
DESIGN AND IMPLEMENTATION OF A PORTABLE
GLOBAL CODE OPTIMIZER

BY

SCOTT ALAN MAHLKE

B.S., University of Illinois, 1988

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1992

Urbana, Illinois



iii

ACKNOWLEDGEMENTS

I would �rst like to thank my advisor, Professor Wen-mei Hwu, for his guidance, his

support, and, most importantly, his patience. I have learned a great deal from him during

my years in graduate school, and I look forward to working together in the future.

I wish to extend my appreciation to two people, Pohua Chang and William Chen,

with whom I have worked very closely in the past few years. Pohua wrote most of the

IMPACT-I C compiler. He also helped with the formulation of many of the optimizations,

helped with initial implementation, and assisted with many of the di�culties encountered

along the way. William wrote the �rst code generator for the compiler and helped with

much of the debugging of the optimizer. Without both of them, this project would never

have been �nished.

I also would like to thank three other people, Nancy Warter, and my two o�cemates,

Sadun Anik and Tom Conte. Nancy and I have spent many long nights writing papers

together. Sadun and Tom have answered my endless supply of day to day questions.

Finally, I wish to thank everyone above and all of my other friends who have made

my life in graduate school very enjoyable.



iv

TABLE OF CONTENTS

Page

1 INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.1 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
1.2 Organization of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : 3

2 OVERVIEW OF THE IMPACT-I C COMPILER : : : : : : : : : : : : : 4
2.1 Program Representation : : : : : : : : : : : : : : : : : : : : : : : : : 6
2.2 Pro�ler Implementation : : : : : : : : : : : : : : : : : : : : : : : : : 7

3 CLASSICAL OPTIMIZATION : : : : : : : : : : : : : : : : : : : : : : : : 11
3.1 Formulation of Code Optimizations : : : : : : : : : : : : : : : : : : : 11
3.2 Local Optimization : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3.2.1 Constant propagation : : : : : : : : : : : : : : : : : : : : : : : 14
3.2.2 Forward copy propagation : : : : : : : : : : : : : : : : : : : : 14
3.2.3 Memory copy propagation : : : : : : : : : : : : : : : : : : : : 15
3.2.4 Arithmetic common subexpression elimination : : : : : : : : : 15
3.2.5 Redundant load elimination : : : : : : : : : : : : : : : : : : : 16
3.2.6 Redundant store elimination : : : : : : : : : : : : : : : : : : : 17
3.2.7 Constant folding : : : : : : : : : : : : : : : : : : : : : : : : : 17
3.2.8 Strength reduction : : : : : : : : : : : : : : : : : : : : : : : : 19
3.2.9 Constant combining : : : : : : : : : : : : : : : : : : : : : : : 20
3.2.10 Arithmetic operation folding : : : : : : : : : : : : : : : : : : : 21
3.2.11 Branch operation folding : : : : : : : : : : : : : : : : : : : : : 23
3.2.12 Operation cancellation : : : : : : : : : : : : : : : : : : : : : : 23
3.2.13 Dead code removal : : : : : : : : : : : : : : : : : : : : : : : : 25
3.2.14 Code reordering : : : : : : : : : : : : : : : : : : : : : : : : : : 25

3.3 Global Optimization : : : : : : : : : : : : : : : : : : : : : : : : : : : 27
3.3.1 Data 
ow analysis : : : : : : : : : : : : : : : : : : : : : : : : 27
3.3.2 Constant propagation : : : : : : : : : : : : : : : : : : : : : : : 34



v

3.3.3 Forward copy propagation : : : : : : : : : : : : : : : : : : : : 34
3.3.4 Backward copy propagation : : : : : : : : : : : : : : : : : : : 35
3.3.5 Memory copy propagation : : : : : : : : : : : : : : : : : : : : 36
3.3.6 Arithmetic common subexpression elimination : : : : : : : : : 37
3.3.7 Redundant load elimination : : : : : : : : : : : : : : : : : : : 37
3.3.8 Redundant store elimination : : : : : : : : : : : : : : : : : : : 38
3.3.9 Dead code removal : : : : : : : : : : : : : : : : : : : : : : : : 39

3.4 Loop Optimization : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39
3.4.1 Identifying loops : : : : : : : : : : : : : : : : : : : : : : : : : 40
3.4.2 Creating loop preheaders : : : : : : : : : : : : : : : : : : : : : 43
3.4.3 Invariant code removal : : : : : : : : : : : : : : : : : : : : : : 43
3.4.4 Global variable migration : : : : : : : : : : : : : : : : : : : : 44
3.4.5 Branch simpli�cation : : : : : : : : : : : : : : : : : : : : : : : 45
3.4.6 Induction variable strength reduction : : : : : : : : : : : : : : 47
3.4.7 Induction variable elimination : : : : : : : : : : : : : : : : : : 48

4 USING PROFILE INFORMATIONTO FURTHERCLASSICAL OPTIMIZA-
TIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53
4.1 Optimizing Frequently Executed Paths : : : : : : : : : : : : : : : : : 54
4.2 Forming Super-blocks : : : : : : : : : : : : : : : : : : : : : : : : : : : 55
4.3 Super-block Optimization : : : : : : : : : : : : : : : : : : : : : : : : 58

5 PERFORMANCE EVALUATION : : : : : : : : : : : : : : : : : : : : : : 65

6 CONCLUSIONS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

REFERENCES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70



vi

LIST OF TABLES

Table Page

3.1: Local optimizations. : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
3.2: Global optimizations. : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
3.3: Loop optimizations. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
4.1: Super-block code optimizations. : : : : : : : : : : : : : : : : : : : : : 58
5.1: Benchmarks. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66
5.2: Input data for pro�ling. : : : : : : : : : : : : : : : : : : : : : : : : : 66
5.3: Speedup comparison of classical optimizations. : : : : : : : : : : : : : 67
5.4: Speedup comparison of pro�le-based optimizations. : : : : : : : : : : 68
5.5: Code expansion due to pro�le-based optimizations. : : : : : : : : : : 68



vii

LIST OF FIGURES

Figure Page

2.1: A block diagram of the IMPACT-I C compiler. : : : : : : : : : : : : : 5
2.2: A block diagram of the pro�ler. : : : : : : : : : : : : : : : : : : : : : 9
3.1: Algorithm for computing live variables. : : : : : : : : : : : : : : : : : 29
3.2: Algorithm for computing all de�nitions and uses of an operand. : : : 30
3.3: Algorithm for computing available de�nitions. : : : : : : : : : : : : : 32
3.4: Algorithm for computing available expressions. : : : : : : : : : : : : : 33
3.5: Algorithm for �nding dominators. : : : : : : : : : : : : : : : : : : : : 41
3.6: Algorithm for detection of single backedge loops. : : : : : : : : : : : : 42
3.7: Algorithm for merging loops with the same header block. : : : : : : : 43
4.1: An example weighted control 
ow graph. : : : : : : : : : : : : : : : : 54
4.2: An algorithm to perform tail duplication. : : : : : : : : : : : : : : : : 56
4.3: An example weighted control 
ow graph after tail duplication. : : : : 57
4.4: An example of super-block common subexpression elimination. (a) Orig-

inal program segment. (b) Program segment after super-block for-
mation. (c) Program segment after common subexpression elimina-
tion. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

4.5: An example of super-block dead code removal. (a) Original program seg-
ment. (b) Program segment after dead code removal. : : : : : : 61

4.6: An example of super-block loop invariant code removal. (a) Original pro-
gram segment. (b) Program segment after loop invariant code re-
moval. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

4.7: An example of super-block loop global variable migration. (a) Original
program segment. (b) Program segment after loop global variable
migration. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64



1

1. INTRODUCTION

The importance of compile time code optimizations to improve code e�ciency has

been recognized for many years. There are two categories of code optimization, machine-

dependent optimization and machine-independent optimization. Machine-dependent op-

timizations require information regarding the target machine's instruction set and hard-

ware features, and are thus performed in conjunction with code generation. Machine-

independent optimizations use a wide variety of transformations to improve both a

programs speed and e�ciency. Machine-independent optimizations are performed on

a well-de�ned compiler intermediate code. Although the concepts concerning machine-

independent code optimization are well known, few people understand the details required

for implementation. In this thesis, the complete design of a portable machine-independent

optimizer is presented.

The use of pro�le information to identify more optimization opportunities than a con-

ventional optimizer can recognize is also investigated. An execution pro�le refers to the

dynamic behavior of a program when executed on a given input. Conventional optimizers

rely on static loop analysis to identify critical regions of a program. However, static anal-

ysis often results in large prediction errors. Pro�le information can accurately identify



2

the critical regions of a program. More aggressive conventional optimization is then pos-

sible when the critical regions are known by the compiler. The use of pro�le information

to guide code optimization will be referred to as pro�le-based code optimization.

A portable machine-independent optimizer, Lopti, has been constructed as a com-

ponent of the IMPACT-I C compiler [8]. The IMPACT-I C compiler is a prototype

retargetable pro�ling compiler that currently generates code for the following machines:

MIPS R2000, Sun SPARC, Intel i860, and AMD29k. All optimizations are performed on

a low-level machine-independent intermediate code called Lcode [7].

1.1 Related Work

Code optimizers have been studied by many researchers both as independent modules,

and as components of large compilers. Almost all existing high-level language compilers

today perform code optimization to some degree. The PL.8 compiler project at IBM

[4] accepts several source languages and generates high-quality code for various di�erent

machines. Optimizations are applied on a low-level intermediate code and are repeatedly

performed to maximize their e�ectiveness. The Amsterdam Compiler Kit [20] consists

of several components that can be combined to form compilers with di�erent properties.

The global and peephole optimizers use a pattern/replacement table that speci�es how

speci�c patterns of instruction sequences within a window can be replaced with a more

e�cient sequence. The GNU C compiler [19] is a public domain optimizing compiler

capable of generating code for a large number of machines.



3

Chow has designed and built UOPT , a machine-independent global optimizer [11].

Included in this design is a machine-independent intermediate code that e�ectively sup-

ports optimization. A complete set of classical optimizations, and some additional op-

timization techniques are contained in UOPT . Chow also evaluated the performance,

e�ciency, and relative importance of these optimizations on several target machines.

1.2 Organization of the Thesis

This thesis is organized into six chapters. Chapter 2 gives a brief overview of the

IMPACT-I C compiler. In Chapter 3, the implementation details of classical machine-

independent optimizations are discussed. In Chapter 4, the use of pro�le information

to identify additional opportunities for classical optimizations is presented. In Chapter

5, the performance of the optimizer is evaluated. Finally, some concluding remarks are

made in Chapter 6.



4

2. OVERVIEW OF THE IMPACT-I C COMPILER

A diagram showing the major components of the IMPACT-I C compiler is shown

in Figure 2.1. Box A contains the compiler front-end and the code generator. The

compiler front end translates a C program into an intermediate code which is suitable

for code optimization and code generation. The compiler front end performs appropriate

lexical, syntactic, and semantic analyses on the C program. If an error is found in

the lexical, syntax, or semantic analysis, the compilation process is stopped abruptly

before assembly/machine code generation. The IMPACT-I C compiler generates code

for several existing processor architectures: MIPS R2000, Sun SPARC, Intel i860, and

AMD29k. Each code generator performs the following tasks: (1) machine-dependent code

optimizations, e.g., constant preloading, instruction selection, (2) register allocation, and

(3) assembly/machine code generation. The machine-independent global optimizer is

shown in Box B.

Box C is used to obtain pro�le information. The input to the pro�ler is an intermedi-

ate code plus a set of input data. From the intermediate code, a pro�ler is automatically

generated. The pro�ler is executed once with each input data set to produce a pro�le �le.

After we have obtained all pro�le �les, they are summarized. The summarized pro�le



5

Front End

Box C.

Box B.

Box A.

Input data

Host Assemblers

Pro�ler

AMD29ki860SPARCMIPS

Code
Intermediate

Optimizer
Code

Generator

Code

Compiler

C programs

Figure 2.1: A block diagram of the IMPACT-I C compiler.



6

information is then integrated into the intermediate code. The global code optimizations

in Box B are modi�ed to use the pro�le information.

The compilation procedure consists of the following steps:

1. The compiler front end translates a C program into an intermediate code (Box A).

If there is no need to perform global code optimizations goto 4; otherwise, goto 2.

2. The compiler performs classic global code optimizations (Box B). If there is no

need to perform pro�le-based code optimizations goto 4; otherwise, goto 3.

3. The compiler generates a pro�ler and obtains pro�le information (Box C). The

pro�le information is integrated into the intermediate code (Box C). The compiler

applies pro�le-based code optimizations (Box B) on the intermediate code. Goto

4.

4. The compiler generates target assembly/machine code (Box A).

2.1 Program Representation

In optimizing compilers, a function is typically represented by a 
ow graph [1], where

each node is a basic block and each arc is a potential control 
ow path between two basic

blocks. A 
ow graph can be extended to include pro�le information. We de�ne a weighted


ow graph as a quadruple fV;E; count; arc countg, where each node in V is a basic block,

each arc in E is a potential control 
ow path between two basic blocks, count(v) is a

function that returns the execution count of a basic block v, and arc count(e) is a function

that returns the taken count of a control 
ow path e.

Each basic block contains a straight-line segment of instructions. The last instruction

of a basic block may be one of the following types: (1) an unconditional jump instruction,



7

(2) a 2-way conditional branch instruction, (3) a multiway branch instruction (switch

statement in C), or (4) an arithmetic instruction. For simplicity, a jump-subroutine

instruction is assumed to be an arithmetic instruction because it does not change the

control 
ow within the function where the jump-subroutine instruction is de�ned. Ex-

cept for the last instruction, all other instructions in a basic block must be arithmetic

instructions that do not change the 
ow of control to another basic block.

The instruction set that we have chosen for our intermediate code (Lcode) has the

following properties: (1) The opcode (operation code) set is very close to that of the

host machine instruction sets, e.g., MIPS R2000 and SPARC. (2) It is a load/store

architecture. Arithmetic instructions are register-to-register operations. Data transfers

between registers and memory are speci�ed by explicit memory load/store instructions.

(3) The intermediate code provides an in�nite number of temporary registers. This allows

code optimization to be formulated independently of the machine dependent register �le

structures and calling conventions.

2.2 Pro�ler Implementation

The following information is collected with the pro�ler in Box C of Figure 2.1.

1. The number of times a program has been pro�led (N).

2. The invocation count fn count(fi) of each function fi.

3. The execution count count(bk) of each basic block bk.

4. For each 2-way conditional branch instruction I, the number of times it has been

taken (taken count(I)).



8

5. For each multiway branch instruction I, the number of times each case (cc) has

been taken (case count(I; cc)).

With this information, we can annotate a 
ow graph to form a weighted 
ow graph.

Figure 2.2 shows the major components of the pro�ler that appears in Box C of

Figure 2.1. Automatic pro�ling is provided by four tools: (1) a probe insertion program,

(2) an execution monitor, (3) a program to combine several pro�le �les into a summarized

pro�le �le, and (4) a program that maps the summarized pro�le data into a 
ow graph

to generate a weighted 
ow graph data structure.

The pro�ling procedure requires �ve steps as shown in Figure 2.2.

(a) The probe insertion program assigns a unique ID to each function and inserts a

probe at the entry point of each function. Whenever the probe is activated, it

produces a function(id) token. In a function(id) token, id is the unique ID of

the function. The probe insertion program also assigns a unique ID to each basic

block within a function. Therefore, a basic block can be uniquely identi�ed by a

tuple (function id, basic block id). The probe insertion program inserts a probe in

each basic block to produce a bb(fid; bid; cc) token every time that basic block is

executed. In a bb(fid; bid; cc) token, fid identi�es a function, bid identi�es a basic

block in that function, and cc is the branch condition. The output of the probe

insertion program is an annotated intermediate code.

(b) The annotated intermediate code is compiled to generate an executable program

which produces a trace of tokens every time the program is executed.

(c) The execution monitor program consumes a trace of tokens and produces a pro�le

�le. We have implemented the execution monitor program in two ways. It can

be a separate program which listens through a UNIX socket for incoming tokens.



9

Intermediate
Code

Probe

Insertion
Annotated

Code

Compile

Pro�ler
Monitor

Input Data

Execution

Pro�le Data

Intermediate

Code

N

N

Summarized
Pro�le Data

N

Combine

Projection

(a)

(b)

(c)

(d)

(e)

Flow Graph

Weighted Flow Graph

Figure 2.2: A block diagram of the pro�ler.



10

Alternatively, it can be a function which is linked with the annotated user pro-

gram. The second approach is at least two orders of magnitude faster than the �rst

approach, but may fail when the original user program contains a very large data

section that prevents the monitor program from allocating the necessary memory

space. Fortunately, we have not yet encountered that problem.

(d) Step (c) is repeated once for each additional input. All pro�le �les are combined

into a summarized pro�le �le.

(e) Finally, the composite pro�le �le is mapped into the original intermediate code.

Because we have not changed the structure of the program, it is straightforward

to search using the assigned function and basic block identi�ers. To simplify the

formulation of code optimizations, all execution counts are divided by the number

of times the program has been pro�led.



11

3. CLASSICAL OPTIMIZATION

There are three classes of classical optimizations, local optimizations, global opti-

mizations, and loop optimizations [1] [2]. The optimizer presented in this thesis, Lopti,

performs most standard classical optimizations. A summary of the optimizations included

in Lopti is presented in Tables 3.1, 3.2, and 3.3. The goals of classical optimizations are

to improve the execution speed and reduce the size of a program. For some of the trans-

formations, a con
ict exists between these two objectives. The main objective used in the

design of Lopti is optimizing for speed. There have been no optimizations included that

optimize only for space. In the rest of this chapter, the implementation details for each

class of optimizations will be discussed. The style used to formulate all optimizations is

�rst described.

3.1 Formulation of Code Optimizations

Each optimization will be formulated as a pattern matching rule consisting of two

parts. The �rst part is a set of predicate functions which return true or false. An

optimization opportunity is identi�ed by all predicate functions of a rule returning true.

The second part of each rule is a set of actions, which are the steps taken to perform the



12

Table 3.1: Local optimizations.

constant propagation
forward copy propagation
memory copy propagation
arithmetic common subexpression elimination
redundant load elimination
redundant store elimination
constant folding
strength reduction
constant combining
arithmetic operation folding
branch operation folding
operation cancellation
dead code removal
code reordering

Table 3.2: Global optimizations.

constant propagation
forward copy propagation
backward copy propagation
memory copy propagation
arithmetic common subexpression elimination
redundant load elimination
redundant store elimination
dead code removal

Table 3.3: Loop optimizations.

invariant code removal
global variable migration
branch simpli�cation
induction variable strength reduction
induction variable elimination



13

code transformation. Optimization consists of selecting a set of prospective operations

and testing if the predicate functions for a rule all return true. If the pattern in the rule

is detected, the corresponding set of actions is performed.

A common set of notations will be used to express all optimization rules. Let

fop(j)jj = 1 � � �m;m � 1g denote an ordered set of operations in each function. Most

optimizations examine one or more pairs of operations to test for optimization oppor-

tunities. For each operation op(j), the set of register variables that op(j) modi�es is

denoted by dest(j). The set of register variables that op(j) requires as source operands is

given by src(j). To denote each source operand individually, src1(j), src2(j), src3(j) to

denote source operand one, two, and three are used, respectively. Finally, the operation

code of op(j) is given by fj.

A common predicate function used throughout the explanation of all optimizations

is no danger. This predicate returns true if there are not any operations in a given

set whose side e�ects may adversely a�ect the optimization transformation. In this

optimizer, all synchronization operations are assumed to be dangerous. Furthermore, if

any of the operations considered in a particular optimization rule are memory operations

or use parameter passing registers, all jump subroutine operations are considered to be

dangerous (no interprocedural analysis is performed by the optimizer).

3.2 Local Optimization

Local optimizations refer to the optimizations done within individual basic blocks

[1]. Local optimizations are independently applied to each basic block in a program, and

thus use no information regarding other basic blocks. Each local optimization used in

the optimizer is formulated in the following subsections.



14

3.2.1 Constant propagation

Local constant propagation replaces future uses of a variable in a basic block which

is assigned a constant, with that constant. The optimization rule for local constant

propagation is given below.

� Predicate functions

1. op(x) is a move operation.

2. src1(x) is a constant.

3. There is a 
ow dependency between op(x) and op(y).

4. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. If src1(y) = dest(x), then change src1(y) to src1(x).

2. If src2(y) = dest(x), then change src1(y) to src1(x).

3. If src3(y) = dest(x), then change src3(y) to src1(x).

3.2.2 Forward copy propagation

Local forward copy propagation replaces future uses of a variable in a basic block

which is assigned the value of another variable, with the other variable. The optimization

rule for local forward copy propagation is given below.

� Predicate functions

1. op(x) is a move operation.

2. src1(x) is a register.

3. There is a 
ow dependency between op(x) and op(y).

4. src1(x) is not modi�ed by fop(j); j = x � � � y � 1g.

5. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. If src1(y) = dest(x), then change src1(y) to src1(x).

2. If src2(y) = dest(x), then change src2(y) to src1(x).

3. If src3(y) = dest(x), then change src3(y) to src1(x).



15

3.2.3 Memory copy propagation

Local memory copy propagation replaces future reads of a memory variable with a

register assignment if the current value of the memory variable resides in a register.

Propagation must stop if the memory variable is directly or indirectly modi�ed. The

existence of indirect modi�cations is determined by local memory disambiguation. The

optimization rule for local memory copy propagations is given below.

� Predicate functions

1. op(x) is a store operation.

2. op(y) is a load operation.

3. op(x) and op(y) are compatible data types.

4. address(x) = address(y).

5. The variables in src(x) are not not modi�ed by fop(j); j = x � � � y � 1g.

6. There is no write to address(x) in fop(j); j = x+ 1 � � � y � 1g.

7. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Change op(y) to a move operation, with src1(y) = src3(x).

3.2.4 Arithmetic common subexpression elimination

Local arithmetic common subexpression elimination removes the recomputation of an

arithmetic expression whenever a previously computed value can be used. A previous

computation is available if all of the source operands are not modi�ed between compu-

tations. The optimization rule for local arithmetic common subexpression elimination is

shown below.

� Predicate functions

1. op(x) is an arithmetic operation.

2. fx = fy.



16

3. src(x) = src(y).

4. dest(x) is not the same as any of the variables in src(x).

5. dest(y) is not the same as any of the variables in src(y).

6. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

7. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Insert a new move operation, op(a), after op(x), with dest(a) = temp reg and
src1(a) = dest(x).

2. Change op(y) to a move operation, with src1(y) = dest(a); (dest(y) remains
unchanged).

3.2.5 Redundant load elimination

Local redundant load elimination removes load operations if there is a previous load of

the same memory variable. Removal must stop, however, whenever the memory variable

changes value, either directly or indirectly. The optimization rule for local redundant

load elimination is shown below.

� Predicate functions

1. op(x) is a load operation.

2. fx = fy.

3. src(x) = src(y).

4. dest(x) is not the same as any of the variables in src(x).

5. dest(y) is not the same as any of the variables in src(y).

6. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

7. There is no write to address(x) in fop(j); j = x+ 1 � � � y � 1g.

8. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Insert a new move operation, op(a), after op(x), with dest(a) = temp reg and
src1(a) = dest(x).

2. Change op(y) to a move operation, with src1(y) = dest(a); (dest(y) remains
unchanged).



17

3.2.6 Redundant store elimination

Local redundant store elimination removes memory store operations if there is a pre-

vious store of the same value to the same memory variable. There can be no modi�cations

of the memory variable or the value to be stored between the store operations to apply

the optimization. The optimization rule for local redundant store elimination is given

below.

� Predicate functions

1. op(x) is a store operation.

2. fx = fy.

3. src(x) = src(y).

4. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

5. There is no write to address(x) in fop(j); j = x+ 1 � � � y � 1g.

6. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Delete op(y).

3.2.7 Constant folding

Local constant folding evaluates operations whose value can be determined at compile

time. An operation can be evaluated if all of its operands are numeric constants. Also,

algebraic identities, such as add with 0 or multiply by 0 or 1, can be used to evaluate

operations at compile time. The optimization rule for local constant folding is broken

down into �ve classes based on the characteristics of the folding. The rules are given

below.

� Predicate functions for type 1

1. op(x) is an add, a subtract, a logical OR, a logical XOR, or a shift operation.

2. src2(x) = 0.



18

� Actions for type 1

1. temp src = src1(x).

2. Change op(x) to a move operation, with src1(x) = temp src.

� Predicate functions for type 2

1. op(x) is a multiply, a divide, or a logical AND operation.

2. src1(x) = 0.

� Actions for type 2

1. Change op(x) to a move operation, with src1(x) = 0.

� Predicate functions for type 3

1. op(x) is a multiply or a divide operation.

2. src2(x) = 1.

� Actions for type 3

1. temp src = src1(x)

2. Change op(x) to a move operation, with src1(x) = temp src.

� Predicate functions for type 4

1. op(x) is an arithmetic operation.

2. The variables in src(x) are numerical constants.

3. op(x) can be evaluated (e.g., divide by 0 cannot be evaluated).

� Actions for type 4

1. temp src = the result of fx applied to src(x).

2. Change op(x) to a move operation, with src1(x) = temp src.

� Predicate functions for type 5

1. op(x) is a conditional branch operation.

2. The variables in src(x) are numerical constants.

� Actions for type 5

1. temp src = target(x).

2. cc = the result of applying the branch condition to src(x).

3. If cc = 1, convert op(x) into a jump operation, with target(x) = temp src;
otherwise, (cc = 0) delete op(x).



19

3.2.8 Strength reduction

Local strength reduction replaces expensive operations by equivalent cheaper ones. In

this optimizer, three operations are considered for strength reduction, integer multiply,

integer divide, and integer remainder. The optimization rule for local strength reduction

broken down by operation type is shown below.

� Predicate functions for type 1

1. op(x) is an integer multiply operation.

2. src2(x) is a power of 2 integer constant.

� Actions for type 1

1. temp src = log2(src2(x)).

2. Change op(x) to a logical left shift operation, with src2(x) = temp src, (dest(x)
and src1(x) remain unchanged).

� Predicate functions for type 2

1. op(x) is an integer divide operation.

2. src2(x) is a power of 2 integer constant.

� Actions for type 2

1. temp src = log2(src2(x)).

2. Change op(x) to an arithmetic right shift operation, with src2(x) = temp src,
(dest(x) and src1(x) remain unchanged).

� Predicate functions for type 3

1. op(x) is an integer remainder operation.

2. src2(x) is a power of 2 integer constant.

� Actions for type 3

1. temp src = src2(x) � 1.

2. Change op(x) to a logical AND operation, with src2(x) = temp src; (dest(x)
and src1(x) remain unchanged).



20

3.2.9 Constant combining

Local constant combining merges a pair of operations each one with a constant source

operand. The combination of constant source operands are evaluated at compile time,

and, therefore, the pair of operations can be replaced by a single operation. The opti-

mization rule for local constant combining is shown below.

� Predicate functions for type 1

1. op(x) is an add or a subtract operation.

2. src2(x) is a numerical constant.

3. dest(x) is not the same as any of the variables in src(x).

4. op(y) is either a load, a store, an add, or a subtract, a comparison, or a
conditional branch operation.

5. src2(y) is a numerical constant.

6. There is a 
ow dependency between op(x) and op(y).

7. Either src1(y) or src2(y) are the same as dest(x); (this check is necessary
because the 
ow dependency between op(x) and op(y) could be for src3(y) in
the case that op(y) is a store operation).

8. src1(x) is not modi�ed by fop(j); j = x � � � y � 1g.

9. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 1

1. If op(x) is a subtract operation, val1 = �src2(x); otherwise, val1 = src2(x).

2. If op(y) is a subtract, a comparison, or a conditional branch operation, val2
= �src2(y); otherwise, val2 = src2(y).

3. Change src1(y) to src1(x).

4. If op(y) is a subtract operation, change src2(y) to �(val1+ val2); otherwise,
change src2(y) to val1 + val2.

� Predicate functions for type 2

1. op(x) is an integer add or an integer subtract operation.

2. dest(x) = src1(x), e.g., op(x) is an increment/decrement operation.

3. src2(x) is a numerical constant.

4. op(y) is an integer add or an integer subtract operation.



21

5. dest(y) = src1(y)

6. src2(y) is a numerical constant.

7. There is a 
ow dependency between op(x) and op(y).

8. dest(x) is not used by fop(j); j = x+ 1 � � � y � 1g.

9. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 2

1. If op(x) is a subtract operation, val1 = �src2(x); otherwise, val1 = src2(x).

2. If op(y) is a subtract operation, val2 = �src2(y); otherwise, val2 = src2(y).

3. If op(x) is a subtract operation, change src2(x) to �(val1+ val2); otherwise,
change src2(x) to val1 + val2.

4. Delete op(y).

3.2.10 Arithmetic operation folding

Local arithmetic operation folding merges a pair of operations whose functionalities

can be combined into 1 operation. The pairs of operations are limited to arithmetic

and memory operations for this optimization. The optimization rule for local arithmetic

operation folding is given below.

� Predicate functions for type 1

1. op(x) is an add operation.

2. op(y) is a load or a store opcode.

3. src2(y) = 0.

4. dest(x) is not the same as any of the variables in src(x).

5. There is a 
ow dependency between op(x) and op(y).

6. Either src1(y) or src2(y) are the same as dest(x).

7. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

8. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 1

1. Change src1(y) to src1(x).

2. Change src2(y) to src2(x).



22

� Predicate functions for type 2

1. op(x) is a comparison operation.

2. op(y) is an integer equal comparison (EQ) or an integer not equal comparison
(NE) operation.

3. Either src1(y) or src2(y) is equal to 0.

4. There is a 
ow dependency between op(x) and op(y).

5. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

6. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 2

1. If op(y) is an NE operation, change op(y) to a move operation, with src1(y)
= dest(x), (dest(y) remains unchanged).

2. Otherwise, (op(y) is a eq operation); change op(y) to a comparison operation
with opcode opposite to that of op(x), with src1(y) = src1(x) and src2(y) =
src2(x).

� Predicate functions for type 3

1. op(x) is an OR, an AND, or an XOR operation.

2. op(y) is an XOR operation.

3. Either src1(y) or src2(y) is �1.

4. There is a 
ow dependency between op(x) and op(y).

5. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

6. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 3

1. If op(x) is an OR operation, change op(y) to a NOR operation, with src1(y)
= src1(x) and src2(y) = src2(x).

2. If op(x) is an AND operation, change op(y) to a NAND operation, with src1(y)
= src1(x) and src2(y) = src2(x).

3. If op(x) is an XOR operation, change op(y) to a NXOR operation, with src1(y)
= src1(x) and src2(y) = src2(x).



23

3.2.11 Branch operation folding

Local branch operation folding merges a comparison operation and a branch operation

into a single compare and branch operation. The optimization rule used for local branch

operation folding is presented below.

� Predicate functions

1. op(x) is a comparison operation.

2. op(y) is a branch equal to (beq) or branch not equal to (bne).

3. There is a 
ow dependency between op(x) and op(y).

4. Either src1(y) or src2(y) is 0.

5. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

6. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. If op(y) is a bne operation, change op(y) to a conditional branch operation with
opcode corresponding to that of op(x), with src1(y) = src1(x) and src2(y) =
src2(x); (target(y) remains unchanged).

2. Otherwise, (op(y) is a beq operation), change op(y) to a conditional branch
operation with opcode opposite to that of op(x), with src1(y) = src1(x) and
src2(y) = src2(x); (target(y) remains unchanged).

3.2.12 Operation cancellation

Local operation cancellation removes one or more operations when the e�ects of one

negate those of another. Opportunities for this optimization are not usually present as a

result of the user program; however, they can result after inline function expansion and

loop induction variable elimination. The optimization rule for local operation cancellation

is shown below.

� Predicate functions for type 1

1. op(x) is an integer add or an integer subtract operation.

2. dest(x) = src1(x), e.g., op(x) is an increment/decrement operation.



24

3. op(y) is the inverse operation of op(x), (acceptable combinations for fx and fy
are add/sub and sub/add).

4. dest(y) = src1(y).

5. dest(x) = dest(y).

6. src2(x) = src2(y).

7. There is a 
ow dependency between op(x) and op(y).

8. There is an output dependency between op(x) and op(y).

9. src2(x) is not modi�ed by fop(j); j = x � � � y � 1g.

10. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 1

1. Delete op(x).

2. Delete op(y).

� Predicate functions for type 2

1. op(x) is an add or subtract operation.

2. dest(x) is not the same as any of the variables in src(x).

3. op(y) is the inverse operation of op(x).

4. There is a 
ow dependency between op(x) and op(y).

5. If op(x) is the subtract, then either src1(y) or src2(y) must be the same as
src2(x).

6. If op(y) is the subtract, then either src1(x) or src2(x) must be the same as
src2(y).

7. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

8. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 2

1. If op(x) is a subtract operation, then change op(y) to a move, with src1(y) =
src1(x); (dest(y) remains unchanged).

2. Otherwise, (op(y) is a subtract operation); one of the following four possibili-
ties results:

(a) If src1(x) = src1(y), then change src1(y) to 0 and src2(y) to src2(x).

(b) If src2(x) = src2(y), then change src1(y) to 0 and src2(y) to src1(x).

(c) If src1(x) = src2(y), then change op(y) to a move operation, with src1(y)
= src2(x).

(d) If src2(x) = src2(y), then change op(y) to a move operation, with src1(y)
= src1(x).



25

3.2.13 Dead code removal

Local dead code removal removes operations that can be immediately identi�ed as

super
uous. There are two cases in which this happens. The �rst is an assignment

operation which has the same source and destination. The second is the complementary

situation where memory variables are concerned. The optimization rule for local dead

code removal is shown below.

� Predicate functions for type 1

1. op(x) is a move operation.

2. dest(x) = src1(x).

� Actions for type 1

1. Delete op(x).

� Predicate functions for type 2

1. op(x) is a load operation.

2. op(y) is a store operation.

3. op(x) and op(y) are compatible data types.

4. address(x) = address(y).

5. dest(x) = src3(y).

6. There is a 
ow dependency between op(x) and op(y).

7. The variables in src(x) are not modi�ed by fop(j); j = x � � � y � 1g.

8. There is no write to address(x) in fop(j); j = x+ 1 � � � y � 1g.

9. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions for type 2

1. Delete op(y).

3.2.14 Code reordering

Local code reordering rearranges a pair of operations to enable additional local opti-

mization opportunities to be exposed. An optimization may not be possible because a



26

variable is modi�ed between the two operations considered for optimization. However,

it may be possible to reorder the operations to enable the optimization to occur. The

optimization rule for local code reordering to enable forward copy propagation (type 1)

and arithmetic operation folding (type 2) is given below.

� Predicate functions for type 1

1. op(x) is a move opcode.

2. src1(x) is a register.

3. src1(x) is not the same as dest(x).

4. There is a 
ow dependency between op(x) and op(y).

5. src1(x) is modi�ed by fop(j); j = x � � � y � 1g; let op(a) denote the �rst mod-
i�cation of src1(x).

6. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

7. Can either move op(y) above op(a), (this is true when there are no depen-
dencies between op(y) and fop(j); j = a � � � y � 1g), or op(a) below op(y),
(this is true when there are no dependencies between op(a) and fop(j); j =
a+ 1 � � � yg).

� Actions for type 1

1. If can move op(y) above op(a), move op(y) above op(a); otherwise, move op(a)
below op(y).

� Predicate functions for type 2

1. op(x) is an integer add or an integer subtract operation.

2. dest(x) = src1(x), e.g., op(x) is an increment/decrement operation.

3. src2(x) is a numerical constant.

4. op(y) is either a load, a store, a comparison, an add, or a subtract operation.

5. src2(y) is a numerical constant.

6. There is a 
ow dependency between op(x) and op(y).

7. Either src1(y) or src2(y) are the same as dest(x).

8. dest(x) and dest(y) are not the same.

9. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

10. Can either move op(y) above op(x+ 1) or op(x) below op(y � 1).



27

� Actions for type 2

1. If op(x) is a subtract operation, val1 = �src2(x); otherwise, val1 = src2(x).

2. If op(y) is a subtract or a comparison operation, val2 = �src2(y); otherwise,
val2 = src2(y).

3. If op(y) is a subtract operation, change src2(y) to �(val1+ val2); otherwise,
change src2(y) to val1 + val2.

4. If can move op(y) above op(x + 1), move op(y) above op(x); otherwise, move
op(x) below op(y).

3.3 Global Optimization

Global optimization expands the scope of many local optimizations to the function

level [17]. Data
ow information needs to be gathered to make many of the optimization

decisions. The steps necessary to perform data
ow analysis and global optimization are

discussed in the following sections.

3.3.1 Data 
ow analysis

Data
ow analysis is summary information distributed to each basic block regard-

ing the previous and future uses of program variables [1] [3]. Data
ow information is

collected by iteratively solving systems of equations that relate information at various

points in a function. Three sets of data 
ow information are used by the global and loop

optimizations, live variable information, available de�nition information, and available

expression information.

The program variables live at each point in a program are determined by performing

live variable analysis. A variable is live at a certain point if the value it currently holds

may possibly be used in the future. Four sets of data
ow information are used to calculate

live variable information, def(), use(), in(), and out(). Each of these sets is associated

with every basic block in a function. The def() set of a basic block is the set of variables



28

assigned a value in that basic block. The use() set of a basic block is the set of variables

used as a source operand in that basic block before they are de�ned. The in() set of a

basic block is the set of variables live just before the basic block is entered. Finally, the

out() set of a basic block is the set of variables live just after the block is exited. The use()

and def() sets can be determined by a single scan of every basic block in a function. The

in() and out() sets for each basic block, bbi, are determined by the following equations,

in(bbi) = use(bbi) + (out(bbi)� def(bbi)) (3.1)

out(bbi) =
[
(in(bbj)); bbj a successor of bbi (3.2)

These equations need to be iterated until a stable solution is found. For completeness,

an algorithm for performing live variable analysis is given in Figure 3.1.

The de�nitions of a variable available at each point in a program are determined by

performing available de�nition analysis. A de�nition d is available at a point p if there is

a path from d to p, and d is not destroyed along that path. A de�nition of a variable is

destroyed by another de�nition of that variable. Four data
ow sets are used to calculate

available de�nition information, a gen(), a kill(), a in(), and a out(). The a gen() set of

a basic block comprises the de�nitions in the basic block that reach the end of the block.

The a kill() set of a basic block contains all de�nitions that are destroyed by de�nitions

in the block. The a in() set of a basic block consists of all de�nitions that reach the entry

point of the block. The a out() set of a basic block consists of all de�nitions that reach

the exit point of the block. Before a gen() and a kill can be calculated, all operations

which de�ne a variable and all operations which use a variable must be determined. Two

sets to hold this information are associated with each program variable, op def() and

op use(). An algorithm to calculate this information is shown in Figure 3.2.



29

compute live var(function)
f

/� Compute def and use sets for each basic block �/
for each basic block in function, bbi f

def(bbi) = 0
use(bbi) = 0
for each operation in bbi, operj f

def(bbi) = def(bbi) + fdest(operj)g
for each variable in src(operj), srck f

if srck is used before de�ned in bbi then
use(bbi) = use(bbi) + fsrckg

g

g

g

/� Initialize in of each basic block to 0 �/
for each basic block in function, bbi f

in(bbi) = 0
g

/� Iteratively compute in and out for each basic block �/
change = 1
while (change 6= 0) f

change = 0
for each basic block in function, bbi f

old in = in(bbi)
out(bbi) =

S
(in(bbj)), bbj a successor of bbi

in(bbi) = use(bbi) + (out(bbi)� def(bbi))
diff = in(bbi)� old in

if (diff 6= 0) then
change = change + 1

g

g

g

Figure 3.1: Algorithm for computing live variables.



30

compute operand information(function)
f

/� Initialize op def and op use of each operand to 0 �/
for each variable used as a source or destination operand in function, operandi f

op def(operandi) = 0
op use(operandi) = 0

g

/� Compute op def and op use for each operand �/
for each basic block in function, bbi f

for each operation in bbi, operj f
op def(dest(operj)) = op def(dest(operj)) + foperjg

for each variable in src(operj), srck f
op use(srck) = op use(srck) + foperjg

g

g

g

g

Figure 3.2: Algorithm for computing all de�nitions and uses of an operand.



31

The a gen() and a kill() can now be determined by a single pass over each basic

block. The a in() and a out() are found by the following equations:

a in(bbi) =
\
(a out(bbj)); bbj a predecessor of bbi (3.3)

a out(bbi) = a gen(bbi) + (a in(bbi)� a kill(bbi)) (3.4)

These equations need to be iterated until a stable solution is found. An algorithm for

performing available de�nition analysis is given in Figure 3.3.

The expressions available at each point in a program are determined by performing

available expression analysis. An expression is the evaluation of one or more source

operands. For example, the operation a = b + c, contains the expression b + c. An

expression, e, is available at a point p if there is a path from e to p, and e is not destroyed

along that path. An expression is destroyed by a de�nition to any of its source operands.

Four data
ow sets are used to calculate available expression information, e gen(), e kill(),

e in(), and e out(). The e gen() set of a basic block contains the expressions in the basic

block that reach the end of the block. The e kill() set of a basic block consists of all

expressions that are destroyed by de�nitions in the basic block. The e in() set of a basic

block consists of all expressions that reach the entry point of the block. The e out()

set of a basic block contains all expressions that reach the exit point of the block. The

op def() and op use() sets discussed in the previous subsection are similarly used here.

The e gen() and e kill() can be determined by a single pass over each basic block. Then,

e in() and e out() for each basic block, bbi, are determined by the following equations:

e in(bbi) =
\
(e out(bbi)); bbj a predecessor of bbi (3.5)

e out(bbi) = e gen(bbi) + (e in(bbi)� e kill(bbi)) (3.6)

These equations need to be iterated until a stable solution is found. An algorithm for

performing available expression analysis is shown in Figure 3.4.



32

compute available def(function)
/� Compute a gen and kill sets for each basic block �/
for each basic block in function, bbi f

a gen(bbi) = 0
a kill(bbi) = 0
for each operation in bbi, operj f

a g = foperjg

a k = op def(dest(operj))� foperjg

a gen(bbi) = a g + (a gen(bbi)� a k)
a kill(bbi) = a k + (a kill(bbi)� a g)

g

g

/� Initialize a in and a out of each basic block �/
U = the set of all operations in function

a in(bb0) = 0
a out(bb0) = a gen(bb0)
for each basic block in function, bbi, (i 6= 0) f

a in(bbi) = 0
a out(bbi) = U � a kill(bbi)

g

/� Iteratively compute a in and a out sets for each basic block �/
change = 1
while (change 6= 0) f

for each basic block in function, bbi, (i 6= 0) f
old a in = a in(bbi)
old a out = a out(bbi)
a in(bbi) =

T
(a out(bbj)), bbj a predecessor of bbi

a out(bbi) = a gen(bbi) + (a in(bbi)� a kill(bbi))
diff in = old a in� a in(bbi)
diff out = old a out� a out(bbi)
if (diff in 6= 0)

change = change + 1
if (diff out 6= 0)

change = change + 1
g

g

g

Figure 3.3: Algorithm for computing available de�nitions.



33

compute available expr(function)
/� Compute e gen and e kill sets for each basic block �/
for each basic block in function, bbi f

e gen(bbi) = 0
e kill(bbi) = 0
for each operation in bbi, operj f

e k = op use(dest(operj))
if operj in e k then

e g = 0
else

e g = foperjg

e gen(bbi) = e g + (e gen(bbi)� e k)
e kill(bbi) = e k + (e kill(bbi)� e g)

g

g

/� Initialize e in and e out of each basic block �/
U = the set of all operations in function

e in(bb0) = 0
e out(bb0) = e gen(bb0)
for each basic block in function, bbi, (i 6= 0) f

e in(bbi) = 0
e out(bbi) = U � e kill(bbi)

g

/� Iteratively compute e in and e out sets for each basic block �/
change = 1
while (change 6= 0) f

for each basic block in function, bbi, (i 6= 0) f
old e in = e in(bbi)
old e out = e out(bbi)
e in(bbi) =

T
(e out(bbj)), bbj a predecessor of bbi

e out(bbi) = e gen(bbi) + (e in(bbi)� e kill(bbi))
diff in = old e in� e in(bbi)
diff out = old e out� e out(bbi)
if (diff in 6= 0)

change = change + 1
if (diff out 6= 0)

change = change + 1
g

g

Figure 3.4: Algorithm for computing available expressions.



34

3.3.2 Constant propagation

Global constant propagation replaces future uses of a variable which is assigned a

constant, by that constant. If all subsequent uses of the variable can be replaced by the

constant, the assignment operation becomes unnecessary and can be eliminated by later

dead code removal. Constant propagation must stop, however, when a new value could

be assigned to the variable. This is determined by examining the data 
ow information at

each use of the variable. The optimization rule for constant propagation is given below.

� Predicate functions

1. op(x) is a move operation.

2. src1(x) is a constant.

3. At least 1 of the variables in src(y) matches dest(x).

4. op(x) is in a in(bb(y)).

5. dest(x) is not modi�ed by fop(j); j = first(bb(y)) � � � y � 1g.

6. There is no danger in fop(j); j = x + 1 � � � y � 1g. (There may be many of
these paths; this predicate implies no danger along any of the possible paths.)

� Actions

1. If src1(y) = dest(x), then change src1(y) to src1(x).

2. If src2(y) = dest(x), then change src1(y) to src1(x).

3. If src3(y) = dest(x), then change src3(y) to src1(x).

3.3.3 Forward copy propagation

Global forward copy propagation replaces future uses of a variable x that is assigned

the value of another variable (x = y), with the other variable, y. If all subsequent uses

of x can be replaced by y, the assignment operation becomes unnecessary and can be

eliminated by later dead code removal. Forward copy propagation must stop, however,

if either variable is possibly modi�ed. The optimization rule for global forward copy

propagation is given below.



35

� Predicate functions

1. op(x) is a move operation.

2. src1(x) is a register.

3. At least 1 of the variables in src(y) matches dest(x).

4. op(x) is in a in(bb(y)).

5. dest(x) is not modi�ed by fop(j); j = first(bb(y)) � � � y � 1g.

6. op(x) is in e in(bb(y)).

7. The variables in src(x) are not modi�ed by fop(j); j = first(bb(y)) � � � y� 1g.

8. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. If src1(y) = dest(x), then change src1(y) to src1(x).

2. If src2(y) = dest(x), then change src2(y) to src1(x).

3. If src3(y) = dest(x), then change src3(y) to src1(x).

3.3.4 Backward copy propagation

Global backward copy propagation is similar to forward copy propagation; however,

the variables are propagated backwards instead of forwards. Two variables may have the

same value at some point in the program (e.g., x = y); however, it may not be possible

to replace all uses of x by y. Thus, the assignment operation can not be eliminated after

forward copy propagation. In this case, it may be possible to change the destination of

operations which de�ne y to x. If all de�nitions of y that reach the assignment operation

can be changed, the assignment operation can be eliminated. The optimization rule for

global backward copy propagation is given below.

� Predicate functions

1. bb(x) = bb(y).

2. dest(x) is a register.

3. op(x) is not in a out(bb(y))

4. op(y) is a move operation.



36

5. dest(y) is a register.

6. There is a 
ow dependency between op(x) and op(y).

7. dest(y) is not modi�ed in fop(j); j = x � � � y � 1g.

8. dest(y) is not used in fop(j); j = x+ 1 � � � y � 1g.

9. If dest(y) is rede�ned in bb(y), then there are no uses of src1(y) after the �rst
rede�nition.

10. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. old dest = dest(x).

2. new dest = dest(y).

3. If dest(y) is rede�ned in bb(y), let redef be the �rst operation succeeding op(y)
that rede�nes dest(y); otherwise, redef = last(bb(y)).

4. Delete op(y).

5. For each fop(j); j = x+ 1 � � � redefg, change all uses of old dest to new dest.

3.3.5 Memory copy propagation

Global memory copy propagation replaces a load of a memory variable with a register

assignment if the current value of the memory variable exists in a register. Propagation

stops whenever there is a possible direct or indirect modi�cation of the memory variable.

Indirect modi�cations are detected by performing global memory disambiguation. The

optimization rule for global memory copy propagation is shown below.

� Predicate functions

1. op(x) is a store operation.

2. op(y) is a load operation.

3. op(x) and op(y) are compatible data types.

4. address(x) = address(y).

5. op(x) is in e in(bb(y)).

6. The variables in src(x) are not modi�ed by fop(j); j = first(bb(x)) � � �y� 1g.



37

7. There is no write to address(x) in fop(j); j = x + 1 � � � y � 1g. (This set of
instructions may not be unique; this predicate implies no write to address(x)
for all possible instructions between op(x) and op(y).)

8. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Change op(y) to a move operation, with src1(y) = src3(x).

3.3.6 Arithmetic common subexpression elimination

Global arithmetic common subexpression elimination removes the recomputation of

an expression whenever a previously computed value can be used. A previous computa-

tion of the expression can be used if all of the source operands are never modi�ed between

computations. The optimization rule for global arithmetic common subexpression elim-

ination is presented below.

� Predicate functions

1. op(x) is an arithmetic operation.

2. fx = fy.

3. src(x) = src(y).

4. dest(x) is not the same as any of the variables in src(x).

5. dest(y) is not the same as any of the variables in src(y).

6. op(x) is in e in(bb(y)).

7. The variables in src(x) are not modi�ed by fop(j); j = first(bb(y)) � � � y� 1g.

8. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Insert a new move operation, op(a), after op(x), with dest(a) = temp reg and
src1(a) = dest(x).

2. Change op(y) to a move operation, with src1(y) = dest(a); (dest(y) remains
unchanged).



38

3.3.7 Redundant load elimination

Global redundant load elimination removes unnecessary memory load operations if

there is a previous load of the same memory variable. There can be no possible modi�-

cations, either direct or indirect, of the memory variable between the load operations to

apply the optimization. The optimization rule for global redundant load elimination is

given below.

� Predicate functions

1. op(x) is a load operation.

2. fx = fy.

3. src(x) = src(y).

4. dest(x) is not the same as any of the variables in src(x).

5. dest(y) is not the same as any of the variables in src(y).

6. op(x) is in e in(bb(y)).

7. The variables in src(x) are not modi�ed by fop(j); j = first(bb(y)) � � � y� 1g.

8. There is no write to address(x) in fop(j); j = x+1 � � � y� 1g. (There may be
many of these paths; this predicate implies no writes to address(x) along any
of the possible paths.)

9. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Insert a new move operation, op(a), after op(x), with dest(a) = temp reg and
src1(a) = dest(x).

2. Change op(y) to a move operation, with src1(y) = dest(a); (dest(y) remains
unchanged).

3.3.8 Redundant store elimination

Global redundant store elimination removes unnecessary memory store operations if

there is a previous store of the same value to the same address. There can be no possible

modi�cations of either the memory variable or the value to be stored between the store

operations. The optimization rule for global redundant store elimination is given below.



39

� Predicate functions

1. op(x) is a store operation.

2. fx = fy.

3. src(x) = src(y).

4. op(x) is in e in(bb(y)).

5. The variables in src(x) are not modi�ed by fop(j); j = first(bb(y)) � � � y� 1g.

6. There is no write to address(x) in fop(j); j = x+ 1 � � � y � 1g.

7. There is no danger in fop(j); j = x+ 1 � � � y � 1g.

� Actions

1. Delete op(y).

3.3.9 Dead code removal

Dead code removal removes operations whose destination variable is not subsequently

used in the program. Dead code removal does not usually result from the programmer

inserting unnecessary code, but results after other local and global optimizations. An

algorithm to detect and perform global dead code removal is given below.

� Predicate functions

1. op(x) can be deleted.

2. dest(x) is a register.

3. There are no 
ow dependencies from op(x).

4. op(x) is not in a out(bb(x)).

� Actions

1. Delete op(x).

3.4 Loop Optimization

A set of special optimizations exists to be performed on loops within a program.

Most programs spend much of their execution time within loops, thus a large amount



40

of speedup can be expected from an e�ective loop optimizer. Loops have two important

properties. First, a loop has a unique entry point, which is referred to as the header.

No block in the loop may be executed unless the header has been previously executed.

Thus, there may be no side entrances into a loop considered for optimization. Second,

there is at least one path from a basic block within the loop back to the header. A path

of this type is referred to as a backedge. Identifying loops and the steps necessary for

loop optimization are discussed in the following sections.

3.4.1 Identifying loops

Identifying loops in a control 
ow graph can be broken down into three steps, �nding

dominators, loop detection, and loop merging.

A basic block, bbi, dominates a basic block, bbj, if all paths from the initial basic block

to bbj go through bbi [1]. Thus, every basic block dominates itself. For completeness,

an algorithm for computing dominators is given in Figure 3.5. The algorithm iteratively

computes dom(bbi), which is the set of basic blocks which dominate bbi. Each function

must have a unique entry block which will be designated as bb0.

After the dominators for each basic block have been determined, backedges can be

recognized by a control 
ow arc from a basic block, bbj, to another basic block, bbi, in

which bbi dominates bbj [1]. The basic blocks in the loop are then all basic blocks which

can reach bbj without going through bbi. An algorithm to detect backedges and �nd all

basic blocks contained within the loop de�ned by the backedge is presented in Figure 3.6.

Loop optimization can be complicated if two or more loops can have the same header.

Therefore, all loops with the same header are combined into a single loop, containing

multiple backedges. It is possible that more conservative loop optimization decisions

result after merging; however, this approach was chosen to reduce the complexity of loop



41

�nd dominator(function)
f

U = the set of all basic blocks in function

dom(bb0) = fbb0g

for all basic blocks in function, bbi, (i 6= 0) f
dom(bbi) = U

g

change = 1
while (change 6= 0) f

change = 0
for all basic blocks in function, bbi, (i 6= 0) f

old = dom(bbi)
dom(bbi) =

T
(dom(bbj)), bbj a predecessor of bbi

dom(bbi) = dom(bbi) + fbbig

diff = old� dom(bbi)
if (diff 6= 0) then change = change + 1

g

g

g

Figure 3.5: Algorithm for �nding dominators.



42

add blocks(loop, bb, header)
f

for each predecessor block of bb, predi f
if (predi = header) then continue
if (predi:visited = 1) then continue
predi:visited = 1
loop:loop bb = loop:loop bb+ fpredig

add blocks(loop, predi, header)
g

g

loop det(function)
f

for each basic block in function, bbi f
for each successor block of bbi, succi f

if (succi in dom(bbi)) then f

Create a element in the loop data structure, loopi
loopi:loop bb = fsuccig

loopi:header = succi
if (bbi 6= succi) f

loopi:loop bb = loopi:loop bb+ fbbig

set bbj:visited to 0 for all j
add blocks(loopi, bbi, succi)

g

g

g

g

g

Figure 3.6: Algorithm for detection of single backedge loops.



43

optimization. An algorithm for merging loops with the same header block is given in

Figure 3.7.

merge loops(function)
f

for each loop in function, loopi f
for each loop in function, loopj , (j 6= i) f

if (loopi:header = loopj :header) f
loopi:loop bb = loopi:loop bb+ loopj :loop bb

remove loopj from loop data structure for function
g

g

g

g

Figure 3.7: Algorithm for merging loops with the same header block.

3.4.2 Creating loop preheaders

A loop preheader is a basic block which is used to contain operations that are to

be executed once every time the loop is invoked. A loop has a preheader if the header

has one predecessor block which is not in the loop, and that predecessor block has one

successor, the header. A preheader can be created for loops which do not have one by

inserting a new basic block before the header; then, all control transfers to the header

which are not from basic blocks in the loop are redirected to the preheader. A single

control transfer is then added between the preheader and the header.



44

3.4.3 Invariant code removal

The basic principle of invariant code removal is to move operations whose source

operands do not change within the loop to the loop's preheader block. Operations of

this type are then executed only once each time the loop is invoked, rather than on every

iteration. The optimization rule for loop invariant code removal is shown below.

� Predicate functions

1. op(x) can be moved; (branch, subroutine call, and synchronization operations
are operations which can not be moved).

2. The variables in src(x) are not modi�ed in the loop.

3. op(x) is the only operation in the loop which modi�es dest(x).

4. There are no uses of dest(x) in fop(j); j = first(bb(x)) � � �xg.

5. For all basic blocks, bb(j), in the loop except bb(x); if dest(x) is used in the
basic block, then op(x) is in a in(bb(j)).

6. For all basic blocks, bb(j), from which the loop can be exited, if dest(x) is in
out(bb(j)), then op(x) is in a out(bb(j)).

7. If op(x) is not executed on every iteration of the loop, then op(x) must not
possibly cause an exception. (Memory, 
oating-point, and integer divide oper-
ations are the most common operations which cannot be removed unless they
are executed on every iteration; note page faults are not treated as exceptions
for this predicate.)

8. If op(x) is a load or a store operation, then there are no writes to address(x)
in the loop.

9. There is no danger in the loop.

� Actions

1. Move op(x) to after the last operation in the preheader block of the loop.

3.4.4 Global variable migration

Global variable migration moves a frequently accessed memory variable (globally de-

clared scalar variable, array element, or structure element) into a register for the duration



45

of the loop. Loads and stores to a migrated variable within the loop are replaced by reg-

ister accesses. A load instruction is inserted into the loop preheader to initialize the

register, and a store is placed at each loop exit to update memory after the execution of

the loop. The optimization rule for loop global variable migration is given below.

� Predicate functions

1. op(x) is a load or a store operation.

2. The variables in address(x) are not modi�ed in the loop.

3. If op(x) is not executed on every iteration of the loop, then op(x) must not
possibly cause an exception.

4. All memory operations, op(j), in the loop whose address can equal address(x)
must have address(j) = address(x).

5. There is no danger in the loop.

� Actions

1. Insert a new load operation, op(a), after the last operation in the preheader
of the loop, with dest(a) = temp reg and address(a) = address(x).

2. Insert a new store operation, op(b), with address(b) = address(x) and src3(b)
= temp reg, as the �rst operation of each basic block that can be immediately
reached, bbi, when the loop is exited. (Note, if bbi can be reached from a basic
block not in the loop, a new basic block is created to insert the store operation,
and a jump operation is inserted at the end of the new block back to bbi. Then,
all branches in the loop whose target is bbi are redirected to the new block.
This procedure is necessary to preserve correctness for all possible paths of
control 
ow entering bbi.)

3. Change all load operations in the loop, op(j), with address(j) = address(x)
to move operations, with src(j) = temp reg; (dest(j) remains unchanged).

4. For all store operations in the loop, op(j), with address(j) = address(x), let
temp src = src3(j) and change op(j) to a move operation with dest(j) =
temp reg and src1(j) = temp src.

3.4.5 Branch simpli�cation

Some current processors (MIPS R2000) have machine instructions only for branch

equal to (beq) and branch not equal to (bne). All other conditional branch operations



46

are broken down into two operations, a compare followed by a beq or bne. Branch simpli-

�cation substitutes bne operations for conditional branches that would be broken down

into two operations. Although branch simpli�cation is a machine-dependent optimiza-

tion, many opportunities for this optimization are lost if induction variable elimination

is �rst performed. Thus, including branch simpli�cation with other machine-dependent

optimizations in a pass following machine-independent optimization is not e�ective, thus

it has been included within the machine independent optimizer and is enabled for a group

of target processors. The optimization rule for two types of loop branch simpli�cation is

presented below.

� Predicate functions for type 1

1. op(x) is a branch greater than (bgt), a branch greater than or equal (bge), a
branch less than (blt), or a branch less than or equal (ble).

2. src1(x) is basic induction variable in the loop.

3. src2(x) is a numeric constant.

4. inc(src1(x)) is a numeric constant.

5. initval(src1(x)) is a numeric constant.

6. target(x) is the loop header block.

7. If inc(src1(x)) is positive, then op(x) is a blt or a ble operation; otherwise,
op(x) is a bgt or bge operation.

8. If inc(src1(x)) is positive, then initval(src1(x)) is smaller than src2(x); oth-
erwise, initval(src1(x)) is larger than src2(x).

� Actions for type 1

1. Calculate the new branch limit as follows:

(a) t1 = (src2(x) � initval(src1(x)))� inc(src1(x)). (integer divide)

(b) t2 = t1 � inc(src1(x)) + initval(src1(x)).

(c) If op(x) is a ble or bge operation, or t2 6= src2(x), then new limit =
t2 + inc(src1(x)); otherwise, new limit = t2.

2. Change op(x) to a branch not equal to (bne) operation, with src2(x) =
new limit; (src1(x) and target(x) remain unchanged).

� Predicate functions for type 2



47

1. op(x) is a bgt, bge, blt, or ble operation.

2. src1(x) is basic induction variable in the loop.

3. inc(src1(x)) is either 1 or �1.

4. src2(x) is not modi�ed in the loop.

5. If inc(src1(x)) is positive, then op(x) is a blt or a ble operation; otherwise,
op(x) is a bgt or bge operation.

6. If inc(src1(x)) is positive, then initval(src1(x)) is always smaller than src2(x);
otherwise, initval(src1(x)) is always larger than src2(x). (Since initval(src1(x))
and/or src2(x) are not constants, this predicate returns true if all possible en-
tries to the loop are preceded by a test of this condition.)

� Actions for type 2

1. If op(x) is a ble or a bge operation, then insert a new add operation, op(a), after
the last operation in the loop preheader, with dest(a) = new limit, src1(a)
= src2(x), and src2(a) = 1; otherwise, new limit = src2(x).

2. Change op(x) to a bne operation, with src2(x) = new limit; (src1(x) and
target(x) remain unchanged).

3.4.6 Induction variable strength reduction

A basic induction variable of a loop is a variable in which all modi�cations of the

variable in a loop are increments by a constant amount. Induction variable strength

reduction replaces variables whose value is a linear function (add, subtract, multiply) of

a basic induction variable with a new basic induction variable. The linear function is

thus replaced by an increment operation. Induction variable strength reduction is e�ec-

tive for two reasons. First, multiply operations in the loop can be converted to addition

operations. Second, 
ow dependency chains within the loop are broken with this opti-

mization, often leading to more freedom for later code scheduling; (this is why strength

reduction is applied to add and subtract operations along with multiply operations). The

optimization rule for loop induction variable strength reduction is given below.

� Predicate functions



48

1. op(x) is a multiply, a logical left shift, an add, or a subtract operation.

2. src1(x) is a basic induction variable in the loop.

3. src2(x) is not modi�ed in the loop.

4. op(x) is the only operation in the loop which modi�es dest(x).

5. dest(x) is not the same as any of the variables in src(x).

6. dest(x) is a register.

7. There is no danger in the loop.

� Actions

1. Insert a new operation having the same opcode as op(x), op(a), after the last
operation in the loop preheader, with dest(a) = new var, src1(a) = src1(x),
and src2(a) = src2(x).

2. Insert a new operation having the same opcode as op(x), op(b), after the last
operation in the loop preheader, with dest(b) = new inc, src1(b) = increment
value of src1(x), and src2(b) = src2(x).

3. Create a new add operation, op(c), with dest(c) = new var, src1(c) = new var,
and src2(c) = new inc.

4. Insert a copy of op(c) after each increment of src1(x) in the loop.

5. Change op(x) to a move operation with src1(x) = new var; (dest(x) remains
unchanged).

3.4.7 Induction variable elimination

Induction variable elimination removes unnecessary basic induction variables from a

loop. Induction variables are trivially unnecessary if they are not used in the loop and

not live when the loop is exited (type 1). Other induction variables can be eliminated by

substituting all uses of a basic induction variable with another basic induction variable.

Elimination of this type is broken down, based on the characteristics of the candidate

basic induction variable for elimination and the basic induction variable to be substituted

for all its uses. Four classes of induction elimination by substitution have been identi�ed:

the induction variables have the same increment and same initial value (type 2); the



49

induction variables have the same increment and their initial values are a known con-

stant o�set from one another (type 3); the induction variables have the same increment

(type 4); the induction variables have di�erent increments (type5). Each successive type

also represents a more costly elimination; therefore, all eliminations of type 1 should be

attempted, then type 2, and so forth. The optimization rule for loop induction variable

elimination is shown below.

� Predicate functions for type 1

1. dest(x) is a basic induction variable in the loop.

2. dest(x) is not in any in(bb(j)), where bb(j) is a block which can be immediately
reached when the loop is exited.

3. dest(x) is not used in the loop; (increment operations with dest() and src1()
equal to dest(x) are not considered by this predicate).

� Actions for type 1

1. Delete all increment operations in the loop, op(j) with dest(j) = dest(x).

� Predicate functions for type 2

1. dest(x) is a basic induction variable in the loop.

2. dest(y) is a basic induction variable in the loop.

3. dest(x) is not the same as dest(y).

4. dest(x) is not in any in(bb(j)), where bb(j) is a block which can be immediately
reached when the loop is exited.

5. dest(x) and dest(y) are basic induction variables in the same family; (two
basic induction variables are in the same family if all increments of one are
preceded/succeeded by a corresponding increment of the other).

6. inc(dest(x)) = inc(dest(y)).

7. init val(dest(x)) = init val(dest(y)).

8. For each basic block with a de�nition of dest(x), there are no uses of dest(x)
between the leading de�nition of either dest(x) or dest(y) and the last de�ni-
tion of either dest(x) or dest(y).

9. There is no danger in the loop.

� Actions for type 2



50

1. Delete all increment operations in the loop, op(j) with dest(j) = dest(x).

2. Replace all uses of dest(x) as a source operand in the loop with dest(y).

� Predicate functions for type 3

1. dest(x) is a basic induction variable in the loop.

2. dest(y) is a basic induction variable in the loop.

3. dest(x) is not the same as dest(y).

4. dest(x) is not in any in(bb(j)), where bb(j) is a block which can be immediately
reached when the loop is exited.

5. dest(x) and dest(y) are basic induction variables in the same family.

6. inc(dest(x)) = inc(dest(y)).

7. init val(dest(x))� init val(dest(y)) is a constant.

8. All operations in the loop, op(j), which use dest(x) as a source operand are
move, add, subtract, load, store, comparison, or branch operations, and have
only src1(j) = dest(x), e.g., src2(j) and src3(j) are not the same as dest(x).
Note, if op(j) is communicative with respect to src1(j) and src2(j), src1(j)
and src2(j) can be exchanged to expose more optimization opportunities.

9. All operations in the loop, op(j), with src1(j) = dest(x), have a numerical
constant as src2(j).

10. For each basic block with a de�nition of dest(x), there are no uses of dest(x)
between the leading de�nition of either dest(x) or dest(y) and the last de�ni-
tion of either dest(x) or dest(y).

11. There is no danger in the loop.

� Actions for type 3

1. Delete all increment operations in the loop, op(j), with dest(j) = dest(x).

2. offset = init val(dest(x)) - init val(dest(y)).

3. For all operations in the loop, op(j), with src1(j) = dest(x), let old src2 =
src2(j), and perform the following:

(a) src1(j) = dest(y).

(b) If op(j) is a move operation, change op(j) to an add operation, with
src2(j) = offset; (dest(j) and src1(j) remain unchanged).

(c) If op(j) is an add, a load, or a store operation, then change src2(j) to
old src2 + offset.

(d) If op(j) is a subtract, a comparison, or a conditional branch operation,
then change src2(j) to old src2� offset.



51

� Predicate functions for type 4

1. dest(x) is a basic induction variable in the loop.

2. dest(y) is a basic induction variable in the loop.

3. dest(x) is not the same as dest(y).

4. dest(x) is not in any in(bb(j)), where bb(j) is a block which can be immediately
reached when the loop is exited.

5. dest(x) and dest(y) are basic induction variables in the same family.

6. inc(dest(x)) = inc(dest(y)).

7. All operations in the loop, op(j), which use dest(x) as a source operand are
move, add, subtract, load, store, comparison, or branch operations, and have
only src1(j) = dest(x).

8. All operations in the loop, op(j), with src1(j) = dest(x), have variables that
are not modi�ed in the loop as src2(j).

9. For each basic block with a de�nition of dest(x), there are no uses of dest(x)
between the leading de�nition of either dest(x) or dest(y) and the last de�ni-
tion of either dest(x) or dest(y).

10. If dest(y) can be eliminated and replaced with dest(x), then there are more
uses of dest(y) in the loop than dest(x).

� Actions for type 4

1. Delete all increment operations in the loop, op(j), with dest(j) = dest(x).

2. For all operations in the loop, op(j), with src1(j) = dest(x), let old src2 =
src2(j), (if op(j) is a move, old src2 = 0), and perform the following:

(a) Change src1(j) to dest(y).

(b) If op(j) is a move, add, load, or store, insert a new subtract operation,
op(a), after the last operation in the preheader of the loop, with dest(a)
= temp reg1, src1(a) = dest(x), and src2(a) = dest(y); otherwise, insert
a new subtract operation, op(a), after the last operation in the preheader
of the loop, with dest(a) = temp reg1, src1(a) = dest(y), and src2(a) =
dest(x).

(c) Insert a new add operation, op(b), after the last operation in the preheader
of the loop, with dest(b) = temp reg2, src1(b) = old src2, and src2(b) =
dest(a).

(d) If op(j) is a move operation, change op(j) to an add operation with src2(j)
= dest(b), (dest(j) and src1(j) remain unchanged); otherwise, change
src2(j) to dest(b).

� Predicate functions for type 5



52

1. dest(x) is a basic induction variable in the loop.

2. dest(y) is a basic induction variable in the loop.

3. dest(x) is not the same as dest(y).

4. dest(x) is not in any in(bb(j)), where bb(j) is a block which can be immediately
reached when the loop is exited.

5. dest(x) and dest(y) are basic induction variables in the same family.

6. inc(dest(x)) and inc(dest(y)) are both integers.

7. inc(dest(x)) evenly divides inc(dest(y)), e.g., inc(dest(y)) % inc(dest(x)) =
0.

8. All operations in the loop, op(j), which use dest(x) as a source operand are
comparison or branch operations, and have only src1(j) = dest(x).

9. All operations in the loop, op(j), with src1(j) = dest(x), have variables that
are not modi�ed in the loop as src2(j).

10. For each basic block with a de�nition of dest(x), there are no uses of dest(x)
between the leading de�nition of either dest(x) or dest(y) and the last de�ni-
tion of either dest(x) or dest(y).

11. If dest(y) can be eliminated and replaced with dest(x), then there are more
uses of dest(y) in the loop than dest(x).

� Actions for type 5

1. Delete all increment operations in the loop, op(j), with dest(j) = dest(x).

2. ratio = inc(dest(y))=inc(dest(x)).

3. For all operations in the loop, op(j), with src1(j) = dest(x), let old src2 =
src2(j), and perform the following:

(a) Change src1(j) to dest(y).

(b) Insert a new subtract operation, op(a), after the last operation in the
preheader of the loop, with dest(a) = temp reg1, src1(a) = old src2, and
src2(a) = dest(x).

(c) Insert a new multiply operation, op(b), after the last operation in the
preheader of the loop, with dest(b) = temp reg2, src1(b) = dest(a), and
src2(b) = ratio.

(d) Insert a new add operation, op(c), after the last operation in the preheader
of the loop, with dest(c) = temp reg, src1(c) = dest(b), and src2(c) =
dest(y).

(e) Change src2(j) to dest(c).



53

(f) If ratio is negative, then change the opcode of op(j) to the inverse compare
or branch condition; (a negative ratio means that both operators of a
comparison have been multiplied by a negative number, therefore the
comparison must be inverted, e.g., a < b and �a � �b).



54

4. USING PROFILE INFORMATION TO FURTHER CLASSICAL OPTIMIZATIONS

Classical optimization techniques use static loop analysis to identify important sec-

tions of a program. However, there are three de�ciencies with static analysis: the outcome

of an if statement is not always predictable at compile time, the iteration count of a loop

is not always predictable at compile time, and the invocation count of a function is not

always predictable at compile time. Many of these constructs can be nested within each

other, often yielding large prediction errors for static analysis. Pro�ling more accurately

identi�es the most important program regions. Pro�le information has been used for

many program optimizations, including branch prediction [15], function inline expansion

[16], intelligent code placement [14], intelligent generation of switch statements [6], and

register allocation [21]. It is also possible to modify classical code optimizations to ac-

count for available pro�le information to make more aggressive optimization decisions

[9]. In this chapter, the use of pro�le information in classical local, global, and loop

optimizations is discussed.



55

99

1

100

900

0 90

90
10

1

1090

100

F

ED

CB

A

Figure 4.1: An example weighted control 
ow graph.

4.1 Optimizing Frequently Executed Paths

All pro�le-based code optimizations that will be presented in this section explore a

single concept: optimizing the most frequently executed paths. This concept is illustrated

using an example. Figure 4.1 shows a weighted control 
ow graph which represents a loop

program. The count of basic blocks fA;B;C;D;E;Fg is f100; 90; 10; 0; 90; 100g, respec-

tively. The arc count of fA! B;A! C;B ! D;B ! E;C ! F;D ! F;E ! F;F !

Ag is f90; 10; 0; 90; 10; 0; 90; 99g, respectively. Clearly, the most frequently executed path

in this example is the basic block sequence < A;B;E;F >. Because basic blocks in



56

this sequence are executed many more times than basic blocks C and D, the code opti-

mizer can apply transformations that reduce the execution time of the < A;B;E;F >

sequence, but increase the execution time of basic blocks C and D. The formulation of

nonloop-based classic code optimizations is conservative and does not perform transfor-

mations that may increase the execution time of any basic block. The formulation of

loop-based classic code optimizations considers the entire loop body as a whole and does

not consider the case in which some basic blocks in the loop body are rarely executed

because of a very biased if statement. In the rest of this chapter, several pro�le-based

code optimizations that make more aggressive decisions and explore more optimization

opportunities are described.

A simple data structure, called a super-block, is used to represent a frequently exe-

cuted path. A super-block has the following features: (1) It is a linear sequence of basic

blocks B(i); i = 1 � � � n, where n � 1. (2) It can be entered only from B(1). (3) The

program control may leave the super-block from any basic block. The set of all basic

blocks that may be reached when control leaves the super-block from basic block B(i) is

denoted by OUT (i). (4) When a super-block is executed, it is very likely that all basic

blocks in that super-block are executed.

4.2 Forming Super-blocks

The formation of super-blocks is a two-step procedure: (1) trace selection and (2) tail

duplication. Trace selection identi�es basic blocks that tend to execute in a sequence and

groups them into a trace [13] [12]. The de�nition of a trace is the same as the de�nition

of a super-block, except that the program control is not restricted to enter at the �rst

basic block. An experimental study of several trace selection algorithms was reported



57

in [5]. Figure 4.1 shows the result of trace selection. Each dotted-line box represents a

trace. There are three traces: fA;B;E;Fg, fCg, and fDg.

After trace selection, each trace is converted into a super-block by duplicating the tail

part of the trace, to ensure that the program control can enter only at the top basic block.

An algorithm for performing tail duplication is given in Figure 4.2. Using the example

algorithm tail_duplication(a trace B(1..n))

{

Let B(i) be the first basic block that

is an entry point to the trace, except for i=1;

for (k=i..n) {

create a trace that contains a copy of B(k);

place the trace at the end of the function;

redirect all control flows to B(k), except

the ones from B(k-1), to the new trace;

}

}

Figure 4.2: An algorithm to perform tail duplication.

in Figure 4.1, we see that there are two control paths that enter the fA;B;E;Fg trace

at basic block F . Therefore, we duplicate the tail part of the fA;B;E;Fg trace starting

at basic block F . Each duplicated basic block forms a new super-block that is appended

to the end of the function. The result is shown in Figure 4.3. More code transformations

can be applied after tail duplication to eliminate jump instructions. For example, the

F 0 super-block in Figure 4.3 could be duplicated and each copy be combined with the C

and D super-blocks to form two larger super-blocks.

To control the amount of code duplication, a basic block is added to a trace only

if the execution count of that basic block is more than some threshold value, e.g., 100.

After forming super-blocks, we optimize only those super-blocks whose execution counts

are higher than the threshold value.



58

99(10/100) (10/100)

(90/100)
99(90/100)

90

10

10
F'

900

0 90

90
10

1

1090

100

F

ED

CB

A

Figure 4.3: An example weighted control 
ow graph after tail duplication.



59

Table 4.1: Super-block code optimizations.

name scope

constant propagation super-block
forward copy propagation super-block
backward copy propagation super-block
memory copy propagation super-block
arithmetic common subexpression elimination super-block
redundant load elimination super-block
redundant store elimination super-block
constant combining super-block
arithmetic operation folding super-block
branch operation folding super-block
operation cancellation super-block
dead code removal super-block
loop invariant code removal super-block loop
loop induction variable elimination super-block loop
loop global variable migration super-block loop

4.3 Super-block Optimization

Table 4.1 shows a list of classic code optimizations that have been extended to use

pro�le information. The nonloop-based code optimizations work on a single super-block

at a time. The loop-based code optimizations work on a single super-block loop at a

time. A super-block loop is a super-block that has a frequently taken backedge from its

last node to its �rst node. The local, global, and loop optimizations discussed in the

previous chapter can be extended in a straightforward manner to optimize super-blocks

and super-block loops. Therefore, the super-block optimizations will not be formulated;

however, a series of examples illustrating the e�ectiveness of super-block optimizations

will be given.

Figure 4.4 shows a simple example of super-block common subexpression elimination.

The original program is shown in Figure 4.4(a). After trace selection and tail duplication,



60

(c)

(b)

(a)

opC': r3 = r2*3;

opC': r3 = r2*3;

opC: r3 = r1;

opA: r1 = r2*3;

opB: r2 = r2+1;

1

99

1

99 opB: r2 = r2+1;

opC: r3 = r2*3;

opA: r1 = r2*3;

1

1

99

opC: r3 = r2*3;

opB: r2 = r2+1;

opA: r1 = r2*3;

Figure 4.4: An example of super-block common subexpression elimination. (a) Original
program segment. (b) Program segment after super-block formation. (c)
Program segment after common subexpression elimination.



61

the equivalent program is shown in Figure 4.4(b). Because of tail duplication, opC cannot

be reached from opB; therefore, common subexpression elimination can be applied to opA

and opC. The resultant code segment after optimization is shown in Figure 4.4(c).

The de�nition of dead code can be extended for super-blocks. Traditional dead code

removal (global dead code removal) removes operations whose value will never be used in

the future. For super-blocks, an operation whose value is not used in the super-block and

is not live at the end of the super-block can also be considered as dead code. However,

the operation is not deleted but rather copied to all control 
ow paths that exit in the

middle of the super-block in which its value may be used. In this manner, an operation

is eliminated from the super-block. This extension is e�ective because program control

rarely exits from the middle of a super-block. An example illustrating dead code removal

in a super-block is given in Figure 4.5. The program is a simple loop that has been

unrolled four times. The loop index variable (r0) has been expanded into four registers

(r1, r2, r3, r4) that can be computed in parallel. If the loop index variable is live after

the loop execution, then it is necessary to update the value of r0 in each iteration, as

shown in Figure 4.5(a). According to the de�nition of super-block dead code removal,

these update instructions (e.g., r0=r1, r0=r2, and r0=r3) become dead code, since their

uses are replaced by r1, r2, r3, and r4. These update instructions can be moved out from

the super-block, as shown in Figure 4.5(b).

Super-block loop optimizations can identify more optimization opportunities than

traditional loop optimizations that must account for all possible execution paths within

a loop. Super-block loop optimizations reduce the execution time of the most likely path

of execution through a loop. In traditional loop optimizations, a potential optimization

may be inhibited by a rare event such as a function call to handle a machine failure

in a device driver program, or a function call to re�ll a large character bu�er in text



62

...

...

...

r0 = r4;
r0 = r2;

r0 = r1;

r4 = r0+4;

r3 = r0+3;

r2 = r0+2;

r1 = r0+1;r1 = r0+1;

r2 = r0+2;

r3 = r0+3;

r4 = r0+4;

r0 = r1;

r0 = r2;

r0 = r3;

r0 = r4;

...

...

...

(a) (b)

X

Y

Z

X

Y

Z

Figure 4.5: An example of super-block dead code removal. (a) Original program segment.
(b) Program segment after dead code removal.



63

processing programs. In super-block loop optimizations, function calls that are not in

the super-block loop do not a�ect the optimization of the super-block loop.

The increased optimization opportunities created by limiting the search space to

within a super-block (versus the entire loop body) for loop invariant code removal is

illustrated by the example in Figure 4.6. In Figure 4.6(a), opA is not loop invariant

(in the traditional sense) because its source operand is a memory variable, and opD is a

function call that may modify any memory variable (assuming that the compiler does not

perform interprocedural memory disambiguation). On the other hand, opA is invariant

in the super-block loop. The result of super-block loop invariant code removal is shown

in Figure 4.6(b).

Figure 4.7 shows an example of super-block loop global variable migration. The

memory variable x[r0] cannot be migrated to a register in traditional global variable

migration, because r0 is not loop invariant in the entire loop. On the other hand, r0 is

loop invariant in the super-block loop, and x[r0] can be migrated to a register by super-

block global variable migration. The result is shown in Figure 4.7(b). Extra instructions

(opX and opY) are added to the super-block loop boundary points to ensure correctness

of execution.



64

(a)

12047 opD: re�ll();

opC: r1 = r1+1;

opB: r3 = r2>r1;

opA: r2 = bu�er.length;

(b)

opA: r2 = bu�er.length;

opB: r3 = r2>r1;

opC: r1 = r1+1;

opD: re�ll();

Figure 4.6: An example of super-block loop invariant code removal. (a) Original program
segment. (b) Program segment after loop invariant code removal.



65

opY: x[r0] = r2;

opC: r0 = r0+1;

opA: r2 = r2+r1;

opB: r1 = r1+1;

opY: x[r0] = r2;

(b)

(a)

opX: r2 = x[r0];

100 0 opC: r0 = r0+1;

opB: r1 = r1+1;

opA: x[r0] = x[r0]+r1;

Figure 4.7: An example of super-block loop global variable migration. (a) Original pro-
gram segment. (b) Program segment after loop global variable migration.



66

5. PERFORMANCE EVALUATION

The performance of the global optimizer has been evaluated on a DEC 3100 work-

station using the code generator for the MIPS R2000 processor [10]. For all levels of

optimization, the machine-dependent optimizations performed in conjunction with code

generation are included. In addition, the following optimizations performed outside the

global optimizer are included in all measurements: function inline expansion [16], intel-

ligent code placement [14], and intelligent generation of switch statements [6]. Table 5.1

shows the benchmark programs that have been chosen. Three of the programs, eqntott ,

espresso, and xlisp, are from the SPEC benchmark set [18], and the others are commonly

used application programs. The size column gives the length of each benchmark mea-

sured in numbers of lines of code. To pro�le every benchmark a set of input data has

been selected for each program. Table 5.2 gives a brief description of the characteristics

of the selected input data sets.

The performance of the global optimizer without any use of pro�le information will

be compared against two existing compilers. The �rst compiler is the host C compiler of

the MIPS R2000 processor, the MIPS C compiler (release 2.1) using its highest degree of

optimization (-O4). The second compiler is the GNU C compiler (release 1.37.1) using



67

Table 5.1: Benchmarks.

name size description

cccp 4787 GNU C preprocessor
cmp 141 compare �les
compress 1514 compress �les
eqn 2569 typeset mathematical formulas for tro�
eqntott 3461 Boolean minimization
espresso 6722 Boolean minimization
grep 464 string search
lex 3316 lexical analysis program generator
mpla 38970 pla generator
tbl 2817 format tables for tro�
wc 120 word count
xlisp 7747 Lisp interpreter
yacc 2303 parsing program generator

Table 5.2: Input data for pro�ling.

name input description

cccp 20 C source �les (100 - 5000 lines)
cmp 20 similar / di�erent �les
compress 20 C source �les (100 - 5000 lines)
eqn 20 tro� �les (100 - 4000 lines)
eqntott 5 Boolean equations
espresso 20 Boolean functions (original espresso benchmarks)
grep 20 C source �les (100 - 5000 lines) with various search strings
lex 5 lexers for C, Lisp, Pascal, awk, and pic
mpla 20 Boolean functions minimized by espresso
tbl 20 tro� �les (100 - 4000) lines
wc 20 C source �les (100 - 5000) lines
xlisp 5 Gabriel benchmarks
yacc 10 grammars for C, Pascal, pic, eqn, awk, etc.



68

Table 5.3: Speedup comparison of classical optimizations.

name MIPS-O4 GNU-O local all

cccp 1.0 0.99 1.04 1.08
cmp 1.0 0.99 1.00 1.05
compress 1.0 0.96 0.96 1.02
eqn 1.0 0.98 0.95 1.08
eqntott 1.0 0.78 0.64 1.04
espresso 1.0 0.89 0.91 1.02
grep 1.0 0.84 0.90 1.03
lex 1.0 0.98 0.97 1.01
mpla 1.0 0.92 0.89 1.06
tbl 1.0 0.95 0.96 1.02
wc 1.0 0.90 1.01 1.04
xlisp 1.0 0.86 1.03 1.13
yacc 1.0 0.91 0.88 1.01
avg. 1.0 0.92 0.93 1.05
s.d. - 0.06 0.10 0.03

its highest degree of optimization (-O) [19]. Table 5.3 shows the speedup obtained for

two levels of optimization, local optimization only and all levels of classical optimization

(e.g., local, global, and loop). Note that in this comparison, local optimization includes

global dead code removal for internal reasons. The MIPS compiler is used as the basis

for all comparisons.

The performance of the pro�le-based code optimizations will be compared against

the performance of all global optimizations using no pro�le information (all column of

Table 5.3). Table 5.4 shows the speedup obtained by pro�le-based code optimization

over classical optimization. As can be seen, signi�cant speedups are possible as a result

of pro�le-based code optimizations.

A side-e�ect of pro�le-based code optimization is the resulting code expansion. As

shown in Table 5.5, this is not that large. It is also possible to limit code expansion to

some maximum value during optimization.



69

Table 5.4: Speedup comparison of pro�le-based optimizations.

name classical pro�le

cccp 1.0 1.04
cmp 1.0 1.42
compress 1.0 1.11
eqn 1.0 1.25
eqntott 1.0 1.16
espresso 1.0 1.03
grep 1.0 1.21
lex 1.0 1.01
mpla 1.0 1.18
tbl 1.0 1.03
wc 1.0 1.32
xlisp 1.0 1.16
yacc 1.0 1.08
avg. 1.0 1.15
s.d. - 0.12

Table 5.5: Code expansion due to pro�le-based optimizations.

name classical pro�le

cccp 1.0 1.03
cmp 1.0 1.11
compress 1.0 1.01
eqn 1.0 1.10
eqntott 1.0 1.00
espresso 1.0 1.07
grep 1.0 1.09
lex 1.0 1.08
mpla 1.0 1.13
tbl 1.0 1.06
wc 1.0 1.01
xlisp 1.0 1.20
yacc 1.0 1.09
avg. 1.0 1.07
s.d. - 0.06



70

6. CONCLUSIONS

In this thesis the detailed design of a machine-independent global code optimizer is

presented. Each optimization is formulated as a rule consisting of a set of predicate

functions and a set of actions. Optimization opportunities are identi�ed by all predicate

functions within a rule returning true. The code transformation is then carried out

by performing the set of actions. The performance of the global optimizer has been

evaluated against a leading commercial compiler, the MIPS C compiler. Results show

that the code quality produced by the IMPACT-I C compiler is comparable to that of

the MIPS compiler

The use of pro�le information to further the e�ectiveness of classical optimizations

has also been examined. Pro�le information e�ectively identi�es the most important

regions within a program. More aggressive optimizations can then be made on the

critical regions of a program. Experimental results show that signi�cant performance

improvements can be obtained from pro�le-based classical code optimizations. Future

work in the area of compile-time optimization using pro�le information is encouraging.

Many parallel processing optimization techniques can bene�t greatly from the use of

pro�le information.



71

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and

Tools. Reading, MA: Addison-Wesley Publishing Company, 1986.

[2] F. E. Allen and J. Cocke, \A catalogue of optimizing transformations," in R. Rustin,
Ed., Design and Optimization of Compilers. Englewood Cli�s, NJ: Prentice-Hall,
1972.

[3] F. E. Allen and J. Cocke, \A program data 
ow analysis procedure," Journal of the
ACM , vol. 19, no. 3, March 1976.

[4] M. Auslander and M. Hopkins, \An overview of the PL.8 compiler," Proceedings of
the SIGPLAN '82 Symposium on Compiler Construction, June 1982.

[5] P. P. Chang and W. W. Hwu, \Trace selection for compiling large C application
programs to microcode," Proceedings of the 21st Annual Workshop on Micropro-

gramming and Microarchitectures, November 1988, pp. 21-29.

[6] P. P. Chang and W. W. Hwu, \Control 
ow optimization for supercomputer scalar
processing," Proceedings of the 1989 International Conference on Supercomputing,
June 1989.

[7] P. P. Chang and W. W. Hwu, \The Lcode language and its enviroment," Internal
Report, April 1991.

[8] P. Chang, \Compiler support for multiple instruction issue architectures," Ph.D.
dissertation, Department of Electrical and Computer Engineering, University of Illi-
nois, Urbana, IL, 1991.

[9] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist
classic code optimizations," Center for Reliable and High-performance Computing
Report, University of Illinois, Urbana, IL, April 1991.

[10] W. Y. Chen, \An optimizing compiler code generator: a platform for RISC perfor-
mance analysis," M.S. thesis, Department of Electrical and Computer Engineering,
University of Illinois, Urbana, IL, 1991.



72

[11] F. C. Chow, \A portable machine-independent global optimizer { design and mea-
surements," Ph.D. dissertation, Department of Electrical Engineering, Stanford Uni-
versity, December 1983.

[12] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. Cambridge, MA: The MIT
Press, 1986.

[13] J. A. Fisher, \Trace scheduling: a technique for global microcode compaction,"
IEEE Transactions on Computers, vol. C-30, no. 7, pp. 478-490 July 1981.

[14] W. W. Hwu and P. P. Chang, \Achieving high instruction cache performance with
an optimizing compiler," Proceedings of the 16th Annual International Symposium

on Computer Architecture, May, 1989.

[15] W. W. Hwu, T. M. Conte, and P. P. Chang, \Comparing software and hardware
schemes for reducing the cost of branches," Proceedings of the 16th Annual Interna-

tional Symposium on Computer Architecture, May 1989.

[16] W. W. Hwu and P. P. Chang, \Inline function expansion for compiling realistic
C programs," Proceedings of the ACM SIGPLAN'89 Conference on Programming

Language Design and Implementation, June 1989.

[17] G. Kildall, \A uni�ed approach to global program optimization," Proceedings of the
1st ACM Symposium on the Principles of Programming Languages, pp. 194-206,
1973.

[18] SPEC Benchmark Suite Release 1.0, September 1989.

[19] R. M. Stallman, Internals of GNU CC , 1988.

[20] A. S. Tanenbaum, H. V. Staveren, E. G. Keizer, and J. W. Stevenson, \A practical
tool kit for making portable compilers," Communications of the ACM , vo1. 26, no.
9, pp. 654-660, September 1983.

[21] D. W. Wall, \Global register allocation at link time," Proceedings of the SIGPLAN

1986 Symposium on Compiler Construction, June 1986.


