
AN OPTIMIZING COMPILER CODE GENERATOR:

A PLATFORM FOR RISC PERFORMANCE ANALYSIS

BY

WILLIAM YU-WEI CHEN, JR.

B.S., The Ohio State University, 1988

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1991

Urbana, Illinois

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Wen-mei Hwu, for providing constant

guidance and support. His patience was invaluable. I would also like to thank Sabrina

Hwu for taking care of me for the past few years.

I wish to thank Pohua Chang for his constant suggestion and help. This thesis would

not be possible without his work. Scott Mahlke and I have complemented each other's

work during this time, and his cooperation in this project is very helpful. Thomas Conte,

Nancy Warter, Sadun Anik and other members of the research group were always there

to provide me with their insight and knowledge to further my study.

I wish to thank my friends here at the University of Illinois, especially Jaushin Lee,

for their friendship and support.

Finally, I would like to thank my parents, William and Pauline, for their love and

support. They have taught me to think before acting, which made my conviction toward

attending graduate school much stronger.

iv

TABLE OF CONTENTS

Page

1 INTRODUCTION : 1
1.1 Motivation : 1
1.2 Outline of the Thesis : 2

2 THE IMPCC/MIPS CODE GENERATOR : : : : : : : : : : : : : : : : : 3
2.1 LCODE Environment : 3
2.2 MIPS Convention Overview : 4

2.3 Data Generation : 8
2.4 Instruction Selection : 9
2.5 Machine Dependent Optimizations : : : : : : : : : : : : : : : : : : : 19
2.6 Register Allocation : 22
2.7 Register Assignment : 24

2.8 MIPS Assembly Code Output : 26

3 LOW-LEVEL SUPPORTING TOOLS : 28

3.1 Probing LCODE : 28

3.1.1 Statically available information : : : : : : : : : : : : : : : : : 29
3.1.2 Dynamically available information : : : : : : : : : : : : : : : : 29

3.2 Supporting Tool to Analyzer Interface : : : : : : : : : : : : : : : : : 30

3.2.1 LCODE pro�ler interface : 30

3.2.2 LCODE trace generator interface : : : : : : : : : : : : : : : : 31
3.3 LCODE Pro�ler : 31

3.4 LCODE Trace Generator : 33
3.5 Implementation Hazards and Di�culties : : : : : : : : : : : : : : : : 33

4 CODE SCHEDULING STUDIES USING THE CODE GENERATOR : : 35
4.1 Static Code Scheduling : 35

4.2 Hardware Scheduling Approach : 36

4.3 Experiments : 38

v

4.3.1 Benchmark programs : 38

4.3.2 Base architecture : 39

4.3.3 Multiple-instruction-issue architectures : : : : : : : : : : : : : 39

4.3.4 Measurement tools : 40

4.4 Results and Analysis : 41

4.4.1 Ideal cache results : 42

4.4.2 Small cache results : 44

5 CONCLUSIONS : 47

REFERENCES : 49

APPENDIX A AN EXAMPLE OF CODE GENERATION : : : : : : : : 50
A.1 Sample Program : 50

A.2 LCODE Program : 51
A.3 MIPS Code Generation Result : 52
A.4 Inserting Probes by the LCODE Pro�ler : : : : : : : : : : : : : : : : 53
A.5 Inserting Probes by the LCODE Trace Generator : : : : : : : : : : : 56

vi

LIST OF TABLES

Table Page

2.1: General register set. : 7
2.2: Floating-point register set. : 7
2.3: Register usage for parameter passing. : : : : : : : : : : : : : : : : : 7

2.4: LCODE assembly macros. : 10
2.5: LCODE integer branch instructions. : : : : : : : : : : : : : : : : : : 11
2.6: LCODE single-precision
oating-point branch instructions. : : : : : 12
2.7: LCODE double-precision
oating-point branch instructions. : : : : : 13
2.8: LCODE integer arithmetic instructions. : : : : : : : : : : : : : : : : 14
2.9: LCODE single-precision
oating-point arithmetic instructions. : : : 15

2.10: LCODE double-precision
oating-point arithmetic instructions. : : : 16
2.11: LCODE move instructions. : 17
2.12: LCODE type conversion instructions. : : : : : : : : : : : : : : : : : 17
2.13: LCODE load/store instructions. : 18
2.14: Load/store addressing modes. : 18

4.1: Benchmarks. : 38
4.2: Operation latencies. : 39

4.3: Individual benchmark program results for ideal cache. : : : : : : : : : 43

4.4: Individual benchmark program results for 8KB cache. : : : : : : : : : 45
4.5: Individual benchmark program results for 16KB cache. : : : : : : : : 46

A.1: De�nition of the probing variables. : : : : : : : : : : : : : : : : : : : 53

vii

LIST OF FIGURES

Figure Page

2.1: LCODE within IMPACT-I C compiler. : : : : : : : : : : : : : : : : 4
2.2: Program memory divisions. : 5
4.1: Speedup for ideal cache. : 42

4.2: Speedup for 8KB data cache. : 44
4.3: Speedup for 16KB data cache. : 45

1

1. INTRODUCTION

1.1 Motivation

In the process of designing an architecture, the support of a good compiler cannot

be ignored. The IMPACT-I C compiler generates a highly optimized code for processors

designed within the IMPACT Architectural Framework. The IMPACT-I C compiler is

retargetable, and can easily integrate with other optimizers and lower-level tools. This

integration is possible through LCODE, the IMPACT-I low-level intermediate code.

The performance implication of the IMPACT-I C compiler is not known until it can

be compared with a leading commercial compiler. Also, the worth of a compiler is judged

by its ability to generate executable code. The construction of a code generator for the

DEC 3100 Workstation satis�es both conditions. The IMPCC/MIPS code generator

allows the performance comparison of the IMPACT-I C compiler with that of a leading

commercial C compiler, MIPS C compiler. This comparison provides other researchers a

basic understanding in the base technology for our architectural studies.

In the environment of an university, it is usually too costly and impractical to perform

architectural studies by building the actual hardware; the studies are typically carried

2

out by simulations. For our architectural studies, we constructed two low-level support-

ing tools: an LCODE pro�ler and an LCODE trace generator. These two tools provide

accurate and e�cient ways of interpreting LCODE instruction level information. With

an LCODE pro�ler, accurate instruction count and accurate branch
ow directions are

measured. With an LCODE trace generator, accurate instruction execution sequence is

generated. Both the LCODE pro�ler and LCODE trace generator conform to a stan-

dard interface and are built in addition to the IMPCC/MIPS code generator. Thus, by

providing a trace analyzer which conforms to the standard interface, the users aquire

immediate support from these two low-level LCODE supporting tools to perform various

types of RISC architecture studies.

1.2 Outline of the Thesis

In Chapter 2, the general overview of the IMPCC/MIPS code generator is discussed.

The main focus is on how to generate correct and fast execution code. Chapter 3 gives the

modi�cation of the IMPCC/MIPS code generator to create useful low-level supporting

tools for architectural studies. The use of these low-level supporting tools is shown

in Chapter 4. The comparison of static and dynamic code scheduling on a multiple-

instruction-issue processor is used as an example. Chapter 5 gives the concluding remarks.

3

2. THE IMPCC/MIPS CODE GENERATOR

2.1 LCODE Environment

LCODE 1 (low-level intermediate code) is a register transfer language designed to

provide an easy interface between high- and low-level languages. All low-level supporting

tools are implemented in addition to LCODE, and these tools include the LCODE code

optimizer, machine-dependent code generators, LCODE pro�lers, and LCODE trace gen-

erators. By following the LCODE interfacing rules, all high level languages are automat-

ically supported by these low-level tools that are either available or under development.

Figure 2.1 provides an overview as to where LCODE �ts in the whole IMPACT-I C

compiler structure.

LCODE is divided into two distinct sections: data declaration and function de�nition.

Each instruction of LCODE is presented in a Lisp-like format, and two sets of data

structures are created to store the LCODE instructions. The �rst data structure contains

the data section, and the second data structure contains the function section. One data

declaration instruction or one function are read in at a time.

1LCODE documentation is available as an internal report.

4

Figure 2.1: LCODE within IMPACT-I C compiler.

2.2 MIPS Convention Overview

In order to maximize the performance of a code generator, the MIPS architecture

must be carefully studied. The information presented in this section is published by

Kane [1] and MIPS Computer Systems [2]. These books should be read for a more

detailed explanation. The MIPS memory system is divided into the text and the data

sections. The data section is further divided into several smaller sections, each with a

special purpose. For simplicity, Figure 2.2 provides a breakdown of the MIPS program

memory that is utilized by the IMPCC/MIPS code generator. The text memory is for

storing the user program instructions. All instructions are aligned on the boundary of

four bytes. The data memory stores global variable values. The 32-bit addressing mode

is used for accessing the variable values in the data memory. The small data memory

has only 64k of space and is also used for storing global variable values. The small data

5

Figure 2.2: Program memory divisions.

memory uses the 16-bit addressing mode. Thus, each value within the small data memory

can be accessed using only one instruction, where the 16-bit address o�set is embedded

in the immediate value part of the load/store instruction. The base address for the small

data section is contained in gp, the global pointer register. On the other hand, the values

within the data memory require two instructions to access. The third data section is the

stack memory. All information local to the currently executed function is stored on the

stack. For the IMPCC/MIPS code generator, the stack is used for storing parameters to

be passed, local variables, caller saved registers, callee saved registers, returned structure

values, and all spilled register contents. The current stack address is contained in sp, the

stack pointer register. All contents above the stack pointer are assumed to be safe, and

cannot be changed by other processes.

6

In order to be compatible with the system libraries or other user written assembly

code, the calling convention must be coherent. There are several major constraints.

1. Stack layout must be the same.

2. Parameter passing methods must be coherent.

3. Register usage must be consistent.

The MIPS architecture keeps two pointers with respect to the stack; one is the stack

pointer and the other one is the frame pointer. All stack accesses are in reference to

these two pointers. The positive di�erence between the current stack pointer and the

current frame pointer is the frame size of the current function. The space immediately

above the current stack pointer location contains the parameters to be passed, if any,

for the function to be called. At least 16 bytes must be allocated on the stack for these

parameters that are passed in registers. The space immediately below the current frame

pointer is the local variable location. The space immediately above the current frame

pointer is for the passing parameters of the current function. All other space on the stack

can be used freely.

The MIPS register set and its usage are presented in Tables 2.1 and 2.2. Four integer

registers and two double
oating-point registers are used for passing registers, but at

most, four words (each integer register is a word, and each double
oating-point register

is two words) can be passed in register for each function call. These register numbers are

$4, $5, $6, and $7 for the integer registers, and $f12, and $f14 for the double
oating-

point registers. Table 2.3 lists some possible parameter passing situations. The notations

i and f indicate integer or
oating-point parameter type. The number following i or f

indicates the occurrence of that parameter type. The algorithm for passing parameters

in registers is presented in the following rules.

7

Table 2.1: General register set.

Register Usage

$0 Constant value of zero

$1 Reserved and not usable

$2 Return register for integer values

$3 Caller saved register

$4..$7 Integer parameter passing registers

$8..$15 Caller saved registers

$16..$23 Callee saved registers

$24..$25 Caller saved registers

$26..$27 Reserved and not usable

$28 Global memory address pointer

$29 Stack pointer

$30 Frame pointer

$31 Return address

Table 2.2: Floating-point register set.

Register Usage

$f0..$f1 Return registers for
oating point values

$f2..$f11 Caller saved registers

$f12..$f15 Floating point parameter passing registers

$f16..$f19 Caller saved register

$f20..$f31 Callee saved registers

Table 2.3: Register usage for parameter passing.

Values Register Usage

f1, f2, ... f1 ! $f12, f2 ! $f14

f1, i1, f2, ... f1 ! $f12, i1 ! $6, f2 ! stack

f1, i1, i2, ... f1 ! $f12, i1 ! $6, i2 ! $7

i1, i2, i3, i4, ... i1 ! $4, i2 ! $5, i3 ! $6, i4 ! $7

i1, i2, i3, f1, ... i1 ! $4, i2 ! $5, i3 ! $6, f1 ! stack

i1, i2, f1, ... i1 ! $4, i2 ! $5, f1 ! ($6,$7)

i1, f1, ... i1 ! $4, f1 ! ($6,$7)

8

1. All integer parameters are passed in the integer registers in order.

2. Double-precision
oating-point values have to be passed in integer registers if any

integer parameter comes before it; otherwise, it is passed in double
oating-point

registers.

3. Double-precision
oating-point values must be aligned to even numbered registers.

This applies to either integer or double
oating-point registers.

4. If an integer register is skipped over because of the alignment problem, then it

cannot be used for parameter passing.

5. Any parameters that cannot �t in the registers are passed on the stack.

2.3 Data Generation

It is important to place the global variables in the right section of the data memory

since MIPS has the 16-bit and 32-bit data addressing features. Thus far, LCODE is

unable to provide enough information in its data structures as to intelligently guide the

code generator to e�ciently allocate the small data memory space. All the variables

are generated in the data memory, and it is up to the MIPS assembler to move the

variables to the small data memory. This is done by assembling the entire program in

one command line.

The MIPS assembler cannot handle long algebraic expressions. The IMPCC/MIPS

code generator is required to reduce the algebraic expressions that contain labels into a

minimal format. For example, we are given the following C declaration statement.

int p5 = &(p3[2]) - p3;

In LCODE, this statement is in this form.

9

(long 1 _p5 (div (sub (add (l _p3) (i 8)) (l _p3)) (i 4)))

The IMPCC/MIPS code generator reduces the LCODE data declaration statement into

one simple form.

$p5:

.word 2

where $p5 is the address label of the variable.

2.4 Instruction Selection

The �rst major step in the IMPCC/MIPS code generation is the mapping of each

LCODE instruction into the appropriate MIPS assembly instruction. LCODE is broken

down into six groups of instruction types: macro, branch, arithmetic, move, type con-

version, and load/store. For some of the instruction groups, further distinctions between

integer,
oating-point, and double
oating-point instruction types are made. For these in-

struction groups, tables are constructed to show the instruction mapping of each LCODE

instruction to MIPS assembly instruction. The LCODE column gives the LCODE in-

struction. The MIPS Code column gives the equivalent MIPS assembly instruction or

MIPS assembly instruction sequences. A branch instruction with an fs attached to it is

the forward semantic version of that branch instruction. Forward semantic is used to

indicate that the instruction is a likely taken branch.

Table 2.4 shows some LCODE assembly macros. For the jsr and the jsr fs instruc-

tions, function pertains to the callee function name. But sometimes in the language

C, we can call a function through a pointer. If this happens, function would pertain

to a register whose content holds the address of the callee function. The register $31 is

the linkage register, or better known as the return address register. The prologue and

10

Table 2.4: LCODE assembly macros.

LCODE MIPS Code

jsr jal function

jsr fs jal function

rts j $31

rts fs j $31

prologue (variable)

epilogue (variable)

de�ne (ignored)

alloc addu $2, $29, structsize

nop nop

epilogue instructions translate to none or many MIPS assembly instructions depending

upon the function. The roles of prologue and epilogue instructions are to set the stack

pointer ($29) for the current function, and to store and load callee saved registers on

and from the stack. Define is for the internal use of the code generator, and does not

generate any equivalent MIPS assembly instruction. Alloc allocates a portion of stack

space for a structure that is the size of structsize in number of bytes. The register $2

contains the beginning address of that structure, and $2 is passed to the callee function,

which will return a structure on the stack space provided.

Tables 2.5 to 2.7 give the LCODE branch instruction mappings. MIPS has no equiva-

lent instruction for the
oating-point branch instructions. For these branch instructions,

two MIPS assembly instructions are required for one LCODE instruction. The �rst

MIPS assembly instruction compares the two operands, and the second MIPS assembly

instruction determines the branch direction depending on the result of the comparison.

Tables 2.8 to 2.10 give the LCODE arithmetic instruction mappings. For the in-

teger arithmetic instructions, only nand and nxor have no equivalent MIPS assembly

instruction. Each
oating-point compare and set instruction requires at least four MIPS

11

Table 2.5: LCODE integer branch instructions.

LCODE MIPS Code

jump b

jump fs b

jump rg j

jump rg fs j

beq beq

beq fs beq

bne bne

bne fs bne

bgt bgt

bgt fs bgt

bge bge

bge fs bge

blt blt

blt fs blt

ble ble

ble fs ble

bgt u bgtu

bgt u fs bgtu

bge u bgeu

bge u fs bgeu

blt u bltu

blt u fs bltu

ble u bleu

ble u fs bleu

12

Table 2.6: LCODE single-precision
oating-point branch instructions.

LCODE MIPS Code

beq f c.eq.s

bc1t

beq f fs c.eq.s
bc1t

bne f c.eq.s
bclf

bne f fs c.eq.s

bclf

bgt f c.le.s

bc1f

bgt f fs c.le.s

bc1f

bge f c.lt.s

bc1f

bge f fs c.lt.s

bc1f

blt f c.lt.s

bc1t

blt f fs c.lt.s
bc1t

ble f c.le.s
bc1t

ble f fs c.le.s

bc1t

13

Table 2.7: LCODE double-precision
oating-point branch instructions.

LCODE MIPS Code

beq f2 c.eq.d

bc1t

beq f2 fs c.eq.d
bc1t

bne f2 c.eq.d
bclf

bne f2 fs c.eq.d

bclf

bgt f2 c.le.d

bc1f

bgt f2 fs c.le.d

bc1f

bge f2 c.lt.d

bc1f

bge f2 fs c.lt.d

bc1f

blt f2 c.lt.d

bc1t

blt f2 fs c.lt.d
bc1t

ble f2 c.le.d
bc1t

ble f2 fs c.le.d

bc1t

14

Table 2.8: LCODE integer arithmetic instructions.

LCODE MIPS Code

rem rem

rem u remu

add addu

add u addu

sub subu

sub u subu

mul mul

mul u mul

div div

div u divu

abs abs

or or

nor nor

and and

nand and

not

xor xor

nxor xor
not

eq seq

ne sne

gt sgt

gt u sgtu

ge sge

ge u sgeu

lt slt

lt u sltu

le sle

le u sleu

lsl sll

lsr srl

asr sra

15

Table 2.9: LCODE single-precision
oating-point arithmetic instructions.

LCODE MIPS Code

add f add.s

sub f sub.s

mul f mul.s

div f div.s

abs f abs.s

eq f li dest, 0

c.eq.s

bc1f label:
li dest, 1
label:

ne f li dest, 1
c.eq.s

bc1f label:
li dest, 0

label:

gt f li dest, 1

c.ngt.s
bc1f label:

li dest, 0
label:

ge f li dest, 1
c.lt.s
bc1f label:

li dest, 0

label:

lt f li dest, 0

c.lt.s
bc1f label:

li dest, 1
label:

le f li dest, 0

c.le.s

bc1f label:
li dest, 1

label:

16

Table 2.10: LCODE double-precision
oating-point arithmetic instructions.

LCODE MIPS Code

add f2 add.d

sub f2 sub.d

mul f2 mul.d

div f2 div.d

abs f2 abs.d

eq f2 li dest, 0

c.eq.d

bc1f label:
li dest, 1
label:

ne f2 li dest, 1
c.eq.d

bc1f label:
li dest, 0

label:

gt f2 li dest, 1

c.ngt.d
bc1f label:

li dest, 0
label:

ge f2 li dest, 1
c.lt.d
bc1f label:

li dest, 0

label:

lt f2 li dest, 0

c.lt.d
bc1f label:

li dest, 1
label:

le f2 li dest, 0

c.le.d

bc1f label:
li dest, 1

label:

17

Table 2.11: LCODE move instructions.

LCODE MIPS Code

mov la (if source 1 is a label)

li (if source 1 is an integer)
la (if source 1 is a string)

addu (if source 1 is a macro)
move (if source 1 is a register)

mov f li.s

mov f2 li.d

Table 2.12: LCODE type conversion instructions.

LCODE MIPS Code

f2 i trunc.w.d

f i trunc.w.s

i f2 cvt.d.w

i f cvt.s.w

f2 f cvt.s.d

f f2 cvt.d.s

assembly instructions. We always set the destination register to a prede�ned value (0

or 1 depending on the LCODE instruction). If the comparison result is the same as the

prescribed result, the destination value remains the same, otherwise the destination value

is given a complementary Boolean value. Floating point comparison and set instruction

is very expensive to implement in MIPS assembly language, and should be avoided when

generating LCODE for the MIPS architecture.

Table 2.11 gives the LCODE move instruction mappings. The integermov instruction

has many mapping possibilities depending upon the source type. Each type of condition

is presented within the parentheses. A string is always converted to an address label

pointing to a preallocated data space that contains the value of the string.

18

Table 2.13: LCODE load/store instructions.

LCODE MIPS Code

ld uc lbu

ld c lb

ld uc2 lhu

ld c2 lh

ld i lw

ld f l.s

ld f2 l.d

st c sb

st c2 sh

st i sw

st f s.s

st f2 s.d

Table 2.14: Load/store addressing modes.

Addressing Mode Example

(base register) ($16)

value 64372

value (base register) 4($16)

relocatable address label

relocatable address � value label+4

relocatable adderss � value (base register) label+4($16)

Table 2.12 gives the LCODE type conversion instruction mappings. The only di�-

culty with these instructions is with the single-precision to double-precision
oating-point

conversion (f f2). Because of the MIPS parameter passing constraints, the destination

of this conversion may not be a
oating-point register. It is possible to have the $6 and

$7 register pair as the destination registers. In this case, temporary double
oating-point

registers must be used to receive the result of the conversion and to transfer the result

to the $6 and $7 register pairs by using the coprocessor command (mfc1).

19

Table 2.13 gives the LCODE load/store instruction mappings. MIPS assembler can

handle several types of addressing modes for the load/store instructions. These address-

ing modes are shown in Table 2.14.

2.5 Machine Dependent Optimizations

Sometimes it is more bene�cial to map the LCODE instruction to another MIPS

assembly instruction other than the equivalent one. We will provide an example with the

add unsigned instruction.

(add_u (r 0 i) ((l _label i) (i 4 i) ()))

If we map this LCODE instruction directly, the following MIPS assembly instruction

sequence results.

la $16, _label

addu $16, $16, 4

By taking advantage of the MIPS assembler addressing modes, we only have to generate

one MIPS assembly instruction.

la $16, _label+4

This provides a saving of one MIPS machine instruction cycle.

MIPS assembly language has a subset of the LCODE addressing mode [1]. Thus, one

LCODE instruction may map to one or many MIPS assembly instructions. The following

example shows the problem of having a separate
oating-point coprocessor for the MIPS

architecture.

(f2_i (r 0 i) ((r 1 f2) () ()))

20

This can be matched to two MIPS assembly instructions.

trunc.w.d $f22, $f20

mfc1 $16, $f22

The results of the
oating-point operation have to be moved from the
oating-point

coprocessor to the main processing unit. This mapping ine�ciency is unavoidable since

IMPACT architecture assumes an integrated
oating-point function unit.

Sometimes, it is possible to achieve one-to-one mapping with somemachine-dependent

optimizations. For example, we are given the following LCODE instruction.

(add_u (r 0 i) ((i 4) (l _label i) ()))

Before any machine-dependent optimizations, three MIPS assembly instructions result.

la $16, _label

li $17, 4

addu $18, $17, $16

But after the machine-dependent optimizations, the following LCODE results.

(add_u (r 0 i) ((l _label i) (i 4 i) ()))

Here, only two MIPS assembly instructions are required.

la $16, _label

addu $18, $16, 4

This machine-dependent optimization uses the fact that the MIPS assembler can handle

an immediate �eld for this particular type of instruction. This type of machine-dependent

optimization is called reordering of constant �elds.

21

For this example, one-to-one mapping can be achieved in some situations. We can

see that the load address instruction (la) is present in both cases. For the example

shown, if the LCODE instruction is within a heavily used loop (detected either by static

loop detection or by pro�le information), the extra load address instruction can cause

the program to slow down. This is the reason behind the constant preloading machine-

dependent optimization. If we can move the load address instruction from within the

loop to the loop preheader, then within the loop, we can achieve one-to-one mapping

between this particular LCODE instruction and MIPS assembly instruction.

(add_u (r 0 i) ((r 1 i) (i 4 i) ()))

Here, only one MIPS assembly instruction remains.

addu $18, $16, 4

Lcode generates sign extending instructions for memory loads. On the other hand,

MIPS architecture automatically sign extends memory loads [1] for signed instructions.

Thus by using the signed instructions, a number of left and right shifts can be avoided.

Some MIPS assembly instructions are composed of more than one MIPS machine

instruction. For example, beq and bne are atomic instructions for both the MIPS assembly

and machine instructions. It is bene�cial to replace conditional branches to beq or bne

whenever possible. If we are given the following C loop,

for (i=0; i<10; i++);

the resulting LCODE contains a blt instruction.

(blt () ((r 0 i) (i 10 i) (l _loop i)))

By applying the strength reduction of conditional branch optimization, the following

LCODE results.

22

(bne () ((r 0 i) (i 10 i) (l _loop i)))

Although only one MIPS assembly instruction is generated for both cases, the second

situation will result in one fewer MIPS machine instructions.

2.6 Register Allocation

Register allocation maps each virtual register to one or more physical registers. It is

important to perform good register allocation because of the following reasons.

1. We want to put all variables in registers to reduce unnecessary memory references

since register access is generally faster than memory access.

2. The number of physical registers available is limited, and a proper allocation is

required to increase the resource utilization.

3. Inlining, code scheduling, and optimizations increases register live range and pres-

sure (the number of live registers at a given point).

The algorithm used for the code generator is Chaitin's graph coloring algorithm [3].

Here, we map many virtual registers to one physical register. The Chaitin's graph col-

oring algorithm assumes one live range for each virtual register. The main steps for the

allocation scheme consist of the following:

1. Compute the uses and de�nes of each virtual register.

2. Compute the live range for each virtual register.

3. Construct the interference graph.

4. Color the graph with N colors.

23

A statement which contains one destination and one or many sources de�nes the

destination register and uses the source registers. A variable is live at a given point

within a function when it is used after that point. Thus a virtual register can said to be

alive between a de�ne and a use.

Two registers are said to be in conflict when their live ranges overlap, and they

cannot reside in the same physical register. Virtual registers that cannot be assigned a

physical register are said to be spilled.

To construct an interference graph for coloring, for each virtual register we create a

node, or vertex, representing it. Between each vertex, an edge represents the con
ict

between the two virtual registers. When two vertices are connected with an edge, they

are adjacent nodes. The degree of the graph is the maximum number of edges incident

on a vertex.

After the construction of the interference graph, the maximum number of usable

physical registers, or colors, is used to color the graph. All adjacent nodes cannot have

the same color as their neighbors. If the degree of the graph is less than or equal to the

number of colors available, then the graph is said to be colorable, or all vertices can be

assigned a color without con
ict. If the degree of the graph is larger than the number

of colors available, then a decision must be made to spill a node. When we remove the

vertex to be spilled from the graph, the edges associated with it are also removed. Graph

coloring is a repetitive application of the coloring and spilling process until all virtual

registers are either assigned to a physical register or spilled.

A simple but e�ective heuristic is devised to reduce the cost of spilling, which is

essential to good code performance. The spill cost function is stated in Equation (2.1).

W1 is proportional to the de�nes and uses. The de�nes and uses are calculated using

loop analysis and pro�le weights. W2 is inversely proportional to the variable live range.

24

With this cost calculated for all of the nodes, the node with the smallest cost value is

spilled.

COST = (W 3

1
) �W2 (2:1)

We have found that Equation (2.1) works best for large function bodies where the register

live ranges are long and the register pressures are great.

2.7 Register Assignment

After every virtual register has an assignment, either to a pseudo physical register or

spilled, we have to decide to which real physical register it should be mapped. This is

due to the fact that in the MIPS architecture, there are two groups of physical registers.

The �rst type of registers is the caller saved. These register values are not guaranteed

to be preserved across the function call boundaries. Thus, the caller has to initiate the

saving of the value if necessary. The second type of registers is the callee saved. These

register values are guaranteed to be preserved across the function call boundaries. When

a function uses callee saved registers, it is necessary to save them in the function prologue

and restore them in the function epilogue. When a function uses caller saved registers,

it is necessary to save them before a function call if it is live, and restore them after the

function call.

It is a tradeo� in terms of costs when deciding which physical registers should be

caller saved and which ones should be callee saved. The follow heuristic uses both pro-

�le information and static loop detection for the decision making. The objective is to

minimize the loads and stores of register on the stack; this can happen in the function

prologue and epilogue for the callee saved registers, before and after function calls for

caller saved registers.

25

There are three cost functions to be considered. Equations (2.2) and (2.4) are used

to guide the mapping of the caller saved registers. Equation (2.3) is used to guide the

mapping of the callee saved registers.

((Fn ! W)� (JSR ! cost))� 2 (2:2)

(register ! weight)� ((Fn ! W)� 2) (2:3)

(register ! weight)� (((jsr ! cost)� (Fn ! W))� 2) (2:4)

Fn ! W is the number of times the function has been executed indicated by the

pro�le information. If it is zero, one is assumed. Jsr ! cost and register ! weight

are di�erent for each physical register, and are calculated by the following algorithm.

for (i=0; i<all_assigned_physical_register; i++) {

if (register[i].assigned != SPILLED) {

id = phys_register_id(i);

for (j=0; j<all_jsr_instr_in_function; j++) {

if (instruction_in_live_range(register[i].id,instr[j].id)) {

jrs->cost[id] += instr[j].weight;

}

}

register->weight[id] += register[i].weight;

}

}

The basic algorithm for register assignment is as follows.

26

1. For each physical register, using cost function (2.2), we calculate the cost to be

mapped in a caller saved register.

2. From the largest to the smallest cost, if the cost is larger than zero, and there are

still more caller saved registers left, then we assign the physical register as caller

saved.

3. For each of the remaining physical registers, using cost function (2.3), we calculate

the cost to be mapped in a callee saved register.

4. From the largest to the smallest cost, if the cost is larger than zero, and there are

still more callee saved registers left, then we assign the physical register as callee

saved.

5. For each of the remaining physical registers, using cost function (2.4), we calculate

the cost to be mapped in a caller saved register.

6. From the largest to the smallest cost, if the cost is larger than zero, and there are

still more caller saved registers left, then we assign the physical register as caller

saved.

7. Any remaining registers that have not been assigned to caller saved or callee saved

are spilled.

2.8 MIPS Assembly Code Output

The last phase in the code generation process is to output the transformed LCODE

instructions into the MIPS assembly instruction format. In addition to the straight

instruction-to-instruction printing, three major details have to be observed. First, it is

not until this point in code generation that all of the information is available to calculate

27

the stack size required for this particular function. Second, it is up to the output routine

to insert any instructions for loading and storing values of all spilled registers. Finally,

it is only at this point that the instructions to save and restore caller saved registers can

be inserted. The process of code generation is completed after this point. An example

program is listed in Appendix A.

28

3. LOW-LEVEL SUPPORTING TOOLS

Two low-level supporting tools have been created using the IMPCC/MIPS code gen-

erator: LCODE pro�ler and LCODE trace generator. The construction of these tools

gives an example on how the code generator can be used to further the IMPACT archi-

tecture studies. An example of the MIPS assembly output of the LCODE pro�ler and

LCODE trace generator is presented in Appendix A.

3.1 Probing LCODE

With the completion of the IMPCC/MIPS code generator, it is easy to modify the

source code of the code generator to perform execution-driven simulations [4]. Depending

upon the run-time information needed, the code generator can insert the appropriate

probes into the program to extract this information to form a trace. By consuming

the trace at runtime, unnecessary I/O tra�c and system calls can be avoided. With

execution-driven simulation, we can save both simulation time and storage space.

29

3.1.1 Statically available information

Any information that can be statically obtained directly from the LCODE data struc-

ture does not have to be generated dynamically into the trace. This information includes

the function name, the maximum number of control blocks within each function, the

maximum number of control operations within each function, the instruction number,

the control block number, the operation number, the opcode, the register number, and

the instruction address. By using the statically available information, we reduce the

amount of dynamically generated information. The trace generation time is reduced.

The function name is used to hash the generated pro�le information back into the

LCODE data structure. The information provided by the maximum number of control

blocks and the maximum number of control operations is used to provide static program

space and to maintain the run-time pro�le data structure. The opcode for the control

operations is used to evaluate the branch direction using the run-time information. By

using the statically available information, both the pro�ling speed and the trace genera-

tion speed are greatly enhanced.

3.1.2 Dynamically available information

Some information is not known until runtime. The information of interest is the

instruction execution sequence, the precise branching behavior of each control operation,

and the data address of each load or store operation. Using this information, we can

perform simulations on di�erent aspects of the IMPACT architecture. For example, the

instruction traces can be used for simulating an instruction cache. The branch behavior

can be used to study branch prediction. Since the execution speed of the probed program

is proportional to the amount of data extracted, it is up to the user to probe for only the

needed data.

30

3.2 Supporting Tool to Analyzer Interface

To promote the compatibility of the trace analyzers used for di�erent architectures, a

standard interface between the low-level supporting tools and the trace analyzer should

be de�ned. In this way, the trace analyzers are reusable for the code generators of other

machines.

3.2.1 LCODE pro�ler interface

For the LCODE pro�ler, each line of the trace contains six separate pieces of infor-

mation, which are presented in the following data structure.

typedef struct L_Trace_Info {

int fnid;

int cbid;

int cntid;

int type;

union value src1;

union value src2;

};

The value union contains three data types: integer, single-precision
oating-point, and

double-precision
oating-point values.

The fnid �eld contains the function number indicating in which function the opera-

tion is located. Each function has its own unique function number, which is generated

at the time of code generation. The cbid �eld contains the control block number of the

operation. Only the values of 1 to 4 can go into the type �eld. Each value indicates the

type of operation of the trace. A value of 1 indicates the beginning of a control block.

31

A value of 2 indicates that the present operation is a conditional branch and that the

opcode of the operation is found in the cntid �eld. A value of 3 indicates the present

operation is an unconditional branch with only two destination locations. A value of 4

indicates a hashing jump. Fields src1 and src2 hold the source values of the conditional

branch, or in the case of a hashing jump, the condition code and the destination location.

3.2.2 LCODE trace generator interface

For the LCODE trace generator, the following data structure is provided.

typedef struct L_Trace_Info {

int fnid;

int cbid;

int opid;

int opcode;

union value src1;

union value src2;

};

The value union has the same de�nition as described in Section 3.2.1.

fnid and cbid have already been described in Section 3.2.1. The opcode identi�cation

number and the operation opcode number are stored in opid and opcode, respectively.

Fields src1 and src2 hold the source values of the operation. These values are used to

determine the branch direction and load/store address.

3.3 LCODE Pro�ler

The construction of the LCODE pro�ler is motivated by the fact that some code

optimizations (e.g., loop unrolling) approximate pro�le information, and accurate pro�le

32

information is needed to generate accurate performance statistics. LCODE pro�ling is

fairly fast, with only approximately 25 times slow down. The LCODE pro�ler generates

execution frequencies for each function and each basic or super block within each function.

For each control operation, both the execution frequency and the branch taken frequency

are recorded. This information is then used to reconstruct the pro�le data to be mapped

back into the LCODE data structure.

The LCODE pro�ler is a natural extension to the code generator. The information

that is needed to be generated into each line of the traces is the function number, the

control block number, the control operation identi�cation number, the operation type,

and the value of the sources that are needed to determine the branch direction. This is

the dynamically available information.

The function number is set upon entry into the function, and resets after each subrou-

tine call and each control block header. For each control block, the control block number

is updated and a line of trace is added into the trace bu�er. Extra operations are inserted

before each conditional branch or unconditional branch to record the function number,

the control block number, the control operation identi�cation number, and the value of

the sources.

At the beginning of the main function, before the execution of the prologue operation,

the static information is read into a hash table. When generating the actual trace output,

the dynamic information is used to access the hash table. After the epilogue operation of

the main function, we have to call a special pro�le routine to clear the trace bu�er and

close all �les before the termination of the program. The pro�le information is mapped

back into LCODE after the probed program terminates.

33

3.4 LCODE Trace Generator

The LCODE trace generator is used to generate trace information for all operations

executed. The implementation method is very similar to the LCODE pro�ler except that

di�erent types of information have to be generated statically and dynamically.

Statically, for each operation within each function, the instruction number, the opcode

number, the registers used, and the simulated instruction address must be generated. We

assume each LCODE instruction is I bytes in size. Starting with the address zero, and

for each of the succeeding executable LCODE instructions, the constant size of I is added

to generate the simulated instruction address.

Dynamically, the function number, the control block number, the operation number,

and the source values have to be generated. Thus, unlike LCODE pro�ling, probes must

be inserted to gather the trace information for every LCODE instruction. The LCODE

trace generator is similar to the LCODE pro�ler in all other implementation aspects.

3.5 Implementation Hazards and Di�culties

In the C language, we have two unique library functions that can alter the control

ow of the program execution: setjump and longjump. This problem is eliminated by

the way the probes are inserted. Since longjump can only return to a location that has a

label or right after the setjump call, by resetting the function number and control block

number after each occurrence of a control block header and after each subroutine call,

the trace generated will always be correct.

Programs can be terminated prematurely thru the exit library. This will cause the

loss of the last trace of the bu�er contents. A solution to this problem is to replace every

34

occurrence of the exit function with a prede�ned pro�le function which will clean up the

trace bu�er before calling the actual exit library.

The probes inserted are the instructions that load a global data structure with the

needed values. All source values are recorded before the executed instruction but after

the loading of the spill registers. All destination values are recorded after the execution

of the instruction, either before or after the storing of the spilled destination registers.

When all of the values are recorded into the global data structure, a special function

call is made to copy the values of the gathered values into a large bu�er. Only after

the bu�er is full is the dynamic information combined with the static information. This

combined information is then sent to either the LCODE pro�ler function or the LCODE

trace generator function to be processed.

35

4. CODE SCHEDULING STUDIES USING THE CODE GENERATOR

By using the integrated LCODE supporting tools, it is possible to study two alterna-

tive approaches to support code scheduling for multiple-instruction-issue processors. An

existing code scheduler is used to perform aggressive static code scheduling on a conven-

tional architecture. For the software code scheduling method, an architecture with a set

of non-trapping instructions is provided, and additional code scheduling can be performed

on top of the base static scheduling model. For the hardware code scheduling method,

out-of-order execution is supported in the microarchitecture so that the hardware can

perform additional dynamic code scheduling, and the compiler performs as much global

code motion as allowed by the instruction set architecture speci�cation.

4.1 Static Code Scheduling

Code scheduling done at compile time is called static scheduling [5], [6], [7]. The

LCODE code scheduler moves code both upward and downward across branch operations.

Moving operations from above a branch operation to below is always safe. On the other

hand, moving operations from below a branch to above is not always safe. There are two

major restrictions on upward code motion.

36

1. The moved operation must not destroy a value that is needed when the branch is

taken.

2. The moved operation must not cause an exception that may terminate the program

execution.

For example, it is not safe to move a memory load operation above a branch because

of the possibility of memory access violation. This algorithm is referred to as restricted

code percolation.

It is possible to free the code scheduler from the second restriction if the division

operation and the memory load operation do not cause exceptions. Instead of trapping

on divide by zero or illegal memory access, a garbage value is returned. Page faults can

be handled in the usual manner. This code scheduling model is referred to as general

code percolation.

4.2 Hardware Scheduling Approach

Code scheduling can be done at run time [8], [9], [10]. The instruction pipeline

model is partitioned into several stages: instruction fetch, instruction decode and register

operand fetch, instruction issue, instruction execute, and result distribution. Given two

operations opA and opB , such that opB depends on the result of opA, and opA takes

n cycles to execute, static code scheduling inserts independent operations between opA

and opB so that opA and opB are fetched by the processor at least n cycles apart. In

practice, the compiler may not be able to �nd enough independent operations to execute

between opA and opB . With in-order execution, the instruction fetch and decode stages

are stalled until the result of opA becomes available. Dynamic code scheduling alleviates

37

this problem by allowing subsequent operations, that are independent of opA and opB,

to proceed to the function units while opB waits for opA.

Three major cases in which dynamic scheduling can improve performance on top of

static code scheduling have been identi�ed.

Load Bypassing: Memory load operations often reside on the critical path of pro-

gram execution. Therefore, allowing memory load operations to bypass memory store

operations may improve performance by making the load results available early. This is

referred to as load bypassing, which can be performed by the static code scheduler and/or

the dynamic code scheduler. To enforce the correctness of execution, a memory load op-

eration is allowed to bypass an earlier store if their addresses do not con
ict. Because

the compiler does not know the address of some memory access operations, a static code

scheduler may not be able to take advantage of all opportunities for load bypassing. At

runtime, a dynamic code scheduler can detect opportunities missed by the static code

scheduler.

Loop Iteration Overlapping: Within a big loop or any outer loop, loop opti-

mizations such as loop unrolling and loop peeling are turned o� to control code size

expansion. Thus, with only static scheduling, operations from di�erent iterations cannot

execute concurrently. With out-of-order execution, the next iteration of the loop can

proceed and overlap its execution with that of the previous iteration.

Tolerance To Data Cache Miss Delay: For static scheduling, the instruction

pipeline is stalled on a data cache miss. With out-of-order execution, the hardware

allows independent operations to bypass the waiting memory operations. Therefore, the

delay due to cache miss may be hidden.

38

Table 4.1: Benchmarks.

name description

cccp GNU C preprocessor

cmp compare �les

compress compress �les

eqn typeset mathematical formulas for tro�

eqntott Boolean minimization

espresso Boolean minimization

grep string search

lex lexical analysis program generator

qsort quick sort

tbl format tables for tro�

wc word count

yacc parsing program generator

4.3 Experiments

The scheduling methods examined are restricted code percolation with in-order exe-

cution, general code percolation with in-order execution, and restricted code percolation

with out-of-order execution. For each scheduling approach, we show the speedup achieved

with instruction issue rates of one, two, four, and eight. Based on the experimental results

and on the details of the benchmark programs, we discuss the strengths and limitations

of each scheduling method.

4.3.1 Benchmark programs

We have collected C application programs from several domains, including text pro-

cessing, CAD design, and UNIX utilities. Table 4.1 shows the benchmark programs that

are used in this thesis. The name column shows the names of the benchmark programs.

The description column brie
y describes the nature of the benchmark program.

39

Table 4.2: Operation latencies.

function base

integer alu 1

barrel shifter 1

integer mult 3

integer div 25

load 2

store -

FP alu 3

FP conv 3

FP mult 4

FP div 25

4.3.2 Base architecture

A single-instruction-issue in-order processor supporting the restricted code percola-

tion model is used as the base architecture, which includes a 64-entry integer register

bank and a 32-entry
oating-point register bank. The architecture uses a squashing

branch scheme and pro�led-based branch prediction. One branch slot (one instruction)

is allocated for each predict-taken branch. All function units are fully pipelined with

deterministic latencies. Table 4.2 shows the operation latencies. Asynchronous events

such as cache misses stall the processor pipeline. The compiler performs all optimiza-

tions and restricted code percolation for the base architecture. On the average, the base

architecture executes more than 0.9 operation per cycle.

4.3.3 Multiple-instruction-issue architectures

Three multiple-instruction-issue architectures are evaluated. Each supports a di�erent

code schedule method. All three architectures duplicate hardware resources of the base

architecture. Additional access ports to the register �le and the cache memory are

40

provided to satisfy the increased demands due to multiple-instruction-issue processors.

All operation latencies remain the same as in Table 4.2.

The �rst architecture supports restricted code percolation and in-order execution.

We refer to this architecture as restricted in-order execution . The second architecture

supports restricted code percolation and out-of-order execution. This architecture is re-

ferred to as restricted out-of-order execution . The third architecture supports general

code percolation and in-order execution. This architecture is derived from the �rst ar-

chitecture by adding nontrapping instructions. This last architecture is referred to as

general in-order execution .

For the �rst and third architectures, which implement in-order execution, cache misses

stall the processor pipeline. In addition to their individual code scheduling algorithms,

the compiler performs full-scale code optimizations for all three architectures.

4.3.4 Measurement tools

To analyze the performance of in-order execution architectures, we use the LCODE

pro�ler to record the execution count of every instruction and the branch statistics. Be-

cause all operation latencies are deterministic, we can derive the best and worst case

execution times for the benchmark programs. The worst case is due to long operation la-

tencies that protrude from one basic block to an o�-trace basic block. For the benchmark

programs used in this thesis, the di�erence between the best and worst case execution

times is negligible. We will use the worst case execution time.

To measure the performance of out-of-order execution, we use the LCODE trace

generator and a trace analyzer. The trace analyzer uses entire instruction traces and

simulates a simple dynamic code scheduling model that has an in�nite number of func-

tion units and an in�nite number of reservation station entries for each function unit.

41

The control unit fetches one instruction (N operations) per cycle, except when an in-

correctly predicted branch operation causes the control unit to re�ll the pipeline. After

an instruction has been decoded, operations that do not have both source operands are

placed into the reservation stations. Otherwise, operations are directly submitted to the

function units. An operation is moved from a reservation station to a function unit as

soon as its source operands are available.

Memory load operations are allowed to bypass preceding memory store operations if

the memory addresses do not con
ict. Cache misses do not stall the instruction pipeline.

When a data cache miss occurs, the processor can continue to execute independent oper-

ations. This allows the dynamic scheduler to overlap data cache re�ll with the execution

of other operations.

A two-level direct-mapped cache model is assumed in the simulation. We simulated

three di�erent �rst-level cache sizes: in�nite, 8KB, and 16KB. A miss from the �rst-level

cache adds four cycles to the access. The simulation assumes a 128KB second-level cache.

The miss ratio for the second-level cache is negligible for all benchmarks used.

A branch operation that has been decoded but not yet executed is called a pending

branch . The trace analyzer allows instructions to bypass an in�nite number of pending

branch operations. This feature is especially useful when the static code scheduler is

limited by the restricted percolation model. Allowing operations to bypass branches is

also useful when loops are not unrolled at compile time due to code size and register

constraints. It increases the overlap between the execution of adjacent loop iterations.

4.4 Results and Analysis

Figures 4.1 through 4.3 show the performance of multiple-instruction-issue processors.

Each data point represents the harmonic mean of speedup over the base architecture

42

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8

Speedup

Issue Rate

Restricted In-Order Execution 3

3

3

3
3

Restricted Out-of-Order Execution +

+

+

+

+

General In-Order Execution 2

2

2

2

2

Figure 4.1: Speedup for ideal cache.

for all benchmark programs. The speedups of a machine con�guration over the base

architecture for individual benchmark programs are listed in Tables 4.3 through 4.5.

Each column of Tables 4.3 through 4.5 is labeled XY Z, where X is the issue rate, Y

indicates either restricted (r) or general (g) code percolation, and Z indicates in-order

(i) or out-of-order (o) execution.

4.4.1 Ideal cache results

Figure 4.1 and Table 4.3 present speedup results for an ideal data cache. Overall,

restricted out-of-order execution performs slightly better than general in-order execution.

They both achieve substantial improvement over the restricted in-order execution model.

A closer look at the benchmark programs shows that load bypassing is the most ben-

e�cial feature of dynamic code scheduling. Lex and qsort are examples in which general

in-order execution is severely limited by memory dependencies. For these programs, load

bypassing at run time allows memory load operations on the critical path to execute

43

Table 4.3: Individual benchmark program results for ideal cache.

con�g 1ri 2ri 4ri 8ri 1ro 2ro 4ro 8ro 1gi 2gi 4gi 8gi

cccp 1.00 1.42 1.63 1.65 1.03 1.56 1.83 1.89 1.03 1.55 1.74 1.83

cmp 1.00 1.29 1.48 1.48 1.15 1.66 2.12 2.24 1.14 1.98 2.23 2.23

compress 1.00 1.61 1.90 1.92 1.03 1.73 2.24 2.33 0.99 1.82 2.70 3.05

eqn 1.00 1.41 1.61 1.63 1.17 1.80 2.24 2.30 1.13 1.74 1.98 2.02

eqntott 1.00 1.47 1.57 1.58 1.03 1.61 1.88 1.92 1.00 1.47 1.58 1.59

espresso 1.00 1.45 1.68 1.71 1.04 1.59 1.94 2.02 0.99 1.53 1.85 1.91

grep 1.00 1.72 2.34 2.68 1.02 1.93 3.17 4.19 1.01 1.93 2.86 4.00

lex 1.00 1.53 2.02 2.03 1.03 1.80 2.80 3.02 1.01 1.61 2.19 2.27

qsort 1.00 1.67 2.25 2.66 1.00 1.68 2.29 3.22 1.00 1.66 2.22 2.61

tbl 1.00 1.44 1.63 1.70 1.04 1.65 2.11 2.30 1.02 1.64 2.22 2.46

wc 1.00 1.40 1.61 1.64 1.23 1.88 2.33 2.40 1.21 2.08 2.94 3.38

yacc 1.00 1.39 1.62 1.64 1.06 1.60 2.04 2.15 1.00 1.65 2.11 2.29

early. This resulted in the clear performance advantage of restricted in-order execution

for lex and qsort.

The ability to examine a large section of code to make scheduling decisions gives

static code scheduling most of its performance advantage. With general code percolation

support, the static code scheduler can concurrently execute instructions from di�erent

iterations of a loop. Wc and compress are examples in which general in-order execution

works better than restricted out-of-order execution. The bodies of several important

loops in these programs start with memory load operations. With loop unrolling and

general code percolation support, the static code scheduler is able to concurrently exe-

cute operations from di�erent iterations to improve performance. In the restricted code

percolation model, however, the static code scheduler does not allow the load operations

to percolate into previous iterations. Therefore, the iterations are fetched sequentially

from memory. By the time the operations from one iteration are fetched, it is already

too late to execute them in parallel with the operations from the previous iteration. As

44

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8

Speedup

Issue Rate

Restricted In-Order Execution 3

3

3

3
3

Restricted Out-of-Order Execution +

+

+

+

+

General In-Order Execution 2

2

2

2

2

Figure 4.2: Speedup for 8KB data cache.

a result, general in-order execution has a clear performance advantage over restricted

out-of-order execution for wc and compress.

4.4.2 Small cache results

Figure 4.2 presents speedup results for an 8K data cache. Each data point represents

the harmonic mean of speedup over the base architecture for all benchmark programs.

Cache misses degrade the performance of all architectures. Restricted out-of-order exe-

cutions tolerate the cache misses better than the in-order execution models.

Figure 4.3 presents speedup results for a 16K data cache. The performance of the in-

order execution models in Figure 4.3 is slightly better than was for those in Figure 4.2.

On the other hand, the performance of restricted out-of-order execution was virtually

identical in both cases. This shows that the performance of restricted out-of-order exe-

cution is less sensitive to cache size than in-order execution models.

45

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8

Speedup

Issue Rate

Restricted In-Order Execution 3

3

3

3
3

Restricted Out-of-Order Execution +

+

+

+

+

General In-Order Execution 2

2

2

2

2

Figure 4.3: Speedup for 16KB data cache.

Table 4.4: Individual benchmark program results for 8KB cache.

con�g 1ri 2ri 4ri 8ri 1ro 2ro 4ro 8ro 1gi 2gi 4gi 8gi

cccp 1.00 1.40 1.59 1.61 1.06 1.57 1.83 1.88 1.03 1.52 1.69 1.78

cmp 1.00 1.28 1.47 1.47 1.17 1.69 2.15 2.27 1.13 1.95 2.19 2.19

compress 1.00 1.46 1.64 1.65 1.20 1.77 2.08 2.15 0.99 1.60 2.08 2.25

eqn 1.00 1.39 1.58 1.59 1.20 1.83 2.23 2.27 1.12 1.69 1.91 1.94

eqntott 1.00 1.44 1.54 1.54 1.07 1.65 1.92 1.94 1.00 1.44 1.54 1.55

espresso 1.00 1.43 1.64 1.67 1.07 1.63 1.96 2.04 0.99 1.51 1.80 1.85

grep 1.00 1.72 2.33 2.68 1.02 1.94 3.17 4.20 1.01 1.93 2.85 3.97

lex 1.00 1.52 1.98 1.99 1.05 1.80 2.75 2.95 1.01 1.59 2.14 2.21

qsort 1.00 1.54 1.94 2.19 1.12 1.78 2.33 2.91 1.00 1.53 1.92 2.16

tbl 1.00 1.43 1.60 1.66 1.09 1.69 2.10 2.26 1.02 1.61 2.12 2.33

wc 1.00 1.39 1.60 1.64 1.40 1.89 2.33 2.40 1.21 2.07 2.92 3.35

yacc 1.00 1.38 1.60 1.62 1.08 1.63 2.05 2.16 1.00 1.62 2.05 2.22

46

Table 4.5: Individual benchmark program results for 16KB cache.

con�g 1ri 2ri 4ri 8ri 1ro 2ro 4ro 8ro 1gi 2gi 4gi 8gi

cccp 1.00 1.40 1.60 1.62 1.05 1.56 1.82 1.88 1.03 1.52 1.70 1.79

cmp 1.00 1.29 1.47 1.47 1.16 1.67 2.14 2.25 1.14 1.96 2.21 2.21

compress 1.00 1.50 1.71 1.72 1.14 1.78 2.17 2.24 0.99 1.66 2.24 2.45

eqn 1.00 1.41 1.60 1.62 1.18 1.81 2.23 2.30 1.13 1.72 1.96 2.00

eqntott 1.00 1.45 1.55 1.55 1.06 1.63 1.91 1.94 1.00 1.45 1.56 1.56

espresso 1.00 1.44 1.66 1.68 1.05 1.60 1.93 2.01 0.99 1.52 1.82 1.88

grep 1.00 1.72 2.33 2.68 1.02 1.93 3.17 4.20 1.01 1.93 2.86 3.99

lex 1.00 1.52 1.99 2.01 1.04 1.80 2.78 2.98 1.01 1.59 2.16 2.23

qsort 1.00 1.58 2.03 2.33 1.07 1.73 2.31 3.01 1.00 1.57 2.01 2.30

tbl 1.00 1.43 1.62 1.69 1.05 1.65 2.10 2.29 1.02 1.63 2.19 2.43

wc 1.00 1.39 1.61 1.64 1.23 1.89 2.33 2.40 1.21 2.07 2.93 3.38

yacc 1.00 1.38 1.61 1.63 1.06 1.62 2.05 2.16 1.00 1.63 2.09 2.26

47

5. CONCLUSIONS

In the process of designing an architecture, the support of a good compiler cannot

be ignored. The IMPACT-I C compiler is retargetable, and can easily integrate with

other optimizers and lower-level tools. This integration is possible through LCODE,

the IMPACT-I low-level intermediate code. By constructing the IMPCC/MIPS code

generator, a platform for RISC architecture studies has been established. In addition

to the code generator, we have constructed two low-level supporting tools: an LCODE

pro�ler and an LCODE trace generator. These two tools provide accurate and e�cient

ways of interpreting LCODE instruction level information. With an LCODE pro�ler,

accurate instruction count and accurate branch
ow directions are measured. With an

LCODE trace generator, an accurate instruction execution sequence is generated. We

have shown the applicability of these low-level supporting tools by an example: the study

of two alternative approaches to supporting code scheduling for multiple-instruction-issue

processors. Overall, dynamic code scheduling performs slightly better than static code

scheduling, but they both achieve substantial improvement compared to the model with

no scheduling.

48

The development of low-level supporting tools is an ongoing process. The number of

supporting tools is expected to grow. By conforming to the standard interface, future

RISC architecture studies acquire immediate support from all of the supporting tools.

49

REFERENCES

[1] G. Kane, MIPS RISC Architecture. Englewood Cli�s, NJ: Prentice-Hall, 1988.

[2] MIPS Computer Systems, MIPS Language Programmer's Guide, 1986.

[3] G. J. Chaitin, M. A. Auslander, A. K. Chandra, and J. Cocke, \Register allocation
via coloring," Computer Languages, vol. 6, pp. 47{57, 1981.

[4] C. B. Stunkel and W. K. Fuchs, \TRAPEDS: producing traces for multicomputers
via execution driven simulation," in Proc. ACM SIGMETRICS '89 and PERFOR-

MANCE '89 International Conference on Measurement and Modeling of Computer

Systems., (Berkeley, CA), pp. 70{78, May 1989.

[5] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction,"
IEEE Transactions on Computers, vol. c-30, no. 7, pp. 478{490, July 1981.

[6] J. L. Hennessy and T. Gross, \Postpass code optimization of pipelined constraints,"
ACM Transaction on Programming Languages and Systems, vol. 5, pp. 422{448,
July 1983.

[7] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \Im-
pact: An architectural framework for multiple-instruction processors," in Proceeding

of the 18th Annual International Symposium on Computer Architecture, (Toronto,

Canada), June 1991.

[8] R. M. Tomasulo, \An e�cient algorithm for exploiting multiple arithmetic units,"

IBM Journal of Research and Development, vol. 11, pp. 25{33, Jan. 1967.

[9] J. E. Thornton, Design of a Computer: The Control Data 6600. Glenview, IL: Scott,

Foresman and Co., 1970.

[10] Y. N. Patt, W. W. Hwu, and M. C. Shebanow, \Hps, a new microarchitecture:

Rationale and introduction," in Proceeding of the 18th Annual Workshop on Micro-

programming and Microarchitectures, (Asilomar, CA.), Dec. 1985.

50

APPENDIX A AN EXAMPLE OF CODE GENERATION

A.1 Sample Program

#define N 10

double sum[N];

main()

{

int i;

for (i=0; i<N; i++) {

sum[i] = i;

printf("sum[%d] = %2.2f\n",i,sum[i]);

}

}

51

A.2 LCODE Program

(ms bss)

(global _sum)

(align 8 _sum)

(reserve 80)

(ms text)

(global _main)

(function _main 1.000000)

(cb 1 1.000000 (flow 0 2 1.000000))

(op 0 define ((mac $return_type i))(()()()))

(op 1 define ((mac $local i))((i 0)()()))

(op 2 define ((mac $param i))((i 16)()()))

(op 3 prologue (())(()()()))

(cb 2 1.000000 (flow 0 3 1.000000))

(op 4 mov ((r 1 i))((i 0)()()))

(op 5 mov ((r 10 i))((l _sum)()()))

(cb 3 10.000000 (flow 1 3 9.000000) (flow 0 4 1.000000))

(op 6 i_f2 ((r 2 f2))((r 1 i)()()))

(op 7 st_f2 (())((r 10 i)(i 0)(r 2 f2)))

(op 8 mov_f2 ((mac $P6 f2))((r 2 f2)()()))

(op 9 mov ((mac $P0 i))((s "sum[%d] = %2.2f\n")()()))

(op 10 mov ((mac $P1 i))((r 1 i)()()))

(op 11 jsr (())((l _printf)()()))

(op 12 add ((r 1 i))((r 1 i)(i 1)()))

(op 13 add_u ((r 10 i))((r 10 i)(i 8)()))

(op 14 bne (())((r 1 i)(i 10)(cb 3)))

(cb 4 1.000000 (flow 1 5 1.000000))

(cb 5 1.000000)

(op 15 epilogue (())(()()()))

(op 16 rts (())(()()()))

(end _main)

52

A.3 MIPS Code Generation Result

.data

.globl sum

.align 3

.comm sum 80

.sdata

$$$_main_0:

.ascii "sum[%d] = %2.2f\n\X00"

.text

.globl main

.ent main

main:

$_main_1:

subu $sp, $sp, 40

sw $31, 36($sp)

sw $17, 32($sp)

sw $16, 28($sp)

.mask 0x80030000, -4

.frame $sp, 40, $31

$_main_2:

move $16, $0

la $17, sum

$_main_3:

mtc1 $16, $f10

cvt.d.w $f8, $f10

s.d $f8, 0($17)

mfc1.d $6, $f8

la $4, $$$_main_0

move $5, $16

jal printf

addu $16, $16, 1

addu $17, $17, 8

bne $16, 10, $_main_3

$_main_4:

$_main_5:

lw $16, 28($sp)

lw $17, 32($sp)

lw $31, 36($sp)

addu $sp, $sp, 40

j $31

.end main

53

Table A.1: De�nition of the probing variables.

Name Usage

IMPACT BUF An array where each element of the structure con-

tains a line of the trace.

IMPACT BUF PTR A pointer pointing to the current element of IM-

PACT BUF.

IMPACT Lcode Read Table A function reading in all the static available in-

formation.

IMPACT Lcode fnid A global variable contains the function identi�ca-

tion number.

IMPACT Lcode cbid A global variable contains the control block iden-
ti�cation number.

IMPACT Lcode pro�le 1 A function process the trace information.

IMPACT Lcode pro�le 2 A function process the trace information.

A.4 Inserting Probes by the LCODE Pro�ler

Table A.1 provides the de�nition of the probing variables.

.data

.globl sum

.align 3

.comm sum 80

.text

.globl main

.sdata

$$$_main_0:

.ascii "sum[%d] = %2.2f\n\X00"

.text

.ent main

main:

la $3, __IMPACT_BUF

sw $3, __IMPACT_BUF_PTR

subu $sp, $sp, 16

sw $31, ($sp)

sw $4, 4($sp)

sw $5, 8($sp)

jal __IMPACT_Lcode_Read_Table

lw $31, ($sp)

lw $4, 4($sp)

54

lw $5, 8($sp)

addu $sp, $sp, 16

$_main_1:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 1

sw $24, __IMPACT_Lcode_cbid

li $25, 1

lw $3, __IMPACT_BUF_PTR

subu $sp, $sp, 8

sw $31, ($sp)

jal __IMPACT_Lcode_profile_1

lw $31, ($sp)

addu $sp, $sp, 8

subu $sp, $sp, 48

sw $31, 44($sp)

sw $17, 40($sp)

sw $16, 36($sp)

.mask 0x80030000, -4

.frame $sp, 48, $31

$_main_2:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 2

sw $24, __IMPACT_Lcode_cbid

li $25, 1

lw $3, __IMPACT_BUF_PTR

jal __IMPACT_Lcode_profile_1

move $16, $0

la $17, sum

$_main_3:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 3

sw $24, __IMPACT_Lcode_cbid

li $25, 1

lw $3, __IMPACT_BUF_PTR

jal __IMPACT_Lcode_profile_1

mtc1 $16, $f10

cvt.d.w $f8, $f10

s.d $f8, 0($17)

mfc1.d $6, $f8

55

la $4, $$$_main_0

move $5, $16

jal printf

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 3

sw $24, __IMPACT_Lcode_cbid

addu $16, $16, 1

addu $17, $17, 8

lw $3, __IMPACT_BUF_PTR

sw $16, 16($3)

li $24, 10

sw $24, 24($3)

li $24, 0

li $25, 2

jal __IMPACT_Lcode_profile_1

bne $16, 10, $_main_3

$_main_4:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 4

sw $24, __IMPACT_Lcode_cbid

li $25, 1

lw $3, __IMPACT_BUF_PTR

jal __IMPACT_Lcode_profile_1

$_main_5:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 5

sw $24, __IMPACT_Lcode_cbid

li $25, 1

lw $3, __IMPACT_BUF_PTR

jal __IMPACT_Lcode_profile_1

lw $16, 36($sp)

lw $17, 40($sp)

jal __IMPACT_PRINT_BUF

lw $31, 44($sp)

addu $sp, $sp, 48

j $31

.end main

56

A.5 Inserting Probes by the LCODE Trace Generator

.data

.globl sum

.align 3

.comm sum 80

.text

.globl main

.sdata

$$$_main_0:

.ascii "sum[%d] = %2.2f\n\X00"

.text

.ent main

main:

la $3, __IMPACT_BUF

sw $3, __IMPACT_BUF_PTR

subu $sp, $sp, 16

sw $31, ($sp)

sw $4, 4($sp)

sw $5, 8($sp)

jal __IMPACT_Lcode_Read_Table

lw $31, ($sp)

lw $4, 4($sp)

lw $5, 8($sp)

addu $sp, $sp, 16

$_main_1:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 1

sw $24, __IMPACT_Lcode_cbid

subu $sp, $sp, 48

sw $31, 44($sp)

sw $17, 40($sp)

sw $16, 36($sp)

.mask 0x80030000, -4

.frame $sp, 48, $31

$_main_2:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 2

sw $24, __IMPACT_Lcode_cbid

move $16, $0

57

lw $3, __IMPACT_BUF_PTR

li $24, 4

jal __IMPACT_Lcode_profile_2

la $17, sum

lw $3, __IMPACT_BUF_PTR

li $24, 5

jal __IMPACT_Lcode_profile_2

$_main_3:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 3

sw $24, __IMPACT_Lcode_cbid

mtc1 $16, $f10

cvt.d.w $f8, $f10

lw $3, __IMPACT_BUF_PTR

li $24, 6

jal __IMPACT_Lcode_profile_2

lw $3, __IMPACT_BUF_PTR

sw $17, 16($3)

li $24, 0

sw $24, 24($3)

s.d $f8, 0($17)

li $24, 7

jal __IMPACT_Lcode_profile_2

mfc1.d $6, $f8

lw $3, __IMPACT_BUF_PTR

li $24, 8

jal __IMPACT_Lcode_profile_2

la $4, $$$_main_0

lw $3, __IMPACT_BUF_PTR

li $24, 9

jal __IMPACT_Lcode_profile_2

move $5, $16

lw $3, __IMPACT_BUF_PTR

li $24, 10

jal __IMPACT_Lcode_profile_2

lw $3, __IMPACT_BUF_PTR

li $24, 11

jal __IMPACT_Lcode_profile_2

jal printf

li $24, 0

sw $24, __IMPACT_Lcode_fnid

58

li $24, 3

sw $24, __IMPACT_Lcode_cbid

addu $16, $16, 1

lw $3, __IMPACT_BUF_PTR

li $24, 12

jal __IMPACT_Lcode_profile_2

addu $17, $17, 8

lw $3, __IMPACT_BUF_PTR

li $24, 13

jal __IMPACT_Lcode_profile_2

lw $3, __IMPACT_BUF_PTR

sw $16, 16($3)

li $24, 10

sw $24, 24($3)

li $24, 14

jal __IMPACT_Lcode_profile_2

bne $16, 10, $_main_3

$_main_4:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 4

sw $24, __IMPACT_Lcode_cbid

$_main_5:

li $24, 0

sw $24, __IMPACT_Lcode_fnid

li $24, 5

sw $24, __IMPACT_Lcode_cbid

lw $3, __IMPACT_BUF_PTR

li $24, 16

jal __IMPACT_Lcode_profile_2

lw $16, 36($sp)

lw $17, 40($sp)

jal __IMPACT_PRINT_BUF

lw $31, 44($sp)

addu $sp, $sp, 48

j $31

.end main

