
c
 Copyright by Kevin Michael Crozier, 1999

STRUCTURAL AND STATIC ANALYSIS TECHNIQUES FOR ENHANCING

COMPILER SUPPORT OF PREDICATED EXECUTION

BY

KEVIN MICHAEL CROZIER

B.S., Rensselaer Polytechnic Institute, 1997

THESIS

Submitted in partial ful�llment of the requirements

for the degree of Master of Science in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1999

Urbana, Illinois

ACKNOWLEDGMENTS

I would �rst like to thank my advisor, Professor Wen-mei Hwu, for his support of my research

activities. I appreciate the opportunity to develop my research skills within the IMPACT group.

This investigation would not have been possible without the support of both past and present

members of the IMPACT group. I would like to especially thank three current members, David

August, John Sias, and Dan Connors. I would like to thank David for answering my questions

and being my mentor when I was new to the group. Furthermore, David's guidance and

suggestions helped greatly in the preparation of this thesis. I wish to express my gratitude

to John for ideas and assistance throughout my academic career along with a plentiful supply

of ice cream sandwiches. Finally, I wish to thank Dan Connors for providing innumerable

invaluable suggestions while I was working on this thesis. Dan took time away from his own

work to o�er many helpful comments, without which this thesis would not have reached its �nal

form. I would also like to thank past IMPACT member Scott Mahlke for designing the current

IMPACT hyperblock framework. It was his work that this thesis is built upon, and without his

framework and insight, this thesis would not have been possible.

I also would like to thank my many friends for making my graduate school life survivable. I

especially want to thank Patrick Eaton for being a great friend, colleague, and o�cemate while

here in Illinois. His tools certainly made IMPACT a friendlier system to use and his humor

made Illinois a friendlier place to live. I owe a great amount of thanks to Greg Chiocco, Tim

Smith, Seth Bumpurs, Mike Brogioli, and Mike Adams for supporting me throughout my career

at RPI and here at Illinois.

iii

Finally, and most importantly, I extend my deepest gratitude and appreciation to my par-

ents. I would like to thank my mother for always encouraging me to do that little extra and

my dad for bringing home that �rst computer because without that, and their love, support,

and guidance, I would not be where I am today.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

1.1 Organization of the Thesis . 3

2 BACKGROUND . 4

2.1 Predication . 4

2.1.1 Overview . 4

2.1.2 Survey of predicated execution in commercial systems 6

2.1.3 Architectural support for predicate execution 8

2.2 Static Branch Prediction . 12

2.3 The IMPACT Compiler . 16

3 HYPERBLOCK FORMATION . 20

3.1 The Hyperblock . 20

3.2 Hyperblock Formation . 21

3.2.1 Block selection . 21

3.2.2 Tail duplication . 22

3.2.3 Loop peeling . 24

3.2.4 If-conversion . 26

3.3 Hyperblock Speci�c Optimizations . 29

3.3.1 Predicate promotion . 29

3.3.2 Branch combining . 30

3.3.3 Instruction merging . 31

4 BLOCK SELECTION . 33

4.1 Path Enumeration Based Block Selection . 33

4.2 Block Enumeration Based Block Selection . 38

5 EXPERIMENTAL EVALUATION . 48

5.1 Methodology . 48

5.1.1 Processor model . 48

5.1.2 Benchmarks . 49

5.2 Results . 49

5.2.1 Code size . 51

5.2.2 Performance . 53

6 CONCLUSION AND FUTURE WORK . 66

6.1 Summary . 66

6.2 Future Work . 67

REFERENCES . 68

v

LIST OF TABLES

Table Page

2.1 Predicate de�nition truth table. 10

2.2 Branch probability predicted by Ball and Larus heuristics. 15

5.1 Instruction latencies. 49

5.2 Benchmark set. 50

5.3 Code size and speedup for selected functions. 59

5.4 Compile time and memory usage for the benchmark set. 64

vi

LIST OF FIGURES

Figure Page

2.1 An example of predication: (a) simple if-then-else C code construct, (b) unpredicated

code, (c) predicated code, (d) optimized code. 5

2.2 An EPIC style architecture with full predication support. 8

2.3 Pipeline diagram for the architecture. 9

2.4 The IMPACT compiler. 17

3.1 Algorithm for hyperblock tail duplication. 22

3.2 An example of tail duplication: (a) after block selection, (b) after tail duplication. . 23

3.3 Algorithm for hyperblock loop peeling. 24

3.4 An example of loop peeling: (a) original
ow graph, (b) after peeling one iteration

of the inner loop and tail duplication. 25

3.5 Algorithm for if-conversion. 26

3.6 Localized control dependence calculation and predicate assignment. 28

3.7 Algorithm for instruction promotion. 30

3.8 Algorithm for instruction merging. 32

4.1 Algorithm for path based block selection. 34

4.2 An example of path enumeration hyperblock formation: (a) after block selection,

(b) after tail duplication, (c) after if-conversion . 37

4.3 adpcm.decode function with (a) original basic block code, (b) path enumerated

hyperblock formation, and (c) block enumeration hyperblock formation. 39

4.4 Algorithm for block enumeration based block selection. 41

4.5 Algorithm for selecting the main path. 42

4.6 Block enumeration selection example: (a) after block selection, (b) after tail dupli-

cation and if-conversion. 43

4.7 Algorithm for statically selecting the main path. 46

5.1 Comparison of code growth for each of the formation types. 52

5.2 Performance measurements of the SPEC benchmarks. 54

5.3 Performance measurements of the Unix benchmarks. 55

5.4 Performance measurements of the MediaBench benchmarks. 56

5.5 Comparison of the optimal hyperblock composition. 58

5.6 Comparison of hyperblock statistics. 61

5.7 Comparison of the percentage low weight hyperblocks formed. 62

vii

CHAPTER 1

INTRODUCTION

The performance of modern superscalar and very long instruction word (VLIW) processors

depends on their ability to execute multiple instructions per cycle. These processors con-

tain multiple data paths and multiple functional units to concurrently execute independent

instructions from the instruction stream. In order to realize their performance potential, these

processors demand that increasing levels of instruction-level parallelism (ILP) be exposed by

the compiler. Unfortunately, recent studies have shown that conventional optimization and

scheduling methods cannot expose enough parallelism for full utilization of these processors [1].

One of the major challenges to increasing the available ILP is overcoming the limitation

imposed by the execution of branch instructions. This occurs for several reasons. First, the

amount of ILP in basic blocks is very limited because of the small number of instructions in

the block. In nonnumeric programs, on average 20% to 30% of instructions are branches, and

this translates to between three and �ve instructions per basic block. Branch prediction is one

solution that has been studied quite extensively. Proper branch prediction can increase the

number of instructions available to the scheduler, allowing it to expose greater amounts of ILP.

However, if a branch is mispredicted, a substantial performance penalty can be incurred [2].

In addition, branches can actually place an upper limit on the amount of ILP that can be

exposed in the instruction stream. Under the assumption that 25% of instructions are branches

in an instruction stream, an eight issue superscalar would need to execute two branches per

cycle to sustain full utilization. However, handling multiple branch instructions leads to very

1

complex pipeline and branch prediction hardware. Therefore, an eight issue processor's e�ective

performance would be limited to four if it can only execute one branch per cycle.

Predication is one technique used to overcome the limitation caused by branches. Predi-

cation or guarded execution refers to the conditional execution of an instruction based on the

value of a Boolean source operand, referred to as the predicate of an instruction [3],[4]. This ar-

chitectural support allows the compiler to use an if-conversion algorithm to convert conditional

branches into predicate de�ning instructions and instructions along alternative paths of each

branch into predicated instructions [5],[6]. Predication can eliminate frequently mispredicted

branches and reduce the penalties incurred by branch prediction misses. Eliminating branches

also reduces the need for wide-issue processors to execute multiple branches per cycle. Finally,

predication allows the compiler to expose multiple paths of execution to the processor.

The hyperblock is a structure used by the compiler to take advantage of predicated execution.

A hyperblock groups together a set of related basic blocks that cover multiple control paths

for optimization and scheduling. In the past, hyperblocks have been formed by enumerating

all possible control
ow paths through a region of code. This method sometimes leads to the

formation of nonoptimal hyperblocks. Increased schedule height and excessive tail duplication

are the primary problems observed in these nonoptimal hyperblocks. Another issue that has

not been investigated is forming hyperblocks in regions with little or no pro�le weight. This

has occurred because the path enumeration method is not e�ective on regions of code that have

very low or no execution weight.

This thesis investigates a new hyperblock formation algorithm that attempts to form more

ideal hyperblocks by looking more at program structure and less at execution paths. This

algorithm also attempts to form hyperblocks for code regions of very low weight by using static

2

branch prediction techniques. Finally, this thesis also investigates the code size issues related

to forming and optimizing predicated code.

1.1 Organization of the Thesis

This thesis is organized into six chapters. Chapter 2 presents necessary background material

on predicated architectures, static branch prediction and the IMPACT compiler. Chapter 3

presents the hyperblock structure. This chapter discusses formation and predicate-speci�c

ILP optimizations. Chapter 4 describes the current path enumeration algorithm used in the

IMPACT compiler, along with the newly designed block enumeration algorithm. Chapter 5

presents a set of experiments that evaluate two di�erent methods of block selection for the

hyperblock. Also presented is a set of experiments that illustrate the best performance that

can be obtained using predication with today's compiler technology. Finally, in Chapter 6

conclusions and directions for future research are discussed.

3

CHAPTER 2

BACKGROUND

This chapter includes background information on predicated execution, static branch pre-

diction, and the inner workings of the IMPACT compiler.

2.1 Predication

This section addresses the architectural support required to implement predicated execution.

First, an overview of the predicated execution concept and its uses is presented. Next, a brief

survey of predicated execution support in past and present processors is presented. Finally,

the architectural extensions required to provide e�cient support for predicated execution are

described.

2.1.1 Overview

Predicated execution or guarded execution refers to conditional execution of instructions

based on the value of a Boolean source operand, referred to as the instruction's predicate.

If the predicate has the true value (a logic 1), the instruction is executed normally. If the

predicate has the false value (a logic 0), the instruction is nulli�ed and not allowed to modify

the processor state. An architecture that provides predicated execution support allows the

compiler to eliminate many of the conditional branches in an application.

Figure 2.1 contains a simple if-then-else construct to illustrate the concept of predicated

execution. This hammock increments and decrements a number of variables based on the

4

<p2>
D = A + X <p2>

Z = Z - 1 <p1>
<p2>A = A + 1

} {else

C = C - 1
<p2>C = C - 1
<p1>

beq A, B

X = X + 1
D = A + X

C = C - 1Z = Z - 1

A = A + 1

Z = Z - 1

(a)

B = B + 1;

(b)

B = B + 1

D = A + X

p1 = (A == B)
p2 = (A != B)
X = X + 1 <p1>

<p2>A = A + 1
D = A + X

(d)

B = B + 1

p1 = (A == B)
p2 = (A != B)

(c)

X = X + 1 <p1>
D = A + X <p1>

B = B + 1

if (A == B)
X = X + 1;

{

Z = Z - 1;

A = A + 1;

C = C - 1;

D = A + X

D = A + X

}

Figure 2.1 An example of predication: (a) simple if-then-else C code construct, (b) unpredi-

cated code, (c) predicated code, (d) optimized code.

outcome of the comparison in the if-statement. In order to exploit predicated execution, the

compiler will apply a transformation known as if-conversion. If-conversion replaces conditional

branches in the code with comparison instructions that de�ne one or more predicates. Instruc-

tions control-dependent on the branch are then converted to predicated instructions. In this

manner, control dependences are e�ectively converted to data dependences.

The nonpredicated code generated for the segment is shown in Figure 2.1(b). Figure 2.1(c)

shows the control
ow graph after if-conversion. The beq instruction in Figure 2.1(b) has been

replaced by the predicate de�ne instructions in Figure 2.1(c). The details of the predicate de�ne

instruction will be discussed later in this section. In this example, predicate p1 will be assigned

a value of 1 if A == B and 0 otherwise. Likewise, predicate p2 will be assigned a value of 1

if A 6= B and 0 otherwise. The instructions corresponding to the if portion of the hammock

are predicated on p1 and the instructions associated with the else portion of the hammock

are predicated on p2. Figure 2.1(d) shows the predicated code after both predicate promotion

and instruction merging optimizations have been applied. These optimizations are discussed in

Chapter 3.

5

2.1.2 Survey of predicated execution in commercial systems

Predication is �rst seen in the Cydra 5, a VLIW multiprocessor system utilizing a directed-

data
ow architecture [4],[7]. Each Cydra 5 instruction word contains seven operations, each

of which is individually predicated. An additional source operand added to each operation

speci�es a predicate located within the predicate register �le. The predicate register �le is an

array of 128 Boolean (one bit) registers. After the operand fetch stage in the processor pipeline,

the predicate speci�ed by each operation is examined. If the value of the register is a logic 1,

the instruction is allowed to proceed to the execution stage. Conversely, if the register value is

a logic 0, the instruction is converted to a no-op and is essentially squashed.

The Cydra 5 also integrated predicated execution with modulo scheduling to control the

prologue, epilogue, and iteration initiation of modulo scheduled loops [8],[9]. Code expansion

normally required for modulo scheduling is virtually eliminated by using predicated execution in

conjunction with rotating register �les. Predication also allows loops with conditional branches

to be e�ciently modulo scheduled.

The Advanced RISC Machines (ARM) family of low power and low cost processors are

targeted for embedded and multimedia applications [10]. The ARM instruction set architecture

supports conditional execution of all instructions. The execution condition of each instruction

is determined by looking at the 4-bit condition �eld in the instruction and the condition codes

in the processor status register. The condition codes are set by compare instructions and the

condition code speci�es what comparison result (equal to, less than, greater than, etc.) the

instruction should execute under. If the condition �eld and the compare instruction result

match, the instruction executes. Otherwise the instruction is nulli�ed. This support allows the

ARM compiler to remove conditional branches from the instruction stream.

6

Recently, many general purpose processors are o�ering limited support for predicated exe-

cution. A conditional move instruction is provided in the DEC Alpha, SPARC V9, and Intel P6

processor instruction sets [11],[12],[13]. The conditional move instruction is a move instruction

augmented with an additional source operand that speci�es the condition under which the in-

struction is executed. As with a predicated move, the contents of the source register are copied

to the destination register if the condition is true. The HP PA-RISC instruction set provides all

branch, arithmetic, and logic instructions the capability to conditionally nullify the subsequent

instruction [14]. In fact, the IMPACT compiler actually takes advantage of this feature when

emulating predicated code.

The Multi
ow Trace 300 series machines provided the select instruction [15]. Unlike the

conditional move instruction, the select instruction always modi�es the destination register. If

the condition is true, the contents of the �rst source operand are copied to the destination.

Conversely, if the condition is false, the contents of the second source operand are copied to the

destination register.

Vector machines support conditional execution using mask vectors to control the execution

of vectorized loops [16]. The vector mask allows a logical value to be speci�ed so the machine can

determine which instructions to execute at run time. The use of mask vectors allow vectorizing

compilers to vectorize inner loops with if-then-else statements.

The recently announced Intel-Hewlett Packard co-designed IA-64 instruction set architecture

will be the �rst general purpose architecture to support full predication [17]. The architecture

includes a full set of predicate de�ning instructions, a separate predicate register �le, and the

addition of a predicate operand to each instruction. The IA-64 architecture also combines

predication and rotating register �les to support e�cient modulo scheduling.

7

Data

pR

AddressConflictReg#

Memory Conflict Buffer

Cache/MemoryAddressUnit
MemoryFunction Function

Unit #0 Unit #N

Instruction Fetch Unit

Instruction Decode Unit

E-Tag
R-Tag
Value

Predicate Register File

E-Tag
R-Tag
Value

Register File

Figure 2.2 An EPIC style architecture with full predication support.

2.1.3 Architectural support for predicate execution

This thesis will focus on the full predication model that is based on the Cydra 5 and HP

Labs PlayDoh architectures [4],[18]. The HP Labs PlayDoh architecture is a parameterized

EPIC architecture intended to support public research on ILP architectures and compilation.

An architecture supporting full predication must have four components: a predicate register

�le for holding the 1-bit predicate values, an additional source operand for each instruction to

specify the predicate, a set of predicate de�ning instructions, and a conditional execution stage

that can nullify instructions. A theoretical explicitly parallel instruction computing (EPIC)

style architecture with full predication is shown in Figure 2.2. This architecture supports in-

order issue of instructions to the fully pipelined functional units. Figure 2.3 shows the �ve-stage

pipeline for this architecture.

8

Predicate R
egister File

Instruction Execute

Decode/Issue
Instruction

Instruction Fetch

Memory Acces

Writeback

R
egister File

Figure 2.3 Pipeline diagram for the architecture.

The Nx1 predicate register �le is added to the base architecture to hold the predicate

values. This register �le is included for several reasons. First, it is ine�cient to use a 32-bit

general purpose register to hold a 1-bit value. Register porting is a signi�cant issue for wide

issue processors. By using a register �le speci�cally for predicates, this issue is avoided as no

additional ports for the general purpose register �le are needed. It should be noted that the

predicate register �le behaves no di�erently than a conventional register �le. For example, the

register contents must be saved during a context switch or subroutine call.

Predicate values are manipulated with a new set of instructions added to the base ar-

chitecture. The most important of these instructions are the predicate de�ning instructions.

Predicate de�ne instructions are inserted by the compiler to generate values for control of con-

ditional execution. PlayDoh predicate de�ne instructions generate two Boolean values using a

comparison of two source operands and a source predicate. It has the following form:

pD0 type0; pD1 type1 = (src0 cond src1) hpSRC i.

9

Table 2.1 Predicate de�nition truth table.

PlayDoh types

pSRC Comp UT UF OT OF AT AF

0 0 0 0 - - - -

0 1 0 0 - - - -

1 0 0 1 - 1 0 -

1 1 1 0 1 - - 0

The instruction is interpreted as follows: pD0 and pD1 are the destination predicate reg-

isters; type0 and type1 are the predicate types of each destination; src0 cond src1 is the

comparison, where cond can be equal (==), not equal (! =), greater than (>), etc.; pSRC

is the source predicate register. The value assigned to each destination is dependent on the

predicate type. PlayDoh de�nes three predicate types, unconditional (UT or UF), wired-or (OT

or OF), and wired-and (AT or AF). Each type can be in either normal mode or complement

mode, as distinguished by the T or F appended to the type speci�er (U, O, or A). Complement

mode di�ers from normal mode only in that the condition evaluation is treated in the opposite

logical sense.

For each destination predicate register, a predicate de�ne instruction can either deposit a

1, deposit a 0, or leave the contents unchanged. The predicate type speci�es a function of

the source predicate and the result of the comparison that is applied to derive the resultant

predicate. Table 2.1 shows the deposit rules for each of the PlayDoh predicate types in both

normal and complement modes. Each entry corresponds to the result assigned to the destination

predicate. Note that a \-" means that the destination is left unchanged.

As shown in the table, the unconditional types are always assigned a value. For the UT-

type, the value corresponds to the logical conjunction of the source predicate and the comparison

10

result. Conversely, the OR-type and the AND-type each only assign a value in one circumstance.

The OT-type conditionally writes a 1 if both its source predicate and comparison result are

true. The OR-type can be used to e�ciently compute the disjunction of multiple compare con-

ditions by accumulating terms into an initially cleared predicate register. Since the operations

computing terms conditionally write the same value, they can execute in any order or even in

parallel. Similarly, the AND-type can be used to compute the conjunction of multiple compare

conditions by accumulating terms into an initially set predicate register.

E�ective use of the OR-type and AND-type predicates previously described required that

the predicates be precleared or preset, respectively. Predicate clearing and predicate setting

instructions are included expressly for this purpose. Instructions for saving and restoring the

contents of the predicate register �le must also be provided. These instructions allow for

saving and restoring predicates across subroutine calls and context switches. Providing these

instructions allow the compiler to handle predicate registers in the same manner as it handles

conventional register types.

At some point during the execution of the predicated instructions, the instructions with

false predicates must be nulli�ed. This nulli�cation can occur in a variety of places along the

processor pipeline. The earliest an instruction can be nulli�ed is during the decode/issue stage.

The instruction's predicate would be fetched and if the value is false, the instruction is not

issued. At the other extreme, an instruction can be nulli�ed at the write-back stage of the

pipeline. If the instruction's predicate is false, the instruction is not allowed to commit its

results to the register �le and store instructions are prevented from entering the store bu�er.

Figure 2.3 shows a processor pipeline that supports this type of nulli�cation. All of nulli�cation

11

schemes have their advantages and disadvantages, and complete discussion of them can be

found in [19].

2.2 Static Branch Prediction

Many compiler optimizations require information about the direction of conditional branches

and relative execution frequencies of basic blocks. Examples of these optimizations include

superblock formation, superblock scheduling [20], hyperblock formation [21], register alloca-

tion [22], and function inlining [23]. Execution frequencies may be obtained from dynamic

pro�le information or may be estimated using static techniques. Static estimates are derived by

examining the statements and structure of the program. Examining the loop edges, conditional

branch expressions, and the static call graph, gives information that can be used to predict the

dynamic behavior of the program.

Static estimation is more convenient than dynamic pro�ling for a number of reasons. It does

not require multiple compilation steps, selection of sample inputs, or feedback to the compiler

after the pro�le run. Selecting input sets that generate representative pro�les is a di�cult task.

Some input sets may only exercise a very small section of the program, completely ignoring other

important sections. Since static analysis is independent of the input set, it allows 100% coverage

of all branches. The primary disadvantage of static estimation is that the information obtained

is usually less accurate than the information obtained from dynamic pro�ling. However, static

estimation is faster than pro�ling since there is no need to pro�le the program and recompile it

with the run-time information. In addition, pro�ling may not be possible in all environments

such as real-time and embedded systems where gathering pro�le information is not usually

feasible.

12

Many researchers have explored static branch prediction and static estimation of running

time. Fisher and Freudenberger discovered that branches tend to go in one direction most of

the time [24]. Ball and Larus have developed several heuristics to help make accurate branch

predictions statically [25]. Wall in [26] also looked at static pro�ling. He constructed estimated

pro�les and compared them to real pro�les. Unfortunately, he found that the estimated pro�les

were inferior to the real pro�les. Ramamoorthy used Markov models with control
ow informa-

tion to estimate the running time of programs [27]. Wagner et al. combined the Markov models

with accurate static branch prediction methods to obtain accurate inter- and intra-procedural

frequencies and extended the techniques used by Wall [28].

One important element of static estimation is predicting branch direction probabilities. Ball

and Larus discovered several branch prediction heuristics that use information contained in the

branches and the control
ow graph created by the branches. Below is a summary of the Ball

and Larus branch prediction techniques [25]. The �rst heuristic applies to loop branches:

Loop Branch Heuristic. Predict all loop-back branches as taken. This heuristic is valid

because loops tend to iterate multiple times and only exit once.

The next heuristics analyze the branch condition and successor blocks:

Pointer Heuristic. Predict that a comparison of a pointer to NULL or to another pointer

will fail. Since most pointers are nonnull and are rarely equal to each other, branches of this

nature are most likely going to be false.

Opcode Heuristic. Predict that a comparison of an integer to less than or less than or

equal to zero will fail. Also, predict that a comparison of an integer equal to a constant will

fail. This occurs because negative values tend to indicate error values and errors rarely occur.

It will also predict that a comparison to check if two
oating point numbers are equal will fail.

13

Guard Heuristic. Given a register that is used before being de�ned in a successor block,

and that register is an operand in the comparison, and given that the successor block does not

postdominate the register use, predict that control
ow will reach the successor block. This

heuristic attempts to �nd a branch on a value that guards a later use of that value. Most often

the function of guards is to catch the exceptional use of the value which is the less frequently

executed case.

Loop Exit Heuristic. Predict that a branch in a loop in which no successor is the loop

header will not exit the loop. Since the loop only exits once, this branch will only be true on

the last iteration of the loop.

The next heuristics analyze only the successor blocks:

Loop Header Heuristic. Predict a successor that is a loop header or a loop preheader

and does not postdominate will be taken. This heuristic states that if a branch chooses between

executing a loop or avoiding the loop, it predicts that loop will be taken.

Call Heuristic. Predict a successor that contains a call and does not postdominate will

not be taken. This heuristic appears to be valid because most conditional calls are to handle

exceptional situations.

Store Heuristic. Predict a successor that contains a store instruction and does not post-

dominate will not be taken. Ball and Larus discovered this heuristic more by accident than

anything else. It seems to work well for the
oating point benchmarks.

Return Heuristic. Predict a successor that contains a return will not be taken. Recursion

is the most likely justi�cation for this heuristic. Like the exit branch in a loop, the return in a

recursive procedure is the exception and does not occur frequently.

14

Table 2.2 Branch probability predicted by Ball and Larus heuristics.

Heuristics Probability of taking branch

Loop Branch 88%

Pointer 60%

Call 78%

Opcode 84%

Loop Exit 80%

Return 72%

Store 55%

Loop Header 75%

Guard 62%

In many cases several of Ball and Larus's heuristics apply to an individual branch. Given a

branch, their algorithm tries each heuristic in a predetermined order until it reaches the �rst one

that applies. They performed a wide variety experiments to determine the best order in which

to place the heuristics. In the case that no heuristic applies to the branch, a random prediction

is used [25]. Table 2.2 lists Ball and Larus's hit rates. For example, when the Call Heuristic

applies to a branch, they claim that the branch will fail 78% of the time. Wu and Larus took this

one step further by developing an algorithm based on the Dempster-Shafer theory of evidence,

to combine the probability estimates of all applicable heuristics into a stronger probability

estimate. This turned out to be a vast improvement over the predetermined method that Ball

and Larus used. A similar algorithm could be used to combine the branch probabilities from

multiple runs of a dynamic pro�le [29].

Hank et al. showed in [30] that, by utilizing the Ball and Larus heuristics along with haz-

ard analysis, superblocks could be formed without dynamic pro�le information. The stati-

cally formed superblocks outperformed basic block code and were competitive with the su-

perblocks formed with pro�le information. Finally, Deitrich combined a variety of static analysis

15

techniques in his thesis [31]. His goals were to enable ILP optimizations for unpro�led code

and to ensure that ILP optimizations on pro�led code do not degrade performance when the

program's behavior for a real input di�ers from the behavior seen during pro�ling. It is appar-

ent from these studies that current static estimation techniques cannot achieve the accuracy

obtained with dynamic pro�ling. However, if code is being compiled in an environment where

pro�ling is not available but optimization is desired, static estimation is a good alternative,

and in light of this information the next logical step is the application of these techniques to

hyperblock formation and predicated execution. With the ability of predication to remove hard-

to-predict branches, the accuracy of these techniques may improve to the point that reliance

on dynamic pro�ling could be signi�cantly decreased.

2.3 The IMPACT Compiler

The IMPACT compiler framework provides a suitable platform to explore and utilize many

ILP techniques including modulo scheduling, speculation and predication. A block diagram

of the IMPACT compiler is presented in Figure 2.4. The compiler front end translates the

C code into a high-level intermediate representation that is referred to as Pcode. In Pcode

memory dependence analysis [32],[33], loop-level transformations [34] and memory system op-

timizations [35],[36] are performed. Additionally, pro�le-guided code layout and function inline

expansion are performed at this level [37],[38],[39]. Once optimization at the Pcode level is com-

plete, the resultant code is then translated to IMPACT's low-level intermediate representation,

Lcode.

Lcode is the lowest level intermediate representation in the IMPACT compiler. Lcode resem-

bles the register transfer language found in most load/store processor instruction sets. Lcode

16

HP PA-RISC

MIPS

SPARC

IMPACT

AMD 29K

HP PLAYDOH

Intel X86

The IMPACT Compiler

PCODE

FRONT END
Basic Block
Profiler

Function Inline
Expansion

Inter-procedural
Analysis

Dependence
Analysis

Loop
Transformations

Memory System
Optimization

Loop
Parallelization

Peephole
Optimization

Acyclic Code
Scheduling

Register
Allocation

Modulo
Scheduling

C / Fortran
 Source

BACK END

LCODE

Code
Layout

Classic Code
Optimization

Superblock
Formation

Hyperblock
Formation

ILP Code
Optimization

MDES

Figure 2.4 The IMPACT compiler.

is a generic intermediate representation not speci�c to any particular processor. For code gen-

eration to a particular architecture, Lcode is translated into Mcode. Mcode instructions map

exactly to the target machine's assembly language instructions. To convert Lcode to Mcode

the code generator breaks each Lcode instruction up into one more Mcode instructions that

directly map to the target architecture. Mcode instructions are needed because of limited

17

address modes, limited opcode availability, ability to specify literal operands, and the �eld

width of literal operands within the target architecture.

Machine independent classic optimizations are applied at the Lcode level [40]. These opti-

mizations include constant propagation, forward copy propagation, backward copy propagation,

common subexpression elimination, redundant load elimination, redundant store elimination,

strength reduction, constant folding, constant combining, operation folding, operation cancel-

lation, code reordering, dead code removal, jump optimization, unreachable code elimination,

loop invariant code removal, loop global variable migration, loop induction variable strength

reduction, loop induction variable elimination, and loop induction variable reassociation. Iden-

ti�cation of safe instructions for speculation and side-e�ect-free function calls is performed

during interprocedural safety analysis [41] at this level.

Block formation techniques are also applied at the Lcode level. Superblock formation [20]

is one type of block formation completed at this level. After superblock formation, superblock

ILP optimizations are applied to take full advantage of the superblocks. For architectures sup-

porting predication, hyperblocks [21] are formed along with superblocks. Advanced hyperblock

formation is the focus of this thesis and is discussed in Chapters 3 and 4. All superblock ILP

optimizations are performed on the hyperblocks along with an additional set of hyperblock

speci�c optimizations designed to further exploit predicated execution.

IMPACT performs code generation at the Lcode level after block formation and optimization

is complete. The two main components of code generation are the instruction scheduler and the

register allocator. IMPACT can schedule code using either acyclic global scheduling [41],[42] or

software pipelining using modulo scheduling [43]. Acyclic global scheduling involves two passes

of the scheduler. Prepass scheduling is performed before register allocation, and postpass

18

scheduling is performed after register allocation to generate the most e�cient schedule. For

modulo scheduling, loops targeted for software pipelining are identi�ed. These loops are then

scheduled using the modulo scheduler. The remaining code is scheduled with the acyclic global

scheduler. Both techniques can take advantage of control and data speculation if the target

architecture allows.

Register allocation is performed using the graph coloring method [44]. Pro�le information,

if available, is used to assist the register allocator in making intelligent decisions. After register

allocation a set of machine speci�c peephole optimizations is performed. These optimizations

are designed to remove ine�ciencies introduced during the Lcode to Mcode conversion and

register allocation.

All Lcode modules take advantage of a detailed machine description database, Mdes, for

the target architecture [45]. The database contains information such as number and type of

functional units, size and width of register �les, instruction latencies, instruction input/output

constraints, addressing modes, and pipeline constraints. The Mdes is queried to assist with

optimization, scheduling, register allocation and code generation.

The IMPACT compiler generates code for a variety of real and experimental architectures.

The IMPACT and HP Labs PlayDoh architectures provide robust experimental frameworks for

compiler and architecture research. The IMPACT architecture is a parameterized superscalar

processor with an extended version of the HP PA-RISC instruction set. This architecture allows

varying levels of support for speculative and predicated execution [46]. Because of its
exibility,

all experiments in this thesis utilize the IMPACT architecture.

19

CHAPTER 3

HYPERBLOCK FORMATION

This chapter describes the hyperblock, a structure that allows the compiler to exploit pred-

icated execution. Described are the compiler issues related to hyperblock formation. These

issues include block selection, tail duplication, loop peeling, if-conversion and hyperblock opti-

mization.

3.1 The Hyperblock

A hyperblock is a set of predicated basic blocks in which control can only enter from the

top of the region, but may exit from one or more locations [21]. A single basic block in the

hyperblock is designated as the entry block, and control
ow may only enter the hyperblock at

this point. The motivation behind forming hyperblocks is that many basic blocks from di�erent

control
ow paths can be grouped into a single manageable block for compiler optimization

and scheduling. However, not all basic blocks through which control may
ow are included

in the hyperblock. Blocks may be excluded from the hyperblock to allow for more e�ective

optimization and scheduling.

The superblock is the predecessor of the hyperblock. Like the hyperblock, a superblock

is a set of basic blocks in which control enters at the top of the region and may exit from

one more locations. However, a superblock contains no predicated instructions, and conse-

quently a superblock only encompasses the instructions from one path of control. Conversely,

20

hyperblocks contain instructions from multiple paths of control. Hyperblocks provide a more

robust framework for the compiler to optimize regions in the presence of non-heavily biased

branches.

3.2 Hyperblock Formation

Forming hyperblocks is a four step-process. First, the blocks that will compose the hyperblock

must be selected. Next, tail duplication is performed to remove side entrances from the group of

selected blocks. Then, loop peeling is performed to remove any internal cycles from the selected

blocks. Finally, the region of selected blocks is if-converted to form the �nal hyperblock. The

following sections describe each of these steps in detail.

3.2.1 Block selection

The �rst step in forming a hyperblock is selecting which basic blocks from within a region to

include in the hyperblock. Blocks are selected from regions that include loops, nested loops, and

acyclic conditionals, called hammocks. The compiler attempts to identify the largest regions

possible under two constraints. First, each basic block may only reside in one region. Second,

the region may not contain any internal cycles. This constraint can be relaxed with the support

of loop peeling which will be discussed later in this chapter. It is important to note that

not all blocks in the region will be selected for inclusion in the hyperblock for two reasons.

First, the region may become too large for e�ective compiler optimization and scheduling.

Second, combining all the paths of execution could result in a loss of performance due to over-

subscription of limited fetch or execution resources. Detailed descriptions of two block selection

21

tail duplication(set of bb)

Let set of bb be the blocks that are selected for hyperblock formation

where bb1 is the entry block of the hyperblock.

done = false

while (not done)

done = true

for each basic block in set of bb, bbi
if (bbi 6= bb1)

mark each bbi that has predecessor not in set of bb

for each basic block in set of bb, bbi
if (bbi is marked)

if bbi is not duplicated yet

duplicate bbi
else

use previously duplicated bbi
change all incoming
ow arcs of basic blocks not in set of bb from

pointing to bbi to duplicate bbi.

done = false

Figure 3.1 Algorithm for hyperblock tail duplication.

algorithms are given in Chapter 4. It should be noted that the method used to select the blocks

in no way changes how any of the remaining steps are performed.

3.2.2 Tail duplication

Next, the hyperblock must be transformed into a single entry region. To do this, control

ow from nonselected blocks to selected blocks (other than the entry block) must be eliminated.

Such paths of control are referred to as side entrances. Side entrances are removed from the

hyperblock using a technique called tail duplication. An algorithm to perform tail duplication is

shown in Figure 3.1. The tail duplication algorithm marks all of the blocks with side entrances.

Then, all selected blocks which may be reached from a marked block are also marked. These

marked blocks are duplicated, and the control arcs corresponding to the side entrances are

22

G’

(a)

A

B

D

C

E F

G

(b)

A

B

D E

G

E’ F

C

Figure 3.2 An example of tail duplication: (a) after block selection, (b) after tail duplication.

redirected to the duplicated blocks. To minimize the amount of code expansion created by this

technique, blocks are duplicated at most once.

An example of tail duplication is shown in Figure 3.2. As shown in Figure 3.2(a) blocks

E and F both contain a side entrance, because blocks C and F were not selected for inclusion

in the hyperblock which is indicated by the dashed box. Therefore, both blocks E and G will

be duplicated and the control
ow from blocks C and F will be redirected to duplicated blocks

E' and G'. Also, note that the control
ow from block E' is directed to G'. If this were not

done, an additional side entrance would have been created. The result of this tail duplication

is shown in Figure 3.2(b). At the completion of tail duplication, all outside entrances to the

region will come only through the entry block.

23

loop peeling(set of bb)

Let set of bb be the blocks that are selected for hyperblock formation.

and bb1 is the entry of the hyperblock.

for each inner loop in set of bb, loopi
k = expected number of times loopi is executed each time through the loop

if (k > MAX NUM PEELS) k = MAX NUM PEELS

duplicate loopi k times

change the loop back arc from last duplicated loopi to the original header block of loopi
add the duplicated loopi to set of bb

Figure 3.3 Algorithm for hyperblock loop peeling.

3.2.3 Loop peeling

Another condition that also must be satis�ed before the blocks are if-converted is that there

exist no nested inner loops inside the selected blocks. Normally, this is not an issue, since

the compiler generally wants to optimize and schedule loops as a single entity. Because of

transformations such as loop unrolling and register renaming, large amounts of ILP can be

extracted from hyperblock loops. However, loops that execute infrequently are one important

exception. These loops do not contain enough iterations to achieve the desired level of ILP

using the unrolling techniques.

Loop peeling is an optimization that peels o� iterations of an inner loop that are nested

within the selected blocks [47]. An algorithm for performing loop peeling is given in Figure 3.3.

These iterations can then be overlapped with the instructions from the surrounding blocks to

increase ILP. The loop is usually peeled enough times so that the majority of the invocations

just execute the peeled code. The peeled iterations will appear as acyclic code in the hyperblock.

The predicates in the hyperblock are set to allow execution of just enough iterations. Any peeled

iterations not required for execution will be nulli�ed by their predicates. A copy of the original

loop body, also called the recovery loop, is maintained to handle invocations of the peeled loop

24

A

B

C

D

(b)

A

D

B

C

B

C

D’

(a)

Figure 3.4 An example of loop peeling: (a) original
ow graph, (b) after peeling one iteration

of the inner loop and tail duplication.

that exceed the number of peeled iterations. A branch is placed after the last peeled iteration

to test if more iterations are required. If these additional iterations are required, control
ow

will be transferred out of the hyperblock to the recovery loop to ensure program correctness.

In many cases, the code surrounding the inner loop is another larger outer loop. By peeling

the inner loop and thus converting it into acyclic code, a hyperblock can be formed around

the outer loop. The hyperblock then consists of the outer loop and the peeled iterations of the

inner loop. The inner loop iterations can be transformed to enable high levels of ILP to be

extracted from the outer loop.

An example of loop peeling is shown in Figure 3.4. In this example, all the blocks have

been selected for inclusion in the hyperblock including the inner loop consisting of blocks B

and C. This is shown in Figure 3.4(a). Before these selected blocks can be transformed into a

25

if conversion(set of bb)

Compute dominator(set of bb)

Compute post dominator(set of bb)

Compute control dependences(set of bb)

for each control depedence set, cdi
Assign control dependence cdi to predicate register Ri

Add predicate de�ne operations in basic blocks containing branches to be removed

for each basic block, bbi
use the predicate register assigned in R

Remove all forward branches

predicate this basic block with the assigned predicate register

Figure 3.5 Algorithm for if-conversion.

hyperblock, the inner loop backedge must be removed. For this simple example, the inner loop

is expected on average to iterate once. Therefore, one iteration of the inner loop is peeled. The

original loop code is placed outside the hyperblock to form the recovery loop, and a branch is

placed at the end of the peeled iteration to this recovery loop. Note that after peeling, tail

duplication is required for block D to prevent side entrances into the hyperblock. The �nal

peeled and tail duplicated code is shown in Figure 3.4(b).

3.2.4 If-conversion

Finally, if-conversion is used to remove the conditional branches from the hyperblock,

thereby converting control dependences to data dependences. Not all conditional branches

will be eliminated; those branches that transfer control outside the hyperblock will remain

after if-conversion. There are several steps in the if-conversion process. First, the domina-

tor and postdominator information must be computed for each basic block that will form the

hyperblock. Next, the control dependence information is calculated among the selected basic

blocks using the previously computed dominator and postdominator information. The control

26

dependence information is maintained as a set of edges in the control
ow graph which determine

the execution condition of a particular basic block. The algorithm for performing if-conversion

is shown in Figure 3.5.

Each unique control dependence set is assigned a predicate register. All blocks that share a

common control dependence set will be executed under control of the same predicate. Predicate

de�ning instructions are inserted into all basic blocks which are the source the of the control

dependence edges associated with a particular predicate. The predicate de�ne condition is

determined by the branch condition speci�ed by a particular control dependence edge. After the

predicate de�ne instructions are inserted, the instructions in the selected blocks are conditioned

with the predicate corresponding to the block's control dependence set. Finally, the code is

placed linearly in the hyperblock using a topological sort of the selected block's control
ow

graph. Note that it is possible for a region of blocks to have only one control dependence on

the entry block. This implies that the region encompasses only one path of control, and for

this case predication is not required and the region will be transformed into a superblock rather

than a hyperblock.

Figure 3.6 shows how localized control dependence is calculated for a control
ow graph.

The dashed line indicates the blocks selected for inclusion in the hyperblock. Block C has been

excluded from the hyperblock. Consequently, blocks D though K will be tail duplicated and

the control
ow from block C will be redirected to the tail duplicated blocks. Blocks A, B,

D, and K have no local control dependences. Therefore, these blocks will always be executed

if the hyperblock is executed. The instructions in these blocks do not require predicates and

are said to execute on the true predicate. The remaining blocks are control dependent on the

edges speci�ed in the �gure. Control dependences are denoted by indicating the branch from

27

A

B

D

E F

Predicate Assignment

G H

I J

K

T F

T F

T F

C

A : none
B : none
D : none
E : brD
F : brD

H : brF
I : brF, brH
j : brH
K : none

A : True
B : True
D : True
E : p1 (U)
F : p2 (U)
G : p1 (U)
H : p3 (U)
I : p4 (OR)
J : p5 (U)
K : True

G : brD

Control Dependence

Figure 3.6 Localized control dependence calculation and predicate assignment.

which they originate. The edges on the graph are marked T for true and F for false conditions.

For example, the control dependence for block F is brD, indicating that the branch condition

in block D must be false for block F to be executed. In this example, the hyperblock contains

�ve unique control dependence sets, thus �ve predicates are required. The mapping of control

dependences to predicates and the assignment of predicates to basic blocks is also shown in

Figure 3.6.

Unconditional predicates (indicated by a U in the �gure) are used for predicates that have

a single edge in their control dependence set. Predicates p1, p2, p3, and p5 are unconditional

type predicates. OR-type predicates (indicated by a OR in the �gure) are used for predicates

that have multiple edges in their control dependence sets. These predicates will be set to 1 if

any of the edges are traversed. In this example, p4 is an OR-type predicate because of the two

28

edges leading to block I. OR-type predicates must be cleared using an explicit predicate clear

instruction before they can be set. On the other hand, unconditional predicates do not require

these explicit clears.

3.3 Hyperblock Speci�c Optimizations

The formation of hyperblocks creates many opportunities for new compiler optimizations

to increase the performance of predicated code. These optimizations not only improve the

performance of the predicated code; they also perform transformations only made possible

with predicated execution. This section will provide a brief description of three hyperblock

optimization techniques: predicate promotion, branch combining, and instruction merging. For

more detailed information on these techniques see [19].

3.3.1 Predicate promotion

Speculation is an important technique used to achieve high amounts of ILP in superscalar

and VLIW processors. Speculation refers to executing instructions before their conditions for

execution are completely known. Speculation comes in two forms. In the �rst form, instructions

can be moved above the exit branches in the hyperblock. This form occurs in superblocks

formed for unpredicated code as well. The second form occurs only in the predicate domain

and is know as predicate promotion. By performing either type of speculation, the scheduler is

given substantially more freedom, allowing it to achieve a more compact schedule.

Predicate promotion advances the predicate of an instruction to an ancestor predicate [21].

This is bene�cial since the ancestor predicate is computed using fewer conditions than the

original predicate. As a result, the promoted instruction is executed under fewer conditions

29

instruction promotion()

for each instruction, op(x), in the hyperblock

if all the following conditions are true:

1. op(x) is predicated.

2. op(x) has a destination register.

3. there is a unique op(y); y < x; such that

dest(y) = pred(x).

4. dest(x) is not live at op(y).

5. dest(j) 6= dest(x) in fop(j); j = y + 1 : : : x� 1g.

then do:

set pred(x) = pred(y).

Figure 3.7 Algorithm for instruction promotion.

than the original program speci�ed, making it a speculative instruction. An algorithm for

instruction promotion is given in Figure 3.7. Typically, in hyperblocks, the critical dependence

height comes from the instructions awaiting the computation of their predicates. Predicate

promotion's major advantage is reducing the dependence height of the hyperblock. Predicate

promotion allows the dependences between the predicate de�ne instructions and the predicated

instructions to be broken and can thereby reduce the dependence height of the hyperblock.

The dependences can be completely broken if an instruction's predicate is advanced to the true

predicate. The overall result of predicate promotion is that more compact schedules can be

achieved through reduced dependence height and additional code motion freedom.

3.3.2 Branch combining

One problem with hyperblocks is the inclusion of infrequently taken exit branches. In a

machine with limited branch resources, these branches can quickly become a performance bot-

tleneck. These branches transfer control to blocks not selected for inclusion into the hyperblock.

Typically, these blocks handle special cases, boundary conditions, and exceptions. If a hyperblock

30

contains a large number of these branches, all the performance gained by the hyperblock for-

mation can be lost.

To combat this problem, the compiler can perform a technique called branch combining.

Branch combining replaces a group of exit branches by a corresponding group of predicate

de�nes. All of these predicate de�nes are of the OR-type and write into the same destination

predicate. Since multiple OR-type predicate de�nes can be issued per cycle, the processor is

no longer limited by the single branch resource. The resultant predicate will be set to true

if any of the exit branches were to be taken. Following the predicate de�nes will be a jump

instruction controlled by the resultant predicate that transfers control to a block outside the

hyperblock that will decode the exit condition. In this block, the branches are re-executed

in original program order to determine which branch was originally taken. It is possible for

multiple exit branches to be true, and in this case the �rst such branch will be taken since that

branch would have been taken in the original code sequence.

3.3.3 Instruction merging

Unlike the previously described techniques, instruction merging is an optimization geared

primarily for improving the e�ciency of predicate code rather than increasing ILP. Instruc-

tion merging combines two instructions in a hyperblock with complementary predicates into

a single instruction which will execute under the union of the conditions. This optimization

actually results in the reduction of the total number of instructions in the hyperblock. Instruc-

tion merging can be e�ectively used to reduce the number of instructions for resource limited

instruction classes such as branches and stores. Merging these instructions allows for more

compact schedules to be achieved by reducing resource pressure.

31

instruction merging()

for each instruction, op(x), in the hyperblock

if all the following conditions are true:

1. op(x) can be promoted.

2. op(y) can be promoted.

3. op(x) is an identical instruction to op(y).

4. pred(x) is the complement form of pred(y).

5. the same de�nitions of src(x) reach op(x) and op(y)

6. op(x) is placed before op(y).

then do:

promote op(x).

delete op(y).

Figure 3.8 Algorithm for instruction merging.

For instruction merging to occur, instructions with the same source operands, destination

operands, and equivalent opcodes are identi�ed. Next, the compiler determines if the same

values for each of the operands reach both instructions. If so, these instructions are candidates

for merging. Then, the compiler ascertains whether one of the instructions can be promoted

to a new predicate which allows the other instruction to be eliminated. This new predicate

represents the logical OR of the candidate instruction predicates. This algorithm is given

in Figure 3.8. Currently, only two scenarios are checked for merging. In the �rst case, the

candidate predicates are mutually exclusive with a common ancestor predicate. In this case,

the ancestor predicate is used as the new predicate. The second case occurs when one of the

candidate predicates is an ancestor of the other. For this case, the ancestor predicate itself

serves as the new predicate.

32

CHAPTER 4

BLOCK SELECTION

This chapter describes the most important issue related to hyperblock compilation and the

main contribution of this thesis, block selection. First, the path enumeration method of block

selection is described as it is the current method used within the IMPACT compiler. Next,

block enumeration is presented as another method of block selection that overcomes some of

the problems with path enumeration.

4.1 Path Enumeration Based Block Selection

One method by which blocks are selected for inclusion in a hyperblock is to enumerate

all execution paths through the region. This is called the path enumeration method of block

selection. An execution path is a path of control
ow from the entry block to the exit block

in the region. A priority is calculated for each path in the region to determine its relative

importance. Paths are included from highest priority (the main path) to lowest priority based

on estimated available execution resources and characteristics of the path. The �nal set of

blocks that end up forming the hyperblock is the union of all the blocks along the included

paths of execution. The algorithm for performing path enumeration is given in Figure 4.1.

The path priority function is a combination of four elements: path execution frequency,

number of instructions on the path, path dependence height, and hazard conditions on the

path. Execution frequency is used to give paths with higher execution frequency a higher

33

/� Prede�ned variables for block selection �/
ISSUE WIDTH = 1 to MAX WIDTH /� As speci�ed in the machine description �le �/

RES MULTIPLIER = 2

MAX DEP GROWTH = 3

MIN PATH PRIORITY RATIO = 0.10

path enumeration based block selection(region)

enumerate all paths in region

calculate priority of each path

sort paths from largest to smallest priority

/� Initialization of loop variables �/
avail resources = ISSUE WIDTH � dep height1 �RES MULTIPLIER

used resources = 0

last priority = 0.0

sel paths = 0

for (i = 1 to num paths)

/� Check if there enough resources available to include the path �/
if ((num opsi + used resources) > avail resources)

continue

/� Prevent paths with large relative dependence heights from being included �/
if (dep heighti > (dep height1 �MAX DEP GROWTH))

continue

/� Do not include paths with a small relative priority to that of the last included path �/
if (priorityi < (last priority �MIN PATH PRIORITY RATIO))

continue

/� Include the path in the hyperblock �/
sel paths = sel paths [pathi
used resources = used resources+ num opsi
last priority = priorityi

sel blocks = all blocks contained within sel paths

return sel blocks

Figure 4.1 Algorithm for path based block selection.

priority. In general, execution frequency is used to exclude paths of control which are not often

executed. Removing infrequent paths eliminates dependence constraints for optimization and

scheduling associated with these paths. Also, the demand for resources is reduced by omitting

these paths. The number of instructions along a path is used to give higher priority to paths

with fewer instructions. Longer paths utilize more machine resources and are likely to reduce

the overall performance of the hyperblock if they are combined with shorter paths.

34

The dependence height of a path is used to give paths with larger dependence heights a lower

priority. When multiple paths are merged together in a hyperblock, the dependence height of

the resultant hyperblock is the maximum across all paths. Therefore, the overall performance

of a hyperblock can be reduced by merging a path with a very large relative dependence height.

Finally, any hazard conditions that exist along a path are used to give the path lower priority.

Hazard conditions include procedure calls and unresolvable memory stores (typically pointer

updates). Hazard conditions limit the e�ectiveness of optimization and scheduling for the entire

hyperblock since the compiler must make conservative assumptions regarding the hazards to

ensure correctness.

The path priority function is de�ned more precisely by the following three equations:

dep ratioi = 1:0 � (dep heighti= max
1�j�N

(dep heightj)) (4.1)

op ratioi = 1:0� (num opsi= max
1�j�N

(num opsj)) (4.2)

priorityi = (probabilityi � hazardi)� (dep ratioi + op ratioi +K) (4.3)

Equation (4.1) calculates the ratio of a particular path's dependence height with respect to

the path with the largest dependence height in the region. In order to make smaller dependence

heights more favorable, this ratio is subtracted from one. Correspondingly, the ratio of the

number of operations on a particular path with respect to the largest number of operations

along a path in the region is calculated by Equation (4.2). These two equations are used to

gauge the height and resource dominance of each path through the region.

The overall priority is calculated by Equation (4.3). The priority is the product of two

terms. The �rst term is the probability of path traversal scaled by a hazard multiplier. The

hazard multiplier is used to reduce the probability of paths that contain a hazardous instruction.

35

Currently, a value of 0.25 is used for any path containing a subroutine call or an unresolvable

memory store. For paths containing no hazards, a value of 1.0 is used. The second product term

is the sum of the previously computed dependence and operation ratios along with a constant

term K . The constant term is used to indicate a base contribution of the path probability. In

this manner, a path with the largest dependence height and number of operations still may

have a nonzero priority. Currently, the value of K is set to 0.1.

Priorities for all the paths are determined and the paths are sorted and stored in priority

order. Then, they are considered for inclusion in the hyperblock from highest to lowest priority.

Paths are included into the hyperblock provided they meet the following three conditions. First,

additional resources required by the path do not cause the hyperblock to exceed the estimated

number of available resources. The total number of resources available to the hyperblock

is estimated by multiplying the dependence height of the main path by the issue width of

the processor. Then, the number of instructions in the main path is subtracted from this

total, leaving the number of resources available for use by other execution paths. Second, the

dependence height of the path may not exceed the dependence height of the main path. Finally,

the priority of the path must be within some fraction of the priority of the last included path.

This prevents low priority paths from being included into a region consisting of mostly high

priority paths.

The aggressiveness of the path enumeration algorithm can be adjusted by changing two

key parameters. The �rst parameter determines the minimum pro�le weight for a block to

be included in the hyperblock. The second parameter speci�es the minimum path execution

ratio. This ratio is calculated by dividing the pro�le weight of the path being considered for

inclusion by the pro�le weight of the main path. Reducing both of these parameters causes

36

E
100

5

A

B C

D

100

55 45

55

55 45

55

55

40
5

A
B
C
D
E

(a) (b) (c)

F
5

5

E’

F
5

E’
5

A

B C

D

E

F

100

55 45

55

100

5

55 45

55

55

40
5

Figure 4.2 An example of path enumeration hyperblock formation: (a) after block selection,

(b) after tail duplication, (c) after if-conversion

the algorithm to include lower weight, and therefore lower priority paths into hyperblocks. The

most aggressive path enumeration is obtained by setting these parameters both to zero. This

forces the algorithm to form hyperblocks in low pro�le weight regions. The e�ects of this more

aggressive path enumeration are explored in Chapter 5.

To illustrate the path enumeration selection heuristic, an example is presented in Figure 4.2.

This example shows the weighted control
ow graph for a program loop segment. The numbers

associated with each node and arc represent the dynamic execution frequency of the block and

the branch direction, respectively. The main path in this example consists of blocks A, B, D,

and E. There are two other possible paths through this region. The �rst path consists of blocks

A, C, and E. The second path consists of blocks A, C, F, and E. The �rst path will be selected

for inclusion in the hyperblock because it is executed relatively frequently when compared to

the main path. The second path is rejected from inclusion in the hyperblock because it is

37

executed infrequently. Therefore, the selected blocks that will comprise the hyperblock consist

of blocks A, B, C, D, and E. This is shown by the dashed box around the blocks in Figure 4.2(a).

Figures 4.2(b) and (c) show the hyperblock after tail duplication and if-conversion, respectively.

4.2 Block Enumeration Based Block Selection

A second method of selecting blocks for inclusion into a hyperblock is called block enumer-

ation. This method is the main contribution of this thesis, and comparisons of this method to

the previously described path enumeration method will be made in Chapter 5. Two potential

problems can arise when using the path enumeration method for selecting basic blocks. First, if

a large, complex region is passed to the block selector, a very large number of paths may exist

in the region. Enumerating this large quantity of paths may lead to unacceptable compilation

time. The second potential problem occurs when low priority paths are excluded from the

hyperblock. Often these paths may only include one or two small zero or low pro�le weight

basic blocks, and excluding these blocks can actually lead to several problems. Usually these

blocks re-enter the selected region, and this leads tail duplication. In some cases, the amount of

tail duplication and consequent code expansion can be quite large. Also, excluding these small

zero weight blocks requires that a branch be inserted into the hyperblock, which could possibly

increase the schedule or dependence height for the hyperblock.

Figure 4.3 shows an example that illustrates both of the previously discussed issues. This

example is the adpcm.decode function in the adpcm benchmark. Figure 4.3(a) shows the

original basic block layout of the function. Figures 4.3(b) and (c)shows the function after

path enumeration hyperblock formation and after block enumeration hyperblock formation,

respectively. The control
ow is clearly more complex for the path enumerated hyperblock. It

38

I

A

B

C

E’

F’

G’

H’

I

J

A

B

C

D

E

G

D

I

J

(b)

H

F

(a)

A

B

J

C

(c)

Figure 4.3 adpcm.decode function with (a) original basic block code, (b) path enumerated

hyperblock formation, and (c) block enumeration hyperblock formation.

also requires more cycles to execute 3,099,400 versus 2,656,840 and consists of more instructions

81 versus 68. This inferior path enumerated hyperblock is created because a zero weight path

is excluded from the hyperblock. Block D is never executed when the benchmark is pro�led.

Consequently, when a path runs through this block, it is given very low priority and is excluded

from the hyperblock formed in block C. On the surface this might seem like a good idea

39

as there is no point in wasting scarce functional units or predicate registers on instructions

that, according to the pro�le information, will never execute. However, block D only contains

two operations, and they will not utilize signi�cant resources if included in the hyperblock.

Excluding this block also causes signi�cant tail duplication because it re-enters the resultant

hyperblock. In Figure 4.3(b) blocks E', F', G' and H' all represent the necessary tail duplication.

However, this does not explain the disparity between the number of cycles to execute the

function. In the path enumerated hyperblock, blocks D, E', F', and G' are never executed

and do not contribute to the number of cycles required for execution. What does cause the

increased cycle count is increased schedule height for the branches to blocks D, E' and H'. The

modeled processor only has one branch functional unit, and Figure 4.3(b) clearly shows that

at least three cycles will be required just for branches to execute in block C. Since this loop

is executed 147,520 times, one extra level of schedule height quickly adds up. By including

block D in the hyperblock as shown in Figure 4.3(c), the excessive tail duplication is avoided,

and predicating the instructions avoids the bottleneck for the single branch unit. This example

clearly illustrates that in some cases the path enumeration method does not always form ideal

hyperblocks. This coupled with the sometimes excessive compile time required to enumerate

the paths indicates that a more advanced block selector needs to be developed.

The block enumeration method of block selection is composed of a variety of techniques.

The overall algorithm is given in Figure 4.4. First, the main execution path through the region

is found. This is accomplished by starting at the entry block to the region and following the

control
ows of highest weight to the exit block of the region. This is very similar to the

algorithm used to form traces during superblock formation. The algorithm for �nding the main

path is given in Figure 4.5. Hazards such as register jumps and unsafe stores are avoided in

40

/� Prede�ned variables for block selection �/
ISSUE WIDTH = 1 to MAX WIDTH /� As speci�ed in the machine description �le �/

RES MULTIPLIER = 2

MAX DEP GROWTH = 3

MAX TAIL DUP GROWTH = 1.3

MAX STATIC TAIL DUP GROWTH = 1.05

block enumeration block selection(region)

if (region weight > min region weight)

�nd the main path in the region

else

�nd the static path in the region

/� For the rare case that a main path can not be found �/

if (no main path found)

return NULL

avail resources = ISSUE WIDTH � dep height main path�RES MULTIPLIER

while (blocks to be examined)

form a block path with unselected blocks

make a region consisting of the new path and previously selected blocks

/� Check if there enough resources available to include the path �/
if (num ops new region > avail resources)

continue

/� Prevent paths with large relative dependence heights from being included �/
if (dep height new region > (dep height selected region�MAX DEP GROWTH))

continue

/� Do not include paths that increase tail duplication �/
if ((code size of new region with tail dup� code size of new region)

< MAX TAIL DUP GROWTH)

continue

/� Include the path in the hyperblock �/
selected region = new region

sel blocks = all blocks contained within selected region

return sel blocks

Figure 4.4 Algorithm for block enumeration based block selection.

the process. If a hazard free main path can not be found through the region, a hyperblock will

not be formed. This is a very rare case, and has rarely if ever been observed in the benchmark

studies. After the selection of the main path, statistics consisting of dependence height and

resources usage are calculated for this main path. Then, blocks that were not selected are

considered for inclusion one block path at a time. A block path represents a block or group

of blocks that is entered from a block on the main path and exits back into another block on

the main path. After the selection of a block path, it is combined with the main path and

41

select main path(region)

current cb = entry cb

while (current cb != exit cb)

sel blocks = current cb [sel blocks
foreach successor of currentcb

if (successor contains a hazard)

continue

if ((successor weight > selected successor weight)_ (no successor selected))

/� Include the block in the main path �/

selected successor = successor

current cb = selected successor

return sel blocks

Figure 4.5 Algorithm for selecting the main path.

again dependence height and resource usage are calculated. If no hazards are introduced, issue

slots are available, dependence height is not increased, and tail duplication is not increased by

more than a speci�ed factor, then the blocks comprising the block path in conjuction with the

main path blocks will be included in the hyperblock. The algorithm includes a parameter that

speci�es the amount of tail duplication allowed for each region. Code expansion is a common

concern, so this parameter is set not to allow the region to expand more than 30%. This

process continues until either all the blocks in the region are included in the hyperblock, or

until all the block paths have been examined. Note that this algorithm does not enumerate

every execution path through the hyperblock. Instead, it enumerates each block that adds new

possible paths of execution through the hyperblock. The block enumeration algorithm attempts

to form optimum hyperblocks by examining the structure and layout of the region, rather than

examing all possible execution paths.

An example of the main path selection algorithm and the block enumeration based selector

is presented in Figure 4.6. The �rst step in processing the region shown in Figure 4.6(a) is to

select the main path. The entry block A is added as the �rst block in the main path. The

42

1005

100

100

5

5560

H’
8520

B
2 ops

C

D

A

E

G

H

F
Hazard

5 ops

4ops

6ops

3 ops

3 ops

4 ops

(a) (b)

C

E

G

H

A

B

D

F

Figure 4.6 Block enumeration selection example: (a) after block selection, (b) after tail

duplication and if-conversion.

successors of block A are considered for inclusion, and block C is chosen because of the higher

ow weight leading to it. The
ow weights are indicated by the numbers next to the control

ow edges. Block D is selected because it is the only sucessor to block C, and block E likewise.

Next, blocks F and G are considered for inclusion. Block F is rejected even though it has the

higher
ow weight because it contains a hazard; therefore block G is choosen for inclusion.

Finally, block H is selected because it is the only successor to block G and it is the exit block.

The blocks selected for the main path are surrounded by the lightly dotted line. Statistics will

be calculated for the main path including the number of issue slots required, dependence height,

and the amount of tail duplication. Next, the algorithm will try and expand the hyperblock by

43

including blocks that were not selected in the main path. Starting with block A, each block in

the main path will be examined for successors not included in the main path. The algorithm

determines that block B was not included in the original main path and itself forms a complete

block path. Using block B in conjuction with the main path, the compiler computes the region

statistics again. These statistics are then compared to the previously computed statistics of the

main path. If the added block does not cause the region to exceed the available slots, increase

dependence height, and increase the amount of tail duplication, then it will be added to the

hyperblock. In this case, the main path has plenty of slots available and adding block B will

actually reduce the amount of tail duplication. Therefore, it is added to the region even though

it has a low pro�le weight and probably would have been excluded from the region if the path

enumeration method had been used. This process continues until all the main path blocks have

been examined for successors. Block F will again be examined for inclusion and will again be

rejected because of the hazard it contains. All blocks selected for inclusion in the hyperblock

are surrounded by the heavier dashed line. Figure 4.6(b) shows the completed hyperblock after

tail duplication and if-conversion.

This algorithm also attempts to form hyperblocks in regions with very low or no execution

weight. The path enumeration algorithm could do this, but without execution weights, a

new method for calculating the path priorities would have to be found. However, the block

enumeration algorithm works with only a minor change to how the main path is found. Since

execution weights are not available or are very low, the method of following the highest
ow

weight is not possible and could be unreliable. Therefore, the main path must be determined

with a method that is independent of pro�le information. A method based on the static branch

prediction techniques discussed in Chapter 2 is used. Starting with the entrance block of the

44

region, branch destinations are inspected to determine if they meet the following criteria: they

do not contain to subroutine call, they do not contain an unsafe pointer store, and they do not

contain a register jump. If the branch destination meets these criteria, the destination block

is added to the main path. If two successors of one block both meet this criteria, the larger of

the two successors is added to the main path. Chances are the other block will be added later

during the block enumeration phase. The larger of the blocks is chosen because it is likely to

have the largest dependence height and will consume the most resources. Again, if a hazard free

path can not be found through the region, the hyperblock formation attempt will be aborted.

The algorithm for the static selection method is given in Figure 4.7. After �nding the staticaly

selected main path, block enumeration progesses just as before. Block paths are considered and

included as long as they do not reduce the performance of the already included blocks. As before

the amount of tail duplication allowed is adjustable based on the setting of a parameter. The

goal in forming low weight hyperblocks is to reduce code size, while providing an optimzation

opportunity with predication. Therefore, a minimal amount of tail duplication is allowed for

the low weight regions. Experimental evaluation indicates that allowing the code of a region to

increase in size no more than 5% allows an adequate number of low weight hyperblocks to be

formed.

Figure 4.6 will again be used to illustrate the operation of the static selection algorithm.

However, this time the control
ow edge weights will be ignored since, for a region to be passed

to the static selector, it would have very low or no pro�le weights. This example will be looked

at with two di�erent con�gurations for block F. First, assume block F is as shown in the �gure

with the indicated hazard. Block selection would progress in much the same way as the previous

example. The algorithm attempts to select the main path statically. Starting with block A's

45

static based main path selection(region)

current cb = entry cb

while (current cb != exit cb)

sel blocks = current cb [sel blocks
foreach successor of currentcb

if (successor contains a jsr)

continue

if (successor contains a register jump)

continue

if (successor contains an unsafe pointer store)

continue

if ((successor weight > selected successor weight)_ (no successor selected))

/� Include the block in the main path �/
selected successor = successor

current cb = selected successor

return sel blocks

Figure 4.7 Algorithm for statically selecting the main path.

successors, each is checked for hazards, of which there are none. Therefore, the block with more

instructions will be choosen: block C. This progresses until the exit block is reached, rejecting

block F along the way for the hazard. Then as before, the selected path's various statistics are

computed for later comparison to newly selected paths. The statically selected main path is

comprised of blocks A, C, D, E, G and H. Each main path block is then checked for successors

to determine if the hyperblock can be expanded. Block B will be included in the hyperblock

since adquate resources are available. Block F will be rejected because of the hazard. The

statically selected region matches the region that was selected using the pro�le weights and the

same hyperblock would be formed. However, forming this region causes code expansion because

block H must be tail duplicated. If the amount code expansion created by duplicating block

H was more than 5% of the region size the region would be rejected and a hyperblock would

not be formed. Conversely, if block H was very small the hyperblock would be allowed to form,

since the amount of tail duplication would be minimal. Looking at this example again, assume

46

that block F contains two hazard-free instructions. Main path formation would proceed the

same as before. Then as block enumeration progresses, block F would be selected this time,

thus forming a hyperblock of the entire region with no tail duplication required.

The motivation for forming these low weight hyperblocks is twofold. First, forming these

regions can reduce code size. In the above example, at least two instructions and possibly more

are eliminated. Performing this technique over a number of regions in each function has the

potiental of signi�cant code size savings over an entire program. Second, dynamic pro�ling

does not execute all portions of the program, and in fact, can completely exclude signi�cant

areas. Performing this techinique allows the compiler an attempt to optimize these areas that

might otherwise be ignored, and thus a possible performance increase will be realized when

these areas of the program are entered in the real world.

47

CHAPTER 5

EXPERIMENTAL EVALUATION

The e�ectiveness of hyperblock compilation techniques is presented in this chapter. The

methodology used to conduct the experiments is �rst described. The results are then presented

and include the performance and code size issues of hyperblocks.

5.1 Methodology

The execution time for each benchmark is derived from the static code schedule weighted by

dynamic execution frequencies obtained from pro�ling. Previous experience with this method

of execution time estimation has demonstrated that it accurately estimates simulations of the

modeled machine with perfect caches.

5.1.1 Processor model

The processor modeled in this study is an in-order issue superscalar with register interlock-

ing. The issue rate is varied from eight to in�nity, where the issue rate is the maximum number

of instructions the processor can fetch and issue each cycle. The processor is assumed to have

uniform functional units, except for branches. This places no restriction on the type of instruc-

tions that can be fetched and issued except for branches which are limited to one per cycle. The

register �le includes 64 predicate registers, 64 integer registers, and 64
oating-point registers.

All of the experiments in this chapter utilize a perfect cache and memory system along with

perfect branch prediction. The instruction set is an extended version of the instruction set for

48

Table 5.1 Instruction latencies.

Function Latency Function Latency

Integer ALU 1 Floating-point ALU 2

Memory Load 2 Floating-point Multiply 2

Memory Store 1 Floating-point Divide (single) 8

Branch 1 / 1 slot Floating-point Divide (double) 15

the HP PA-RISC processor, and the instruction latencies assumed are those of the HP PA-RISC

7100 as shown in Table 5.1. The extensions include silent versions of all excepting instructions

and support for predicated execution. All experiments utilize the general speculation model to

support speculative code motion.

5.1.2 Benchmarks

All evaluations in this thesis use the set of twenty-two benchmarks shown in Table 5.2.

The benchmarks consist of three programs from the SPEC CINT95 suite, �ve programs from

the SPEC CINT92 suite, eight common Unix utilities, and six from the MediaBench suite.

The MediaBench suite is a relatively new set of benchmarks intended for embedded applica-

tions [48]. These benchmarks are evaluated because companies such as Motorola, Lucent, and

Texas Instruments have expressed interest in including predication into their high performance

digital signal processors [49], [50]. All of these benchmarks were chosen because of their control

intensive nature and lack of easily exploitable ILP.

5.2 Results

The performance improvement presented in this section is calculated using a speedup cal-

culation. Speedup is computed by dividing the total number of execution cycles for the base

49

Table 5.2 Benchmark set.

Benchmark Benchmark Description

124.m88ksim Architecture simulator (SPEC CINT95)

129.compress File compression utility (SPEC CINT95)

130.li Lisp interpreter (SPEC CINT95)

008.espresso Truth table minimization (SPEC CINT92)

022.li Lisp interpreter (SPEC CINT92)

023.eqntott Boolean equation minimization (SPEC CINT92)

026.compress File compression utility (SPEC CINT92)

072.sc Spreadsheet (SPEC CINT92)

cccp C preprocessor (Unix)

cmp Compare (Unix)

eqn Format math expressions for tro� (Unix)

grep Regular expression matcher (Unix)

lex Lexical analyzer generator (Unix)

qsort Quick sort (Unix)

wc Word count (Unix)

yacc Parser generator (Unix)

adpcm audio encoding and decoding (MediaBench)

expic Image compression (MediaBench)

g721 Voice compression (MediaBench)

jpeg Jpeg image compression and decompression (MediaBench)

mpeg Mpeg video encoding and decoding (MediaBench)

rasta Speech recognition (MediaBench)

con�guration by the total execution cycles of the test con�guration. The base con�guration

for all experiments presented in this section is optimized basic block code compiled speci�cally

for the three di�erent processor con�gurations. A speedup value greater than one indicates a

performance improvement. The code size results are presented as a relative change. This is

calculated by dividing the code size for test con�guration by the base con�guration. Again, the

base con�guration is optimized basic block code. A value greater than one indicates that code

expansion has occurred.

The block enumeration method will be compared against the path enumeration method

and an aggressive version of the path enumeration method. The baseline IMPACT parameters

50

are used with the path enumeration algorithm. For aggressive path enumeration, the minimum

block weight and minimum path execution ratio parameters are set to zero. This forces the path

enumeration algorithm to become more aggressive and form hyperblocks in low and zero weight

regions. This was done so that low weight regions would be formed by the path enumeration

algorithm, and comparisons could be made between it and the block enumeration algorithm.

For all of these methods, the hyperblocks formed were speci�cally for an eight issue machine,

and then the code was scheduled and run on each of the three di�erent machine con�gurations.

5.2.1 Code size

Code size is an important issue in evaluating the performance of any compiler optimization.

The code size e�ects of block formation and superscalar optimization are shown in Figure 5.1.

The graphs in the left column show the amount code growth for the benchmarks immediately

after block formation. The graphs in the right column show the amount of code growth for the

benchmarks after block formation and superscalar optimization. The code growth after block

formation occurs because of tail duplication and loop peeling. The average code growth for

path enumeration is 1.10, for aggressive path enumeration is 1.19, and for block enumeration is

1.07. The decrease in code growth for the block enumeration method comes from two factors.

First, as was shown in Chapter 4 the block enumeration method has the potential to reduce

tail duplication and therefore code size by including speci�c low weight blocks. Second, the

block enumeration method also has the capability to reduce the code size of low and zero pro�le

weight regions, regions that the path enumeration method completely ignores. Together, these

two factors account for the smaller codes generated by the block enumeration method. The

larger code size for aggressive path enumeration is the result of excessive tail duplication.

51

SPEC benchmark code growth.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
C

od
e

G
ro

w
th

Path Enumeration Aggressive Path Enumeration Block Enumeration

0.90

1.20

1.50

1.80

2.10

2.40

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
C

od
e

G
ro

w
th

Path Enumeration Aggressive Path Enumeration Block Enumeration

3.39 3.55 2.97

Unix benchmark code growth.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
C

od
e

G
ro

w
th

Path Enumeration Aggressive Path Enumeration Block Enumeration

0.90

1.20

1.50

1.80

2.10

2.40

2.70

3.00

3.30

3.60

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
C

od
e

G
ro

w
th

Path Enumeration Aggressive Path Enumeration Block Enumeration

MediaBench benchmark code growth.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
C

od
e

G
ro

w
th

Path Enumeration Aggressive Path Enumeration Block Enumeration

0.90

1.20

1.50

1.80

2.10

2.40

2.70

3.00

3.30

3.60

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
C

od
e

G
ro

w
th

Path Enumeration Aggressive Path Enumeration Block Enumeration

Figure 5.1 Comparison of code growth for each of the formation types.

52

As will be shown later in this chapter, the aggressive algorithm forms a large number hyperblocks

and this large number of hyperblocks causes an excessive amount of tail duplication.

The graphs clearly show that block formation and superscalar optimization do increase code

size, but this code growth also brings increased performance. After superscalar optimization

the average code growth for each of the block selection methods is 1.99 for path enumeration,

2.04 for aggressive path enumeration, and 1.86 for block enumeration. The additional code

growth observed after the superscalar optimizations occurs because optimizations such as loop

unrolling and branch combining increase code size as well as ILP.

5.2.2 Performance

Figures 5.2, 5.3, and 5.4 show the performance of the benchmarks. As before, the column

on the left is the performance immediately after block formation is completed, and the column

on the right is the performance after block formation and superscalar optimization. On these

graphs the dark bar marked optimal selection represents the best performance that can be

obtained using the most intelligent combination of block formation techniques. On average the

path enumeration has the best performance with an average speedup of 2.12 for the in�nite issue

machine. However, higher average speedup comes at the cost of greater code size as explained

in the previous section. The block enumeration method has an average speedup of 2.03 and

the aggressive path enumeration has a speedup of 2.04. At lower issue rates the aggressive

path enumeration drops to 1.91 for the 16 issue machine and 1.82 for the 8 issue machine. The

performance losses are likely due to the over-subscription of resources and increased schedule

height caused by the large number of hyperblocks and the large amount of code growth.

53

Eight issue performance for the SPEC benchmarks.

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration

1.00

1.20

1.40

1.60

1.80

2.00

2.20

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration

Aggressive Path Enumeration

Block Enumeration

Optimal Selection

4.30

4.10

4.30

4.10

Sixteen issue performance for the SPEC benchmarks.

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration

1.00

1.20

1.40

1.60

1.80

2.00

2.20

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration

Aggressive Path Enumeration

Block Enumeration

Optimal Selection

6.27

5.85 5.85

6.27

In�nite issue performance for the SPEC benchmarks.

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration

Aggressive Path Enumeration

Block Enumeration

Optimal Selection

7.27

6.72 6.71

7.27

Figure 5.2 Performance measurements of the SPEC benchmarks.

54

Eight issue performance for the Unix benchmarks.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration

1.00

1.50

2.00

2.50

3.00

3.50

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration Optimal Selection

Sixteen issue performance for the Unix benchmarks.

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration

Aggressive Path Enumeration

Block Enumeration

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration Optimal Selection

In�nite issue performance for the Unix benchmarks.

0.60

0.80

1.00

1.20

1.40

1.60

1.80

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration

Aggressive Path Enumeration

Block Enumeration

1.00

1.50

2.00

2.50

3.00

3.50

4.00

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration Optimal Selection

Figure 5.3 Performance measurements of the Unix benchmarks.

55

Eight issue performance for the MediaBench benchmarks.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration Optimal Selection

Sixteen issue performance for the MediaBench benchmarks.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration Optimal Selection

In�nite issue performance for the MediaBench benchmarks.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

R
el

at
iv

e
P

er
fo

rm
an

ce

Path Enumeration Aggressive Path Enumeration Block Enumeration Optimal Selection

Figure 5.4 Performance measurements of the MediaBench benchmarks.

56

Figure 5.5 shows the composition of the optimal hyperblocks. The percentages presented in

these graphs are weighted such that if each of the three methods formed an identical hyperblock

it would count as 33% for each method. Similarly, if two algorithms formed the same hyperblock

it would count as 50% for both methods. For non-low-weight hyperblocks, it would be expected

that the path enumeration algorithm and the aggressive path enumeration algorithm would form

identical hyperblocks. This is, in fact, observed for most benchmarks as on average both the

path enumeration algorithm and aggressive path enumeration algorithm have even shares. In

many cases, the block enumeration algorithm will also form identical hyperblocks to the path

enumeration algorithm. This is also observed as on average the composition of the optimal

blocks is approximately 33% for each algorithm. There are, of course, a few exceptional cases

where one method or another forms more e�cient hyperblocks. Some of these cases will be

speci�cally addressed below.

A few benchmarks provide interesting cases worth examining. 072.sc is one particular

benchmark on which the block enumeration algorithm performs particularly poorly. It was

determined that for two particular functions, accounting for 50% of the execution time, the

algorithm was forming larger hyperblocks and these larger blocks had characteristics that pre-

vented them from being unrolled during superscalar optimization. A decrease in performance

by a factor of four is observed for these blocks indicating that loop unrolling is critical in ex-

tracting adequate amounts of ILP from these loops. Both 026.compress and adpcm exhibit

substantial gains for the block enumeration method. The reasons for the improvement of the

adpcm benchmark are discussed in Chapter 4. The speedup obtained in compress results from

decreased schedule height in the hyperblock that forms the main loop. In the path enumerated

version, the main loop hyperblock contains eight branch operations. On the other hand, the

57

Optimal hyperblock composition for SPEC benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8

12
4.

m
88

ks
im

 1
6

IN
F 8

12
9.

co
m

pr
es

s
 1

6

IN
F 8

13
0.

li
 1

6

IN
F 8

00
8.

es
pr

es
so

 1
6

IN
F 8

02
2.

li
16 IN
F 8

02
3.

eq
nt

ot
t 1

6

IN
F 8

02
6.

co
m

pr
es

s
16 IN
F 8

07
2.

sc
 1

6

IN
F 8

A
V

E
R

A
G

E
 1

6

IN
F

C
om

po
si

tio
n

of
 O

pt
im

al
 H

yp
er

bl
oc

ks

Path Enumeration Aggressive Path Enumeration Block Enumeration

Optimal hyperblock composition for Unix benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8

cc
cp

 1
6

IN
F 8

cm
p

 1
6

IN
F 8

eq
n

16 IN
F 8

gr
ep

 1
6

IN
F 8

le
x

16 IN
F 8

qs
or

t 1
6

IN
F 8

w
c

16 IN
F 8

ya
cc

 1
6

IN
F 8

A
V

E
R

A
G

E
 1

6

IN
F

C
om

po
si

tio
n

of
 O

pt
im

al
 H

yp
er

bl
oc

ks

Path Enumeration Aggressive Path Enumeration Block Enumeration

Optimal hyperblock composition for MediaBench benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8

ad
pc

m
 1

6

IN
F 8

ex
pi

c
16 IN
F 8

g7
21

 1
6

IN
F 8

jp
eg

 1
6

IN
F 8

m
pe

g
 1

6

IN
F 8

ra
st

a
16 IN
F 8

A
V

E
R

A
G

E
 1

6

IN
F

C
om

po
si

tio
n

of
 O

pt
im

al
 H

yp
er

bl
oc

ks

Path Enumeration Aggressive Path Enumeration Block Enumeration

Figure 5.5 Comparison of the optimal hyperblock composition.

58

Table 5.3 Code size and speedup for selected functions.

Path Enumeration Block Enumeration Comparison

Benchmark, Function Code Size Exe. Cycles Code Size Exe. Cycles Code Red. Speedup

124.m88ksim, checklmt 123 121548 89 103703 0.72 1.17

130.li, xllist c 149 490775 39 662573 0.25 0.74

008.espresso, read cube 826 422116 624 273386 0.75 1.54

022.li, xsetq 39 16407 27 16407 0.69 1.00

023.eqntott, qsort 783 372294 616 372163 0.78 1.00

026.compress, compress 1481 33171076 1244 28394933 0.83 1.17

072.sc, num search 298 14756 106 6307 0.35 2.34

072.sc, sync refs 1782 6803917 1136 3418439 0.63 1.99

eqn, getstr 359 2190942 349 1832803 0.97 1.20

lex, yyparse 1003 54108 952 29200 0.94 1.85

yacc, skipcom 239 95097 190 82036 0.79 1.16

adpcm, adpcm decoder 378 1649428 232 1446880 0.61 1.14

expic, run length decode 459 151299 298 151429 0.64 1.00

main hyperblock loop in the block enumerated version consists of three branch operations. In

this case the block enumeration version actually forms a smaller hyperblock; however, it turns

out to be a more e�cient hyperblock.

All of the methods seem to perform at about the same level and near the optimal selection

for the MediaBench benchmarks. The MediaBench benchmarks are smaller programs intended

for embedded systems with very speci�c applications. The benchmarks tend to contain small

tight inner loops, and all the methods handle this type of region equally well. Therefore, all the

methods rely on the superscalar optimizations to extract the ILP from the hyperblock loops

they form.

Table 5.3 shows code size and performance of speci�c functions from the tested benchmarks.

These functions were selected because they show that it is possible to reduce code size by

signi�cant amounts and still maintain or even increase the performance of the same code. The

most notable of these functions is num search from 072.sc. Its code size is cut by almost 66%

59

and the performance is more than doubled. The block enumeration method forms one larger

main loop hyperblock while the path enumeration method forms two smaller hyperblocks. This

single larger hyperblock gives the scheduler a larger region of instructions to select from and

consequently more freedom to create a small compact schedule for the loop. While this table

shows substantial performance gains for two functions from 072.sc these gains cannot erase the

performance lost from the previously described functions that could not be unrolled. Some

of the functions such as getstr from eqn and yyparse from lex do not show much code size

reduction, they do show some performance increase from the block enumeration method. The

function xllist c from 022.li is another interesting case. The code size is reduced by a factor

of four and only a minimal performance loss is observed. These examples illustrate that it is

possible to reduce code size, while maintaining and sometimes even increasing performance.

Figure 5.6 shows statistics concerning the numbers and sizes of hyperblocks created during

block formation. As expected, the aggressive path enumeration method forms the largest num-

ber of hyperblocks consisting of on average the largest number of operations. Further proof that

the aggressive algorithm is over-predicating for the given architecture. The block enumeration

method forms on average 65 hyperblocks per benchmark, consisting of 20 operations, while

the path enumeration method forms on average 30 hyperblocks per benchmark, consisting of

21 operations. Contributing to the number of hyperblocks formed with the block enumeration

method are the low and zero pro�le weight blocks. The performance e�ects of predicating these

regions cannot be measured, but their contribution to the number of hyperblocks is noted.

Figure 5.7 shows the percentage of zero and low weight hyperblocks formed by the aggressive

path enumeration method the block enumeration method. The path enumeration method is

60

Hyperblock statistics for SPEC benchmarks.

0

50

100

150

200

250

300

350

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

N
um

be
r

of
 H

yp
er

bl
oc

ks

Path Enumeration Aggressive Path Enumeration Block Enumeration

0

5

10

15

20

25

30

35

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

A
ve

ra
ge

 N
um

be
r

of
 O

pe
ra

tio
ns

 p
er

 H
yp

er
bl

oc
k

Path Enumeration Aggressive Path Enumeration Block Enumeration

Hyperblock statistics for Unix benchmarks.

0

20

40

60

80

100

120

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

N
um

be
r

of
 H

yp
er

bl
oc

ks

Path Enumeration

Aggressive Path Enumeration

Block Enumeration

0

5

10

15

20

25

30

35

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

A
ve

ra
ge

 N
um

be
r

of
 O

pe
ra

tio
ns

 p
er

 H
yp

er
bl

oc
k

Path Enumeration Aggressive Path Enumeration Block Enumeration

Hyperblock statistics for MediaBench benchmarks.

0

50

100

150

200

250

300

350

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

N
um

be
r

of
 H

yp
er

bl
oc

ks

Path Enumeration Aggressive Path Enumeration Block Enumeration

0

10

20

30

40

50

60

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

A
ve

ra
ge

 N
um

be
r

of
 O

pe
ra

tio
ns

 p
er

 H
yp

er
bl

oc
k

Path Enumeration Aggressive Path Enumeration Block Enumeration

Figure 5.6 Comparison of hyperblock statistics.

61

Low weight hyperblock statistics for SPEC benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

A
V

E
R

A
G

E

P
er

ce
nt

ag
e

of
 L

ow
 W

ei
gh

t H
yp

er
bl

oc
ks

Aggressive Path Enumeration Block Enumeration

Low weight hyperblock statistics for Unix benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

w
c

ya
cc

A
V

E
R

A
G

E

P
er

ce
nt

ag
e

of
 L

ow
 W

ei
gh

t H
yp

er
bl

oc
ks

Aggressive Path Enumeration Block Enumeration

Low weight hyperblock statistics for MediaBench benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ad
pc

m

ex
pi

c

g7
21

jp
eg

m
pe

g

ra
st

a

A
V

E
R

A
G

E

P
er

ce
nt

ag
e

of
 L

ow
 W

ei
gh

t H
yp

er
bl

oc
ks

Aggressive Path Enumeration

Block Enumeration

Figure 5.7 Comparison of the percentage low weight hyperblocks formed.

62

not included in these graphs because with the baseline parameters it does not form any low

weight regions. The graphs clearly show that aggressive path enumeration forms a large number

of low weight hyperblocks. Nearly 65% of the hyperblocks formed by aggressive path enumer-

ation are in low weight regions, meaning that, of the 100 hyperblocks formed, on average per

benchmark by aggressive path enumeration, 65 of them are in low weight regions. The large

amount of code growth and mediocre performance of the aggressive path enumeration method

indicate that the method is too aggressive and is forming too many hyperblocks. On the other

hand, only about 40% of the hyperblocks formed by block enumeration are low weight, and the

formation of these blocks does not appear to hinder performance and actually contributes to a

reduction in code size when compared to the path enumeration method. This translates to on

average about 26 low weight hyperblocks formed per benchmark by block enumeration.

Decreased compilation time is another advantage of block enumeration. Table 5.4 presents

the compile time results for both of the block selection methods. The compilation and memory

usage experiments were run on an unloaded HP 9000/780 workstation with 384 MB of memory

and a 180 MHz PA-RISC processor. Because block enumeration forms regions over low pro�le

weight regions, the parameters for path enumeration were set such that it would also make

an attempt to operate on low weight regions for this experiment. It should be noted that the

aggressiveness of these parameter settings was far less than the aggressive settings used in the

previous experiments for the aggressive path enumeration method. This was done so that a

fair comparison between both methods could be made. For most all of the benchmarks, the

compile speed for block enumeration is faster than for path enumeration. In some cases, the

compile time for block enumeration is almost half that of path enumeration. The regions in

these benchmarks tend to be large with complex control
ow, and this leads to a large number

63

Table 5.4 Compile time and memory usage for the benchmark set.

Path Enumeration Block Enumeration Ratios

Benchmark Comp. Time Mem. Usage Comp. Time Mem. Usage Comp. Time Mem. Usage

124.m88ksim 9:47.89 5,912 kB 6:25.37 5,277 kB 0.66 0.89

129.compress 0:24.96 1,271 kB 0:18.39 1,246 kB 0.74 0.98

130.li 3:59.82 1,521 kB 2:26.42 1,603 kB 0.61 1.05

008.espresso 9:35.67 4,232 kB 6:10.85 4,314 kB 0.64 1.02

022.li 3:54.34 1,410 kB 2:23.34 1,427 kB 0.61 1.01

023.eqntott 6:16.67 1,767 kB 1:00.47 1,373 kB 0.16 0.77

026.compress 0:43.78 2,627 kB 0:22.38 2,139 kB 0.51 0.81

072.sc 9:23.98 9,688 kB 4:42.28 9,787 kB 0.50 1.01

cccp 5:09.74 5,899 kB 3:11.69 5,400 kB 0.62 0.92

cmp 0:04.06 1,943 kB 0:03.88 1,287 kB 0.95 0.66

eqn 1:52.09 2,680 kB 1:03.32 2,049 kB 0.56 0.76

grep 0:19.68 1,709 kB 0:14.70 1,738 kB 0.75 1.02

lex 3:49.00 5,550 kB 2:26.81 4,736 kB 0.64 0.85

qsort 0:03.49 984 kB 0:03.64 980 kB 1.04 1.00

wc 0:03.96 1,087 kB 0:03.11 1,091 kB 0.78 1.00

yacc 2:04.99 3,532 kB 1:31.74 2,791 kB 0.73 0.79

adpcm 0:23.36 1,496 kB 0:02.39 997 kB 0.10 0.67

expic 0:36.97 6,080 kB 0:33.83 5,220 kB 0.92 0.85

g721 0:18.73 7,182 kB 0:18.47 7,165 kB 0.99 0.99

jpeg 5:26.28 12,207 kB 4:17.44 12,449 kB 0.78 1.02

mpeg 2:58.72 6,416 kB 1:34.07 6,375 kB 0.53 0.99

rasta 17:43.23 9,418 kB 13:39.84 9,615 kB 0.77 1.02

of paths to enumerate. Consequently, the path enumeration algorithm is slowed by having to

enumerate the large number of paths. It is further slowed by having to store and sort the

large number of paths. In a few cases, the compile times are nearly equal, indicating that the

benchmark is dominated by smaller regions with only a few execution paths.

Smaller memory footprint is one �nal advantage observed from Table 5.4 for block enumer-

ation. The memory usage columns in the table represent the memory required to compile the

most complex function of the benchmark using each block selection algorithm. For many of

the benchmarks, block enumeration requires less memory than path enumeration. This occurs

because block enumeration does not incur the overhead of storing the potentially large numbers

64

of paths created by the path enumeration method. In some cases, the memory usage of the

two methods is approximately equal, indicating that the overhead of storing the paths and the

blocks is the same. The regions in these benchmarks are smaller and less complex, so less paths

exist for enumeration, thus requiring less storage space. These results further illustrate that

enumerating the blocks in a region is more e�cient than enumerating all the execution paths

in a region.

In summary, an extensive evaluation of both the path enumeration and block enumeration

algorithms has been presented in this chapter. The performance of the path enumeration

algorithm was on average slightly better than the block enumeration algorithm. However,

application of the block enumeration algorithm results in smaller code size, faster compilation

time, and reduced memory footprint. The optimal results show that both algorithms, when

utilized together, can be used to obtain substantial performance improvements over optimized

basic block code.

65

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

Branch instructions pose serious di�culties for processors that exploit ILP. These problems

arise for several reasons. First, branches limit code motion freedom by imposing control de-

pendences to enforce the proper ordering conditions between branches and other instructions.

Second, branches cause substantial run-time overhead from misprediction penalties. Finally,

branches limit processor throughput when the branch execution bandwidth cannot keep up with

the branch frequency in the instruction stream. For superscalar and VLIW processors, conven-

tional architectural and compilation methods do not provide enough support to allow e�ective

exploitation of ILP in the presence of branches. In this thesis, one technique to overcome these

di�culties was investigated: predicated execution.

Speci�cally, this thesis described an advanced hyperblock block selection heuristic, called

block enumeration. Block enumeration is one heuristic that can be used to select blocks for

inclusion in a hyperblock. When selecting blocks, block enumeration relies more on the structure

and layout of a region, and less on the execution paths that run through it, .

Experimental results show that block enumeration can result in substantial performance

gains while at the same time reducing code size. These performance gains come from including

low weight blocks that in the past were normally excluded. Including these low weight blocks

can result in smaller schedule height and reduced tail duplication. Reduced code size is also

66

observed because the block enumeration method is able to form hyperblocks in regions with

very little or no pro�le weight. While neither path enumeration or block enumeration can

form optimal hyperblocks all the time, working together these heuristics can form optimal

hyperblocks for a wide a variety of programs.

This work, combined with the work of others in the �eld, shows that predication is an

extremely valuable tool in extracting instruction-level parallelism from programs.

6.2 Future Work

The work presented in this thesis further motivates some promising opportunities for future

research. These include the areas of block selection heuristics and static block selection.

The �rst opportunity is in the area of block selection. This thesis only examined path

enumeration alone and block enumeration alone. The best hyperblock heuristic would use both

of these heuristics together and would have the ability to determine which heuristic is forming

the more optimal hyperblock. In addition, with the use of path pro�ling, the path enumeration

algorithm could be made to be far more e�cient [51],[52],[53]. With the information from path

pro�ling, the path enumeration algorithm would no longer need to enumerate all the paths. It

would simply assign priorities to the paths discovered during path pro�ling, and select the best

paths for inclusion in the hyperblock.

The second opportunity is in the area of static block formation. This thesis provides only

a brief examination of hyperblock formation in the absence of pro�le information. A block

selection heuristic built with both static branch prediction and static pro�le estimation could

be used to form hyperblocks in systems in which dynamic pro�ling is not possible.

67

REFERENCES

[1] N. P. Jouppi and D. W. Wall, \Available instruction-level parallelism for superscalar

and superpipelined machines," in Proceedings of the 3rd International Conference on

Architectural Support for Programming Languages and Operating Systems, April 1989, pp.

272{282.

[2] M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, \Single instruction

stream parallelism is greater than two," in Proceedings of the 18th International Symposium

on Computer Architecture, May 1991, pp. 276{286.

[3] P. Y. Hsu and E. S. Davidson, \Highly concurrent scalar processing," in Proceedings of

the 13th International Symposium on Computer Architecture, June 1986, pp. 386{395.

[4] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, \The Cydra 5 departmental super-

computer," IEEE Computer, vol. 22, no. 1, pp. 12{35, January 1989.

[5] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren, \Conversion of control dependence

to data dependence," in Proceedings of the 10th ACM Symposium on Principles of Pro-

gramming Languages, January 1983, pp. 177{189.

[6] J. C. Park and M. S. Schlansker, \On predicated execution," Hewlett Packard Laboratories,

Palo Alto, CA, Tech. Rep. HPL-91-58, May 1991.

[7] G. R. Beck, D. W. Yen, and T. L. Anderson, \The Cydra 5 minisupercomputer: Archi-

tecture and implementation," The Journal of Supercomputing, vol. 7, no. 1, pp. 143{180,

January 1993.

[8] J. C. Dehnert and R. A. Towle, \Compiling for the Cydra 5," The Journal of Supercom-

puting, vol. 7, no. 1, pp. 181{227, January 1993.

[9] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, \Overlapped loop support in the Cydra 5," in

Proceedings of the Third International Conference on Architectural Support for Program-

ming Languages and Operating Systems, April 1989, pp. 26{38.

[10] A. V. Someren and C. Atack, The ARM RISC Chip, A Programmer's Guide. Reading,

MA: Addison-Wesley, 1994.

[11] D. L. Weaver and T. Germond, The SPARC Architecture Manual. Menlo Park, CA:

SPARC International, Inc., 1994.

[12] Digital Equipment Corporation, Alpha Architecture Handbook. Maynard, MA: Digital

Equipment Corporation, 1992.

[13] Intel Corporation, The Pentium Microprocessor. Santa Clara, CA, 1993.

[14] Hewlett-Packard Company, Cupertino, CA, PA-RISC 1.1 Architecture and Instruction Set

Reference Manual, 1990.

68

[15] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.

O'Donnell, and J. C. Ruttenberg, \The Multi
ow Trace scheduling compiler," The Journal

of Supercomputing, vol. 7, no. 1, pp. 51{142, January 1993.

[16] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers. Reading,

MA: Addison-Wesley, 1991.

[17] L. Gwennap, \Intel, HP make EPIC disclosure," Microprocessor Report, vol. 11, no. 14,

pp. 1{9, October 1997.

[18] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL PlayDoh architecture speci�cation:

Version 1.0," Hewlett-Packard Laboratories, Palo Alto, CA, Tech. Rep. HPL-93-80, Febru-

ary 1994.

[19] S. A. Mahlke, \Exploiting instruction level parallelism in the presence of conditional

branches," Ph.D. thesis, Department of Electrical and Computer Engineering, University

of Illinois, Urbana, IL, 1995.

[20] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,

R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,

\The Superblock: An e�ective technique for VLIW and superscalar compilation," The

Journal of Supercomputing, vol. 7, no. 1, pp. 229{248, January 1993.

[21] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, R. A. Bringmann, and W. W. Hwu,

\E�ective compiler support for predicated execution using the hyperblock," in Proceedings

of the 25th International Symposium on Microarchitecture, December 1992, pp. 45{54.

[22] D. Callahan and B. Koblenz, \Register allocation via hierarchical graph coloring," in

Proceedings of the ACM SIGPLAN '91 Conference on Programming Language Design and

Implementation, June 1991, pp. 192{203.

[23] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist classic

code optimizations," Software Practice and Experience, vol. 21, no. 12, pp. 1301{1321,

December 1991.

[24] J. A. Fisher and S. M. Freudenberger, \Predicting conditional branch directions from

previous runs of a program," in Proceedings of 5th International Conference on Architectual

Support for Programming Languages and Operating Systems, October 1992, pp. 85{95.

[25] T. Ball and J. R. Larus, \Branch prediction for free," in Proceedings of the ACM SIGPLAN

1993 Conference on Programming Language Design and Implementation, June 1993, pp.

300{313.

[26] D. W. Wall, \Predicting program behavior using real and estimated pro�les," in Pro-

ceedings of the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, June 1991, pp. 59{70.

[27] C. V. Ramamoorthy, \Discrete markov analysis of computer programs," in Proceedings of

ACM 20th Annual National Conference, 1965, pp. 386{391.

69

[28] T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Harrison, \Accurate static estimators

for program optimization," in Proceedings of the ACM SIGPLAN 1994 Conference on

Programming Language Design and Implementation, June 1994, pp. 85{96.

[29] Y. Wu and J. R. Larus, \Static branch prediction and program pro�le analysis," in

Proceedings of the 27th Annual International Symposium on Microarchitecture, December

1994, pp. 1{11.

[30] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and W. W. Hwu, \Su-

perblock formation using static program analysis," in Proceedings of the 26th Annual

International Symposium on Microarchitecture, pp. 247{255.

[31] B. L. Deitrich, \Static program analysis to enhance pro�le independence in instruction-level

parallelism compilation," Ph.D. thesis, Department of Electrical and Computer Engineer-

ing, University of Illinois, Urbana, IL, 1998.

[32] G. E. Haab, \Data dependence analysis for fortran programs in the IMPACT compiler,"

M.S. thesis, Department of Electrical and Computer Engineering, University of Illinois,

Urbana, IL, 1995.

[33] D. M. Gallagher, \Memory disambiguation to facilitate instruction-level parallelism com-

pilation," Ph.D. thesis, Department of Electrical and Computer Engineering, University

of Illinois, Urbana, IL, 1995.

[34] K. Subramanian, \Loop transformations for parallel compilers," M.S. thesis, Department

of Computer Science, University of Illinois, Urbana, IL, 1993.

[35] S. Anik, \Architectural and software support for executing numerical applications on high

performance computers," Ph.D. thesis, Department of Electrical and Computer Engineer-

ing, University of Illinois, Urbana, IL, 1993.

[36] Y. Yamada, \Data relocation and prefetching for programs with large data sets," Ph.D.

thesis, Department of Computer Science, University of Illinois, Urbana, IL, 1995.

[37] W. W. Hwu and P. P. Chang, \Achieving high instruction cache performance with an

optimizing compiler," in Proceedings of the 16th International Symposium on Computer

Architecture, May 1989, pp. 242{251.

[38] P. P. Chang, \Compiler support for multiple instruction issue architectures," Ph.D. thesis,

Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,

1991.

[39] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Pro�le-guided automatic inline

expansion for C programs," Software Practice and Experience, vol. 22, no. 5, pp. 349{370,

May 1992.

[40] S. A. Mahlke, \Design and implementation of a portable global code optimizer," M.S.

thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,

IL, 1991.

70

[41] R. A. Bringmann, \Compiler-controlled speculation," Ph.D. thesis, Department of Com-

puter Science, University of Illinois, Urbana, IL, 1995.

[42] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, andW. W. Hwu, \The importance of

prepass code scheduling for superscalar and superpipelined processors," IEEE Transactions

on Computers, vol. 44, no. 3, pp. 353{370, March 1995.

[43] D. M. Lavery, \Modulo scheduling for control-intensive general-purpose programs," Ph.D.

thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,

IL, 1997.

[44] R. E. Hank, \Machine independent register allocation for the IMPACT-I C compiler,"

M.S. thesis, Department of Electrical and Computer Engineering, University of Illinois,

Urbana, IL, 1995.

[45] J. C. Gyllenhaal, B. R. Rau, and W. W. Hwu, \HMDES version 2.0 speci�cation," IM-

PACT, University of Illinois, Urbana, IL, Tech. Rep. IMPACT-96-03, 1996.

[46] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier, B. Cheng, P. R.

Eaton, Q. B. Olaniran, and W. W. Hwu, \Integrated predication and speculative execution

in the IMPACT EPIC architecture," in Proceedings of the 25th International Symposium

on Computer Architecture, June 1998, pp. 227{237.

[47] D. I. August, \Hyperblock performance optimizations for ILP processors," M.S. thesis,

Dept. of Electrical and Computer Engineering, University of Illinois, Urbana, IL, 1996.

[48] C. Lee, M. Potkonjak, and W. Mangione-Smith, \Mediabench: A tool for evaluating and

synthesizing multimedia and communications systems," in Proceedings of the 30th Annual

International Symposium on Microarchitecture, December 1997, pp. 330{335.

[49] T. R. Halfhill, \StarCore reveals it's �rst DSP," Microprocessor Report, vol. 13, no. 6, pp.

13{16, May 1999.

[50] J. Turleyand and H. Hakkarainen, \TI's new 'C6x DSP screams at 1,600 MIPS," Micro-

processor Report, vol. 11, no. 2, pp. 14{17, February 1997.

[51] T. Ball and J. R. Larus, \E�cient path pro�ling," in Proceedings of 29th Annual Int'l

Symposium on Microarchitecture, December 1996, pp. 46{57.

[52] T. Ball and J. R. Larus, \Programs follow paths," Microsoft Research, Microsoft Research,

Redmond, WA, Tech. Rep. MSR-TR-99-01, January 1999.

[53] D. Melski and T. Reps, \Interprocedural path pro�ling," Department of Computer Sci-

ences, University of Wisconsin Madison, Tech. Rep. CS-TR-98-1382, September 1998.

71

