(© Copyright by John Wollenburg Sias, 1999



CONDITION AWARENESS SUPPORT
FOR PREDICATE ANALYSIS AND OPTIMIZATION

BY

JOHN WOLLENBURG SIAS

B.S., University of Illinois at Urbana-Champaign, 1997

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1999

Urbana, Illinois



iii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Professor Wen-mei Hwu, for his guidance and
support. This work would not have been possible without the many years of develop-
ment effort invested in the IMPACT Research Compiler by many previous generations of
students. I would also like to acknowledge the advice and assistance of those IMPACT
members with whom I collaborated on related projects. Special thanks are due to David
August, without whose many hours of advice, guidance and assistance this work would
not have been possible. To my family, thanks for support and understanding during
this endeavor. I was financially supported by fellowship grants from the National De-
fense Science and Engineering Graduate Fellowship Program and International Business

Machines’ Centre for Advanced Studies during the development of this work.



v

TABLE OF CONTENTS

Page

. INTRODUCTION .. e e 1
1.1 Organization of this Work ....... .. .. .. . . 2

. PREDICATED COMPILATION AND THE IMPACT ENVIRONMENT ...... 4
2.1 Predication . ... .. ... ... . 6
2.2 Predicated Regions .. ... ... ... 8

. PREDICATE ANALYSIS AND OPTIMIZATION FRAMEWORK ........... 10
3.1 Predicate Analysis System . ....... ... .. 11
.1l S COPE -« e 11

3.1.2  Set representation ............ ... 15

3.1.3 Interface and representational mechanism....................... 17

3.2 Binary Decision Diagrams .......... ... i 19
3.3 Program Decision Logic Optimization ........... .. .. .. .. .. .. .. .. 21

. INTEGER CONDITION ANALYSIS . ... e 27
4.1 Interface ... ... 27
4.2 Architectural Background. . ... ... .. .. .. L 28
4.3 Comparison Families .. ....... ... .. . 29

. REPRESENTATION MECHANISMS ... ... i 33
5.1 Register-Register Comparison Families .............. .. ... ... .. ... 33
5.2 Integer Register-Constant Comparison Families .. ...................... 36
5.2.1 Disjoint outcome identification ............ ... ... .. ... .. ... ... 37

5.2.2 Finite domain representation ............ ... ... .. .. . . L i, 39

5.2.3 Incorporation into PAS and PDLO ........... ... ... ... ... ... 42

524 Codeexample ........ ... . . 46



6. EXPERIMENTAL RESULTS. .. ... 51
6.1 Characteristics of Benchmark Condition Families ...................... 52
6.2 Effectiveness of Program Decision Logic Optimization .................. 53

7. CONCLUSIONS ... e e e e e 56
APPENDIX A. PREDICATION IN THE IMPACT ARCHITECTURE. ....... 59

REFERENCES .. 61



vi

LIST OF TABLES

Table Page

5.1: True set intervals for comparisons to constants. ........................... 38
A.1: IMPACT EPIC predicate deposit types. ........ ... i, 60



vil

LIST OF FIGURES

Figure Page
3.1: Example of predicate analysis scope limitation. ........................... 13
3.2: Condition differentiation in the control flow graph. ............... ... . .. 16
3.3: Predicate true set operations. .......... ... .. ... 17
3.4: Combined analysis BDD. . ... ... . . 18
3.5: A portion of the inner loop of the UNIX utility we. The control flow graph

(a), and the corresponding hyperblock formed after complete if-conversion
(D) et 22

3.6: The wec hyperblock after speculation but before logic minimization (a) and

its corresponding logic diagram (b). The hyperblock after logic minimiza-

tion (c) and its corresponding logic diagram (d). .......................... 23
4.1: Missed opportunity due to interspersed computation....................... 31
5.1: BDD representing a register-register comparison family..................... 35
5.2: Algorithm generating disjoint outcomes in a register-constant family. ........ 39
5.3: Algorithm representing disjoint outcomes in a variable-size finite domain. .... 40
5.4: Algorithm mapping expressed to disjoint outcomes in a finite domain. ....... 41
5.5: Summary, formation of a family of register-constant conditions C;. .......... 42
5.6: Integer register-constant comparison family code example. ................. 47
5.7: Integer register-constant comparison family number line. . .................. 48
5.8: Integer register-constant comparison family BDD ITE expressions. .......... 48
5.9: Predicate optimization with condition information......................... 49
5.10: Re-expressed optimized predicate definition network. ...................... 50
6.1: Dynamic prevalence of family-member conditions, by family size............. 53
6.2: Speedup due to program decision logic optimization [1]..................... 55



1. INTRODUCTION

A key trend in the achievement of higher performance in computer microarchitectures
has been the ability to execute an increasing number of instructions per clock cycle.
In just the past decade, processors have developed from, in 1990, supporting a single
instruction per cycle [2], [3] to, today, executing four or more instructions per cycle [4].
Processors of the near future are expected to be capable of executing eight or more
instructions per cycle. Wide-issue processors such as these demand that a large amount of
instruction-level parallelism (ILP) be exposed to capitalize on their offered performance.
Furthermore, due largely to the frequency of control operations in code, fetching enough
instructions to feed such high-performance cores has become a significant challenge [5].

One approach to meeting these demands for ILP and efficient instruction fetch has
been dubbed explicitly parallel instruction computing (EPIC), and is the basis for the
[A-64 architecture released recently by Intel and Hewlett-Packard [6]. EPIC architectures
permit the compiler to express instruction-level parallelism directly to the processor using

features such as compiler-controlled branch prediction, compiler-controlled speculation,



and predication. These new compiler responsibilities require significant changes in com-
piler architecture.

Perhaps the most significant of these, and also the most challenging to the compiler
writer, is predication. Effective compilation for predication requires the compiler to an-
alyze and manipulate control, even across code from logically independent paths. In
order to produce high-quality predicated code, it is not sufficient to simply introduce
predication as a final compilation step; the compiler must perform significant manipula-
tion in the predicated domain [7]. Effectively applying predication and optimizing in a
predicated environment demands accurate analysis of the logic underlying program con-
trol structures [8], [9]. Furthermore, given an advanced understanding of this “program

9

decision logic,” a compiler can dramatically transform program control to expose higher
levels of ILP and to increase performance [1]. The framework presented in this thesis
is an analysis system designed to provide the predicate analysis infrastructure with in-

formation about the logical relationships between the condition tests on which program

control is based.

1.1 Organization of this Work

The following chapter describes predication in general and the IMPACT Predica-
tion Compilation Framework, of which the work described is a component. Chapter 3

describes the two key IMPACT components currently served by the condition analysis



framework, the Predicate Analysis System (PAS) and the Program Decision Logic Opti-
mizer (PDLO), as well as the binary decision diagram (BDD) representation shared by
these modules and used as the basis of the condition relationship database. Chapters 4
and 5 present in detail the techniques implemented as part of this thesis and provide
some brief examples of their application in the IMPACT environment. Chapter 6 reports
experimental findings related to the techniques described, including an apprisement of
the prevalence of conditions to which the method can be applied, and a brief discus-
sion of the techniques’ contribution to PDLO. This work is followed by an appendix
which should provide necessary background for readers unfamiliar with IMPACT [10] or

Hewlett-Packard HP-PD [11] predication.



2. PREDICATED COMPILATION AND THE IMPACT ENVIRONMENT

The IMPACT research compiler is a portable, multitarget compiler framework which
exists as a test bed for instruction-level parallelism (ILP) compilation. The IMPACT
compiler has three significant representational stages, which share two Intermediate Rep-
resentations (IR). The first stage and highest-level IR is Pcode, which is generated from
C source files using a preprocessor. Flattening, program profiling, profile-driven inlin-
ing [12], loop-level transformations [13], [14], and interprocedural pointer analysis [15],
among other transformations, are performed in Pcode.

Low-level portable optimization is performed in Lcode, the second stage and low-level
IR. Lcode is a general register-transfer language similar in many respects to a typical
load/store processor’s instruction set. Lcode is designed to be sufficiently powerful to
be a convenient architecture within which to optimize code, but also sufficiently simple
and general enough to describe and convert well to a wide range of target architec-
tures. All machine independent classical optimizations are performed on Lcode. These

optimizations include constant propagation, forward copy propagation, backward copy



propagation, common subexpression elimination, redundant load elimination, redundant
store elimination, strength reduction, constant folding, constant combining, operation
folding, operation cancellation, code reordering, dead code removal, jump optimization,
unreachable code elimination, loop invariant code removal, loop global variable migra-
tion, loop induction variable strength reduction, loop induction variable elimination, and
loop induction variable reassociation [16].

Also during the Lcode phase, code is restructured into superblocks [17], which are
not predicated, or into hyperblocks [18], which use predication. Superblock-specific [16]
and hyperblock-specific [19] transformations are performed to exploit the code optimiza-
tion and scheduling benefits of these two ILP compilation models. Lcode-based classical
optimizations are also performed iteratively after the formation of superblocks and hyper-
blocks, since more opportunities for their application are exposed by these two techniques.
This entails, in the case of predicated code, that the classical optimizations must work
in predicated regions of code. This is accomplished with the support of the predicate
analysis system, of which the condition analysis mechanism here is a part. Additionally,
at this point, the program decision logic may be extracted, optimized and re-expressed
using the Program Decision Logic Optimizer (PDLO) [1]. This mechanism is critically
dependent on the condition analysis package described in this work.

Finally, architecture-specific translation, machine dependent optimization, register
allocation, and scheduling are performed in the Mcode phase. Mcode is Lcode which

has been specially modified to match the instruction and operand characteristics of the



target architecture rather than those of the IMPACT Lcode specification. Additionally, a
detailed machine description database, Mdes, is also available to all Lcode modules [20].
The Mdes describes characteristics of the target machine, such as its functional unit
population, instruction latencies, and other constraints. The Mdes is queried by the
optimization phases to make intelligent decisions regarding the applicability of transfor-
mations. As compilation advances, particularly in the scheduler and register allocator,
the compiler relies more heavily on the Mdes to generate code appropriate for the target.

Code is scheduled using either an acyclic global scheduling technique [21], [22] or
modulo scheduling [23]. Both models support control and data speculation for aggressive
enrichment of ILP [10], [24], [25]. Register allocation, sandwiched between a prepass and a
postpass schedule in the acyclic model, is performed using a graph coloring approach [26].

Since predication is introduced during the Lcode low-level optimization phase and
is perpetuated throughout the rest of the compiler, the predicate analysis framework is
required to perform accurate analysis on Lcode and on Mcode for machines supporting

predication.

2.1 Predication

The predicated representation is a low level N-address program representation in which
each operation has a Boolean source operand, its guard predicate, whose value determines
whether the operation is executed or nullified. Predicate registers, which contain the

values of the guard predicates, are manipulated by a set of architecturally specified



predicate definition instructions. The use of predicates to guard instruction execution can
reduce or even eliminate the need for branch control dependences within selected acyclic
regions of code. When all operations control dependent on a branch are predicated to
guard execution in the same manner as the branch, that branch can be removed. The
process of replacing branches with appropriate predicate computations and guards is
called if-conversion.

The predicated representation provides an efficient and useful model for code op-
timization and transformation in the presence of branches. Through the removal of
branches, code can be transformed to contain few if any control dependences. What
would have amounted to complex control flow transformation can then be performed in
the predication domain as traditional straight-line code optimizations. In the same way,
the predicated representation allows scheduling among branches to be performed in a do-
main without control dependencies. The removal of these control dependences increases
scheduling scope and affords new freedom to the scheduler. Compilation of code in the
predicated representation, however, requires a predicate analysis system such as the one
here described.

Predicated execution is the direct execution of code containing predication on a tar-
get, architecture designed to support it. With respect to a conventional instruction set
architecture, the new features are an additional Boolean source operand guarding each
operation, a set of predicate registers in which to store Boolean guards, and a set of com-

pare operations used to compute predicate values. This work focuses on the predicated



representation as opposed to predicated execution models, but the latter are important
as they provide the central motivation for the former. One predicated execution model,
also the basis for the representation used in the IMPACT compiler, is described in an

appendix to this thesis.

2.2 Predicated Regions

In the IMPACT predication framework, predicated code is generated within regions
called hyperblocks. A hyperblock is defined to be a single-entry, multiple-exit, acyclic
region of code in which internal control is represented in the form of predication. The
hyperblock framework was developed as a means of selectively applying predication to
integer codes to achieve high performance in architectures supporting predicated execu-
tion [18]. Hyperblocks are formed by applying tail duplication and if-conversion over a set
of carefully selected paths. Inclusion of a path into a hyperblock is performed on the basis
of a set of profitability heuristics. These heuristics operate on four types of information:
resource utilization, dependence height, hazard presence, and execution frequency. For
purposes of effective program optimization, hyperblocks are formed aggressively to allow
the maximal regions of code to be subject to predicate-enabled classical optimization and
to optimizations that are conveniently implemented in a predicate-specific way, such as
instruction merging, node splitting, and code motion [27]. In the IMPACT framework,
hyperblocks can even be formed in a manner that is over-aggressive for the target archi-

tecture, for maximal optimization benefit, and then can be partially reverse if-converted



at schedule time to fit the resources available [7]. This approach makes maximal use of
the predicated representation in the compiler, and thus increases the applicability of the

predicate analysis system.
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3. PREDICATE ANALYSIS AND OPTIMIZATION FRAMEWORK

The condition analysis and representation techniques described in this thesis were
conceived as part of a complete predicate analysis and optimization framework in the
IMPACT research compiler. The Predicate Analysis System here described pre-existed
the condition analysis techniques presented. Developed in conjunction with the condi-
tion framework was the Program Decision Logic Optimizer (PDLO), which extracts the
essential logic from predication in a program, optimizes it, and generates a new predicate
definition network, which is then reintroduced into the program. This chapter describes
these two technologies to motivate condition analysis and to elucidate the role it plays
in these two important systems.

The reader not familiar with the IMPACT [10] or the Hewlett-Packard HP-PD [11] im-
plementation of predication is here referred to the appendix for a description of predicate
definition instruction semantics, which may contribute to understanding of the following

sections.
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3.1 Predicate Analysis System

The IMPACT Predicate Analysis System (PAS) was developed by David August
to provide accurate information about the logical relationships between predicates, for
reference by transformation modules during all phases of predicated compilation. In the
IMPACT framework, classical and ILP optimization continues after if-conversion. These
optimizations require knowledge of the relation of the predicates guarding the instructions
to be optimized. For example, given the instructions <p1> r1 = 1 and <p2> r2 = r1 +
1, a constant propagation optimization can be applied between the two instructions to
replace the second with <p2> r2 = 2 if and only if the predicate p1 is a superset of p2.
PAS makes this knowledge available to the compiler. Furthermore, previous work has
shown the value of accurate predicate relation information in other areas of compilation,
particularly in the effectiveness of register allocation [9], [28].

Salient details of PAS are discussed here because they contribute significantly to the
design considerations taken in development of the condition analysis system, particularly
to the scope of condition analysis in the control flow graph. In addition, the use of binary
decision diagrams as the representational form for logical relationships in PAS lead to

the BDDs application in the condition analysis framework.

3.1.1 Scope

The goal of the Predicate Analysis System is to describe in a query-able database

the logical interrelation of predicates within a particular scope of analysis. Specification
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of a scope of analysis involves the desired application. If the system is to be queried by
tree-based dataflow and optimizations, that is, with regard to the relation of instructions
within the same hyperblock, the relation system should describe invariant relationships
between the instances of predicates within the same invocation of that hyperblock, not
relationships extending across multiple iterations of the hyperblock. The core queries
applied to PAS in IMPACT are of this type. Therefore, the Predicate Analysis System
focuses on providing accurate, program invariant information about the static relation of
predicates in a function. That is, it will return a reasonable answer to a query about any
two static instances of predicates in a function as long as they can be related logically in
an invariant way, but it is not query-able with respect to dynamic relationships such as
those between instances of predicates across multiple iterations of a loop. The meaning of
the static relation of predicates and how this is dictated by the juxtaposition of definitions
and uses in the code requires some further description, which will be given in the context
of the following example.

Figure 3.1 shows two pieces of code, both of which compute the sum of the odd
numbers between zero and ten. The only difference between the two pieces of code is
that in (b) the add instruction predicated on p; is rotated around the loop backedge.
This rotation requires the introduction of a predicate-clearing operation to prevent the
add instruction from executing unnecessarily on the first loop iteration. It also introduces
a quandary about which definition of p; should be treated as the logical definition of the

predicate, either the new definition in the loop pre-header or the definition that is live



13

pl = (r0 !'=7r0)
mov rl, O mov rl, O
mv r3, 0 mv r3, 0

L1: add r1, r1, 1
and r2, r1, 1
pl = (r2!=0)

<pl>add r3, r3, rl
br (r1 < 10) L1

L1:| <pl>add r3, r3, r1l
add r1, r1, 1
and r2, rl, 1
pl = (r2!=0)

br (r1 < 10) L1

<pl>add r3, r3, rl ‘

@ (b)
Figure 3.1: Example of predicate analysis scope limitation.

around the backedge. Neither answer is (statically) correct, since on the first iteration of
the loop, the pre-header definition reaches the use of p;, while in subsequent iterations,
the backedge definition reaches the use. The problem evoked here can also be described
as a selection merge of predicate values, since two different definitions can reach the use
of p; whose interaction cannot be described by predicate definition instruction semantics
alone.! The predicate analysis engine thus imposes some constraints on the liveness and
merging of predicate register values in a program to simplify analysis.

In the IMPACT compiler, predicated code is generated within the context of hyper-
block regions, which are single-entry, multiple-exit acyclic code regions [18]. Within such
regions, if-conversion is performed according to the algorithms presented in [29]. This
results in predicates that are defined at the top of a hyperblock and that are referenced
throughout it, but which die on all hyperblock exits. Thus, for example, if-conversion

would not create a case such as the one in 3.1(b), where a predicate is live around a

IStrictly speaking, any use of a predicate value defined in a parallel-compare construct has multi-
ple partially reaching definitions, but this is legal since their interaction is logically well-defined as a
conjunctive or disjunctive, but not a selection, relationship.
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backedge. Further optimizations, such as branch combining, create predicates which
may be live out of hyperblocks, but whose live ranges again do not cross backedges.
Thus, in order for the system to be useful, relationships between predicates defined and
used in the same hyperblock must be accurately represented, and these definitions may
be propagated out of hyperblocks into flow successors, but not across backedges. This is
convenient, since entry of the hyperblock region guarantees that the execution conditions
of each instruction will be determined solely by guarding predicates (with the slight qual-
ification that in partially-resolved hyperblocks, side-exit branches also guard instruction
execution) [19]. Thus, discerning the logical relationships between predicates in the hy-
perblock does not involve control-flow analysis outside the hyperblock region or analysis
around backedges, which would dilute accuracy and require some level of iteration.
There exists, however, the possibility of extending the analysis system to include con-
trol flow as well as predicates. For example, within a maximal single-entry, acyclic region
of code, an effective predicate could be assigned to each basic block by performing control
dependence analysis on the region, as occurs in if-conversion [27]. These predicates could
then be used in the analysis engine to provide results for a region containing a mix of
predication and (acyclic) control flow. Optimization of code throughout such a mixed
region, however, is more complex than optimization within a fully if-converted region,

since control flow must be navigated.
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3.1.2  Set representation

The problem of representing logical relationships between predicates and conditions
is essentially a problem of set representation. Consider the set £ of all possible execution
records of a program, where an execution record is defined to be a record of all con-
trol logic settings in the sequential single-assignment (SSA) representation of a program
execution. For notational convenience, let us assume that the registers in the program
are cast into single static assignment form, where the jth definition of predicate p; is
denoted by p;;. Consider that any given SSA predicate p;; will have a corresponding
set of execution records 7 (p;;) € £ in which the predicate evaluated to 1, and any
SSA-based condition evaluation Cjj will have its T (C;x) C £. The relationships be-
tween conditions and predicates are completely expressed by operations on these “true
sets.” For example, if one predicate implies another, as p, implies p; in p & (C) {(p1),
then T (p2) C T (p1)- The problem of representing relationships among predicates and
conditions, then, is equivalent to characterizing relationships among the true sets of a
program.

In general, full enumeration of the true sets of a program is impracticable. First,
programs with loops of arbitrary iteration count cannot be represented using true sets
in a closed form. Second, the number of execution records for even a trivial program
can be impossibly large due to the exponential explosion of paths with respect to branch
control dependences. Fortunately, the resolution of the scope issue above also solves the

set enumeration problem. If the predicate analysis system is limited to code in which
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mov rl, O
pl = (rl1 !'=0) *)

L1: p2 = (rl1 !'=0)
add r1, r1, 1
<pl> add r3, r3, 1
<p2> add r4, r4, 1
br (r1 < 10) L1

Figure 3.2: Condition differentiation in the control flow graph.

predicates are not live around backedges and is further limited to making judgments
based on a static instance paradigm, the representation problem is much simplified.

Within this model, predicate analysis is performed on a version of the control flow
graph which has been rendered acyclic, and selection merges of predicate values are
disallowed. These limitations provide a well-defined meaning for the static instance
paradigm. Thus, in order to process all predicate definitions in an order consistent with
their logical dependence, all that is required is to examine the predicate definitions in a
topological ordering based on the acyclic-rendered control flow graph.

Predicate definitions, in turn, depend on the evaluation of conditions for some of
their logical inputs. Conditions must therefore be processed in a likewise manner. Two
condition instances are identified as being logically equivalent for purposes of predicate
analysis if they share the same condition type and sign, the same definition(s) of the
same source register(s) in the context of the potentially cyclic control flow graph (not
the acyclic-rendered flow graph), and the same constants, if applicable. Figure 3.2 shows

why conditions must be considered in terms of the complete control flow graph. In
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equivalent (pg, pp) =T (pa) =T (pb)
inverse (pa,ps) =T (pa) =& — T (ps)
subset (pa, po) =T (pa) C T (ps)
intersect (Da, po) =T (pa) NT (pp) # 0
exhaust (Pa, Poo, Pots - - - Pon) = T (Pa) = L;T(pbi)

Figure 3.3: Predicate true set operations.

the figure, predicate definitions (*) and (**) have similar conditions, but on all but
the first loop iteration are based on different contents of register rl, and are hence
not logically equivalent. If only the acyclic-rendered flow graph is considered, the two
predicate definition instructions appear to be evaluating the same condition. If this were

allowed to occur, analysis would become inaccurate.

3.1.3 Interface and representational mechanism

PAS answers the predicate queries indicated in Figure 3.3, within the scope here de-
fined. Various previous approaches have answered these queries on the basis of predicate
definition expressions drawn directly from properties of the predicate definition types
themselves [8]. The PAS approach, on the other hand, defines a level of abstraction at
the set level, and implements the query system on top of a general logical representa-
tion package. This frees PAS from restrictions based on particular predicate definition
structures, such as those resulting from direct if-conversion, and allows the use of exist-
ing technology, in our case, the BDD, for efficient representation of logical relationships.

PAS builds a BDD to represent the logical relationship between predicates by examining



Figure 3.4: Combined analysis BDD.

predicate definition instructions in the topological order previously described, and by
following the semantics of the architecturally defined predicate definition instructions to
enter into the BDD an accurate logical representation of the predicate definition net-
work. This can be thought of as building a logic circuit, the input variables to which
(and the variables of the BDD) correspond to the conditions evaluated by the program,
and the gates and interconnect of which correspond to the predicate definition network
itself. At this point, conditions are considered to be independent elements; as will be
shown in Chapter 4, the condition relation mechanisms that constitute this thesis are
incorporated by instead connecting the predicate BDDs inputs to the outputs of smaller

BDDs representing condition relationships. Figure 3.4 gives a conceptual picture.
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3.2 Binary Decision Diagrams

A binary decision diagram (BDD) for a Boolean function f (o, z1, - - -, Z,) is a directed
acyclic graph having interior nodes I and the leaf nodes 0 and 1. Each interior node n is
labeled with a variable and has two children, n — then corresponding to the evaluation of
the variable to 1 and n — else corresponding to the evaluation of the variable to 0. Thus,
the value of a function is defined recursively as the Shannon expansion of the function
down a path from the root to terminal nodes, as f (zo, %1, . .., Zn) = Tofthen (T1,- .-, Tn)V
To feise (T1,---,%n), where fire, and fes. are the functions represented by the subtrees
pointed to by n — then and n — else, respectively. Due to this behavior, interior nodes
are referred to as if-then-else (ITE) nodes. One restriction is that a particular variable
can appear only once in any path of the BDD from root to a leaf [30].

Much work has been done in the development of efficient BDD implementations,
mostly intended for use in the domain of Boolean logic circuit optimization [31]. The
IMPACT compiler uses the Colorado University Decision Diagram (CUDD) framework
to represent BDDs [32]. CUDD is an implementation of a reduced ordered binary deci-
sion diagram (ROBDD) based on the description of [33]. A ROBDD is a BDD in which
variables appear in the same order in each path from root to leaf, in which all identical
ITE nodes are shared, and in which no redundant tests are allowed. Within this frame-
work, a “forest” of BDDs is created to represent the interaction of the various predicate

functions.
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The ROBDD starts out with a single terminal node having the value 1. Variables are
then created and added to the ROBDD as nodes. New nodes, representing expressions on
the defined variables, each of which is root to a ROBDD, are created using the function
ITE(z,y, z), where x, y, and z are existing nodes in the ROBDD. Recall that ITE stands
for “if-then-else”; the node returned has the logical value given by “if(x) then y else z.”
The CUDD ROBDD manipulation package also has “invert” arcs, which can be used

instead of “else” arcs to implement the function f (zo, Z1, ..., Zn) = To finen (1, .., Zn)V

Zo finvert (X1, - -, Tpn), Where finyers is the subtree pointed to by n — invert. The use of
invert arcs allows for constant-time inversion and avoids the addition of extra internal
nodes when the complement of an existing subgraph is required [33]. A strong canonical
form is maintained by requiring that invert arcs can only occur as “else” arcs.

Just as the BDD is constructed to represent logical relationships using ITFE(), the
same function is used to query the BDD as to the relation of two or more functions de-
scribed by it. For example, consider testing if f, implies f;. This implication holds as long
as whenever f, is true, f; is never false. Thus, the query node ¢ = ITE(f,, NOT(f3),0)
is formed and tested for identity to 0. If ¢ = 0, the implication holds. Similar queries can
be constructed for, among others, the useful relations indicated in Figure 3.3. A garbage
collection mechanism built into CUDD prevents build-up of retired query nodes in the
forest. Additionally, CUDD provides query functions which do not result in the aggre-
gation of BDD nodes to accelerate some Boolean queries. The implementation details of

such a system are well described in [33] and will not be recounted here.
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3.3 Program Decision Logic Optimization

This section summarizes the Program Decision Logic Optimizer, presented at ISCA-
26 [1], which currently constitutes the most significant application of condition analysis
information. PDLO acts on code after hyperblocks have been formed and after the
code they contain has been optimized traditionally. When decision logic optimization is
desired, function inlining takes place and if-conversion is aggressively performed to expose
large amounts of control to the optimization techniques, which operate exclusively on the
predicate definition network. In addition, techniques such as loop unrolling, peeling, and
accompanying ILP transformations are typically applied to the code. Incidentally, many
of the loop techniques tend to generate large families of logically related conditions, which
are particularly suited to condition analysis.

An example extracted from the UNIX utility wc illustrates the application and benefit
of the described techniques. Figure 3.5 shows the code segment before and after complete
if-conversion. As shown in Figure 3.5(a), the code before if-conversion consists of basic
blocks and conditional branches (shown in bold) which direct the flow of control through
the basic blocks. As shown in Figure 3.5(b), the code after if-conversion consists of only a
single block of sequential instructions, a hyperblock [34]. The conditional branches have
been replaced with predicate definition instructions (shown in bold) and the predicate
registers defined have been placed as source operands on all guarded instructions in

accordance with their execution conditions.
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Loop: Loop:
r24 = MEM[r3] 1|pa=0
r23=r24+1 2|p5=0
MEM[r3] =23 3|r24=MEM[r3]
r4 = MEM([r24] 4|r23=124+1
Branch 32>=r4 5| MEM[r3] =r23
F 6| r4=MEM[r24]
7| p4_ot, pl uf =(32>=r4)
F 8| p4_ot, p2_uf = (r4 >=127) <p1>|
Branchr2== 9| p3_ut=(r2==0) <p2>|
10 | p5_of, p6_uf = (r4!=10) <p4>
r27 = MEM[r72] r62 = MEM[r71] 11| p7_ut =(r4'=10) <p4>|
r26=r27+1 r61=r62+1 12| r27 = MEM[r72] <p3>
MEM[r72] = r26 MEM[71] = r61 13(r26=r27+1 <p3>
r2=r2+1 14| MEM[r72] =r26 <p3>|
15(r2=r2+1 <p3>
16 | r62 = MEM[r71] <p6>|
17|r6l=r62+1 <p6>|
18| MEM[71] = r61 <p6>]
19| p5_of, p8_ ut=(r4!=32) <p7>
20| p5 of =(r4!=9) <p8>
21r2=0 <p5>
@) 22 | Jump Loop

(b

Figure 3.5: A portion of the inner loop of the UNIX utility we. The control flow graph
(a), and the corresponding hyperblock formed after complete if-conversion

(b).

After if-conversion, control speculation is performed to increase opportunities for op-
timization. Control speculation is a means of breaking a control dependence by allowing
an instruction to execute more frequently than is necessary. In a predicated represen-
tation, this is performed in predicate promotion, the process by which predicate flow
dependences are broken and instructions are made to execute speculatively by changing
an instruction’s guard predicate to another predicate, whose expression subsumes that of
the original [18]. When instructions are aggressively promoted, some predicates may no
longer be utilized as guards on computation. When a predicate is no longer necessary,

the program decision logic is simplified. Figure 3.6(a) shows the we hyperblock segment
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Loop: (o) 1)
p4=0 32>=r4 r4 >= 127

p5=0

r24 = MEM[r3]
r23=r24+1

MEM[r3] =r23

r4 = MEM[r24]

p4_ot, p1_uf = (32>=r4)
p4_ot, p2_uf = (r4 >= 127) <p1>|
p3_ut=(r2==0) <p2>|
p5_of, p6_uf = (r4!1=10) <p4>|
p7_ut = (r4!=10) <p4>
r27 = MEM[r72]

26=r27+1

MEM[r72] =r26 <p3>
r2=r2+1 <p3>|
r62 = MEM[r71]

r6l=r62+1

MEM[71] =r61 <p6>]
p5_of, p8_ut =(r4!1=32) <p7>
p5_of =(r4!=9) <p8>
r2=0 <p5>
Jump Loop

p3=1 R2>=r4

p5=0 r4 >= 127
r24 = MEM[r73] r2==
r23=r24+1

MEM[r73] =r23

r4 = MEM([r24]

p3_af =(32>=r4)

p3_af = (r4>=127)

p3 at=(r2==0) p3

p5_of, p6_uf = (r4!=10)
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Figure 3.6: The wc hyperblock after speculation but before logic minimization (a) and
its corresponding logic diagram (b). The hyperblock after logic minimization
(c) and its corresponding logic diagram (d).

after predicate promotion. Comparison with Figure 3.5(b) shows that four instructions
(12, 13, 16, and 17) have had their predicates promoted to the TRUE predicate, denoted
in the figure as the absence of a source predicate. However, no predicates were rendered
completely unused by this process.

Next, the program decision logic network is constructed. Since predicates can only
assume Boolean values, predicates and predicate definitions can be viewed as a combi-
national logic circuit. To derive the Boolean function from a hyperblock, the compiler
needs only to examine the predicate definition instructions. Consider instructions 7 and
8 in Figure 3.6(a), in which the expression for pl can be written as pl = C; and p2 can

be written as p2 = p1C}, where Cj is the condition (32 > r4) and C} is the condition (r4
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> 127). The expression for p2, in terms of conditions, is p2 = Cy C;. In the course of
this complete back substitution, expressions based on condition variables are formulated
for all predicate definition instructions. The composition of all these expressions is the
program decision logic network. This network can be modeled as a logic circuit that
represents all the decisions made in the program. The logic circuit has conditions as its
input and the predicates which control computation as its output. The multiple-output
Boolean logic circuit for the wc code segment is shown in Figure 3.6(b).

Once the logic circuit has been derived, many CAD techniques can be employed to
simplify the program decision logic network. The predicate analysis BDD, described pre-
viously, contains the relationship among predicates as defined by the network of predicate
definition operations. For the purposes of decision logic minimization, the BDD provides
a simple method by which expressions describing the hyperblock logic can be derived.
The only expressions requested from the BDD are those expressions describing the es-
sential predicates. Essential predicates are those predicates that guard real computation
instructions (any instruction that is not a predicate definition). In Figure 3.6(a), the
essential predicates are p3, p5, and p6. Predicates pl, p2, p4, p7, and p8 are nonessential
predicates as they are used only as intermediates in evaluation of the essential predicates.

The BDD maintains a canonical representation of the decision logic functions, from
which a Boolean sum-of-products expression can be produced for any represented func-
tion. Note that the expression thus generated reflects the canonical nature of the BDDs

internal representation, and is usually not optimal for expressions with multiple product
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terms. Therefore, it is necessary to optimize the derived expression before attempting to
synthesize a predicate definition structure.

The expressions describing the evaluation of the essential predicates are optimized us-
ing techniques which eliminate redundant terms in the function and which re-express the
Boolean function in a more parallel form. The resulting expression is reformulated back
into predicate definition instructions in the hyperblock. This optimization and reformu-
lation must balance the reduction of dependence height with the number of predicate
definitions that can be accommodated in the code schedule. This involves making an ac-
curate estimate of how much time is available for computation of control functions based
on the availability times of conditions and when predicates need to be consumed. These
and other considerations make the design of an optimizer and a reformulator nontrivial.

Figures 3.6(c) and 3.6(d) show the reformulated hyperblock and corresponding logic
circuit after the minimization process is complete. The number of logic gates in the
circuit implementation is reduced from 10 to 3. In addition, the six-level gate network
in Figure 3.6(b) is reduced to a single-level gate network in Figure 3.6(d). All non-
essential predicates were also eliminated as part of this process. An example optimization
performed on the logic circuit takes the form Cy + C; Cy — Cy + C1. An application of
this optimization occurs between instructions 7 and 8 when computing p4.

The values of variables in the decision logic network are supplied by evaluating con-
ditions on predicate definition instructions. The importance of the condition analysis

system to the program decision logic optimizer is that these variables are not necessarily
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independent, and that knowledge of the relationships between these variables can allow
for significant further optimization of the predicate definition structure. Consider the
computation of p6 in Figure 3.6(a). Instruction 10 computes p6_uf = Cs (p4). Logically,
this leads to the expression p6 = C3 (Cy + C1), where Cy = (32 > r4), Cy = (rd > 127),
and C3 = (r4 # 10). Here, since C3 implies Cy and excludes C;, the expression for p6
can be simplified to p6 = C5. The role of the condition analysis system is to provide the
requisite relational information to the optimization algorithms in an accessible way.
The overall effectiveness of the program decision logic minimization process on the
wc example is best shown by comparing the schedules of the code before and after op-
timization. For illustration purposes, a six-issue processor with no restrictions on the
combination of instructions that may simultaneously be issued is assumed. Furthermore,
all instructions are assumed to have a latency of one cycle. The reformulated hyperblock
requires only a single level of predicate definitions to compute the essential predicates as
opposed to the five-level network used in the original code, yielding a significant increase
in performance. After logic optimization, the number of cycles required per iteration is

cut in half, from eight to four.
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4. INTEGER CONDITION ANALYSIS

The objective of integer condition analysis is to describe as completely as possible the
logical relationships between conditions, providing a logical database as a substrate for
analysis or optimization of predication or control flow. This chapter lays the groundwork
for such a mechanism. The types of conditions to be examined within the IMPACT
architecture are described, and a means of classifying the conditions present in a function
into related families is presented. These families will be the subject of the description

mechanism presented in the following two chapters.

4.1 Interface

As will eventually be shown, the condition analysis system interfaces seamlessly into
the predicate analysis system since it relies on the same internal representation for the de-
scription of Boolean expressions. Thus, no explicit interface is required between these two
modules. For other applications, such as program decision logic optimization, it is useful

to provide an interface which the compiler can query directly to determine the relationship
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between conditions. Although these queries could be performed directly as BDD opera-
tions, it is cleaner to encapsulate the BDD references. Such queries include, for example,
cond_implies(C;,Cs), which returns T iff C; — Cy; conds_exhaust ((C,C5,...C\,_1),
Cy), which returns T iff the disjunction of conditions 1...n — 1 subsumes Cj; and
cond_opposite(C;,C5), which returns T iff C; = C5. These queries, and a few other sim-
ilar ones, compose the query mechanism underlying condition optimizations performed

in the program decision logic optimization framework.

4.2  Architectural Background

In the IMPACT EPIC architecture [10], a condition is defined to be of the form
(register)(< | < | =| > | >) s (register|constant)

A condition is composed of, from left to right, the first operand to be compared,
the comparison type, the sign of the comparison type, and the second operand to be
compared. The sign is indicated in this text by a subscripted s (signed comparison) or u
(unsigned comparison) on the comparison operator. The first operand is restricted to be
a register, and the second may be either a register or a constant. This definition divides
conditions into two classes: those between two registers, and those between a register
and a constant. These two types of comparisons require two methods of representation,

which will be described separately in the chapter to follow.
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In the IMPACT EPIC architecture, all comparisons are to operands of the standard
register size. For architectures that support comparison of operands of varying sizes,

such as TA-64, multiple operand sizes must also be supported in the analysis.

4.3 Comparison Families

The goal of condition analysis is to provide a logical database for reference by predicate
analysis. The region over which the database should be valid must thus correspond to
the region over which the predicate analysis and optimization are applied. IMPACT PAS
covers the acyclic-rendered control flow graph. A condition family is thus defined basically
to be the set of conditions having the same register names and contents as they appear in
the acyclic subset of the control flow graph. However, for two comparisons that appear
to be related in the acyclic-rendered flow graph to be considered related, they must be
identical in terms of their relation to definitions in the complete flow graph. Thus, two
conditions which are in fact related by a flow around a backedge are not considered related
for the purposes of family formation, since such an inclusion would violate the basic
assumptions of the predicate analysis framework. The example of Section 3.1.1 provides
further clarification. Given this definition, families can consist either of all register-
constant comparisons or of all register-register comparisons. Register-register condition
families have the additional restriction that all comparisons between the registers must

be of the same sign convention, either all signed or all unsigned,® for a reason that will be

IThe equality operator can be taken either as a signed or as an unsigned comparison for this purpose.
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addressed in Section 5.1. This definition of families allows all members of a given family
to be related logically in the database mechanism to be described.

This definition decomposes the conditions of a function into families. Register-
constant comparisons, since all register-constant comparisons can be intermingled in a
family, are each mapped uniquely to a family. Mapping of register-register comparisons,
on the other hand, may be ambiguous, since signed and unsigned comparisons may not
be mixed within a family, but equality and inequality may be placed in either. If, for
example, a segment of code were presented which contained the comparisons (r1 <
r2), (r1 <, r2), and (rl == r2), where all definitions of r1 and r2 were the same,
two families would be formed, one for signed comparison and the other for unsigned
comparison. The test of equality could be mapped arbitrarily to either, but subsequent
queries would treat it as being independent of the family to which it was not mapped.
It is, however, highly unlikely that mixed signed and unsigned comparisons of the same
two values would be encountered in real code. This is, thus, not much of a concern.

Since condition families are identified by register assignments, techniques such as
single static assignment form, value numbering, or a simple iterative matching algorithm
can be used to select them from the acyclic-rendered control flow graph, depending on
what approach is supported in the host compiler.

Extensions to this condition analysis system would likely take the form of increasing
the size of families. A more sophisticated analysis, for example, might be able to identify

values as flowing through computation, correctly identify the “extended family,” and



31

pl = (r1 < 1) ()
<p1>r1=r1-1
<p1> p2 = (r1 > 1) (Cy
<p2> stmt

Figure 4.1: Missed opportunity due to interspersed computation.

adjust the analysis to account for value modification between the different comparisons.
A simple example is given in Figure 4.1. Here, the comparisons on registers C'; and C5 may
be logically related, although the presented analysis system is incapable of recognizing
or representing their relationship. In this example, if r1 < 1, p; is set, and then rl
is decremented and tested to see if it is greater than 1. The condition analysis system
presented here cannot detect any relationship between the two comparisons because of
the interspersed assignment to r1. Here, provided that register underflow (subtraction of
one from either zero or the maximally negative representable number, causing it to roll
over to a positive value) can be ruled out by analysis, ps can be shown always to evaluate
to F. If subtractive underflow cannot be ruled out, no such determination can safely be
made. This simple example thus points out both a potential benefit and a challenging
pitfall of expanding condition analysis to support analysis of general computation chains.

Furthermore, in many regions of code, such as unrolled loops, for example, other
compiler optimizations such as induction variable elimination tend to convert chains of
simple computation into families suitable for the presented condition analysis system.
Since the code generated by these approaches is in general more suitable for parallel

execution than would be code with serial dependences through register computation, an
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ILP compiler will in general perform these optimizations, allowing this analysis to be

effective in such regions.
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5. REPRESENTATION MECHANISMS

5.1 Register-Register Comparison Families

The first representation mechanism of the condition analysis system is one to describe
the relation of register-register families. A register-register family consists of a set of
similarly-signed conditions, each of which compares the same pair of register contents.
For purposes of discussion, let the values be identified here as r1 and r2. As indicated
previously, comparisons can be of five basic types: less than, less than or equal to, equal
to, greater than or equal to, and greater than. Within comparisons of the same sign,
implication relationships are well defined. For example, (rl <, r2) implies (r1 <; r2).
The goal of this mechanism is to represent the logical relation of member conditions in
BDD form.

The BDD representation is evoked by enumerating three basic categories of compari-
son outcomes. Here, the same pair of values can be related in exactly one of three ways:

(I) (r1 < r2), (II) (r1l = r2), or (III) (rl > r2). Denote these the disjoint outcomes
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of the comparison family. The outcomes of all member comparisons, the expressed out-
comes, can be derived given the knowledge of to which category the pair of presented
values apply. It is convenient to identify with each expressed outcome the set of disjoint
outcomes which imply its truth. By representing the comparisons in terms of these basic
outcomes, the relationships between the comparisons can be derived. For example, con-
sider the two conditions (A) (rl < r2) and (B) (rl > r2). Here, the evaluation of (A)
to T indicates that either a (I) or a (II) outcome exists, but that a type (III) outcome
is impossible. Thus, it is demonstrated that (B), which requires a type (III) outcome,
must evaluate to F.

These relationships are conveniently expressed in BDD form using the technique of
finite domains [35]. Mapping the disjoint outcome space to two Boolean variables {vy, vy}
we get the relations (r1 < r2) < {0,0}, (r1 > r2) & {0,1}, and (r1 = r2) & {1,—}.
The membership of the disjoint outcomes in the expressed outcome sets is then repre-
sented by constructing each expressed outcome node as the logical disjunction of the
member disjoint outcome nodes, using the ITE() function of the BDD. The complete
BDD representing the logical relationship between all possible comparison operators in
a register-register family is shown in Figure 5.1. This BDD, or a subset of it, as needed
to represent the operators that are actually used in a family, would be included as part
of the analysis BDD condition layer. Predicate definition instructions using the various
conditions of the family would be connected to the appropriate condition nodes at the

top of this layer.
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Figure 5.1: BDD representing a register-register comparison family.

Register-register families related using the three disjoint outcomes represented by this
method must consist of comparisons which all use the same sign convention, either all
signed or all unsigned. The equality operator can belong to either class, since signed
equality is identical to unsigned equality. This restriction is allowed because there is no
well-defined implication between signed and unsigned comparisons; thus, no additional
accuracy could be garnered by combining the two representations. Furthermore, mixing
of signed and unsigned comparisons of the same value is unlikely in real code.

A complete register-register family can be represented using two BDD variables, where
a naive implementation would require three (one for = and #, one for < and >, and
one for > and <). In addition, whereas the prior implementation recognized only a
condition and its complement as being related, the presented implementation is capable
of identifying all logical relationships among arbitrary sets of member conditions. Since
the BDD required to represent the family is a standard form, the cost of the construction

of these BDDs is linear in the number of register-register families.
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The register-register family representation technique could be extended to be useful
for floating point comparisons between two registers. Floating point comparison has
four disjoint outcomes, including the three useful for integer comparison, and a fourth,
unordered, which is unique to floating point due to its representing infinite and not-a-
number (NaN) results. Since this results in up to twelve distinct expressed outcomes, a

more complex but still very manageable BDD representation would be required.

5.2 Integer Register-Constant Comparison Families

The representation of integer register-constant comparison families is of the same
general nature as the representation of register-register families. In this case, as well,
disjoint outcomes are identified, of which the program’s expressed outcomes can be built
by set composition. Unlike register-register families, however, the number of disjoint
outcomes in a given family depends on the particular expressed outcomes used in the
program, and the construction of the BDD to represent the register-constant family is
unique to each instance.

The first step in analyzing a family of register-constant comparisons is the identifi-
cation of disjoint outcomes. A register-constant family consists of the comparison of a
single variable value with various constant ones. The mechanism for describing disjoint
outcomes of the comparisons is based on visualizing the conditions as splitting a number
line into segments. The variable register value can be represented as the continuum, or

number line, of integers which covers the entire range of numbers representable by the
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register. As a convenient convention, the number line is considered to extend from 0, with
a binary representation of all ‘0’ bits, to the maximum unsigned number representable
in the register, denoted MAX_INT, having a binary representation of all ‘1’ bits. Although
this notation will be discussed in terms of unsigned integers, it applies equally well (and
simultaneously) to signed integers. Additional useful constants include MAX_PQS, which
has a binary representation of all ‘1’ bits, except for the most significant (sign) bit, which
is a ‘0’; and MAX_NEG, which has a ‘1’ in its most significant (sign) bit, and all other bits
‘0’. These constants are useful in mapping signed comparisons onto the unsigned number

line, as will be demonstrated.

5.2.1 Disjoint outcome identification

Consider the number line £ to be a set of disjoint intervals of the form I = [410, thign)-
Thus, a number line of n intervals is the set £ = {Iy, I, ...I,_1}. Furthermore, stipu-
late that taking the intervals themselves to be sets of the numbers they include, the
union of the sets exhausts all representable numbers. In other words, any given integer
representable in the register must belong to exactly one interval.

Now consider the set of numbers which, when present in the family’s integer register,
cause a particular condition C; to evaluate to T. Let us represent this set of numbers
as the true set 7(C;) = {lo, [1,...Im-1}, a set of disjoint intervals that covers the true
set exactly. Table 5.1 shows the true sets for all signed and unsigned comparisons.

Since unsigned and signed comparisons are treated uniformly in this system, they can
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Table 5.1: True set intervals for comparisons to constants.

Operator | Constant sign | True set intervals
= +/- [c, c]
# +/— [0,¢—1],[c+ 1, MAX_INT]
> + [c 4+ 1,MAX_PQS]
— [0,MAX_POS], [c + 1, MAX_INT]
> + [c, MAX_PQS|
— [0, MAX_POS], [c, MAX_INT]
<s + [0, ¢ — 1], [MAX_NEG, MAX_INT]
— [MAx NEG, ¢ — 1]
<s + [0, c], [MAX_NEG, MAX_INT]
— [MAX_NEG, c|
>, + [c 4+ 1,MAX_INT]
>y + [c, MAX_INT]
<4 + [0,c—1]
<u + [0,¢]

(Tll-defined intervals [iy,in] where iy, < i, are defined to be ().)

be intermingled in a comparison family without modification or loss of accuracy. At
most two intervals are included in the true set of each comparison. For convenience in
description, intervals [i;, i,] where i), < i; are defined to be (). These may occur for some
values of ¢, and must be avoided explicitly in a code implementation.

The true set interval description for comparisons is used to divide the continuum
L, initialized to {[0,MAX_INT]}, into intervals representing the disjoint outcomes of the
comparison family. Figure 5.2 gives pseudo-code for the algorithm which iterates over
the true sets of the family’s conditions, splitting the intervals of £ as necessary. At
completion of the algorithm, the number line £ = {Dy, Dy, ...D;_1}, where there are i
disjoint outcome intervals D. The significant property of this set of intervals is that

for any C' € F, where F is the set of conditions related by the family, 7(C) can be
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foreach C' € F' do
foreach [ € T(C) do
S := find_interval_containing(L, I — low)
if (I = low '= S — low)
L := split_interval(L, S, I — low)
S := find interval containing(L, I — high)
if (I — high '= S — high)
L := split_interval(L, S, I — high + 1)
done
done

Figure 5.2: Algorithm generating disjoint outcomes in a register-constant family.

constructed as the union of disjoint outcome intervals D;. This is the same relationship
between the expressed outcomes and the disjoint outcomes in the register-register case,

and leads to a finite domain BDD representation, as before.

5.2.2 Finite domain representation

For query support and for inclusion in the predicate analysis BDD, the information
about the membership of the disjoint outcomes in the expressed outcome sets must
be encoded in BDD form. Again, this is accomplished using the technique of finite
domains [35]. Here, unlike in the register-register case, the domain can be of varying
size, depending on the conditions belonging to the family. Consider a family having ¢
disjoint outcomes, such that £ = {Dy, D1,...D;_1}.

The finite domain technique creates a Boolean m-space and subdivides that space
completely between the elements of the set to be represented. The size of the space must

be sufficiently large to accommodate all the set’s members. In this case, n = log,(7)



40

for j =0..2—1 do
d; := BDD_One(Q);
done
extra_vertices = 2" - 4
for 7 = 0..extra_vertices - 1 do
for £k = 0..n—2 do
if (5 & (1 << k))
d]' = BDD_Ite(’l}k,dj,O)
else
d; := BDD_Ite(wv;,0,d;)
done
done
for j = extra_vertices..i —1 do
for £k = 0..n—1 do
if (§ & (1 << k))
dj = BDD_Ite(vk,dj,O)
else
d; := BDD_Ite(v;,0,d;)
done
done

Figure 5.3: Algorithm representing disjoint outcomes in a variable-size finite domain.

BDD variables, g, v;...v, 1, are allocated to form the space {0,1}". This space is
allocated exhaustively to ¢+ BDD nodes dg, dq,...d; 1 which represent the disjoint out-
comes Dy, Dy, ... D;_; using the algorithm of Figure 5.3. The importance of exhaustively
mapping the space, which is accomplished by assigning up to half the disjoint outcome
nodes an extra vertex in the Boolean n-space, is that in analysis, the disjunction of all
the disjoint outcome nodes must return T. This should be the case, for example, if the
disjunction (r1 < 1)[|(r1l >= 1) is computed. The finite domain allocation algorithm

runs in O(ilog, i) time and generates log, i« BDD variables.
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foreach C; in F' do
¢; := BDD_Zero();
foreach D; in £ do
if (D; C T(C))
¢; = BDD_Leq(d;, 1, ¢;)
done
done

Figure 5.4: Algorithm mapping expressed to disjoint outcomes in a finite domain.

The disjoint outcome nodes having been created, the nodes representing the expressed
outcomes (the conditions represented by the family) are simply generated by computing
for each a node that is the disjunction of the disjoint outcomes comprising the expressed
outcome set. A simple O(i?) algorithm for accomplishing this is shown in Figure 5.4. Tt
would be possible to incorporate this step into the procedure which divides the number
line into disjoint outcomes, by dynamically adjusting the membership of the expressed
outcome sets as the continuum is further divided, but since families consist typically of
no more than sixteen conditions, this additonal implementation complexity is probably
not warranted.

This completes the process of register-constant family formation. Figure 5.5 summa-
rizes this procedure in four concise steps: creation and initialization of data structures,
determination of disjoint outcomes and true set memberships, finite domain creation,

and assignment of conditions to sets of outcomes in the finite domain BDD.
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Consider the number line £ to be a set of intervals
I; = [t} 10wers 1jupper] Such that each integer i €
[0,MAX_INT] is a member of some I;.

1. Initialize the number line £ to be a single
segment, represented in unsigned form as
[0..MAX_INT]

2. VYC; : Determine the true set 7(C;), defined
to be the interval(s) of unsigned integers
which yield an evaluation to T. Split the
intervals I; € £ such that 7(C;) can be com-
posed exactly as a union of discrete intervals
of £. Call the resulting disjoint outcome in-
tervals D; € L.

3. Create a BDD finite domain of size ||£|| and
associate with each D; a finite domain node

-

4. YC; : Form the condition node n; as the logi-
cal disjunction of the nodes f; corresponding
to the intervals D; composing T (C;).

Figure 5.5: Summary, formation of a family of register-constant conditions C;.

5.2.3 Incorporation into PAS and PDLO

As described in Chapter 3, the condition analysis mechanisms were designed to work
with two major IMPACT modules, the Predicate Analysis System and the Program
Decision Logic Optimizer. The condition analysis techniques were designed to be easily
interfaced with both PAS and PDLO.

Incorporation into PAS is simple. As described in Section 3.1, PAS builds the pred-
icate BDD from variables enumerated for each conditon in the program. The condition

analysis information is incorporated simply by replacing these nodes with the condition
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nodes formed as the roots of the finite domain BDDs formed in condition analysis, as
shown in Figure 3.4. No additional query interface is necessary for incorporation of con-
dition information into PAS, since the BDD automatically generates results based on the
relations expressed in both layers of the combined BDD.

More than for its effect on improving the accuracy of predicate analysis, the condition
analysis framework was developed to aid in PDLO. As previously described, the opti-
mizer extracts from the predicate BDD sum-of-products expressions which give the logical
definition of all useful predicates of the function to be optimized, within the topologi-
cal context of analysis. These expressions are then optimized using traditional Boolean
circuit minimization techniques and some specialized factorization algorithms, and are
re-expressed as a new, more efficient predicate definition network. The condition anal-
ysis system is used in PDLO in two ways, first in conjunction with traditional Boolean
optimization techniques to eliminate redundant comparisons from predicate definition
expressions, and second, to more effectively acommodate factorization of the resulting
expressions for efficient regeneration. More details about the implementation and per-
formance of PDLO can be found in [1].

A predicate expression is presented to the optimizer as a sum-of-products expression,
where the literals correspond to the conditions upon which the predicates are defined.
This is referred to as the complete back-substituted form since it is the result of fully

expanding predicate definition semantics using previously generated predicate results.
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Optimization of these expressions is performed in PDLO by an iterative consensus
technique [36]. This optimization, however, treats the condition variables as being inde-
pendent of each other. Thus, a separate mechanism must be provided to optimize the
resulting expressions with respect to condition relationships. This is accomplished in two
phases. First, each conjunctive term of the sum-of-products expansion is examined to
determine if it has any redundant literals. This is accomplished by examining each family
having conditions represented in the literal. By querying the condition nodes of the fam-
ily’s BDD, the minimal set of conditions required to generate a logically equivalent term
can be ascertained. Second, each sum-of-products expansion is examined for redundent
terms which the condition information can prove are always covered by another term
in the expression. Again, the BDDs provide the logical underpinnings for a mechanism
which detects this case. Since these algorthims depend on matching elements of families
or terms in an expression against possibly multiple other elements or terms, the algo-
rithms used to perform these optimizations are computationally expensive, ranging from
O(n?) to O(2") in the worst case, but are fortunately applied only to relatively small sets
of input. Furthermore, the savings incurred in traditional Boolean optimization time
by reducing expressions by these means more than compensates for the time spent in
condition optimization.

The second application of the condition analysis framework is to aid in factorization.

In some cases, factorization of the predicate definition network regenerates dependence
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height to take advantage of computed subexpressions, thus reducing the number of com-
parisons required in evaluating the predicate definition network. In such cases, condi-
tion queries are sometimes required in order to recognize subexpressions which may be
reused. For example, consider that condition information reveals that C4 implies Cj.
Suppose the subexpression p; = Cy(Cs + Cs) is available, and the generation of predicate
po = Cy(Cs+C3) is desired. The fact that p; can be formed as the factorization py = p;Cy
is observable only given the information that C, implies Cy. To detect these situations,
the condition analysis interface is queried in the algorithm that matches factorable subex-
pressions. This can have a powerful enhancing effect on the reuse of available predicates
when extensive factoring is applied.

One additional feature implemented in the condition analysis system which could be
applied to PDLO is the ability to generate a new simpler condition based on expressions
containing component conditions. For example, an expression such as (z = 1)|[(z > 1)
could be restated as (z >= 1) by using BDD operations first to identify the disjoint
outcomes expressed in the complex condition, and then by generating a new simple con-
dition to represent that same set of disjoint outcomes. This will be demonstrated further
in a simple code example in the next section. This approach has not been applied in
PDLO since it would require the generation of predicate definition instructions with new
conditions which, due to the mulitple-output capability of such instructions in IMPACT,
might incur some unanticipated expansion cost if the original component conditions were

still used to compute other predicates. Furthermore, given the properties of condition
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families in the benchmarks studied, it was not anticipated that this feature would make
a significant performance difference in any instances.

Another possibility is to perform decision logic optimization on a combined BDD,
which includes the predicate and condition subtrees. In this case, the variables internal to
condition finite domains would be exposed to optimization. Thus, the Boolean techniques
applied to reduce predicate expressions would also perform the optimization now done
as separate condition optimization steps. After optimization, however, another stage
of processing would be required to regenerate representable simple conditions from the
optimal, but complex, conditions rendered for each family. Furthermore, this extension
could cause more variables and more freedom to be exposed to the optimizer, resulting
in slower optimization times. For these reasons, this otherwise attractive option was not

pursued.

5.2.4 Code example

The application of the integer register-constant comparison description mechanism
can best be understood by means of a simple example. Figure 5.6(a) shows a simple
region of code which, for our purposes, we will assume to be predicated using the typical
IMPACT hyperblock predicated compilation process, resulting in a single hyperblock
containing the indicated control blocks. As as result of this process, the instructions in
each block are guarded with the predicate indicated to its right. Figure 5.6(b) shows the

predicate definition structure resulting from if-conversion. It is further assumed that this
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if (x>=0)&&(x<=4)
if (x==1)

4

else if (x==2)

I e, paof

1 6 plout, p3.of = (x>=0)

s <p1> p2_ut, p3_of = (x<=4)
I <p2> ph.ut, psuf = (x==1)

_ <p5> p6_ut, p7.uf = (x==2)

else if (x<0) <p3> p8.ut, p9_uf = (x<0)

L b o)

else
I
(a)

Figure 5.6: Integer register-constant comparison family code example.

region contains no assignments to the condition variable x. Since this region contains no
such assignments and is acyclic, it follows that the five instances of comparisons based on
the value stored in x are members of a single register-constant comparison family. The
remainder of this discussion applies the procedure described in the previous part and
summarized in Figure 5.5.

The algorithms presented in Section 5.2 are applied. First, disjoint outcomes are de-
rived from the member conditions using the true sets given in Table 5.1 and the algorithm
of Figure 5.2. The resulting disjoint outcome set is shown on the corresponding number-
line in Figure 5.7. Individual disjoint outcomes are labelled “D,,.” The mapping of nodes
to the finite domain’s Boolean 3-space and the ITE expressions used to construct nodes
representing the family’s conditions, as they would be generated by the algorithm of Fig-

ure 5.4, are shown in Figure 5.8. Here, in the interest of compactness, ITFE expressions
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1
Do 'D1D2.D3

<-2-10123456>

Figure 5.7: Integer register-constant comparison family number line.

11

(oror o) [ TTE Reprosontation Condition | ITE Representation
Cy (x>=0) | dy71: (do?1: (d3?1: ...
20 - 20 -
do | (0,0,—) [ v?0: (v,70: 1) (ds71 : ds)))
di | (0,1,—) |70 (vs71:0) Cy (<) | dh70+ (711 (dy?1
dy | (1,0,0) | vo?(v170: (v570:1)): 0 ’ 1'(d' ‘?11~'d '))) :
d3 (17 07 1) (vl?o (’Uo?l O)) :0 C (X==1) d | T
da (1,1,0) V27 (v17(v570:1): 0) : 0 Cz (x==2) dz
? .
ds | (1,1,1) | va?(v1?(vp?1:0):0) : 0 Cs  (x<0) | dy

Figure 5.8: Integer register-constant comparison family BDD ITFE expressions.

are shown in the ternary operator form familiar to C programmers:(condition)?(true-
evaluation-result): (false-evaluation-result). This complete, a BDD node is created for
each condition, which can be referenced in the predicate BDD or used in conjunction
with other condition nodes to minimize the number of condition evaluations required in
generation of a predicate value.

Examining Figure 5.6(b), it is shown that if-conversion generates a predicate defi-
nition network with a height of four to compute the predicates requried to guard the

labelled blocks of code. Optimization of this code using condition information is now
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ps = Cp Cy %

pe = C1Cy % g

pr = CLCZ Cs %

ps = (g+01@)05

pg = (Ci+ CyCs) Co
(a) Before optimization

Ps = 0102% s = Cs

be = 0102%g pe = C4 L

b = @02%04 pr = C1 0y C5Cy

ps = (Ci+Cy)Cs5||ps = C

pp = (C1+Cy)Cs5| |p = O
(b) Optimized without  (c¢) Optimized using
condition information. condition information.

Figure 5.9: Predicate optimization with condition information.

considered, but for reasons of human readability, further examination of this example
will be performed in the context of Boolean expressions rather than BDDs. Figure 5.9(a)
shows the logical expressions for essential predicates in terms of the condition variables,
as rendered by a full back-substitution into the predicate definition network created by
if-conversion. Boolean optimization of these expressions generates only two optimiza-
tions, those being applications of consensus in the expressions for predicates ps and py,
as indicated in Figure 5.9(b).

Awareness of condition relations allows much further optimization, as shown in Fig-
ure 5.9(c). In this example there is a great deal of redundancy in the comparisons per-
formed, which is typically a remnant of control structures inserted by the programmer
and perpetuated by branching control. In this case, for example, the programmer has
tested to see if x lies within the range [0..4], and within that range handles individual

cases (Figure 5.6(a)). When the code segment is if-converted, the original range check
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pred_set p7

p7-at, p8.uf = (x>=0)
p7-at, p9-uf = (x<=4)
p4ut, p7.af = (x==1)
p6_ut, p7_af = (x==2)

Figure 5.10: Re-expressed optimized predicate definition network.

remains in the predicate definition structures for p, and pg, although it is no longer useful
in guarding those two blocks. In both those cases, a condition expressed in the predicate’s
expression (in the case of py, C3 or (x==1)) implies the conditions used in the enclosing
guard ((x>=0)&&(x<=4)). In this and similar cases, these condition evaluations, and in
many cases intermediate predicates which held their results, can be removed.

Figure 5.10 shows the re-expressed optimized predicate definition network. Here the
number of comparisons required is reduced by one, and the dependence height of the
predicate definition network is reduced from four cycles to a single cycle. This dramatic
reduction in decision complexity is largely due to the ability of condition analysis in

assisting predicate optimization to remove redundant nested control.



51

6. EXPERIMENTAL RESULTS

This chapter describes the results of experimentation using the framework presented
in this thesis within the context of the IMPACT research compiler. The results and
characteristics reported are for a cross-section of benchmarks, including Unix utilities,
SPEC CINT 92 and SPEC CINT 95 benchmarks. Since the analysis mechanism and the
program decision logic optimizer operate on code which already contains predication, the
starting point for the exercises shown is the highest quality of hyperblock code gener-
ated by the IMPACT research compiler, with function inlining, pointer disambiguation,
and classical and ILP optimizations fully applied. Included in the ILP optimizations
applied are loop unrolling and induction variable optimizations, which tend to increase

the applicability of condition analysis techniques.
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6.1 Characteristics of Benchmark Condition Families

An examination of code prepared in the manner described reveals a significant pen-
etration of the types of conditions on which condition analysis can be effective. Ana-
lyzed here are the benchmarks 008.espresso, 022.1i, 023.eqntott, 026.compress, 072.sc,
124.m88ksim, 129.compress, 130.li, cccp, cmp, eqn, grep, lex, qsort, we, and yacc. Each of
these was compiled for predicated execution using the aforementioned techniques. The
benchmarks were then executed, and profile information was gathered using standard
reference inputs.

One useful statistic for gauging the applicability of condition analysis is the percent-
age of predicate definitions whose conditions fall into multiple-member families, and are
thus subject to logical description by these mechanisms with respect to other family
members. Another statistic is the typical size of these families. Larger families typ-
ically provide more opportunity for optimization. Using profile information can yield
dynamic results, weighting influential, high-trip-count parts of the program more than
infrequently executed parts. Normalizing the number of total comparisons computed
across the benchmarks, we find that 30% of dynamically executed conditions fall into
families of two or more members. The distribution for families up to a size of 10 is shown
in Figure 6.1. Families of size greater than 10 conditions are typically rare. The largest
family encountered was in 023.eqntott, with a size of 33 members. Some benchmarks
had significantly higher-than-average proportions of relatable conditions. Notably, 83%

of wc’s dynamic conditions are members of families of size six, and in 130.0i, over half of
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Percent of dynamic conditions (%)
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Figure 6.1: Dynamic prevalence of family-member conditions, by family size.

conditions are included in 9-10 member families. Other benchmarks were not particularly
amenable to condition analysis, including 023.egntott and yacc, in which less than 1% of
condition evaluations were relatable.

It should be noted that the results presented here are dependent on a particular
compilation path having been taken within a particular research compiler environment,
but that the general character of the results could be expected to hold in another ILP

compilation framework which applies predication effectively.

6.2 Effectiveness of Program Decision Logic Optimization

It is difficult to separate the function of the condition analysis subsystem from the
operation of the program decision logic optimizer due to the fact that the latter’s efficient

and useful operation depends heavily on the former [1]. Previous sections have made the
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argument that program decision logic optimization requires condition analysis to avoid
the propagation and often duplication of unnecessary comparison instructions. Previous
code examples also demonstrated that significant optimizations beyond the capability of
Boolean techniques alone are enabled by the addition of the condition relation descrip-
tion framework. Finally, the results of the previous section indicate the prevalence of
multiple-member families in important code segments of the benchmarks studied, fur-
ther suggesting that condition analysis is a critical component of program decision logic
optimization. Figure 6.2 shows the benchmark speedups achieved with the Program De-
cision Logic Framework earlier described. The two sets of results presented are for, first,
an eight-issue, in-order processor with register interlocking, and, second, for a hypotheti-
cal machine of the same description, except in which 256 predicate definition instructions
can be executed in each cycle, exclusive of the eight normal instruction issues. The re-
sults show a significant speedup for several of the benchmarks, and reveal the potential
for further gains if the number of predicate definitions used could be reduced further.

For more details, the interested reader is referred to [1].
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Figure 6.2: Speedup due to program decision logic optimization [1].
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7. CONCLUSIONS

This thesis has presented techniques for extracting the logical relationships between
the conditions in a low-level code representation and for representing these relationships
for use in a predicate analysis and optimization environment. The mechanisms described
have been implemented in the IMPACT research compiler and have been used successfully
in improving the accuracy of predicate analysis. This work was key in developing the
Program Decision Logic Optimization Framework [1], as it allows free transformation
of predicate definition networks in regions where conditions are populous and strongly
related. Prime examples of this significance were presented in Sections 3.3 and 5.2.4.

Also discussed were potential extensions to the described framework, including the
possibility of extending logical analysis to cover relationships between different definitions
throughout chains of computation. While these extensions might have some limited value
in a few special cases, it is not clear that they would be generally useful and so have not
been pursued aggressively. While this work has largely reached its limit insofar as its

application to simple condition analysis, the techniques and principles described could
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be applied to other important problems in compilation. The range analysis framework
could be recast in a more general sense to describe the values possibly residing in reg-
isters at various points in the control flow graph. This has applications to redundant
bounds-check removal, advanced dead code removal, and code specialization. Such an
adaptation raises interesting representational issues, since it might be desired not only to
describe contiguous ranges of numbers, but also odds and evens, or even more complex
sets. Furthermore, understanding of the effect of computation chains on values and rep-
resentation of issues like register overflow would need to be addressed. This thesis has
laid the groundwork for some of these issues, and provides a basic environment in which
early efforts in these directions can be accommodated.

The second direction in which this work points is to a greater scope of program
analysis. The combination of effective analysis of control, combined with the new forms
of data value flow analysis suggested previously, may provide an extremely powerful
way of analyzing code. Such a tool could have useful applications not just in compiler
transformation of code for ILP execution, but also in compiler-based specialization of
hardware to perform selected parts of algorithms and in preparation of software for more
effective run-time optimization or problem specialization. Interesting representational
and usability issues abound in pursuing this goal, some of which were just hinted at
in Section 3.1.1. Furthermore, a mixed-mode analysis for developing data- and control-
flow information in conjunction with each other features an interesting interplay between

control and data flow. An analysis system that could understand this interplay and
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effectively represent it would blur traditional compiler boundaries, perhaps opening the
way to a new, highly semantic-oriented, understanding of compilation. It is my intent to

continue to pursue this conceptual progeny of this work in my Ph.D. research.
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APPENDIX A. PREDICATION IN THE IMPACT ARCHITECTURE

The IMPACT EPIC predication model contains a set of predicate registers, predicate
definition instructions, and semantics implementing predicated execution. The architec-
ture is defined to have 64 independently addressable single-bit predicate registers and
a predicate definition instruction which takes a source predicate, computes a condition,
and deposits a result in each of two predicate registers according to the deposit type
specified for each destination. Predicate register 0 is defined always to hold the value 1.

The predicate definition instruction (guard) pred_comparison desty, typeg, desti,
typey, srcg, srcy computes the condition C' = srcy comparison src; and may assign
values to each dest; according to type;, C, and the guarding predicate guard, as shown
in Table A.1.

The IMPACT EPIC architecture defines six ways in which the result of a predi-
cate/condition computation can be deposited into a destination predicate register. These
six deposit types can be used to implement a variety of logical computations on the set

of conditions and input predicates. The first four types are as defined in the HP Labs
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Table A.1: IMPACT EPIC predicate deposit types.

guard C || UT UF | OT OF | AT AF |VvT VF | AT AF |CT CF
0 0 0 0 - - - - - 1 0 0 - -
0 1 0 0 - - - - 1 - 0 0 - -
1 0 0 1 - 1 0 - 1 1 0 - 0 1
1 1 1 0 1 - 0 1 1 - 0 1 0

PlayDoh Specification [11]. The and-, or-, conjunctive-, and disjunctive-type predicate
deposits are referred to as being parallel compares since multiple and- and or-type def-
initions can commit to a single (previously initalized) predicate register simultaneously.
While if-conversion generates only unconditional and or-type definitions [29], the other
types are useful in optimization of predicate definition networks, so an effective predi-
cate analysis system should fully support their general use. Since the IMPACT EPIC
predication model here described is a superset of the Intel IA-64 predication model, tech-
niques presented here for analysis of IMPACT-style predication are directly applicable

to TA-64 [6].
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