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1. INTRODUCTION

Computer performance can be improved in many ways. Improvements in fabrication,

layout, and low-level logic design often lead to faster computers. However, high-level

design can also make great improvements. One way a design can improve the performance

of a computer is to exploit parallelism in program instructions. Some research tries to

�nd course-grained parallelism in programs by concentrating on loop-level parallelism or

task-level parallelism. This thesis will concentrate on parallelism at the instruction level.

Recent research has shown that many programs exhibit a good deal of parallelism at the

instruction level [1].

In this thesis we present three microprocessor models designed to exploit instruction

level parallelism. One is compiler based and the other two are hardware based. Chapter

2 gives an overview of of the optimized, trace based compiler. Chapter 3 gives a detailed

description of the code scheduling algorithm. Chapter 4 presents the the three hardware

models under consideration and some variations of those models. Chapter 5 describes the

tool used to evaluate the hardware models through trace-driven event-based simulation.

Chapter 6 presents the results of the study of these architectures.
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2. OVERVIEW OF IMPACT

The IMPACT architectural framework [2] provides major investigative tools needed to

carry out a study of di�erent multiple instruction architectures. IMPACT is a complete

compiler that consists of classical optimizations [3]. In addition to these optimizations,

pro�le-based optimizations are also incorporated [4]. IMPACT provides complete support

for pro�le-based decisions.

In addition to optimized scalar code generation, IMPACT also provides code schedul-

ing tools to schedule code for very long instruction word (VLIW) and superscalar archi-

tectures. Since this feature is important to evaluating multiple instruction issue archi-

tectures, it will be discussed in detail in Chapter 3.

In addition to compiler support, IMPACT provides support for trace generation.

Traces can be consumed by the simulator as they are generated. This will be discussed

in Chapter 5.

Traditionally, compilers have used basic blocks as their unit of code optimization [3].

Since basic blocks are often small, �nding parallel instructions to execute is di�cult.

IMPACT uses its own larger construct, which is termed the superblock. Superblocks

have only one entry point, but may have multiple exit points from conditional branches.
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2. ld i r2 (r3+0)

3. add r4 r2,-1

4. st i (r3+0) r4

5. blt r2,1 cb47

6. and r5 r10,255

7. ld i r6 (r3+4)

8. add u r7 r6,1

9. st i (r3+4) r7

10. st c (r6+0) r5

11. ld i r8 (r9+0)

1. beq r1,36 cb39
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Next Superblock

Superblock 47

Superblock 39

Other Superblock
Other Superblock

Figure 2.1: Example of a Superblock

The �nal exit point is always a fall-through path or an unconditional branch. Pro�le

information is used to form superblocks such that the early exit points are more likely to

fall through to the next instruction rather than branch to another superblock.

Figure 2.1 shows an example superblock. It consists of three basic blocks put one

after another with the only early exit points coming from conditional branches. Su-

perblocks allow a larger selection of code to be scheduled. Scheduling of superblocks will

be discussed in the next chapter.
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3. CODE SCHEDULING

Instruction scheduling is important for multiple instruction execution processors. It is

necessary for VLIW machines and improves performance of superscalar machines. This

chapter explains the code scheduling tool used to compile code for superscalar and VLIW

machines.

To maximize utilization of the function units of a processor, instructions must be

moved around so that they can be issued at the proper time. For instance, on a processor

with a separate 
oating-point unit and integer unit, it is undesirable for the instruction

stream to have long runs of only 
oating-point instructions. During these types of runs,

the integer unit will be idle. In this case, it is much better to have integer instruc-

tions mixed in with 
oating-point instructions. The function of the code scheduler is to

rearrange instructions to best suit the architecture.

Most scheduling algorithms use a dependence graph to help schedule instructions [5].

For the scheduler, each instruction is a node in the dependence graph. The arcs in the

graph are dependences between instructions. A dependence between two instructions

means that the �rst instruction must be executed before the second one to insure cor-

rectness of the program. Similarly, no dependence between two instructions means that
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they can be executed in any order relative to one another. There are four kinds of depen-

dences in the graph. Given two instructions i and j from an instruction sequence where

i occurs before j, a description of these dependences follows:

1. If j uses the result of i, j is said to be 
ow dependent upon i. Sometimes these are

called true dependences.

2. If the destination of j is the same as the destination of i, j is said to be output

dependent upon i.

3. If i uses the result of j, j is said to be anti-dependent upon i. This type of de-

pendence is the inverse of 
ow dependence in that the order of the instructions is

reversed.

4. If i is a control instruction, j is said to be control dependent upon i.

With the exception of control dependences, all dependences can be either memory de-

pendences or register dependences. Therefore, the scheduler has to distinguish between

seven types of dependences. Conceptually, the graph is a directed acyclic graph (DAG).

However, it is convenient to have arcs going in both directions.

Figure 3.1 shows a DAG for the example code of the superblock that is shown in

Figure 2.1. For clarity, the redundant dependences have been removed. As shown in

this graph, control dependences cause the graph to be mostly serial. Because node �ve

is a branch, nodes one through four cannot be executed after it, and nodes six through

eleven cannot be executed before it. In order to bene�t from code motion, the de�nition

of control dependence has to be relaxed. Chang et al. have proposed two models that

e�ectively relax code motion requirements [2]. The two models are described below.
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1. beq r1,36 cb39

2. ld i r2 (r3+0)

3. add r4 r2,-1

4. st i (r3+0) r4

5. blt r2,1 cb47

6. and r5 r10,255

7. ld i r6 (r3+4)

8. add u r7 r6,1

9. st i (r3+4) r7

10. st c (r6+0) r5

11. ld i r8 (r9+0)

Original Code

Memory Flow Dependence

Register Flow Dependence

Control Dependence

Figure 3.1: DAG of Instructions

Given two instructions i and j where i is a branch instruction, de�ne live out(i) as

the set of variables that could be de�ned before they are used if i is taken [3]. To move

code across a branch two restrictions are put in place:

1. The destination register of j must not be in live out(i).

2. If the branch i precedes j, j must not cause an exception that could terminate

program execution.

Restricted code motion requires that both restrictions are enforced. General code motion

only requires that the �rst restriction is enforced. Special nontrapping support is required

for this model. To support these two models, the scheduler removes control dependences

from the dependence graph.
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Figure 3.2: Levelized DAG Using Restricted Code Motion

Once the dependence graph has been derived, list scheduling is applied. The �rst

step in list scheduling is to take the DAG and levelized it. Each instruction is assigned a

level which indicates when it can be executed relative to the other instructions. Due to

some special hardware support, such as squashing branches, there may be dependences

among instructions on the same level. Figures 3.2 and 3.3 show the levelized graphs

for restricted code motion and general code motion. Note that special hardware for

branches and memory operations is implied by these graphs. An instruction that comes

after a branch can be executed at the same time as the branch. If the branch is taken, the

instruction will be squashed. Memory instructions can be issued simultaneously which

assumes support for forwarding the result of a store to a load that was issued at the same

cycle.
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Figure 3.3: Levelized DAG Using General Code Motion

Once a levelized graph is obtained, weights are assigned to each of the nodes in the

graph. These weights determine when the instructions are executed relative to the other

instructions in a level. Five heuristic measures are used for determining the weights of a

given node. They are described in order of importance as follows:

Frequency - How many times this instruction is executed. It is based on pro�le infor-

mation.

Slackness - The square of the quantity maximum level minus how late an instruction

can be issued. For example, node six in Figure 3.2 has slackness of one because

it could be executed at level six. Lower priority implies later issue which shortens

register lifetime.

Liveness - Counts the number of source registers and subtracts the number of destination

registers. This gives higher priority to registers that use variables and lower priority

to those that de�ne them.
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Table 3.1: Heuristic Weights of Nodes for Restricted Code Motion

Instruction Slackness Liveness Uncovering Weight

Multiplier! 1,000 1,000 100

1. beq r1,36!cb39 62 2 10 39,000

2. ld i r2 (r3+0) 62 1 9 37,900

3. add r4 r2,-1 42 1 8 17,800

4. st i (r3+0) r4 32 3 7 9,700

5. blt r2,1!cb47 32 2 6 8,600

6. and r5 r10,255 0 1 2 1,200

7. ld i r6 (r3+4) 32 1 4 7,400

8. add u r7!r6,1 12 1 3 2,300

9. st i (r3+4) r7 0 3 2 3,200

10. st c (r6+0) r5 0 3 1 3,100

11. ld i r8 (r9+0) 0 1 0 1,000

Uncovering - Counts the number of dependents of a node. For example, in Figure 3.2

nodes two through ten all depend on node one, giving node one an uncovering value

of ten.

Original Order - If the previous measures do not distinguish between two nodes then

the original order is used, which prevents ties.

Table 3.1 gives the values of the nodes in the restricted code motion DAG shown in

Figure 3.2. Table 3.2 gives the values of the nodes in the general code motion DAG shown

in Figure 3.3. Because no code pro�ling is done on the example code, only slackness,

liveness, and uncovering are shown. Each measure has a constant multiplier associated

with it that insures that the important measures are counted more.

Once the weights are calculated, the code can be scheduled. From each level the code

is placed into instructions according to the weight of the node. Note that in Figure 3.2,

node six could be scheduled with nodes three, four, �ve, or seven. However, it will not

be scheduled. The levels are scheduled in order. This is one of the limitations of our
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Table 3.2: Heuristic Weights of Nodes for General Code Motion

Instruction Slackness Liveness Uncovering Weight

Multiplier! 1,000 1,000 100

1. beq r1,36!cb39 12 2 1 3,100

2. ld i r2 (r3+0) 32 1 7 7,700

3. add r4 r2,-1 12 1 1 2,100

4. st i (r3+0) r4 0 3 0 3,000

5. blt r2,1!cb47 0 2 0 2,000

6. and r5 r10,255 12 1 2 2,200

7. ld i r6 (r3+4) 32 1 4 7,400

8. add u r7!r6,1 12 1 3 2,300

9. st i (r3+4) r7 0 3 2 3,200

10. st c (r6+0) r5 0 3 1 3,100

11. ld i r8 (r9+0) 0 1 0 1,000

heuristics. Figure 3.4 shows the code schedule for a dual issue machine. Note that the

original eleven instructions can be run in eight cycles, which is 1.4 instructions per cycle.

Figure 3.5 shows that general code motion does much better. Eleven instructions are

executed in 6 cycles, which is 1.8 instructions per cycle and the best that can be obtained.

Both forms of scheduling helped improve the scalar code. The DAG in Figure 3.1 would

have a cycle count of nine.

Code scheduling is necessary to help improve performance of machines. Without

code scheduling, the amount of instruction parallelism is greatly reduced and potentially

useable hardware is unuseable. The next chapter discusses the hardware models.
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(r3+0)ld i r22. cb39beq r1,361.

r10,255and r56.

r2,-1add r43.

r4st i (r3+0)4.cb47blt r2,15.

(r3+4)ld i r67.

r6,1add u r78.

r7st i (r3+4)9.r5st c (r6+0)10.

(r9+0)ld i r811.
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Figure 3.4: Schedule for Restricted Code Motion

(r3+4)ld i r67.

cb47blt r2,15.

r5st c (r6+0)10.

(r3+0)ld i r22.

r4st i (r3+0)4.

r7st i (r3+4)9.

(r9+0)ld i r811.

r10,255and r56. cb39beq r1,361.

r2,-1add r43. r6,1add u r78.

Cycle

1

2

3

4

5

6

Instruction 2 Instruction 1

Figure 3.5: Schedule for General Code Motion
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4. HARDWARE MODELS

In this thesis, we study three hardware models of execution. We study one VLIW

model and two superscalar models. The VLIW model is a minimal hardware approach

whereas the superscalar models require that the hardware do most of the work. Di�erent

instruction issue rates and register renaming are studied.

4.1 The VLIW Hardware Model

The VLIW hardware model is based upon the the IMPACT architectural model devel-

oped by Chang et al. [2]. Since the compiler does most of the work, we assume minimal,

yet aggressive, hardware. There is support for out-of-order completion of instructions in

the scoreboarded register �le, but there is no support for out-of-order issue of instructions.

All of the function units have results forwarding and are symmetric.

Figure 4.1 shows the basic structure of the single issue pipeline. Instructions are

fetched from memory and latched in the �rst stage. The decode stage is responsible for

fetching operands from either memory or the function units and latching them. To limit

the number of branch delay slots to one, branching is also done in the decode stage. The
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Instruction and Operand Latch

Results Latch

Write Back

Registers

Functional Units

Fetch

Decode

Execute
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Figure 4.1: Basic Structure of the VLIW Pipeline (Single Issue)

execute stage consists of the function units which will be discussed later. The results

from the function units are latched at the store stage.

The register �le for the VLIWmodel is scoreboarded. Figure 4.2 shows a scoreboarded

register �le. In addition to the data that all registers contain, there is a valid bit indicated

by V in the �gure. The bit is set when an instruction uses the register for its destination.

If this bit is set, the register can be used for a source in the instruction. If it is not set,

then the processor stalls instruction issue until the result is ready.

The possibility also exists that the source of an instruction has not been written to

the register �le, but is available at the same time that another instruction requires it.

Result forwarding allows the currently decoded instruction to use a result that was just

generated. Figure 4.3 has an example of this. Instruction one is being processed in the

ALU, and instruction two uses the results of instruction one. Without result forwarding,
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Figure 4.2: Scoreboarded Register File

instruction two would have to wait until instruction one had written the result in the

register. This e�ectively adds a one-cycle delay between instructions one and two. With

the addition of the compare circuits and the muxes, the results from instruction one can

be forwarded to instruction two in the same cycle. This allows many instructions to be

a single cycle instead of two cycles.

The di�erence between a VLIW and the processor we have described above is that a

VLIW can issue multiple instructions at once. Since the compiler automatically makes

sure that individual instructions are packed into large instructions, the VLIW machine

is basically many single issue pipelines with the features described above. However,

there are a few key di�erences. One is that the register �le must be able to supply all

of the source operands that the multiple issue needs and it must be able to write as

many results as the machine can produce per clock cycle. Since branches are common in

integer codes (often called control intensive because of their large number of branches), it

should be possible to issue multiple branches in the same instruction. It is impossible to

execute multiple taken branches. Therefore, a mechanism for ordering the branches must

be provided. Result forwarding must also accommodate multiple results being retired

simultaneously.
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Figure 4.4 has an example of a four-issue VLIW machine. Each decoder requires a

port to the register �le indicated by the thick line going between the Decode, Fetch,

and Branch boxes. To accommodate multiple branches, a taken branch squashes the

instructions in the same word that would be executed sequentially after it. For example,

if I
2
is a taken branch then I

3
and I

4
are squashed. The squashing line is indicated by

the thin line with the arrow pointing left. Multiple result forwarding is not shown in the

�gure, but is discussed next.

If multiple function units execute concurrently, many results for many destinations

may be generated at the same time. This requires that each source look at all of the

results and make sure they do not include the value that the source requires. Figure 4.5

shows an example of multiple functional units. The machine generates four results at

once, and the destination of each one is compared with each source of the next instruction.
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The �gure shows only one source. None or one of the destination registers can match the

source. If no destination registers match, then the source value is selected. If the source

value is selected and the valid bit is not set, the pipeline stalls and waits for the results

to become available. If one of them matches, then it is selected. For clarity, a dashed

line shows which value the control line on the mux selects.

The hardware to implement a VLIW processor is relatively simple. It is basically

repeating the hardware of a single issue processor. Some of the features have to be

expanded, but that is possible. However, a VLIW processor requires compilation for

each di�erent issue rate. Code compiled for a dual issue will not run on a four-issue

and vice-versa. Recompilation is often undesirable. The next section describes a simple

superscalar processor which eliminates the need to compile long instructions.

4.2 Superscalar In-order Hardware Model

The superscalar in-order model is very similar to the VLIW model except that de-

pendencies between instructions must be detected by the hardware. The single issue

pipeline of the in-order model and the VLIW single issue are identical. The register �le

and results forwarding are identical as are the execute and store stages. Only the decode

logic for the multiple instruction issue is a little more complex.

In the VLIW model the instructions fetched from memory are guaranteed to be

independent. In the in-order superscalar model, the instructions are fetched and then

the analysis is done to see which instructions can proceed. Independent instructions are

allowed to proceed while the ones that cannot proceed are refetched on the next cycle

along with additional instructions.

Figure 4.6 shows the modi�cation to the hardware necessary to make the VLIW

processor of Figure 4.4 into a superscalar processor. This hardware makes sure that
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Figure 4.6: Extra Hardware in the In-order Superscalar Processor

no instruction depends on any previous instruction in the bu�er. In addition to the

scoreboard provided in the register �le, the decode stage in this mode also has to take

into account resource constraints that the VLIW hardware does not. (The compiler

insures that these do no exist in the VLIW model.) For example, if three 
oating-point

instructions are fetched, but only two units exist, fetching must be halted until at least

one of the instructions can be issued into the 
oating-point pipelines. Resource interlock

hardware and more complex fetching hardware free the compiler from having to resolve

these con
icts.

4.3 Superscalar Out-of-order Hardware Model

The most aggressive hardware presented is the superscalar out-of-order execution

model. Often, the words \superscalar processor" are used to refer to this processor model.

In this model, instructions are fetched and are allowed to issue as long as their operands

are available and there is a unit available to execute them. This requires the hardware

to keep track of this information dynamically. In e�ect, the dynamic instruction stream
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is scheduled by the processor. The advantage of this approach is that it maximizes the

number of functional units that are busy.

As one might expect, the hardware support for this model of computation is more

complex than for the in-order models. The hardware must keep track of the in-order

execution pattern of the program while trying to keep the function units busy. There are

many models and implementations of out-of-order issue of instructions. As early as 1967,

IBM was using out-of-order issue for the 
oating-point pipeline in the 360-91 [6, 7]. Keller

provides abstract models for out-of-order execution [8]. Hwu demonstrates the feasibility

of out-of-order design of the complete HPSm single-chip micro-architecture [9]. The

model used in this thesis most closely resembles the work of Johnson [10] who uses a

reorder bu�er [11].

In each cycle, the number of instructions fetched equals the issue rate. Unlike the

previous hardware models, these instruction do not have to be independent. On the next

cycle, these instructions are assigned tags and placed in the issue window. The issue

window bu�ers instructions until they can issue. In the following cycle, instructions in

the window that can execute are issued to the function units. For an instruction to issue,

a function unit must be available, and the instruction's sources must be available. The

results from the function units are forwarded to issue logic, and results are written into

the register �le and the reorder bu�er. The reorder bu�er is responsible for preserving

correctness of the results (in terms of the sequential code) and allowing for exceptions.

Figure 4.7 shows the block diagram for a four-issue out-of-order issue processor.

The instruction window is shown in Figure 4.8. When an instruction is placed into

this window, the �elds are �lled. The decode logic �gures out the type of function unit

the instruction will run on and places that in the function unit �eld. The reorder bu�er

(explained below) assigns the destination tag. If the source value is available, the valid
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bit is set, and the value is moved into the valid �eld. The tag does not have to be

assigned. If the source is not available, then the reorder bu�er assigns the tag for that

source, and the valid bit is not set.

At each cycle, the issue window checks which instructions are ready to �re by ensuring

that both source valid bits are set, and then assigns them to function units. If too many

instructions need the same function units, then the later instructions are not �red. The

distance from the head of the bu�er is used to determine which instructions �re �rst.

The shorter the distance, the earlier the instruction �res.

At the end of each instruction, tags of results are sent to the issue window. These

tags are compared to all of the sources that have valid bits that are not set. If the tags

match, the value is placed in the source value �eld. This is similar to the write-back

stage in the sequential pipeline. Since this e�ectively adds an extra stage to the pipeline,

result forwarding is used in this model as well. This works by giving the issue logic the

tags of results that will be available at the end of the cycle. The instructions with these

tags are now valid and can be �red on the next cycle. When they �re, the forwarding

hardware places the results in the source �eld.

Much of the function of the issue window depends upon the reorder bu�er. Figure 4.9

shows the structure of the reorder bu�er, which is a circular queue with a head and a

tail pointer. When instructions are decoded, they are each assigned a tag based upon

the tail pointer. If four instructions are issued, they would get destination tags, �ve,

six, seven, and eight and the tail pointer would be moved to tag eight. The destination

register number and program counter are saved. When the destination tags return from

the function units, the valid bit is set and the exception bit is set appropriately. If the

head entry is valid and no exception has occurred, then its result is sent to the register

�le, and the head pointer is moved one position closer to the tail pointer. If an exception
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Figure 4.9: Reorder Bu�er

has occurred, then the results in the reorder bu�er are 
ushed and the exception routine

is called with the return point as the program counter �eld of the instruction.

To make sure that memory is consistent, all stores are held in their pipeline until all

of the preceding instructions are known to be free of exceptions. E�ectively, stores are

held in the reorder bu�er until they reach the head, at which time, they are actually

sent to memory. Loads are not constrained this way since they do not modify the state.

However, loads must check the reorder bu�er to see if the address that they are loading

has been stored recently.

4.4 Register Renaming

Keller's abstract model of processors de�nes register renaming [8]. Register renaming

eliminates anti-dependences and output dependences. The out-of-order model has reg-

ister renaming already in the form of tags. The in-order superscalar and VLIW models

could also use tags which point to a new register. Each destination referring to the orig-

inal register would get the value associated with the new tagged register. This model

would allow multiple instructions with output dependences or anti-dependences to be
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issued in the same cycle. However, this would complicate the relatively simple hardware

of the two in-order models.

4.5 Branch Prediction

Branches occur frequently in computer programs. They occur more frequently (in

terms of cycles) when more instructions can be issued in a single cycle. Unconditional

branches do not pose a problem because the fetching of the next instruction can start

from the destination of the unconditional branch with no problem. Conditional branches

are a problem because the hardware has to wait until the direction the branch takes is

known in order to discern which instruction to fetch.

To minimize this problem, the IMPACT model has two types of conditional branches:

normal and forward semantic. When a normal conditional branch is fetched, the next

instruction fetched is the one which follows the branch in the code. When a forward

semantic branch is fetched, the next instruction is fetched from the destination of the

branch. The compiler decides which type of branch should be used. Our out-of-order

hardware model allows as many outstanding conditional branches as can �t in the reorder

bu�er.

Other methods which can be used for branch prediction include branch target bu�ers [12].

These bu�ers use past information of branch behavior to predict future branch behav-

ior. Hwu et al. show that software methods can perform better than the hardware

method [13].
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5. SIMULATOR

To evaluate the di�erent machine models, a discrete event-driven simulator was con-

structed. The simulator consumes an instruction trace. To save the large amounts of

storage space needed to store instruction traces, the program under investigation is in-

strumented to provide the address trace as it runs. The current instruction is passed

to the simulator through a normal subroutine call. Conceptually, this is equivalent to

the original program sending a message to the simulator. Realistically, the simulator is

only another group of subroutines and functions. Figure 5.1 shows this system. This

system requires that the simulator routines be self-contained. None of the variables or

Instrumented
Program

Simulator

Results

Instruction

Stream

Figure 5.1: Instrumented Program Interfacing with Simulator
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struct lx_Record {

int pe_id; /* process id */

int fn_id; /* function id */

int cb_id; /* control block id */

int in_id; /* instruction id */

int op_id; /* operation id */

int opcode; /* opcode */

int src1; /* source 1 register */

int src2; /* source 2 register */

int src3; /* source 3 register */

int dest; /* destination register */

int value; /* cc / memory address */

int begin_addr; /* starting address of operation */

int end_addr; /* end address of operation */

} ;

Figure 5.2: Instrumented Program Instruction Structure

the subroutines can interfere with original program execution. In addition, none of the

usual command line options are available to the simulator since the original program

already uses them.

Each instruction has certain �elds associated with it. The structure that the instru-

mented program sends to the simulator is shown in Figure 5.2. The simulator does not

use all of these �elds. The structure that the simulator uses is shown in Figure 5.3.

The simulator is a versatile tool that can be easily con�gured for di�erent machines.

The simulator can be recon�gured at run time through a �le named PARFILE. The

syntax for an entry in the PARFILE is \option VALUE" on its own line. Each option

has default value. The list of options follows:
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struct qu_struct{

int issue_time; /* Time the instruction will fire. */

int comp_time; /* Time the instruction will finish. */

int src1; /* Source 1 register. */

int src2; /* Source 2 register. */

int src3; /* Source 3 register. */

int dest; /* Destination register. */

int type; /* Execution unit type. */

int address; /* cc / memory address */

int delay; /* Delay of the instruction */

};

Figure 5.3: Internal Structure Used in the Simulator

issue rate - The maximum number of instructions from memory that are fetched and

decoded each cycle. Fewer instructions might actually be fetched due to dependen-

cies between instructions. This variable is not used in VLIW mode since the long

instructions are de�ned by the compiler.

model - Either VLIW or SUPERSCALAR. VLIW mode uses the compiler-generated

information to issue instructions. SUPERSCALAR mode does run time analysis

of the instructions and does not use the compiler-generated information.

register renaming - Either YES or NO. YES implies that the machine has register

renaming between stages of the pipeline.

rename within window - Either YES or NO. YES implies that instructions fetched

into the issue bu�er are renamed as well as between stages of the pipeline. Output

dependencies do not stall the fetch on a superscalar machine. NO implies that

output dependencies do stall the fetch.
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dynamic tagging - Either YES or NO. This parameter is used when the variable hard-

ware schedule is TOMASULO (see below). YES means always fetch as many as

is allowed by the issue rate variable even if there are dependencies between the

instructions. The instructions will be automatically tagged. If this is NO, then

only fetch until a dependence is found between an instruction in the issue bu�er

and the one fetched or until the issue bu�er is full.

hardware schedule - Either SCOREBOARD or TOMASULO. SCOREBOARD im-

plies in-order issue but out-of-order completion of instructions. TOMASULO im-

plies out-of-order issue and completion.

extra delay - Any positive number. Some features require that an extra cycle be

inserted for each instruction. This can be true of reservation stations [14].

max qu - This is the maximum number of instructions that can be waiting to �re at

one time.

resource contraints - If this variable is YES, then user-de�ned resource constraints

are enforced. Otherwise, as many instructions as possible are sent from the issue

bu�er to the execution units.

num br units - The maximum number of branches that can be �red at one time.

max qu is not a�ected by this.

num alu units - The maximum number of ALU instructions that can be �red at one

time.

num fp units - The maximum number of 
oating-point instructions that can be �red

at one time.
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num mem units - The maximum number of memory operations that can be �red at

one time and includes both loads and stores.

num dest - The maximum number of instructions that can write to the register �le at

one cycle. E�ectively, this is the number of write ports to the register �le.

Certain logical constraints are placed on the possible combinations of parameters in

the simulator. If parameter hardware schedule is set to TOMASULO, then regis-

ter renaming is automatically turned on. Likewise, rename within window set to

YES also sets register renaming to YES. The parameter dynamic tagging automat-

ically sets rename within window to YES and hardware schedule to TOMASULO.

The discrete-event simulator is trace driven. The event queue consists of instructions

waiting to be completed. Since the number of instructions in the queue is of moderate size,

the queueing strategy used is an indexed linear list [15]. Figure 5.4 shows the structure

of the queue. The actual implementation usesa two-dimensional array of instructions

that wraps around in the form of a timing wheel. Each level of the queue represents the

time at which an instruction �nishes. Each level has a counter associated with it that

tells how many instructions are at that level. When the clock is greater than or equal
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to the �nish time of a level, that level is deleted. The clock is advanced in the unit time

approach [15]. However, certain special cases cause the clock to be more than one cycle.

The simulator has a basic structure which consists of fetching instructions, decoding,

and executing. This structure mirrors the structure of a hardware pipeline. Figure 5.5

shows the structure of the simulator. The trace is sent to the fetch routine which places

instructions in the issue bu�er. The decode routine takes instructions from the issue

bu�er and places them in the instruction queue. The execute phase updates the clock and

removes instructions from the issue bu�er. The algorithms at each stage vary depending

on the kind of machine simulated.

The speci�c simulations of VLIW, superscalar inorder issue, and superscalar out-of-

order issue are discussed below.

5.1 Simulation of a VLIW Architecture

The VLIW simulator treats many instructions as a single long instruction. The latest

issue time found among the individual instructions that make up the long instruction

determines when all of them issue. The compiler determines which instructions can be

issued together. The simulator is broken down into three sections: fetch, decode, execute.

These three sections are discussed below.

5.1.1 Fetch stage

The fetch stage for a VLIW simulation is quite simple. Even though only one simple

instruction is generated by the trace generator, each instruction carries a tag which

indicates its long instruction.. In the fetch routine, the program continues to receive

instructions and places them into the instruction bu�er until the tag changes. The
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simple instruction that causes the tag to change is saved and added to the instruction

bu�er in the next clock cycle. Then the decode routine is called.

5.1.2 Decode stage

The decode stage �nds dependencies between each instruction in the instruction bu�er

and instructions in the the instruction queue. The earliest time that each instruction in

the instruction bu�er can �re is found. The maximum of these times is taken to be the

time that all of the instructions in the long instruction can �re. Data dependencies and

resource constraints are detected in this stage.

5.1.3 Execute stage

The execute stage advances the clock and removes the instructions from the queue

that have been completed on that clock cycle. Normally, the clock is advanced by one.

However, under the following three conditions the clock can be advanced by more than

one:

1. If either a resource constraint or hardware schedule equals SCOREBOARD

(which it usually does when model equals VLIW) and a data dependence is de-

tected, the issue stalls and no instructions can be issued until the current instruction

has �red. Therefore, the clock is �xed to be the issue time of the current instruction.

2. If the actual size of the queue becomes greater than the variablemax qu, the clock

is changed to be the completion time of the �rst instruction in the queue that is

less than max qu away from the end of the queue.

3. If a mispredicted branch is encountered, the clock is changed to be the completion

time of that branch.
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The model for superscalar in-order issue is similar to that for the VLIW model and

is described in the next section.

5.2 Simulation of a Superscalar In-order Issue Architecture

In the case of superscalar architectures, the information provided by the compiler

is not taken into account. All the dependencies among instructions must be done by

the hardware. Our simulator has to support these features. As before, the simulation

is executed in the fetch, decode, and execute stages. The in-order model implies that

hardware schedule equals SCOREBOARD.

5.2.1 Fetch stage

The fetch stage for a superscalar machine is more complex than the VLIW fetch.

Since everything is done by hardware, dependence analysis is done among instructions

in the fetch bu�er. In the fetch routines, the program gathers instructions until either

the issue rate is reached or a dependence is found between the current instruction and

one already in the issue window. If the latter is true, the current instruction is saved for

issue on the next cycle.

5.2.2 Decode stage

The decode stage is a little di�erent from that of the VLIW simulation. The earliest

time that each instruction in the instruction bu�er can �re is found. However, the

maximum issue time to �re all of the instructions is no longer used. We use a local

maximum. Since issue is in-order, each instruction in the fetch bu�er must �re at least

at the same time as the previous instruction in the bu�er. For example, in Figure 5.6,

instructions two and four could be issued before instructions one and three, respectively.
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However, since this is an in-order model, two and four can only be issued at the same

time as instructions three and one. As is true in the VLIW model, data dependencies

and resource constraints are detected in this stage.

5.2.3 Execute stage

The execute advances the clock and removes the instructions from the queue that have

been completed on that clock cycle. Normally, the clock is advanced by one. However,

under the following three conditions the clock can be advanced by more than one:

1. If a data dependence or a resource constraint is detected, the issue stalls and no

instructions can be issued until the current instruction has �red. Therefore, the

clock is �xed to be the issue time of the current instruction.

2. If the actual size of the queue becomes greater than the variablemax qu, the clock

is �xed to the completion time of the �rst instructions in the queue that are less

than max qu away from the end of the queue.

3. If a mispredicted branch is encountered, the clock is �xed to be the completion

time of that branch.

The superscalar out-of-order issue is one step beyond the in-order issue. It is discussed

in the next section.
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5.3 Simulation of a Superscalar Out-of-Order Issue Architecture

This mode is turned on by having hardware schedule equal to TOMASULO and

model equal to SUPERSCALAR. As before, the hardware simulation has to support

resource constraints and data dependencies among instructions. The fetch, decode, and

execute stages are described below.

5.3.1 Fetch stage

As was the case for the in-order issue, the program gathers instructions until either the

issue rate is reached or a dependence is found. The variable rename within window

determines whether or not dependence information is used. If rename within window

equals NO and a dependence is found between the current instruction and one already

in the issue bu�er, the current instruction is saved for issue on the next cycle. If re-

name within window equals YES, then only the number fetched is considered.

5.3.2 Decode stage

As in the VLIW and in-order models, the earliest time that each instruction in the

instruction bu�er can �re is found. However, we no longer use the maximum to �re the

instructions. For example, in Figure 5.6, the possible issue times are these times the

instructions actually �re. As is true in the other models, data dependencies and resource

constraints are detected in this stage.

5.3.3 Execute stage

The execute advances the clock and removes the instructions from the queue that have

been completed on that clock cycle. Normally, the clock is advanced by one. However,

under the following three conditions the clock can be advanced by more than one:
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1. If the actual size of the queue becomes greater than the variablemax qu, the clock

is changed to be the completion time of the �rst instruction in the queue that is

less than max qu away from the end of the queue.

2. If a mispredicted branch is encountered, the clock is �xed to be the completion

time of that branch.

Note that the processor no longer stalls for data dependencies or resource constraints.

The instructions with these problems do issue later, but other instructions continue to

be issued.

There is one other model that can be used, but is not presented in this thesis. That

model is the out-of-order VLIW model. It is possible to set up the simulator to run this.

It would behave like a VLIW in the fetch stage and an out-of-order machine in the decode

and branch stages. In addition, register renaming can be turned on for the scoreboarded

models of execution.
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6. RESULTS

The simulator is used in evaluating the various hardware models. The eleven bench-

marks used in evaluation are shown in Table 6.1. They are all common Unix programs

which execute from 3,000,000 to 100 million instructions. Di�erent issue rates are studied

along with the general and restricted code motion. For example, a four-issue VLIW ma-

chine will have four integer units, four branch units, and four memory units. A two-issue

VLIW would only have two of each type of unit. In order to do a fair comparison of the

machine models, the in-order superscalar model and the out-of-order superscalar models

have the same number as the VLIW model. In addition to this, di�erent scheduling is

applied to each di�erent issue rate.

The two code motion models are studied because many of the past processors have

assumed the restricted model. The general model requires special instructions that do not

trap on exceptions [2]. The out-of-order model can execute instructions before branches

because it has hardware to squash instructions for a mispredicted branch.

Figure 6.1 shows the results of running the eleven Unix benchmarks. The harmonic

means of the speedups of each benchmark are given. For both the VLIW model and

in-order superscalar models, general code motion greatly out performs restricted code
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Table 6.1: Benchmarks

Benchmark Description

cccp GNU C preprocessor

cmp Unix �le comparison utility

compress Unix �le compression utility

eqn Equation typesetter for TROFF

eqntott Boolean minimizaation

espresso Logic minimization

grep String search in �les

lex Lexical analysis program generator

tbl Table typesetter for TROFF

wc Word counting

yacc Parsing program generator

Issue Rate

(a) Restricted

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
Speedup

VLIW

SS inorder

SS out-of-order

2

�

2�
2
� 2

�

2

�

Issue Rate

(a) General

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
Speedup

VLIW

SS inorder

SS out-of-order

2

�

2�

2�

2

� 2

�

Figure 6.1: Comparison of Di�erent Hardware Models
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motion. This con�rms the results of Chang et al. [2]. The out-of-order model outperforms

both models, but performs equally well for both code motion models. Out-of-order is the

fastest because it has the advantage of being able to schedule the dynamic instruction

stream. Both the VLIW and in-order models have to rely on static scheduling which,

for example, restricts itself to superblocks. The out-of-order model can schedule across

superblock boundaries.

6.1 Resource Constraints

The hardware model presented in the previous section assumed that the number of

function units was equal to the issue rate. To make sure that this is not a bottleneck,

we ran the same programs without constraints on function units. Figure 6.2 shows the

results. Unlimited function units do not increase performance signi�cantly. In fact, other
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Figure 6.3: E�ects of Smaller Window Sizes

researchers have indicated that the same speedups can be achieved with fewer function

units [10, 16].

6.2 E�ects of Window Size

Heretofore the instruction window size of 32 has been assumed for the out-of-order

execution model. Since this size of window requires considerable associative search,

smaller-sized windows were run for the out-of-order model. Figure 6.3 shows that the

window size of 16 performs almost as well as the 32. The window size of 8 does degrade

performance somewhat at an issue rate of 8. The VLIW and in-order models are shown

in the �gure to give points of reference.

A small window is adequate for the processor because the benchmarks are mostly in-

teger programs. Since instructions are short, they don't spend much time in the window.
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Figure 6.4: Performance Bene�t from Code Scheduling

6.3 E�ects of Code Scheduling

Code scheduling is not required for the in-order and out-of-order superscalar models to

execute programs correctly, but it o�ers some improvement in performance. Figure 6.4

shows the speedup of scheduled code over nonscheduled, highly optimized code. The

speedups are calculated relative to the same machine without scheduling. For each model,

results are given for code scheduled for the single issue rate and for code scheduled for

the proper issue rate. For the in-order model, performance improves signi�cantly. This

is expected, because the in-order model has many more hardware constraints which limit

scheduling. For the out-of-order model, the performance increase is about 4% for the

general code, but the restricted model o�ers little increase. In both code motion cases

in the out-of-order model, the single issue schedule works almost as well as the schedule

for the current issue, because the scheduler has a tendency to schedule according to
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Figure 6.5: E�ects of Window Size on Code Scheduling Bene�t

heuristic weight rather than issue rate. Most instructions end up in the same place in the

sequential instruction stream regardless of the issue rate at which they are scheduled.

The more aggressive the hardware is, the less scheduling helps. In the previous case,

the window size was 32 with plenty of function units. If the window size is decreased,

the bene�ts of scheduling are increased. Figure 6.5 shows the bene�ts of scheduling for

di�erent window sizes. The speedups are calculated relative to the out-of-order model

with the same window size. For higher issue rates and smaller window sizes, the bene�t

of code scheduling is around 7%. This is two times the previous bene�t.

6.4 E�ects of Register Renaming

Out-of-order execution has many bene�ts over in-order execution. One of them is

that registers are renamed eliminating output dependencies among instructions. It is
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Figure 6.6: E�ect of Register Renaming on Performance

also possible to rename registers in the in-order and VLIW models. Figure 6.6 shows the

e�ect of register renaming relative to the other nonrenamed models and the out-of-order

model. Basically, renaming does not increase performance signi�cantly. (It does slightly

for some of the benchmarks.) The reason that performance is not increased is that output

dependencies rarely occur because the optimizing compiler usually removes them.
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7. CONCLUSIONS

Exploitation of instruction-level parallelism can provide signi�cant speedup of serial-

based code. All three hardware models that utilize this parallelism provide good speedup

over scalar code. The most complex out-of-order model performs the best, because it

dynamically schedules the instructions of the programs. However, as more restrictions

are placed on that model, the software support has a larger impact on performance and

the hardware support becomes less useful. Since the out-of-order model presented here

is highly aggressive, the simpler inorder models might perform the best when implemen-

tation costs are considered.

The out-of-order model requires signi�cantly more hardware as the system scales up,

whereas the inorder models seem to scale fairly well. One of the problems with the

inorder models is that even the most aggressive compiler technology does not have the

detailed information of the dynamic trace and thus is limited to scheduling superblocks

and making many assumptions about branch directions. The static speedup is also

limited by the size of the superblock. As compilers �nd more parallelism in programs,

the hardware techniques are bound to fall behind due to the overhead cost of dynamically
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scheduling code. Once this happens, the compiler-based approaches should be able to

perform better than the out-of-order hardware approaches with the same hardware cost.
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APPENDIX A. CODE SCHEDULER

This appendix gives the details of generating code for the trace generator.

A.1 Scheduler

The scheduler is necessary for the trace generator to output useable code. It is

possible to run superscalar code without using the code scheduler, but registers will not

be allocated. In order to have register allocation, the scheduler must be run. The register

allocation also puts in spill code and callee-caller saves.

Figure A.1 shows the basic 
owchart of the scheduler. The passes can be turned

on and o� by setting options in the L OPTION �le. This requires recompilation of the

scheduler.

Postpass Code

Scheduling

Register

Allocation

Prepass Code

Scheduling

Figure A.1: Flow Chart of the Scheduler
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(opcode jsr 1 (cnt) void 1)

(opcode beq_fs 14 (cnt) void 1)

(opcode mov 57 (arith) i 1)

(opcode add 60 (arith) i 1)

(opcode ld_uc 122 (load) i 2)

(opcode st_c 129 (store) void 1)

Figure A.2: Example Opcode File

A.1.1 Important directories

The main source directory: /home/polaris1/impcc/src/Limpact2/

The option �les are in: /home/polaris1/impcc/option/

The default opcode �le is: L OPCODE 2

The default speci�cation �le is: L IMPACT 1

The default option �le is: L OPTION r

The executable for Limpact2 are in: /home/polaris1/impcc/bin/

Short examples of L OPCODE, L IMPACT, and L OPTION are shown in Figures A.2,

A.3, and A.4, respectively. The opcode �le contains the names and types of instructions.

The speci�cation �le contains groups of instructions and those instructions which can be

issued together. The option �le is a list of options for the scheduler.

A.1.2 Syntax of the command

Limpact2 �i <input �le> �o <output �le> �opcode <opcode �le>

�spec <machine spec �le> �option <compile options �le>

There are shell scripts in the /home/polaris1/impcc/option directory which run the

scheduler on a group of �les. The scheduler produces a �le called IMPACT 001 which
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/*-----------------------------------------------------------*/

(define_register_type sp1 (INT) 64 0 1)

(define_register_type fp1 (INT FLOAT) 64 0 1)

(define_register_type fp2 (DOUBLE) 64 0 2)

/*-----------------------------------------------------------*/

(define_predicate_operand_type PRED_1 0 1)

(define_int_operand_type INT_1 -1000000 +1000000)

(define_int_operand_type INT_2 0 64)

(define_float_operand_type FLOAT_1 -1.0e50 +1.e50)

(define_double_operand_type DOUBLE_1 -1.0e100 +1.e100)

(define_label_operand_type LABEL_1 offset)

(define_label_operand_type LABEL_2 direct)

(define_register_operand_type SR1 sp1)

(define_register_operand_type FR1 fp1)

(define_register_operand_type FR2 fp2)

/*-----------------------------------------------------------*/

(define_operand_mode DEST (SR1 FR1 FR2))

(define_operand_mode SRC (

SR1 FR1 FR2 PRED_1 INT_1 INT_2 FLOAT_1 DOUBLE_1 LABEL_1 LABEL_2

))

/*-----------------------------------------------------------*/

(define_operation_type jsr (jsr () (SRC)))

(define_operation_type beq_fs (beq_fs () (SRC SRC SRC)))

(define_operation_type mov (mov (DEST) (SRC)))

(define_operation_type add (add (DEST) (SRC SRC)))

(define_operation_type ld_uc (ld_uc (DEST) (SRC SRC)))

(define_operation_type st_c (st_c () (SRC SRC SRC)))

/*-----------------------------------------------------------*/

(define_operation_group ALU (

mov add ld_uc st_c

))

(define_operation_group BR (

jsr beq_fs

))

/*-----------------------------------------------------------*/

(define_instruction_type T1 (ALU ALU))

(define_instruction_type T2 (BR ALU))

(define_instruction_type T3 (ALU BR))

/*-----------------------------------------------------------*/

Figure A.3: Example Speci�cation File
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/* SUPERBLOCK CREATION OPTIONS. */

(L_min_trace_copy_weight 50)

(L_max_trace_size 100)

(L_min_fs_weight 100)

(L_min_jump_opti_weight 100)

/* SUPERBLOCK SCHEDULNG OPTIONS. */

(L_prepass_scheduling on)

(L_register_allocation on)

(L_postpass_scheduling on)

(L_optimize_for_parallel_issue on)

(L_num_predicate_registers 64)

(L_num_predicate_spill_registers 1)

(L_num_integer_registers 64)

(L_num_integer_spill_registers 4)

(L_num_float_registers 32)

(L_num_float_spill_registers 4)

(L_num_double_registers 32)

(L_num_double_spill_registers 4)

(L_restricted_code_percolation on)

(L_general_code_percolation off)

(L_sentinel_code_percolation off)

(L_boosted_code_percolation off)

(L_allow_speculative_stores off)

(L_boosting_limit 32)

(L_unsafe_mem_dep_resolving 1)

(L_resolve_all_memory_dep off)

(L_resolve_all_anti_output_dep off)

(L_resolve_all_control_dep off)

Figure A.4: Example Option File
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contains information on the run time of the program if the pro�le-based execution model

is used. It is not useful for trace-based simulation.

A.2 Instrumenting for Trace Generation

Once the code has been scheduled, it has to be instrumented to generate a trace. The

syntax of the command follows:

Lmips�trace �trace 2 �opti 1 �target dec�mips

<input �le> �o <output �le>

A shell script for running this on multiple �les is given in Figure A.5. Lmips�trace

produces �les called fnid �le and fnid num, which contain the function names and the

number of the functions, respectively.

A.3 Merging the Information

Lmerge is used to merge the information of the entire program and create information

�les used in trace generation. All of the �les created by Limpact2 are piped through

Lmerge. The usual syntax of Lmerge follows:

cat <�les> j Lmerge �target dec�mips �trace 2

This command creates IMPACT FN INDEX, IMPACT LCODE BREAK, and

IMPACT LCODE INFO. These �les contain information that is used to generate traces.

A.4 Linking

After all of the previous steps have been completed, the code is then compiled using

the C compiler to produce object �les. (Compile using cc �c.) Then all of the �les are
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#!/bin/sh

# Generate machine code for impact

#

# Usage: gen_Limpact "directory" < "list"

if [ $# -gt 0 ]; then

PREFIX="$1";

fi;

echo "> prefixing all files with [${PREFIX:=.}/]";

\rm fnid_file fnid_num

while read FILE;

do

echo "> processing $PREFIX/$FILE"

FILEOUT=`echo $FILE | awk -F. '{print $1}'`

Lmips-trace -trace 2 -opti 1 -target dec-mips -i ${PREFIX}/${FILE} \

-o ${PREFIX}/${FILEOUT}.s

sync

ERROR=$?;

if [ $ERROR -ne 0 ]; then

echo "> Limpact failed on input file: ${FILE}";

echo "> error_code= ${ERROR}";

exit 0200;

fi;

done;

Figure A.5: Shell Script to Run Lmips-trace
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linked together to create and execute. This includes the simulator object �les and three

�les which contain routines for generating traces. These �les are merge.o, trace.o, and

general.o. They are currently available in �jgholm/impcc/sssim1/.
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