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CHAPTER 1

INTRODUCTION

Since the invention of the computer, higher application performance has been in incessant

demand. Even orders-of-magnitude performance improvement has not appeased users as they

continue to dream of new, more demanding applications. This pursuit has led to aggressive

development at every level of computer design, from semiconductor to compiler technologies.

Improved semiconductor technology contributes higher die densities, which allows for an in-

crease in the number of transistors while also allowing higher clock frequencies. Computer

architectures now may allow coarse-grained parallelization, speculation, and predication. Ad-

vanced computer microarchitectures are able to exploit �ne-grained parallelism more e�ectively

while also executing instructions more e�ciently than in previous microarchitectures. Mem-

ory systems have improved to reduce the average latency of accesses to memory by including

multiple levels of caching, and by adding new types of caches, such as victim caches. Com-

pilers provide aggressive classical and instruction-level-parallelism optimizations and pointer

analysis to reduce the number of instructions executed, and to provide in-depth analysis of the

application. These and other improvements have all lead to exponential growth of computer

performance.

In order to achieve maximum application performance, however, the improvements made

must be e�ectively exploited. Within the IMPACT research group, research e�orts have focused

on co-development of the various hardware components and compiler technologies to ensure that

the generated code matches well with the underlying hardware. The system described in this
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thesis adds another component into the compilation process in an e�ort to further conform the

code to the hardware.

As previously mentioned, high performance can only be achieved when applications

e�ectively use the various resources in the microprocessor. However, software vendors tra-

ditionally compile code completely to executable format without much regard for the speci�cs

of the target processor model. In essence, the lowest-common-denominator model is chosen and

compiled for, thus allowing users with older machines to run the applications. This software

distribution model often prevents the use of newer features (for example, MMX capabilities),

and can cause mismatches between the microarchitecture and the code (for example, desired

instruction ordering for e�cient decoding).

Recent changes to this software distribution system have allowed for the inclusion of multiple

versions of the software within a single distribution, each targeting a speci�c model. Speci�cally,

one approach has been to group functions into libraries, where multiple model-speci�c versions

of those libraries are included and selected at install or library load time. Or, a global variable

can be tested during execution that indicates a particular model. Based on this variable, the

best code can then be executed. These approaches rely on the software vendor to build and

distribute multiple copies of the various code segments.

Another approach is to construct an optimizer that customizes applications when they are

installed on the target system. This is the approach that is investigated in this thesis. Such a

system is desirable as many di�erent models exist within a processor family with competing,

compatible families also available. This makes the inclusion of custom pieces of code for each

model infeasible. Use of an install-time optimizing system may lower the time-to-market of

applications as less model-speci�c code may need to be developed. Install-time optimization
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capabilities may also increase the performance bene�t of a new processor model. When a user

purchases a new processor, the appropriate reoptimizer may be packaged with it, allowing for

immediate reoptimization of the user's executables for the new processor.

1.1 Related Work

Other systems have been proposed and developed that attempt to tackle similar or related

problems including Etch [1], Morph [2], and Fx32! [3]. A summary of these other e�orts can

be found in [4].

Other proposed systems have suggested that the �nal binary be constructed from an inter-

mediate representation at run time. This would allow for customization for the target model

because the model-speci�c portion of compilation would not be performed by the vendor, but

deferred until run time. In such a system, the intermediate representation could be immedi-

ately optimized and compiled into binary the �rst time the code is executed, or interpreted for

a period of time while pro�le information is gathered, followed by optimization and compila-

tion. Current Java systems operate much in this way, where the bytecode can be considered an

intermediate representation. However, such a software distribution system requires intervention

by the compiler on the user's machine because the processor cannot directly execute the inter-

mediate representation. In other words, it is not possible to turn o� the compiler, even if it

contains bugs. Furthermore, applications running in such environments tend to execute quite

slowly during the early phases of execution as many instructions are interpreted or compiled.

Research on compilation for x86 architectures began approximately six years ago within the

IMPACT research group [5], [6]. The x86 binary reoptimization framework presented in this

3



thesis employs a new intermediate representation and tools, but leverages heavily o� of past

experiences.
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CHAPTER 2

BINARY REOPTIMIZATION FRAMEWORK

The IMPACT binary reoptimization framework is capable of reoptimizing code contained in

three di�erent types of binary �les: the Portable Executable (PE) format [7], [8], the Dynamic-

Link Library format (DLL), and the Common Object File Format (COFF). The Portable

Executable and the Dynamic-Link Library formats are the two common (and similar) formats

that contain linked code ready for execution. The Common Object File Format contains com-

piled object code prepared for linking.

The following sections present an overview of the steps taken to reoptimize a binary. In

addition to the descriptions found in this thesis, further detail into select topics can be found

in a joint technical report by Merten and Thiems [9], a master's thesis by M. S. Thiems [10],

and a master's thesis by C. N. George [4].

2.1 Basic Optimization Process

Figure 2.1 depicts the basic optimization process. The �rst step, x86toM, converts the

binary �le into IMPACT's intermediate representation calledMcode. This step actually consists

of two phases. In the �rst phase, code discovery algorithms are employed to �nd instructions

and collect them into basic blocks and �nally into whole functions. A temporary representation

of the code, which is similar to Intel assembly code, is used in this �rst phase. Then in the

second phase, the code is converted into Mcode.
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PEwrite/COFFwrite

Processed Fixups
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Temp. Object File

Windows 32-bit
Optimized

Figure 2.1 The basic binary optimization process.

Optimization is performed in the second step, called Lbx86 phase 2. The quali�er phase

2 is used for historical reasons to indicate the optimization phase of a code generator. A

variety of optimizations can be performed on the code in this phase: scheduling, both machine-

independent and machine-speci�c optimizations, etc.
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After optimization, the code is converted directly to a binary format in the third step,

called Lbx86 phase 3. Again, the quali�er phase 3 is used for historical reasons to indicate

the �nal conversion of the code to assembly format, or in this case, binary format. A custom

direct-to-binary converter is desirable because traditional assemblers do not simply convert

assembly to binary, but rather perform certain optimizations. One such optimization concerns

instruction selection where the particular opcode and operand layouts are chosen to minimize

the instruction's encoded size. However, it is sometimes desirable to have instructions of a

larger size, as speci�ed by the optimizer. Using a traditional assembler would undo such an

optimization performed by the optimizer. The output of this phase is a temporary object �le

containing the optimized text and data sections.

Finally, the fourth step, called PEwrite (for PE and DLL �les) or COFFwrite (for COFF

�les) merges the optimized code stored in the temporary object �le back into a copy of the

original binary �le. By merging the code into a copy of the original, certain portions of the

original �le need not be translated or maintained throughout the optimization process. Large

portions of code and data have been converted to the intermediate representation, while some

smaller portions along with elements that are not strictly code or data have been communicated

through the �xup �le.

2.2 Pro�le-Based Optimization Process

This framework also supports pro�le-driven optimization of PE and DLL �les. Two dis-

tinct passes through Lbx86 phase 2, Lbx86 phase 3, and PEwrite must be made, as shown in

Figure 2.2. In the �rst pass, probes to collect edge execution weights are inserted by Lbx86

phase 2. Lbx86 phase 3 and PEwrite generate and reconstruct the binary as usual, including
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Figure 2.2 The binary optimization process with branch pro�ling.
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the probes and the counter table. When the probed application is executed, the counter table

is updated by the probes. In order to read out the counter values from the table, a monitoring

application launches the probed application and is noti�ed by the operating system immediately

prior to termination of the probed application. Following the extraction of the counter values

from the probed application's data space, the application is allowed to terminate. The counter

values are then reformatted, allowing Lget to annotate the Mcode with pro�le weights. Pro�le-

driven optimizations can be applied in the second pass of Lbx86 phase 2 to the pro�le-annotated

Mcode.

2.3 Application Requirements for Reoptimization

The reoptimization framework requires that PE and DLL �les have a base relocation table.

This table contains information about the pointers contained within the executable code and

data. The binary reoptimization framework simply uses the table to identify the constants

that should be treated as pointers and which should be treated as simple numbers. The base

relocation table will be further discussed in Chapter 4. In addition, the presence of a symbol

table helps the framework to delineate function boundaries, but the presence of this table is not

required.

COFF �les, by de�nition, must always contain both a relocation table and a symbol table

for linking purposes. The relocation table is an enhanced base relocation table in the sense that

it indicates where the pointers are in the code, but it also indicates what the pointers actually

point to. Since both tables are required for linking, the framework uses the information present

in those tables. There are no additional requirements for translation of COFF �les.
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CHAPTER 3

SECTION TRANSLATION

Portable Executable �les, Dynamic-Link Libraries, and Common Object File Format �les

all consist of a collection of sections. A section may contain executable code, initialized data,

uninitialized data, debugging information, constant data, supplemental information about the

binary such as a base relocation table, etc.

In COFF object �les, the code for each function is usually contained within its own sec-

tion. Certain types of constant data, such as jump tables, may also be located with the code.

Compilers di�er on the grouping of other types of data. For example, the Microsoft Visual

C++ compiler groups global initialized data from a single source �le together into a section. It

also groups global constant data together and global uninitialized data together into their own

sections. However, local constant data (such as strings) are often each given their own section.

This explicit sectioning allows the linker to easily include in the �nal binary only the functions

that can be potentially called, leaving out the unused functions, or dead code.

However, PE and DLL �les generally contain only one section for each type of information

because the operating system loader must individually load and place each section into memory.

By having fewer sections, there is less loader bookkeeping overhead during the loading process.

The linker is responsible for merging together sections with similar characteristics during �nal

binary creation.

Microsoft's compiler names sections containing functions as .text, global initialized data

as .data, uninitialized data as .data or .bss, and global constant data as .rdata. Borland's
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compilers name them CODE, DATA, .bss, and .rdata. For simplicity, the Microsoft terminology

(without the preceding period) will be used throughout the remainder of this thesis.

3.1 Binary Creation

Before beginning an in-depth discussion on section translation, a brief summary of binary

creation is in order. This process is shown in Figure 3.1. In a typical compiler, each function

and its associated data (jump table data, etc.) is compiled separately into assembly code,

barring any interaction due to function inlining and interprocedural analysis. Each function

is then converted to binary representation within its own text and data sections in the object

�le. An example is shown in column (a) of Figure 3.1 which depicts an object �le containing

two functions and two associated data sections. The linker then maps all of the text sections

into a single, large text section, and likewise maps all of the data sections. The result is shown

in column (b). Next, all of the sections are linked together, as all of the symbolic pointers

are resolved into addresses, as shown in column (c). Finally, the binary is written, and most

of the information about individual function and data locations is lost. A symbol table may

be written which may assist in the delineation of the functions and data within the binary

executable. Symbol tables will be discussed further in Section 3.4.

3.2 Binary Analysis and Optimization

In order to optimize the code, the actual instructions, blocks, and functions must be discov-

ered and collected in a process called binary decode, as shown in Figure 3.2. The text and data

sections are the only sections likely to bene�t from optimization and, thus, are the only sections

decoded and translated into Mcode. Other sections may contain information required by the
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Figure 3.1 Linking of object �les into a linked binary.

decoder, but those sections are only partially decoded and referenced upon demand. Because

the optimizer cannot e�ciently analyze and optimize the code for an entire program at once, it

is broken up into units of compilation. This framework, like most optimizers, uses functions as
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BINARY
DECODE

OPTIMIZE AND
RECONSTRUCT

PE file with
2 sections.

(a)

Mcode
Intermediate
Representation
with 3 units of
compilation.

(b)

Optimized
PE file.  Note
size changes of
optimized sections.

Figure 3.2 Section decode, optimization, and reconstruction of a linked binary.

its unit of compilation, although other units, such as regions [11] which are supported within

the IMPACT compiler, are also viable options. As shown in column (b) of Figure 3.2, the out-

put of the decoder is a collection of functions and data. Note that the data section, however,
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section
name

Function label without symbol:

Control block label:

Function label from symbol:

General text section block label:

Non-text section label:

General text sect. block label w/ offset:

number

l_g_abs

section

l_g_abs

block beginning

l

_$fn_malloc

_$fn_f_343

cb158__output

function number

l_g_abs

l_g_abs

_section_text1_15682+4

_section_data3+67024

l_g_abs _section_text1_15682

function name

local label global absolute
label

control block number

offset from
section beginning

offset from
section beginning

offset from

Figure 3.3 Example labels used within the optimizer.

is not speci�cally optimized and remains as a single data section throughout the optimization

process.

The functions in the optimized binary will likely be di�erent sizes and located at di�erent

addresses than in the original binary. The example in Figure 3.2 column (c) shows that the

functions have been reordered and also have changed slightly in size. Since there are layout

and size changes, the optimizer cannot use addresses as pointers within instructions. Instead,

all functions are given names, or labels, possibly taken from the symbol table if it is present,

when they are translated into the intermediate representation. All pointers into the text section

are converted into label references, examples of which are shown in Figure 3.3, which will be

resolved back into addresses before the optimized binary is written. Note that noncode regions

within the text section will also be broken up into blocks. Those blocks will be given a block

name that consists of the section identi�er appended with the block's starting o�set from the

beginning of the section in the original binary. An additional o�set from the beginning of the

block may be represented as an o�set appended to the block name.
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The data section is also translated into the intermediate representation, but with the limited

information available within a binary, it cannot yet be reliably broken into pieces. In e�ect, the

entire data section is treated as a single block. Because growth of the text section can change

the placement of the data section in memory, all pointers into the data section must also be

altered and, therefore, are converted into label references. These pointers consist of a label to

the beginning of the data section appended with an o�set from the beginning of that section,

also shown in Figure 3.3.

The other sections in the binary are not converted into intermediate representation, and

thus measures must be taken when information within those sections must be altered. Pointers

from the other sections into the unconverted sections are altered in the same way that pointers

into the data section pointers are altered. Pointers out of those unconverted sections are tagged

as �xups. The �xup �le contains a list of such pointers and their target labels. Those pointers

are then altered, or �xed up, when the new binary is generated.

3.3 Binary Decoding

As shown in Figure 3.2, the �rst step in the reoptimization process involves decoding the

binary and converting it into Mcode intermediate representation. This process is performed

by the x86toM tool. The code within the text section is broken into functions via a decode

and 
ow analysis algorithm, as described in [4]. Essentially, the process iteratively decodes an

instruction and then follows all of its possible control paths. More speci�cally, the decoder keeps

track of the addresses of all previously explored instructions and a stack of addresses of control


ow targets yet unexplored. The decoding is performed in a depth-�rst fashion in which, at a

conditional branch instruction, the fall-through path is �rst explored while the address of the
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instruction in the taken path is pushed onto the unexplored stack. When decoding reaches a

return instruction or previously decoded instruction, decoding resumes at the address on the

top of the unexplored stack. Note that decoding begins with the entry point to the application,

often mainCRTStartup() for Microsoft-compiled C applications.

3.4 Symbol Table

The symbol table is an inherent component of all COFF �les and an optional component of

PE and DLL �les. In COFF �les, inter-section pointers exist as symbol references, or labels,

until link time, thus necessitating a list of symbols and their addresses. Since all internal

pointers have been resolved in PE and DLL �les (external pointers are handled through import

and export tables), symbols are only required for debugging purposes.

Symbol table entries may assist in binary decode in several ways. First, all functions have

entries in the symbol table. In the same way that an export table assists in decoding, functions

that may have not been previously discovered through standard 
ow analysis may now be lo-

cated and decoded. This can be particularly bene�cial when determining whether an immediate

address within an instruction points to a data block or a function. For instance, a user function

pointer may be passed as a parameter to a system or library function in a construct called a

callback. Likewise, a pointer to a constant character string may be passed to a function such

as printf(). Both the function pointer and the string pointer appear as a constant value in a

stack push instruction. Without interprocedural analysis or a symbol table, the decoder cannot

reliably determine which are function and which are data pointers.

A unique feature present in Microsoft Visual C++ 6.0 generated code is the absence of a

return instruction after calls to the C Library function exit(). Since control will never return
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main

...

00401245:E8 E3 FA 02 00 call exit

0040124A:90 nop

0040124B:90 nop

0040124C:90 nop

0040124D:90 nop

0040124E:90 nop

0040124F:90 nop

readfile:

00401250:83 EC 50 sub esp, 50h

...

Figure 3.4 Partial disassembly of functions main() and readfile() as compiled by Mi-
crosoft Visual C++ 6.0.

from the exit() function, the compiler does not generate the return instruction after the call

instruction. This poses an interesting situation for the framework's 
ow decoding routines, as

the algorithms always expect that a function call returns and resumes execution. When the

decoder begins decoding instructions following the call to exit(), data and �ller are incorrectly

converted to instructions, as shown in Figure 3.4. This situation poses several more complicated

problems.

One such complication is that 
ow decoding may continue decoding straight into another

function. This leads the decoder to believe the two functions are actually a single function

with multiple entry points. An example of this situation can be seen in Figure 3.4 as the

series of no operation, or \nop", instructions suggest control 
ow can follow the call into the

subtract, thus linking the two functions together. This is not necessarily an adverse situation

as the framework correctly handles multiple entry-point functions, but this can complicate the

optimization process because of false dependences.
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A potentially more signi�cant problem is that data may be incorrectly classi�ed as code.

Suppose that the series of no operations is really a series of data bytes. If optimization is

performed on this combined function, the no operations might very well be eliminated, thus

eliminating the data table! In other cases, series of data bytes translate into a sequence of more

diverse instructions. The optimizer may perform optimizations on this supposed code sequence

thus altering the data table. Clearly, these situations are unacceptable for correct translation.

These complications are even worse when conversion of data to code alters instruction

alignment. Consider the situation when a single byte exists between the call to exit() and

the next function. Now, suppose that this byte happens to be decoded as the �rst byte in a

two-byte opcode. When this supposed instruction is �nished decoding, the decoder will begin

decoding after the supposed instruction, which is actually the second byte of the �rst instruction

of the next function. In this scenario, the second function is now incorrect due to misaligned

decoding.

Two solutions are immediately available to solve the exit() problem, both requiring that

the decoder be informed of this special case. The simplest solution is to use the symbol table

to detect calls to exit(). When such a call is seen, no successive instructions are expected,

and decoding continues elsewhere. This method is currently implemented in the binary reop-

timization framework. The other solution is to locate the system exit routine in the import

table and trace back through the call sequence, marking call sites to which control 
ow will not

return. However, this information must be available before decoding past any call. Therefore,

a depth-�rst search of the call graph must be made until leaf functions are reached where de-

termination of the return can be made. This is generally complicated because the call graph is

a potentially cyclic graph. Furthermore, the function doexit() (called by exit() and other
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functions) may or may not actually call the system exit routine depending on a parameter

passed to it. This means that doexit() may return, which suggests that exit() might also

return. However, exit() does, in fact, always call doexit() with the system exit parameter,

but the only way for the optimizer to determine whether exit() returns is to perform an

interprocedural constant propagation analysis on doexit().

With the presence of a symbol table, it may be possible to reliably break the data section into

pieces as is done with the text section. The symbol table could be used to locate the beginning

of each data structure and, thus, all boundaries between structures. However, this assumes

that each symbol in fact points to the beginning of a structure and never into the middle of

one. This is generally true in compiled code but may not be true in assembly generated code.

For example, a programmer may want a symbol for both the beginning and ending elements of

an array. Using a heuristic like the one mentioned here would cause that one structure to be

broken into two pieces. And because the primary reason to break the data section into pieces

is to re-layout the structures, the two pieces may not end up back-to-back in the reoptimized

binary.
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CHAPTER 4

RELOCATION TABLES

The discovery of code reached only via an indirect call or jump is a di�cult problem.

Compilers, with full knowledge of the original source code, are often able to resolve indirect

calls to a set of possible functions. Furthermore, compilers always know the set of possible

indirect jump targets, except possibly in the case of a longjump(), because the compiler

itself converted speci�c control 
ow instructions into an indirect construct. However, it is

considerably more di�cult for a binary optimizer without the source-level information to draw

the same conclusions.

4.1 Pointer Determination

To illustrate the di�culty in resolving indirect jumps into a set of target basic blocks,

consider Figure 4.1 which depicts a code snippet from the C library function memmove(). The

snippet contains two indirect jumps through jump tables (Blocks 33 and 39) and associated

control logic (Block 32) which selects from the two available jump tables.

The code discovery mechanism faces two primary challenges when analyzing code containing

pointer references. First, the mechanism must determine which immediate and displacement

values within instructions are pointers and which are simply data. For example, the bytes

'08 00 00 00' in the third instruction of Block 32 could be a pointer to a function or pos-

sibly to another basic block, or could be simply data. Likewise, the bytes 'A0 71 43 00' in
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Jump via Table 34

Jump Table 34

Jump Below

Block 32

Jump Table 47

Jump via Table 47

Block 33 Block 39

control block 32:

00437068 : C1 E9 02 ; shr ecx, ecx, 02h

0043706B : 83 E2 03 ; and edx, edx, 03h

0043706E : 83 F9 08 00 00 00 ; cmp ecx, 00000008h

00437074 : 72 0D ; jb 00437080

control block 33:

...

00437077 : FF 24 95 A0 71 43 00 ; jmp dword ptr [4*edx+ 004371A0h ]

control block 39:

00437080 : F7 D9 ; neg ecx, ecx

00437082 : FF 24 8D 50 71 43 00 ; jmp dword ptr [4*ecx+ 00437150h ]

jump table 47: named section text1 221492

00437134 : 00437154 ; (cb 48)

...

00437150 : 00437197 ; (cb 55)

jump table 34: named section text1 221600

004371A0 : 004371B0 ; (cb 38)

...

004371AC : 004371DC ; (cb 35)

Figure 4.1 Code snippet from memmove().
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the instruction in Block 33 could be either a pointer or raw data. In these two contexts, the

determination can be made through a few, very probable heuristics. In the �rst example, the

code discovery algorithm can distinguish between memory regions in 32-bit Windows applica-

tions that can contain code and those that cannot. Thus, user code cannot exist at address

0x00000008 which is pointed to by those bytes.

Furthermore, if those bytes were a pointer, then the ecx register must also contain a pointer.

A complex code analysis algorithm would see ecx being shifted to the right by an earlier

instruction, which is an unlikely operation on a pointer.

Considering the second example instruction, the jump target must be into user code space.

Register edx is not likely to contain a pointer because it is being multiplied by a constant

and is therefore an index o� of a displacement address. However, both determinations have

been made by heuristics, and it is very possible for a devious assembly programmer to write

functional code that violates these heuristics.

4.2 Base Relocation Table

The base relocation table in PE and DLL �les, as introduced in Section 2.3, solves this pointer

determination problem whenever it exists. This table basically contains a list of addresses within

the program that contain pointers. When a binary �le is created by the linker, the �le is given

a preferred base address. This address speci�es the desired address at which the entire �le will

be loaded in memory, if possible. By using the preferred base address during the mapping

process, the linker can generate absolute addresses when needed. However, occasionally the

loader cannot load the binary at its preferred base address and must correct all of the encoded

absolute pointers in the binary �le. This is simply done by adding the di�erence between the
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actual base address and preferred base address to each pointer in the program as delineated by

the base relocation table.

The relevant portions of the base relocation table for the previous example are shown in

Figure 4.2 along with annotated assembly code. Note that the base relocation table does not

contain an entry for o�set 0x70, indicating that the immediate value in the �rst example, for

the value 0x00000008, is not a pointer.

Figure 4.2 depicts two examples of indirect jumps using jump tables. All of the pointers in

the code for this example are italicized and their addresses are all stored in the base relocation

table. Note that the displacement in the second indirect jump (to the �rst jump table) does

not actually point to the beginning of the jump table. The indexes stored in the register ecx

can only be between -7 and 0. The simplest indexing schemes begin with zero and consist of

a nonnegative range of contiguous indexes. We will call these zero-based jump tables. Other

tables, such as the one in this example, are indexed on a contiguous range of indexes that do not

begin with index zero and may not even include index zero. We will call these nonzero-based

jump tables. In fact, several examples have been discovered where index zero is not included

in the table, and only negative indexes are used.

During code discovery and translation when an indirect jump is encountered, all of its

possible targets must be detected. Jump tables are often zero-based, which means that the

displacement address in the indirect jump is the beginning of the jump table. However, this is

not always the case, as illustrated n the memmove() example. A heuristic approach has been

developed that is further described in [4], but nonzero-based tables with no indexes near zero

may be di�cult to accurately identify.
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Base Relocation Table

400000 virtual address base

37000 virtual address

Offset Type

...

7A HIGHLOW ; 0043707A

85 HIGHLOW ; 00437085

...

control block 33:

...

00437077 : FF 24 95 A0 71 43 00
| {z }

relocation at

offset 7Ah

; jmp dword ptr [4*edx+ 004371A0
| {z }

relocation at

offset 7Ah

h]

control block 39:

00437080 : F7 D9 ; neg ecx, ecx

00437082 : FF 24 8D 50 71 43 00
| {z }

relocation at

offset 85h

; jmp dword ptr [4*ecx+ 00437150
| {z }

relocation at

offset 85h

h]

jump table 47: named section text1 221492

00437134 : 00437154 ; (cb 48)

...

)00437150 : 00437197 ; (cb 55)

jump table 34: named section text1 221600

)004371A0 : 004371B0 ; (cb 38)

...

004371AC : 004371DC ; (cb 35)

Figure 4.2 Base relocation table and annotated assembly code.

Once the vicinity of the correct jump table is found, the exact bounds on the table must

be determined. When a single jump table is nestled within the code, its bounds can be easily

determined by the detection of code before and after the table. However, jump tables are
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sometimes placed one after another in a block of jump tables. This complicates detection

because there is no indication where one table ends and another begins, causing them to appear

as one large jump table. In this case, a conservative analysis is employed that assumes an

indirect jump can jump to any entry in the combined table. This creates extra possible control


ow transfers between the blocks. This is a safe assumption because it can only add extra

registers to the live-in register sets of the extra target blocks. It also complicates the control


ow graph, resulting in functionally correct code, but possibly at the cost of limited optimization

opportunities.

Considering the potential inaccuracy of the heuristics, a code analysis approach might pro-

vide better results. By using code analysis routines, it may possible to determine the range of

values potentially stored in the index register, ecx in the example. This would provide infor-

mation on the possible o�sets from the address encoded within the instruction, allowing the

decoder to �nd all of the jump table entries.

4.3 Relocation Table

Figure 4.3 shows the same piece of code with a relocation table. The relocation table not

only indicates where the pointers are but also what those pointers point to. Using this table,

the correct jump tables can always be associated with their indirect jump instructions. This is

accomplished by separating the o�set into two pieces: the base of the beginning of the table and

an o�set to correct for nonzero-based indexed tables. The relocation table actually contains

an index into the symbol table where the base address of the symbol can be obtained. In the

example, the relocation for o�set 0x00037085 speci�es the symbol section text1 221492 at

address 0x00437134 with a table o�set of 0x1C, which sums to 0x00437150, as encoded in the
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Relocation Table

Symbol Symbol

Offset Type Applied To Index Name

...

0003707A DIR32 00000000 2F2 section text1 221600

00037085 DIR32 0000001C 2F3 section text1 221492

...

control block 33:

...

00437077 : FF 24 95 A0 71 43 00
| {z }

relocation at

offset 3707Ah

; jmp dword ptr [4*edx+ 004371A0
| {z }

relocation at

offset 3707Ah

h]

control block 39:

00437080 : F7 D9 ; neg ecx, ecx

00437082 : FF 24 8D 50 71 43 00
| {z }

relocation at

offset 37085h

; jmp dword ptr [4*ecx+ 00437150
| {z }

relocation at

offset 37085h

h]

jump table 47: named section text1 221492

)00437134 : 00437154 ; (cb 48)

...

00437150 : 00437197 ; (cb 55)

Figure 4.3 Relocation table and annotated assembly code.

instruction. Note that it still may be di�cult to determine the bounds of the jump table, and

that a range analysis of the index register may still be still be necessary to accurately determine

the table bounds.
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CHAPTER 5

MCODE INTERMEDIATE REPRESENTATION

The IMPACT compiler uses several di�erent intermediate representations of an application

during compilation. The back-end portions of the compiler employ a con�gurable representation

called Lcode [12], [13]. The machine-independent portions of the back-end use an Lcode con�gu-

ration that maps to a three-operand �ctitious, RISC-like architecture. The machine-dependent

portions use machine-speci�c variants of Lcode calledMcode. This binary reoptimization frame-

work uses an Mcode con�guration tailored to the x86 instruction set.

Some portions of the binary optimization framework require that functions be represented

as collections of basic blocks (bb). Because of the loose de�nition of this term, it is necessary to

de�ne the term for use within this thesis. A basic block is a single entry-point, single exit-point

block of instructions. The exit point may consist of any type of branch or simply a linear control


ow instruction, but branches may only exist as the last instruction of a basic block. A control

block (cb) is a basic block that allows multiple exit points. Most of the IMPACT compiler

can operate on control blocks, rather than the simpler basic blocks, and therefore, in general,

the term control block may be used interchangeably with the term basic block. Speci�cally,

the pro�ling mechanism in Lbx86 phase 2 and the direct-to-binary converter in Lbx86 phase 3

require basic blocks.
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flow arcs
basic block
destination

flow arc
indicator

condition
code

basic block execution
target ID weight

indicators

(function _exit 1.000000 <S> <(jump_tbls (i 0)(i -1)(s_l_abs "renamed"))>)

(cb 1 1.000000 <S> [(flow 0 2 0.000000)])

function jump table informationindicators
function flagsfunction

call weightname
functionfunction

indicator

block
indicator

numeric
block

ID weight
execution

block
block flags

Figure 5.1 Mcode representation of functions and basic blocks.

5.1 Mcode Functions and Control Blocks

The Lcode and Mcode representations utilize data structures called Lcode Function for

functions, and Lcode Control Block for control or basic blocks. Figure 5.1 depicts the printed

Mcode for functions and blocks.

5.2 Mcode Instructions

The Lcode and Mcode representations utilize a data structure called Lcode Operation to

represent instructions. In order to allow for automatic register analysis of the instructions,

all registers written by the instruction must be represented in the data structure. Likewise,

any registers that are read by the instruction must be represented. Note that the 
ags bit

registers and all implicit registers are included in this requirement and must also be accurately

represented. In an Lcode or Mcode con�guration, the maximum number of source operands

and maximum number of destination operands must be speci�ed. Because some algorithms

search all possible operand locations within the instruction, the maximum number of operands
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edx:eax eax * ebx
(based on result)

(op 55 mul [(mac $edx i)(mac $eax i)()(mac $oszapc_flag void)]

numeric
operation

ID

source operands

[()(mac $eax i)(mac $ebx i)]

<(gen_opc (l_g_abs mul))(popc (i 1484))>)

attributes

indicator
operation

opcode
functional

destination operands

Mcode:

Assembly Code:
mul ebx

RTL:

oszapc_flag

Figure 5.2 Mcode representation of a multiply instruction.

should be set as low as possible. For the x86 binary reoptimization framework, the maximum

number of source operands is seven and destination operands is four.

A brief description of the tailored Mcode will be presented next, while a more detailed

description can be found in [9]. Figure 5.2 depicts the Mcode representation of a multiply in-

struction, which would appear in Intel's x86 assembly code as \mul ebx". Each instruction, also

called an operation, begins with an \op" tag followed by an identi�cation number that uniquely

identi�es this instruction within the function. The functional opcode classi�es the instruction

into general categories of operations. The next set of �elds represents the destination operands

of the instruction, followed by the source operands. Following the operands are the attributes

�elds which assist in better describing the instruction. The tailored Mcode for this framework

requires two attributes: the actual Intel x86 mnemonic and a numeric value representing the
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Table 5.1 Data types and their sizes.

dtype abbrev. size dtype abbrev. size dtype abbrev. size

integer i 32 bits short sh 16 bits char c 8 bits

float f 64 bits void void none

actual mnemonic and speci�c variant of that mnemonic. See Section 4.2 in [10] for additional

information.

5.3 Mcode Operands

Each operand is tagged with an operand type, followed by a name and an optional data

type. All registers are of operand type macro, printed as \mac". The data types for the registers

are tagged according to their size, as in Table 5.1. All integer immediates in this framework

are of operand type integer, printed as \i", where the data type is implied by the instruction

and other operands.

To simplify data
ow and dependence analysis, each register must be independent of all

other registers. Consider the eax register in Figure 5.3. The x86 architecture was initially

designed as a 16-bit architecture, where ax could be accessed as the full 16-bit quantity, or as

two 8-bit subsets al and ah that do not overlap. When register dependence analysis algorithms

search for the next access to register al, accesses to ax must also be considered. This situation

became more complicated when the original 16-bit architecture was extended to 32-bits, adding

a superset register to ax called eax. This register aliasing problem is also signi�cant at the

microarchitecture level as these types of superset and subset dependences can cause pipeline

stalls [14].
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031

eaxh

eax

ah al

ax

15 8 7 0

ah al

Figure 5.3 An example of overlapping subset registers.

The problem is somewhat simpli�ed inside the reoptimizer by internally replacing each

superset register with a set of nonoverlapping, yet completely representing, subset registers.

The ax register, by architectural design, can be represented in this way by al and ah. The

eax register, however, cannot be completely represented by existing subset registers because no

high 16-bit register exists. Therefore, a �ctitious eaxh register is added to solve this problem.

With the capability to break large superset registers into completely representing subset

registers, even larger supersets can be created to simplify the Mcode. Figure 5.4 depicts the

logical construction of the superset register all gp 32 which contains all eight of the 32-bit

general purpose registers. Speci�cally, this is used to simplify the Mcode for the push all 32-bit

general purpose registers onto stack, \pusha", instruction. A 16-bit version of this stack push

also exists motivating the creation of the all gp 16 superset register. Likewise, pop instruction

counterparts also exist. The shaded registers in the �gure represent the subset registers of

which all superset registers are assembled.

The 
ags register is actually modeled as a set of bit registers using the superset/subset

model previously described. Detailed description of each of the 
ags can be found in [15].
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...

...
all_gp_16

eaxh

eax ebx ecx edx edi esi esp

all_gp_32

ebp

ebph bpax

alah

Figure 5.4 Breakdown of a superset register into its constituent subset registers.

Internal to the reoptimizer, each 
ag is its own bit-register, while at the Mcode level, a handful

of superset registers exist, as shown in Table 5.2(a). Note that if the exact combination of


ags is not represented by a single superset register, combinations of the individual 
ags and

superset registers can be used to represent the exact combination. Or, a superset register

minimally containing the necessary 
ags can be used; however, the extra 
ags will create false

dependences possibly limiting optimization.

Table 5.2(b) and (c) list all of the registers implemented in the x86 binary reoptimizer's

version of Mcode. Memory operands are represented in a unique manner. See Section 3.2.2

in [10] for a complete description. Because complex memory addressing is available in the

x86 architecture, two di�erent source registers may be needed to compute an address operand.

Since the operand layout in Mcode is tailored to closely match x86 assembly, multiple registers

for a particular operand do not map neatly into the Mcode. Therefore, a place-holder macro,

\addr", is inserted in the proper operand location, and the memory address computation is
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Table 5.2 Comprehensive list of available register operands.

oszapc 
ag oszpc 
ag oszap 
ag szapc 
ag osz 
ag

oc 
ag zc 
ag os 
ag o 
ag s 
ag

a 
ag z 
ag c 
ag d 
ag p 
ag

(a) Flags operands.

name dtype name dtype name dtype name dtype name dtype

eax i eaxh sh ax sh ah c al c

ebx i ebxh sh bx sh bh c bl c

ecx i ecxh sh cx sh ch c cl c

edx i edxh sh dx sh dh c dl c

name dtype name dtype name dtype name dtype name dtype name dtype

esp i esph sh sp sh ebp i ebph sh bp sh

esi i esih sh si sh edi i edih sh di sh

name dtype name dtype

all gp 32 8 * i all gp 16 8 * sh

name dtype name dtype name dtype

cs sh ds sh es sh

fs sh gs sh ss sh

(b) General register operands.

name dtype name dtype name dtype name dtype

st0 f st1 f st2 f st3 f

st4 f st5 f st6 f st7 f

mm0 f mm1 f mm2 f mm3 f

mm4 f mm5 f mm6 f mm7 f

all fst 8 * f all mm 8 * f fpsw void fpcw void

(c) Floating-point and MMX/3DNow! register operands.

represented in the last four operands of the source operand �eld: base register, index register,

scale integer, and displacement address.

5.4 Exceptions to the Typical Instruction Format

Not all x86 instructions map neatly into a particular Mcode representation. For example,

there are a handful of instructions that perform memory-to-memory moves, whereas the Mcode
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format only allows for representation of a single memory address. It is also possible that no

functional opcode exists to accurately represent the operation being performed. The following

examples present a few of the anomalous representations.

The lack of support for instructions that require two memory operands complicates their

representation. Several of the string instructions require two memory operands, and their

representation is described in Section 3.2.3 of [10]. There are two other memory-to-memory

move instructions in the architecture, push contents of a memory location, \push [mem]", and

pop value to a memory location, \pop [mem]", that must also be supported. Rather than

extend the maximum number of source operands to accommodate these rare cases and in order

to keep all push and pop instructions consistent, the memory access to the stack inherent to

these instructions is implied. Likewise, the memory accesses in the string instructions are

also implied. These instructions are then handled as special cases inside the data
ow and

dependence analysis engines. However, since the push memory and pop memory instructions

are infrequently executed, creating special cases speci�c to these situations would also be a

viable alternative.

A typical push instruction is depicted in Figure 5.5. As can be seen in the register transfer

language (RTL) description, the stack pointer is both read and modi�ed by this instruction.

This situation is correctly represented in the Mcode by the presence of the esp operand in

both the source and destination �elds. Furthermore, the pre-increment of the stack pointer is

re
ected in the functional opcode, pre-increment store, \st pre i". While the actual address

macro and address operands specifying the destination stack memory location are omitted, the

correct memory attributes are present. Figure 5.6 depicts a push memory instruction where the

address �elds of the instruction are used for the memory address of the pushed operand.
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Assembly Code:

RTL:
esp

push eax

[esp]
esp - 4

eax

[(mac $esp i)(mac $eax i)]

Mcode:
(op 324 st_pre_i [(mac $esp i)]

<(mem_size (i 4))(mem_write)
(gen_opc (l_g_abs push))(popc (i 1632))>)

Figure 5.5 Mcode representation of a push register instruction.

Assembly Code:

RTL:
esp

push DWORD ptr [eax]

[esp]
esp - 4

[eax]

(gen_opc (l_g_abs push))(popc (i 1634))>)

Mcode:
(op 325 st_pre_i [(mac $esp i)]

[(mac $esp i)(mac $addr void)()(mac $eax i)]
<(mem_size (i 4))(mem_read_write)

Figure 5.6 Mcode representation of a push memory instruction.

Another complication arises when no functional opcode accurately describes the operation

being performed. Consider Figure 5.7 which depicts an instruction that adjusts two unpacked

binary-coded-decimal (BCD) digits so that a division operation performed on the result will

yield a correct unpacked BCD value. Clearly, no RISC-like instruction set, such as Mcode,

will have an opcode for this type of operation. Therefore, an unused Mcode functional opcode

\min" is used in conjunction with the L OPER PROCESSOR SPECIFIC 
ag, denoted \<?>",

for such instructions.
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Mcode:
(op 55 min <?> [(mac $ax sh)()()(mac $oszapc_flag void)]

[(mac $ax sh)(i 10)]
<(gen_opc (l_g_abs aad))(popc (i 96))>)

(based on result)

Assembly Code:

RTL:

aad 10d

al
ah 0

(al + (ah * 0x0A)) AND 0xFF

oszapc_flag

Figure 5.7 Mcode representation of an ASCII adjust instruction.

Figure 5.8 depicts an example of a 
oating-point instruction.1 Note that the 
oating-

point stack registers are used. Currently in the framework, 
oating-point instructions are not

optimized. There are no critical technical challenges to such optimization other than preci-

sion problems inherent to expression reformulation of 
oating-point computations and data
ow

analysis problems associated with the 
oating-point operand stack. For example, a reference

to st0, the top of the 
oating-point operand stack, and a subsequent reference to st0 may

not be the same physical register if a stack push occurred in between. Stack models are not

automatically handled by our data
ow analysis algorithms. Also, no exact functional opcode

is available for this example instruction. While the 
oating-point divide, \DIV F", is essentially

correct, the fact that the operands are reversed for the computation is only represented in the

processor-speci�c opcode. The operands themselves cannot be reversed in the Mcode because

they represent assembly code operand ordering, not computational operand ordering. Thus,

the L OPER PROCESSOR SPECIFIC 
ag is used, and the actual opcode is stored in the

processor-speci�c opcode �eld, as it is in all instructions.

1Some older versions of the Pentium Instruction Set Reference manuals have incorrect descriptions of the
\fdiv" and \fdivr" opcodes.
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Mcode:
(op 470 div_f <?>

Assembly Code:

RTL:

<(gen_opc (l_g_abs fdivr))(popc (i 2928))>)

fdivr st(0), st(7)

st(0) st(7) / st(0)

[(mac $st0 f)]
[(mac $st0 f)(mac $st7 f)]

Figure 5.8 Mcode representation of a 
oating-point reverse divide instruction.

37



CHAPTER 6

CONVERSION OF ASSEMBLY TO MCODE

The x86toM application, the utility that performs the conversion from x86 binary into

Mcode, �rst decodes the binary into an internal assembly-like representation (which will be

referred to as the assembly representation) using control 
ow analysis techniques, as discussed

in Section 3.3. During the decoding process, the instructions are grouped into basic blocks,

and basic blocks are grouped into functions. Once the process of decoding and grouping is

complete, the process of conversion to Mcode begins. Details on the structures and techniques

used for decoding are outlined in Chapters 3 and 4. More details are discussed in C. N. George's

thesis [4].

6.1 Conversion of Functions and Basic Blocks

The assembly representation to Mcode conversion algorithm for functions and blocks is

summarized in Figure 6.1. The decoder provides the conversion algorithm with a linked list of

functions, each of which contains a linked list of basic blocks and a linked list of entry-point

addresses. Furthermore, a memory map has been constructed by the decoder through which

the speci�c function and block can be determined for any address. If a symbol table is present

in the binary, then it can also be accessed with an address to �nd a symbol name, and vice

versa. Because instruction decode and conversion is one of the most expensive portions of the

process in terms of both running time and memory usage, a primary goal of the conversion
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algorithm is to completely process all information in a decoded assembly instruction in a single

pass.

In order to convert the instructions in a single pass, certain information must be available

prior to the conversion of the �rst instruction. Consider the conversion of a call instruction.

One of the primary conversion tasks is to replace the call's target address with a target function

name, or label. However, if the target entry point to the function does not have a name, there

will be no target label available to add to the instruction. Likewise, if the target has the same

name as another function, each will need to be given a unique name so that the label in the

call instruction targets the correct version.1

Thus, the conversion process begins by allocating the Mcode function data structure and by

verifying entry-point names for each function. Duplicate names are distinguished by appending

a version number to the function name. Normally, functions have a single entry point at the

top of the function. In this case, the Mcode function name �eld in the internal structure is

assigned that name, implying entry at the top of the function. In other cases, the function has

an entry point that is not at the top of the function, which includes functions with multiple

entry points. In these cases, a single function name which implies entry at the top is not

accurate. Therefore, these functions are specially tagged to represent the di�erent entry points.

Speci�cally, the Mcode function is assigned a name (usually one of the entry point names)

appended with \ me" to indicate the presence of multiple named entry points. Then, each

entry point in the entry-point address list is assigned its name. Later, each basic block that is

an entry point is tagged with its entry-point name listed in an attribute.

1Duplicate function names within a single binary actually occurs rather frequently. For example, the function
strncnt() is statically de�ned within three C Library source �les (a cmp.c and a map.c, and an inline version
in tchar.h). In this situation, the code for the di�erent versions is identical, but in general, this cannot be
guaranteed.
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Global List of FunctionInfoNodes, Memory Map, and Symbol Table

Convert functions to Mcode ()f
For each function in listf

Create Mcode function shell
If non-top-of-function entry point existsf

Name Mcode function with one entry-point name appended with \ me"
Ensure each entry point has a unique name by assigning alternate name

to absent or duplicate names
g
Else:

Ensure top entry point has unique name by assigning alternate names
g
For each function in listf

Sort the list of basic blocks within this function by address
Create Mcode basic block shells
For each basic blockf

For each instructionf
Create Mcode instruction shell
Create explicit operands
Assign Mcode functional opcode
Create implicit operands
Annotate instruction for implicit memory reference
Create 
ags operands
If branch or call instructionf

Compute target address
If address is relocatable:

create symbol operand
If address is basic block:

create basic block operand and create taken-branch 
ow arcs
g
Encode processor-speci�c opcode

g
g
Restructure basic blocks for single exit point
Create jump table and fall-through 
ow arcs
Restructure basic blocks for single entry point

g
g

Figure 6.1 Pseudocode algorithm for converting functions, basic blocks, and instructions into
Mcode.
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The next step is to create the basic blocks within the functions. The list of basic blocks

comes to the converter in a depth-�rst-search order. This list must be sorted by address so

that fall-through paths actually fall through to their proper blocks without the addition of

unconditional jumps.

In this implementation of the framework, all of the basic block shells are created within a

function before any of the instructions are inserted. Consider the conversion of jump and branch

instructions to Mcode. The target addresses of these instructions are determined from the

information in the assembly representation and from the current program counter value. When

creating the instruction, the actual target basic block must already exist because, internally,

the target operand is a pointer to the target basic block computed from the target address.

Therefore, to simplify the conversion process, all of the Mcode basic blocks within the function

are created before any instructions are converted. Since pointers to the target basic blocks have

already been obtained, the 
ow arcs associated with these instructions are also created at this

time. The fall-through arcs and any jump table arcs are created at a later stage. Their creation

does not require information from the decoded instruction, but rather can be formed by a quick

analysis of the Mcode.

After all the basic block shells are created for a function, the instructions are created block-

by-block. This is detailed further in Section 6.2. Once all of the instructions have been added

to a function, a single exit point is created to facilitate simpler data-
ow analysis. This trans-

formation consists of creating a single return instruction in a new block called the epilogue.

All original return instructions are converted into unconditional jump instructions to the new

epilogue. This restructuring will be reversed before the �nal binary is written.
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Next, all of the fall-through 
ow arcs are created between the basic blocks. Likewise, all

jump table 
ow arcs are created at this time. As mentioned in Section 4.2, jump tables are

often allocated next to each other, so it is di�cult to accurately determine the boundary of one

table from another. In other words, several jump tables may appear as one contiguous region of

basic block pointers. Likewise, multiple indirect jump instructions may access the same region.

Because the boundaries are not de�nitive, each block containing a indirect jump instruction

using that region will have a 
ow arc to each block speci�ed by the pointers in that region. This

is a conservative analysis but is correct as execution will never actually traverse the �ctitious


ow arcs and will only cause extra registers to be live-in to the target blocks.

At this point, the appropriate transformations are made to the function to correctly repre-

sent entry points that are not at the top of the function. See Section 3.3.2 in [10] for details on

the transformation. A prologue basic block is created at the top of the function that contains

an indirect jump to each of the entry points. Actual program 
ow will never execute this block

or the jump, but data-
ow analysis must operate on a function with a single-function entry

point. Then, each entry-point basic block is annotated with an entry-point attribute.

6.2 Conversion of Instructions

Each instruction is generally converted in the following manner, although the order of a few

of the steps may be altered for a few special cases. First, the Mcode instruction data structure,

or shell, is created. Then each of the explicit operands represented in the assembly is converted,

as will be discussed in the next section. Analyzing the explicit operands also adds memory usage

attributes for the explicit operands to the Mcode when appropriate. The functional opcode,

as de�ned in Section 5.2, is assigned next based on the assembly opcode and sometimes the
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explicit operands. The operands are sometimes necessary for functional opcode determination

because of instructions such as a \mov" which may be a load, a store, or a register-to-register

move, all of which have di�erent functional opcodes.

Next, any implicit operands (and implicit memory reference attributes) are added, such

as references to the stack pointer (and stack memory) in stack operations, as discussed in

Section 5.4. If the instruction reads or writes to the 
ags registers, the correct 
ags operand is

then chosen and inserted into the Mcode. If the instruction is a direct branch or a call, the target

address is computed from the current instruction's program counter and displacement. That

address is located in the memory map from which a pointer to the appropriate block can be

obtained. Finally, the instruction is annotated with its processor-speci�c opcode information.

6.3 Conversion of Operands

Up to three explicit operands can be represented in the assembly representation, usually one

destination and two sources. Each is processed by the algorithm in Figure 6.2 in the following

manner: if the operand is a register, then the corresponding Mcode register is added to the

instruction; if it is an immediate, its corresponding label is added, if one exists; if it is a near

address, its corresponding label is added; or if it is a memory reference, the address operand

place-holder is inserted and the memory operands are then added. Note that the \enter"

instruction, as shown in Figure 6.3, contains two immediates. The instruction creates a new

stack frame of the size of the �rst immediate, and pushes nested frame pointers based on the

value stored in the second immediate. The second immediate is stored in the displacement �eld

in the internal assembly representation to avoid extending the assembly representation.

43



Create explicit operands (internal assembly instruction, Mcode instruction)f
For each of the three explicit operands in the assemblyf

If general, segment, or 
oating-point register:
Add register to Mcode

If immediate or near address:
If enter instruction and processing second immediate:

Process immediate using displacement value
Else:

Process immediate
If memory addressf

Add address macro to Mcode
Create memory sources

g
If 
ag register:

Delay insertion until later
If far address:

Error: Shouldn't see far calls in Win32 code
g

g

Figure 6.2 Pseudocode algorithm for converting explicit operands into Mcode.

Mcode:
(op 470 div_f <?>

Assembly Code:

RTL:

<(gen_opc (l_g_abs fdivr))(popc (i 2928))>)

fdivr st(0), st(7)

st(0) st(7) / st(0)

[(mac $st0 f)]
[(mac $st0 f)(mac $st7 f)]

Figure 6.3 Mcode representation of an enter instruction.

When processing a memory reference, the base register, index register, and scale integer are

added to the Mcode. The displacement integer is often a pointer to a memory address table, so

that integer must be converted to its corresponding label. Likewise, if an immediate operand

44



is a pointer, then its corresponding label must be found. Note that only 32-bit values can be

pointers, and thus are the only values examined for label conversion. The Process Possible

Relocatable routine checks to see if the value's location is in the base relocation table, as show

in Figure 6.4. If so, the value is expected to be a pointer, and the label creation routine is

called. If the value is not a relocatable, or no label was found to match the value, then the

value is just a constant and is inserted into the Mcode as such. Otherwise, the correct label is

inserted. Note that the labels follow the standard formats, as shown in Figure 3.3.

The two algorithms in Figure 6.5 show how addresses are converted into labels. The �rst

algorithm expects the value to point to a jump table, which can be located in either the data

or text section. For a jump table in the data section, the address is converted into nontext

section label, as shown in Figure 3.3. This address is simply converted by subtracting the base

address of the section from the original address and adding that result as the o�set from the

section label. For jump tables that appear within the text section, the appropriate block must

be found. The displacement value must point into a jump table or point immediately before or

after a jump table, mirroring the discovery heuristics in the 
ow decoder. A jump table should

be found, again because the same heuristic in the decoder found one, and a label comprising

the jump table block name and o�set from the beginning is produced.

The second algorithm is used when a jump table is not expected. If the value points into a

section other than the text section, a label comprised of the section name plus o�set is produced.

When the value points into the text section, it must point to the beginning of a block, whether

that block is a table or instructions. If the block is an entry point to the function, a function

name label will be produced; if it is a basic block, then a basic block label will be produced;

otherwise, a generic block label will be produced. Occasionally, the displacement value does not
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Process Immediate (internal assembly instruction)f
If 32-bit immediate:

Process possible relocatable as not a jump table
Else:

Add immediate constant to Mcode
g

Process Displacement (internal assembly instruction)f
If 32-bit displacement:

Process possible relocatable as a possible jump table
Else:

Add immediate constant to Mcode
g

Process Possible Relocatable (internal assembly instruction,
address of immediate or displacement, is it a possible jump table?)f

If the value at the address is a relocatable:
If possible jump table:

Find possible jump table label
Else:

Find label
If not a relocatable or no label was found:

Add constant to Mcode
Else:

Add label to Mcode
g

Figure 6.4 Pseudocode algorithm for converting possible relocatable operands into Mcode.

point into a section at all, such as when the displacement value of a nonzero-based jump table

points far from the actual table. This makes identifying the jump table a di�cult problem. A

simple heuristic is employed which assumes that the range of indexes is nonnegative, and that

the jump table itself exists in the next section in the address space.
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Find possible jump table label (address of immediate or displacement)f
Obtain the value of the immediate or displacement
If value points into section other than the text section:

Return label for beginning of section + o�set
Else if value points into text sectionf

If value points into a predetermined jump table:
Return label for beginning of jump table + o�set

Elsef
Search forward and backward one DWORD (same as decoder heuristic)
If search found a jump table:

Return label for beginning of jump table + o�set
Else:

Error: No jump table found.
g

g
g

Find label (address of immediate or displacement)f
Obtain the value of the immediate or displacement
If value points into section other than the text section:

Return label for beginning of section + o�set
Else if value points into text sectionf

If value points to a function entry point:
Return function name label

Else if value points to the beginning of a basic block:
Return basic block label

Else if value points to the beginning of a jump table or data block:
Return block label

Else:
Error: Must point to the beginning of a block

g
Else if value does not point into any section

Warn and return label for beginning of next sequential section + o�set
g

Figure 6.5 Pseudocode algorithm for converting label operands into Mcode.
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CHAPTER 7

BINARY PROFILING

Traditional optimization of an application consists primarily of compacting the code by

removing unnecessary or redundant instructions. This reduces program execution time by re-

ducing the number of instructions required to execute the program, and often by reducing cache

misses due to smaller code size. Recent e�orts have lead to the development of optimizations

that expose �ne-grained parallelism, or instruction-level parallelism (ILP), allowing for multiple,

independent instructions from the execution stream to be executed in parallel. These techniques

have been shown to lead to signi�cant performance improvements in scalar code [16]. Other

algorithms can optimize code for particular values or for particular control 
ow paths. However,

some of these optimizations actually increase the number of instructions executed. At the same

time, the dependence height may be reduced, or second-order factors, such as instruction cache

behavior, may be improved. Such optimizations may, however, degrade performance if applied

in the wrong situations.

Consider superblock formation and optimization with tail duplication. Superblock forma-

tion selects a commonly executed path through the code creating straight-line code. Side

entrances into the superblock are not allowed because they create extra dependences into the

block that may hinder optimization of the selected frequent path. Furthermore, entrances via

side entrances may have di�erent branch behavior patterns than along the main path. If the

same code were to be used for both entrances, optimizing for one pattern might adversely a�ect

the other patterns. Thus, the side entrances are removed from the block and redirected to
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duplicates of the original code that follow the side entrances. Aggressive ILP optimization can

be e�ectively applied to superblocks.

In order to make wise optimization decisions, the important functions, blocks, or paths in

the code need to be identi�ed. A pro�le, or sample of program execution behavior, is gathered

and used to make such determinations. This pro�le is assumed to be representative of normal

program usage, making it a good indicator of those important functions, blocks, or paths. With

the addition of pro�le information, compilers are able to concentrate optimization e�orts on

the important regions of the code. Static heuristics have also been developed to estimate which

portions of the code are important [17]. The pro�ling mechanism described in this thesis is

designed to be simple and is not necessarily the most e�cient pro�ling mechanism available.

7.1 Pro�ling Probe Insertion

The current IMPACT infrastructure utilizes edge-weight pro�les, also called branch pro�les,

to make optimization decisions. With this type of pro�ling, the execution weights of each possi-

ble control path out of a block are gathered. (The terminology refers to a graph representation

of control 
ow where blocks are nodes and control 
ow transfers are edges.) From the edge

weights, the block and instruction weights can also be inferred using Kirchho�'s current law.

This law states that the sum of all of the in-edge weights to a block must be equal to the sum

of all of the out-edge weights. That sum is also the weight of the block. Since the pro�ling

portion of the binary optimization framework uses basic blocks, that sum is also the weight of

all of the instructions within the block. There are three primary types of branches used in x86

32-bit Windows applications: conditional direct branch, unconditional indirect jump (usually

jump-through-memory rather than jump-through-register), and unconditional direct jump.
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pushf
inc DWORD ptr [IMPACT_PROFILE_TABLE+36]
popf

Mcode:

(op 113 st_pre_i [(mac $esp i)]

(op 112 add [()()()(mac $oszap_flag void)]

Assembly Code:

<(mem_size (i 4))(mem_write)(gen_opc (l_g_abs(l_g_abs pushf))(popc (i 1664))>)

<(mem_size (i 4))(mem_read)(gen_opc (l_g_abs popf))(popc (i 1616))>)

[(mac $addr void)(i 1)()()()()(l_g_abs IMPACT_PROFILE_TABLE+36)]
<(mem_size (i 4))(mem_read_write)(gen_opc (l_g_abs inc))(popc (i 660))>)

[(mac $esp i)(mac $d_flag void)(mac $oszapc_flag void)]

(op 111 st_post_i [()(mac $esp i)(mac $d_flag void)(mac $oszapc_flag void)]
[()(mac $esp i)]

Figure 7.1 Mcode probes using the increment memory instruction with surrounding save and
restore of the 
ags.

The pro�le weights are collected using a set of counters that are updated by probes inserted

into the code. These counters will count events such as block execution and fall-through branch

execution. All of the counters are added as a contiguous block to the beginning of the initialized

data section and are initialized to zero.

The pro�le counters are updated via inserted probes implemented by the increment memory

instruction, as shown in Figure 7.1. While either the increment memory or the add to memory

instruction could be used to update the counters, increment memory modi�es one less status


ag than the add. (The add modi�es the over
ow, sign, zero, auxiliary, carry, and parity 
ags,

while the increment does not modify the carry 
ag.) These 
ag modi�cations are side-e�ects of

the counter updates and could potentially destroy needed information stored in those 
ags. For

example, if such a probe were inserted between a compare instruction and a conditional branch

instruction, the 
ags set by the compare and used by the conditional branch could be changed,

possibly altering the direction of the branch.
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The side-e�ects of the probes are handled in one of two ways. First, when data
ow analysis

is performed, information specifying which registers (including the 
ags registers) contain useful

values is generated. This portion of data
ow analysis is called live variable analysis. By using

this analysis, the probe insertion routines can determine whether or not the 
ags are in fact

live where the probe is to be inserted. If the 
ags are live, then the 
ags registers must be

saved before the counter increment is performed and restored afterward. Otherwise, the probe

destroys no useful data and can be used without saving and restoring the 
ags. If data
ow

analysis is not performed, the 
ags registers are conservatively assumed to be live and must be

saved and restored.

7.1.1 Direct branches and jumps

In order to collect the edge-weight pro�les for a conditional branch, for example, probes

that update counters could be inserted along the taken and fall-through paths. The basic block

that contains that conditional branch would have the weight of the sum of the two edges. Or,

if the basic block weight is known, the taken edge weight could be computed as the di�erence

between the block weight and the fall-through edge weight. This latter scheme was chosen for

ease of implementation and is shown in Figure 7.2.

For unconditional direct jumps, there is only one edge out of the block. Because there is

only a single exit point, the taken jump weight is the same as the block weight, and only the

block probe is necessary.

7.1.2 Indirect jumps

There are two primary variations of indirect jumps used in x86 programs. The �rst is

a single-target jump through a single memory location. Simple pro�ling is performed on this
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Cond. Branch

Cond. Branch

Block Probe

...

Code

Basic Block 1

bb3

bb2

(op 1 ...)

Probe Insertion

(op 2 ...)
(op 3 ...)

(op 5 beq [] [()(bb 3)] <(gen_opc (l_g_abs jz))(popc 1008)>)

(op 4 ...)

(bb 1 0.0 [(flow 1 3 0.0)(flow 0 2 0.0)])

...

Basic Block 1

Code

Fall-Through
Probe

Basic Block 4

[(mac $addr void)(i 1)()()()()(l_g_abs IMPACT_PROFILE_TABLE+0)]

[(mac $addr void)(i 1)()()()()(l_g_abs IMPACT_PROFILE_TABLE+4)]

<(mem_size 4)(mem_read_write)(gen_opc (l_g_abs inc))(popc 660)>)

(op 6 add [()()()(mac $oszap_flag void)]

(op 2 ...)
(op 1 ...)

(op 3 ...)

(op 5 beq [] [()(bb 3)] <(gen_opc (l_g_abs jz))(popc 1008)>)

(op 4 ...)

<(mem_size 4)(mem_read_write)(gen_opc (l_g_abs inc))(popc 660)>)

(op 7 add [()()()(mac $oszap_flag void)]
(bb 4 0.0 [(flow 0 2 0.0)]) 

bb3

bb2

(bb 1 0.0 [(flow 1 3 0.0)(flow 0 2 0.0)])

Figure 7.2 Mcode probe insertion for a basic block ending in a conditional branch.

jump, just as in unconditional direct jumps. More complicated pro�ling may be performed which

tabulates the various targets reached, but such pro�ling is not implemented in this framework.

Most commonly, the instruction contains a displacement address at which that target address is
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located. These types of jumps are particularly di�cult for the framework to analyze, in general,

because the complete list of possible targets is unknown.

The second and most common variation is an indirect jump through a jump table. This

type of jump is characterized by a displacement containing an o�set to or near the jump table

and a register containing the index into the table. The memory location that contains the

target address is computed through the x86 complex addressing mode that multiplies the index

register by four and then adds in the displacement. Note that the displacement address to

the jump table does not necessarily point to the beginning of the jump table, as discussed in

Chapter 4. Figure 7.3 shows an example of probe insertion for this type of indirect jump. By

using that same index register as the actual jump, an index into a table of pro�le counters can

be computed. Likewise, the o�set of the displacement address in the jump instruction from the

actual jump table is used to calculate the correct displacement in the probe instruction from

the counter table.

Recall the de�nitions of zero-based and nonzero-based jump tables as de�ned in Chapter 4.

Consider zero-based jump tables where the �rst index is zero and the displacement of the indirect

jump contains the address of the beginning of the table. When creating the probe instruction,

the displacement will be simply the beginning of the allocated table of counters. For the

nonzero-based jump tables, the address of the �rst entry is the lowest valid index multiplied by

four plus the displacement. Therefore, the displacement in the probe instruction is computed

by subtracting the lowest index multiplied by four from the beginning of the counter table.

Because heuristics in the decoder are employed to locate the targets of an indirect jump,

some targets may not be correctly identi�ed. The heuristics produce an expected range for the

value of the index register. As a debugging tool, extra check instructions are inserted before the
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(op 2 ...)Code

Basic Block 6 (bb 6 0.0 [(flow 1 7 0.0)(flow 0 8 0.0)]) 

Lower Bounds
Check

BranchCond.

Basic Block 8 (bb 8 0.0 [(flow 1 9 0.0)(flow 0 10 0.0)]) 

Upper Bounds

Basic Block 1

Check

BranchCond.

Basic Block 10 (bb 10 0.0 [(flow 0 2 0.0)(flow 1 3 0.0)(flow 2 4 0.0)(flow 3 5 0.0)])

Indirect Jump

Indirect Jump
Probe

(op 3 jump_rg [] [()(mac $addr void)()

(op 8 add [()()()(mac $oszap_flag void)] [(mac $addr void)(i 1)()
()(mac $ecx i)(i 4)(l_g_abs IMPACT_PROFILE_TABLE+8)]

bb2 bb3 bb4 bb5

bb7

bb9

()(mac $ecx i)(i 4)(l_g_abs _section_text1_127176)]

Probe Insertion

...

Basic Block 1
(op 1 ...)
(op 2 ...)

(bb 1 0.0 [(flow 0 2 0.0)(flow 1 3 0.0)(flow 2 4 0.0)(flow 3 5 0.0)])

Code

(op 3 jump_rg [] [()(mac $addr void)()
()(mac $ecx i)(i 4)(l_g_abs _section_text1_127176)]Indirect Jump

bb2 bb3 bb4 bb5

(op 4 sub [()()()(mac $oszapc_flag void)] [(mac $ecx i)(i 0)]
<(gen_opc (l_g_abs cmp))(popc (i 449))>)

(op 5 blt [] [()(cb 7)()(mac $oszapc_flag void)]
<(gen_opc (l_g_abs jl))(popc (i 880))>)

(op 6 sub [()()()(mac $oszapc_flag void)] [(mac $ecx i)(i 3)]
<(gen_opc (l_g_abs cmp))(popc (i 449))>)

(op 7 bgt [] [()(cb 9)()(mac $oszapc_flag void)]
<(gen_opc (l_g_abs jg))(popc (i 848))>)

<(mem_size (i 4))(mem_read_write)(gen_opc (l_g_abs inc))(popc (i 660))>)

<(mem_size (i 4))(mem_read)(gen_opc (l_g_abs jmp))(popc (i 1074))>)

<(mem_size (i 4))(mem_read)(gen_opc (l_g_abs jmp))(popc (i 1074))>)

Figure 7.3 Mcode probe insertion for a basic block ending in an indirect jump.
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indirect jump, which verify that the index register is within the expected bounds. In the current

implementation, when a bounds check fails, control 
ow transfers to a basic block that executes

a user breakpoint interrupt. Note that if the targets are not correctly identi�ed by the decoder,

the indirect jump through an unexpected table entry will eventually cause program failure.

This can be expected because the table itself was most likely moved, and the surrounding bytes

(unexpected entries) do not contain the correct target addresses. Even if the surrounding bytes

contain valid addresses to code (another jump table perhaps), mismatches in register contents

would likely cause an invalid data memory reference in the unexpected target code. So, by

adding a bounds check, an interrupt is triggered immediately before an invalid table entry

would be accessed, pin-pointing the table and invalid index.

7.1.3 Call graph collection

Some optimizations require the use of a call graph, which is graph that depicts the calling

relationships between functions. An accurate call graph can be generated from an edge-weight

pro�le if all of the calls are direct calls. However, additional pro�ling techniques must be

employed to gather information on indirect calls, those through a register or a memory location.

In order to collect this type of pro�ling information, a counter must be maintained for each

executed caller-callee function combination. This framework takes a conservative approach

and maintains a counter for each possible caller-callee function combination using a simple

two-dimensional array of counters. The row of the table is selected by the callee function

identi�er and the column is selected by the caller function identi�er. Figure 7.4 depicts this

counter table used for collecting the call graph pro�le. A complete two-dimensional table

implementation was chosen for several reasons. First, from standard binary code, it is di�cult to
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Counter location = Table base address +

Caller ID

0
0

(Caller ID * 4) + (Callee ID * 4 * n)

n

n

4-byte counter

Table base address

Figure 7.4 Call graph pro�le mechanism.

determine the subset of functions that are reachable from a particular caller function. Thus, the

pro�le gathering mechanism must be able to accurately record weights for every possible caller-

callee combination. Second, support C library functions that are required for other pro�ling

mechanisms, such as malloc(), may not be present in the original binary or may not be

recognizable due to the lack of symbol information within the binary. Therefore, implementation

of other collection approaches, such as a counter hash table, would require the addition in

assembly or Mcode of such routines. Furthermore, the added routines must not interfere with

the original versions, if they exist. Last, the computation of the exact counter location is very
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quick in this scheme compared to other approaches. The drawback, of course, is the rather

large, sparse table.

The equation used to compute the counter location is also shown in Figure 7.4. Immediately

prior to a call instruction, the column o�set corresponding to the caller function is stored in a

global variable. That column o�set is the caller function identi�er multiplied by the counter

size, which is four bytes. Then, at each callee function entry point, the column o�set is added

to the row o�set and the counter table's base address. The row o�set is the callee function

identi�er multiplied by the number of functions and the counter size. This method guarantees

a unique counter location for each caller-callee function combination.

7.2 IMPACT Probe Descriptor File

In order to assign the counter values to the correct edges in the Mcode representation once

the program has completed execution, a description of the meaning of the counters is necessary.

A �le called the IMPACT probe descriptor (IPD) �le is written by Lbx86 Phase 2 as the probes

are inserted. This �le allows the monitor program that extracts the counter values as the

application is exiting to construct the weight �le. A utility program called Lget annotates the

intermediate representation of the application with the weights. Details on the weight �le and

weight annotation can be found in [18]. The call graph pro�le, however, is written to a separate

�le. Each call graph arc from a caller to a callee with a weight greater than zero is written to

the �le in a format for easy call graph construction within the optimizer.

The records in the IPD �le are shown in Figure 7.5. Each record corresponds to an entry

in the weight �le and speci�es how to produce the actual weight. Each record begins with a

record-type identi�er that is followed by a tag that identi�es the particular function, block, or
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IPD FN (FUNCTION) record:
WORD 0 : FN ENTRY identi�er
WORD 1 : index into the function name symbol table in the ipd �le
WORD 2 : number of entry points (cb weights will be added together for a fn weight)
WORD 3 thru WORD (2+(WORD 2)) : counter o�sets for entry points

IPD CB (BASIC BLOCK) record:
WORD 0 : CB ENTRY identi�er
WORD 1 : cb id
WORD 2 : counter o�set

IPD J (UNCONDITIONAL JUMP) record:
WORD 0 : J ENTRY identi�er
WORD 1 : branch id
WORD 2 : counter o�set

IPD B (CONDITIONAL BRANCH) record:
WORD 0 : B ENTRY identi�er
WORD 1 : branch id
WORD 2 : entry counter o�set
WORD 3 : fallthru counter o�set

IPD J RG (JUMP VIA JUMP TABLE) record:
WORD 0 : J RG ENTRY identi�er
WORD 1 : branch id
WORD 2 : number of targets
WORD 3 thru WORD (2+2*(WORD 2)) : counter o�sets for table targets

IPD CG (CALL GRAPH) record:
WORD 0 : CG ENTRY identi�er
WORD 1 : counter o�set for caller ID location
WORD 2 : counter o�set for call graph table
WORD 3 : number of counters

Figure 7.5 IMPACT probe descriptor �le record formats.

branch. Following those two identi�ers is information pertaining to the various counters needed

to compute the weight for that type of record.
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Each function in the IPD �le begins with a function record. This record indicates which

basic blocks are the entry points to this function and that the function weight is the sum of

those block weights. The 
ow weights into the entry points are also taken from the weights of

those entry-point blocks. The computation of these two sets of weights assumes that the blocks

are only executed as entry points into the function and never as internal blocks. Block and

unconditional branch entries simply specify which counter contains the weight. Conditional

branches require the branch entry counter (same as its basic block counter) and its fall through

counter allowing for the calculation of the taken weight. Jump table jumps require a counter

for each possible target, and the corresponding entries specify those counter locations. Finally,

the IPD �le contains a single call graph record that contains the o�set to the entire caller-callee

table. Figure 7.6 is a partial example of the IMPACT probe descriptor �le for 129.compress.

7.3 Pro�le Counter Extraction

The pro�le weights generated during execution of the probed application must be written

to a �le prior to termination of the application. The monitor tool is design to run concurrently

with the probed application and perform the extraction at the appropriate time. In order for the

monitor tool to have access to the counters within the probed application's data space, standard

process protection between these applications must be circumvented. This is accomplished by

launching the probed application as a child process in debug mode from within the monitor.

Debug mode allows the parent monitor program to arbitrarily read or alter various aspects of

the child, including values stored in its data space. Furthermore, the parent and child processes

operate in an interactive fashion, where the child is suspended and the parent reactivated

whenever the child experiences a signi�cant event. When the parent monitor program is �nished
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49 53 00 00

63 6F 6D 70
72 65 73 73
5F 6E 74 2E
65 78 65 2E
78 2E 65 78
60 00 00 00

IMPACT Probe Descriptor (IPD) file header

Binary associated with this descriptor file

00 00 40 00

73 12 00 00

F9 44 00 00

00 30 41 00

Preferred binary base address (00400000h)

Preferred counter table base address (00413000h)

Number of probes (1273h)

Number of DWORDS in descriptor array (44F9h)

HexadecimalAddress

0x00

0x04
0x08
0x0C
0x10
0x14
0x18

0x1C

0x20

0x24

0x28

0x2C FD 00 00 00 Number of functions (FDh)

e...

0x30
0x34
0x38
0x3C

0x48
0x44
0x40

0x4C
0x50
0x54
0x58

Description

...

00 00 00 00
00 00 00 00
01 00 00 00
00 00 00 00

Function record
Function name is symbol 0
1 entry-point
1st entry-point weight is at offset 0

01 00 00 00
01 00 00 00

00 00 00 00

Basic block record
Basic block 1
Basic block weight is at offset 0

00 00 00 00
03 00 00 00

24 00 00 00
28 00 00 00

Conditional branch record
Branch 0
Branch execution weight is at offset 24h
Branch fall-through weight is at offset 28h

...

ASCII

IS..

comp
ress
_nt.
exe.
x.ex

Figure 7.6 Example of an IMPACT probe descriptor �le for SPEC95 129.compress.

performing any tasks related to the event, it reactivates the child and suspends itself waiting

for the next event. Such signi�cant child events include the loading of DLLs and program

termination.

Speci�cally, when the operating system executes on behalf of the child process, the OS

sends an event message to the monitor program. Among the various events sent to the mon-

itor, the following have obvious signi�cance for our purposes: CREATE PROCESS DEBUG EVENT,
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EXIT PROCESS DEBUG EVENT, LOAD DLL DEBUG EVENT, and EXCEPTION DEBUG EVENT. Note that

the monitor is noti�ed of EXIT PROCESS DEBUG EVENT just prior to the actual termination of the

child, allowing the monitor to extract the counters from the child's data space before the child

is terminated. Upon handling these and other events, ContinueDebugEvent() is called by

the monitor, which resumes execution of the child; and then WaitForDebugEvent() is called,

which suspends the monitor until the next event.

An alternative to allowing an outside program to extract the counters is to instrument the

application to write out the counters on its own. The C functions atexit() and onexit()

install functions which will be called upon termination of the program. Speci�cally, a routine

to write the counter values to a �le could be installed in this manner. However, the binary

optimizer operates on the assembly level. Such a cleanup function would require the use of

a �le output function to write the counter values to the �le. Because symbols in the original

application are not necessarily required, it may be impossible to locate the library output

functions. Additional output functions could be added (at the same time as the probes are

inserted) that produce the weight �le, but the monitor program approach is simpler.

7.4 Speedup of Probed Executables

The addition of the probes and the jump table bounds checks add overhead to the execution.

While these probes are not included in any optimized version of the application, it is useful

to brie
y present the speedup of the probed applications. The probed results are shown in

Figure 7.7 and are compared to the original executables as the baseline. Since the functions

are not placed in the same order as in the original executable, as will be discussed further in

Section 9.1, a comparison is also made to a version of the application with the same alternate
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Speedups of Probed Executables
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Figure 7.7 Probed application speedups.

function ordering, but without the probes. The probed applications require on average twice

as long to execute as the originals.
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CHAPTER 8

BASIC SUPPORT FOR MEMORY DISAMBIGUATION

Like register accesses, memory access ordering is also constrained by dependences. A 
ow

dependence exists between the write to a particular memory location and a successive read

from it. Output and anti dependences also exist. However, it is often di�cult for the compiler

to determine what memory location will actually be accessed by a load or a store instruction.

Therefore, in order to maintain correctness, two memory instructions are assumed dependent

if there is any chance that they refer to the same memory location. The process of determining

whether or not memory accesses refer to the same location is called memory disambiguation.

The easiest types of memory references to disambiguate are constant address references,

which are most commonly global variables. A simple comparison of the addresses encoded in

the instructions determines whether the accesses refer to the same memory location. Another

common memory reference is into stack space. An analysis is employed to calculate the change

in the stack pointer between the two instructions. By combining that di�erence with the

o�sets from the stack pointer in the two instructions, location independence can be determined.

Furthermore, it is highly unlikely that a constant address reference would access stack space,

and vice versa. Therefore, a constant address reference and a stack reference are always assumed

to be independent. Future work will include accurate disambiguation which will eliminate the

need for this assumption. Note that because of the limited number of registers, the process

stack is heavily used for local variable storage and for parameter passing in the x86 architecture.

This makes disambiguation of pointers into stack space particularly important.
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Other memory references are based o� of register values. It is sometimes possible to trace

backward in the program to the origins of the register value. This type of advanced analysis in

a compiler can sometimes determine what space (global variable, heap, stack, read-only data,

etc.) a memory reference accesses and can sometimes even localize the reference to a variable,

list, or array. However, these analyses require label information passed from the front-end of

the compiler. Such information is not available to the reoptimizer. Future work on this problem

includes a more advanced pointer analysis at the binary level and a feasibility study on encoding

some label information into the binary itself.
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CHAPTER 9

PROFILE-BASED OPTIMIZATION

Using the information collected from the pro�led code, the important functions, blocks, and

paths can be more e�ectively optimized. The following sections describe some initial attempts

at pro�le-based optimization within the framework. However, they have not been highly tuned,

as their purpose is to show the types of binary optimizations that might bene�t from pro�le

information.

All benchmarks used in this thesis are compiled with Microsoft Visual C++ 5.0 with the

maximize for speed and the inline all suitable settings. Each benchmark is trained on its

designated training input (only the jumble input for 134.perl) and executed for performance

measurement on its designated reference inputs. The performance measurements were taken on

an AMD K6-2 300-MHz processor with 64 MB of main memory running Microsoft Windows 98

for all but 147.vortex, which was run on an AMD K6 200-MHz processor with 64 MB of main

memory running Microsoft Windows NT.1 All performance measurements were taken while

running the standard reference inputs. The time utility was used to gather these measurements,

along with make and bash, from the Cygwin32 [19] tool set. Each version of the benchmark was

executed three times, and the arithmetic average of the wall clock run times for each version

was gathered. Speedups are reported according to the following equation:

Speedup =
original running time

new running time

1147.vortex compiled with Microsoft Visual C++ 5.0 as speci�ed above memory faults under Microsoft Win-
dows 98 but executes correctly under Windows NT.
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Other optimizations were performed along with the optimizations described in this the-

sis. Those optimizations serve as the baseline for the reoptimizer to which new optimizations

are compared, and will be referred to as the K6 optimizations. Speci�cally, several K6-speci�c

optimizations are employed which were implemented by Thiems [10], and instruction reschedul-

ing is performed using a machine description implemented by George [4]. Scheduling is per-

formed in the IMPACT Schedule Manager [20]. The machine description model is constructed

in IMPACT's Machine Description Language [21], and only models the decoders in the K6,

which allow decode of two short or one long instruction per cycle.

9.1 Function Layout

One promising optimization is to intelligently order the functions within the executable,

called function layout. Three layout schemes are supported in the framework, two of which

utilize pro�le information. The �rst ordering places functions according to a depth-�rst search

(DFS) of the program call graph (statically constructed call graph) as produced by the decoder.

Through an examination of the pro�le weights of the functions, it was found that the most

heavily executed functions were often scattered throughout the DFS layout. This scattering

may increase cache con
icts as several heavily executed functions may map into the same

cache lines while never executed functions map into others. The second algorithm, then, packs

forward all functions executed more than ten times in DFS order followed by the remaining

functions in DFS order (DFSPF). A third algorithm implements a method developed by Hwu

and Chang [22] and enhanced by Pettis and Hanson [23] which utilizes a call graph (CG). This

algorithm places functions that call each other frequently near each other, so that they will

not likely con
ict with each other in the cache. Because accurate call target information is
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necessary, including indirect call targets, the call graph gathered during pro�ling is used to

guide function layout.

Figure 9.1(a) shows the speedups of the three function layouts compared to the original

applications. Figure 9.1(b) shows the speedups of the three layouts when the K6 optimizations

implemented by Thiems [10] and rescheduling (using a machine description that models the

two short decoders) implemented by George [4] were also applied. In general, the K6 optimized

executables have higher speedups than the non-K6 optimized executables. It might also be

expected that the CG layout would perform better than the others as it uses the pro�led

call graph. However, the training input does not always accurately represent the reference

input, and thus layouts may not truly be optimized under reference conditions. Furthermore,

cache behavior can vary widely when the positions of key instructions are moved even slightly.

None of the algorithms account for cache size, and thus important functions may still con
ict

in the cache due to the cache's modulo indexing mechanism. Future work includes a more

detailed cache simulation of the 130.li benchmark to further understand its varied behavior,

and improvements to the CG layout algorithm to account for the cache size. The CG layout

algorithm will be used as the baseline layout optimization throughout the remainder of this

thesis.

Because of restrictions in the Mcode function representation, it is di�cult to marshal the

functions and data blocks within the text section back into their original order. First, jump

tables are intimately associated with their referring function and are automatically placed

immediately after their referring function in the new layout. It would be di�cult in the current

implementation to place the jump tables elsewhere, and thus it may not be possible to preserve

their original program placement. Likewise, functions must remain contiguous in the current
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Speedups Due to Function Layout Optimization
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(a) Function layout optimization only.
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Figure 9.1 Speedups with the three function layout optimizations applied.
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framework, thus making it di�cult to place multiple entry-point functions, which are often

scattered across the original binary, in their original positions. Because of these complexities,

there is no compelling reason to attempt such an ordering. Note that the blocks within a

function are placed in original program order unless a block layout optimization, such as the

optimization described in the next section, is applied.

9.2 Superblock Formation

The superblock [24] has been shown to be an e�ective tool for ILP compilation. Of critical

importance is the selection of a frequently executed path to form into a superblock. The basic

blocks in the superblock will become straight-line code and have no side entrances due to tail

duplication. While, at this time, no superblock-speci�c optimizations are performed on the

superblock itself, it is believed that some bene�ts may still be reaped. In particular, branch

prediction should be more accurate because other paths (side entrances) through the code

have been eliminated and all branches are expected to fall through to the next block in the

superblock. Furthermore, since all of the blocks are now in a straight line, there should be

fewer instruction cache misses.

Because of the limited support within the x86 architecture for exposed ILP, superblocks must

be chosen and formed carefully. Inherent to the superblock are features that may negatively

impact performance. For example, moving less frequently used paths away from the superblock

may replace natural fall-through paths with unconditional jumps, adding to the number of

instructions executed for these paths. In addition, tail duplication increases code size, which

may adversely a�ect cache performance. This optimization is model speci�c as the cost of

mispredicted branches and cache misses varies from model to model. For example, if the cost
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Table 9.1 Superblock formation parameter settings.

Name Cons. Aggr. Meaning
Value Value

LB maximum code growth 2.0 2.0 Per function, factor of code growth
allowed due to tail duplication

LB parm branch prediction method pro�le pro�le Use static or pro�le weights to
predict branches

LB minimum superblock weight 100 50 Start block must be executed
at least this many times

LB min branch ratio .90 .70 For a conditional branch, the weight of an
out going 
ow arc must be greater than or
equal to this factor of the branch weight
for superblock inclusion of the successor

LB trace min cb ratio .90 .90 For reverse superblock growth, the arc from
the heaviest of the predecessor blocks must

at least this factor of the
superblock weight for inclusion.

of a branch misprediction is extremely high in a particular model, a more aggressive e�ort to

form superblocks along the frequently executed paths may reap signi�cant bene�ts.

Table 9.1 lists the parameters that guide IMPACT's general superblock formation algo-

rithm. Parameters chosen for both an aggressive and a conservative formation are shown.

Future work on superblock formation within the reoptimizer consists of tuning the formation

heuristics and parameters more appropriately for x86 architectures and developing some su-

perblock optimizations. The speedups for superblock formation are shown in Figure 9.2. In

general, the conservative approach performs better, although once superblock optimizations are

applied, the performance of the aggressive approach is likely to increase. Again, more in-depth

study of the 130.li benchmark is necessary.
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Figure 9.2 Speedups for the superblock formation algorithms in addition to CG function
ordering and K6 optimizations.

9.3 Push and Pop Chain Optimizations

The goal of many instruction-level-parallelism optimizations is to break dependences be-

tween instructions allowing more of the instructions to be executed in parallel. One such

optimization recommended for AMD's K6 processor is the stack allocation optimization, or

push chain optimization [25].

The push chain optimization breaks a chain of stack push instructions into a single large

stack allocation instruction and a set of move instructions into the allocated space, as shown
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mov [esp+8], eax

Stack Allocation
(Push)
Optimization

push eax

push ebx

push ecx

sub esp, 0Ch

mov [esp+4], ebx mov [esp+0], ecx

Figure 9.3 Example of the stack allocation (push) optimization.

in Figure 9.3. Between each push instruction in the original chain is a 
ow dependence via the

stack pointer because each instruction reads the stack pointer, esp, and modi�es it to allocate

space for the new data element. Thus, the next push must wait to read the stack pointer until

the previous push completes its modi�cation of the stack pointer. These 
ow dependences cause

the instructions to be executed sequentially.

This optimization is model speci�c because other models may have automatic hardware

mechanisms that can execute push instructions in parallel. Furthermore, other hardware

speci�cs in models without that automatic hardware, such as the number of store units, may

have an e�ect on the ideal code generated by this optimization.

Pushes are commonly used to temporarily spill register values to memory in order to free

up registers and to pass parameters to called functions. In some microarchitectures, stores to
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memory cannot be reordered by the hardware. The push optimization allows for the pushes to

be converted into a set of independent stores which can then be reordered by the reoptimizer's

scheduler to allow for greater concurrent execution of instructions.

Much like the push chain optimization, a series of pops can also be converted into a series of

loads followed by a stack deallocation. Also observed are stack allocation instructions intermixed

in a series of pushes and stack deallocation instructions intermixed in a series of pops. Such

sequences are also optimized, as the extra allocated space is wrapped in with the new series

allocation instruction and all stack pointer o�sets are carefully adjusted.

The results of these optimizations are shown in Figure 9.4. For the stack optimizations to

be applied, the sequence must consist of at least three pushes or three pops. Because code size

can increase, the optimization is only applied when the sequence executes at least �ve times in

our aggressive approach and at least �fty times in our conservative approach. Unfortunately,

this optimization also can increase the total dependence height of the sequence on machines

with only a single store unit, such as the K6. Thus, a more conservative approach can be taken

with this optimization such that it is only performed when an existing allocation or deallocation

instruction exists. With the push optimization, all allocation instructions will be wrapped into

a single allocation instruction. Such an optimization will not increase the dependence height

and may decrease it if a number of allocation instructions are wrapped into one.

The speedups due to the stack allocation optimizations vary. Note that the number of in-

structions and the code size may have increased due to the optimization, and thus cache perfor-

mance may degrade. Further research into the optimal situations to apply these optimizations

is necessary along with study of their performance on processor models with more than one

store unit.
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Speedups Due to Stack Optimization
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Figure 9.4 Speedups for the stack allocation algorithms in addition to CG function ordering
and K6 optimizations.
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CHAPTER 10

FUTURE WORK AND CONCLUSION

This thesis describes a powerful mechanism for optimizing binary executables, Dynamic-

Link Libraries, and object �les using model-speci�c and pro�le-based optimizations. Many

of the algorithms used within IMPACT's x86 binary reoptimization framework for decoding,

conversion, pro�ling, and reoptimization are discussed in detail. Combined with Thiems [10]

and George [4], a complete picture of the framework is presented. The major features of the

system include: static binary decoding, complete x86 user instruction set representation in

an intermediate representation, probing and pro�le gathering, model-speci�c and pro�le-based

optimization, and optimized binary reconstruction.

Speci�cally, this thesis presents heuristics that allow for stable decoding and reoptimization

of traditional C applications. However, the heuristics used are empirically derived and future

work will focus on improving the robustness of decoding through both the use of more advanced,

provable algorithms, and through the addition of a minimal amount of extra information into

the binary that will be inserted by the compiler. A simple edge weight binary pro�ling mech-

anism is then described that does not rely on dynamic memory allocation or �le manipulation

functions internal to the binary, but rather Windows-speci�c process debugging features for pro-

�le collection. Superblock formation is presented as an example of pro�le-based optimization.

Likewise, the stack allocation optimization is presented as an example of model-speci�c opti-

mization. Promising performance improvements are shown for these two optimizations and the
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function layout optimizations. Future work includes an investigation into new model-speci�c

optimizations and pro�le-based optimizations.

The promising results presented in this thesis, and in the other IMPACT x86 binary reopti-

mization theses, show that signi�cant potential exists for binary reoptimization. Furthermore,

this framework shows that a binary can be pro�led and reoptimized by the user, rather than

just by the vendor, to improve performance. While this framework is speci�c to x86 32-bit

Windows applications, many of the techniques should apply equally well to binary reoptimizers

for other architectures.
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