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1. INTRODUCTION

1.1 Java and the Web

In 1995 Sun Microsystems introduced a form of machine independent binaries

that allow executables to travel over the Internet and execute on any host machine

containing the needed interface. This new language entitled Java, swiftly found a home in

the entangled Internet Web community. These small applications, referred to as applets,

added more traffic to the already bloated network as people rushed to add the machine-

independent components to their Web pages. Businesses, not wishing to have their Web

pages to appear dated added some form of Java applet to them [1], [2].

One of the properties that enabled Java’s swift acceptance is its use of a universal

binary distribution format called bytecode. Among the main principles behind bytecode is

that the code is designed to run on a fictitious machine referred to as a virtual machine

(VM). This means that the bytecode can execute on any machine implementing the Java

Virtual Machine (JVM) specifications regardless of the underlying hardware [3].  By the

start of 1998, the JVM had been ported to everything from the processors used in the

embedded devices market to IBM mainframes [4]. However, this was not the only feature

that drove Java’s swift adoption.

Java was another evolutionary step in the migration from the more classic

monolithic program style to a more modular distributed application spanning both

resources and distance. Utilizing a set of class files as parts of a larger program, these

modules were designed to fit easily into multiple running applications and be swapped

with more current version when they were needed. Enabling this swapping of modules is
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the Java feature requiring that all class files be resolved at run time versus the compile

time resolution used for the more traditional monolithic programming style. Additionally

the seamless integration of class file changes meant that individual components of a

program could evolve with less chance of breaking a previous implementation [5].

Many of Java's features also helped with the maturation of the World Wide Web.

Companies feeling their way in the new communication and commerce medium, found

that, with Java applets, the graphics used on their Web pages could now come alive with

motion and sound via actual executing programs. The introduction of multimedia

presentation capabilities allowed businesses the marketing tools normally available only

on more traditional mediums such as TV. Java also introduced a security infrastructure

making it safe to allow outsiders access to executable content on a company server. The

“sandbox” security model implemented in Java, offered the flexibility of hardware access

restrictions to be as limited or open as company needs dictated. Also, Java introduced an

encryption and signature framework that was easy to implement, making the security

features needed for Internet commerce comprehensible and reliable. The incorporation of

unicode as the text format, allowed for a larger character set thus encompassing the

alphabets of most languages. With these and other features, Java enabled company Web

pages to swiftly integrate and facilitate Web based commerce that encompassed not only

the domestic market but also allowed for inclusion in an international marketplace [6]-

[10].

However, such enhancements do not come without costs. Transporting the

additional graphics and executables needed to provide the new level of interfaces

supported by today’s computers requires additional bandwidth. This, coupled with the
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increased use of the Internet, introduces additional delays that could discourage the

continued growth of the industry. Plans to increase the bandwidth of the Internet

backbone are in the works but are still years away [11], and as history has shown, usage

patterns will most likely expand the demand on it to fill any additional bandwidth. Even

with the increased bandwidth, however, many users are still restricted to the 56-K baud of

a modem or the 64- to 128-K bit rate of an ISDN line for Internet access. Even in

business and research environments where many of the intercomputer transactions take

place over a local area network (LAN), the new demand to transport the graphical

interface along with the information has taxed even these higher speed connections.

More importantly, when accessing information from a remote computer, ignoring

several lessons of the past can have detrimental effect. Although some caching is used in

Web servers and in most client-based Web browsers in use today, these appear only to

maintain recent Web page information and restrict reuse to physically identical access

localities [11], [12]. Currently, no attempt is made to check for overlapping components

between two physically different pages.  Therefore most Web servers and browsers are

not truly capturing the full reuse of components and efficiently utilizing the information

they have stored in their caches. One area where the potential reuse of components across

Web pages is most noticeable is with these Java applets. As the use of Java applets to

enhance Web pages has matured, the number of unique applets have begun to converge

onto into a smaller overlapping, heavily used subset. Although some of this overlap can

be attributed to accessing applets via a centralized location within a company or

institution, there is still a large percentage of applets that are copied to physically

different locations, making their overlap undetectable by current caching algorithms.
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1.2 Java and Software Vendors

The applicability of Java as the medium to solve problems with dynamic software

as well as heterogeneous hardware also sparked interest in the computer software

industry. Switching to Java supplied a new level of uniformity across platforms. For

example, there was now only one thread model to learn and program for versus the

headache of dealing with the multiple flavors of Posix threads on UNIX systems and the

Microsoft thread and fiber model on Windows-based systems. In addition, the network

socket model had also been simplified. Now there is one application programming

interface (API), and it would work on UNIX and Windows-based systems. The simplified

component model adopted in the Java specification also enables greater opportunities for

the reuse of code segments across multiple applications [13]. In addition, the difference

between interfaces to shared libraries on different systems, for example the  .sl and a

dynamically linked library (DLL) interface, were now also removed. All of the run-time

loading and linking would be handled by the Java run-time environment (JRE). Because

the JRE is provided by the hardware/operating-system (OS) manufacturer, the need for

performance on a given system could also be pushed back to them. The software

developer no longer needed to worry about imbedding an assembly level section into

critical sections of the program in order to gain performance. Getting performance out of

the underlying hardware was now the responsibility of the JRE interface. Because Java’s

dynamic loading and linking features allowed for the run-time customization of an

application, Java caught the interest of database manufacturers. These developers saw a

way to scale their product, as well as making it more responsive the user’s needs.

Because Java linked and loaded classes as needed, the search engine could be sent with
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the request customizing each search to fit the data instead of incorporating all possible

searches into one large monolithic program [14]-[16].

Although all of these features helped Java’s acceptance, Java still suffered from

one fundamental problem, performance. Because Java is compiled into bytecode, which

is targeted to run on a virtual machine, something was needed to translate the bytecode to

the proper binary needed for the underlying hardware. Initially implemented with

interpreters, the JREs soon encompassed a compiler that would take the bytecode to a

native binary fast and only when needed. These compilers produce the native code

swiftly when the code segment is executed the first time [17]. Called just-in-time (JIT)

compilers, the native code produced (JITed) by them disappeared when the Java

application finished execution. This production of native binaries at run time inhibited the

level of optimizations that could be applied to the code, meaning that the quality of the

code produced was inferior to what could be produced by a static code compiler that was

not under these severe time constraints.

Combining the benefits enjoyed by static compilers and support for the dynamic

specifications and features of the Java language [18] should provide an ideal solution.

Native code as well as bytecode reuse across invocations appeared to be a natural

evolutionary step for the JRE.  However, the JREs ignored code reuse across applications

both at a class file level and at a method level. Class files were located and reloaded when

needed even if they had not changed since the last time they were used. Also, methods

were re-JITed even if they were identical to a method JITed earlier. If opportunities for

code reuse could be exposed, then opportunities for producing better code quality could

be explored.
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In this thesis, I present several tools designed and developed to expose the overlap

within Java programs.  I further show the results of tests conducted on a collected set of

actual Java applets collected from the Internet over the space of a year to discover and

expose different layers of redundancy. In addition, I present a description of a working

interface capable of inserting static native versions of Java code when available in place

of using a JIT to generate the native code. I also give examples of tested static native

code that was successfully inserted in place of the normal JREs code generation facilities.

This research sets the stage for off-line code optimization that would enable performance

improvements in the JRE.
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2. CLASS FILE LEVEL REDUNDANCY

The time span from when Java was first introduced until its widespread

acceptance and appearance on Web pages, was relatively short. Within a year of its

introduction, a noticeable percentage of publicly accessible Web pages had been

enhanced with everything from text scrollers to interactive games.  On the surface, these

applets exhibited a similar look and feel to each other, which suggested they also shared,

similar if not the same code base. Investigation of this observation showed an overlap in

the actual applet files, that could be exploited to improve the performance of an existing

JRE. By recognizing applet class files already on the local system and eliminating the

download delay of reobtaining these files, the JRE could improve start-up and response

time.

2.1 Description of Investigative Tools

To study the overlap of Java applets on physically different Web pages, an input set

of reasonable size needed to be acquired. Visiting a large quantity of Web pages and

culling out the subset that was Java enhanced proved the most efficient means of

collecting this set. One way of accomplishing this is to start with a set of seed Web pages

and crawl across the Web, expanding links found on accessed pages and taking care not

to revisit sites in an endless loop. Using this solution, a modified Web crawler was

developed. This crawler would look specifically for Java-enhanced pages, taking care not

to revisit an already visited page. Figure 2.1 shows the basic algorithm used for the Web

crawler in a Java style of pseudocode. Basically, the Web crawler visited a page,

checking it for any Java applet tags used to denote the presence of an applet. If such a tag

was found, it was recorded in a master list of Java-enhanced pages. Also, any links to
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other pages that existed on the page currently being visited were checked to see if they

had been visited. If not, they were added to the list of pages to visit in the future. The

Web crawler used a queue-type structure to implement the list. This enforced a breadth

first type of search pattern.

Once the accumulated set of Java enhanced pages was a large enough for analysis,

the applets were downloaded. Figure 2.2 shows the fields in an example HTML applet

specification taken from the http://www.jars.com/index.html (204.74.88.17) in May 1998.

The applet specification example given in Figure 2.2 was chosen because it illustrates

several aspects concerning the location of an applet referenced on a Web page. The

applet tag denotes the existence of an applet on a Web page. This tag is immediately

followed by information on how to locate the applet, as well as where and how it should

appear on the page. The fields are the parameter-initialization fields and are denoted by

the param  tag. These param  fields allow the author of the Web page to initialize

parameters available within the applet thus customizing the look, feel, and behavior of

the applet to best fit their usage of it. The location of the actual applet code, as specified

Figure 2.1 Algorithm for Web crawler

while pageList != empty do
if pagesOnTier ! = empty then

crntPage = nextPageOnTier
else

crntTier = nextTier
crntPage = firstPageOnTier

page = download(crntPage)
if checkForAppletTags(page) == True then

appletList += crntPage
if checkForWebLinks(page) == True then

for(crntLink = firstLink; moreLinks; crntLink = nextLink)
if notOnVisitedList(crntLink) == True  then

addToTierList(crntLink)
addToVisitedList(crntPage)

end while



9

by the “codebase ” field. In Figure 2.2, this field shows that the actual applet code

resides in a physically different location than the actual page using it.  In fact, in this

example, the code resides at the Web site on another network, namely Guestplanet.

Additionally, looking at the code  field in Figure 2.2, additional path information exists.

This path information is denoted by the dot separator, used to denote paths in the Java

specifications, allowing the path specifier to be architecturally independent. By

concatenating these two fields, the applet in this example actually resides at

http://www.guestplanet.com/classes/com/earthweb/guestbook (209.242.68.54) and is

named GB5. When the actual applets were collected from the pages, this information was

maintained in tables similar to those used by the Web crawler.  This information was

further analyzed to determine the amount of uniqueness in the applets based on their

physical locations versus the pages accessing them.

codebase=  " http://www.guestplanet.com/classes/ " 
<applet code="com.earthweb.guestbook.GB5"  

align="baseline"  
width="165"  
height="30"  
archive="gb5.zip">  

<param name="cabbase" value="gb5.cab">  
<param name="BUTTON" value="Sign JARS Guestbook!">  
<param name="TITLE" value="JARS Guestbook">  
<param name="FILENAME" value="gb000002.html">  
<param name="MANDATORY_ID" value="YES">  
</applet>  

2.2 Exposed Class File Level Redundancy

The first generation of the Web crawler was not perfect and missed some types of

link specifiers. However, the Web crawler did allow us to collect a large enough sample

set to study. An improved Web crawler was later used to collect a larger set of pages.

Figure 2.2 Sample HTML Applet Specification
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This new and improved crawler was run 6 months after the initial one and allowed us to

test the validity of some early conclusions presented here.  One year after the initial

launch of the Web crawler, the improved version was launched again to collect another

sample set. The first run of this Web crawler was for several days in May 1997,

accumulating a set of 1616 Java-enhanced Web pages. The improved version of the

crawler was run in November of 1997 collecting a set of 5198 Java-enhanced pages, and

again in May of 1998 collecting a set of 4316 Java-enhanced pages.

The results of the Web crawling experiments were analyzed further and are

recapped in Table 2.1. This table contains some rather interesting observations used to

motivate the next step in this tool set development. In Table 2.1, row 1 lists the number of

Java-enhanced pages visited or the number of Web pages among the total visited that

were found to contain Java applets. Although differences in the number of pages

collected between May 1997 and November 1997 are partially attributable to

improvements made to the Web Crawling, part of the increase can also be attributed to

improvements in the Web browsers. These improvements make running of Java applets

smoother thus encouraging wider usage of applets on Web pages. The number of applets

seen in row 2 of Table 2.1, is a total count of all applets seen on the pages listed in row 1.

Note that on all runs, the average number of applets per page exceeded one. Also, this

Collected May 1997 November 1997 May 1998
Number of Pages 1616 5198 4316
Number of Applets 1939 7027 7194
Unique (physical location) 1465 1721 2959
Unique (physical code) 786 976 1595

Table 2.1 Web crawling results
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value has actually increased over time. The May 1997 collection showed the average

number of applets per page at 1.20, whereas by November of that year, it had risen to

1.35. Within a year, however, this average had risen even further to the 1.67 seen in May

1998.

 The third row in Table 2.1 lists the number of unique applets if the codebase

tag and code  tag are used to locate the file. Examples of these fields were shown in

Figure 2.2, and an example of how these fields are expanded and the applet located was

given earlier. Note that the Internet protocol (IP) addresses of the Web addresses

specified in this field were used to determine uniqueness. Observing that although there

were a large number of pages that contained Java applets, on average, almost 50% of

them referred to the same physically located code. Although it is true that most current

caching algorithms used in most browsers are capable of detecting this redundancy [11],

[12] and reducing this overhead, they still do not detect the full redundancy in the applet

sets. Next downloading the applets from the physically different locations, they were

compared on a byte-for-byte basis. Noticing that several of these applets were identical,

further analysis was performed. The last row in Table 2.1 shows this overlap. This level

of redundancy is probably attributable to the copying of applets to physically different

locations. Almost 30% of the applets identified as unique by physical location overlapped

when actually downloaded.

If a class loader can detect identical class files, it can avoid transferring these

redundant files across the network and caching extra copies of the bytecode.  The

simplest method to improve performance is to avoid loading a class file from the same

physical location multiple times.  A class loader may simply check if the class has
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already been downloaded from the same path and, if so, use the copy it already has.

Using this approach alone, however, a class loader runs the risk of using an out-of-date

file instead of the latest version as required in the Java Language Specifications [3].

Modification date requests could be used to help identify files that have changed between

accesses.  However, the inconsistency of file dates on PCs due to user level changes as

well as drift and variance caused by the majority of PCs not running a date and time

protocol such as network time protocol (NTP) may cause this technique to fail.  More

importantly, this approach still fails to capture the redundancy of files at different

physical locations.

Another technique, called fingerprinting a file, adopts the method used by the

Internet community to identify packet uniqueness. This method relies on a quick hashing

algorithm to compress the file into a short, unique number.  Message Digest version 5

(MD5) is the current generation of this algorithm [19].  Initial tests with MD5

fingerprinting showed that it successfully detects the full overlap between the files. The

algorithm is widely available and has recently been included in the specification of HTTP

version 1.1 [20].  MD5 produces a 128-bit result that fits into a single IP packet requiring

no more than the delay simple, single packet location protocol such as ping, to obtain.

The measured computing time of the MD5 fingerprint on the class files collected in the

applet sets was an average of 6 µs. This time was measured on a Pentium 200-MHz

machine with 64 Mbyte of memory. The measured average ping delay a to the servers in

the applet sets as 140 ms using a 10-Mbyte Ethernet line connecting through a T3 line

from the network router. For a 33.6 kbaud modem, this delay was measured at 330 ms.

When a class file that has the same name as one that has already been cached is requested
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from another site, a simple check against the MD5 fingerprint can verify whether it is

indeed an identical class.
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3. METHOD LEVEL REDUNDANCY

One thing that stood out when looking at the files collected from the Web crawler

runs was the number of class files found that shared similar or the same name but had

differing downloaded bytecode. Noting that in Java minor variations (such as the

compiler used, inclusion of a new field, rearranging of existing fields, changes in either

the filename or the name of files used by it) could cause the files to appear different when

they actually behaved and ran the same. Theorizing that the majority of the difference

seen in the collected class file sets may be minor, a closer examination the files was

conducted at a method level.

3.1 Description of Investigative Techniques and Tools

Minor differences in class files can exist for many reasons.  The most trivial type

of difference is a change in the name of the class.  Because the class name is stored in the

constant pool of the bytecode file, the class files will not appear identical and will

produce different MD5 fingerprints.  More commonly, a class will be copied but slightly

varied to suit its new purpose.  Frequently, programmers will reuse a class from another

source, but will slightly specialize the class by changing variable names, modifying or

adding just a few methods, or simply changing constant values.  In all of these cases, the

majority of the bytecode instructions are identical between modules.

Classes do not have to be closely related in order to exhibit fine grain redundancy.

Even classes that are independently developed show similarities within certain methods.

For example, observations of the collected data found it to be common for a class

initializer to call the initializer of the base class.  Moreover, the analysis of static code,

this observation showed that on average, more than 50% of these initializers resolve to
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root class, Object. A VM may want to keep an optimized class object initializer for use

every time it observes this situation. Initializers are not the only methods sharing

commonality across different class files. Another area of method overlap is caused by the

pure data abstraction principles of object-oriented programming. To access class fields,

classes provide what are commonly referred to as getter and setter methods [5].  These

methods simply load or store values in the fields of an object. By identifying these

methods, a VM may be able to substitute a more streamlined version into the executable.

3.1.1 Criteria used for comparison

To compare the files, three different criteria were used. The first comparison

technique used for comparing two methods determines if they are byte-for-byte matches.

This comparison required the methods being compared to be identical at a byte level

meaning every byte in the method matches with every byte in the other method. Chosen

initially because this was the way the full class files had been compared at download, its

applicability to this new problem set was questionable. Although this method sounds

viable, it actually fails in some simple cases. Note that the majority of Java bytecode

instructions that take arguments, take reference values that are represented as indices into

a global class file level table called the constant pool or a local variable table which is a

run-time constructed from information stored by the compiler [21]. Therefore, variations

in either of these structures will cause a discrepancy when comparing for byte-for-byte

equivalence. For example, consider an instance of the class Bar that has the field foo1.

There are two bytecode instructions used to access nonstatic fields in class instances,

getfield  and putfield . These instructions take as their argument an index into the

constant pool of the class file from which they are called. For example, if the getfield
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instruction in the example were used in a method from class FooyBar, it would contain

an index into the constant pool of class FooyBar. Figure 3.1 gives a diagram of how a

getfield  call from the method in FooyBar would be resolved using FooyBar’s

constant pool. First, the argument to the getfield  instruction, 0x0024 , shown in box

1 of Figure 3.1, is used to locate a constant pool entry in FooyBar’s constant pool. The

entry at that index should have a tag field denoting it as type CONSTANT_Fieldref , as

shown in box 2 in Figure 3.1. The fields of this constant pool entry are used to track

down the class that the field belongs to, boxes 3 and 4 in Figure 3.1, and the name and

descriptor of the field, boxes 5, 6, and 7 in Figure 3.1. Once the class has been located,

the name and descriptor of the field are used to search the class’s field table for the field.

Therefore it is possible for two getfield  calls in two different files to have different

constant pool indices that resolve out to the same field in the same class. The converse is

also true. This can also happen with other instructions in the bytecode stream. Therefore,

to more fully evaluate whether two methods were the same, modifications were made to

the equivalence testing to take into account what the constant pool indices point to.

With the shortcomings of the byte-for-byte equivalence technique in mind, the

next form of comparison used resolves the constant pool entries before the comparison is

made. This comparison technique is called constant pool resolution equivalence. To

accomplish this, a string was constructed consisting of the resolved values for the fields,

replacing the index value in the field. Using the example given in Figure 3.1, the

getfield  0x0024  instruction, which in the bytecode stream would appear as

0xb40024 , would be replaced with the string b4Barfoo1I . Similar replacements

were made in the byetcode stream for the methods wherever a constant pool value
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occurred. Once the replacements had been made, the methods were compared. This

approach does help identify class files that appeared byte-for-byte equivalent in the first

comparison method but were in actuality different. It also helps identify files that

appeared different due to constant pool index differences but the resolved reference is the

same.

getfield 0x0024 Tag: CONSTANT_Fieldref
class_index: 0x003a
name_and_type_index: 0x004a

Constant pool entry at index 0x0024

Tag: CONSTANT_NameAndType
name_index: 0x0050
descriptor _index: 0x0051

Tag: CONSTANT_Class
name_index: 0x004f

Constant pool entry at index 0x004aConstant pool entry at index 0x003a

Tag: CONSTANT_Utf8
length: 0x0003
bytes: Bar

Constant pool entry at index 0x004f

Tag: CONSTANT_Utf8
length: 0x0004
bytes: foo1

Tag: CONSTANT_Utf8
length: 0x0001
bytes: I

Constant pool entry at index 0x0050 Constant pool entry at index 0x0051

1
2

3

4

5

6 7

The final method used masked out all indices, not just the constant pool indices

but also the local variable indices to form what can be viewed as a generic form of the

bytecode stream and is referred to as generic redundancy. The reason for masking out

local variable indices was to mask out any differences in the location of the variables in

the local variable table. For example, although Java does not require a method to

statically maintain a local variable table, the Java source to bytecode compiler does

decide which local variables to place where in the local variable table. The Java

specifications also do require a unique local variable table location for each local variable

Figure 3.1 Sample resolution of the constant pool information accessed via a
getfield
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used in a method. This allows a Java source to bytecode compiler to overlap variables of

the same type in the table. The run time only needs to recover the size the compiler used

for the local variable table to first allocate enough space for it and second make sure the

method does not expand beyond it. This information is provided in the structure used to

represent a method within a bytecode file. The verification process for a method tracks

the local variable table usage to ensure that the type restriction is not violated [21].

Therefore it is possible for a method to be source level identical and yet compile

into different bytecode images simply because a different compiler was used. For

example, let us consider method foo() which has among its local variables i and j of type

int  and f of type float . Now if bytecode compiler A choose to place local variable i at

the local variable table location 4, j at local variable table location 5, and f at local

variable location 6, the instructions for loading and storing these variables would use

indices into these values. However, compiler B notices that local variable i is dead before

local variable j comes live. Therefore compiler B decides to overlap these two in the local

variable table at location 4, placing local variable f at location 5. Now when comparing

the two bytecode versions of foo(), even though the two methods are indeed identical, the

use of two different compilers will make them appear different.

Java bytecode has several instructions for loading and storing local variables.

These instructions, recapped in Table 3.1, denote the type of local variable by the

instruction name. Also, there are four variations that do not take arguments but rather

imply the offset by their name. These four variations, given in columns 2 and 3 of Table

3.1, denote the location of the local variable by the value associated with <n>. For

example, aload_1  pushes the reference variable at local variable table location 1 onto
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the operand stack.  In creating a generic form, only the type of the variable, the operation

being performed (load or store), and its relative location within the bytecode stream was

of interest. Therefore, instances of the bytecode instructions in columns 2 and 3 were

replaced with their general forms in columns 4 and 5. The argument field was also

removed from the previous substitution as well as instances of the instructions

represented by the sets in columns 4 and 5 of Table 3.1. Constant pool values are

removed in a similar manner, leaving only the bytecode instructions. By extracting out

the points of possible variation between two methods, a lower bound on the number of

unique methods, or an upper bound on the amount of redundancy that can be exploited

was obtained.  Therefore, of the three methods used, the generic equivalence method will

always show the smallest set of unique methods on any given input set.

To illustrate the effects of using the different equivalence tests on the methods, a

simple method from the ticker.class files collected in the November 1997 run is used.

The code for this simple method is shown in Figure 3.2. The bytecode stream for this

method would look like 0x2a2bb6xxxxb1  where Xs have been used in place of the

constant pool reference. Note that there is only one constant pool index in the method. In

Table 3.2, the variations of this method that appeared identical in a generic comparison

Type Load from
implied location
n = 0, 1, 2, 3

Store to implied
location
n = 0, 1, 2, 3

Load from
specified
location

Store to
specified
location

int iload_<n> istore_<n> iload  xx istore  xx
long lload_<n> lstore_<n> lload  xx lstore  xx
float fload_<n> fstore_<n> fload  xx fstore  xx
double dload_<n> dstore_<n> dload  xx dstore  xx
reference aload_<n> astore_<n> aload  xx astore  xx

Table 3.1 Overview of Local Variable Accessing Instructions
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are shown. Note that the method identified under the generic comparison guidelines has

several names denoted in column 1 by appending the classfile name to the front of the

method name and separating the two names with a colon. The next column lists the actual

constant pool indices and what they actually resolved to. The resolved value contains the

method name, argument types, and the return type for the method. These arguments are

actually stored in links that follow a series of links through the constant pool similar to

the getfield  resolution shown in Figure 3.1, page 17. The argument and return type of

the method are located in a string value store in a constant pool field similar to that in box

7 of Figure 3.1 on page 17. Symbols are used in the constant pool entry to represent the

actual types. Table 3.3 contains a description the symbols used. For example, looking at

row 2, the resolved value is given as tickerupdate(Ljava/awt/Graphics;)V. Using Table

3.3, this can be decoded as a method called “tickerupdate” that takes an instance of a

graphic object as an argument, and returns void.

2a aload_0 //load local variable at table index 0
//which must be of type reference

2b aload_1 //load local variable at table index 1
//which must be of type reference

b6 invokevirtual xxxx //call the method located by resolving
//constant pool index “xxxx”

b1 //return

Figure 3.2 Code for the paint, update, and paintAll methods from the ticker.class files

Method Name Indices/Resolved values
0072, 003f, 005f, 0054, 0058, 003b, 0034, 004d, 0033, 006b, 003d, 006fticker:paint
Tickerupdate (Ljava/awt/Graphics;)V
0129, 0037, 0084, 0080Ticker:paint
Tickerupdate(Ljava/awt/Graphics;)V
00fb, 00fd, 00f2, 00c1, 009e, 0098, 004e, 0067, 00b1ticker:update

ticker:paintAll Tickerpaint(Ljava/awt/Graphics;)V
005f, 0175, 002a, 00ab, 01bc, 0043, 0198, 00bfTicker:update

Ticker:paintAll Tickerpaint(Ljava/awt/Graphics;)V
0072Ticker2:paint
Ticker2update(Ljava/awt/Graphics;)V

Table 3.2 Example method indices and resolution values
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Looking at a particular instance of the method shown in Figure 3.2, and choosing

the constant pool index of 0x005f , the bytecode stream for this method would look like

0x2a2bb6005fb1 . Next, applying the constant pool resolution equivalence method to

the method in Figure 3.2, and using the resolved constant pool values

from Table 3.2, the constant pool index in the bytecode stream is replaced

with the string created by concatenating the method name and method

descriptor. These values are shown in the lower half of the second column in

Table 3.2. When this substitution is made, two different resolved methods

are created, 2a2bb6tickerupdate(Ljava/awt/Graphics;)Vb1 , given

by the resolution in the first row of Table 3.2, and

2a2bb6Tickerpaint(Ljava/awt/Graphics;)Vb1 , given by the resolution in

the fourth row of Table 3.2. This illustrates how the byte-for-byte equivalence technique

for this method would have identified these two constant-pool-resolved equivalent

methods as the same method, when they were in fact different. However, the generic

form of the method in Figure 3.2, is the same for all the variations in Table 3.2. For this

form of the method the aload_0  (0x2a ) and aload_1  (0x2b ) instructions are

Symbol Type Description
B byte signed byte
C char character
D double double-precision ieee 754 float
F float single-precision ieee 754 float
I int integer
J long long integer
L<classname>; ... class instance
S short signed short
Z boolean true or false
V void --
[ ... one array dimension

       Table 3.3 Java symbols used for identifying  types
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replaced with the aload  (0x19 ) instruction. This gives a generic form of the method in

Figure 3.2 of 0x1919b6b1 .

3.1.2 Discussion of techniques for exploiting method level redundancy

Once method redundancy has been identified, a Java virtual machine can benefit

from the information by reusing code.  Code reuse, in turn, translates into smaller space

requirements and lower startup cost.  When methods exhibit resolved equivalence, they

can share the same run-time memory space, and the code only needs to be loaded, linked

and JIT-compiled once.  Although generically equivalent methods are not as easily

shared, techniques for exploiting this redundancy can be developed.  For example, it is

only necessary to retain a single version of the generically equivalent methods on disk, as

long as the locations of constant pool references in the varied bytecode forms are

preserved in some structure.  A single generic bytecode form and tables of the specific

constant pool values for each variation indexed by the method signatures or other unique

tag can be used to represent the methods. An alternative VM implementation may cache

the native code rather than invoke the JIT compiler each time.  Because native code is

typically much larger than the original bytecode, static code size becomes an even greater

issue.  Using techniques discussed in Chapter 4, however, only one copy of the native

code needs to be stored for generically equivalent methods, with tables to indicate where

the run-time linking needs to be performed. This can help reduce the cache size as well as

load time.

Reusing generically equivalent methods, however, can limit the types of

optimization performed on precompiled code segments.  For example, certain aggressive

optimizations that occur during compilation to native code, such as method inlining, may
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make use of the information in the constant pool.  This problem, too, may be solved.  For

example the generic method can be tagged so that if a bytecode method appears to match

the generic form, it will be further evaluated, and if an optimized form is available, it will

be used instead of the more general generic form.

Another advantage to detecting method overlap is that a virtual machine can take

advantage of the redundancy not only across physical locations but also across time.  This

shows the most benefit in systems that cache native code versions of parts of the Java

programs for reuse at future invocations. When a class file on a remote location changes,

the virtual machine must load, possibly recompile, and link the new version.  If the

virtual machine has compiled and optimized methods from a previous version of the file,

it may be possible to still use these methods if it can detect that they have not changed.

3.2 Measuring Redundancy in the Collected Applet Sets

In this section, results of investigating redundancy on a method level are

presented. This redundancy is explored from many levels, including class files that shared

the same name but were physically different, the full sets of applets, the applet set

variance over time, and finally individual applications.

3.2.1 Exploring redundancy in homogeneous class files

Starting with the already reduced set of applets in which all duplicate class files

had been removed, further investigation was made of class files that had shared the same

or very similar names but that were in fact physically different. Out of each of the three

runs of the Web crawler, 10 such sets of files were chosen because the collected set

contain a large number of variations for that particular applet name. Theorizing that
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within these file sets, referred to as the top 10 variable applets, a large amount of

redundancy would exist under all three tests. Figures 3.3, 3.4, and 3.5 show the

redundancy in each of these cases for the three runs of the Web crawler. As can be seen

from all three graphs, less than 50% of the methods proved to be unique when the

constant-pool-resolved equivalence method was used.
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Figure 3.3 Top 10 variable applets from May 1997
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    Figure 3.5 Top 10 variable applets from May 1998

One of the advantages to exploiting redundancy is in a JRE that reuses static

native code versions of the bytecode methods. For example, looking at the Animator

applet (the bottom sets of bars in the three figures), exploiting and identifying this

overlap in a running JRE can reduce the amount of retained static native code. In this

particular case, Animator is reduced to 10% of the methods identified necessary with

only class file level redundancy exploited. Even in JREs that JIT the methods at run time,

identifying and exploiting method level redundancy can significantly reduce the JIT time,

reducing start-up costs and response time of a Java applet.

Although Figures 3.3, 3.4, and 3.5 show the potential of utilizing redundancy

information, they focus on a particular moment in time. In a JRE system that retains static

native code versions of the Java bytecode files, the native code is optimized to gain the

best possible performance, a process that can be time consuming. Therefore any measure

that reduces the need to recompile not only retains the improved code quality of the
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native code but also saves recompilation time. In the next model, the key issue

investigated is changes across time. In the presence of changes to the bytecode files, a

JRE utilizing static native code would invalidate the retained native code, falling back to

a less optimized bytecode execution model. The ideal system would only invalidate code

if none of the native code could still be used. This maximizes the retention of as much of

the benefits from the static native code versions as possible.

Table 3.4 Unique applets of combined sets

To explore this issue further, the unique applets collected in the May 1997 Web-

crawler run and the November 1997 Web-crawler run were combined. Also combined

were the applets collected in the November 1997 Web-crawler run with those collected in

the May 1998 run. Applying the class file level redundancy techniques discussed in

Chapter 2, these two new sets were reduced to unique applet subsets. Table 3.4 shows the

results of this reduction. Row 1 in this table shows the total count of the applets that were

physically unique for the two sets added. In other words, this row lists the value obtained

by adding the corresponding values from row 3, the physically unique row, in Table 2.1.

The next row in Table 3.4, shows how many of these remained physically unique when

the two set were combined. Note that if the applets that were unique in the May 1997 run

had remained unchanged over the 6 months, the total of unique applets left after

combining those applets with the applets unique in the November 1997 run should be

close to the larger of the two values. This would be expected because all of the Web-

May 1997 and
November 1997

November 1997 and
May 1998

Total applets 1762 2571
Unique applets 1413 2245
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crawler runs started with the same seed pages. However, this is not the case. The larger of

the two values (the November 1997 values from Table 2.1, row 4) is only 976 unique

applets. The number of applets in the combined set is significantly larger, showing a 30%

increase in the class file variations. For the combined set of the November 1997 and May

1998 Web-crawler runs, this increase in class file variations is just under 29%.

For a JRE that reuses static native code, the change in the class files across time

would invalidate at least 30% of the static native code. However, looking at the finer

grain method level redundancy under the three main tests, this invalidation was

unnecessary. To investigate the amount of redundancy left unexposed by just the class

file level checks, the methods that shared the same name but were not physically identical

were examined closer. Figures 3.6 and 3.7 show the results of this comparison. As

implied from the results of the class file level redundancy reduction shown in Table 3.4,

there is a large variance between the files when comparing them using a byte-for-byte

equivalence tests. The increase in the percentage of unique methods under this test, when

compared to the same test conducted on a single run, implies that the files have changed

over time. This change could unnecessarily trigger an invalidation of the static native

code. As can be seen from looking at the applets in the combined sets, less than 50% of

the methods remain unique when under the constant pool resolved equivalence mapping,

whereas over 90% of the methods were unique if compared using byte-for-byte

equivalence.

The result is even more dramatic for the Animator applet discussed in the

individual runs. The results for this applet are shown as the bottom sets of bars in Figures

3.6 and 3.7. Note that for this applet, only 20% of the methods actually changed.
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However, the byte-for-byte equivalence tests indicates that over 95% of the methods

appeared different.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Animator

Banner

Clock

FunScroll

Marquee

NavigatorTicker

Scroll

Scroller

Ticker

TickerTape

All ten (combined)

A
p

p
le

ts

Percentage of unique methods

Generically
unique

Constant pool
resolved unique

Byte-for-byte
unique

Figure 3.6 Changes over time May 1997 to November 1997
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 Figure 3.7 Changes over time November 1997 to May 1998

3.2.2 Exploring method redundancy in heterogeneous class files

Although the benefits to a JRE system resulting from exploiting method-level

redundancy in a pseudo-homogeneous set of class files have been shown, the question
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still remains as to whether or not there are benefits to exploiting redundancy across a

more heterogeneous set. The investigation of this question focused on the method-level

redundancy under the three defined redundancy mappings for each of the collected applet

set. Figure 3.8 shows the results of this investigation. Although not as dramatic as what

had been seen in the homogeneous collections, the results show a definite overlap. In all

three sets, less than 70% of the total methods remained unique, even under the byte-for-

byte equivalence testing. This percentage of unique methods decreases even further under

the other two mappings.
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Figure 3.8 Method redundancy in all applets combined

Even though Figure 3.8 gives a more heterogeneous view of the redundancy

effects, it is still only a pseudoview of a heterogeneous result, because this set of applets

still contains the homogenous file variation described previously. To remove this factor, a

collection was made of applets that characterized the set collected in the Web-crawler

runs but that did not include the pseudo-homogeneous files seen in these runs. The

investigation was also expanded to examine whether there was redundancy within a given

program that could also be exploited. To facilitate this investigation, the SPECjvm98
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suite of benchmarks was used [22]. The SPECjvm98 benchmark suite consists of a wide

range of Java applications chosen because they most closely characterize the current Java

workload set. A brief description of each of these benchmarks is given in Table 3.5.

Figure 3.9, shows the results of the defined tests for method level redundancy on

these two new benchmark sets. As anticipated, with these heterogeneous sets, the results

were not as dramatic as those seen in the more homogeneous collections already

analyzed. Although this result contrasts with the behavior of applet sets collected from

the Web-crawler runs investigated earlier, it should be expected given the nature of the

benchmark programs. Additionally, many of the benchmarks, such as _209_db , invoke

such a small number of methods that an overlap between them is unlikely. Each

benchmark is intentionally distinct from the others and executes a very specific function,

whereas the previous applets often performed many similar operations. Although

individually the SPEC benchmarks exhibited significantly less redundancy than the

downloaded applets, the full suite, as a set exhibited a slightly higher redundancy, with

_200_check A simple program to check the functionality of the JVM.
_201_compress A Java port of 129.compress in the SPECint95 benchmark

suite.
_202_jess A puzzle solving expert shell system based on NASA CLIPS

that progressively increases in difficulty level.
_209_db A database application performing multiple operations on a

memory resident database.
_213_javac Java source to bytecode compiler -- scaled down from the JDK

1.0.2 version.
_222_mpegaudio An audio decompression program that operates on a 4 MB

audio file.
_227_mtrt A multithreaded raytracer.
_228_jack A Java parser generator.

Table 3.5 Description of the applications in the SPECjvm98 benchmark suite
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the generically equivalent mapping. Still not as high as what was observed earlier, 45%

of all the methods in this benchmark suite were redundant. Also interesting in the

SPECjvm98 benchmark suite were benchmarks that clearly exemplified the potential

problems with using only a byte-for-byte equivalence mapping. Looking at Figure 3.9

and the individual graphs for _202_jess ,  _227_mtrt , _213_javac , and even the

All Spec graph, it is clear that doing a byte-for-byte equivalence incorrectly identified

methods as being the same, when in fact they were not. This present a danger in a system

that uses optimized native code. If a byte-for-byte equivalence test were used to detect

changes in the class files, then the system would not detect the variance in the target and

would incorrectly use the byte-for-byte equivalent code. As seen bar in Figure 3.9 from

the middle of each benchmark, when the references were resolved with the constant-pool-

resolved equivalence mapping, the percentage of unique methods actually increases.

However, on systems that use a generic native version, this problem disappears because

none of the indices are included, and all resolution is done at run time.

       Figure 3.9 Method level redundancy in SPECjvm98 and benchmark applets
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Various opportunities to exploit redundancy have been shown, ranging from the

more significant redundancy exposed with the Web-crawler applet set to the smaller

redundancy available to exploit in a single application or heterogeneous set of

applications.
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4. INTERFACE DESCRIPTION

Although the techniques discussed have proved successful in detecting and

exposing redundancy within a class file, the feasibility of using a form of equivalence

mapping to locate and use static native code in a JRE still needs to be shown. An

equivalence form of the bytecode method will be used to serve several purposes in the

native code system. First, as shown in Chapter 3, the amount and accuracy of the

redundancy that is exposed is dependent on the equivalence technique used; therefore, the

technique chosen will have a direct impact on the size of the native code tables.  Second,

the equivalence form of the method will be used as an index tag to locate the native code

within the run-time tables; therefore, speed both in creating the equivalence form and

speed in locating the proper table entry using the created form becomes an issue. The

generic form of a bytecode method did not contain enough information to uniquely

identify the correct native template. Although the constant pool resolved equivalence

method correctly identified methods that were indeed the same, it was the most time

intensive of the three mappings. Also, since the constant pool values need to be resolved

at run time in order to use this form of mapping; a more generic version will gain a larger

reuse and not add significant overhead to the run time. The use of a more generic form

and resolving values at run time also allows for a wider reuse of static native code. For

example, looking back at Table 3.2, in Section 3.1.1, the differences in these variations of

the generic form of the method are simply in the method name and the name of the

method being invoked. The equivalence mapping should expose this overleap while

maintaining the integrity of the mapping.
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 Once the characteristics wanted in the equivalence mapping technique had been

identified, acquisition of the proper Java tools to investigate the feasibility of using this

equivalence mapping in the design and implementation of a JRE reusing static native

code, was next. To study the use of static native code in a JRE and the proper equivalence

mapping to obtain the correct native code, a state-of-the-art JRE, Microsoft’s JVM 2.02

[23], was chosen. Using documentation provided by Microsoft, a JIT interface layer that

impersonated the Microsoft JIT was constructed. The new layer was used as a simple

slim bypass layer that would check for native code templates, and if available, substitute

the native code version for the JIT-compiled version. In the absence of a native code

template, the interface simply called through to the Microsoft JIT.

To arrive at a one-to-one mapping between an equivalence form of the bytecode

method and a template form of the native code, the native code generated by the

Microsoft JIT was captured. For the input set of benchmarks, the SPECjvm98 benchmark

suite and the characteristic set of applets were used. The important thing to note in these

two sets, is that any pseudo homogeneous redundancy on a class file level has already

been removed. Therefore, a redundancy overlap similar to that exposed in Figure 3.9 was

anticipated.

4.1 Checking Redundancy at JIT Interface

Before testing the use of static native code in place of JIT calls, measurements of

the actual method level redundancy at this interface were needed. Analyzing the static

code allowed us to efficiently characterize a very large set of bytecode.  Static analysis,

however, may capture extraneous data.  For example, an application may only use a small

percentage of the methods actually contained in the file, and the static approach would
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include even those methods never used.  With the static analysis, the Java input set was

restricted to the code that is distributed with the applet or application because this is the

additional code that would occupy the additional disk/storage space. However, in doing

so, redundancy in methods from the core Java libraries that may be called by the program

were not investigated.  Because this investigation focuses on the possibility of reusing

previously loaded or compiled methods, only those methods for which the VM requests a

JIT-compiled version were investigated.  To monitor JIT requests made during execution

of the benchmarks, the JIT interface layer described earlier was used. This interface

actually replaces the DLL that services JIT requests in Microsoft’s VM 2.02.  The

statistics on the requested methods were recorded and control passed to the real JIT.

Table 4.1 shows the redundancy seen at this interface for each of the three

mapping techniques. The first eight rows summarize the JIT requests that occurred while

running each of the SPECjvm98 benchmark applications in test mode with the largest

Benchmark

Total
Number of

JIT Requests

Byte-for-
Byte

Unique

Constant Pool
Resolved
Unique

Generically
Unique

_200_check 391 362 353 309
_201_compress 326 313 293 269
_202_jess 759 619 674 466
_209_db 339 326 310 280
_213_javac 1113 1062 1039 912
_222_mpegaudio 496 478 453 396
_227_mtrt 464 434 432 342
_228_jack 572 532 518 393
Sum of Above 4460 4126 4072 3367
All Spec 2542 2100 2173 1632
Applets 5040 4445 4378 3482

Table 4.1 Unique method JIT requests
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input (control-set 100).  These were run using the command line option for SPECjvm98

to reduce the overhead of the GUI SPECjvm98 harness. They do still contain some

harness functions, but eliminating the GUI minimized this overhead. The row labeled

“All Spec” lists JIT requests from a single run of the entire SPECjvm98 benchmark suite,

again using the command line option.  Consequently, any methods that are redundant

across benchmarks are detected.  This is seen most clearly by comparing the value in the

row labeled “Sum of Above” with that of the full SPECjvm98 run. Approximately  280

methods were seen in all the benchmarks. Of these, approximately 80 in each benchmark

run were SPEC-harness-specific, and another 200 were system-specific. Although all of

these were called individually with each specific run, the full run called many of them

only once. This is part of the reason for the discrepancy in the summed total of the eight

benchmarks and the recorded total of a full SPECjvm98 run. The last row shows the JIT

requests from executing each applet in the benchmark set exactly once during a single

virtual machine invocation.

Column 2 of Table 4.1 shows the number of methods requested by the JIT that

were unique using byte-for-byte equivalence.  As pointed out previously, a byte-for-byte

equivalence does not guarantee that the methods are identical due to differences in

constant pool resolution.  Column 3 shows the number of unique methods after checking

for constant pool resolved equivalence.  These methods can be used interchangeably at

run time, even after they have been compiled to native code and optimized.  An

intelligent virtual machine can therefore reduce its memory footprint by sharing a single

version of the resolved equivalent methods. Column 4 lists the number of unique methods

found by using the test for generic equivalence.  A comparison between columns 3 and 4



37

reveals that the technique of masking out constant pool indices exposes a much larger set

of redundant methods.  One interesting item is that the amount of redundancy is similar

for both the applet and the application code.  For applets, the number of generically

unique methods is 69% of the number of JIT requests.  In other words, 31% of the

methods requested by applets were redundant at this level.  For the combined

SPECjvm98 application code, 36% percent of the methods were redundant. As

mentioned earlier, aggressive performance optimizations may interfere with code reuse

between generically equivalent methods.
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Figure 4.1 Relative percentages of dynamic methods

Figure 4.1 gives a breakdown of the methods called in each SPECjvm98

benchmark. The bottom bar for each of the benchmarks in Figure 4.1 gives the

percentage of static methods measured and reported in Section 0 that were actually JIT-

compiled in the dynamic run.  As explained at the start of this section, not all methods

investigated during static analysis are actually used during a full run. As seen in Figure
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4.1, this ranges from only 13% of the static methods in _213_javac  being used to 89%

of the static methods in _227_mtrt . Therefore, when making a decision on which

methods to keep in a reusable optimized form for use across benchmarks and to save on

memory usage (as with the object initializer earlier) the JITed set of methods from

dynamic runs of the program should be used. However, when looking at a reduction in

static code size by storing a generic form and using a mapping (like that suggested in

Section 1.2.2), the static version of the files may still be used.

The next bar in Figure 4.1 (third from the top of each set) is the percentage of

total JIT-compiled methods that result from the overhead of the SPECjvm98 harness. The

next bar up is the percentage of JIT-compiled methods that are benchmark specific. This

ranges from 8% in _209_db  to 67% in _213_javac .  Finally, the top bar in Figure

4.1 lists the percentage of system methods.  The actual number of these was relatively

consistent across all the benchmarks, ranging in size from 209 for _209_mjpegaudio

to 275 for _213_javac . The smaller benchmarks show the largest impact from system

level methods.

4.2 Template Description and Template Insertion

To reuse static native code and gain the most benefit from a run-time system, the

chosen form of native code representation must allow for run-time linking and resolution

information to be incorporated in the structure. This native code version of a bytecode

method is referred to as a native template. The mapping from the original bytecode

stream to the generic version used to locate the native code template should fall

somewhere between the constant-pool-resolved mapping and the generic mapping. Also,

the main purpose of the system is to explore the feasibility of reusing statically



39

maintained native code at run time. Therefore, care is taken to maintain the boundary

between (a) run time linking and customizing by mapping arguments into the native

template at run time, and (b) JIT-compilation by changing and adding native instructions

at run time.

To decide the correct mapping, which is also used as an accessing technique for

locating the native templates at run time, the generic equivalence form was used as a

starting point. Starting with this mapping of the bytecode as a tag to place the collected

native code versions of the methods into a table, the generic equivalence form was

refined slowly until arriving at a mapping that allowed the location of a unique template

version of the native code.

The first item noticed during the refining process was that, in x86  code, the

return statement is dependent on what is being returned. This led to the first modification

of including the return type. Next, the type of arguments used by a function also directly

affected the instruction mix of the native code. For example, if the arguments are passed

by reference versus primitives that are passed by value, the instructions for loading and

manipulating these arguments change. Therefore the second modification was the

inclusion of the argument types passed to the method. Finally, noticing that the limited

number of registers available within the x86  architecture set affects the instruction mix

of the native template due to spill code and register usage patterns, the live range for the

method's local variables was included.  To maintain the variable position abstraction

within the variable table, a normalized mapping of indices is used. Figure 4.2 shows the

algorithm used to produce the new generic form of the bytecode stream. This algorithm
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Allocate an array the size of the local 
variable table and initialize entries to -1

Initialize crntIndex to 0

Read byte on stream

If local variable access, 
check table for mapping.

Valid table entryInvalid table entry

Map opcode to generic form
Include argument listed in table

Record crntIndex value at
the corresponding array location

and increment
Map opcode to generic form

Include argument listed in Table

If constant pool access, 
Mask out argument.

Else leave as is

1

3a

2

4a

4b

3c

3b

Figure 4.2 Algorithm used to form generic tag field

only includes the mapping for the actual bytecode instructions. The appending of the

additional information is not shown.

 

Figure 4.3 gives the output of walking through the algorithm in Figure 4.2.  The

third column in Figure 4.3 shows the table that holds the new index values. It is

initialized to all negative ones to denote that no index value has been assigned yet. This

corresponds to step 1 in Figure 4.2. The entries in the table in column 3 of Figure 4.3 are

replaced as needed following the rules listed in step 4a of Figure 4.2. Following the steps

listed in the rows of Figure 4.3, a refined generic form of the bytecode stream is

produced.

After the bytecode stream given in Figure 4.3 has been formed, the local variable

table size, followed by the types of the local variables and the return type, is appended to

the stream. This final generic form of the example method is shown as the indexing tag

for the final entry in the sample template entries in Figure 4.4.  Table 3.3 (page 21) shows
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-1 -1 -1 -1

3210

2a1b2d2cb7001ab1
Input Bytecode stream

Step 1: crntIndex = 0

Step 2: 2a : aload_0

Step 3b:

Step 2:

1900 : aload 00Step 3a: 0 -1 -1 -1

3210

crntIndex = 1

Output Bytecode stream

1900

1b : iload_1

1501 : iload 01Step 3a: 0 1 -1 -1

3210

crntIndex = 2

Output Bytecode stream

19001501

Step 2: 2d : aload_3

1902 : aload 02Step 3a: 0 1 -1 2

3210

crntIndex = 3
Output Bytecode stream

190015011902

Step 2: 2c : aload_2

1903 : aload 03Step 3a: 0 1 3 2

3210

crntIndex = 4

Output Bytecode stream
1900150119021903b7

Step 2: b7001a : invokespecial 001a

Step 2: b1 : return

Step 3c:
Output Bytecode stream
1900150119021903b7b1

'1900b719001901b7b1 2  )V'  
    (Index(0 1)  
     Native('568b74240c56ff15'  

           '56ff74240cff15'  
           '5ec20800')  

     count(0));  
 '19001901b8b7b1 2  )V'  

    (Index(0 1)  
     Native('ff742408ff742408ff15'  

           '50ff15'  
           '  c20800')  

     count(0));  
'1900150119021903b7b1 4LL  )V'  

    (Index(0)  
     Native('ff742410ff742410ff742410ff742410ff15'  

      '  c21000')  
     count(0));  

Figure 4.4 Samples of table entries in the native template code tables

Figure 4.3 A walk through of the algorithm shown in Figure 4.2
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the majority of the mapping for the symbols used to represent the local variable and

return types. The symbol “)” (not listed in Table 3.3), is used to represent the “this”

pointer, a reference pointer to the class instance where the method resided and implicitly

passed to all nonvirtual methods.

Refined generic form: '03ac 4II)Z'
Bytecode:
03 iconst_0
ac ireturn
Native code:
33 C0 xor     EAX, EAX, EAX
C2 10 00 ret     0010h
========================================
Refined generic form: '03ac 1Z'
Bytecode:
03 iconst_0
ac ireturn
Native  code:
33 C0 xor     EAX, EAX, EAX
C2 04 00 ret     0004h
========================================
Refined generic form: '03ac 3L)Z'
Bytecode:
03 iconst_0
ac ireturn
Native  code:
33 C0 xor     EAX, EAX, EAX
C2 0C 00 ret     000Ch
========================================

Figure 4.5 Samples of native code variations

Referring back to Table 3.2 in Section 3.1.1, this refined generic form maps all

the rows to the same native template. This is because all 61 occurrences of this generic

form in the 69 ticker.class files have the same return type, argument type, and local

variable table size. If any one of these values had been different, then the refined generic

form would have mapped the method containing the variance to the correct native
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template. For example, Figure 4.5 shows three native code versions of a simple bytecode

method. All three versions return a Boolean type. The variations in the three methods

come from the argument types and the local variable table size. In fact, in this example, it

is the local variable table size that directly affects the value used by the return statement

in these three versions. Note that the native code for the first example in Figure 4.5

returns the item offset by four word locations, whereas the second example offsets only

one, and the final example offsets three. However, with a more advanced mapping

technique, this variation in the native code could be handled. Samples of the native code

template used in the interface are given in the native field of the sample table entries

shown in Figure 4.4. Note that this template actually breaks the native form into disjoint

pieces. The pieces are fit together at run time by resolving the values that belong to the

calls at each piece boundary.

Figure 4.6 illustrates a basic flow diagram of the algorithm used for the JIT

interface that maps these native versions at run time. Box 1 in Figure 4.6 represents a

request made by the Java run time for a JITed version of a bytecode method. In box 2, a

call is made to the function that forms the refined generic form of the bytecode method.

This function performs the algorithm shown in Figure 4.2 with the additional function of

resolving constant pool references into their corresponding run-time values. The

resolution of constant pool values is facilitated by the use of helper function provided

with the Microsoft Java virtual machine. The run-time values are placed in a table at the

entry index that corresponds to when the instruction appeared in the bytecode stream.



44

JIT request arrives

Create refined generic version
Resolve constant pool values
with runtime values and place
the resolved values in a table.

See if native template available
for refined generic form

Call Microsoft's
JIT

Retrieve native template and
corresponding index table

For each separation in the
native template, find and map
in the value store in the
resolved table that  is indexed
by the corresponding index
table value.

Increment count

Done

yes no

4a.1

4b4a

3

2

1

5

4a.2

Figure 4.6 Basic flow chart of JIT interface

After the refined generic form has been created and the table of the resolved

constant pool run-time values has been made, the JIT interface procedure checks to see if

a native template exists for this generic form. This corresponds to box 3 in Figure 4.6. If
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none exists, then the Microsoft JIT is called and the interface is done, box 4.b in Figure

4.6. However, if a native template exists, then the template is mapped into the

corresponding memory location provided by the virtual machine to hold the native code

version of the bytecode method. The first step in this mapping is to retrieve the native

template pieces and the index table that are part of the JIT interface's run-time table.

These fields are shown in Figure 4.5.  The mapping of the values in the resolved table

created by the function represented by box 2 in Figure 4.6, and the positions between the

segments of the native code template, is done by using the index fields. These index

fields are shown next to the index tag in Figure 4.4. They correspond to actual indices

into the resolved table. For example, if the bytecode stream contained an invoke followed

by a getfield  and then a putfield , the resolved values would be placed at 0, 1, and

2 in the resolved table formed by the function represented by box 2 in Figure 4.6. The

index values represented by the index field in Figure 4.5 would be 0, 1, and 2,

respectively.

By segmenting the native template and an index table to map between the

corresponding native template locations of the instructions, the native code version can

be restructured and optimized.  If the native template for this example bytecode method

were to perform the getfield  first and then the invocation followed by the

putfield , the index values in the JIT interface table entry are all that need to be

adjusted in order for this revised version to work. The new index field would be 1, 0, and

2, respectively. This technique also allows the native code template to optimize out any

values and to disregard the corresponding resolved values.
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 Using hand techniques on collected data to determine the proper form and

segmentation of the native code templates, 64 native code templates were created.  The

results for using these native code templates in place of JIT request for the SPECjvm98

benchmark suite and the characteristic applet set, are shown in Table 4.2.  The middle

column of Table 4.2 gives the percentage of total JIT calls that were replaced by a native

code template. The final column of Table 4.2 shows the percentage of the 64 native code

templates that were actually used. Note that for the SPECjvm98 runs, most of the

benchmarks individually use less than 40% of the available native code templates,

whereas a full run of the entire suite uses over 50%.  These numbers increase if

SPECjvm98 is run through the GUI harness versus the command option used for these

measurements. In fact, running the SPECjvm98 benchmark suite through the Java GUI

harness that accompanies it increases the percentage used of the available native code

templates to 85.5%.

Table 4.2 Native code template results

Benchmarks Percent of Templates
versus JIT calls

Unique
Templates

_200_check 18.4% 34.4%
_201_compress 16.9% 34.4%
_202_jess 15.9% 39.1%
_209_db 15.6% 34.4%
_213_javac 6.5% 45.3%
_222_mpegaudio 13.3% 35.9%
_227_mtrt 11.6% 34.4%
_228_jack 14.9% 34.4%
All SPEC 8.4% 51.6%
Applets 7.5% 93.8%
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Although the handcrafted set of native code templates covered between 6.5% and

18.4% of the total JIT requests seen in the benchmark sets, the goal of these experiments

was to test feasibility of the system, not its range. With expanded tools, the percentage of

JIT requests handled in this fashion is expected to increase.
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5. SUMMARY

This research has found that Java programs share a large segment of their

application space.  Designing and utilizing systems that can exploit these traits may

enable performance improvements in future Java systems.  Our work has indicated the

potential opportunities for reducing loading, linking, and compilation delays, system code

cache sizes, and unnecessary invalidation of previous compiled code. This study was

directed at locating general areas of performance improvement within the Java

programming paradigm.  We have demonstrated techniques for exposing redundancy and

given an experimental system that uses the techniques to reuse static native code.
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