
COMPILER SUPPORT FOR SPARC ARCHITECTURE PROCESSORS

BY

ROLAND G. OUELLETTE

S.B., Massachusetts Institute of Technology, 1986

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois



ABSTRACT

This work shows how a single compiler front-end and optimization suite may be used to

generate high quality code speci�c processors. A C language front-end is used. An initial

pass of the compiler is used to instrument the program in order to collect a trace of the

dynamic behavior of programs into an execution pro�le used to guide later code optimization

phases. Generic code optimization techniques are applied, then machine speci�c optimizations

are performed. Code is then generated using a machine speci�c code generator, and then several

more machine speci�c optimizations are performed. Results gathered in generating code for the

Sparc architecture are presented in this work. In spite of an incomplete suite of optimizations,

the output code is of comparable overall quality to that generated by the Sun compiler.

iii



ACKNOWLEDGMENTS

My Mom and Dad's encouragement and support enabled me to achieve as much as I have.

I thank Professor Janek Patel with whom I spoke at great length; the conversations I had

with him helped me to choose the University of Illinois.

I thank Professor Wen-Mei Hwu; the thesis work I have done was interesting and appro-

priately challenging. As a result, I was able to change careers and do exciting and challenging

work on production quality compilers.

I thank all my friends in the Center for Reliable and High-performance Computing and

in the Computer Science Department at the University. The time we spent working, sharing

information and relaxing together allowed me to remain sane and fairly relaxed at a time that

would have otherwise been extremely stressful. In particular, I thank John Coolidge, Johnny

\Flame" Zweig, Heeren Pathak, Je� Wilson, Rick, Don Meyer, Laura, Jostlin, Michael Chan

and Jennifer Shannon.

I thank the many people I worked with on components of the IMPACT-I C compiler. At

times I made extraordinary requests of them which they met. I worked closely with Po-hua

Chang, Scott Mahlke, and William Chen. I also worked with Roger Bringmann and Nancy

Warter. These people have spent many weekends and very late nights with me in the laboratory.

The community e�ort was productive and enjoyable.

I thank all of the people at the Digital Equipment Corporation who sent me to attend

graduate school. The Graduate Engineering Education Program (GEEP) is one of the best

industrial education programs; I am very happy that I was accepted into the program. In

particular, I thank Tim Stanley, Lee Peterson and Terry Ann Sarandrea, Masood Heydari,

Jean Basmaji, Jack Rosen and Glenn Garvey.

iv



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.1 The Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.2 Organization of This Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

2 OVERVIEW OF THE IMPACT-I C COMPILER : : : : : : : : : : : : : : : 3
2.1 Pro�ling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.1.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
2.1.2 Collection of pro�le information : : : : : : : : : : : : : : : : : : : : : : : 5

2.2 H-code Environment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
2.3 L-code Environment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
2.4 Code Generation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6
2.5 Advantages of This Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3 MACHINE-INDEPENDENT CODE OPTIMIZATIONS : : : : : : : : : : : 10
3.1 Classical Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
3.2 Inline Expansion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
3.3 Instruction Placement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
3.4 Control Flow Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
3.5 Trace Copying Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
3.6 Loop Unrolling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
3.7 Loop Peeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4 MACHINE-DEPENDENT CODE OPTIMIZATIONS : : : : : : : : : : : : : 14
4.1 Instruction Selection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
4.2 Operation Folding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
4.3 Guarded Operation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
4.4 Constant Preloading : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
4.5 Register Allocation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16
4.6 Code Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

5 SPARC CODE GENERATION : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
5.1 The Sun Optimizing Assembler : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
5.2 Need for Post Code Generation Optimization Phases : : : : : : : : : : : : : : : : 18

5.2.1 Conditional branches and condition codes : : : : : : : : : : : : : : : : : : 19
5.2.2 Scheduling register �ll code : : : : : : : : : : : : : : : : : : : : : : : : : : 19
5.2.3 Aligning loop tops : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19
5.2.4 Scheduling for multiple instruction issue implementations : : : : : : : : : 20

6 MEASUREMENTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

v



7 CONCLUSIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23
7.1 Problems with the Sparc Architecture : : : : : : : : : : : : : : : : : : : : : : : : 24

7.1.1 Condition codes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24
7.1.2 Branch delay slots : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25
7.1.3 Register windows : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

7.2 Calling Standard Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26
7.2.1 Lack of null frame procedures : : : : : : : : : : : : : : : : : : : : : : : : : 27
7.2.2 Lack of preserved 
oating point registers : : : : : : : : : : : : : : : : : : : 27
7.2.3 Passing 
oating point arguments : : : : : : : : : : : : : : : : : : : : : : : 27

7.3 Cache Design of the Sparcstation I Family : : : : : : : : : : : : : : : : : : : : : : 28

APPENDIX : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

A L-CODE OPERATORS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29
A.1 L-Code Branch Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29
A.2 L-Code Computation Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29
A.3 L-Code Memory Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
A.4 Other L-Code Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

B THE SUN OPTIMIZING ASSEMBLER : : : : : : : : : : : : : : : : : : : : : 31

C REGISTER AND MEMORY USAGE OF RTL SUPPORT FUNCTIONS 33

D REFERENCES NOT CITED : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

REFERENCES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

vi



CHAPTER 1

INTRODUCTION

1.1 The Thesis

The premise of the IMPACT group's research into compilers is that it is possible to build

compilers from a collection of components. With a suite of components and utility tools, re-

search into new optimizations techniques and new computer architectures is facilitated. A new

optimization can be written and tried with combinations of previously developed components.

Further, retargeting the compiler requires only a new code generator, new machine and tun-

ing parameters, and a few extra components. An easily retargeted compiler may be used to

demonstrate new architectural features and/or new architectures. Using the same base compiler

technology allows for more controlled optimization and architectural experimentation.

E�ective architectural exploration requires a good compiler. Very misleading results are

obtained if hand-assembled benchmarks are used, since they are small and their behavior may

be unrepresentative of programs written in high level languages. If second-rate compiler tech-

nology is used to compile real code, misleading results may also be obtained. The machine code

will contain disproportionately more call sequences and may use far fewer registers than a good

compiler can use. Also since data for exiting machines are usually collected using a mature

compiler technology, a fair comparison to a new architecture cannot be directly obtained. Fi-

nally, some architectural features require good compiler support to show their merits and faults;

surprises occur late in the product life cycle and are di�cult to address after an architecture is

sold to customers.

To demonstrate that the existing IMPACT compiler could be retargeted easily, and to

discover any problems in the process, I write a code generator for the Sparc architecture. The

group's previous work targeting the MIPS architecture had been very positive. Code for MIPS

1



ran faster than that generated by the compiler written by MIPS, which had a reputation as being

one of the best production compilers available. We were interested in writing this code generator

due to the wide availability of Sparc-based computers, especially in our laboratory, and the

relatively poor machine code we had seen generated by the compilers available on that platform.

To measure our success, the compiler was then tested using a group of benchmark programs.

The results gathered were runtimes of those benchmark programs which were compared with

the results when using the bundled Sparc C compiler supplied by Sun.

1.2 Organization of This Thesis

Chapter 1.2 provides an overview of the IMPACT C compiler. Chapter 2.5 describes op-

timizations performed for all target architectures. Chapter 3.7 contains descriptions of opti-

mizations used for the Sparc architecture. Chapter 5 describes the code generator, the features

implemented, and those left as future work. Performance measurements are given in Chapter 6.

An analysis of the results, what was learned, and the problems encountered are given in the

Conclusions, Chapter 7.

2



CHAPTER 2

OVERVIEW OF THE IMPACT-I

C COMPILER

The IMPACT-I C compiler is written as a collection of programs. Each program performs a

step in the translation of a previously debugged C program into an assembly language program

optimized for a speci�c machine. The transformation occurs in stages, using two intermediate

languages, H-code and L-code. Figure 2.1 is a schematic of the compiler and its stages. The

next sections give an overview of the stages: pro�ling, H-code, L-code, optimizations on the

intermediate code, and assembly code generation.

2.1 Pro�ling

One of the useful pieces of information about an instruction in a program is the frequency of

its execution in the program; we de�ne an instruction's weight as its frequency of execution. A

series of instructions which are executed together is called a basic block; a basic block is always

entered from the top and conceptually ends in a branch instruction. Since all of the instructions

in a basic block have the same weight, it is only necessary to keep weights on a block by block

basis. Branch instructions may have more than one following instruction; the instructions which

follow a branch instruction are called destinations. The frequency with which one destination

instruction is reached is called the arc weight.1 The collection of all of the instruction and arc

weights of a program is called the execution pro�le of the program, pro�le information or simply

the pro�le.

1It is possible to derive all of the instruction weights from the arc weights, but not the other way around.

3



SparcIntel486/i860

x.c

y.c

z.c

PPC (pretty print C)

UGC (Hcode generator)

syntax / semantic analyzer

x.cc y.cc z.cc

1. C source code level.

2. Hcode level.

Hcode (pro�ler)

Hcode (trace placement)

Hcode (inline expansion)

pro�ler

monitor

pro�le
information

f*.cf*.s

Lcode (code optimization)

Lcode (code generation)

Lcode (C code generation)

3. Lcode level.

f*.c

f*.impact

level.

code

4. Assembly
AMD29KMIPS

Figure 2.1 IMPACT-I Compiler Overview

4



2.1.1 Motivation

Some optimizations may always be performed with good results. The \traditional" optimiza-

tion and peephole optimization are members of this group of techniques. Other optimizations

incur some cost, such as code expansion, which must be weighed against their bene�t. Pro-

cedure inlining, loop unrolling and trace expansion cause code expansion. The bene�t of the

transformation is seen in the shorter execution time of the transformed code.2 Knowing how

many times a code sequence is executed allows a compiler to make good choices in applying

potentially costly code transformations.

Additionally, the pro�le information is useful for choosing the fastest dynamic code from

two sequences of equal static cost. Some architectures include delayed branch instructions with

the ability to conditionally annul the instruction in the delay slot. On machines with the ability

to squash the delay instruction in either the taken or not taken direction, knowing the direction

the branch usually goes at compile time allows the proper choice of branch instruction. Unequal

execution time in branch-taken and the branch-not-taken path allows code reordering to arrange

for the fastest dynamic instruction path in the average case.

2.1.2 Collection of pro�le information

The pro�le information is collected by the IMPACT-I C compiler as the �rst step in the

compilation process. The C source code is transformed into the H-code, as described in the

next section. Additional code is added to the H-code which will update a counter each time

it is executed. The code is then transformed into instrumented C code which is then compiled

with an ordinary C compiler. The instrumented program is then run on typical inputs, and

pro�le data are collected. The results gathered for the program that are run on a number of

input data sets are then merged into a single pro�le database. The merged data base is used

in subsequent optimization phases.

2Excluding cache and memory e�ects of the larger code.

5



2.2 H-code Environment

H-code is a high level intermediate language and appears as a forest of semantically correct

abstract syntax trees. It retains knowledge of the data and control structures of the original

source code. After translation, the same memory references are made, and the same computa-

tions performed. The syntax of H-code, however, allows easier manipulation and transformation

than is directly possible in C. The environment is used for inserting pro�ling probes, performing

loop unrolling, procedure inlining, memory disambiguation, loop interchange, other control 
ow

optimizations, H-code trace selection, and some traditional optimizations. These optimizations

are explained in Chapter 3. Figure 2.2 is a schematic of the H-code environment.

2.3 L-code Environment

L-code is a low level intermediate language which resembles a generic machine language.

The model of the machine includes an unbounded number of registers and the instructions

shown in Appendix A.

Traditional compiler optimizations are performed on L-code. These include constant propa-

gation, common subexpression elimination, dead code removal, loop induction variable removal

and strength reduction, and L-code trace optimization. These optimizations are explained

in Chapter 3. Afterwards, machine-dependent optimizations are performed. These include

rearranging operands, propagating procedure call registers, instruction placement, constant

preloading, and code scheduling. Figure 2.3 is a schematic of the L-code environment.

2.4 Code Generation

L-code is �nally transformed into machine code. The work in this thesis involves using the

Sparc architecture as the target. The work here includes mapping the L-code operations into

instructions of the target machine, assigning registers used in L-code to those of the actual

machine, adding code to spill and �ll registers, adding code to save and restore registers,

and performing some optimizations on the generated machine code. These are described in

Chapter 5.

6



PPC

* old pro�ler

* testing

* preprocessed source code

Hcode Modi�ed C

generation
Intermediate code

* semantic analysis

* dead code removal

* jump optimization

* constant folding

* testing

* ensure data structure correctness
PIF structure check

PIF optimization

* do ... while() canonical loop form

* abstract C machinePIF

PIF generation

* old pro�ler

* multiple pass traversal

C program
Formatted

Parse tree

Parse Tree Generation

a.c

Figure 2.2 H-code Environment

7



* symbolic register
allocation

* e.g., constant folding

a.s a.c

optimization

Code

Trace selection

data
pro�le

pro�ler

mapper
Pro�le data

generator

C pro�ler

Flatten

Lcode generator

Hcode generator

C generator

Hcode

data structure

Build internal

a.hcode

Figure 2.3 L-code Environment

8



2.5 Advantages of This Approach

The stand-alone programs and intermediate stages have enabled debugging of the compiler

components. This is particularly useful in a research compiler which is usually in a state of


ux. The �re-walls added and the facilitated inspection of intermediate results save development

time. The use of a library of input and output functions for the intermediate code lowers the

apparent cost of making each phase a program which stands on its own.

Conversion of data to and from printable representations makes the compilation process

slower. Use of a binary �le representation would speed compilations, but would be more com-

plicated. A bene�t of running in small self-contained stages is better use of memory.

The library I/O routines also resulted in a standard internal data representation. In the

future, it might be possible to eliminate some or all of the stages, and to create a more e�-

cient compiler, by simply using the standard data representations and translating between one

representation and the next in memory.

The work here is to investigate the addition of a new back-end to the compiler. However,

additional front-ends are also interesting. The source language does not necessarily have to

be C. A C++ to H-code translator or a Fortran to H-translator is entirely possible.3 Since

other languages have di�ering semantics, additional H-code attributes might be necessary, but

it seems likely that the same L-code could be used.

3The f2c Fortran to C source language translator may be used. However, since Fortran has more constraints,

compiling it directly allows for further optimization.

9



CHAPTER 3

MACHINE-INDEPENDENT

CODE OPTIMIZATIONS

This chapter contains descriptions of the machine-independent optimizations used in the

IMPACT compiler. The optimizer phases transform either the H-code or L-code into equivalent,

but faster versions of the same language. The H-code optimizations include function inline

expansion, instruction placement and control 
ow optimization. The L-code optimizations

include classical local and global optimizations and trace based optimizations.

3.1 Classical Optimizations

The traditional optimizations are generally classi�ed as global and local. Both may be

described by the substitution of a particular pattern of code with an equivalent, but faster

sequence. The local group includes transformations which are applied within single basic blocks.

Global optimizations are limited to a single function.

A list of the optimizations implemented by the L-code optimizer follows: constant propaga-

tion, copy propagation, memory copy propagation, operation combining, common subexpression

elimination, dead code removal, constant folding, strength reduction, operation cancellation,

code reordering, jump optimization, dead block elimination, loop invariant code removal, loop

induction variable strength reduction, and loop induction variable elimination.

All of these optimizations are described and algorithms for their application are given in

Aho Sethi and Ulman [1].

3.2 Inline Expansion

Use of procedural abstraction allows programmers to better divide a program into its con-

stituent parts and reuse code. Unfortunately, a penalty is paid to execute a procedure call

10



and return in compiled code. And further, the call site can inhibit many optimizations. Some

processor architectures include features which are designed to lessen these costs, but incur a

large cost in hardware instead.

Automatic procedure inlining is an e�ective alternative and has the added bene�t of en-

abling further optimization. Procedures called with constant arguments are particularly good

candidates for inline expansion. Often the constant argument is used to steer execution through

the called routine, and so much of the inlined function becomes dead code which may be elim-

inated. Letting the register allocator work with large pieces of code causes better register

assignments. Variable aliasing problems are reduced in some cases in which an inlined function

has pointer type arguments. The need to save and restore registers around the call site is re-

duced. Procedure calls can inhibit loop optimizations such as loop unrolling. Function inlining

within heavily weighted loops can be very bene�cial.

There are certain hazards which have to be avoided when performing function inlining. The

most obvious and important is code size expansion.1 It is important to only inline functions at

frequently executed call sites. Also, inlining creates new variables within a stack frame. If the

inliner does not check, it is possible to create ine�ciently large stack frames to hold all of those

variables.

The order of function inlining is also important to consider. After the call graph has been

developed, the IMPACT compiler chooses the sites to inline carefully. Considered are code size

expansion, minimization of the number of dynamic calls, and the order in which to perform

the inlining. The compile time cost of function inlining can vary greatly depending upon the

ordering of the tasks. The IMPACT performs function inlining so as to keep the compile time

acceptable short.

Certain call sites cannot be inlined: for instance library functions for which there is no

source code. Functions called through pointer are di�cult to inline as well. If a particular call

through pointer is made rather frequently, the 
ow graph may be adjusted to add a test for

equality and a direct call in the frequent case. The inliner can then do those cases in the usual

way.

1Inlining a static function with a single caller results in a decrease in code size. The original function body

may be deleted, because there are no longer any callers.

11



3.3 Instruction Placement

To achieve better performance from the memory subsystem, the IMPACT compiler trans-

forms programs to achieve better locality and to reduce cache con
icts. The transformation

is made in �ve steps. The �rst is collection of pro�le information. The second is function

inlining, which improves spatial locality and reduces interfunction con
ict. The next is trace

selection, in which frequently executed sequences of basic blocks are duplicated and simpli�ed

to achieve better locality. The fourth is function layout, which reorders the traces of a program

in decreasing order of weight. The last is global code layout which places functions which are

executed close together in time close together in memory.

3.4 Control Flow Optimizations

Two control 
ow optimizations which the IMPACT compiler implements are described here.

Branches with multiple targets are generated by constructs like the C language switch

statement. The optimizer sorts the target destinations by arc weight. In cases in which the

execution time may be reduced by using simple tests and conditional branches, the computed

jump is reduced to this form. Some cases may be best generated using a few tests for common

cases and then a jump table. The IMPACT compiler does this. A jump table is used for the

other cases.

Pro�le information enables optimization of two-way branches as well. Trace selection, by

grouping frequently executed blocks into a sequence, reduces the number of taken branches.

The pro�le information may be used to �ll in a compile-time predicted direction bit on the

instruction. Over ninety percent of dynamic branches were correctly predicted in the tests

chosen [2].

3.5 Trace Copying Optimizations

To expand traces beyond just a few basic blocks, target basic blocks may be copied to the

end of the trace of interest. The copied basic block will only be entered from the preceding basic

block. The simpler control 
ow graph allows more aggressive optimization and scheduling. But

12



to control code expansion, only frequently executed branches should be eliminated and their

destinations copied inline.

3.6 Loop Unrolling

Using pro�le information, the IMPACT compiler can detect loops which are frequently

executed. Loops that contain little computation which may be scheduled to execute while

waiting for memory operations to �nish may be improved by unrolling. The loop body is

duplicated several times to create a new loop with adjusted copies of the controlling code. In

addition to the scheduler bene�t, the new code may be adjusted to contain fewer updates of the

control variables. Loop unrolling has a cost in code expansion and also in register usage due to

the additional temporary variables introduced. The unroller must be tuned to avoid creating

loops that have more live variables than the target architecture has registers.

3.7 Loop Peeling

Loops which iterate a few times may bene�t from an optimization such as loop unrolling

called loop peeling. This optimization turns the �rst few iterations of a loop into straight-line

code, leaving the original body of the loop intact. The sequential code may then be scheduled

more aggressively.

13



CHAPTER 4

MACHINE-DEPENDENT CODE

OPTIMIZATIONS

4.1 Instruction Selection

Most of the L-code instructions translate directly into a single machine code instruction. A

few translate into several, and a few others are translated into run-time library calls. L-code can

represent the change of machine state in a variety of ways, and knowledge of which instruction

sequences are better than others may be exploited to improve the code.

For example, L-code contains a large number of branching operators, but some architectures

only directly support a few. The machine speci�c optimization phase will adjust the computa-

tions and branches to avoid those which are not directly supported. See Section A.1 for a list

of L-code branch operators.

Another example is integer multiplication and division on the original Sparc architecture.

Run-time library support is used to support these operations. If one of the multiplicands or

the divisor of one of these operations is known at compile time, replacing the call to the library

function with a sequence of operations is better. These instructions may be further scheduled

to reduce latency.

4.2 Operation Folding

Some of the operations in the Sparc architecture can perform two conceptual operations in

one step. The load operations are such operations. They have two source arguments, a register

argument and a literal value argument or two register arguments. The source arguments are

added together to generate an e�ective memory address from which a value is loaded. A machine

14



speci�c optimizer phase replaces pairs of additions and loads using a single source operand with

a load using two source operands.

4.3 Guarded Operation

Some architectures include conditional move instructions. These instructions may be used

to eliminate branch instructions. On architectures where these instructions are available, a

machine speci�c optimization phase would have made the appropriate transformation. Sparc

does not have conditional move instructions.

4.4 Constant Preloading

Some constants may be coded as part of a machine instruction. The integer computation

instructions of the Sparc architecture can contain 13 bit literal values, and the %g0 register is

always read as the constant zero. The Sparc architecture has instructions which may be used

to generate integer constants. Pairs of these instructions may be used to develop thirty-two

bit values, faster than a value may be loaded from memory. Some other architectures make it

cheaper to load the constant from a table in memory.1

Floating point constants except zero must be loaded from memory on most architectures

including Sparc. In order to avoid stalls, the values must be loaded or generated in advance

of their use. If the procedure is small, and registers are available, constants may be generated

or loaded as early as the beginning of the function. Alternatively, they may be scheduled just

long enough before their use so that no stall is incurred. This works well unless the code is

placed within a loop. For constants used within a loop, it is better to generate them in the loop

preheader. The IMPACT compiler includes machine speci�c optimizations to load or generate

constants at the right time.

1MIPS is an example. Alpha has sixty-four bit registers. Some sixty-four bit constants may be quickly

generated using ldah, lda and shift instructions. Others are cheaper to load from memory.

15



4.5 Register Allocation

As a research instrument, the IMPACT compiler is used to generate code for hypothetical

heavily pipelined VLIW and super-scalar machines. Conventional compilers perform register

allocation prior to code scheduling, but this has the drawback of introducing data dependencies.

The IMPACT compiler allocates registers after scheduling the L-Code. Constant preloading

and aggressive scheduling lengthen the life time of the variables held in registers. Both constant

preloading and code scheduling must be carefully tuned to avoid the need to spill registers. Once

tuned, the IMPACT compiler rarely spilled registers with the Sparc back-end.

4.6 Code Scheduling

The IMPACT compiler uses the concept of a super-block. Frequently executed instruction

traces are duplicated, creating a trace with no branches into the middle of the trace. This

allows the scheduler to percolate safe operations above conditional branches within the trace.

Safe operations are those which cannot cause an exception. For the Sparc architecture and C

language, safe operations are all of the integer operations with the exception of division, modulo

and remainder with unknown divisor. The initial implementation of the Sparc architecture had

single-cycle integer instruction latency, so scheduling these was unimportant. Load instructions

had two-cycle latency if done from cache. Loads are important to schedule, but since they may

fault, they cannot be moved above conditional branches. The multiple instruction issue Sparc

implementations which have become available since have longer e�ective instruction latencies

and fairly stringent rules for issuing multiple instructions. Scheduling code for those machines

is much more important.

16



CHAPTER 5

SPARC CODE GENERATION

The code generator is fairly simple. It runs several passes over the input code. Modifying

it to run in fewer phases would be straightforward, but was unimportant to the research.

The �rst pass runs through all of the L-code tuples, assigning Sparc opcodes to the oper-

ations which can be done in one instruction. In that pass, those that require more than one

machine instruction are expanded. This includes adding nops after branch instructions to �ll

their branch delay slots with an instruction; a later pass partially �lls these slots with useful

work. Literal operands which do not �t into the literal �eld of their computational instruction

are expanded into a sequence, which generates the literal and then does the computation. Fill-

ing of the branch delay slot on ret is done after register allocation, when the register usage of

the procedure is known.1 Also, processing to reorder the the operands of some instructions is

done in this step because certain operands can only be registers, and others may be registers

or literals.

The next pass assigns registers using a register allocator utility. The register allocator

used a graph-coloring algorithm based on one published by Chaitin [3]. The allocator maps

the unbounded set used in the L-code representation onto the actual register set used by the

machine. While writing the code generator, the register allocator was improved to make use of

the argument registers as general registers after their end of life time and to spill the arguments

to stack when that was bene�cial. Variables not assigned to registers for their entire life time

have spill and �ll code generated around their use. Spill and �ll code at procedure call sites is

also generated.

1If the procedure is a leaf, does not need a stack frame and does not use too many registers, special prolog

and epilog code sequences may be generated. That code omits the usual save and restore operations.

17



The next pass over the code expands the remaining operations. For some instructions it is

less confusing in the previous stages if L-code operations not needing additional registers are

not expanded until after the register allocation step.

The branch delay slot �ller is very simple and only �lls the slots in the following cases:

If the instruction following the branch is a comparison instruction, that instruction is moved

up into the delay slot. Otherwise, if the target of the branch is not a branch instruction, an

instruction is copied from the target, the destination is adjusted downwards and the annul bit

is set on the branch. If both fail, the nop is left in the delay slot. If the data 
ow information

were still available, or if additional code had been written to regenerate it the delay slots could

have �lled from above in many cases. The results are better.2

The �nal pass then prints the assembler output to a �le.

5.1 The Sun Optimizing Assembler

To deal with many of the code generator issues which arise, and so that the compiler need

not parse and analyze the code within asm statements, many of the optimizations made by the

bundled C compiler on the Sun OS 4.1.1 are made by the assembler. Examining the transfor-

mations made by the assembler was informative. We found that our suite of optimizations was

missing some simple transformations described in Section 5.2.

The SUN assembler makes many of these transformations when paired with their C compiler.

However, their assembler output contains many undocumented directives. Since I was unable

to correctly insert these directives into my output assembly code, I was unable to determine

how much these optimizations would have helped our code.

5.2 Need for Post Code Generation Optimization Phases

After all of the code is generated and set to emit, there are places in which the code may

be improved. Most of these optimizations are in one way or another peephole optimizations.

2Also, instructions generating arguments could be moved into the delay slots of jsr instructions.

18



5.2.1 Conditional branches and condition codes

The most obviously missing optimization was using the condition code variants of the in-

structions to do branching. The L-code generated makes a Boolean register results, and uses

them as the operands of a conditional branch instructions. Such code was carefully sched-

uled. A subcc instruction immediately before the branch was used to move that result into

the condition code register. But this instruction may be removed by �nding the instruction

which generated the Boolean result and setting its CC bit. Unfortunately, that information was

unavailable at code-generation time. An additional bene�t would have been to free a register

for other use by using the CC register to hold the temporary.

5.2.2 Scheduling register �ll code

Scheduling the spill and �ll code would have been very helpful. Spills and �lls are done

to the stack which usually results in cache hits. Nevertheless, scheduling the loads helps the

uncommon cache miss case. The code generated would always stall in this case, since the very

next instruction always used the result of the load.

Consecutive memory operations may be slow. Back to back stores can be made to have a

usually low latency by use of a write bu�er. But typical chip bus interface units can handle

just one outstanding load at a time and stall on the next load. Exceptional bus interface units

can handle a second outstanding load. Consecutive loads were occasionally generated due to

�ll code, but because the register allocator was rather good, this did not happen often. After

the code is generated and L-code operations requiring multiple machine code instructions are

expanded, more instructions are available for scheduling. It is then possible to improve the

code by rescheduling the �nal code. Scheduling the loads used to �ll registers is important, as

is spacing the loads with computational instructions. Both would have helped to avoid pipeline

stalls when cache misses occur.

5.2.3 Aligning loop tops

Better cache usage patterns can be obtained by aligning loop tops with the beginnings of

cache lines. Adding the padding with nops must be done in a �nal scheduler or in a �nal

19



post-pass when the exact machine instructions are known. Counterintuitively, these extra

instructions help code to execute faster.

5.2.4 Scheduling for multiple instruction issue implementations

On chip implementations using multiple instruction issue logic, it is also important to sched-

ule groups of instructions which may issue together. A �nal scheduler performs this task. All

of the �nal scheduling tasks require data 
ow and register use information. That information

may either be regenerated at this time, or be maintained from previous phases. Neither was

done at the time, so it was not possible to accomplish even simple instruction scheduling.

20



CHAPTER 6

MEASUREMENTS

In order to test how well we fared in targeting the IMPACT compiler to the Sparc architec-

ture, we selected a benchmark set of small and medium-sized programs. We wanted to include

all of the C language programs from the SPEC benchmark suite. I was unable to test the gcc

benchmark from the set, because I did not �nish variable argument list support. We included

the small toy benchmarks because we wanted to be able to hand inspect the results and see

if there were any obvious de�ciencies. The small benchmarks are also helpful when debugging

new compiler code. The larger benchmarks are more representative of real user programs.

The cc compiler bundled with Sun OS 4.1.1 was used for comparison. The programs with

the cc compiler used -O4 switch. Each program's elapsed execution was measured several times

using the same input for both the cc compiled programs and the impcc compiled programs.

The testing conditions were the same for all tests: a Sparc station SLC in multiuser mode,

running X windows, with only the tester logged in. Although conditions were less than ideal,

a fair comparison could be made. To help cope with the multiuser mode and varying random

network tra�c, the slowest run of the set was discarded and the rest were averaged. Table 6.1

contains the average runtimes.

All of the case in which the IMPACT compiler produced slower results can be explained

by a �nal peephole optimization pass and �nal code scheduling pass made by the SUN cc

compiler and not yet implemented in the IMPACT compiler. The code of the li benchmark

case would have been helped by use of peephole optimization to remove the redundant subcc

instructions from its many branches. The examples which show better results may be explained

by the inlining and trace scheduling done by the IMPACT optimizer phases; eqntott, sort and

espresso do particularly well despite the missing �nal optimization passes.

21



Table 6.1 Average Program Runtime (Seconds)

Benchmark Sun cc IMPACT

cccp 4.0 4.2
cmp 18.8 19.1
compress 36.3 38.0
eqn 20.4 20.4
eqntott 99.1 91.5
espresso 100.6 98.4
grep 12.8 12.5
lex 32.4 34.4
li 140.4 154.1
pic 103.8 113.4
sort 15.2 14.4
tbl 13.8 13.8
wc 12.3 12.2
yacc 4.9 5.0

22



CHAPTER 7

CONCLUSIONS

This work produced several useful results. The �rst task was to determine the actual size

of the task. Six man-month's work was su�cient to produce an interesting code generator with

which interesting research could be done. Production quality compilers take substantially more

work to retarget.

When I began writing the code generator, we believed that little work beyond writing new

code generators would be necessary to retarget the compiler. We knew that a few machine

speci�c optimizations would be necessary and believed those could be written as an L-code to

L-code transformation. We also thought that all machine speci�c scheduling could be done

directly in L-code. We learned that the output of a naively written code generator is good, but

may be further optimized with machine code to machine code transformations. See Section 5.2

for a list of additional optimization work to be done. This later led to M-code, a machine code

level representation. Many of the machine code optimizations have since been implemented

using M-code so that common optimizations may be shared among code generators.

Many problems with the Sparc architecture and the calling standard used were discovered.

Use of a compiler with state of the art optimizations early in the design process exposes these

problems early enough so that they may be �xed. The Sparc architecture was one of the �rst

RISC architectures, and SUN has been extremely successful with it. But since its release, a

great deal has been learned. The comparison with later architectures, such as the MIPS and

Alpha architectures, highlight the defects of the Sparc architecture.

23



7.1 Problems with the Sparc Architecture

Listed below are the problem areas and plausible explanations of why the architecture

included them.

7.1.1 Condition codes

Condition codes are a user visible bit of processor state that usually control conditional

branch instructions. Previous architectures such as the VAX architecture set the condition codes

as a side e�ect of most computational instructions. Subsequent conditional branch instructions

would use the value of condition codes as an input.

The Sparc architecture improves upon this scheme by providing two versions of each com-

putational instruction: one which sets the condition codes and one which leaves their state

unchanged. This adds some 
exibility in scheduling code, because the instruction which sets

a condition code need not immediately precede its use in a branch instruction. This allows

added parallelism on machines which can have multiple outstanding instructions. As noted

in Section 5.2.1, the compiler did not take advantage of this 
exibility, but it is a relatively

straightforward thing to do. Modi�cations to the IMPACT compiler have since made data


ow information available to the code generator in L-code. There is interest in adding this

optimization to the Sparc code generator.

However, condition codes as an architectural feature make some architectural implementa-

tion details very di�cult. The condition code register can become a heavily used bottleneck in

a processor. That state is very di�cult and expensive to implement in an architecture using

multiple instruction issue.

A simple alternative is to use general processor registers for branching. Conditional branch

instructions will then use a register operand in addition to the branch displacement. Using

general registers requires an additional register read port and smaller branch displacements.

An additional general register is also used to hold the temporary variable.

At the time the architecture was designed, use of condition codes may have been moderately

advantageous, but they now greatly complicate multiple instruction issue implementations.

24



7.1.2 Branch delay slots

Use of a branch delay slot in an architecture can allow the processor architect to give the

compiler writer the ability to explicitly add parallelism to machine code in a relatively simple

way. While the next instruction to be executed is located, other work may be done. Published

work shows that most of the time an instruction may be moved into a branch delay slot. The

added compiler support necessary to �ll the delay slots is not di�cult to add if data 
ow

information is preserved until code generation. To use the branch delay slot more frequently,

an annul bit may be added to branch instructions. The bit causes the results of the instruction

in the delay slot to be canceled if the branch instruction is not taken. Several commercially

available architectures also use branch delay slots: Sparc, AMD29K, i860, and MIPS. Some,

including Sparc, have annul bits in their branch instructions.

However, there is a problem with the way they scale. It is di�cult to design a CPU

implementation using multiple instruction issue and branch delay slots. If the branch instruction

is located at the end of a block of instructions which issue together, it may be necessary to

execute instructions from two di�erent blocks. The instruction in the branch delay slot will be

found at the next sequential location in memory, and the branch target will contain instructions

which may also have to be executed. Instruction annulling of the branch delay slot further

complicates the matter.

7.1.3 Register windows

The Sparc architecture has a feature called register windows. It implements a type of

hardware stack of registers. Register windows are designed to reduce the cost of procedure

call by saving and restoring groups of registers in a single instruction. The hypothesis is

that typical code has many shallowly nested procedure calls. This is true of the Ackerman

function benchmark compiled using a simple compiler, but is not true of programs in general,

especially those compiled using modern optimizer technology including a well-tuned function

inliner. Scienti�c Fortran codes in particular have few procedure calls.1

1The argument may be made that the functions of a program are spread across many �les, and so cannot

be inlined. This is not the case. The IMPACT compiler treated the whole program as a unit, and would

inline functions across �le boundaries. Digital Equipment Corporation's DEC C, DEC C++, DEC Fortran and

perhaps other compilers can take as input many source �les and create a single object, inlining functions where

appropriate. Other vendors choose to do intermodule function inlining at link time, using an optimizing linker.

25



The architecture requires a designer to implement 120 registers, of which only 24 to 29 are

available for use by the compiler writer. It had been thought that a compiler could seldom make

use of as many as 24 registers, but better register allocator technology and longer instruction

latency have shown that more registers are often useful. Processors using multiple instruction

issue accentuate the need for additional registers. On such architectures, speculative instruction

scheduling, further increases the demand for registers. It's unfortunate that more of the registers

taking up space on the chip are not available to the compiler writer.2

The stack of register windows is conceptually unlimited, but is actually �nite. When in-

structed to save or restore a register set, and one is not available, a trap is generated and

run-time library code is executed to save or restore register sets on the stack. The save and re-

store routines contain many consecutive memory operations with little other work. The memory

interface will limit performance. Fortunately, procedure calls may be made fairly rare.

Setjmp is an exceptional case for saving register windows. Because setjmp saves processor

state, it is necessary for it to force the hidden register state to the stack and to save the current

state into the jump bu�er. This enables the run time library code to unwind the stack to the

right place and correctly restart at the point of the setjmp. This makes setjmp an exceptionally

slow operation.

7.2 Calling Standard Problems

The calling standard used in the SUN OS operating system on Sparc processors results in

decreased performance. Changes to the calling standard may require users to recompile their

programs with an updated compiler. Market forces make such changes di�cult: simultaneous

releases of new compilers would be needed, and independent software vendors might have to

release new versions of their tools. Nevertheless, a calling standard is easier to modify than an

instruction set architecture.

These are parts of the calling standard that could be improved.

2However each additional bit used to address the register �le requires three bits in the instruction word.

This may reduce the number of bits available within the instruction which may be used to hold literal values.

Therefore, more instructions may be required to create some constant values. Loading constants from a global

table may be cheaper on such machines.

26



7.2.1 Lack of null frame procedures

Small leaf routines which do not require more than seven registers and require no stack space

may avoid using the save instruction in its call sequence. This avoids the possible penalty of a

register window trap.

It would be advantageous to make the same optimization on small routines which call other

functions but are not candidates for inlining or being inlined into. In compiling the routines

of a module, it is best to �rst compile the routines which are deepest in the call graph. This

allows their register usage to be known when their callers are compiled. Then if a routine only

makes calls to functions whose register usage is known, and a temporary register is available for

use as a saved register, the call frame of the procedure is unnecessary.3 The return address may

be moved to the register identi�ed, computation and calls performed, and the return address

restored.

In order to make debugger, run-time library and operating system code work with null

stack frames, additional procedure descriptor information has to be generated. Such a change

requires a calling standard modi�cation.

7.2.2 Lack of preserved 
oating point registers

There are no 
oating point callee save registers. At every call site, all live 
oating point

registers must be spilled. This makes 
oating point code run much slower than necessary.4

7.2.3 Passing 
oating point arguments

The calling standard requires that the �rst arguments passed in a function call be placed in

integer registers. If the argument is a 
oating point value, an extra store to the stack and an

extra load from the stack for each such argument must be done by the caller and the callee.

3Digital Equipment Corporation's DEC C, DEC C++ and DEC Fortran compilers implement a #pragma

linkage directive. This linkage describes the register usage of a function. The compiler will take advantage of

extra saved registers when calling these functions. Further, the compiler will enforce the register usage when

compiling the function body.
4The #pragma linkage directive described above is especially helpful with numerical code which makes calls

to math runtime library functions.

27



7.3 Cache Design of the Sparcstation I Family

Memory trace information and especially multiprocessor memory trace information are ex-

tremely valuable in designing new architectures and implementations of those architectures.

Creating these traces is di�cult and expensive and gives the holder a competitive advantage.

The best traces are generated by large computer manufactures, who guard them closely as

proprietary information. Seldom do vendors publish their traces.

The only traces widely available are those published by Eggers for the PDP-11, a machine

whose address space is much smaller than current machines. It appears probable that these

were used to design the original Sparc, like its predecessors at Berkeley, and because of their

unrealisticly small use of memory led to under-designed cache and memory systems. The initial

implementations were inexpensive, but did not perform especially well when running programs

which had large data sets. Later machines used larger caches to alleviate this problem. Such

implementation details may be changed easily, in contrast to calling standards and instruction

set architectures.

28



APPENDIX A

L-CODE OPERATORS

This appendix lists the operators used in L-code. Each has up to three source operands and

one destination operand.

A.1 L-Code Branch Operators

jump jump fs jump rg jump rg fs

beq bne bgt bge blt ble

beq fs bne fs bgt fs bge fs blt fs ble fs

bgt u bge u blt u ble u

bgt u fs bge u fs blt u fs ble u fs

beq f bne f bgt f bge f blt f ble f

beq f fs bne f fs bgt f fs bge f fs blt f fs ble f fs

beq f2 bne f2 bgt f2 bge f2 blt f2 ble f2

beq f2 fs bne f2 fs bgt f2 fs bge f2 fs blt f2 fs ble f2 fs

A.2 L-Code Computation Operators

no op

mov mov f mov f2 gd mov gd mov f gd mov f2

add add u sub sub u mul mul u div div u rem rem u

abs

or and xor nor nand nxor or not and not

eq ne gt ge lt le gt u ge u lt u le u

lsl lsr asr

29



rev bit pos

add f sub f mul f div f

abs f

eq f ne f gt f ge f lt f le f

add f2 sub f2 mul f2 div f2

abs f2

eq f2 ne f2 gt f2 ge f2 lt f2 le f2

f2 i i f2 f i i f f2 f f f2

A.3 L-Code Memory Operators

ld uc ld c ld uc2 ld c2 ld i ld f ld f2

st c st c2 st i st f st f2

fetch and add fetch and or fetch and and fetch and st fetch and cond st

co proc

expand

A.4 Other L-Code Operators

jsr rts prologue epilogue de�ne alloc

30



APPENDIX B

THE SUN OPTIMIZING

ASSEMBLER

The assembler supplied by SUN could perform a number of interesting optimizations. They

are described below. They are simple post code generation peephole optimizations. Exper-

iments with them showed how the IMPACT compiler needed to implement a similar set of

optimizations.

The B switch allows the compiler to remove some useless instructions after unconditional

branches. In some cases, many instructions were removed resulting in incorrect code.

The G switch rearranges some of the basic blocks and �lls some delay slots di�erently.

The K switch enables a jump peephole optimization which transforms sequences with this

pattern:

cond br label
nop
b label1
delay instr1
label:
b label2
delay instr2

into this more e�cient sequence

other cond branch label2
delay instr2
label:
b label1
delay instr1

The L switch appears to be needed to enable other optimizations and works with short case

statements.

31



The M switch enables a loop transformation.

The P switch transforms sequences matching this pattern:

Cond br,a
instr1
instr1

into this more e�cient sequence

Br
instr1

The Q switch reduces register aliasing and renames some to reduce register usage. Perhaps

is done with an extended peephole optimization. It does not appear that registers were globally

reallocated.

The R switch changes this pattern:

sethi %hi(const), reg
or reg, %lo(const), reg
instr [reg], dest

into this equivalent but more e�cient form

sethi %hi(const), reg
instr [reg+%lo(cont)], dest

Perhaps R caused many of the register assignments to change. Perhaps this enables a

back-end register allocator.

The S switch enables �lling of branch delay slots.

The T switch enables renaming of temporary registers, that is, registers which were de�ned

once and used once. The optimization occurs when the source register used in computing the

temporary is also unused.

The U switch seems to control further register renaming.

Some of the directives used by the assembler appeared to indicate the beginnings and ends of

register lifetimes. It seems reasonable that not supplying this information caused the problems

encountered in assembling IMPACT generated assembler with optimizations enabled.

32



APPENDIX C

REGISTER AND MEMORY

USAGE OF RTL SUPPORT

FUNCTIONS

The �rst Sparc processor implementation included no integer divide, remainder or multiply

instructions. The machine instead supported a multiply step instruction which could multiply a

32 bit number by a 13 bit number. Code for multiplications, divisions and remainder operations

is part of the run-time library and uses the multiply step instruction. A multiply takes about

45 instructions. Divisions and remainders take much longer. The Sparc architecture was later

amended to contain an integer multiply operation.

The run-time library operations supporting multiply, divide and remainder were hand coded

to be as e�cient as possible. They performed all of their work in the six argument registers

and used no stack space, so they were leaf routines. Additionally they access no memory.

This made them very special functions. Ordinary function calls inhibit optimizations, espe-

cially function calls within loops. A machine speci�c optimization for Sparc could exploit the

special information about multiply function calls. Some adjustment of the register allocator

would also be needed. The register allocator in use at the time of this work also used argument

registers as temporary variables, but not across function calls. In contrast to ordinary function

calls, the global registers are not changed by calls to these support functions. The register

allocator could be improved to take advantage of this special information.

33



APPENDIX D

REFERENCES NOT CITED

The IMPACT compiler has been used by our group many times in published research. As

a component in a large group project, the citations given below help to place the work done in

this thesis into its proper context.

Reference [4] is a detailed description of the IMPACT compiler framework.

Reference [5] shows how use pro�le information may be used to make traditional code

optimizations more e�ective.

Reference [6] is a technical report containing a more thorough treatment of material of [5].

Reference [7] describes control 
ow optimizations which the IMPACT compiler also used.

Reference [8] is a technical report showing the advantages of scheduling code prior to register

allocation.

Reference [9] shows the advantages of scheduling superblocks especially on superpipelined

superscalar processors.

Reference [10] shows the importance of function inlining in compiling C programs.

Reference [11] shows how instruction placement may be improved after function inlining has

been performed.

Reference [12] is a later version of the report [11] published as an article.

Reference [13] describes some of the early work of Po-Hua Chang andWen-Mei Hwu applying

trace selection to large C programs. The trace scheduling technology was later incorporated

into the IMPACT-I compiler.

Reference [14] shows how compiler technology may be used to improve performance by

improving instruction cache use.

34



Reference [15] is the doctoral dissertation of Po-hua Chang who wrote much of the orig-

inal code of the IMPACT-I compiler. That compiler generated code for a simulated VLIW

architecture computer.

Reference [16] is the M.S. thesis of Scott Mahlke who wrote several of the optimizers used

in the IMPACT compiler.

Reference [17] is the M.S. thesis William Chen wrote a code generator for the MIPS archi-

tecture for use with the IMPACT compiler.

Reference [18] is a technical report on the topic of code expanding optimizations and the

added requirements to be met by instruction cache logic.

Reference [19] examines the performance problems of machines that use multiple instruction

issue architectures, but have a limited number of registers.

Reference [20] uses the IMPACT compiler to compare results of static and dynamic code

scheduling on processors using multiple instruction issue architectures.

Reference [21] examines the value of compiler assisted prefetch of data and its impact upon

performance and memory interface design.

35



REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[2] W. W. Hwu, T. M. Conte, and P. P. Chang, \Comparing software and hardware schemes
for reducing the cost of branches," in Proceedings of the 16th International Symposium on

Computer Architecture, pp. 224{233, May 1989.

[3] G. J. Chaitin, \Register allocation and spilling via graph coloring," in Proceedings of the

ACM SIGPLAN 82 Symposium on Compiler Construction, pp. 98{105, June 1982.

[4] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An
architectural framework for multiple-instruction-issue processors," in Proceedings of the

18th International Symposium on Computer Architecture, pp. 266{275, May 1991.

[5] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist classic
code optimizations," Software Practice and Experience, vol. 21, pp. 1301{1321, December
1991.

[6] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist classic
code optimizations," Tech. Rep. CRHC-91-12, Center for Reliable and High-Performance
Computing, University of Illinois, Urbana, IL, April 1991.

[7] P. P. Chang and W. W. Hwu, \Control 
ow optimization for supercomputer scalar pro-
cessing," in Proceedings of the 1989 International Conference on Supercomputing, July
1989.

[8] P. P. Chang, D. M. Lavery, and W. W. Hwu, \The importance of prepass code schedul-
ing for superscalar and superpipelined processors," Tech. Rep. CRHC-91-18, Center for
Reliable and High-Performance Computing, University of Illinois, Urbana, IL, May 1991.

[9] P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Three superblock
scheduling models for superscalar and superpipelined processors," Tech. Rep. CRHC-91-
25, Center for Reliable and High-Performance Computing, University of Illinois, Urbana,
IL, October 1991.

[10] W. W. Hwu and P. P. Chang, \Inline function expansion for compiling realistic C pro-
grams," in Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language

Design and Implementation, pp. 246{257, June 1989.

[11] W.W. Hwu and P. P. Chang, \E�cient instruction sequencing with inline target insertion,"
Tech. Rep. CSG-123, Center for Reliable and High-Performance Computing, University of
Illinois, Urbana, IL, May 1990.

36



[12] W.W. Hwu and P. P. Chang, \E�cient instruction sequencing with inline target insertion,"
IEEE Transactions on Computers, accepted for publication.

[13] P. P. Chang and W. W. Hwu, \Trace selection for compiling large C application programs
to microcode," in Proceedings of the 21st International Workshop on Microprogramming

and Microarchitecture, pp. 188{198, November 1988.

[14] W. W. Hwu and P. P. Chang, \Achieving high instruction cache performance with an
optimizing compiler," in Proceedings of the 16th International Symposium on Computer

Architecture, pp. 242{251, May 1989.

[15] P. Chang, Compiler Support for Multiple Instruction Issue Architectures. Ph. D. disserta-
tion, Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1991.

[16] S. A. Mahlke, N. J. Warter, W. Y. Chen, P. P. Chang, and W. W. Hwu, \The e�ect of
compiler optimizations on available parallelism in scalar programs," in Proceedings of the

1991 International Conference on Parallel Processing, pp. 142{145, August 1991.

[17] W. Y. Chen, \An optimizing compiler code generator: A platform for risc performance
analysis," M.S. thesis, Department of Electrical and Computer Engineering, University of
Illinois, Urbana, IL, 1991.

[18] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu, \The e�ect of code expanding
optimizations on instruction cache design," Tech. Rep. CRHC-91-17, Center for Reliable
and High-Performance Computing, University of Illinois, Urbana, IL, May 1991.

[19] S. A. Mahlke, W. Y. Chen, P. P. Chang, and W. W. Hwu, \Scalar program performance
on multiple-instruction-issue processors with a limited number of registers," in Proceedings

of the 25th Annual Hawaii International Conference on System Sciences, January 1992.

[20] P. P. Chang, W. Y. Chen, S. A. Mahlke, and W. W. Hwu, \Comparing static and dynamic
code scheduling for multiple-instruction-issue processors," in Proceedings of the 24th An-

nual International Symposium on Microarchitecture, pp. 25{33, November 1991.

[21] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. Hwu, \Data access microarchitectures
for superscalar processors with compiler-assisted data prefetching," in Proceedings of the

24th Annual International Symposium on Microarchitecture, pp. 69{73, November 1991.

37


