
USING VHDL SYNTHESIS AND VLSI LAYOUT TOOLS
FOR COST ESTIMATION OF SUPERSCALAR ISSUE UNITS

BY

MATTHEW TODD GAVIN

B.S, University of Iowa, 1993

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois



iii

ACKNOWLEDGEMENTS

I would �rst like to thank my advisor, Professor Wen-mei Hwu, for his support and

mentorship during my two years as a graduate student at the University of Illinois. I

would also like to thank John Gyllenhaal for his guidance throughout this project. I

express thanks to my colleague and fellow Master's student Dimitri Argyres for working

closely with me throughout the project. I am grateful to Professor Rajesh Gupta for

acquiring and helping to install the Synopsys toolset. Finally, I wish to thank my wife

Ann who endured my grumpiness and long hours in the laboratory as the thesis deadline

approached.



iv

TABLE OF CONTENTS

Page

1. INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

2. METHODOLOGY : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
2.1 Tools Used : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2.1.1 Synopsys' important features : : : : : : : : : : : : : : : : : : 6
2.2 Cell Library Used : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7
2.3 Design Flow Overview : : : : : : : : : : : : : : : : : : : : : : : : : : 8
2.4 Generating a Standard Cell-Based Design in Synopsys : : : : : : : : : 8

2.4.1 Analyzing the VHDL code into a VHDL design library : : : : 8
2.4.2 Elaborating the analyzed design : : : : : : : : : : : : : : : : : 9
2.4.3 Compiling the elaborated design : : : : : : : : : : : : : : : : : 9

2.5 Converting the Synopsys Design to a Mentor Design : : : : : : : : : : 11
2.6 Generating a Layout from the Mentor Schematic : : : : : : : : : : : : 11

3. VHDL IMPLEMENTATIONS : : : : : : : : : : : : : : : : : : : : : : : : : 13
3.1 Dependence Checker : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
3.2 Register File Port Arbiter : : : : : : : : : : : : : : : : : : : : : : : : 15
3.3 Instruction Queue : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
3.4 Notes on Parameterization of VHDL Code : : : : : : : : : : : : : : : 21

4. RESULTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22
4.1 Dependence Checker : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

4.1.1 Analysis of delays : : : : : : : : : : : : : : : : : : : : : : : : : 23
4.1.2 Analysis of areas : : : : : : : : : : : : : : : : : : : : : : : : : 27

4.2 Register File Port Arbiter : : : : : : : : : : : : : : : : : : : : : : : : 27
4.3 Instruction Queue : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

4.3.1 Using incremental mapping to synthesize better designs : : : : 31
4.3.2 Analysis of delays : : : : : : : : : : : : : : : : : : : : : : : : : 37
4.3.3 Analysis of areas : : : : : : : : : : : : : : : : : : : : : : : : : 38



v

5. CONCLUSIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

REFERENCES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

REFERENCES NOT CITED : : : : : : : : : : : : : : : : : : : : : : : : : 43

APPENDIX A. DEPENDENCE CHECKER : : : : : : : : : : : : : : : : 44

APPENDIX B. REGISTER FILE PORT ARBITER : : : : : : : : : : : : 46

APPENDIX C. INSTRUCTION QUEUE : : : : : : : : : : : : : : : : : : 48

APPENDIX D. ONE CNT LASTN EQ C : : : : : : : : : : : : : : : : : : 50

APPENDIX E. TYPES PACKAGE : : : : : : : : : : : : : : : : : : : : : 52

APPENDIX F. FUNCS PACKAGE : : : : : : : : : : : : : : : : : : : : : 54

APPENDIX G. SYNTHESIZE : : : : : : : : : : : : : : : : : : : : : : : : 56

APPENDIX H. MAKE LAYOUT : : : : : : : : : : : : : : : : : : : : : : 59



1

1. INTRODUCTION

This thesis describes the interfacing and use of VHSIC Hardware Design Language

(VHDL) synthesis tools and Very Large Scale Integration (VLSI) layout tools to obtain

and compare speed and area estimates for the issue unit of a superscalar processor. It

also describes results obtained through the use of these tools.

When designing a processor and its issue unit, the designer �xes various parameters,

such as the issue width, the numbers of source and destination operands per instruction,

and the number of available register �le ports. Each design decision plays an important

role in the performance of the issue unit and each tradeo� must be thoroughly consid-

ered. This is in direct con
ict with the increasing time-to-market pressures faced in the

competitive industry of processor design.

Thus this thesis has two goals. The �rst is to develop a methodology which allows the

designer, through the use of VHDL, to quickly investigate the e�ects of his/her decisions

on the speed and area requirements of the design unit in question. The second is to use



2

this methodology to examine a speci�c design unit, namely the issue unit of a superscalar

processor.

A current topic of great interest in the computer architecture research community is

the tradeo�s involved in choosing between a VLIW processor design and a superscalar

processor design. Both processor designs attempt to extract as much instruction-level

parallelism (ILP) from a program as possible; they signi�cantly di�er in their approach

to this task. Very Long Instruction Word (VLIW) processors rely heavily upon intelligent

compilers to do static code scheduling, determining at compile time when instructions will

be executed. Superscalar processors, on the other hand, dynamically schedule the code

at run time through the addition of extra hardware. Thus an argument in favor of the

VLIW processor is that this extra hardware will signi�cantly increase the hardware and

cycle time required for a superscalar processor compared to those for a VLIW processor.

VLIW processors themselves have several drawbacks. Their static code scheduling may

be unable to utilize information available at run time. Static code scheduling also leads

to di�culties maintaining binary code compatibility across processors.

Thus a great debate has focused on the relative merits of each type of processor.

The tools and techniques developed in this thesis may resolve some of the questions

posed in this debate. To facilitate quick investigation of various designs, it was decided

that VHDL code would be written that would describe various portions of a processor

design. For this thesis, portions of a superscalar issue unit were described in VHDL.

Then, synthesis and layout tools would be used to take this VHDL code to a gate-level



3

design and subsequent VLSI layout. This code would be highly parameterizable; the user

could input values for various parameters, then re-synthesize the code and evaluate the

e�ect of changing the parameter on the design's speed and area performance.

A long term goal of this work would be to interface the IMPACT group's MDES

code [1] with this tool. The IMPACT group at the University of Illinois uses MDES

language descriptions of processors, when doing compilation for VLIW and superscalar

processors. These same descriptions, in addition to supporting sophisticated compilation

techniques, could potentially be interfaced with the tools developed in this thesis to

generate layouts and timings for various parts of the processor in question.

Figure 1.1 shows an overview of the path followed in converting VHDL code to a

VLSI layout. The path can be thought of as a three-step process: �rst synthesizing the

design in Synopsys, then converting the Synopsys design to Mentor, and �nally obtaining

a layout in Mentor.

standard cell

based design

(Synopsys .db format)

standard cell

based design

(Mentor eddm format)

db2eddm
synthesis tools

Synopsys Mentor 

layout tools VLSI 

layout

parameterized

synthesizable

VHDL code

parameters

Figure 1.1: Overview of the Synthesis Process



4

This thesis is organized as follows. Chapter 2 describes the process shown in Figure

1.1, including the tools and the techniques used in interfacing them. Chapter 3 describes

in detail the portions of the processor which were modeled in VHDL, synthesized, and

brought to a VLSI layout. Chapter 4 describes the area and timing results subsequently

obtained. Chapter 5 provides some concluding remarks. The appendices supply the

VHDL code and descriptions of the scripts used to automate the methodology.



5

2. METHODOLOGY

2.1 Tools Used

For this project, it was necessary to �rst synthesize a VHDL design into a standard-

cell based design and then a CMOS layout. No tool known to the author is able to carry

VHDL from synthesis straight through to layout; thus di�erent tools were needed for

each task. Synopsys' Design Compiler (version 3.1b) was used to synthesize the VHDL

to a standard-cell based design; Mentor Graphics' IC Station (version 8.2 5) was used to

create a layout of that design.

These tools were used for two reasons. First, these were the best accessible tools for

their respective tasks. Synopsys is recognized as a leading VHDL synthesis tool, and

was fairly easy and quick to learn. The author had a great deal of prior experience with

Mentor, which has been a leader in many areas of chip design, including simulation and

layout. In addition, Dimitri Argyres had special knowledge of Mentor's layout tools; this

knowledge was an invaluable aid to the author.



6

Second, Synopsys provides special support for transferring designs to and from Men-

tor, in the form of a toolset named SIFF (Synopsys Integrator for Falcon Framework).

The SIFF program db2eddm is especially useful; it converts a Synopsys cell-based de-

sign (in db format), to a cell-based design in Mentor's eddm format. Thus the interface

between Synopsys and Mentor was relatively easy to use and understand.

2.1.1 Synopsys' important features

Synopsys' Design Compiler was the tool used to generate standard cell-based designs.

An important feature of the tool is its support of generics, allowing the VHDL code to

be parameterizable. A component of a processor design may exhibit the same regular

structure across di�erent implementations, di�ering only in the amount of hardware

needed. By using generics, the designer can write parameterized code modeling this

component, then vary the parameters at compile time. This allows the compiler to

generate the correct amount of hardware, in the same form speci�ed by the code.

Synopsys allows the user some control over the hardware it generates; this was an-

other important feature. Synopsys provides the designer control through two means:

optimization directives and optimization constraints. Constraints instruct the synthe-

sizer to attempt to produce hardware with a certain delay, or within a certain area.

Directives such as 
attening and structuring tell the synthesizer how to restructure the

hardware. These two features give the user a measure of control over the hardware pro-

duced by the synthesizer; however, the synthesizer can not always meet the constraints

the designer imposes. In all cases, Synopsys will generate detailed reports on the timing



7

and area requirements of the design it produces. The designer can use these reports to

determine if the design obtained by Synopsys is acceptable. If not, the designer may try

a new set of compilation options.

Both of these features o�ered by Synopsys were important. The goal of this thesis

was to allow the designer to explore quickly a wide variety of designs. This can be done

by writing parameterized, behavioral (as opposed to structural) VHDL code, and setting

various compile time options appropriately.

2.2 Cell Library Used

In addition, it was necessary to choose the standard cell library. Synopsys would syn-

thesize gate-level designs using these base cells; Mentor would then place and route these

cells to provide a layout of the design. It was decided to use the CMOSN standard cell

library that comes with Mentor's layout tools, since that cell library was readily accessi-

ble. It was also known that Mentor's layout tools were able to successfully route CMOSN

cells; the author wished to avoid any di�culties involved with attempting to route other

cells. This entire methodology, including layout, should work with any standard cell

library that has cell layouts compatible with the layout tools.

The CMOSN library uses a 1.2 micron process. This feature size is large compared

to those being used today; currently 0.5 micron processes are being used to fabricate

processors. This should be kept in mind when results are presented in Chapter 4; area

and delay both scale with smaller feature sizes.



8

2.3 Design Flow Overview

The 
ow is as follows: (see Figure 1.1):

1. Synthesize the VHDL using Synopsys

2. Convert the Synopsys cell-based design to Mentor format using db2eddm

3. Run a custom layout script on the Mentor cell-based design to generate the layout.

Scripts have been written to automate the process. One script handles the �rst item

above. Another script, written in large part by DimitriArgyres, handles the translation to

Mentor's eddm format and subsequent layout generation. It may be necessary, however,

to bypass the scripts and do the analysis by hand, in order to give the synthesis tools

the proper feedback. The 
ow will now be described in further detail.

2.4 Generating a Standard Cell-Based Design in Synopsys

Synopsys' Design Compiler is the primary tool used to generate a standard cell-based

design. The tool may be accessed through a command-line interface (dc shell) or through

an X window menu-based interface (Design Analyzer). Scripts may be written for batch

processing by dc shell. The end result is a cell-based design stored in Synopsys' db

format. See Figure 2.1.

2.4.1 Analyzing the VHDL code into a VHDL design library

The analyze command does a syntax check on the VHDL code. Some logical errors

may not be caught, most notably those arising from using legal VHDL code that is not

supported by Synopsys. Analyzing the VHDL code is NOT included in the automation



9

analyzeVHDL
code

elaborate compile
file
.db

parameters cell library

library
design

Figure 2.1: Synopsys Design Flow

scripts, because the VHDL code was intended to be behavioral code written by a human

(as opposed to a completely structural code that may be written by a program). Thus the

code may have syntax errors before this analysis/syntax check. Often multiple iterations

of this step are necessary to remove all syntax errors from the VHDL code and successfully

analyze the design units into a design library. After this has been done, the scripts

automate the rest of the process.

2.4.2 Elaborating the analyzed design

The elaborate command takes an analyzed design from a VHDL design library and

converts it to an intermediate equation-based format. At this time, the necessary param-

eters must be supplied so that all bit �eld widths, register sizes, etc. can be completely

resolved before the next compilation step.

2.4.3 Compiling the elaborated design

Compilation performs the important task of mapping the equation-based design to a

standard cell library. The end result of compilation is a synthesized standard-cell based



10

design �le in db format. The cell library must be provided by the user. Synopsys in

particular needs the ASCII �le describing the function of each cell in the library, such as

Z <= NOT(A) for an inverter. Although layouts were originally available for the CMOSN

library, such a description �le did NOT exist. Thus one was purchased from an external

vendor to avoid the di�culty and delay of creating it.

When generating a �le in db format, it is useful to have a symbol in Synopsys sdb

format for each standard cell in the design. This collection of symbols in Synopsys

format, called a symbol library, is especially useful when using Design Analyzer to view

the design. SIFF's eddm2slib program was used to convert the CMOSN symbols from

Mentor format to a Synopsys symbol library.

Di�erent compilation directives, such as 
attening and structuring, may be speci�ed

during the compile. These directives are very useful and often necessary when synthesiz-

ing behavioral code.

Flattening uses boolean algebra to remove all parentheses. This removes all logic

structure, producing a design with a two-level sum of products form. This directive tends

to decrease the critical path delay, but at the expense of greatly increased hardware.

Structuring adds intermediate variables (structure) to the equations in the design.

Timing-driven structuring does so while considering required timing constraints. In Syn-

opsys it is possible to set the maximum allowed delay to an output; the synthesizer will

iteratively structure until the constraint is met, or until it cannot continue. For example,



11

it is possible to set the maximum delay to the output to 0; Synopsys will iterate until

some point, then stop.

An incremental compile may also be speci�ed, which does local optimizations on a

circuit that has already been mapped to standard cells. This option is also very useful,

and was used extensively to decrease the critical path on Synopsys' original designs.

2.5 Converting the Synopsys Design to a Mentor Design

As stated earlier, the SIFF program db2eddm was used to convert the Synopsys .db

�le to a Mentor component in eddm format. db2eddm requires a map �le. This map

�le acts like a lookup table; for each standard cell in the Synopsys design, the map �le

speci�es the name and location on disk of Mentor's corresponding standard cell.

db2eddm creates more than one component if the design is hierarchical. If a single

component is instantiated multiple times in the VHDL, multiple versions of that compo-

nent in Mentor will be created. This is unfortunate; if 1000 instances of the same design

are explicitly instantiated in the VHDL code, 1000 Mentor components will be created,

each identical to the rest. It would be optimal if only one of the designs were created,

and all instances in the top-level design referred to it.

2.6 Generating a Layout from the Mentor Schematic

A layout script is run to obtain the VLSI layout corresponding to a Mentor standard

cell-based design. This script does the following:



12

1. identi�es the mentor component whose layout is to be created and the layout library
to be used (CMOSN),

2. loads a design rules �le,

3. auto
oorplans the layout,

4. autoplaces standard cells, or blocks if the design is hierarchical,

5. autoroutes the layout,

6. minimizes vias,

7. compacts the design downward, then left,

8. checks to make sure design rules are not violated,

9. if speci�ed, runs LVS to verify that the layout matches the cell-based schematic,
and

10. saves the layout to disk.

The process of generating the Mentor layout is di�erent for hierarchical schematics

than for 
at ones. If the schematic has hierarchy, the layout script must �rst be used

to generate the layouts for the components instantiated by the top-level design. These

layouts must then be added to the CMOSN library. After this has been done, the layout

script may be run on the top-level Mentor schematic. The script will then take from the

CMOSN library the layouts for the instantiated components. To avoid these di�culties,

the code in this thesis was written and synthesized to produce 
at schematics.



13

3. VHDL IMPLEMENTATIONS

This thesis had two goals: to develop a methodology allowing a designer to obtain,

from VHDL, gate- and circuit-level schematics for a design, and to use these tools to

measure characteristics of a superscalar processor's issue unit. In theory, VHDL code

would be written once, and di�erent parameters (corresponding to a di�erent design)

would be input to the synthesizer. I speci�cally focused on implementing in VHDL the

following aspects of a superscalar processor's issue unit:

� dependency checking

� register �le port arbitration

� instruction queue shifting.

The parameters referred to in various designs are as follows:

� w - issue width

� s - number of source registers per instruction

� d - number of destination registers per instruction

� r - number of bits in register identi�er

� p - number of ports on the register �le.



14

3.1 Dependence Checker

In a superscalar processor, it is determined at run time which of the previously fetched

instructions are allowed to execute. Dependence checking enforces certain restrictions on

the instructions which are allowed to proceed. Instructions precluded from executing are

those instructions reading from, or writing to, a register being written to by a previous

instruction. Comparators are used to pairwise check if any instruction's source or desti-

nation register ids match a destination id of a previous one. Comparators are also used to

pairwise check if instructions use the same register �le. (No dependencies exist between

instructions using di�erent register �les, no matter what register ids they specify.)

The following VHDL data type instr t was used for the dependency checker. It

models an instruction as a record having an array of source operands and an array of

data operands. A register �le id is also included, which speci�es which register �le the

instruction reads from and writes to.

type instr_t is record

opcode: opcode_t;

regfile_id: regfile_id_t;

srcs: src_array;

dests: dest_array;

end record;

Figure 3.1 shows dependence arcs for an example dependency checker with w = 4;

s = 2; d = 1, where w is the issue width and s(d) = number of source (destination)

operands per instruction. Note that a total of nine dependence checks must be satis�ed

for the last instruction to be dependence free.



15

destsrc1 src2 destsrc1 src2 destsrc1 src2destsrc1 src2

instruction 0instruction 3 instruction 2 instruction 1

Figure 3.1: Dependence Arcs for w = 4; s = 2; d = 1

In general, the number of register id comparators required is (s + d) � d �
�
w

2

�
. The

�rst and second term come from comparing all of an instruction's source and destination

ids to the destination id of a previous instruction. The last term is a result of performing

this comparison for each pair of instructions. Similarly, the number of register �le id

comparators needed is
�
w

2

�
. Thus the area required for dependency checking hardware

may be expected to be proportional to
�
w

2

�
, which may be expressed as (w2�w)=2. This

hypothesis will be tested in Section 4.

3.2 Register File Port Arbiter

In a multiple-issue processor architecture, many register �le ports are needed to satisfy

the possible operand requirements of issuing instructions. The maximumnumber of ports

required is w�s. However, in practice, that many ports are often not required, since many

instructions in a real instruction set require fewer than s operands, and dependencies

limit the number of instructions that can simultaneously issue. Since register �le ports



16

require much hardware, chip savings may be made by reducing the number of register �le

ports and adding hardware allowing the instructions to arbitrate for them. The obvious

tradeo� is weighing the cost of that hardware against the hardware savings from reducing

the number of ports.

My VHDL implementation of the arbiter follows that of Johnson [2]. This method

uses a great deal of hardware to do arbitration in the least amount of time. Johnson's

method for a p-ported register �le is as follows:

� If the �rst register operand requires a register access, it is always enabled on the

�rst port.

� If the second register operand requires a register access, it is enabled on the �rst

port if the �rst register did NOT require a register access, and is otherwise enabled

on the second port.

� In general, the register identi�er for a required access is enabled on the �rst port

if no other previous operand requires a port, on the second port if one previous

operand uses a port, on the third port if two previous operands use ports, ..., on

port p if p � 1 previous operands use ports, and on no port if p previous operands

use ports.

Johnson's method amounts to instantiating a one-counter for each fregister id, portg

pair. See Figure 3.2.



17

...

count  = 0 ?

count  = 1 ?

count  = 2 ?

on port 1 

on port 2

on port 0
request r enabled 

request r enabled 

request r enabled 

...
request r enabled count  = p ?

on port p

requests(r-1:0)

Figure 3.2: Request r Arbitrates for Port p

Johnson suggests implementing each counter as a two-level AND-OR network. Con-

sider a four-issue processor with two source registers per instruction, for a total of eight

requesters, all contending for four ports. Request 3 is enabled on port 1 if

request(0) and not request(1) and not request(2) or

not request(0) and request(1) and not request(2) or

not request(0) and not request(1) and request(2).

It is easy to see that the length of the OR-reduction done in each counter grows

combinatorially. Determining if c ones of a vector of length v are logic-1 requires
�
v

c

�

AND gates.



18

The VHDL code written for this thesis implements this algorithm equivalently:

for each request r in the instruction queue
for each port p

count if exactly p of last r requests are logic-1;
if so, enable the request r on port p

end
end

It was desired to implement the one counters as two-level AND-OR networks as John-

son suggests, in order to do the arbitration quickly. Instead, behavioral code was written

that simply looped over a bit vector and incremented a variable whenever logic-1 was en-

countered. This behavioral code could give very undesirable results when synthesized, for

instance, if the synthesizer decided to instantiate adders and counters. However, through

optimization directives, it is still possible to obtain a two-level AND-OR format for the

counters. This is possible in the Synopsys compiler by turning the 
attening option on

and turning the structuring option o�. (The compiler still may not be able to generate a

true two-level and-or format, since it typically only has available standard cells with less

than �ve inputs. Thus multiple levels are synthesized; however, as the number of inputs

grows, two levels of logic, each with few inputs, are often faster than one level of logic

with many inputs.)

3.3 Instruction Queue

In a superscalar processor, between 0 and w instructions are issued to execution units

each cycle. In many current implementations, an in-order issue model is used. This means

that instructions must be issued in program sequence. Each cycle, instructions in the



19

queue are analyzed to determine if they may issue. Once it has been determined that an

instruction can not issue, analysis conceptually stops, and only the previous instructions

are issued. Thus the instruction queue may be implemented as a barrel shifter, which

can shift from 0 to w � 1 positions every cycle, depending on how many instructions

issue. If all instructions issue, a full load of the queue is performed. See Figure 3.3.

checks for dependencies

and operand availabilty

cache line instruction queue

shift_amt

Figure 3.3: Barrel Shifting Instruction Queue, w = 4

The issue analysis determines how much of the incoming cache line the queue shifts in.

In the model for this thesis, an instruction may not issue if a dependency exists between

it and a previous instruction, or if a value the instruction requires is unavailable. In a real

processor, the following checks may be made to determine if a register value is available:

� checking the register �le's \valid bits" to determine if the value in the register is

up to date;

� determining if the value must be forwarded by bypass logic; and

� determining if the register id successfully obtained a register port (if not forwarded

by bypass logic).



20

The VHDL code assumes this logic is elsewhere and lumps the resulting information

into an input vector. This input vector, stream avail, tells for each source register in

the instruction queue, if that value is currently available for use. The outputs of the

dependency checker are also input to the design, as opposed to embedded within it. This

allowed separate analysis of dependency checking and barrel shifting hardware. The

critical path of the fetch unit would be determined by the sum of the times required to

do dependence checking and subsequent barrel shifting.

Combinational logic within the shifter examines the dependencies and availability

of registers and forms an issue vector. For each word in the instruction queue, the

issue vector contains a corresponding bit telling if that instruction can issue. Due to

the in-order nature of the issue model, the issue vector is a series of logic-0's followed

by consecutive logic-1's. This issue vector is then priority encoded; this encoded value

directly controls how many positions the queue should shift by. The barrel shift may be

implemented by placing a mux in front of each bit in the queue; thus, for an instruction

queue of length w, conceptually, a mux with w + 1 inputs sits in front of each bit.

The code uses the instr t data type used by the dependency checker, with a slight

change. A \�ller" �eld is added which will take up any extra bits in the instruction

word, not taken by the opcode or register speci�ers. The user can specify the constant

instr size; the �ller �eld will pad the opcode and register identi�ers with an extra �eld

to get this required length.



21

Not included in the VHDL code were the 
ip-
ops needed in the instruction queue to

store the instructions. This was done because these 
ip-
ops are necessary in all multiple

issue processors. However, the shifting logic is NOT necessary in a VLIW processor,

where either all instructions in the queue issue, or none. It was desired to isolate the

extra logic required by the issue unit of a superscalar processor, in order to measure the

area and timing overhead it incurs.

3.4 Notes on Parameterization of VHDL Code

The design 
ow in Figure 2.1 shows parameters input during elaboration, after the

code has already been compiled. This is unfortunately not possible with all parameters,

because Synopsys disallows data types with more than one unknown. Typically it is

desired to vary the issue width w; thus instr stream is de�ned as an array of instr t

of length w. Parameters such as the number of source and destination operands within

instr t must be hard-coded in the VHDL package which de�nes the instr t data type.

These may be changed, but the package will have to be recompiled.



22

4. RESULTS

4.1 Dependence Checker

Dependence checkers were synthesized for various values of w and r, for s = 2 and

d = 1. See Table 4.1. Throughout this thesis, all Mentor layout sizes are reported in

units of square lambdas.

Table 4.1: Dependence Checker Synthesis Results

delay (ns) layout (106)
w r=6 r=7 r=6

2 3.94 3.95 0.506
3 4.77 5.48 1.649
4 7.08 7.80 3.292
5 7.15 7.86 5.534
6 8.16 8.87 8.826
7 9.53 10.24 12.790
8 9.53 10.24 17.561
9 10.52 11.23 23.520
10 10.52 11.23 29.760



23

Figure 4.1 shows the gate-level schematic for a dependency checker with w = 4;

s = 2; d = 1; and r = 6. Figure 4.2 shows the corresponding layout.

4.1.1 Analysis of delays

Theoretically, for constant s; d,and r, the delay should be logarithmic in w. The delay

can be broken into two serial components: time needed for register id comparisons, and

time needed to perform an OR-reduction of the comparator outputs. The time required

for the comparators grows with r but is constant with w. The time required for the or-

reduction grows with w, since the number of comparator outputs increases. When using

standard cells with a maximum of n inputs, the number of bits b that can be reduced

in l levels of logic is b = nl. Thus the number of levels required to reduce b bits is

l = log b

logn
. Since n is constant, the number of levels of logic required to do an or-reduction

is logarithmic with the number of bits to reduce. As seen in Section 3.1, the number

of comparators needed, and thus the number of bits to reduce, increases with w2. The

logarithm of w2 is 2 � logw. Thus, it has been shown that the theoretical time required

to do dependence checking is logarithmic in w.

Figure 4.3 plots the delays given in Table 4.1. It is evident that the delay increases

with issue width. The delay does appear to increase logarithmically.



24

Figure 4.1: Gate-level Dependence Checker, w = 4; s = 2; d = 1; r = 6



25

����
���� ���� ��
�
�
�
�

�
�
�
� ����

��
��
��
��

�
�
�
������� ������

����

����
���� ��

�
�
�
�

��������������������������

�
�
�
�

��

�
�
�
�
�
�
�
�

����

��

��

��

��

��

�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

��
����

�
�
�
�

��
����

��
�
�
�
�

�
�
�
�����

�������������������� ������������
����

�
�
�
�

�
�
�
�

��������
����

��

��

����

�
�
�
�

�
�
�
�����

�
�
�
�

��
��

�
�
�
�

��
��

����
�� ��

�
�
�
� ����

��
�
�
�
�
��
��
��
��
���� ��

�
�
�
�

�
�
�
� ����

�
�
�
�
�
�
�
� ��

��

��

����
����

��

��
����

������

�
�
�
�

�
�
�
�

�
�
�
�

���� ��
���

�
�
�
����

�
�
�
� ����
��

��
��

��
������ �

�
�
�

����
�
�
�
�

����

�
�
�
���

��

�
�
�
�

��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
����

�
�
�
� ��������

��
�� ������������ ��

��
�
�
�
�

����

��

��
���� ���� ��

�
�
�
�

�
�
�
�

��
����

����
��
��
��
����

�
�
�
�

�������
�
�
�
��
��
��
��

������

����
��
�
�
�
�

��
��

��

����
�
�
�
�
�
�
�
�
�����
�
�
�

����
�
�
�
�

�
�
�
�

�
�
�
�

���� �
�
�
�

��

��

��

�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�� ��
�
�
�
�
��
��
��
��

�� ��

�� ����

��

�� ��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
��
��
�
�
�
�

���
�
�
�

��
��

���� ��

����

����

��

����

��

����

��

��

��

��
��

��

����

��
��
��
��

�
�
�
� ��

�
�
�
�

����

�
�
�
�

�
�
�
�

��

�
�
�
�

����

����

��

��
��
��
��
�
�
�
�

�
�
�
�

��
����

���� ���� ��������

�
�
�
�
�
�
�
�

��
��

����
������

��
����

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

����

�
�
�
�

��
��

��
��
����
���� ��

�
�
�
�
�
�
�
�

��
��

����

��
�
�
�
������� �� ����

�� �� ���� ��
�
�
�
�

�� �� ��
������

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
��

�
�
�
� �

�

�

�
�

�
�

�
�

�

�� �

�
�

��

�
�

�

��
��

�
�

�
�

�
�

� ���

�
�

��� ����

�
�

�

�

�
�

�
�

�

�
�

���

�
�

��

�
�

�
�

��
��

��
��

�

�
�

�

�
�

�
�

��

��
��

��� ���

�
�

�

�

�
�

�
�

�
�

��� � �����

�

�

�

���������������
���

��������
����������

����
�����

����
��������������������

������������������������������������

��
����

����
��������

������������������������
������� ��

�����������������������������������

��������
���������� ���������

����
����

������
�������
�������

�
�
�
�

�
�
�
��

�
�

�
�
�
�

�
�

�
�

�
�

�
�
�

�
�
� � �

��
��

�
�
�
�

�
�

�
�
�
�

��
��
��
��
�
�

��
��
��

�
�
�
�

�
�

�
�

�
�
�
�

�
�
�

��
��
��
��

�
�

��
��
��
��

�
�
�
�
��
��

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
����� �

�
�
��
��

�
�
�
�

�
�
�
�

�
�

�
�
�
�� �

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
�
�

�
�

�
�

�
�
�
�

�
� �

�
�
�
��

�
�
�
�

�
�
�

�
�
�
�

��
��

�
�

�
�
��

�

����

�
�
�
�

�
�
�
�

�
�

�
� ����

�
�
�

�
�

���

������

�
�

���� �

�

����� �

��

�

�

�
�
�
�

�

�
�

����� �

�
�
�

�

�
�

��
�
�

�
�

��

�
�
�

���� �� �

��
��
��

��

�

�
�
�
�

�

�

�

� ��
��

��

�
�
��

�

�
�
�
�

�

�
�
�

��

�

�
�

����

��
��
��

�
�
�

�
�

�

�
�
�

�
�

�
�
�

�
�
�

���

��

��

�

�
�
�

�

����
����

����
����

�����

����
����

���

��

����
����

�����

���

��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

������������������������������

����������������������

�����������������������������������

��������������

��������������������

���������

����������������������
����������������������

�����������������������������

������� ���

����
�
�����
����

����

������
��� ��� ��

���
���
����
��

�
�
�
�

�
�
��
�
�
�

�
�
���

�
�
�
�
�

�
�
�
�
� �
��
�
�

�
�
��
���
��
�

�
��
�
�

�
�

�

�
�
�

�
�

�
�

�
�
�
�

�
�
�

�
�
�
����
�
�

��
��

��
��

�
�
�

��
�
�

�
�

��
��
�
�

�

���
�
�

��
��

� �
�

���
� ��

�
�
�

�
�
�

�
�
�
�

��
��

��
�
�
�

�
��� �

�
�

�
�
�
�
�
�

�
��
�
�

�� �
�

��
��

�
�
�

�
�
�
�

�
�
�
�

�
�

�
�

����
��
��
��

�
�

�
�
�
�
��
��

�
�

�
�
�

�
�
�

��
�
�
�

�
�
�

�
�

�
�
��
�

�
�

�
�
�

��
�
�

�
�

�
�
�
�
�
�

�
�

�
�
�
�
�
�

�
�
��
�

�
�
�
�

�
�

�
�
�

�
�
�
�

�
�

� �
� ��

��
��

�
�
�

�
�

�
�������

����

��
��

����
��

��

��
������
������
������

��

��
�� ���

��������������������
�������

���������������������������

������������������

�������������������
�����

�����������������

���������

����������������������

����

���

���������

��
��

����
��

��

����

��

���
����
����

������

�������

�������

�����

�

�
�

�
�

�

�
�
�
�

����
�

�
�

�
�

� �
�

�

�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

��
�
�

��

�
�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�

�
�

�
�

��
��

�
�

�
�
�

�
�
�
�

�
�
�
�

�
�

���
��
��

�

�
�

��

��

�
�

�
�
��� ��

��

�
�
�
�

�

��
��

�
��� �����

���
���� ��������� ���������� ������� ���� ��

��

�����
������
���������

���������������

��
�
�

�
�

�
��

� �

�
�
���

�
�
�
� �

�

�

�
�

��

�
�
�

�
��

�

�

�

�
��
�
��

�

�
�

�
�

�
��

�

�
�

�
�
�

�
�
��
��
��
�
�

�
�

� �
�

�

���
�
�
�
�

��
���
�
�
�
�
�

�
�
�

���
� ��

��

�
�
�

�
�

�

�

�
��

�

�� �
�
�

��
�
�

��
�
�

�
�
�
�
���

�
�

�
�
�

�
�
�

��
�

�
���
��
���

�
�

��
�
��

�
�

��
��
��

�
�

�
� �
��
����

�
�
�
��

�
�
�

���

�
�

����
��

�
�

�
�

�
�

�
�
�

�
�
�

��
��
��

�
�

�
�

��
��

�
�
�
��

�
�

�
�
�

��

�
�

�
�

�
����

�
�

�
��
�
�

�
�
�
�

� �
�
��
��� �
��
�

�
�

�

�
���

�
�
�
�

�
���

�

�
��
�
�

�
�
�
�
�
�

�
�

��
��
�
�

� �
�
�
�

��
��
����

����
��������������
��������������

���
��

���
�������

��������
��������������������
��

��
���

�������

��� �����
��

����
����� ���

�
��
�
�

�
�
�
�

���
�

�
�
�
�
�
�

�� �
�
�
�
�
�

�
�
��
��

�
�
� �

�

�
�
���

��
�
�
�

�
�

�
�
�

�
�
�
�

���
�

�
�

��

�
�
�

�
�
�
�

�
�

���
�

�
�
�
�
� �

�
�
�

�
�
�
�

� ��
�
�
�

����
�
��
��
�
�
�
��

� ��
��
��
�

�
�
�
�

���
���

���
���

���
���

��
��

������������ ��

������
����

���
���

���

���
���

�������
��������������

����
�������

����������
�����

����������
����������

������������������

�������

��

���

�����
��
����

��������

����
����������
����������

���

����

��
���

�������

���
����

�����

������ ����

�

����������������
���

������������

������������������

���

�

���

�����
��

������
����������

���
���

��

����

�
�

�
�
�

�
�

�
�

��
��
��

�
�

�
�
�

�

�����
�
�

�
��

�
�
��

�
�

�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�
�

�
�

�
�
� �
�
�

�
�
�

�
�
�
�
��
��
�
�
�
�

�
�

��
��
����

��

�

��

���
�
�

�
�
�

�
�

�
�
�

�

�
�

�
�

�

�

�
�

�
�
�

�
�
�

�
�
�

��
��
�
�

��
��

�
�

�
�
�

�
�
�

�
�

�
���

���
�

�
�

�� �� �
���
��

�
�

�
�
�

�
�

�
�

�
�
����

�
�

�
�

�
�
�
�

�

�
�

�
�
��
��

�
�
�
�

�
�

�

�
�
�

�
�
�

�
�
�����

�

������
�
�

�

�
�
�
�
�

��

�
�
�

�
�
�

���

��

���
��
�����
��������

����

�����
�����

�����

�������
�������

����������������

����������������
����������������������

����������������������

��
��

�

�
�
� �

�
�

��
��
��

�
��

�

�
�

��
����

�
�

�
�
�
�
�

�
�

�
�
� ���

�
�
�
�
�

�
��

��� �
�
���

�
�
��

�
�
��

�
��

�� ��

�
�

�

�
�
�

��
�
�

�
�
�� �

�

�
�
�

�
�

��
��

�
�
�

�
�

��
��
��

�����������
�
�

�
�
�
�
�
�
�

�����
�
�

�
�

��� ���
��
�
�

�
�
�

� � �
�
�

�
�

�
�
�

�
�
�

� �
�

��
�
�

�
���
������������������������

���������������������������
��� �������
������������������

��������
�������

��
��

�� ���������
�������������

���
���

��� �����
�������� ��������������

����������������������
���
��
��
������������ ��

���������
������������������������������������
�����
���

�����
���������

�����������

��� �������
���
���

�
�

�
�
�

�
�

�
�

��
��

� ��
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
��
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

�
�
�
�
�
�

�
�

�
�
�

��
��
��

�
�
�

�
���

�
�
�

�
�
� ��

�
�
�

�
�

�
�
�

�
�
�

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

� �
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

��
��
��

�
�

�
�
�

�
�
�

�
�
�

��

�
�
�

�� �������
�

�
�
�
�
�

�
�
�

��

�
�

�

��
��
��

��
��
����

��
��
��

�� ��
�
�

�
�

�
�
�

�
�
�

�

��
��
��

�

��

�
�
���

�
�

�
�

�
�

��
��
��

��

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

��
�
�

�
�
�

��
�
�
�

�
�
�

�������

�
�

��

�
�

�
�
�

�
�
�

������

�

��

�����

�������
�������
����������

��������
��������

����

�����������������

���������
���

������

����
���
���

���
����������������

�������

�������
�������

��������

��
��

��
��

��

��

���

�

�

�

��
��

��
��

��
��

�

��

�

��

��

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

���
���

���
���

���

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

��

���

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

���
���

���
���

���

�

��

�

�

�

��
��

��

��
��

�

��

�

��

��

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

���

��

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

��

��

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

��

���

�

�

�

��
��

��

��
��

��

���

�

�

�

��
��

��

��
��

�

��

�

��

��

��
��

��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

��

��

��
��

��
��

��

�

��

�

�

�

���
���

���
���

���
���

�

��

�

�

�

��
��

��

��
��

�

���

��

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

�

���

��

�

�

��
��

��
��

��

��

���

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

��

���

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

��

��

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��

��

���

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��

��
��

��

���

�

�

�

���
���

���

���
���

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

���

��

�

�

���
���

���
���

���
���

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

���
���

���
���

���
���

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��

��
���

�

�

�

�

�

�

�

��
��

��
��

���

�

�

�

�

�

�

�

��
��

��
��

���

�

�

�

�

�

�

�

��
��

��

��
���

�

�

�

��

��

�

�

��
��

��
��

��
���

�

�

�

�

�

�

�

��
��

��

��
���

�

��

��

�

�

�

�

��
��

��
��

��
���

�

�

�

�

�

��

��

��
��

��
��

���

�

�

�

�

�

��

��

��
��

��

��
���

�

�

�

�

�

��

��

��
��

��
��

��
���

�

�

�

�

�

��

��

��
��

��
��

����

��

�

�

�

�

�

�

��
��

��
��

���

�

�

�

�

�

�

�

��
��

��
��

���

�

��

��

�

�

�

�

��
��

��
��

��
���

�

�

�

�

�

�

�

��
��

��
��

��
���

�

��

��

�

�

�

�

��
��

��
��

��
���

�

��

��

�

�

�

�

��
��

��
��

��
���

�

�

�

�

�

��

��

��
��

��
��

���

�

�

�

�

�

�

�

��
��

��

��
���

�

�

�

�

�

�

�

��
��

��
��

���

�

�

�

�

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��

��

���

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

��

���

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

��

�

��

��

��
��

��
��

��

��

���

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��
��

��

���

�

�

�

��
��

��

��
��

�

��

�

�

�

���
���

���
���

���

�

��

�

��

��

��
��

��
��

��

�

���

��

�

�

���
���

���
���

���

�

��

�

�

�

��
��

��
��

��

�

���

��

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

��

���

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

��

��

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

��

��

��
��

��
��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

��

���

�

�

�

��
��

��

��
��

�

��

�

�

�

��
��

��
��

��
��

��

���

�

�

�

���
���

���
���

���
���

�

��

�

��

��

��
��

��
��

��
��

�

���

��

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

���

��

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��

�

���

��

�

�

��
��

��
��

��

�

��

�

�

�

��
��

��
��

��
��

��

���

�

�

�

��
��

��
��

��
��

�

��

�

�

�

��
��

��
��

��

�

��

�

��

��

�
�

�
�

�

�

��

�

��
��

��
��

��

�

��

�

��
��

��
��

��
��

�

��

�

��
��

��
��

��
��

��

��

�
�

�
�

�

�

�

�
�

�
�

�

�

�

�
�

�
�

�

�

�

�
�

�
�

�

�

�

��
��

��
��

��

��

��

�
�

�
�

�

�

�

��
��

��
��

��

�

�

�
�

�
�

�

�

�

�
�

�
�

�

�

�

��
��

��
��

��

��

��

�
�

�
�

�

�

�

��
��

��
��

��

��

��

�
�

�
�

�

�

�

�
�

�
�

�

�

�

��
��

��
��

��

��

��

�
�

�
�

�

�

�

�
�

�
�

�

�

�

�
�

�
�

�

�

�

��
��

��
��

��

�

�

�
�

�
�

�
�

�

�

�
�

�

�
�

�

�

��
��

��

��
��

�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�

�

�
�

�

�

��
��

��

��
��

��

��

�
�

�

�
�

�

�

�
�

�

�
�

�

�

��
��

��

��
��

��

��

�
�

�

�
�

�

�

��
��

��

��
��

�

�

��
��

��

��
��

�

�

�
�

�
�

�

�

�

��
��

��
��

��

�

�

�
�

�
�

�

�

�

��
��

��
��

��

�

�

�
�

�
�

�

�

�

�
�

�
�

�

�

�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�

�

��
��

��
��

��
��

�

�

��
��

��

��
���

�

�

��

��

�

��
��

��
��

����

��

�

��

��

�

���
���

���
���

����

�

�

��

��

�

��
��

��
��

��
���

�

�

��

��

�

���
���

���
���

����

�

�

��

��

�

��
��

��
��

���

�

�

��

��

�

��
��

��

��
���

�

�

�

�

�

�

�

�

�

��
��

��
��

��
���

�

�

�

��

��

�

�

�

�

��
��

��
��

��
���

�

�

�

��

��

�

�

�

�

���
���

���

���
�����

��

�

�

�

�

�

�

�

�

���
���

���
���

����

�

�

�

�

�

�

�

��

��

��
��

��
��

���

�

��

��

�

�

�

�

�

�

���
���

���
���

���
����

�

�

�

�

�

�

�

��

��

���
���

���
���

���
�����

��

�

�

�

�

�

�

�

�

��
��

��
��

���

�

�

�

��

��

�

�

�

�

��
��

��
��

���

�

�

�

�

�

�

�

�

�

��
��

��
��

��
���

�

�

�

�

�

�

�

�

�

���
���

���
���

���
����

�

�

�

�

�

�

�

�

�

���
���

���
���

����

�

�

�

�

�

�

�

�

�

��
��

��

��
���

�

�

�

�

�

�

�

�

�

��
��

��
��

���

�

�

�

�

�

�

�

�

�

���
���

���
���

���
�����

��

�

�

�

�

�

�

�

�

���
���

���

���
�����

��

�

�

�

�

�

�

�

�

��
��

��
��

���

�

�

�

�

�

�

�

�

�

���
���

���
���

���

�

��

��

��

�

��

��

�

�

�

�

�

�

���
���

���
���

���
���

�

��

��

��

�

��

��

�

�

�

�

�

�

���
���

���
���

���
���

�

���

���

��

�

�

�

�

�

�

�

�

�

���
���

���
���

����

�

�

��

��

�

�

�

�
�

�
�

�

�

��

�

�

�

��
��

��
��

��
��

�

��

�

�

�

���
���

���
���

���
���

�

��

�

�

�

�

��

���

��

�� ��

����

��

�
�
�
�

��

������

��

��

����

����������

��

��
��

�
�
�
�

��
����

��

������������ ����

��
����

��
��

��

��

��

��
��
��
��

��
��

��

�� ��������

�
�
�
�

��

����

�
�
�
�

�
�
�
�

��

��

��

��
��
��
��

�
�
�
�

�� ��

����
�
�
�
�

��

����

��

����

��

��������

��

��
��

������

����
����

�
�
�
�
�
�
�
�

�
�
�
�

�� �
�
�
�
��
��
��
��
��

��
����

��
�� ��������

��
���
�
�
�

��

��

��
��

������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
������ ����

��

��
��
��
��

�� ��
��
�
�
�
�

�
�
�
�

����

��
���� ��

�
�
�
�

�
�
�
� ��

��
��
��
�
�
�
�

�
�
�
�

�� ��
�� ��

��
�
�
�
�

�
�
�
�

��������
�� ����
��
��
��
��
�
�
�
�

��

��

�
�
�
�

��

����

����

�
�
�
�

��

����
�
�
�
���
�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�

�
�
�
�

���� ������ ��

��

����

�
�
�
� ���������������

�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�� ���� �� �����

�
�
� ��

��

�
�
�
� ���� �� ����

������
�
�
�
� ��

�
�
�
����� �� �

�
�
�
�
�
�
�����
�� ��

�
�
�
� ���� ����

����

�
�
�
�

����
������

�
�
�
�����

�
�
�
�����

�
�
�
�

����
������

������ ����
����

���
�
�
�

��

�
�
�
�
��

����

����

��

��

��

��

����
��
����

������
����

�
�
�
�

����

������
��

��
��

��

�
�
�
�
��

������ ��
��

��
����

�
�
�
�

���� ������
�
�
�
�

�
�
�
�

����
�
�
�
� ��������

�
�
�
�

��
��
��
����

��

��

��
��
��
��

�
�
�
�

��
��
��
��
�� ��

��
��

�
�
�
�

��

Figure 4.2: Layout for Dependence Checker



26

3

4

5

6

7

8

9

10

11

12

2 3 4 5 6 7 8 9 10

de
la

y 
(n

s)

issue width

r = 6
r = 7

Figure 4.3: Dependence Checker Delay Times



27

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10

issue width

issue width choose 2
normalized layout size

Figure 4.4: Dependence Checker Normalized Layout, r = 6

4.1.2 Analysis of areas

Figure 4.4 shows the increase in layout size for increasing issue width, for r = 6.

Section 3.1 showed that the number of comparators required rises with
�
w

2

�
. The layout

increases only slightly greater than this amount.

4.2 Register File Port Arbiter

Register �le arbiters were synthesized for various values of w and p. The number of

sources s was left constant at 2. See Table 4.2 for a summary. Due to the huge amounts



28

of hardware, arbiters for w > 5 were not synthesized. Figure 4.5 shows the gate-level

schematic produced by Synopsys for an arbiter for w = 3; s = 2; and p = 3.

Table 4.2: Arbitration Unit Area and Delays

w p layout (106) delay (ns)
2 0.243 5.52

2 3 0.400 5.77
3 1.420 6.62

3 4 1.988 7.10
4 6.767 9.94

4 5 9.252 11.07
5 34.106 19.12

5 6 47.261 19.20

For constant w, as ports are added, the delay slightly increases. More importantly, the

delay, and especially the layout size, increase rapidly with w. These are plotted in Figures

4.6 and 4.7. For each value of w, the delay or area for the smallest investigated value of

p is plotted. A major increase in both measurements is seen for w = 5. It is evident that

for processors with w > 4, this method of arbitration may be prohibitively expensive, due

to area and timing problems. Hardware costs could be reduced by combining the logic

for some of the one-counters; however, that would negatively impact the delay through

the arbiter.



29

Figure 4.5: Schematic for Arbiter, w = 3; s = 2; p = 3



30

4

6

8

10

12

14

16

18

20

2 3 4 5

de
la

y 
(n

s)

issue width

Figure 4.6: Arbitration Unit Delay

0

5

10

15

20

25

30

35

2 3 4 5

la
yo

ut
 s

iz
e 

(la
m

bd
a^

2)

issue width

Figure 4.7: Arbitration Unit Area



31

4.3 Instruction Queue

4.3.1 Using incremental mapping to synthesize better designs

The default options in Synopsys produced shifters with very long latencies. Synopsys

uses the linear delay calculation model, which takes into account not only the intrinsic

delays through gates, but also the capacitive loads on their outputs. Thus its delay

calculations are fairly accurate. See Figure 4.8 for the schematic of the shifting logic for

a queue of w = 2. See Figure 4.9 for the critical path report.

Recall from Section 3.3 that a small amount of combinational logic drives multiplexers

which determine how much the barrel shifter shifts. This can also be seen from Figure

4.8. When synthesizing this logic, Synopsys generated a few cells (ND3 and ANOTB)

which had to drive very large capacitive loads. This tremendously increased the delay

through the shifter. Synopsys did not try to remedy this, since the delay to the output

was unconstrained by the designer. Coercing Synopsys to generate a few more cells for

this logic would increase its driving capacity and signi�cantly reduce the delay through

the shifter without signi�cantly increasing the chip area.

Five trials were done in an attempt to remedy this problem.

1. defaults (timing driven structuring only)

2. 
attening (high e�ort) and TDS

3. 
atten, then TDS

4. set constraint of 7 ns output delay

5. set constraint of 5 ns output delay



32

Figure 4.8: Original Schematic for Instruction Queue, w = 2



33

Point Incr Path

-----------------------------------------------------------

input external delay 0.00 0.00 r

dep_free(0) (in) 0.00 0.00 r

U1088/OUT (ND3) 13.04 13.04 f

U1090/OUT (ANOTB) 26.51 39.55 r

U1041/OUT1 (MUX5) 1.29 40.84 f

U1041/OUT2 (MUX5) 0.32 41.16 r

new_instr_q(1][OPCODE][5) (out) 0.00 41.16 r

data arrival time 41.16

-----------------------------------------------------------

(Path is unconstrained)

(a)

Point Incr Path

-----------------------------------------------------------

input external delay 0.00 0.00 f

dep_free(0) (in) 0.00 0.00 f

U107/OUT (ND3) 1.76 1.76 r

U102/OUT (NR2) 0.80 2.56 f

U113/OUT1 (BUFF) 0.66 3.22 r

U113/OUT2 (BUFF) 2.17 5.39 f

U96/OUT1 (MUX5) 1.13 6.52 r

U96/OUT2 (MUX5) 0.33 6.85 f

new_instr_q(0][DESTS][0][0) (out) 0.00 6.85 f

data arrival time 6.85

(b)

Figure 4.9: Timing Reports for (a) Original and (b) Optimized Instruction Queue, w = 2



34

Table 4.3 shows the results of these trials. Layouts were not done for these trials.

Instead, the area measurement is one given by Synopsys. Synopsys measured area by

summing cell areas, as given for each cell in the CMOSN technology library description

�le. Through wire load models, it is possible for Synopsys to take wiring into account

when measuring area; this was not done, however, for lack of an accurate model.

Areas for various cells were: inverter, 5; 2 input NAND, 7; 2-TO-1 MUX, 15; 4-TO-1

MUX, 25. These areas and all areas reported by Synopsys are unitless and are intended

only to measure relative size di�erences, not absolute layout sizes. In this thesis, any

measurements labeled as \area (Syn)" refer to area measurements calculated by Synopsys,

not Mentor.

Table 4.3: Instruction Queue Synthesis Results, w = 2

1 2 3 4 5
area (Syn) 1317 1314 1335 2053 2226
delay (ns) 52 41 33 7 5

Table 4.3 clearly exhibits the classic area vs. delay tradeo�. However, most of these

designs were suboptimal in that they attempted to completely reconstruct the whole

circuit - not just the small but critical amount of logic driving the muxes.

A new approach was chosen: using incremental mapping in conjunction with setting

constraints. Incremental mapping will look at small areas in the circuit where signi�cant

optimizations are possible. Using this, in addition to setting constraints on output delays,



35

yielded excellent savings. See Table 4.4 for the result of doing incremental mappings,

for various output delay constraints, on the schematic originally produced for w = 2.

Table 4.4: Incremental Mappings of w = 2 Queue

1 2 3 4 5
area (Syn) 1328 1349 1384 1457 1618
delay (ns) 20 10 7 6 5

Note that using incremental mapping obtained the same critical path savings as the

previous methods, but at much less expense. The design produced for the 7 ns delay

appears to be optimal for area and speed. See Figure 4.10 for the schematic. For this

mapping, the critical path decreased by 83% while the area increased by only 5.3%.

See Figure 4.9 for the corresponding critical path report. Note that approximately

the same number of cells is in the path, but the delay is much smaller since no cells drive

large capacitive loads.

The above process was repeated for queues of lengths 3 through 7. See Table 4.5

for a summary of various incremental mappings. Again, large decreases in the critical

path came at the expense of very modest increases in hardware. The optimal designs (as

chosen at the author's discretion) are listed in Table 4.6.



36

Figure 4.10: Optimized Schematic for Instruction Queue, w = 2



37

Table 4.5: Synopsys Areas and Delays for Incremental Mappings of w = 3 { 7 Queues

w orig iter 1 iter 2 iter3 iter 4
area (Syn) 2461 2504 2504 2549

3 delay (ns) 34 10 8.4 7
area (Syn) 5465 5599 5695 5873

4 delay (ns) 69 15 11 9
area (Syn) 7633 7875 7967 8000 8162

5 delay (ns) 103 15 12 11 10
area (Syn) 10162 10333 10557 10733

6 delay (ns) 91 20 15 14
area (Syn) 12996 13182 13221 13229 13371

7 delay (ns) 67 20 18 17 16.3

Table 4.6: Optimal Designs for w = 2 { 7 Queues

w area (Syn) delay (ns)
2 1384 7
3 2549 7
4 5695 11
5 8000 11
6 10557 15
7 13371 16.3

4.3.2 Analysis of delays

As shown in Section 3.1, the levels of logic required to reduce b bits goes as log b.

Each mux in the queue may be considered a bit reducer. Thus one would expect the

delay to increase logarithmically with w.

Table 4.6 shows the optimal delay through the barrel shifter for various values of

w. Inspection of the table reveals that the delay grows slower than w but faster than

logw. This can be accounted for by considering delays through the driving logic, which



38

will carry more weight for small values of w, as have been examined here. Thus it may

be concluded that in general the delay rises with logw.

4.3.3 Analysis of areas

For w = 2 { 7, layouts were completed for the original design and for the optimal

mappings as shown in Table 4.6. See Table 4.7. The layout areas given by Mentor

were compared with those predicted by Synopsys. Synopsys generally underestimated

the percentage increase, and increasingly so with increasing w. This is explained by the

failure to use Synopsys' ability to take into account area resulting from wiring.

Table 4.7: Various Shifter Layouts

issue width
layout 2 3 4 5 6 7
original (106) 2.99 6.29 13.07 19.81 26.31 35.95
best (106) 3.16 6.71 14.56 22.92 29.17 40.50
%increase (Synopsys) 5.3% 3.6% 4.2% 4.8% 3.9% 2.9%
%increase (Mentor) 5.7% 6.7% 11.3% 15.7% 10.8% 12.7%

Conceptually, for an instruction queue of width w, with instructions of length l, w � l

muxes are required. The area required by a w-to-1 mux follows w, as it requires w 2-input

AND gates, as well as reduction logic to or-reduce those outputs. Then the area required

for the barrel shifter is l � w2. Thus the area required by a barrel shifter rises as w2.

Figure 4.11 plots the Mentor layout size vs. w for the values given in Table 4.7. The

graph of w2 is also plotted. The plots match very well.



39

0

2

4

6

8

10

12

14

2 3 4 5 6 7

issue width

w^2
normalized layout size

Figure 4.11: Instruction Queue Layouts



40

5. CONCLUSIONS

This document has described the methodology used to obtain schematics and layouts

for VHDL designs (Chapter 2), the VHDL modeling of aspects of a superscalar issue

unit (Chapter 3), and the results obtained by synthesizing these models (Chapter 4).

Table 5.1 summarizes the area and delay conclusions reached in Chapter 4:

Table 5.1: Summary of Conclusions

dependence Johnson's register instruction
checker port arbiter barrel shifter

area trend
�
w

2

�
expensive for w > 4 w2

(or w2 for large w)
delay trend logw expensive for w > 4 logw

From the results above, when examining chip cost, it may be concluded that neither

the in-order instruction queue nor the dependence checker scale well when attempting

to extract higher ILP. The register port arbiter took the most hardware, although meth-

ods could be used to reduce it at the expense of cycle time. The shifting instruction



41

queue and dependence checking hardware are required only by superscalar processors.

Thus it appears that the complexity of extracting higher levels of ILP in the superscalar

processors of the future will require much chip area.

Synopsys (or in general, any synthesis tool) will not yield optimal designs unless it

receives feedback from the designer. Indeed, its output is heavily in
uenced by the user's

choice of compile-time options. This greatly a�ects the results reached, especially those

reached for the instruction shift unit. Thus the e�ort put forth by the user to reach an

optimal design greatly a�ects the accuracy of the results generated by tools such as those

in this thesis.

It is hoped that the time and work invested in developing these tools and models will

be useful to the ongoing success of the IMPACT project at the University of Illinois.



42

REFERENCES

[1] J. Gyllenhaal, \A Machine Description Language for Compilation," M.S. thesis, Dept.
Electrical and Computer Engineering, University of Illinois, 1994.

[2] M. Johnson, Superscalar Processor Design. Englewood Cli�s, NJ: Prentice-Hall, Inc.,
1991.



43

REFERENCES NOT CITED

[1] R. Lipsett, C. Schaefer and C. Ussery, VHDL: Hardware Description and Design.
Norwell, MA: Kluwer Academic Publishers, 1989.

[2] VHDL Compiler Reference Manual, v3.1b. Synopsys Corporation, 1994.

[3] Design Analyzer Reference Manual, v3.1b. Synopsys Corporation, 1994.

[4] Design Compiler Family Reference Manual, v3.1b. Synopsys Corporation, 1994.

[5] Synopsys Integrator for Falcon Framework User Guide, v3.1b. Synopsys Corporation,
1994.

[6] System Installation and Con�guration Guide, v3.1b. Synopsys Corporation, 1994.

[7] AMPLE Reference Manual, v8.2. Mentor Graphics Corporation, 1993.

[8] Design Manager Reference Manual, v8.2. Mentor Graphics Corporation, 1993.

[9] Design Architect Reference Manual, v8.2 5. Mentor Graphics Corporation, 1993.

[10] IC Station Reference Manual, v8.2 5. Mentor Graphics Corporation, 1993.

[11] Getting Started with Falcon Framework, v8.2 5. Mentor Graphics Corporation, 1993.



44

APPENDIX A. DEPENDENCE CHECKER

The following is the VHDL code used to synthesize the dependence checkers. The

code instantiates as many comparators as needed and performs a NOR-reduction for each

instruction to determine if it is dependence free.

library thesis,ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_misc.all; -- for reduction functions

use thesis.types.all, thesis.funcs.all;

entity depcheck is

generic (

w: integer

);

port(

instr_q: in instr_stream(w-1 downto 0);

dep_free: out std_logic_vector(w-1 downto 0)

);

end depcheck;

architecture behav of depcheck is

subtype dep_vec_t is std_logic_vector(w-1 downto 0);

subtype comp_vec_t is

std_logic_vector((num_srcs+num_dests)*num_dests-1 downto 0);



45

begin

-- pairwise analyze instructions for dependencies

-- for each instr in instr_q (except 0)

-- look at previous instrs for deps

-- check 1 against 0, 2 against 1 & 0, 3 against 2,1,0, etc...

process(instr_q)

variable comp_vec: comp_vec_t;

variable dep_vec: dep_vec_t;

begin

dep_free(0) <= '1';

for instr1 in 1 to w-1 loop

for instr2 in 0 to instr1-1 loop

for d1 in 0 to num_dests-1 loop

for d2 in 0 to num_dests-1 loop

comp_vec(d1*num_dests+d2) :=

compare_fn(instr_q(instr1).dests(d1),

instr_q(instr2).dests(d2));

end loop;

end loop;

for s in 0 to num_srcs-1 loop

for d in 0 to num_dests-1 loop

comp_vec(num_dests*num_dests+s*num_dests+d) :=

compare_fn(instr_q(instr1).srcs(s),

instr_q(instr2).dests(d));

end loop;

end loop;

dep_vec(instr2) := OR_REDUCE(comp_vec) and

compare_fn(instr_q(instr1).regfile_id, instr_q(instr2).regfile_id);

end loop;

dep_free(instr1) <= NOR_REDUCE(dep_vec(instr1-1 downto 0));

end loop;

end process;

end behav;



46

APPENDIX B. REGISTER FILE PORT ARBITER

The following is the VHDL code used to synthesize the register �le port arbiters. For

each (request, port) pair it is determined if the request is enabled on the corresponding

port.

library thesis,ieee,parts;

use ieee.std_logic_1164.all;

use ieee.std_logic_misc.all; -- reduction function

use thesis.types.all, thesis.funcs.all;

use parts.components.all;

entity arbiter is

generic( w, s, p : integer);

port (

reqs: in std_logic_vector(w*s-1 downto 0);

enas: out std_logic_vector(w*s-1 downto 0)

);

end arbiter;

architecture struct of arbiter is

constant num_reqs: integer := w * s;

subtype ena_vec_t is std_logic_vector(p-1 downto 0);

type enable_matrix_t is array (natural range <>) of ena_vec_t;

signal ena_vecs: enable_matrix_t(num_reqs-1 downto 0);

signal one_cnt_signal: std_logic_vector((p*num_reqs)-1 downto 0);



47

begin

requester: for r in 1 to num_reqs-1 generate

read_port: for rp in 0 to my_min(r,p-1) generate

ctr: one_cnt_lastn_eq_c

generic map(num_reqs, r, rp)

port map(reqs, one_cnt_signal(r*p+rp));

end generate;

end generate;

enables: for i in 0 to num_reqs-1 generate

enas(i) <= reqs(i) and or_reduce(ena_vecs(i));

end generate;

process(reqs, one_cnt_signal)

variable req_ena_vec : ena_vec_t;

begin

-- check if 'r_port' of last 'req' requests are 1's

-- if so, enable the request on this port

for req in 0 to num_reqs-1 loop -- req = requester id

for r_port in 0 to p-1 loop

if r_port <= req then

-- if request 0, don't need to examine request vector

if req = 0 and r_port = 0 then

req_ena_vec(r_port) := reqs(req);

else

req_ena_vec(r_port) :=

reqs(req) and one_cnt_signal(req*p+r_port);

end if;

else

-- never enable request on port with higher id

req_ena_vec(r_port) := '0';

end if;

end loop;

ena_vecs(req) <= req_ena_vec;

end loop;

end process;

end struct;



48

APPENDIX C. INSTRUCTION QUEUE

The following is the VHDL code used to synthesize the instruction queues. An issue

vector is formed; this is used to determine if the queue does a full load, shifts, or does

not change. The shift is implemented through the CatShift() function.

library thesis,ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use thesis.types.all, thesis.funcs.all;

use ieee.std_logic_arith.all; -- for unsigned declaration

use ieee.std_logic_misc.all; -- for reductions

entity issue is

generic(w: integer);

port(

instr_q, cache_line: in instr_stream(w-1 downto 0);

dep_free: in std_logic_vector(w-1 downto 0);

stream_avail: in stream_srcs_available(w-1 downto 0);

new_instr_q: out instr_stream(w-1 downto 0)

);

constant log_w: integer := log_table(w);

end issue;



49

architecture behav of issue is

signal all_valid, issue_vector: std_logic_vector(w-1 downto 0);

signal passes_check: std_logic_vector(w-1 downto 0);

signal shift_amt: std_logic_vector(log_w-1 downto 0);

signal ld: std_logic;

signal encoder_input: std_logic_vector(w-1 downto 0);

signal encoder_output: unsigned(log_w-1 downto 0);

begin

-- check available bits for all register id's in instruction

avail: for instr in all_valid'range generate

all_valid(instr) <= and_reduce(stream_avail(instr));

end generate;

-- check instrs for dependencies, invalid regs, port enables

passes_check <= dep_free and all_valid;

-- form issue vector (i.e. 0011111)

-- this vector tells if corresponding instruction allowed to issue

issue_vector(0) <= passes_check(0);

issue_vector(w-1 downto 1) <=

passes_check(w-1 downto 1) and issue_vector(w-2 downto 0);

-- get shift_amt by priority encode issue vector (00111110 => 5(dec) = 100)

-- append '0' so that bit position of highest '1' is same as shift_amt

-- encoder will return 0 if issue vector is 0

encoder_input <= issue_vector(w-2 downto 0) & '0';

encoder_output <= prio_encode(unsigned(encoder_input), log_w);

shift_amt <= conv_std_logic_vector(encoder_output,log_w);

-- use high bit of issue_vector to indicate a full load

ld <= issue_vector(w-1);

new_instr_q <=

cache_line when (ld = '1')

else

CatShift(instr_q, shift_amt, cache_line);

end behav;



50

APPENDIX D. ONE CNT LASTN EQ C

The following is the VHDL code used to synthesize the one-counters needed for the

register �le port arbiter. The code is behavioral; to obtain properly synthesized designs,

compilation directives are embedded within the code.

library ieee;

use ieee.std_logic_1164.all;

entity one_cnt_lastn_eq_c is

generic(v,n,c: integer);

port(vin: in std_logic_vector(v-1 downto 0); c_ones: out std_logic);

end;

architecture behav of one_cnt_lastn_eq_c is

-- pragma dc_script_begin

-- set_flatten -effort high

-- set_flatten true

-- set_structure false

-- pragma dc_script_end

begin

process(vin)

variable count : integer range 0 to n;



51

begin

count := 0;

for i in 0 to n-1 loop

if (vin(i) = '1') then

count := count + 1;

end if;

end loop;

if count = c then

c_ones <= '1';

else

c_ones <= '0';

end if;

end process;

end behav;



52

APPENDIX E. TYPES PACKAGE

The following is the VHDL package types, which is referenced by many of the code

modules written for this thesis. It de�nes constants and data types, including instr t.

library ieee;

use ieee.std_logic_1164.all;

package types is

constant reg_addr_size : integer := 6;

constant opcode_size: integer := 6;

constant regfile_id_size: integer := 2;

constant num_read_ports: integer := 4;

constant num_regs : integer := 32;

constant num_srcs: integer := 2;

constant num_dests: integer := 1;

constant instr_size: integer := 32;

type int_table_t is array(integer range <>) of integer;

constant log_table: int_table_t(32 downto 0) := (

-1,0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5

);

subtype reg_addr_t is std_logic_vector(reg_addr_size-1 downto 0);



53

subtype opcode_t is std_logic_vector(opcode_size-1 downto 0);

subtype regfile_id_t is std_logic_vector(regfile_id_size-1 downto 0);

type src_array is array(num_srcs-1 downto 0) of reg_addr_t;

type dest_array is array(num_dests-1 downto 0) of reg_addr_t;

constant filler_size : integer :=

instr_size - opcode_size - regfile_id_size

- reg_addr_size*(num_srcs + num_dests);

type instr_t is record

opcode: opcode_t;

regfile_id: regfile_id_t;

srcs: src_array;

dests: dest_array;

filler: std_logic_vector(filler_size-1 downto 0);

end record;

type instr_stream is array(integer range <>) of instr_t;

subtype instr_srcs_available is std_logic_vector(num_srcs-1 downto 0);

type stream_srcs_available is array(integer range <>) of

instr_srcs_available;

end types;



54

APPENDIX F. FUNCS PACKAGE

The following is the VHDL package funcs, which is referenced by many of the code

modules written for this thesis. It de�nes three functions. compare fn() is used in the

dependence checker code; the remaining two are referenced in the instruction queue code.

library thesis,ieee;

use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all;

use ieee.std_logic_misc.all, ieee.std_logic_arith.all;

use thesis.types.all;

package funcs is

function compare_fn(a,b: in std_logic_vector) return std_logic;

function prio_encode(a: in unsigned; m: in integer) return unsigned;

function CatShift (Value: instr_stream; ShiftCtrl: std_logic_vector;

ShiftInVal: instr_stream) return instr_stream;

end funcs;

package body funcs is

function compare_fn(a,b: in std_logic_vector) return std_logic is

begin

if (a=b) then return '1';

else return '0';

end if;

end;



55

function prio_encode(a: in unsigned; m: in integer) return unsigned is

variable i: integer;

variable output: unsigned(m-1 downto 0);

begin

if (conv_integer(unsigned(a)) = 0) then

output := (others => '0');

else

for i in a'length-1 downto 0 loop

if a(i) = '1' then

output := conv_unsigned(i,m);

exit;

end if;

end loop;

end if;

return output;

end prio_encode;

function CatShift (Value: instr_stream; ShiftCtrl: std_logic_vector;

ShiftInVal: instr_stream) return instr_stream is

variable retval: instr_stream(Value'range);

variable i: integer;

begin

-- may shift from Value'high to 0 positions

-- the zero shift must be treated separately to avoid syntax errors

for i in Value'range loop

if i = ShiftCtrl then

if i = 0 then

retval := Value;

else

retval := ShiftInVal(i-1 downto 0) & Value(Value'high downto i);

end if;

end if;

end loop;

return retval;

end CatShift;

end funcs;



56

APPENDIX G. SYNTHESIZE

The following is a description of the c-shell script synthesize. The script takes a

previously analyzed design from a VHDL design library, and invokes design compiler to

obtain a standard cell-based design.

usage: synthesize <design> -lib <library> [-arch <architecture>]

[-area] [-param <string>] [-timing] [-ungroup]

description:

synthesize takes code that has been previously analyzed into a VHDL

design library, and synthesizes it into a standard cell based design

in Synopsys format. The resulting .db file is written to disk. The

user must provide the necessary parameters if the VHDL code is

parameterizable (contains generics).

filesystem configuration:

The following directory organization must exist before running the

scripts:

logical_library_name/

/ | | \

db/ src/ eddm/ lib/



57

The VHDL source code must reside in src. The files produced by analyzing

these files (.sim, .syn) must reside in lib. synthesize will elaborate

and compile the code in lib and save the resulting .db dile to the db

directory. make_layout will write results to the eddm directory.

options:

<design>

Specifies the name of the VHDL entity to synthesize.

-arch <architecture>

Specifies the architecture to attach to the entity. In Synopsys,

the entity, architecture, and any instantiated entities and

architectures must all reside in the same directory. Multiple

architectures may reside there; if so, this will tell the compiler

which one to use. If multiple architectures exist and none is

specified, the most recently analyzed architecture (.mra) is used.

-area

Instructs Synopsys to report area information on the chip.

-lib <library>

Specifies the logical library name where the previously analyzed

entity and architecture files (.sim and .syn) must be located.

The mapping from library name to the physical filesystem directory

should be specified in the user's ~/.synopsys_dc.setup file. This

script requires that this mapping be of the form <library>/lib.

-param <string>

Specifies the parameters to be used for the VHDL generics. The

format is the same as that for passing generics in Synopsys'

`elaborate' command. The string must be enclosed in double-quotes,

and consists of generic-integer pairs separated by the equals sign.

For example:

-param "w=2,s=2,d=1"

-timing

Instructs Synopsys to report timing information on the critical

path through the design. The report specifies the delay in

nanoseconds, and the cells on the path.



58

-ungroup

Instructs Synopsys to flatten the design it produces. The .db

file Synopsys first produces will contain hierarchy if the VHDL

code makes explicit component instantiations. If this option is

specified, Synopsys will then flatten the design, and the resulting

.db file will contain no hierarchy. Design flattening sometimes

makes easier the process of converting the .db file to a schematic

and layout.



59

APPENDIX H. MAKE LAYOUT

The following is a description of the c-shell script make layout. The script takes a

design in Synopsys db format, invokes db2eddm to convert it to a Mentor schematic, and

invokes ICStation to create a layout of that schematic.

usage: make_layout <design> -lib <library> -hier -lvs

-no_db2eddm -no_lay

description:

make_layout first converts the design in the .db file to a standard

cell based design in Mentor's eddm format. It then calls ICStation to

convert this cell-based design to a VLSI layout.

filesystem configuration:

same as for synthesize.

options:

<design>

Specifies the name of the .db file to convert to Mentor, then

layout. The .db extension is assumed. This name will NOT be the

same as the name used in the synthesize script if generics were

used. In that case, the generics are appended to the name of the

.db file.



60

-lib <library>

Specifies a logical library name which is mapped in

~/.synopsys_dc.setup to an actual directory. The script looks in

<library>/db for the Synopsys design file specified. The

schematic and layout produced are both stored in <library>/eddm.

-hier

Instructs the layout script that the design is hierarchical.

Default is flat.

-lvs

Instructs the layout to check its layout against the cell-based

schematic for correctness. Default is off.

-no_db2eddm

Instructs the script that the Mentor schematic already exists and

thus db2eddm need not be run to produce it. Proceed straight to layout.

-no_lay

Instructs the script to only run db2eddm and not to perform the

layout. Only the cell-based schematic is produced.


