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1. INTRODUCTION

Recently, there has been a trend in uniprocessor design to increase the performance

of the microprocessor by exploiting operation-level parallelism. Various architectures, in-

cluding superscalar and VLIW machines, have been designed speci�cally for this purpose.

Both of these architectures have the capability of issuing multiple operations each cycle.

The problem is that the available operation-level parallelism within each basic block of

a program has been shown to be close to 2, hardly enough to justify these new architec-

tures [1],[2]. To increase the available operation-level parallelism, many new scheduling

techniques have been developed: trace scheduling [3], superblock scheduling [4], and per-

colation scheduling [5], to name a few. All of these global compaction techniques are

used in the compiler to schedule operations beyond basic blocks and, thus, create more

operation-level parallelism.

Since loop execution time dominates total execution time, special consideration must

be given to loops. To speed up loops, these scheduling techniques �rst unroll the loop

a number of times and then apply the compaction algorithm. The problem is that
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Figure 1.1: Simple Example of Software Pipelining

this method still imposes sequentiality between each group of k iterations, where k is

the number of times the loop has been unrolled. Thus, better performance is achieved

for larger k, but it comes at the cost of greater code expansion. Another technique

for optimizing loops, software pipelining, claims to achieve the e�ect of unlimited loop

unrolling and compaction with a fraction of the code expansion that loop unrolling would

require to achieve the same performance.

The main idea of software pipelining is to overlap successive loop iterations to increase

the available parallelism. It is analogous to hardware pipelining, where an operation is

initiated every cycle even if it takes longer than one cycle to execute. However, with

software pipelining, an iteration is started every II cycles, where II is the initiation

interval. The software pipelined loop then consists of a prelude, kernel, and postlude. The

prelude starts the �rst p iterations. After the �rst p� II cycles, a steady state is reached,

where one iteration is completed every II cycles. The postlude completes execution of

the last p iterations. A simple example is shown in Figure 1.1. For loops with large

trip counts, most of the execution time is spent executing the kernel. Thus, the goal of

software pipelining techniques is to �nd the smallest possible kernel, or equivalently, II.
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The original software pipelining idea arose from hand microcoding techniques and was

�rst used with scienti�c programs in overlapping vector computations [6]. As software

pipelining is applied to nonnumerical programs, the loops that are encountered are more

complex, containing conditional branches and recurrences. Current algorithms must

handle these complexities, as well as addressing issues such as resource constraints and

register allocation. To see how these issues can be resolved, this thesis describes the

implementation of a speci�c software pipelining algorithm, GURPR* [7], which is built

into the IMPACT C compiler [8].

The remainder of this thesis is organized into four chapters. Chapter 2 provides an

overview of several software pipelining algorithms, including the advantages and disad-

vantages of each and how each handles the fundamental issues mentioned above. In

Chapter 3, the implementation details of GURPR* are discussed, including the speci�c

features necessary for a working compiler. In addition, the limitations of this algorithm

are presented, along with modi�cations to the original algorithm which are designed to

improve its performance. Chapter 4 presents the experimental results of the original

GURPR* algorithm along with three modi�ed versions and compares them with the

results of one other method, Enhanced Modulo Scheduling [9]. Chapter 5 provides a

conclusion.
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2. RELATED WORK

The idea of software pipelining has generated many viable algorithms. Each is slightly

di�erent in the way it handles conditional branches, recurrence relations, and resource

constraints. Several of the techniques also require additional hardware support. Four

di�erent techniques, GURPR*, Modulo Scheduling, Perfect Pipelining, and Enhanced

Pipeline Scheduling, are surveyed below.1

2.1 GURPR*

The �rst software pipelining techniques were applicable to loops consisting of a single

basic block. One of these techniques, URCR (UnRolling, Compaction, and Rerolling)

came about as an enhancement of trace scheduling [10]. In short, the algorithm unrolled

the loop twice, compacted the operations, and searched for the shortest interval which

contained all operations of the loop. This became the new loop body. As more complex

1Although the methods discussed in this thesis can be used for both VLIW and superscalar processors,

VLIW terminology is used to clarify the discussion. Thus, an instruction refers to a very long instruction

word which contains multiple operations.
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loops were software pipelined, the algorithm was enhanced to handle speci�c problems.

To handle recurrence relations, the URPR (UnRolling, Pipelining, and Rerolling) algo-

rithm was presented [11]. Another version, GURPR (Global URPR), extended the algo-

rithm for conditional branches [12]. Finally, GURPR* modi�ed the conditional branch

handling capabilities of GURPR to achieve better time e�ciency [7].

The �rst step in the GURPR* algorithm is to compact the loop body. Next, the ini-

tiation interval (II) is computed as the maximum interbody dependence distance (D) [7].

The loop body is then pipelined, with successive iterations starting every II cycles. Since

the operations must be kept in the same order as the original, compacted loop, and since

the initiation interval, D, respects recurrences, dependences do not need to be considered

during the pipelining phase; they are guaranteed to be satis�ed. If a resource con
ict

is encountered during pipelining, the operation is delayed one cycle. If there is still a

con
ict, an empty cycle is inserted between the two con
icting cycles. After pipelining,

the schedule is searched to �nd the shortest interval which contains all of the operations

in the loop. This interval is the new initiation interval. Any redundant operations are

deleted so that exactly one iteration is completed in the steady state. Finally, the prelude

and postlude must be generated.

The advantages of this algorithm are that it requires no additional hardware support,

dependences do not have to be considered during pipelining, and resource constraints

are handled explicitly. Also, the time complexity of this algorithm is less than a similar

algorithm, Perfect Pipelining, since GURPR* forces a steady state to form rather than
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waiting for one to occur. The disadvantage is that potential parallelism is sacri�ced in

several ways. The scheduling of redundant operations in the new loop body prevents

an optimal steady state since resources are required for each operation even though

redundant operations will be deleted later. In addition, the unnecessary constraints of

the precompacted loop and the lack of dependence analysis during pipelining require the

algorithm to make worst-case assumptions about dependences.

2.2 Modulo Scheduling

The modulo scheduling technique originated as a scheduling technique for the poly-

cyclic architecture. Rau and Glaeser proved that modulo scheduling for loops without

conditional branches or recurrences will yield an optimal schedule [13]. The modulo

scheduling algorithm determines the minimum initiation interval from the available re-

sources and the recurrence relations and schedules all of the operations from one iter-

ation into this II by delaying them (modulo II) to satisfy the resource constraints and

dependences. To handle recurrence relations, the operations involved in the recurrence

are scheduled �rst. If multiple paths of execution are present inside the loop due to

conditional branches, the loop body is transformed into straight-line code by one of

several methods. The various modulo scheduling techniques are di�erentiated by their

approaches to conditional branches.

One such approach is hierarchical reduction, which reduces the entire conditional

construct to a single path representing the union of the resource usages of each path [14].
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The disadvantage of this method is that each path in the conditional construct is list

scheduled and cannot change during modulo scheduling.

Another method for converting conditional constructs to straight-line code is if-

conversion, which removes conditional branches by computing a condition (predicate)

for the execution of each operation. An additional hardware feature, predicated execu-

tion, is required to conditionally execute each operation, based on its predicate. The

disadvantage of this technique is that it requires the resource usage of the conditional

construct to be the sum of the resource usages of each path, rather than using the union

operator as with hierarchical reduction.

A technique that combines the best of the previous two methods is called Enhanced

Modulo Scheduling [9]. Enhanced Modulo Scheduling uses if-conversion to transform the

loop into straight-line code but then converts it back into multiple paths after software

pipelining, thus removing the need for predicated execution hardware support. Since the

technique converts the code back into multiple paths, the resource usage of a conditional

construct can be the union of the resource usages of the two paths.

2.3 Perfect Pipelining

The Perfect Pipelining Algorithm is based on the fact that a loop which is repeatedly

unwound and compacted eventually falls into a repeating pattern. The algorithm uses

the core transformations of percolation scheduling as its compaction operators, namely,

Unify, Delete, Move-operation, and Move-conditional jump [5]. The operations of loop
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body n move as far up the current schedule (of loop bodies 1 to n � 1) as possible,

limited by several factors. An operation will not move up any farther in the schedule if

the move would violate intraiteration or interiteration dependences nor will it move up if

the move would violate the resource constraints. Conditional branches are also handled

during compaction by migrating all operations of loop body n up each path in the current

schedule.

An advantage of this technique is that it does not force the steady state to contain

only one copy of each operation, thus allowing a greater possibility of achieving a time-

optimal loop. The disadvantages are that it relies on a pattern to occur; the worst case

running time of the algorithm is exponential. Finally, additional hardware support is

needed in the form of a multiway jump mechanism.

2.4 Enhanced Pipeline Scheduling

Enhanced Pipeline Scheduling (EPS) extends a general machine model such that each

instruction can be represented by a binary tree with its operations along the edges of the

tree [15],[16]. A single binary tree, termed a node, contains all operations that can be

executed at that cycle without violating dependences. A set of conditions de�nes which

path through the tree is executed. Thus, conditional execution of operations is needed as

an architectural feature, as well as multiway branching. Figure 2.1 illustrates an example

node.
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r1 <- r2 + 1

r3 <- label1(r4)

if (condition-code 1)

if (condition-code 2)
r6 <- r5 * 2

label1(r5) <- r7

goto L1

r6 <- 0

goto L2

label1(r5) <- r6

goto L3

NODE 1

Figure 2.1: A Single Instruction (Node) in the EPS Machine Model.

The algorithm �rst compacts the operations in the loop into nodes, (n1; : : : ; nm),

using percolation scheduling. Next, the software pipeline is generated by attempting to

start a new iteration every cycle. The �rst node in the software pipelined loop is n1,

which starts iteration 1 at cycle 1. The second node is created by appending the node

n1 to each branch of the node n2. This new node executes an instruction from iteration

1 (n2) and starts iteration 2 (n1), all in cycle 2. The third node is n3 with the previously

created node (n2n1) appended to each of its branches. This continues for the remaining

nodes in the original loop. However, if there are resource con
icts or data dependence

con
icts when trying to append a node np to a branch b in another node, the node np

must be delayed and inserted into the node to which branch b jumps. If a loop contains

recurrences, it needs to be unrolled so that dependences go from one iteration to the

next.

The advantage of this technique is that it produces a 
exible pipeline{it does not

compromise the length of the shortest path. If a longer path is taken, the other iterations
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which are currently executing must wait for the longer path to �nish before they can

continue.
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3. IMPLEMENTATION OF GURPR*

3.1 The GURPR* Algorithm

An overview of the algorithm was given in the last chapter, but the complete step-

by-step approach with some added comments is presented below [7]:

1. Compact the loop with a global compaction algorithm such as trace scheduling.

2. Create the parallel program 
ow graph (PPFG) from the compacted loop body.
The PPFG is essentially a 
ow graph of the basic blocks in the loop body.

3. Construct the global interbody data dependence graph (GIBDDG) and determine
the interbody distance, D.

� D is the largest interiteration dependence distance.

4. Pipeline the loop bodies while maintaining the order of execution within each loop
body, as determined during global compaction.

� II is initially set equal to D.

� Pipelining continues until the �rst operation of a new loop body starts after
the last operation of the �rst pipelined loop body.

5. Determine the shortest interval in the pipeline that contains all operations from
the loop. The length of this interval becomes the new II.

6. Delete any redundant operations within this interval, so that only one iteration will
be executed every II cycles. This interval is the steady state.
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7. \Unfold" the operations in these II cycles to create a new loop body. The length
of this new loop body is Lunfold.

8. From this result, the software pipelined loop can be created by overlapping
Lunfold

II

copies of this new loop body.

3.2 Implementation Details

3.2.1 Global compaction

The main idea behind the global compaction step is to create some initial operation-

level parallelism and to shorten the loop body so that fewer loop bodies have to be

overlapped to �nd a steady state. If fewer loop bodies are overlapped, the code expan-

sion will be reduced. Also, with all operations compacted into a shorter length loop

body, there is, theoretically, a better chance of �nding a shorter steady state during the

pipelining phase. The GURPR algorithm suggests using trace scheduling for the global

compaction [12],[3]. The GURPR* algorithm suggests a di�erent technique based on

minimizing the global interbody dependence distance [17].

In an e�ort to determine the best global compaction technique to use, several tech-

niques were applied to some sample loops. The results of percolation scheduling [18] and

superblock scheduling [4], a variation of trace scheduling, were compared to the loops

whose basic blocks had been list scheduled. The �ndings seem to preclude using trace

scheduling or any of its variations. The fundamental idea in trace scheduling is to make

the most frequently executed path through the program as e�cient as possible, at the

expense of all other paths. This method is not suitable for any �xed-II software pipelining
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(a) Original Loop (b) After Superblock Formation (c) After Scheduling

1

2 3

4

1

2 3

4

1

2

3

4

4

4

Figure 3.1: Superblock Scheduling.

technique1 because the longest path through the loop determines the shortest possible

steady state. In fact, the more aggressive techniques such as speculative execution may

result in an even worse software pipeline because they add more operations which nor-

mally would not be executed to the least-frequently executed path. Figure 3.1(a) shows a

simple loop with four basic blocks in its original form. Figure 3.1(b) shows the loop after

superblock formation, with the dotted line representing the branch out of the superblock.

Figure 3.1(c) shows how code might be moved above that branch such that the path o�

the primary superblock becomes much longer, since it executes so many operations that

normally would not be executed on that path.

1With �xed-II techniques, each iteration in the software pipeline executes II cycles, no matter which

path is taken through the loop. GURPR* and modulo scheduling are both �xed-II techniques.
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The second method, percolation scheduling, has some of the same problems. Any

operations moved from one path of a conditional construct to the head of that construct

may create a longer path through the loop. For instance, in Figure 3.1(a), if operations

are moved from basic block 2 and basic block 3 to basic block 1, more total operations

will be executed no matter which path is taken.

In nonsoftware pipelined code, these global compaction techniques are necessary to

create more operation-level parallelism for the underlying hardware. However, creating

the maximum amount of parallelism before applying software pipelining is not critical

because software pipelining itself creates the necessary operation-level parallelism. Thus,

the global compaction algorithm used in conjunction with software pipelining should use

a special set of rules to determine when to move an operation. The two most important

rules seem to be:

1. If moving an operation does not increase the length of the longest path through
the loop, the operation should be moved.

2. If moving an operation decreases the maximum interbody dependence distance, the
operation should be moved.

Since these rules could con
ict, a set of cost functions may be needed as well. Still,

after preliminary experiments, the advantage of this new global compaction algorithm

over a simple list scheduling algorithm for each basic block seems to be minimal.

One optimization that is made during global compaction is loop induction rever-

sal [19]. This moves a loop induction variable that is incremented at the end of the

loop to the beginning of the loop. As a result, all recurrences involving this variable are

transformed into a single cycle dependence.
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A restriction must also be added. When multiple paths merge back into one, the

length of each of the shorter paths, s1; : : : ; sm, must be increased to equal the length

of the longest path, l. Essentially, the unconditional branch operation in each of the

merging basic blocks is delayed until a cycle equal to or greater than the last operation

of the longest path. This guarantees that in generation of the software pipelined loop, if

an operation from a di�erent loop body needs to be inserted between any cycle sm and

cycle l, that operation can be inserted into both paths, thus preserving the semantics of

that loop body. At the same time, a merge attribute is associated with the unconditional

branches in the basic blocks which are merging. The value of the merge attribute is the

path to which that basic block should merge. This annotation is used in generating the

software pipelined loop and is explained more in Section 3.2.10.

An example loop and its compacted schedule are shown in Figures 3.2 and 3.3, as-

suming an issue rate of 2, uniform resources with the exception of one branch per cycle,

and a latency of one cycle for each operation except load, multiply, and store, which have

a latency of two cycles. The compacted schedule shows which operations would execute

at which cycle. Each basic block has been list scheduled. Operations 8 and 9 can be

scheduled together since they are on di�erent paths in the loop and only one of them (or

neither of them) will be executed each iteration. Since operation 5 merges two paths, it

is delayed until the other path is done executing.
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r2 <- label1(r1)

r1 <- r1 + 8

ble r2, 0, L2

L1:

jump L5

jump L4

L4:

L3:

L5: label1(r1) <- r3

ble r1, 80, L1

L2:

(op1)

(op2)

(op3)

(op4)

(op5)

(op6)

(op7)

(op8) (op9)

(op10)

(op11)

(op12)

(op13)

r3 <- r2 * 2

blt r1, 40, L3

r4 <- r2 + 10

r5 <- r4 * 2 r5 <- r4 + 5

r3 <- r5 + 10

Figure 3.2: A Simple Loop.
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1

2

3

4, 6, 7

8, 9, 10

5, 11

12, 13

Cycle 1:

Cycle 2:

Cycle 3:

Cycle 4:

Cycle 5:

Cycle 6:

Cycle 7:

Cycle 8:

Cycle 9:

Figure 3.3: The Compacted Schedule of the Loop.

3.2.2 The parallel program 
ow graph

The parallel program 
ow graph (PPFG) is the 
ow graph of the basic blocks in the

loop. This step of the algorithm has been modi�ed so that it generates each possible path

through the loop. This information is valuable in determining whether there is a control

path between two operations when calculating their total resource usage. For example,

since basic blocks 4 and 5 are on di�erent paths, their operations can be scheduled in

the same cycle without summing the resource usage; the total resources used will be the

union of the resource usage for each path. The PPFG for the loop in Figure 3.2 is shown

in Figure 3.4.

3.2.3 The global interbody data dependence graph

The global interbody data dependence graph is examined to �nd the maximum in-

terbody dependence distance. Each arc in the original data dependence graph (DDG)

is labeled with a (distance, latency) pair. The distance is the number of iterations the

dependence spans. The latency is the minimum number of cycles the operation needs to
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Figure 3.4: The Parallel Program Flow Graph.
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complete. Any intrabody (loop-independent) dependences will have a distance of zero and

will not be shown on the global interbody DDG. From the remaining dependence arcs, the

maximum interbody dependence distance can be calculated as D = maxi2Efd
latencyi
distancei

eg,

where E is the set of all recurrences in the loop. For the pipelining algorithm, II is set

to D. In the example, the only recurrence is the single cycle dependence where r1 is

incremented; thus, II is initially set to 1.

3.2.4 Pipelining the loop body

The pipelining phase starts out with the globally compacted loop body. The object

is to pipeline multiple copies of this loop body to create a much shorter interval of

cycles than the length of the original loop body, but still include all operations from

the loop. Since this interval will contain operations from many di�erent loop bodies, it

will be \unfolded" to produce a new loop body, from which the software pipeline can be

generated.

The pipelining algorithm overlaps loop bodies, each starting II cycles after the pre-

vious loop body, until the starting cycle of the next loop body is greater than the cycle

time of the last operation in the �rst loop body. Initially, II is set to D. If a resource con-


ict occurs for an operation in the current loop body, that operation and the remaining

operations in the current loop body are delayed by one cycle. If a resource con
ict still

occurs, an empty cycle is inserted between the two con
icting cycles.
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Without resource constraints, II = D for the entire pipelining process and dLgc

D
e loop

bodies will be overlapped, where Lgc is the length of the globally compacted loop body.

However, when a resource con
ict causes an operation to be delayed, II is increased, in

case this operation is involved in a recurrence. The reason II must be increased is that

operations which are part of a recurrence must stay the same relative distance from each

other between di�erent loop bodies. Once one is delayed, all others must be delayed.

Since dependences are not checked during pipelining, any operation could be part of a

recurrence. Thus, the worst case must be assumed, and II must increase for any operation

that is delayed. Since II either increases or stays the same for each subsequent loop body,

the number of overlapped loop bodies will be less than dLgc

D
e. Of course, as II increases,

the loop bodies which have already been pipelined with a di�erent II do not have to be

changed.

Another consequence of the lack of dependence analysis during pipelining is that all

operations that were scheduled for the same cycle in the globally compacted loop body

must also be scheduled in the same cycle in the pipelined loop body. This handles the

possibility of two operations in the same cycle being anti-dependent on each other.

Finally, to �nd the best possible steady state, the loopback branch is not inserted

into the pipeline. It will be added after a steady state has been found. With these

considerations, the pipelining routine is presented in Figure 3.5. The result of applying

this routine to the example loop is shown in Figures 3.6, 3.7, and 3.8.
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Pipeline()

f
II = D; /* the starting initiation interval */

start cycle = 1; /* the starting cycle for the first loop body */

added cycles = 0; /* the number of inserted cycles */

last cycle = latest issue time of the loop body;

while (start cycle � (last cycle + added cycles)) f
Overlap another copy of the loop beginning at start cycle

pipeline cycle = start cycle;

for (each cycle in the original, compacted loop body) f
Schedule all operations from that cycle in pipeline cycle of the pipeline

(except for the loopback branch operation)

if (All these operations cannot be scheduled in this cycle) f
pipeline cycle++;

II++;

if (All operations cannot be scheduled in this cycle either) f
Insert a new cycle between the con
icting cycles

(all operations are guaranteed to �t in an empty cycle)

added cycles++;

g
g
pipeline cycle++;

g
start cycle += II;

g
g

Figure 3.5: The Pipelining Routine.
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Figure 3.6: Pipelined Loop Bodies 1 and 2.
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Figure 3.7: Pipelined Loop Bodies 1, 2, and 3.



23

1

2

3

4, 6, 7

8, 9, 10

5, 11

12

1’

2’

3’

8’, 9’, 10’

5’, 11’

12’

1’’

2’’

3’’

4’’, 6’’, 7’’

8’’, 9’’, 10’’

5’’, 11’’

12’’

1’’’

2’’’

3’’’

4’’’, 6’’’, 7’’’

8’’’, 9’’’, 10’’’

5’’’, 11’’’

12’’’

4’, 6’, 7’

Cycle 1:

Cycle 2:

Cycle 3:

Cycle 4:

Cycle 5:

Cycle 6:

Cycle 7:

Cycle 8:

Cycle 9:

Cycle 10:

Cycle 11:

Cycle 12:

Cycle 13:

Cycle 14:

Cycle 15:

Cycle 16:

Cycle 17:

Cycle 18:

Cycle 19:

Cycle 20:

Cycle 21:

Cycle 22:

Cycle 23:

Figure 3.8: Pipelined Loop Bodies 1, 2, 3, and 4 with the Shortest Interval.
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3.2.5 Searching for a steady state

After all copies of the loop body have been pipelined, a steady state for the software

pipeline must be found. The steady state is the shortest interval of cycles that still

contains all operations from the loop. The length of the shortest interval is the new II.

Most likely, the interval will contain multiple copies of some operations. Any redundant

operations must be deleted so that one iteration will be completed every II cycles in the

steady state.

Since the loopback branch must be the last operation in the steady state, it was not

inserted into the pipeline. This allows consideration of any interval in the pipeline as a

possible steady state. For each interval that is considered, the loopback branch must be

placed in the last cycle of that interval. If placing the loopback in that cycle violates

any resource constraints or dependence relations, cycles must be added to the end of the

interval until no con
icts occur. These extra required cycles are then taken into account

when determining the shortest interval.

One potential problem not mentioned in the GURPR* algorithm is that dependences

could be violated in the new loop body. In Figure 3.8, one possibility for the shortest

interval is cycles 11 to 16. Assuming the loopback branch could �t in cycle 16, after

deleting redundant operations and forming the new loop body, operation 3 would be

executed one cycle after operation 2. However, there is a dependence latency of 2 from

operation 2 to operation 3; this dependence is violated. To satisfy the dependence, an

extra cycle would have to be added to the beginning or the end of the interval. This
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problem can only occur at the boundaries of the steady state, between two di�erent loop

bodies. All operations from the same loop body are guaranteed to be scheduled correctly.

The solution to this problem is to verify that all dependences are satis�ed for each interval

that is considered. If the dependences are not satis�ed, the number of cycles that would

have to be added to the end of the interval is taken into account when determining the

shortest interval.

The algorithm to verify the dependences analyzes all operations in the given interval

for each overlapped loop body. For each operation, the algorithm determines the depen-

dences which are \live" at the last cycle of this interval. A dependence is live if its latency

plus the cycle time of the given operation is greater than the last cycle of the interval.

For each dependence that is live, the number of violation cycles, v, is calculated:

v = dependence latency+ cycle of operation� last cycle in interval� 1

The destination operation of this dependence arc must not appear within the �rst v cycles

of the previous loop body. If it does, the number of cycles which must be added to this

interval to satisfy this dependence is calculated. The algorithm is shown in Figure 3.9.

The deletion of redundant operations is now a simple task. If n loop bodies have

been overlapped, operations are selected from the steady state from loop body n to loop

body 1. Any operation which has not been encountered yet is recorded and remains in

the schedule. If an operation has already been encountered, this new occurrence of the

operation is deleted from the schedule.
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Verify Dependences()

f
conflict cycles = 0;

for (i = each loopbody, from n to 2) f
for (j = each cycle in the interval, from start cycle to end cycle) f

for (all operations from cycle j that are in loopbody i) f
for (all dependences where

(dependence latency + j - 1 > end cycle)) f
violation cycles = dependence latency + j - end cycle - 1;

cycle = start cycle;

loop body = i - 1;

while (violation cycles > 0) f
search for destination operation of the dependence in cycle

from loop body

if (found) /* there is a conflict */

break;

cycle++;

violation cycles--;

if (cycle > end cycle) f
cycle = start cycle

loop body--;

g
g
new conflict = violation cycles / (i - loop body);

if (violation cycles mod (i - loop body) != 0)

new conflict++;

if (new conflict > conflict cycles)

conflict cycles = new conflict;

g
g

g
g
return(conflict cycles);

g

Figure 3.9: Verifying the Dependences for the Steady State.
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Figure 3.10: Determining the Steady State.

For the example, the shortest interval which contains all operations is shown in Fig-

ures 3.8 and 3.10. The steady state is shown in Figure 3.10.

3.2.6 The unfolded PPFG

A new loop body can be created by unfolding the steady state. Each interval of II

cycles in the new loop body contains the operations from a di�erent overlapped loop

body. If n is the number of overlapped copies of the loop body present in the steady

state, the new loop body has a length of (n�II) cycles. The �rst II cycles in the new loop

body contain the operations within the steady state which are from the nth overlapped
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Figure 3.11: The New Loop Body.

loop body. The next II cycles contain the operations from the (n � 1)th loop body and

so on until the last II cycles contain the operations from the �rst loop body. Figure 3.11

shows the new loop body created from the steady state in Figure 3.10(b), where n = 2

and II = 7. Cycles 1 to 7 contain the operations from loop body 2, and cycles 8 to 14

contain the operations from loop body 1.

Using this new loop body, an iteration can be started every II cycles with the guar-

antee that all dependences and resource constraints are satis�ed.

3.2.7 Modulo variable expansion

Before overlapping the new loop body to form the software pipelined loop, we must

determine if the steady state needs to be unrolled to avoid overlapping register lifetimes.

Since one loop iteration can span multiple II's, the lifetime of a register can overlap
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itself. To guarantee that a value in a register is not overwritten, the steady state must

be unrolled enough times to satisfy the longest register lifetime. Then the overlapping

registers are renamed. This optimization is called modulo variable expansion [14].

The lifetime, T, of a register is determined by the earliest time the value in that

register is de�ned (first define) and the latest time the value in that register is used

before the value in that register is rede�ned (latest use). Thus, T = (latest use �

first define + 1). The lifetime (Ti) of each register (ri) is found from the new loop

body. Then each register lifetime is calculated modulo II, qi = dTi
II
e, to determine the

minimum number of copies of ri needed to avoid register con
icts. The minimum degree

of unrolling, u, is equal to the maximum of all of the modulo lifetimes.

So that the register renaming scheme will work correctly when the 
ow of control

loops back to the beginning of the kernel, the actual number of copies of ri needed is ki,

where ki is the minimum integer, such that ki � qi and u mod ki = 0 [20].

Normally, to create the software pipelined loop n copies of the new loop body will

be overlapped, where n is the number of stages in one iteration and each stage is II

cycles long. This produces a prelude and postlude which are each (n � 1) stages long

and a kernel that is one stage long. To achieve the e�ect of unrolling the kernel, simply

overlap (u � 1) more copies of the loop body in the �nal software pipelined loop such

that (n+ u� 1) total loop bodies are overlapped.

For the registers that need to be renamed, successive copies of the loop body will

use di�erent copies of that register, given in the register renaming array. The array
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Table 3.1: Modulo Variable Expansion.

Original Modulo Renamed Register
Register Lifetime 0 1

r1 MLr1 = d14�1+1
7

e = 2 r1 r6

r2 MLr2 = d6�3+1
7

e = 1 r2 N/A

r3 MLr3 = d12�6+1
7

e = 1 r3 N/A

r4 MLr4 = d9�6+1
7

e = 1 r4 N/A

r5 MLr5 = d11�9+1
7

e = 1 r5 N/A

initially has one register speci�er for each register ri in the loop{its initial value. For

each additional copy of ri needed, a new register speci�er is appended to ri's row in the

array. When generating the loop and overlapping the new loop body, all registers (ri)

will be renamed by indexing into the register renaming array at the row corresponding

to ri and the ((loop body � 1) mod ki)th column, where loop body is the number of the

current loop body that is being overlapped, ranging from 1 to (n+u�1). The exception

to this rule is if the register is used before de�ned and loop body is greater than zero. In

that case, the register renaming array must be indexed at column ((loop body � 2) mod

ki). The calculation of the modulo lifetimes and the resulting register renaming array

are shown in Table 3.1.

At the end of the loop, if any registers are live, their values are copied to the corre-

sponding original registers so that they will be correct for the rest of the program.
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3.2.8 Reducing the length of the new loop body

For every loop body, (b1 : : : bk), that appears in the steady state, the new loop body,

B, produced from \unfolding" the steady state, contains II cycles. If the number of

loop bodies, k, in the steady state can be reduced, the length of the new loop body,

Lunfold, can be reduced. Since the new loop body, B, is used to generate the software

pipeline, less code expansion will result if Lunfold can be reduced. The register lifetimes

are also calculated from this new loop body, B. The longer Lunfold is, the longer the

register lifetimes will be, and the more the kernel will have to be unrolled. Thus, it is

very important to keep the length of the new loop body, Lunfold, as short as possible.

Figure 3.10 identi�es an optimization that has been made to reduce the length of the

new loop body. After deleting redundant operations, there are no operations from loop

body 1 or loop body 2 in the steady state. Thus, the loopback branch is inserted as an

operation of loop body 3 rather than loop body 1, and the new loop body is formed by

\unfolding" two loop bodies rather than four, thereby reducing the length of the new

loop body. In general, if no operations are used from one of the overlapped loop bodies,

those II cycles may not be necessary in the new loop body. However, before these cycles

are removed, the dependences must be veri�ed to ensure that no violations would occur

if these cycles were deleted. This optimization does not decrease II; yet, as we have seen,

it will reduce the code expansion and the number of registers needed.
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3.2.9 Modifying the loopback

During the execution of one iteration in the software pipelined loop, (n � 1) more

iterations are started. Thus, the loopback test, which is executed at the last cycle of

iteration i and normally tests whether to execute iteration (i + 1), must instead test

whether iteration (i + n) should be executed. To achieve this e�ect while keeping the

correct value for the induction variable throughout the iteration, the loopback operation

is modi�ed to test for (n � 1) fewer iterations. For this technique to work, the loop

induction variable must be incremented by a value that is constant for each iteration,

and the loop bound must be loop invariant. The new loop bound can be determined as

such:

new loop bound = old loop bound � ((n� 1) � increment value)

In the example, n = 2 and increment value = 8. Thus, the loopback operation will

be changed to: ble r2; 72; L1.

3.2.10 Regeneration of the loop

After the pipelining phase, a new II is determined as the length of the steady state.

This new II is used to generate the software pipelined loop and remains constant through-

out that process. To create the software pipelined loop, (n + u � 1) loop bodies are

overlapped, each starting II cycles after the previous one. For a single basic block loop,

the regeneration process is simple. The algorithm starts with a single basic block loop

and a set, J , of loop bodies containing only one element, j1. The element ji corresponds
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to the ith loop body. Every II cycles, another loop body, ji+1, is added to the current

set of loop bodies, while i � n + u � 1. The algorithm generates the software pipelined

loop cycle by cycle, inserting operations into cycle c of the software pipelined loop from

cycle (c� (II � (k� 1))) of loop body jk, for all k in the set of loop bodies. For example,

if cycle 10 of a software pipelined loop is being generated and II = 4, three loop bodies

will be executing. Cycle 10 will contain all operations of cycle (10 � (4 � (1 � 1))) = 10

from loop body 1, all operations of cycle (10 � (4 � (2 � 1))) = 6 from loop body 2, and

all operations of cycle (10 � (4 � (3� 1))) = 2 from loop body 3.

After ((n�1)�II) cycles, a new basic block must be created; the loopback will branch

to this basic block. The loopback operation is inserted into the software pipelined loop

from only one of the loop bodies, the uth loop body. This ensures that it will be placed

in the last cycle of the kernel, the ((n + u � 1) � II)th cycle. After the loopback is

inserted, a new basic block must be created to hold the remaining operations in the

software pipelined loop.

After ((n+ i� 1) � II) cycles, the last operation from loop body i has been inserted

into the software pipelined loop. This loop body, ji, is removed from the set J . The

algorithm continues until there are no more loop bodies in the set J . Figure 3.12 shows

the result of regeneration for a single basic block loop.

If the loop contains conditional constructs, the regeneration is more complicated. In

this case, the regeneration algorithm maintains a set of leaf node basic blocks and a path

array for each leaf. The path array for a certain leaf de�nes which operations from each
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Figure 3.12: Regeneration of a Simple Loop.

loop body, ji, are inserted into this leaf. Thus, if the value of the ith element of a leaf's

path array is k, the operations from path k of loop body i are inserted into this leaf.

Figures 3.13(a) and 3.13(b) show a loop and the three paths through the loop.

Figure 3.13(c) shows the start of the regeneration process for the loop in Figure 3.13(a).

Each node is a basic block. The path array for each node is shown inside that node. The

algorithm starts with the leaf node set containing only the root basic block with a path

array of (1; 0; 0; : : : 0). The 1 in position one indicates that in this node, path 1 is being

executed from loop body one. The zeroes indicate that no other loop body is valid. The

algorithm continues as with the single basic block loop, except that each leaf must be

checked to see which operations are inserted from which loop body. At cycle c of the

software pipelined loop, each leaf will contain di�erent operations. For example, if a
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certain node has a path array of (3; 1; 0; 0 : : : 0), cycle c of the software pipelined loop for

that node will contain the operations from cycle c, path 3 of loop body 1, and operations

from cycle (c� II), path 1 of loop body 2.

When the ith loop body is initiated, a 1 is inserted into the path array for each leaf

at the ith element to signify that path 1 is being executed. When the last operation of

the ith loop body is reached, each leaf's path array has a 0 inserted at the ith element

to signify that loop body i is no longer valid. If a conditional branch from the ith loop

body is inserted into a leaf l, two new basic blocks are created. The path array is copied

from the leaf l to each of the new basic blocks, with one change. The ith element of one

of the new basic blocks is incremented to account for another path in the loop.

Merges take place when an unconditional branch is encountered with a merge at-

tribute, which speci�es to which path to merge. For example, if basic block 5 in the

original loop has an unconditional branch to basic block 6, the value of its merge at-

tribute will be 2 since basic block 6 is on path 2. During generation of the software

pipelined loop, when this unconditional branch is encountered in loop body i, for each

leaf, l, into which this operation is inserted, the regeneration algorithm searches for any

other leaf which satis�es two conditions: 1) a 2 in the ith position of that leaf's path

array, and 2) all other positions in that leaf's path array are identical to the path array of

leaf l. In this case, the two (or more) leaves can be merged into a new basic block. The

new path array for this basic block is the path array from any of the merging leaves.
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The regeneration algorithm given above will handle conditional constructs such as

if-then-else statements. However, if arbitrary control 
ow occurs inside the loop, a more

powerful algorithm would have to be used. One possibility is to use the predication

scheme and regeneration algorithm given in [9].

Figure 3.14 shows the software pipelined loop of the example loop in Figure 3.2.

Each node is a basic block, and each row in a node is a VLIW instruction. For a

VLIW processor without interlocking, the empty operation slots are �lled with NO-OPs.

For a VLIW processor with interlocking, instructions consisting only of empty slots are

deleted. For partially full instructions, the empty operations are �lled with NO-OPs. For

a superscalar processor, all empty slots can be ignored.

3.2.11 Remainder scheduling

After generation of the software pipelined loop, extra code must be inserted to make

sure that the correct number of iterations of the loop are executed. This is necessary since

there is only one exit from the loop, at the end of the kernel. Without this restriction, each

early exit from the software pipelined loop requires a special postlude, which increases

considerably the code generation complexity and code expansion. With only one exit

from the software pipelined loop, the loop must execute ((n� 1) + k � u) times, where n

is the number of stages of II cycles in one loop body after the unfolding phase, k is an

integer greater than or equal to one, and u is the unrolling factor. Of course, if the loop

trip count is not known in advance, as with while loops, early exits must be allowed [21].
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r2 <- label1(r1)

r1 <- r1 + 8

label1(r1) <- r3

r3 <- r2 * 2 r4 <- r2 + 10

r5 <- r4 * 2 r5 <- r4 + 5

r3 <- r5 + 10

r6 <- r1 + 8
r2 <- label1(r6)

L1:

L2:

L3:

L4: L5:

L6:

L7:

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

ble r2, 0, L1

blt r1, 40, L2

jump L7
jump L6

ble r2, 0, L8

r3 <- r2 * 2

jump L11

r4 <- r2 + 10 blt r6, 40, L9

r5 <- r4 * 2 r5 <- r4 + 5 jump L10

r3 <- r5 + 10

label1(r6) <- r3

ble r6, 72, L3

ble r6, 72, L4 ble r6, 72, L5

r6 <- r1 + 8

r6 <- r1 + 8

r2 <- label1(r6)

r1 <- r6 + 8

r2 <- label1(r1)

ble r2, 0, L12

r1 <- r6 + 8 r1 <- r6 + 8

r2 <- label1(r1)

r3 <- r2 * 2

jump L15

r4 <- r2 + 10 blt r1, 40, L13

r5 <- r4 * 2 r5 <- r4 + 5 jump L14

r3 <- r5 + 10

label1(r1) <- r3

Figure 3.14: The Software Pipelined Loop after Regeneration.
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...

loop:

if (max < (n - 1) + u)

goto remainder loop;

remainder = (max - (n - 1)) mod u;

execute (max - remainder) iterations with the software pipelined loop

if (remainder == 0)

goto done;

remainder loop:

execute the remaining iterations with the nonsoftware pipelined loop

done:
...

Figure 3.15: Remainder Scheduling.

If we assume a simpler case, where the loop trip count is known, we can use a re-

mainder scheduling technique to reduce the code expansion and the code generation

complexity. With this technique, code is generated for both the original loop and the

software pipelined loop. If the trip count is less than ((n � 1) + u), only the origi-

nal, nonsoftware pipelined loop is executed. If the trip count is greater than or equal

to ((n � 1) + u), the software pipelined loop executes (trip count � remainder) itera-

tions and the original, nonsoftware pipelined loop executes remainder iterations, where

remainder is ((trip count� (n� 1)) mod u). The necessary code is seen in Figure 3.15.

Here max is the loop trip count. If max is a constant, it can be determined at compile

time whether both of the loops are actually needed.
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3.3 Improvements to GURPR*

3.3.1 Limitations of the algorithm

The major problem with the GURPR* algorithm is its handling of resource con-

straints. During the pipelining stage, as each loop body is inserted, the resource usage

of the operations currently in each cycle determines whether an operation from this new

loop body can be scheduled at that cycle. However, the resource usage for that cycle is

calculated using the worst-case assumptions: that each operation currently scheduled at

that cycle will be present in the steady state. In reality, many redundant operations oc-

cur in the interval chosen to be the steady state. Each redundant operation, which must

be deleted, frees some resource that could have been used by a di�erent operation. After

deletion of all redundant operations, the available resources in the steady state are far

from being fully utilized. By arti�cially constraining the resources, potential parallelism

is sacri�ced.

Another problem is the lack of dependence analysis during the pipelining stage. The

worst-case assumptions must be followed in this situation as well, namely, that whenever

an operation is delayed by a cycle, the initiation interval must be increased by one for

all subsequent loop bodies, in case that operation is involved in a recurrence relation.

In addition, operations compacted into one cycle by the global compaction algorithm

cannot be split up, in case any one of them is anti-dependent on any of the others. Thus,

if there are two slots available at cycle p of the pipeline, but the current cycle of the
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new loop body contains three operations, all three operations must be delayed until cycle

(p + 1). If the operations could be split up, a more compact schedule would result.

The following sections examine several new algorithms that are designed to improve

the pipelining step of the GURPR* algorithm. They are intended to compensate for

some of the de�ciencies in the original algorithm.

3.3.2 Pipelining without insertion of cycles

The original algorithm states that whenever an operation cannot be scheduled in

two consecutive cycles due to resource con
icts, an empty cycle is inserted between the

two con
icting cycles. The justi�cation for this rule is that II should be kept as small

as possible during pipelining. If II is kept small, the resulting steady state should be

shorter. However, this method tends to create many new cycles for each loop body that

is overlapped. A large percentage of these new cycles are never �lled with operations,

leaving unutilized resources.

A simple change in the algorithm was made to test how bene�cial the insertion of new

cycles is. The new algorithm does not insert any cycles. Rather, it delays the operations

until they can be scheduled. Of course, this may introduce large gaps between operations

from the same loop body.

The result of applying this new pipelining algorithm to the sample loop of Figure 3.2

is shown in Figure 3.16. Note that now only �ve cycles are required for the steady state,

rather than seven, as with the original GURPR* pipelining algorithm. Since no cycles
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(a) Pipelined Loop Bodies 1 and 2 (b) Pipelined Loop Bodies 1, 2, and 3
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Figure 3.16: Pipelining with No Insertion of Cycles.
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are inserted, the operations in the �rst loop body remain close together, but still have

enough available resources to include other operations in the interval, thus producing a

slightly shorter steady state. However, a problem can occur. If most of the resources in

a certain interval are already used, large gaps can occur in some of the loop bodies. This

problem is seen mostly at higher issue rates when several loop bodies have been pipelined

already and each interval is made up of multiple copies of identical operations. When

di�erent operations from subsequent loop bodies try to �t into one of these intervals,

all of the resources are used, so they are delayed. If this situation occurs, the resulting

steady state is usually longer.

3.3.3 Pipelining with early deletion of redundant operations

As mentioned above, the arti�cial resource constraints imposed by the GURPR*

algorithm greatly reduce the potential parallelism. A solution to this problem is to

delete an operation once it has been determined that the operation, at its current cycle,

will not be in the resulting steady state. Several modi�cations to the GURPR* algorithm

are necessary.

Since redundant operations are being deleted as the pipelining occurs, a search for

the shortest interval which contains all operations from the loop is no longer applicable.

At any one time, the pipeline will contain only one copy of each operation. Thus, an

interval is chosen into which all operations will be channeled. This interval ends at the
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last cycle of the �rst overlapped loop body, so that the starting interval contains the

entire globally compacted loop body{one instance of each operation from the loop.

Having chosen the interval, we add several rules to the pipelining process. As the

operations from a loop body are being inserted into the pipeline:

� If an identical operation occurs at an earlier cycle, delete that operation.

� If an identical operation occurs at the same cycle or a later cycle, do not insert the
current operation.

� Do not insert any operations past the last cycle of the �rst overlapped loop body.
Once that cycle is reached, we are done overlapping the current loop body.

These rules are designed to channel all operations into the shortest possible interval.

By freeing the resources of redundant operations during the pipelining process, these

resources can be used for operations of subsequent loop bodies, thus reducing the interval

which contains all of the operations. Since we are no longer searching for the shortest

interval, the loopback operation can be included in the pipelining process.

The results of applying this pipelining algorithm to the sample loop are shown in

Figure 3.17. Normally, by deleting redundant operations, resources will be available for

operations in later loop bodies so that cycles will not have to be inserted. However, in this

example, after pipelining loop bodies 1, 2, and 3, the last three cycles are completely full.

The �nal result is a longer steady state than for the previous two pipelining algorithms.

This result is unusual; on average, this pipelining algorithm performs better than the

previous two.



45

(a) Pipelined Loop Bodies 1 and 2 (b) Pipelined Loop Bodies 1, 2, and 3
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(c) Pipelined Loop Bodies 1, 2, 3, and 4 with the Steady State

Figure 3.17: Pipelining with Early Deletion of Redundant Operations.
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3.3.4 Pipelining with dependence analysis

This algorithm adds dependence analysis to the algorithm in the last section, Early

Deletion of Redundant Operations. With this change, we no longer need to adhere to

the worst-case assumptions of the GURPR* algorithm. II can now remain constant

throughout the pipelining process. With the original GURPR* algorithm, any inserted

cycles cause every operation in the next loop body to be delayed to satisfy the worst-case

dependences. Now, any delays for an operation are based on the dependences of that

operation. An operation will be delayed only if it is necessary to satisfy a cross-iteration

dependence.

Each operation is scheduled based on its dependences. Thus, the operations originally

compacted into one cycle can be split up into di�erent cycles. If an operation, o, has an

intraiteration dependence, it can be scheduled as long as the source operation, s, of the

dependence arc has been scheduled. If operation s has not been scheduled yet, operation

o must wait until operation s has been scheduled. Since we process the operations cycle

by cycle from the globally compacted loop body, the dependences and delays are already

enforced within each loop body. The only way an operation, o, would have to wait is

if it is anti-dependent on another operation, s, in the same cycle. If an operation, o,

has an interiteration dependence, it is ready to be scheduled since the source operation,

s, of the dependence arc is in a previous \iteration," or loop body, and thus must have

been scheduled already. In this case, the operation, o, is scheduled in the �rst cycle
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which satis�es both this dependence and the resource constraints. The 
exibility of this

algorithm should produce a much shorter steady state.

Another change must be made to the algorithm for cases where D is small. The

original GURPR* algorithm sets II to D, but II increases for every cycle that is inserted.

Thus, even if D = 1, II increases quickly and the number of overlapped loop bodies will

be much lower than dLgc

D
e, where Lgc is the length of the globally compacted loop body.

However, since II is constant for this new pipelining algorithm, the number of pipelined

loop bodies will actually be dLgc

D
e. If D is small, or if there are no recurrences (II = 1),

the pipeline will overlap a large number of loop bodies. As a result, unfolding the steady

state will produce a very long new loop body, which could cause exponential code growth.

To see why this is a problem, consider two cases for a compacted loop body of 40

cycles, as shown in Table 3.2. Case one sets II to one. Since II is constant throughout

the pipelining process, 40 di�erent loop bodies will be overlapped to �nd a steady state.

Assuming that the minimum steady state is found to be 10 cycles, the new loop body will

be (40 loop bodies � 10 cycles) = 400 cycles long. Generation of the software pipelined

loop uses the length of the steady state as II. Thus, a new loop body will be overlapped

every 10 cycles. If there is a conditional branch at cycle 2 which does not merge back into

one path until cycle 398, the number of control paths is doubled every II cycles, until a

merge occurs at cycle 398. For example, at cycle 2, a total of 2 control paths will exist.

At cycle (2+II) = 12, 4 control paths will exist. At cycle (12+II) = 22, 8 control paths

will exist. The maximum number of control paths will be 240, at the point where 40 loop
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Table 3.2: Two Cases of Code Growth.

II = 1 II = 10
Length of the Loop Body 40 cycles 40 cycles
Number of Overlapped Loop Bodies 40 4
Possible Steady State 10 cycles 12 cycles
Length of New Loop Body 400 cycles 48 cycles
Maximum Number of Paths 240 24

bodies have been overlapped. Obviously, the code growth produced by this method is

unmanageable. If, on the other hand, II is set to the minimum possible interval based

on resource constraints, many fewer loop bodies are overlapped. Although the resulting

steady state probably will not be as short, the code growth is now manageable. In the

example, we start out with II = 10. Now only four loop bodies must be overlapped to

�nd a steady state. If the steady state is now 12 cycles long, the new loop body will be

48 cycles long. If we assume a conditional branch at cycle 2 and a merge at cycle 46, the

maximum number of paths is only 24.

We can calculate the minimum II due to resource constraints by determining the most

heavily utilized resource along any execution path. If an execution path p uses a resource

r for cpr cycles, and there are nr copies of this resource, then the minimum II due to

resource constraints, RII, is

RII = max
p2P

(max
r2R

d
cpr

nr
e)

where P is the set of all execution paths and R is the set of all resources. Thus, for this

algorithm, II is set to max(D;RII).
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Figure 3.18: Pipelining with Dependence Analysis.

The results of applying this algorithm to the sample loop are shown in Figure 3.18.

The length of the steady state, six cycles, is better than the results from two of the three

other pipelining algorithms. On average, this algorithm is the best of the four pipelining

algorithms.

3.3.5 One step further

The only problem with the algorithm in the last section, Pipelining with Dependence

Analysis, is that all of the operations in the loop do not always fall into the shortest

possible interval. Thus, why not force the operations to fall into the minimum interval,

using dependence analysis to place them into the schedule? This change would actually

create a modulo scheduling algorithm [13]. In the next chapter, the original GURPR*

algorithm and the enhanced GURPR* algorithms presented in the previous sections will

be compared to the Enhanced Modulo Scheduling (EMS) technique [9].
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4. EXPERIMENTAL RESULTS

This chapter reports the results obtained from the GURPR* algorithm and each of

its modi�ed versions. In addition, results from the Enhanced Modulo Scheduling (EMS)

technique are presented for comparison. There are two reasons why EMS was chosen

to be compared against GURPR*. Unlike many software pipelining algorithms, neither

EMS nor GURPR* requires any extra hardware support, such as multiway branching or

conditional execution. Thus, the results from the techniques can be compared directly.

Also, the three modi�cations to GURPR* discussed in Chapter 3 gradually were evolving

into a variation of modulo scheduling. As mentioned in Section 3.3.5, one more improve-

ment to GURPR* would have created a modulo scheduling technique. For that reason,

we expect EMS to be the best of the �ve techniques.

4.1 The Compiler

The GURPR* algorithm and the three modi�ed algorithms presented in this thesis

have been built into the IMPACT C compiler [8]. The Enhanced Modulo Scheduling
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Table 4.1: Operation Latencies.

fn cycles

integer alu 1
integer mul/div *
load 2
store 1
branch 1
Float load 3
Float/Double alu 3
Float mul 3
Double mul 4
Float/Double div *

technique, to which we compare the GURPR* techniques, has also been built into this

compiler. Each of these software pipelining algorithms is applied to the appropriate loops

after performance of classical code optimizations [22] and after translation into the target

machine assembly code but before register allocation. In this implementation, we apply

software pipelining to inner loops that do not have function calls or early exits.

4.2 Machine Model

The machine model for these experiments is a VLIW processor with no interlocking.

There are uniform resource constraints with the exception that only one branch can be

issued per cycle. The target operation set is based on the Intel i860 processor with opera-

tion latencies shown in Table 4.1. The integer multiply and divide and the 
oating-point

divide are implemented using approximation algorithms [23]. For the branch operation,

we assume that the compare and branch are performed in one cycle. Thus, there are no

branch delay slots.
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Table 4.2: Characteristics of the 69 Sample Loops.

Loop Characteristics
Simple Loops (A Single Basic Block) 62.32%
Loops with Simple Conditional Constructs 36.23%
Loops with Nested Conditional Constructs 1.45%

The base processor for these experiments is a RISC processor with an in�nite register

�le and ideal cache. Each experiment is done for instruction widths (or issue rates) of 2,

4, and 8. The basis for comparison in each experiment is a basic block schedule.

4.3 Benchmarks

A set of 69 loops was collected from the Perfect and SPEC benchmarks. The charac-

teristics of these loops are shown in Table 4.2.

4.4 Results

4.4.1 Performance

For loops with large trip counts, most of the execution time is spent executing the

kernel. Thus, a good performance measure is the length of the kernel, which is II cycles

long. To �nd the speedup of each software pipelining method, we assume that the time

spent in the prelude and postlude is insigni�cant compared to the time spent in the kernel.

Thus, the speedup is given by II
Lorig

, where Lorig is the length of the original, nonsoftware

pipelined loop body after simple basic block scheduling. Figure 4.1 shows the speedup of

each of the techniques for issue 2, issue 4, and issue 8, where each point is the harmonic
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mean of the speedup of the individual loops. Figure 4.2 compares the arithmetic mean

of the resulting II from the same �ve techniques with the minimum possible II. This

minimum possible II is the same as described in Section 3.3.4. It is limited by resource

constraints, RII, and the interbody dependence distance, D. The minimum II is then

given by max(D;RII). In some of the loops, especially for issue 8, the restriction of one

branch per cycle will be the limiting factor in achieving a smaller II. Enhanced Modulo

Scheduling achieves the minimum II for nearly all of the loops. Each successive change

to GURPR* improves the performance of the algorithm, with the exception of Pipelining

without Inserted Cycles. Pipelining without Inserted Cycles improves upon the original

GURPR* algorithm for issue 2, but lags behind all other techniques for issue 4 and issue

8. Pipelining with Early Deletion of Redundant Operations improves the performance

by removing the arti�cial resource constraints and enabling more parallelism to arise.

Pipelining with Dependence Analysis improves the performance even more by removing

the worst-case assumptions of the algorithm and using dependences to schedule each

operation. Still, none of the versions of the GURPR* algorithm match the e�ectiveness

of Enhanced Modulo Scheduling.

4.4.2 Code expansion

The code expansion due to software pipelining arises for several reasons: 1) the soft-

ware pipelined loop contains more than one copy of the original loop body, and 2) when

the loop bodies are overlapped, an operation from one loop body may have to be placed
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in multiple control paths. The code expansion is calculated by dividing the number of

operations in the software pipelined loop by the number of operations in the original,

nonsoftware pipelined loop. Figure 4.3 shows the arithmetic mean of the code expansion

of each technique. These numbers do not include the operations required for remainder

scheduling, such as the extra control operations or the extra nonsoftware pipelined loop,

if necessary.

Normally, the algorithms which have the highest performance will also have the high-

est code expansion. With a shorter II, more loop bodies must be overlapped to �nd all

operations from the loop, thus producing more code expansion and more register usage,

as discussed in Section 3.2.8. However, even though the original GURPR* algorithm and

the modi�cation, Pipelining with Early Deletion of Redundant Operations, do not have

the highest performance, they do have the highest code expansion because they overlap

the highest number of loop bodies in the pipelining phase. The least code expansion

is from the GURPR* modi�cation Pipelining with Dependence Analysis. In this case,

the initiation interval is �xed at the minimum achievable II throughout the pipelining

process, and fewer iterations need to be overlapped to �nd a steady state. The reason

this technique has less code expansion than EMS is because EMS achieves a smaller II

and must overlap more loop bodies in the steady state.
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Figure 4.3: Code Expansion of GURPR* Techniques and Enhanced Modulo Scheduling.

4.4.3 The unrolling factor

The unrolling factor is the number of times the kernel must be unrolled due to over-

lapping register lifetimes. This is a measure of the relative number of registers needed.

Figures 4.4, 4.5, and 4.6 show the unrolling factor for issue 2, issue 4, and issue 8. The

numbers on the x-axis represent the upper bound of a given range (e.g., 4 refers to the

range 0-4). At higher issue rates, more of the loop is packed into a smaller number of

cycles; thus, more register lifetimes will overlap. The techniques which overlap more loop

bodies in the steady state also require a larger unrolling factor, for the reasons given in

the last section.
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Figure 4.6: The Unrolling Factor for an Issue Rate of 8.
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4.4.4 Minimum loop trip count

The minimum loop trip count is the minimum number of iterations that can be exe-

cuted by the software pipelined loop. As was mentioned in Section 3.2.11 on remainder

scheduling, if the trip count is less than this minimum, only the original, nonsoftware

pipelined loop is executed. This minimum trip count is equal to the number of stages

in the prelude and the kernel, where each stage is II cycles long. This measure reveals

the magnitude of a loop trip count, such that software pipelining will improve the per-

formance of the loop. Figures 4.7, 4.8, and 4.9 show the distributions of the minimum

loop trip counts for issue 2, issue 4, and issue 8. As the issue rate increases, II decreases,

and a single iteration spans more stages. Thus, the minimum loop trip count increases.

As in the previous two sections, the techniques which overlap more loop bodies in the

steady state also require a larger minimum loop trip count for the reason given above{a

single iteration spans more stages.

4.4.5 Software pipeline startup delay

The software pipeline startup delay is equal to the number of cycles in the prelude, and

shows how many cycles must be executed before the loop reaches the steady state. This

delay is also equal to the number of cycles required to complete the un�nished iterations

after the kernel is done executing. Figures 4.10, 4.11, and 4.12 show the pipeline startup

delays. As the issue rate increases, the number of stages in the prelude increases, but

II decreases. Thus, the pipeline startup delay does not change signi�cantly for di�erent
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Figure 4.8: The Minimum Loop Trip Count for an Issue Rate of 4.
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Figure 4.9: The Minimum Loop Trip Count for an Issue Rate of 8.
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Figure 4.10: The Software Pipeline Startup Delay for an Issue Rate of 2.
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Figure 4.11: The Software Pipeline Startup Delay for an Issue Rate of 4.
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Figure 4.12: The Software Pipeline Startup Delay for an Issue Rate of 8.
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issue rates. Among the di�erent techniques, the GURPR* modi�cation, Pipelining with

Dependence Analysis, has the shortest startup delay.

4.5 Discussion

In analyzing the results, the last two modi�cations to the original GURPR* algo-

rithm, Early Deletion of Redundant Operations and Pipelining with Dependence Analy-

sis, improve the performance of the original algorithm by removing its weaknesses. Early

Deletion of Redundant Operations removes the arti�cial resource constraints of the orig-

inal algorithm, and Pipelining with Dependence Analysis adds dependence analysis to

the technique Early Deletion of Redundant Operations. It is apparent that both remov-

ing the arti�cial resource constraints and adding dependence analysis are important to

increasing the performance of a software pipelining algorithm. Thus, the performance of

Pipelining with Dependence Analysis is closest to the performance of Enhanced Modulo

Scheduling.

Another major disadvantage of the GURPR* technique is that it overlaps many loop

bodies in the steady state, causing more code expansion, more required registers, and a

greater minimum loop trip count. The technique Pipelining with Dependence Analysis

removes this disadvantage and produces better results than any of the other techniques

in terms of code expansion and the unrolling factor. Overall, that technique, Pipelining

with Dependence Analysis, produces better results than any of the GURPR* algorithms.
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5. CONCLUSIONS

This thesis has provided the implementation details of the GURPR* software pipelin-

ing algorithm along with three major modi�cations which point out and correct the weak-

nesses of the original GURPR* algorithm. Each of these algorithms has been applied to

a suite of sample loops to obtain performance measures and other relevant statistics.

The main goal of Chapter 3 was to explain in full detail the complete implementation

of GURPR*. Each phase of the algorithm was discussed with any assumptions that were

made. That chapter also provided some insight into several issues that are not addressed

in most software pipelining algorithms but are necessary for their implementation. Some

of the issues included: how to globally compact the operations in the loop using a new

algorithm speci�cally for software pipelining, how to handle overlapping register lifetimes

using modulo variable expansion, and how to minimize the code generation complexity

by using remainder scheduling.

Chapter 4 presented the results of the GURPR* algorithm, the three modi�ed versions

of GURPR*, and Enhanced Modulo Scheduling. These results indicate that the original
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GURPR* algorithm can be improved by removing its arti�cial resource constraints and

its worst-case assumptions about dependences. The �rst modi�cation to GURPR*, No

Insertion of Cycles, performs worse, on average, than the original GURPR* algorithm.

This result justi�es the insertion of cycles in the pipelining routine to keep identical

operations in di�erent iterations as close as possible. The second modi�cation, Early

Deletion of Redundant Operations, performs better than the original GURPR* algorithm

by removing the arti�cial resource constraints. This result indicates that the bene�ts of

searching for the shortest interval containing all operations from the loop are outweighed

by allowing the maximum amount of parallelism to arise. The third modi�cation to

GURPR*, Pipelining with Dependence Analysis, removes both the arti�cial resource

constraints and the worst-case assumptions about dependences. As expected, it comes

closest to matching the performance of Enhanced Modulo Scheduling. The results also

show other measures of interest when deciding whether to implement a software pipelining

algorithm. The amount of code expansion, the unrolling factor (related to register usage),

the minimum loop trip count, and the pipeline startup delay are all important issues.

More work needs to be done to analyze the performance of various software pipelining

algorithms. This thesis has provided a starting point in understanding both the issues

surrounding software pipelining and the details necessary for its implementation.
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