223K 57 0.03% 224K 57 0.03%

yacc 12M 523K 4.47% 5811K 436K 7.50% 5896K 427K 7.24% 6065K 435K 7.18%

formance gap between the Superblock model and the predication models narrowed because the

Superblock code has many more branches. As shown in Table 4.1, the hyperblock formation

techniques have removed many branches from the CMP and FP code.

Another bene�t of predicated execution is the ability to reduce the number of branch mis-

predictions. Table 4.1 shows the number of branches, the number of mispredictions, and the

misprediction rate for each model in Figure 4.1. The number of branches and mispredictions

is signi�cantly lower for the two models with predication support than it is for the Superblock

model. The misprediction rate is usually somewhat higher for the CMP and FP models because

more dynamic branches than mispredictions are removed for these models.

Figure 4.3 shows that the e�ectiveness of predicated execution increases as the misprediction

penalty increases. The misprediction penalty in Figure 4.3 is 10 cycles while the misprediction

penalty in Figure 4.1 is only 2 cycles. For this larger misprediction penalty, the speedups for the

CMP and FP models average 51% and 92% better than the speedup for the Superblock model.

The main reason for this signi�cant widening in the performance gap between the Superblock

37

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.3 E�ectiveness of FP and CMP support with 10-cycle branch misprediction penalty.

model and the models with predication support is that the Superblock model has to do many

more branch predictions. As a result, its performance dropped much more with an increase

in the branch misprediction penalty than did the others. As processor frequencies continue to

rise, the level of pipelining tends to increase, usually with the e�ect of increasing the branch

misprediction penalty. For instance, Intel's Pentium Pro processor has a branch misprediction

penalty of 10 or more cycles. Some, but not all, of the problem of a large branch misprediction

penalty can be alleviated by using a better branch predictor. On the other hand, very high

quality branch prediction requires considerable hardware and tends to reinforce the limit of one

branch per cycle.

Figure 4.4 shows performance results for an architecture with a two-level branch predictor.

The better predictor does slightly narrow the performance gap between the Superblock model

38

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.4 E�ectiveness of FP and CMP support with better (two-level) branch predictor.

and the two predication models. The speedups for the CMP and FP models are on average

37% and 78% better, respectively, than the speedup for the Superblock model in this case.

Figure 4.5 shows the e�ect using 16k (instead of perfect) instruction and data caches. In

general, smaller caches hurt the performance of the CMP and FP models a little more than the

Superblock model. This is mainly due to the larger number of instructions, the more extensive

speculation, and shorter schedules of the code for the predication models. On average, the

CMP and FP models perform 30% and 59% better than the Superblock model does.

Figure 4.6 shows that the FP model retains a signi�cant advantage at lower issue rates.

This �gure will be discussed in more detail in the next section.

39

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.5 E�ectiveness of FP and CMP support with 16K instruction and data caches.

0

0.5

1

1.5

2

2.5

3

3.5

4

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.6 E�ectiveness of FP and CMP support with only 4-issue capability.

40

0

0.5

1

1.5

2

2.5

3

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.7 Dynamic instruction count comparison.

4.2.2 Conditional move vs. full predication

Figure 4.1 shows that the FP model has the best performance of the three and that the

CMP model has, on average, performance about halfway between that of the FP and Superblock

models. The di�erence in performance between the two models with predication support is a

result of two factors. The two factors are the increase in dynamic instruction count and the

increase in dependence height that result from the basic conversions.

Figure 3.2 p. 19 shows that the basic conversion for both predicated instructions and

predicate de�nition instructions increase the number of instructions. Figure 4.7 compares the

number of dynamic instructions executed by each model. (Note that the numbers have been

normalized so that the number of instructions executed by the baseline processor is one.) This

�gure shows a number of interesting things. All of the models execute more instructions than

41

the baseline processor. An increase in the number of dynamic instructions is usually one of

the tradeo�s for exposing ILP. The FP model executes on average 13% more instructions than

the Superblock model. The CMP model executes on average 62% more instructions than the

Superblock model. For lex and wc, the CMP model actually executes more than twice as many

instructions as the Superblock model. Such a large increase in the number of instructions

executed can saturate the issue capabilities of even an 8-issue machine. The fact that the

CMP model achieves only about half of the speedup of the FP model is partially due to larger

numbers of instructions in the CMP model. Decreasing the issue rate magni�es this e�ect.

Figure 4.6 shows that for a lower issue rate, the number of instructions in the CMP code

saturates the issue slots and signi�cantly decreases the performance for the CMP code. For

the 4-issue machine, the CMP model performs worse than the Superblock model on most of

the benchmarks. Since the CMP model performs quite a bit better on a few benchmarks, it

averages 1.8% more speedup than the Superblock model. The FP model does not have the

same problems. The performance of the FP model does decrease signi�cantly going from an

8-issue to a 4-issue architecture. However, the FP model does not have to execute nearly as

many instructions as the CMP model, and its advantage over the Superblock still averages 24%

for the 4-issue architecture. The CMP model would bene�t in this case from a less aggressive

hyperblock formation algorithm. The basic conversions start with hyperblocks which were

targeted at the FP model and which are therefore more aggressive than is desirable for the

CMP model in this case.

The second factor in the performance di�erence between the two predication models is the

increase in dependence chain lengths in the CMP code due to the basic conversions. In addition

to increasing the number of instructions, the basic conversions for both predicated instructions

42

0

2

4

6

8

10

12

14

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP FP

Figure 4.8 E�ectiveness of FP and CMP support with 16-issue capability.

and predicate de�nition instructions increase dependence heights of the paths containing the

instruction being converted. This e�ect is especially critical for predicate de�nition instructions

since they are so prevalent and e�cient in the FP code. The performance results for a machine

with a signi�cantly larger issue rate make it apparent that much of the performance di�erence

between the CMP and FP models is due to dependence height. Figure 4.8 shows the results for

a 16-issue, 1-branch processor. The performance advantage still maintained by the FP model

over the CMP model attests to the signi�cance of the dependence height increase.

43

CHAPTER 5

AN INTERMEDIATE DESIGN POINT

5.1 Motivation

As shown in Chapter 4, FP support has some signi�cant performance advantages over CMP

support. The CMP model also has another di�culty which was not addressed in Chapter 4.

In those experiments, the models were assumed to have an in�nite number of registers. The

CMP model uses integer registers to store predicates and thus will increase register pressure

signi�cantly. On the other hand, the CMP architectural extensions have the advantage of being

much easier to �t into an existing ISA. A natural question would be: With the knowledge we

now have, can we �nd a level of predication support which is easier than FP support is to �t

into an existing ISA but results in higher performance than does CMP support?

The predication support in the FP instruction set has two major components. One com-

ponent is the extensive set of complex predicate de�nition instructions. Both the number and

complexity of these instructions make them di�cult to �t into an existing instruction set. How-

ever, a signi�cant performance penalty is paid in the CMP model for not supporting these

predicate de�nition instructions. Up to �ve instructions are required to de�ne a predicate in

the CMP instruction set. In addition, the instructions corresponding to predicate de�nitions

in the CMP instruction set are more sequential than the original predicate de�nitions. The

number of predicate de�nition instructions in the fully predicated code corresponds roughly

to the number of branches eliminated by if-conversion (see Table 5.1). Therefore, the set of

44

Table 5.1 Comparison of branch statistics: number of branches (BR), mispredictions (MP),
and misprediction rate (MPR).

Benchmark Superblock Conditional Move Full Predication
BR MP MPR BR MP MPR BR MP MPR

023.eqntott 313M 43M 13.85% 55M 6818K 12.33% 50M 6919K 13.81%

026.compress 12M 1283K 10.67% 9333K 873K 9.36% 9229K 846K 9.17%

052.alvinn 461M 1075K 0.23% 75M 1122K 1.49% 74M 1050K 1.41%

056.ear 1540M 65M 4.19% 446M 15M 3.34% 443M 16M 3.64%

072.sc 22M 1193K 5.39% 11M 896K 8.29% 12M 878K 7.42%

cccp 921K 65K 7.09% 538K 66K 12.27% 538K 65K 12.15%

cmp 530K 4395 0.83% 27K 31 0.12% 27K 31 0.12%

eqn 7707K 574K 7.45% 4535K 530K 11.70% 4535K 536K 11.82%

grep 663K 9660 1.46% 171K 20K 11.73% 171K 20K 11.73%

lex 14M 235K 1.65% 3091K 209K 6.76% 2994K 193K 6.46%

qsort 8781K 1357K 15.45% 6059K 617K 10.18% 6129K 609K 9.93%

tbl 610K 38K 6.31% 432K 39K 9.12% 417K 38K 9.02%

wc 478K 33K 6.85% 224K 57 0.03% 224K 57 0.03%

yacc 12M 523K 4.47% 5811K 436K 7.50% 6065K 435K 7.18%

predicate de�nition instructions plays a very important role in the performance of the FP code.

Another component in the FP instruction set is the extra predicate operand that each instruc-

tion has. Fitting an extra operand on each instruction in an existing instruction set is a big

problem. Most instructions simply do not have enough unused bits in the instruction word

to accommodate another operand. The performance cost of not supporting an extra predicate

operand on each instruction is the increase in the number of instructions and the height of some

dependence chains resulting from the basic conversions of predicated instructions.

The full predication architecture also has a micro-architectural feature of great bene�t, the

predicate register �le. This prevents the predicates from increasing the register pressure in

the integer register �le. The predicate register �le is also a more e�cient use of space, since

each predicate register has to be only one bit wide. Mahlke et al. [15] uses 16 to 32 predicate

registers.

45

5.2 Architectural Extensions and Compiler Support

The model described in this section, called the Predicated Move Predication (PMP) model,

will be used to help clarify the components of the performance gap between the FP model and

the CMP model. The features were also chosen in an attempt to maximize the performance of

the model while minimizing the impact on existing instruction sets. Since predicate de�nitions

are so frequent in predicated code, I concluded that support of predicated de�nition instructions

is a key factor in the performance gap between the CMP and FP models. Similarly, I concluded

that keeping predicates in integer registers will cause a signi�cant increase in register pressure

that will counteract some of the speedup for the CMP model. I thought that performance

bene�ts of supporting for an extra predicate operand on each instruction were not worth the

di�culty of providing this support. Therefore, the PMP instruction set supports all of the

predicate de�nition instructions in the FP instruction set but supports only one predicated

operation, the predicated move, or pmov . It turns out that the compilation techniques presented

in Section 3.3 are useful as a basis for converting from the FP instruction set to a variety of

instruction sets with less support for predication. A subset of these compilation techniques is

used to convert FP code to PMP code.

5.3 Experimental Evaluation

Figure 5.1 shows that for an 8-issue, 1-branch processor, the PMP mode achieves most of

the speedup of the FP model. On average, the FP, PMP, and CMP models achieve respective

speedups of 79%, 68%, and 38% greater that the Superblock model. The CMP model achieves

roughly half of the speedup of the FP model, while the PMP model achieves about 85% of the

46

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.1 E�ectiveness of FP and CMP support for an 8-issue, 1-branch processor.

speedup of the FP model. Clearly, the support of predicate de�nition instructions is much more

of a factor in these experiments than the ability to predicate every instruction.

One of the bene�ts of supporting predicate de�nition instructions is that predicate de�ni-

tions can be performed with relatively few instructions. Figure 5.2 shows the relative number

of instructions executed by each model. The number of instructions executed by the CMP

model is signi�cantly more than the number executed by the other models. The number of

instructions executed by the PMP model is much more similar to the number executed by the

FP than the CMP model. Therefore, the conversion of predicate de�nition instructions into

simple logic instructions accounts for a much larger portion of the extra instructions executed

by the CMP model than the conversion of predicated instructions does. Figure 5.3 shows that,

unlike the CMP model, the PMP model still achieves most of the speedup of the FP model.

47

0

0.5

1

1.5

2

2.5

3

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.2 Dynamic instruction count comparison.

0

0.5

1

1.5

2

2.5

3

3.5

4

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.3 E�ectiveness of FP and CMP support with only 4-issue capability.

48

0

2

4

6

8

10

12

14

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.4 E�ectiveness of FP and CMP support with 16-issue capability.

This implies that the PMP model has not saturated the issue resources of the processor as the

CMP model has done, further supporting the signi�cance of the existence of predicate de�nition

instructions in decreasing the instruction count. On average, the PMP model maintains almost

70% of the advantage of the PMP model over the Superblock model.

Another bene�t of supporting predicate de�nition instructions is that they reduce the de-

pendence height of chains of predicate de�nitions. Figure 5.4 allows signi�cant insight into the

di�erence that predicate de�nition instructions make in the area of dependence height. In this

�gure the performance of the PMP model is almost identical to that of the FP model. On

the other hand, the CMP model does not perform as well. These data imply that the depen-

dence height increases that result from the basic conversions for predicated instructions are not

49

nearly as important as the dependence height increases resulting from the basic conversions of

predicate de�nition instructions.

In summary, support of the predicate de�nition instructions encompasses most of the di�er-

ences in performance between the CMP and FP models in both categories of instruction count

and dependence height. It appears, then, that providing support which allows all instructions

to be predicated does not have much of an impact on performance (as long as the underlying

architecture has good support for speculation).

Figures 5.5 - 5.8 and Table 5.1 are included for comparison with the results in Chapter 4.

The trend of the PMP model achieving most of the performance of the FP model holds up

for each con�guration. An oddity that is worthy of note is the fact that in a very few cases

the expected performance order of the four models is disturbed. This occurs sometimes when

a dynamic system e�ect is factored into similar performance results. Since the code varies

signi�cantly for each model, cache and BTB access patterns can be considerably di�erent. In

a few cases, these di�erences cause a performance ordering which is di�erent than the usual

ordering.

50

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.5 E�ectiveness of FP and CMP support with 2-branch issue capability.

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.6 E�ectiveness of FP and CMP support with 16K instruction and data caches.

51

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.7 E�ectiveness of FP and CMP support with 10-cycle misprediction penalty.

0

1

2

3

4

5

6

7

8

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

Superblock CMP PMP FP

Figure 5.8 E�ectiveness of FP and CMP support with a better (two-level) branch predictor.

52

CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER

RESEARCH

6.1 Conclusions

Predicated execution is a very useful tool for exposing and exploiting ILP. Extensive support

for predication as with the FP model provides the most performance bene�ts. Unfortunately,

such support can be costly and very di�cult to �t into existing instruction sets. Lower levels

of support for predicated execution can still be quite useful. With just a conditional move

instruction and compiler support, the CMP model was able to achieve a signi�cant performance

advantage over a model with no support for predicated execution.

New compiler techniques were introduced which allow conversion of code from an architec-

ture with extensive support for predication to various architectures with lower levels of support

from predication. The advantage of compiling for a low level of predication via an intermedi-

ate representation which has a high level of support for predication is apparent from the good

performance results achieved for the CMP model compared to previous e�orts at exploiting a

conditional move instruction.

It was shown that a signi�cant portion of the advantage of extensive support for predicated

execution comes from an extensive set of predicate de�nition instructions. Implementing pred-

icate de�nitions without a very specialized set of instructions greatly increases the instruction

count and the dependence height of the code. The fact that the PMP model achieved almost

53

the same performance results as the FP model showed that allowing every instruction to be

predicated is not that important.

6.2 Suggestions for Further Research

This section contains some suggestions for additional research in this area. First, variations

of the techniques in this thesis could be applied to a system that does not have architectural

support for speculative execution. The baseline architecture in this thesis is assumed to have

non-excepting versions of all instructions. This support allowed many instructions to be ef-

�ciently speculated. Because many instructions are speculated in the code generated by the

basic conversions in Section 3.3.2, elimination of the non-excepting versions of instructions may

signi�cantly impact the performance of this code. Since it also contains speculated instructions,

the FP code would also be a�ected by such a change.

Second, the e�ects of register pressure were not considered in this research. An in�nite

number of registers was assumed in the baseline architecture. Predicates are stored in integer

registers in the CMP model making register pressure a signi�cant issue for this model. The

increase in register pressure due to storing predicates should be measured and ways for dealing

with it should be explored. One way to alleviate the crowding of the integer register �le in the

CMP model would be to create a separate register �le for the predicate registers. However,

with this modi�cation, special instructions or some kind of special treatment would then be

needed to de�ne predicates.

Third, determining a good set of predicate de�nition instructions for a three-operand ISA is

an open area of research. The PMP support for predication presented in this thesis is appealing

because it would be easier to �t into an existing instruction set while still maintaining most

54

of the performance of the FP model. However, accommodating the set of predicate de�nition

instructions in the PMP model would be very di�cult in an existing ISA. One problem is the

sheer number of di�erent predicate de�nition instructions. Another more signi�cant problem is

the number of operands assumed for the predicate de�nition instructions. A predicate de�nition

instruction in the PMP model can have two predicate register de�nition operands, two integer

source operands, and one predicate register source operand for a total of �ve operands. Many

ISAs have three-operand instructions, and almost none have more than three. Aside from the

di�culty of modifying the hardware to handle up to �ve operands, actually �tting �ve register

operands into a typical 32-bit instruction word can be di�cult. I believe that e�ciency of the

predicate de�nition instructions in the PMP model is inherently tied to the large number of

operands which these instructions have. If the predicate de�nition instructions in the PMP

model were limited to three operands, the resulting code would probably not be much better

than the CMP code. Developing and studying the performance of a relatively e�cient set of

three-operand predicate de�nition instructions would be a signi�cant contribution to this area

of research.

Fourth, the convert-to-NOP method used in this research for squashing instructions with

false predicates may be infeasible for machines with longer pipelines or out-of-order issue. The

other choice for squashing instructions is the data selection model given in Section 2.1.

55

REFERENCES

[1] S. A. Mahlke, R. E. Hank, J. McCormick, D. I. August, and W. W. Hwu, \A comparison
of full and partial predicated execution support for ILP processors," in Proceedings of the

22th International Symposium on Computer Architecture, pp. 138{150, June 1995.

[2] J. E. Smith, \A study of branch prediction strategies," in Proceedings of the 8th Interna-

tional Symposium on Computer Architecture, pp. 135{148, May 1981.

[3] J. Lee and A. J. Smith, \Branch prediction strategies and branch target bu�er design,"
IEEE Computer, pp. 6{22, January 1984.

[4] T. Y. Yeh and Y. N. Patt, \A comparison of dynamic branch predictors that use two
levels of branch history," in Proceedings of the 20th Annual International Symposium on

Computer Architecture, pp. 257{266, May 1993.

[5] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE

Transactions on Computers, vol. C-30, pp. 478{490, July 1981.

[6] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, \The
Superblock: An e�ective technique for VLIW and superscalar compilation," The Journal

of Supercomputing, vol. 7, pp. 229{248, January 1993.

[7] M. S. Lam, \Software pipelining: An e�ective scheduling technique for VLIW machines,"
in Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design

and Implementation, pp. 318{328, June 1988.

[8] Hewlett-Packard Company, Cupertino, CA, PA-RISC 1.1 Architecture and Instruction Set

Reference Manual, 1990.

[9] G. R. Beck, D. W. Yen, and T. L. Anderson, \The Cydra 5 minisupercomputer: Architec-
ture and implementation," The Journal of Supercomputing, vol. 7, pp. 143{180, January
1993.

[10] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, \The Cydra 5 departmental super-
computer," IEEE Computer, vol. 22, pp. 12{35, January 1989.

[11] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL PlayDoh architecture speci�cation:
Version 1.0," Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto, CA, Febru-
ary 1994.

[12] D. N. Pnevmatikatos and G. S. Sohi, \Guarded execution and branch prediction in dy-
namic ILP processors," in Proceedings of the 21st International Symposium on Computer

Architecture, pp. 120{129, April 1994.

[13] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren, \Conversion of control depen-
dence to data dependence," in Proceedings of the 10th ACM Symposium on Principles of

Programming Languages, pp. 177{189, January 1983.

56

[14] J. C. Park and M. S. Schlansker, \On predicated execution," Tech. Rep. HPL-91-58,
Hewlett Packard Laboratories, Palo Alto, CA, May 1991.

[15] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ective
compiler support for predicated execution using the hyperblock," in Proceedings of the

25th International Symposium on Microarchitecture, pp. 45{54, December 1992.

[16] N. J. Warter and W. W. Hwu, \Reverse if-conversion for enhanced modulo scheduling,"
Tech. Rep. in preparation, Center for Reliable and High-Performance Computing, Univer-
sity of Illinois, Urbana, IL, November 1992.

57

