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CHAPTER 1

INTR ODUCTION

Modern computersystemscontinueto achiese greaterperformanceby exploiting higher
levels of instruction-level parallelism(ILP). Suchsystemsare increasinglydependentpon
code optimizationsto maximize execution efficiency andto reveal the ILP to the underly-
ing computerarchitecture Unfortunately the trendtowardincreasinglymodularsoftwarehas
dwindledthe optimizationscopeof the compiler Becauseof suchtrends,post-linkoptimiza-
tion, definedasprogramoptimizationthatoccursafterbinary creation,is becominganimpor-
tant computersystemcomponent.lt providesnew waysto improve applicationperformance
by availing its whole-applicatiorscopeandby exploiting informationthat wasunavailableat
compile-time.

Suchcodeimprovementsanbe performedoothstaticallybetweerprogramexecutionsand
dynamicallywhile aprogramis running. Toolslike Spike [1], [2] andVulcan[3] performstatic
post-linkoptimizationof applicationausingprofile-feedbacknformation. Thesetoolsperform
optimizationson binary executablesnuchlik e thoseperformedduring compilation.Dynamic
post-linkoptimizationsystemsncludeTransmeta Crusoegprocessorfd], whichuselow-level
softwareandhardwaresupportandthe Aries Translatof5], whichis apurelysoftwaresystem.

Post-linktechnologiesmprove uponstaticcompilationtechniquesy exploiting key infor-

mationabouttherun-timeernvironment.Suchinformationis gainedbothwhentheapplication



is installedandwhenthe applicationis executedon the endusers machine. At install-time,
the exact processomodelis known. The modelinformationincludesthe preciselateng of

instructions,the numberandtypesof functionalunits, andthe size of caches.Additionally,

the exactdynamically-linkedlibraries (DLLs) thatwill be employed becomeavailableat run
time, andthe actualusagepatternscanbe discernedhroughprofiling. Becausenoneof this
informationwas available at compiletime, this knowledgerepresentsignificantopportunity
to furthercustomizeapplications.

To take advantageof thesepost-link opportunities,an optimizer requiresboth a detailed
profile-gatheringnechanismandan effective optimizationplatform. Clearly, optimizationfo-
cusshouldbeuponheaily executedcodeto maximizethe potentialbenefit,thereforeapplica-
tion profiling is a key factor The quantityof codeproducedmustalsobe constrainedo that
applicationinstructioncache,branchprediction,and pagingresourcesare not overly taxed.
Furthermore]LP optimizationoften favors one usagepath at the expenseof anothey which
placesa burdenonthe codeprofiling andselectionrmechanisms$o make wise choices.

Thetransformatiorplatformis alsocritical. It mustbepowerful enoughto enablebeneficial
transformationsvhile limiting its consumptiorof time andresourcesMary run-timesystems
have to stall the applicationwhile performingtransformationsthusrequiringthe benefitsto
directly outweighthe transformationcosts. Many post-link systemsrely on an instruction-
trace-baseglatformbecausdrace-basettansformationgeneratdittle analysisandoverhead
andyet achiere reasonablg@erformancegains[6]. While thesesystemsallow for significant
local customizationthey lack the scopefor broaderoptimizations suchasloop-level transfor

mations.



This thesisintroducesvacuumPacking, a new post-link optimizationtechniquefor detect-
ing and packagingregions of performance-criticatodethat includesboth a swift profiling
mechanisnmanda solid platformfor transformationThetechniquds foundedin region-based
optimization[7], which enableghe optimizerto focuson heavily executedcodeblocks,even
when control-flov crossedunction boundaries. Ratherthan using traditional aggreate or
summarizedxecutionprofile weightsto form staticregions,asis donewithin acompiler, this
approachusesa transparenhardware profiler to automaticallydetectexecution phasesand
recordbranchprofileinformationfor eachnew phase A smallsetof interprocedurategionsis
formedfor eachphaseof programactiity. By focusingontheseencapsulatetkgions,anopti-
mizerfocusesonthecodethatis responsibléor anoverwhelmingmajority of executionduring
eachphase Cachdocality couldbeincreasedandILP optimizationcouldbeappliedto favor
theseregions. Several regionsmay in fact containcopiesof the samesegmentof codeif the
sgmentis utilized in several phases.The region formationprocesreseresexit semantics
from the new region in casenonreagion functionsareaccessedput will focusthe optimizer’s
efforts on thetruly hot code. Furthercustomizatiorof thesefunctionscanalsobe performed
to paredown theincludedfunctionsto just the hot blocks,inline the region functions,andap-
ply aggressie ILP optimizationandschedulingo construchew tight andmodularcodeunits.
The strat@y is animprovementover otherdynamicoptimizationsystemsecauset provides
a muchlarger scopefor optimizationthanthosethat operateon tracesand exploits specific
executioncharacteristicpresenin eachdistinctphase.

Thealgorithmsusedutilize efficientinformationpropagatiorandestimatiorntechniquego

compensatéor theincompleteandoftenincoherenbranchprofile informationthatarisesdue



to the natureof hardware profilers. The techniqueminimizesunnecessargodereplicationby
making efficient connectionsdbetweenthe original codeandthe nev codeandlinking code
regionsat selectpointsto facilitate phasetransitions.By usinga small setof profile informa-
tion, coderegionscanbe generatedvhich arespecializedor eachphaseof executionandthat
capturean averageof morethan80% of total programexecution. Furtherit is shavn thatthe
approaclhis very effective in extractingcoderegionsthatcapturethe phasingbehaior of pro-
grams,thatthe codesizeincreasds moderateandthatthe coderegionsbenefitfrom sample
optimizationsto improve the performancef programs.

VacuumPackingis athree-stegprocesdor utilizing hardware profiling to detectprogram
phasesextractingcoderegionsthat correspondo thesephasesandproviding a platform for
post-link optimizationby conditioningtheseregionsandconnectinghemto the original pro-
gram. Theimplementatiorpresentedor this techniqueusesthe hot spotdetectionprocesg8]
to provide control-flowv profile informationfor eachphaseof programexecution. Threealgo-
rithmsneededo constructhecodemoduledor optimizationaredescribedThefirst algorithm
utilizestheresultsof the hardwareprofiler, the Hot SpotDetector to identify initial regions. A
secondalgorithmdescribesa techniquefor growing the coderegionsto mitigate both the ef-
fectsof missingprofile informationdueto hardwaretablecontentionandthe effectsof spotty
profile informationdueto temporarilydispersedexecution. Finally, a third algorithmis pre-
sentedhatdescribesiow executioncanbetransferredo the properregion evenwhenmultiple
phase-basegtgionsarerootedat the samefunctionandmary containlargely thesameblocks.
While this thesisevaluateshe methodusinga static post-link optimizer, the techniquecould

be extendedfor usein adynamicsystemaswell.



CHAPTER 2

RELATED WORK

The VacuumPacking techniqueexploits an intensve profiling mechanismin an effort to
form denselyexecuted packagedoderegionscustomizedo matchparticularphasesf pro-
gramexecution. Thetechniques designedo treatthe codethat comprisesa programphase
as a single unit, called a region [7], that containsthe instructionsfrequently executeddur-
ing the phase.A greatdeal of previous work hassimilarly focusedon the problemof using
profile-feedbaclo bringimportantcodetogetheiandoptimizeit, andonwaysof inexpensvely

collectingsuchfeedbacknformation.

2.1 CodePlacementand Optimization Mechanisms

Like VacuumPacking,interproceduratodeplacemenbptimizationg9] [10] aimto colo-
cateinstructionswith high temporallocality to improve instructioncacheperformance put
for the mostpart theseattemptshave focusedon the movementof entire functionsandhave
aimedonly to improve cachingor pagingperformance.Lik e the Hot Cold optimization[1],
the presentediegion-basedpproachusesa staticpost-linkoptimizationtool to colocatehear-
ily executedblocksthatthenalsobecomethe focusof optimization. Theinfrequent,or cold,

blocksareleft away from theimportantcodeblocksandarelargely untouched.



To form the hot regions, this work utilizes a partial-functioninlining technique[11] to
expandregionsby growing themto deepercalling contextswhile replicatingonly theimportant
blocksof thefunctionsbeinginlined. The stratgyy hasbeenadaptedor post-linkoptimization
systemsby inlining only into regions extractedfrom the original code,forming a separate
entity with links to and from the original code. This limits modificationto the bulk of the
applicationcomparedo astrateyy thatoperatedn regionsleft integratedn their original code
locations.Thesenew regionsmaybeformedacrosdibrary boundarie$o achieze abroadscope
without the explosive codegrowth of whole functioninlining. Furthermorewithin a region,
interprocedurabptimizationsthat were not available at compile-timemay be employed. In
the past,suchglobal optimizationsin post-link optimizershave mostly focusedon peephole
optimizationssuch as thosethat eliminate function-boundaryoverheadby breakingcalling
conventiong12]. SinceVacuumPackingfocusesnterprocedurabptimizationonareasonably

sizedregion, moreaggressie transformationsnight befeasible.

2.2 Post-link Optimization Systems

Virtually all dynamic, post-link systemsuse executionprofilesto focus optimizationon
tracesof execution muchasearlycompilerschedulingechniquesisedthe profilesto focuson
individual traceswithin the applicationcode[13], [14]. Suchtraceslimit optimizationscope
but allow for very inexpensve transformations.

Morerecentcompilertechnique$averelieduponcodemotionbeyondmeretraces.For ex-

ample wavefrontschedulind15] providesanefficientmethodor improving performancever



traceschedulingapproacheshroughglobal schedulingwithin a function. Similarly, region-
basedapproachearelik ely to boostfuture post-link optimizationsystemseyondthatof cur
renttrace-basedapabilitiesof dynamicoptimizers.

Reagions provide a corvenientalternatve platform to tracesfor nearglobal optimization
techniquesvithoutunnecessarilincreasinghecompleity of performingcodeimprovements.
Thisis achievedby focusingoptimizationefforts on amodestlysizedcodebasethatrepresents

asignificantportionof execution.

2.2.1 Dynamic optimization systems

Dynamo([16] is a dynamicsoftware optimizationsystemwhich generatesptimizedcode
tracesin a codecadhe, a memoryspaceallocatedfor storageof optimizedcode. The traces
formedfollow thepathof currentexecution.Thesoftwareoverheadf suchasystenlik ely lim-
its its practicalscopeto suchtraces A run-timehardwareoptimizationsystemtherePLay[17]
framework, usesa cachestructurefor storingoptimizedtracesof execution.Sincethe number
of storedtracess limited by thestorageof this cachereplacementf traceds frequentandthus
very time-consumingracetransformations not possible. Another system,ROAR [8], [18]
useshardwareprofiling anda software-basedacheto increasehepersistencef theoptimized

traceshataregenerated.

2.2.2 Static optimization systems

Off-line optimizerssuchas Spike [1], [2] andVulcan[3] arenot asconfinedto tracesas

dynamicsystems.In suchstatic systemspptimizationtime and spacerequirementsre less



of a concernasthe overheadof optimizationdoesnot directly impact the running time of
the application. However, they both could benefitfrom this techniques ability to statically
capturecodethat representa dynamicphaseof execution. By selectingphase®f execution
asthe optimizationregions, VacuumPacking further enablessuch systemsby allowing for

specializatiorthatspecificallytargetsthesephases.

2.2.3 Units of optimization

Previous work examinedseveral units of optimizationfor a dynamic optimization sys-
tem[6]. It consideredunitsincludingtraces,loops,andfunctions,andconcludedthatloops
providedthebestperformanceavhile the performancef muchsimplertracesollowedsecond.
The techniquepresentedn this work is targetedto an off-line optimizerandfor this reason
is designedo captureouterloopsfor maximumperformance.VacuumPacking providesan
further opportunityfor phase-specifioptimizationasits transformationunits are phasesof

execution.

2.3 Hardware Profiling Mechanisms

The VacuumPackingstrategy hasbeendesignedo exploit programphasedecauseach
phasenaturally correspond$o a particularcoderegion. A hardware profiling mechanisms
utilized to capturethesephasesandthe relative profile weightsof control-flov within these

regions.



2.3.1 Statistical profiling mechanisms

A numberof previousstratgjiesexist to analyzethe phasingpropertiesof applicationsput
mostrely on statisticalsamplingof executinginstructions. Thesesamplesare subsequently
analyzedin softwareto determinephasecomposition. Hardware samplingmechanismsre
oftenusedto gatherdow-overheadprofiles,but generallydo not have theresolutionrequiredto
separat@ne phasefrom another Theserely on programcountersamplingover long periods
of time to producewhole-eecutionaggregateprofiles[19], [20], [21].

The Digital ContinuousProfiling Infrastructureutilizes the ProfileMe[22] mechanismo
collectdetailedinformation,suchasbranchdirections,aboutrandomlysamplednstructions.
BasicBlock Distribution Analysis[23] combinesintense periodic sample-basegrofiling to

determinghe compositionof repetitve phases.

2.3.2 Phaseprofiling mechanisms

Specializedhardware componentdhave beenproposedo accuratelydetectphases.The
dynamicworking setsignaturedetectol{24] intensively monitorsthe executingblocksfor pat-
ternshiftsandcouldbeusedto triggera profiling phaseasdescribedn Section3.4. However,
thesephasesare basedon instructioncacheblock working setsratherthanthe control-flov
phasegargetedby VacuumPacking. While thereis likely somecorrelationbetweena cache
block working setphaseanda phasedefinedby branchbehaior, sucha techniquecould not
distinguishbetweendifferentphaseghat, while having differentcontrol-flov behaior, share

significantamountsof code. This distinctionis evidentin Figure2.1. Thoughthe directional



branch
bias

phas
shift

(a) (b)

Figure2.1 Branchbiasphaseshift.

biasesof two hot branchesarereversed Figure2.1(a)and(b) have the working setsincethey

containidenticalblocks. Thisissueis discussedurtherin Section3.4.

2.3.3 Hardware profile buffers

A mechanisntloserto that usedin this work, the profile buffer [25] is a smalltablethat
interactswith thereorderbuffer to recordbranchdirectionsoverashorttime window to garner
profile weights. The operatingsystemperiodically samplesthis table and gradually builds
an approximatearc-weightprofile. As describedn Section4.1, VacuumPackingutilizesthe
Hot SpotDetector[8] detailedin Section3.1to performintensie profiling andto analyzethe
detectedlocksfor stability. All of thesehardwareprofiling approachedjowever, are“lossy”
in thatthe collecteddatais imperfectandincompletedue to the randomnessf samplingor
the limitations of hardware structures.VacuumPacking overcomeghis missinginformation

by usinginferenceandheuristicto selectthe hot region andestimateprofile weights.
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CHAPTER 3

HOT SPOT DETECTION AND MONIT ORING

3.1 Hot Spot Detector

During the first stepof the VacuumPacking processthe Hot SpotDetector(HSD), Fig-
ure 3.1, is the monitoringmechanisnresponsibldor the detectionof hot branchesn eachof
the phaseof execution[8]. The Hot SpotDetectorconsistsof two componentsthe Branch
Behavior Buffer (BBB) whichis atablefor profiling the executingbranchesandthe Hot Spot
DetectionCounter(HDC) whichis a simplecountingmechanismnior estimatingthe execution
coverageof thebranchesurrentlytrackedin the BBB. As abranchretiresfrom the processar
arecordof its executionis passedo the detector The staticaddressof the branchis usedto
locatea tableentry wherethe branchs dynamicbehaior is recorded.This takulationis done
by incrementingthe executedcounterfor every branchandthe taken counterfor every taken
branch.

The BranchBehavior Buffer maintainsts contentsusinganapproximatednostfrequently
usedretentionpolicy insteadof a moretraditional, mostrecentlyusedcacheretentionpolicy.
If free entriesexist, eachnew staticbranchat retirements provisionally givenanemptyentry
andgranteda window of time, referredto asarefreshinterval, to accumulatelynamicprofile

information.If noentryis available theretiredbranchis simply discardedA staticbranchthat

11



Branch Behavior Buffer Hot Spot Detection Counter

BranchExec Taken Candidate

Refresh Time‘ Addr Cntr Cntr Flag

Branch Address

Saturating Adder

>

1

is eithermissingfrom theBBB orin aBBB entryonaprovisionalbasiss calledanoncandidate

>

At Zero:
Hot Spot
Detected

Figure 3.1 Hot SpotDetector

branch. If anew staticbranchexecutedrequentlyenoughbeforetheendof therefreshinterval,
it is marked asa candidatebrand. At theendof eachrefreshinterval, noncandidatéranches
have eitherbeenpromotedo candidatdranche®r areeliminatedfrom thetableby therefresh
to make room for other brancheshat may be more important. Oncea branchbecomesa
candidatebranch,it is no longerreviewed at the refreshintervals, andis lockedinto the table
for longertermprofiling. After severalrefreshintervals,the entriesshouldbe populatedoy the
mostfrequentlyexecutedbranches.

The Hot SpotDetectionCounteris designedasa simple up/dovn saturatingcounterthat
countsup by I whennoncandidatdranchesreexecutedanddown by D for candidatesBy
choosinghe I andD value,onedetermineshecumulatve level of importanceequiredoefore
asetof candidatéoranchesvill triggerahotspotdetectior[8]. For example with I setto 2 and

D setto 1, atleasttwo thirds of theretiredbranchesnustbe candidatebranchegor the HDC

12



to proceeddownward. If this happensonsistentlyHDC will quickly reachzero,indicating
thatthe candidatebranche$ave consistentlyaccountedor the requiredminimum percentage
of the dynamicbranches.Thus, a hot spotdetectionis signaled. All brancheswvhich were
candidatebranchesat the time of detectionare chosenas hot spotbranches The hot code
region definedby thesebranchess calleda hot spot

All of thebranchegcandidatesndnoncandidatesh the BBB areexaminedat the endof
a secondmuchlongerreview periodreferredto asthe resetinterval. If the resetinterval is
reachedwithout triggeringa detection,the BBB is flushedandall branchesecomenoncan-
didatesonceagain. This conditionindicatesthat control-flow is not currentlyconstrictedo a

consistentlypehaing setof branches.

3.2 PreviousHot SpotMonitoring Mechanisms

In orderto monitor and control profiling by the Hot Spot Detectorproposedn [26], an
additionalhardware structurewas used,called the Monitor Table, shavn in Figure3.2. The
operationof this tablewassimilar to that of the BBB; however, the monitor tableconsidered
only of atagarrayof branchesvith oneentryfor every branchin every hot spotthatwasthus
far detected The Monitor Tableenabledhe profiling systento detectwhena high percentage
of therecentlyexecutedbranchesvere outsideof all of the previously detectechot spots. In
thisway, it determinedvhethera new hot spotdetectionwasnecessary

In the Monitor Table, the addressesf all hot branchesare storedin its tag array Each

retiring branchs addresss looked up in this array to determineif the currentexecutionis

13



Monitor Table Monitor Counter

Branch Valid
Addr  Bit

Saturating Adder

Branch Address

=

At Zero:
Stop Profiling

.

At Max:
Start Profiling

Figure3.2 Monitor Table.

within ahot spot.If avalid entryfor aretiring branchis found,a saturatingcountercalledthe
Monitor Counteris decreasetly thedecremenvalueD. Otherwisejf novalid entryis found,
this counteris increasedy theincrementvaluel. As in theHDC describedn Section3.1,the
valuesfor D andl determinethe thresholdratio of hot spotto non-hotspotbranchesMerten
etal. foundthatby usingthis Monitor Tablehardware,very infrequentbut intenseprofiling by
the BBB couldfind a smallnumberof hot spotsthatencompassetthe overwhelmingmajority
of executionof the program.

In subsequenivork, the HSD wasusedto drive run-timeoptimization[8],[18],[27]. Like
the otherdynamicoptimizationsystemsnentionedn Section2.2,optimizationwasperformed
on individual traces. Using the HSD, a setof traceswere formed from the executionseen
within hotspots.Thedetectiorprocessn theHSD wasenabledy excessve executionoutside
of thesetraces transitioningbetweertracesfrom differenthot spots,or transitioningbetween

thetracesandoriginal code.

14



To meetthe goalsof the systemdetailedin this work, it is not sufficientto determineonly
that executionis mostly limited to instructionsthat have beendetectedin somepreviously
detectedhot spot. Sincethis thesistargetsan off-line transformatiorfed by the profiling of
an unalteredprogram,monitoring the transitionsfrom extractedhot spotsfor the purposeof
controlling future detectionis alsonot a practicalsolution. Instead the detectionof the next
hot spotshouldbe enabledvhenerer programexecutionhastransitionednto a nev phaseof
execution. Differentphasef executionmay actually sharethe samestaticinstructions,and
suchphasesnay be missedby controlling hot spotdetectionusingthe Monitor Table. This
work desiresto detecta new hot spotwhenerer the control-flov behaior of a programhas
changedevenif theworking setof branchegor the programhasnot changed.To accomplish
this andto bettersupportuseof the BBB for off-line post-link optimization,an extensionto

the BBB is proposed.

3.3 EnhancedBBB for Continuous Profiling

TheenhancedBB proposedn thiswork is presentedn Figure3.3. Two additionalflags,
the previous candidatetaken flag and the previous candidatenot taken flag, are shaded.An
addedcountertheevictedcandidatecounter is alsoshadedBy utilizing thesesingle-bitflags
andtheadditionalcounterthe BBB caneasilymonitorwhetherthe currentlydetectechot spot
differsfrom the last hot spotdetectedandwill signala real detectiononly whena transition

betweerphasesiasoccurred.
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Branch Behavior Buffer

Prev  Prev
BranchExec Taken Cand. Cand Cand
Addr Cntr Cntr Flag Taken Not Taken

Evicted
Cand
Cntr

Figure 3.3 EnhancedranchBehaior Buffer.

Usingthis extendedBBB, profiling for hot spotsproceedg$or the mostpartasproposedy
Merten[26]. Eachtime ahot spotis detectedhatdiffersfrom the previously detectechot spot,
the previous candidatetaken and not taken flags are setaccordinglyfor eachBBB entry that
correspondso a hot spotbranch.For heaily taken branchegthosewhosetaken counteris at
least70% of their executedcounter),the previous candidatdakenflag is set,andfor strongly
not takenbranchegthosewhosetakencounteris lessthan30% of their executedcounter) the
previous candidatenot takenis set. For the otherunbiasedhot spotbranchespoth the taken
andnottakenflagsareset.Finally, the hot spotbranchedor the currentdetectionarerecorded
by operatingsystemsoftware. Then,all of the entriesfor noncandidatéranchesarecleared,
andthe executedandtaken countersandthe candidatelag for all entriesareclearedJeaving
the candidatebranchesn the table, now marked as a noncandidatdoranch. The processof
detectionis thenrestartedthis time with the buffer primedwith the addressesf the hot spot
branchedgrom thelasthot spotdetection.Theseentriesremainflaggedasprevious candidates
using the two new flags. If they are subsequentlyemoved from the BBB underthe most

frequentlyusedpolicy, the evicted candidatecounteris incremented.Suchbranchesnstead
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could be locked into the BBB, but doing so might increasecontentionfor entriesand might
prevent the profiling of animportantbranch. If the resetinterval elapsesheforea hot spot
is detectedthe entire BBB is cleared,asin the original scheme forcing the next hot spot
detectionto be differentthanthe previous detection.

While anapplicationcontinueswithin thesamephasethe HSD will continueto repeatedly
detectthatphase Brancheghatwerepartof the setof hot spotbrancheswill quickly become
candidatesluring the next detection,indicatingthat no phasetransitionhasoccurred.Oncea

phasechangedoesoccut however, it will bedetectedn oneof threeways:

e Severalpreviouscandidatébranchesill notbecomecandidates

¢ Severalentrieswhich werenot previously allocatedto candidatedranchesvill become
candidates

e Thedirectionbiasof oneor morebranchwill change

All of theseconditionscanbe distinguishedoy comparingthe setsof candidatebranchesand
previous candidatebranches.The first threeconditionscanbe determinedoy the percentage

changan the hot spotbrancheswhichis determinedas

number of changed candidates

percent change in hot branches =

(3.1)

number of previous candidates

The numberof changedcandidatesncludesthosebrancheswvhich were previously hot spot
branchegbut are not candidatebranchesat the currentdetectionand thosebrancheswhich

werenotpreviously hotspotbranche$ut arenow candidatéoranchesThenumberof changed
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candidatesvhich still have entriesin the BBB is computedas

BBB changed candidates = Y (candidate flag ® previous candidate) (3.2)

all entries

Whereeachentrycanbe determinedo bea previouscandidateby

previous candidate = (prev. cand. taken flag V previous cand. not taken flag) (3.3)

However, thechangedtandidatesn the BBB donotaccounfor hotbranchesvhichhave been
evictedfrom the BBB throughtheleast-frequentlyusedreplacemenpolicy. Thetotal number

of changedcandidatesncludestheseevicted candidatesswell:

num. of changed candidates = BB B changed cand. + evicted cand. count (3.4)

Finally, in the calculationof the percentchangeof hot branchesthe numberof previous can-

didatess

number of previous candidates =

> (previous candidate) + evicted candidate count (3.5)

all entries

If the percentchangen hot branchess greaterthana setthreshold,a new hot spotdetection
is triggered;if thedifferences too small,the hotspotcurrentlydetectechasnotchangedrom

the previous detection.Note thatbecausef the way the percentchangein hot branchesvas
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defined,a 100% changemeansthat, for eachbranchin the original hot spot, the currenthot
spoteitherincludesaunique,additionalbranchor doesnotincludeoneof theoriginalbranches.
Underthis definition, the differencebetweerntwo hot spotscanbe greatethan100%.

Thefinal phase-changeondition,thatof changesn thedirectionbiasof hotspotbranches,
is alsofound from the previous candidateaken andnot takenflags. For eachentry, a change

in directionbiasis seenas

changed bias =

(taken A prev. cand. not taken flag) V (not taken A prev. cand. taken flag)  (3.6)

Thetotal changds directionbiasis the sumof thesechanges:

total changed bias = Z changed bias (3.7)

all entries

If the numberof brancheswith a changein bias surpassesa threshold,a nev phaseis also
consideredo have beendetected.

After eachdetectionof anunchangedhot spot,only the entriesmarked asprevious candi-
datesareretainedwhile the remainingentriesarecompletelyclearedalongwith the Hot Spot
DetectionCounter Again, all of the executedcounters taken counters,and candidateflags
areclearedaswell. In this way, the BBB is initialized for the next hot spotdetectionwith the
candidatdoranchedrom theoriginal detection. Additionally, thevalueof theevictedcandidate

counteris maintainedIf insteadthepreviouscandidateakenandnottakenflagswereupdated
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to thecurrentlydetectedetof candidatdoranchesor if theevictedcandidateeountemwasreset
ateachdetectiona gradualphaseshift might be overlooked.

A portionof asix-entryBBB is shavn in Figure 3.4 to demonstratéhe possibility for this
problem.A sequencef four hot spotdetectionss shavn in (a)-(d) assumingnsteadthatthe
previous candidateflag is upsetat eachdetection. The initial detectionof a hot spot,shown
in (a), includesfour candidatebranchesjabeledA, B, C andD. At the time of the second
detection,showvn in (b), the BBB includesa fifth candidatébranchE. The percentchangein
hot branchedor this detectionis 1/4 = 20%. If the previous candidatdlagsarethenupdated
to include E, the percentchangeat the next detectionshowvn in (c), with the failure of A to
becomea candidatejs 1/5 = 20%. Again, assuminghe EvictedCounterwereto be cleared,
the additionof candidateF in (d) resultsin only a 25% change.However, if the changewith
respectto the initial detection(a) is insteadconsidereda 3/4 = 75% changeis seen.If the
changethresholdis setabove 25% this large phaseshift that occurredgradually over four
detectionswill notbeseen.

Suchgradualtransitionsare someavhat infrequent, as previous studieshave shown that
phasdransitionsaregenerallyabruptandpronounced24],[28]. Figure3.5 shovs the number
of uniquehot spotdetectionsasthe thresholdfor the changein hot branchess varied. Note
thatthe scaleof Figure 3.5is logarithmic. In general,asthe thresholdis raised,the number
of differenthot spotsfound decreaseshowever, in a few instanceghe numberof detections
doesnot monotonicallydecreasavith respecto anincreasingthreshold. The changen this

thresholdaffects both the time at which hot spotsare detectedandthe branchesncludedin
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Figure 3.4 Gradualhotspottransition.

themat detectiontime. Theseslight differencescancausesmall variationsin the numberof
hot spotsdetected.

For a very small threshold,a greathnumberof very similar hot spotsare detected.Once
this thresholdbecomesnorereasonablethe changan the numberof new detectiondoecomes
rathersmall. For almostall benchmarksincreasingthe thresholdbeyond 35% yields little
reductionin the numberof uniquehot spots. This corroborateshe claims of previous work

thatphasedetections largely independentf the phasechangethreshold.
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Figure 3.6 Effectof branchbiasthresholdon uniquehot spotdetections.

Figure 3.6 demonstratethe numberof hot spotsfound to be uniquebecauseof the bias
changethreshold. Thesedetectionswere all performedwith the thresholdfor the percent
changein hot branchessetto 50%. Branchbiasonly hasan effect on differentiatingunique
hot spotsfor a thresholdof a smallnumberof branchesWith sucha smallthreshold several
uniquehot spotsaredistinguished.Thus,for almostall benchmarksthe numberof branches
thatchangebiasis small(aswill befurtherexaminedin Section5.2),but thenumberof unique
phaseglefinedby thesechangess significant.

Thoughthis enhancemertb the BBB allows the Hot SpotDetectorto be usedasa contin-

uousprofiling device,the HSD will still be signalingthe detectionof a new hot spotwhenever
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aphaseransitionoccurs.The majority of applicationshave severalphasesvhich arerepeated
throughout the programs execution.The mechanisnhatprocessesachphasedetectionwill
have to eitherrecorda detectionfor every phasetransition,or eliminatenonuniquehot spots
whentheir detectionis signaled. The detectionresultsusing a percentchangein hot branch
thresholdof 50% anda changedlirectionbiasthresholdof 1 branchareshown in Table3.1.
For eachbenchmarkinput, the total numberof hot spotdetectionsthe total numberof hot
spotswhich arerepeatf earlierdetectechot spots,andthe numberof detectionsvhich are
repeatof thelasthot spotdetectedaregiven. As shavnin Table3.1,theenhancedBB does
eliminatea majority of the nonuniquehot spotdetectionsHowever, the portion of suchdetec-
tions eliminatedvariesgreatly betweenbenchmark@andthe numberof nonuniquedetections
for somebenchmarkss still large. Furtherelaborationon the benchmark®valuatedandthe

experimentaketupis foundin Chapters.

3.4 Hot SpotPhaseSignatures

Ratherthanfiltering out nonuniquehot spotsby comparingevery branchwithin them,as
wasdonein this study a techniquélik e the working setsignatue [24] could be extendedto
produceahotspotsignatue. As previouslymentionedn Section2.3.2,aworking setsignature
is alossy-compresseagorking setrepresentationt is generatedby hashingportionsof thetags
of cachdinesincludedin theworking setto bitsin vector This bit-vectorsenesasa signature
for thegivenworking setandcanbe usedto make comparisonsigainsotherworking sets.In a

similar way, a hot spotsignaturecanbe generatedby hashingthe hot spotbranchego bitsin a
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Table 3.1 Hot spotdetectionsvith enhancedBB.

Benchmark Input | HS Detections| Non-unique | Sequencially % of
Detections Repeated| Non-unique
Detections | Detections

099.go A 579 505 117 23.2
124.m88ksim| A 1321 1313 1305 99.4
A 1925 1916 1361 71.0

130.1i B 380 374 210 56.1
¢} 6409 6394 3969 62.1

A 7058 7035 3649 51.9

132.ijpgy B 539 506 352 69.6
¢} 5176 5142 2804 54.5

A 18758 18750 17616 94.0

134.perl B 202 200 200 100.0
¢} 56 53 44 83.0

164.gzip A 33370 33314 28233 84.7
175.vpr A 10381 10351 10213 98.7
181.mcf A 1747 1718 1123 65.4
197.parser A 3454 3428 3130 91.3
A 232 210 121 57.6

255.\ortex B 1488 1460 602 41.2
¢} 3471 3443 2180 63.3

300.tvolf A 1473 1460 1216 83.3
mpeg2dec A 1021 1005 686 68.3

vector A cheapcomparisorof thesesignaturevectorswill determinaf adetectedhotspotisin
factunique. To distinguishbetweerphasegshatdiffer in branchdirectionbias,the directional
biasof eachhotspotbranchcouldalsosene asaninputto thehashingunction. Thegeneration
of a hot spotsignatureis shavn in Figure3.7. As long asa hashingfunction is effective at
mappingdifferenthot spotbranchedo differentbits in the signature the likelihood of two
differenthot spotsgeneratinghe samesignatureis very low, andthereforethe probability of
missingauniquehotspotwould below. Insteadof theenhance®BB presentedh Section3.3,
suchsignaturesnight be usedto eliminatesequentiallyidenticalhot spotdetectionsaswell as
the nonsequentiabnes. However, the overheadof computinga signaturefor eachdetection
makesthe ability to automaticallyweedout detectionsof hot spotswhich have not changed

from thelastdetectiona moreattractve solution.
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Figure 3.7 Calculationof proposechot spotsignature.
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CHAPTER 4

HOT REGION FORMATION

The VacuumPackingprocesss designedo usethe continuoushot spotprofiling described
in Chapter3 to identify importantcoderegions associatedvith programphasesand extract
themfor the purposeof codeoptimization.As shavn in Figure4.1,theformationprocesson-
ceptuallyconsistf threesteps profiling andidentificationof hot branchestegion formation,
andregion extractionandoptimization. During thefirst step,a profiling mechanismmonitors
the executionof a programand selectsa collection of static branchegeferredto ashot spot
branchessshavn in Figure4.1(a). Theseinstructionsarethe hot branchesassociateavith a
phaseof programexecution.Informationaccumulatedh themonitoringmechanismincluding
candidateoranchexecutedandtakenweights,is storedaway for future processing.

The profiled programcontinuesto executeuntil anotherphases detectedat which point
the information on anotherset of hot brancheswill be storedaway. For evaluationin this
work, a completeexecutionis performedfor the purposeof hot spotprofiling beforeary of
thedetecteghasess furtheroptimized.At the completionof the profiled program a software
mechanisnprocessethe storedhot branchinformation.

In thesecondstep thestoredinformationis combinedwith staticprogramrepresentatioto
form theinputto theregion formationalgorithm. The algorithmselectsa region for optimiza-

tion andleverageghe branchinformationto generateestimatedexecutionfrequenciesf all
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Figure 4.1 Region formation processover functionsA-F, shavn in call treeorder (a) Hot
brancheswith hot and cold directions. (b) Formedhot region. (c) Extractedandoptimized
region Z with cold links backto original code.

instructionsin theregion. Oftenthesehot regionsspanfunction boundariesin Figure4.1(b),
thehotregion spandunctionsA, B, C,D, E, andF.

In the third step,an extraction algorithm assemblesll the piecesof the hot region into
a new, localizedcoderegion that can be corveniently handledby an optimizer One physi-
cal region is formedfor eachprogramphase.Control transitionsare establishedetweenhe
original programandthe extractedregion. Finally, controltransitionsarealsoestablishede-
tweenextractedregions. Thenew coderegionsarepackagednuchlik e afunctionbodysothat

optimizationalgorithmscanprocesghemsimilarly.

4.1 Stepl: Program PhaseDetection

At eachdetectiortime, the BBB containghe setof candidatdorancheslongwith their ex-

ecutedandtakencounts.The countstogetheminimally provide the takenratio for thebranch
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during the detectionprocess.The executedweightscanalsobe usedto comparethe relatve

significanceof differentbrancheswvithin the samehot spot. However, underthe approximated
most frequentlyusedpolicy, contentionfor table entriesdue to the finite table size andthe

table’s limited associatiity may force a staticbranchto begin profiling laterin the detection
process.This scenarianay causeatrtificially lower weightscomparedo otherbranchesn the

hot spot,andin the worst case preventthe branchfrom beingtracked at all. In addition,the

hardwarecounterdrackingeachbranchsaturatavhenthe executecountreachests maximum

value.However, at saturationthetakenratio for the branchis presered.

Figure4.2 detailsthe hot region formationprocess.The profiled programconsistsof two
functions,asshown in Figure4.2(a). Basicblocks A; through A,y belongin function A and
basicblocks B, through Bs; belongin function B. Figure4.2(d) shows the resultof hot spot
detection. For the purposeof this examplea very small, four-entry BBB is used. Sincethe
working setof branchesn the phaseis muchlargerthanthe size of the BBB, only a portion
of the branchesrecaptured.In arealisticdesign the capturedexecutionof a phasewould be

expectedo bemuchhigher

4.2 Step2: Regionldentification

The secondstepof the hotregion formationalgorithmidentifiesthe hot regioninstructions
of eachphasebasedn the branchprofile informationprovidedby the BBB. The profile infor-
mation available at this point consistsonly of a setof branchescapturedduring the detected

phaseof executionalongwith their executedandtaken counts. This informationis usedto
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Figure 4.2 Reion formation. (a) BranchBehavior Buffer profile. (b) Initialization of hot
spotbranchesandtheir blocks. (c) Propagatiorof the cold arcinformation. (d) Propagatiorof
thehotarcandblockinformation.

selectthe optimizationregion andwill be usedlater to determineusableprofile weightsfor
control flow within the region. In anattemptto provide an optimizedpieceof codefor each
importantphaseof programexecution,eachhot spotdetecteds consideredseparately The
choserregionsarethenexpandedusinginference(describedn Section4.2.2)andheuristics
(describedn Section4.2.3)to includeadditionalblocksandtheir correspondindlow arcsfor

severalreasons:
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¢ A hot pathmay temporarilydiverge into several pathswhich do not individually meet
thethresholdfor beinghot. If thesepathslatercornverge backinto hot blocks,including
themwill improve the connectwity of the selectedegions.

e Techniquesusinghardware counters to determineprofile weightsprovide only an ap-
proximationof theactualprofile dueto therandomnesef samplingandthelimited num-
berof countersFor thisreasona certainamountof misleadingandmissinginformation
mustbetolerated.

e Eventhoughexits from theregioninferredfrom theHot SpotDetectomprofile areuncom-
mon, it is desiredto further reducethe numberof themby opportunisticallyincluding
infrequentpathswheninclusionis associateavith little or no cost.

In Figure4.2(a) theprofileinformationfor thephaseof theexamplecoversonly four of the
eighthot brancheglueto limited numberof BBB entries.As mentionedabove, a real design
would not detectsucha small percentagef hot spotbrancheshowever, avery large program
might have a working setof brancheghat exceedshe availableentries. Thus,to be effective
the algorithm must be tolerantof somebrancheamissingfrom the buffer. To achieve this
tolerancea phaseof inferring theimportanceof blocksis followedby a phaseof heuristically

includingotherblocksin theregionto be optimized.

4.2.1 Hot spotblocks

To begin theregion identificationprocessthe hot spotbranchesandthe blockscontaining
them areinitialized. This initialization is performedaccordingto Rule 1 and Rule 2 from
Figure4.3. Undertheserules,blocksare assignedemperaturesnitial weights,anda taken
probability. Flows areassignedatemperaturaswell. The algorithmfor this initialization is

givenin Figure4.4.

1Similar problemsalsoarisewhenusingsoftwaresampling.

31



Rule 1 Initialize eadh basicblock containinga hot spotbranch:

e blocktemperature = Hot
e initial weight = executed count

e taken probability = %

Rule 2 Initialize for eadt flow of a hot spotbrand:

Hot (direction> (25%- executedcount))\/ (direction> cand.threshold

. flowtemperature—{ Cold otherwise

Rule 3 Infer usingrelationshipbetweerflowsandblodks:

Rule 3.1 Infer tempeature of flowsin andout of blocks (Figure 4.5(a)-(b)):

¢ Anyflowinto (outof) cold blodks(a) = flowtemperature = Cold
e Only oneunknowrflowinto (out of) a hotblodk whele there are no hot flowsinto (out of)
theblok (b) = flowtemperature = Hot

Rule 3.2 Infer tempeature of blocks (Figure 4.5(d)-(e)):
o All flowsin or outarecold (d) = blocktemperature = Cold
e Oneflowin or outishot(e) = blocktemperature = Hot

Rule 4 Expandregion fromhot blockswhich are root basicblodks:

e Expandregion into adjacentpredicessoblodks until a hotblod is reated
e Nevergrow regioninto cold blodks
e Discard growthwhich doesnot read hot blodk in MAX BRANCHESe.g., 2) additional
bloks

Figure 4.3 Rulesfor selectingvacuum-pac&dregion.

In theexamplein Figure4.2,blocksA,, Az, Ay, andB, containhotspotbranchesccording

to the BBB recordin Figure4.2(d). Theseblocksareinitialized ashot, andthe control flows

outof theseblocksareinitialized ashot or cold accordingo their directionalbias. If ahotspot

branchis takenmorethan75% of thetime, the control-flov arcfor thatdirectionis hot. Also,

if theweightof adirectionexceedgshecandidatecounterthatdirectionis additionallymarked
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Initialize_Hot_Spotfhot spotbrand_list)
{
1: For eachbrand ¢ hot spotbrandn.list {
2: block = basicblock containingbrandy;
3: blodk.tempeature = Hot;
4. block.initial weight= brandh.executedcount
5: block.taken probability = branch.taken count/brandch.executedcount
6 If ((branch.taken.count> 75%- brandch.executedcoun) and
(brandh.executedcount- brandh.taken.count< CANDIDATE.THRESHOLD) {

7: brandh.taken flow.temperature= Hot;
8: brand.fall_throughflow.temperature Cold;
9: }
10: Elself ((brandh.taken.count< 25%- brandh.executedcoun) and
(brandh.taken count< CANDIDATE. THRESHOLD) {
11: brandh.taken flow.temperature= Cold,
11: brandh.fall throughflow.temperatures Hot;
12: }
13:  Else{
14: brand.taken flow.temperature Hot;
15: brandh.fall throughflow.temperature= Cold;
16: }
17: }
¥

Figure4.4 Initialization of hot spotbranchesndtheir blocks.

hot. Remainingdirectionsareleft ascold. For example,accordingto the taken andexecuted
countersn the BBB entryfor block Ay, the branchendingthis block is heavily biasedin the
takendirection.Lines7 and8 of thealgorithmin Figure4.4 markthetakenflow for thisbranch

hotandmarkthefall throughflow arccold.

4.2.2 Inferr edhot and cold blocks

The temperatureof someblocks that do not containhot spot branchesand the temper

ature of someflows in and out of suchblocks are iteratively inferred accordingto Rule 3.
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Figure 4.5 Inferencerules.(a)-(c) Propagatiorio flows. (d)-(f) Propagatiornio blocks.

The algorithm for this inferenceis given in Figure 4.6. This algorithm assumeghat the
flon_work list and blodk work_list have beeninitialized to the hot flow arcsand hot blocks,
and cold_flow_work list and cold_block work_list have beeninitialized to the cold flow arcs
andcold blocksfoundthroughthe applicationof thealgorithmin Figure4.4.

Fromthelist of blocks,the temperatureof flows in andout of theseblocksis inferredas
showvn in Figure4.5(a)and4.5(b). All arcsin andout of cold blocksarealsocold. If only one
control-flov arcin or outof a hot block is not cold, thatflow is inferredto be hot.

Fromthe list of flow arcs,the temperatureof blocks at the heador tail of theseflows is
infered. The caseswherethis inferencecan be performedare shovn in Figures4.5(d) and
4.5(e).If everyflow in or outof ablockis cold, thatblock mustalsobe cold. If any flow in or
outof ablockis hot, thatblock mustbe hotaswell.

In Figure4.2(b), several blocksareinferredto be cold from the initial list of cold flows.
Blocks A7 and A, areassigned cold temperaturen line 10 of Figure4.6, sincethey have

only asingleincomingarc,andthesearcsareall cold.
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Infer_Hot_region(flow_work_list, block_work_list, cold_flow_work_list, cold_block_work_list)
{
1: For eachflow e flow work list {
2: flow.source blodk.tempeature = Hot;
3: flow.destinationblock.tempeature = Hot;
4. List_insertplodk work list, flow.source block);
5: List_insertplodk work list, flow.destinationblod);
6 List_remove(flow_work list, flow);
7
8

)

: For eachflow e cold flow work list {

9: If (all flowsinto flow.destinationblock arecold) {
10: flowdestinationblock.tempeature = Cold;
11: List_insertCold_blodk work_list, flow.destinationblock);
12:
13:  If (all flowsoutof flow.source block arecold) {
14. flow.source blodk.tempeature = Cold;
15: List_insertcold_block work_list, flowsource blo);
16: }
17: List_remove(cold flow_work list, flow);
18: }
19: For eachblock e blod work list {
20: If (only oneflow into (or out of) blodk is not cold) {
21: flow = flow into (or out of) block thatisn't cold;
22: flowtempeature = Hot;
23: List_insertflow_work list, flow);
24: }
25: List_remove(block work_list, blok);
26: }

27: For eachblodk e cold_blodk work list {
28:  For eachflowinto andoutof block {

29: flow.temperature= Cold;

30: List_insertcold flow work list, flow);
31}

32: List_remove(cold_blodk work list, block);
33: }

¥

Figure4.6 Inferencegrowth of vacuum-pack&dregion.
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Figure4.2(c)shonsthe further propagatiorof theinference Fromtheinitial four hot spot
branchesseveraladditionalblockshave beeninferredashot. Sincetheflow from A to A, is
hot, thetemperaturef A, is setto hotonline 3 of thealgorithmin Figure4.6. Similarly, B is
alsohot becausef the hot arcbetweenB, and B,. Theflow from A4 to Ay is assigned hot
temperaturen line 22 of this algorithm,asthe only otherflow into Ay is cold. Similarly, the
temperaturef the flow from B, and B, is alsohot. BecauseB; is thetamget of a hot call in
Ay, it is markedashotaswell. Subsequenterationof this algorithmwill find blocks A5, Ag,

and B, to behotaswell.

4.2.3 Heuristic hot regiongrowth

Becauseof the potentialfor missinginformation, heuristicgrowth of the vacuum-packd
regionsis performedunderRule4. Rootblocksarearefirst foundin thesameway entryblocks
will befoundin Sectior4.3.1.Backedgesareremovedfrom the control-flov graph,andblocks
with no incomingarcsareselected.To elimiate entrancego the region, the heuristicgrowth
aimsto eliminatepotentialentry blocksby growing upward from root blocks,throughblocks

with noinformation,finally connectingcontrolto preceedindhot blocks.

4.3 Step3: RegionConstruction and Optimization Support

Oncea hotregion of codehasbeendetectedidentified,andgrown, theregion construction
andoptimizationphasebegins. During identificationandgrowth, a control-flov graphfor each
functionin theregion is marked with the hotandcold information. A call graphrepresenting

functioncallsrelationshipswithin theregionissalsoconstructed.
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4.3.1 Locating root functions and entry blocks

The call graphfor theregion is examinedto find functionsto sene asroot functionsfrom
which all otherfunctionsincludedin theregion canbereachedA call graphcanbe cornverted
into atreeby brakingall cyclesin thegraphby removing thebacledgefrom eachcycle. A root
functionis anodein suchatreewithoutary callers.Theseroot functionssene asseedsn the
partialinlining process.

Somefunctionscanbebothrootfunctionsandinlinees.If disconnecteg@iecesof afunction
have beenselectedaspartof the hotregion, thatfunctionis addedo thelist of root functions.
Whenthatfunctionis usedasaroot function, thesedisjoint piecescanbe safelyincluded. If
thatfunctionis usedasaninlineeinto anothemoot function, the disjoint piecesare excluded
to preventsideentrancednto theregionsfrom unknavn contects asdestribedn Sectior4.3.3.
All' other functionsthat are part of the phasewill be partially inlined into one or more of
theseroot functions. In a similar fashion,entry blocksare chosenfor eachfunction’s control
flow graph(CFG). If CFGcyclesarebrokenby removing abacledge entryblocksareblocks
without any predecessorsl he original codelocationscorrespondingo entry blocksinto root
functionswill sene aslaunchpointsfrom original codeinto theregions.

In theearlierexamplein Figure4.2,therootfunctionfor theprogramphases A. Theentry
block for phasel canbeary blockin A sinceall blockscanbereachedrom any blockin loop.
As shavnin Figure4.7,a continuationof the earlierexample,A, hasbeenchoserastheentry

block asit is thefirst blockin programorderwith anincomingarcfrom outsidetheregion.

37



Entry Block
with no
corresponding

/’}Launch Point

Launch Point
in original code

BBB - Hot Spot 1
A2 - BR - Not Taken
A3 - BR - Not Taken
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Entry Block

BBB - Hot Spot 2
A2 - BR - Not Taken
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Invalid
A9 - BR — Taken

(b)

(© (d)
. Hot spot blocks = Hot spot branch directions

D Original code blocks— Hot spot exit branch directions

----*= Hot spot link branch directions

Figure 4.7 Extractionof vacuum-packd region. (a) BBB for hot spotdetectionfor phase
1. (b) BBB for hot spotdetectionfor phase2. (c) Extractionof phasel’s region (formedin
Figure4.2). (d) Linking of phasel’sregion with phase2’s region.

4.3.2 Maintaining dataflow

Eachmarkedfunctionis reducedo includeonly theinstructionsfoundin Step2 to be part
of the hotregion. Theregisterlive rangesaremaintainedoy creatinga new basicblock along
eachexit pathandplacingdummyconsumeinstructionsfor eachregisterlive acrosghe exit.

This new blockis calledanexit block. This allowstheremoral of thecold instructionswithout
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HOT EXTRACTED HOT

1d rl= 11d rl=

2 add r2=r3+rl 2 add r2=r3+rl

3 mov r5=r4 COLD 3 mov r3=r4 EXIT

4 br r4!=0 > 7 Isr r2=13,2 4 br r4!=0 > use r3

5 st [r4]=r2 8 br r2<16 —>9 mov rd=rl 5 st [r4]=r2 use rl
€Y (b)

Figure4.8 Maintainingdataflav. (a) Originalcodesequence(b) Regionafterhotinstructions
have beenextracted.

corruptingor complicatingtheformal dataflav analysis Figure4.8(a)shavs asequencef hot
instructionswith a branchto a sequenc®f cold instructions. The resultof extractingthe hot
instructionsandinsertingrepresentatie exit blocksis shavn in Figure4.8(b). Theseblocks
createanopportunityfor migrationof hotinstructionswhoseresultsareonly consumedlong

pathsthroughanexit block.

4.3.3 Partial inlining

Theinlining processsuccessiely progresseghroughroot functionsof the call graphpro-
ducingindividual subregions. Justprior to inlining, recursionin the call graphis detectecand
recursve arcsin thegraphareeliminated.However, a copy is madeof self-recursie functions
to allow asinglecopy of a self-recursie functionto be partially inlined into itself.

Partial inlining proceed$y finding anoutgoingarcin thecall graphfrom therootfunction
to anotherintrarggion function. The calleefunction’s hot blocks and exit blocks, described
in Section4.3.2,are copiedinto the root function. The calleebeinginlined musthave a hot
prologueblock andatleastonecontiguoushot pathfrom the prologueblockto thereturnblock;

otherwisejnlining of the calleeis filtered. The partsof the calleereachabldrom the prologue
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areinlined asnormalinto the caller, while any otherdisjoint segmentsarediscardedo avoid
creatingside entrancesnto the inlinee from unknown contexts. Finally, the calleefunction’s
outgoingcall grapharcsare meigedwith the root function’s arcs,andthe calleefunctionis
removedfrom the outgoingarc setof theroot function. Theinlining processontinuedor this

rootfunctionuntil its region call graphis exhausted.

4.3.4 Calculation of profile weights

Many aggressie optimizationsrequireaccurateprofile informationin orderto effectively
improve applicationperformance Unfortunately while aninitial executedcountfor the basic
blockswhich containcandidatdoranchefiasbeendeterminedtheseweightsareneithercom-
pletenoraccuratdor all of theblocksin theregion. The BBB maybemissingsomeimportant
branchesr may not have startedtrackingthesebranchesn atimely mannerdueto conflicts
in the buffer. In addition, sincehardware countersare used,heaily executedbranchescan
saturateghe executedcounter The problemsarenot uniqueto the BBB, asotherprofiling sys-
temsthatusetechniquedik e samplingor staticallyestimatedrofilessuffer from very similar

problems.

4.3.4.1 Inferr ed block weights

To computeprofile weights, VacuumPacking relies uponthe control-flov probability of
eachbranchin theregion, aswill be detailedin Section4.3.4.2.For blockswhoseweightsor
takenproabilitiesarenotknown, aguesdor this probabilitywill have to bemade.However, in

mary casesagoodapproximatgrobability canbe determinedy examiningtheflow weights
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—» Known-weight hot flow
- — —» Known-weight cold flow

— Unknown-weight flow

Figure4.9 Inferring profile weightfrom surroundingolocks.

comingin andout of ablock. If theweightof only oneflow in andout of a block is missing,
thatweightcaneasilybe estimatedy conservinglow throughtheblock.

As an example,considerthe portion of the control-flov graphin Figure4.9. It is obvi-
ousin this casethat the weight of the unknowvn arc from A; to A5 canbe estimatedto be
100. Estimategnadein this way will be significantlybetterthanthe guessotherwisemadein

Section4.3.4.2.

4.3.4.2 Derived profile weights

Becausef the possiblelate trackingof branchesindthe saturationof hardware counters,
confidencan the taken probability of hot spotbranchess muchhigherthanin comparisons
betweertheabsoluteexecutioncountsprovidedby theBBB for suchbranchesFor thisreason,
the stratgy proposedn this thesisis to generaterofile weightsbasedprimarily on the taken
(or nottaken) probability of hot spotbranchesFor candidateoranchestheir taken probability
ascomputedoy Rulel is used.Finally, for branchesvhoseflow weightscannotbe computed

asin Sectiord.3.4.1,anassumeadveightwill beused.
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Theinitial weightof candidateéblocksis considereanly for the blocksthatrepresenéentry
pointsinto theregion, asexplainedbelow. In orderto generateompleteprofile weightsfor the
region, threeassumptionsremade:

1. for unknavn-weightbranchwith anoutgoinghot flow:

.9 if otherflow is unknavn

e hot direction probability = { 99 i otherflow is cold

2. for noncandidatevith no outgoinghot flow:
e taken probability = .5

3. flow leaving ablock is independentf previousflow up to thatpoint.

By Assumption3, the control-flov graphis consideredo be a Markov chain[29] with the
probability of goingfrom any block to its successordeterminedsolely by thetaken (or or not
taken) probability. A matrix Q, describingthe probabilitiesof transitionamongblocksother
thanthe epilogueblock, is found. If basicblocki hascontrolflow to basicblockj, thenrow i,
columnj of Q will containthe probability of thatcontrolflow. M, the fundamentamatrix for
this graphis givenby M = (I — Q)~!, wherel is theidentity matrix.

Row i of matrix M describeghe expectednumberof timeseachblock will executewhen
controlstartsatblocki. Therow for eachregion entryblockis scaledusingthatblock’sinitial
weight. SincesomelMPACT compileroptimizationsaretriggeredby the absolutenveightof a
block, theseweightsarefuther scaledso thatthe total profile weight of all entry point blocks
is 10 000. Theweightsthatresultareusedto drive optimization.

For theregion in Figure4.10(a),the profile weightsfor eachblock arelessimportantbe-
causeonly the paththroughthe phasehasbeenincludedfor optimization. As an example,

however, considerthe exit probabilitiesshovn in in Figure4.10(a). Sinceblock B, doesnot
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Figure 4.10 Deriving profile weightfrom branchprobabilities.(a) Extractednhot spotregion

with branchprobabilities.(b) Derivationof Q andM matricies.(c) Hot spotwith derivedblock
weights.

containa candidatebranche the probability of the non-hotdirectionhasbeenassumedo be
10%. The Q matrix corespondingdo this graphis shovn in Figure4.10(b). For instancethe
probability of going from block A4 to A is givenin elementQys; (Il = 1) as0.99. Solving
for M is shavnin Figure4.10(b),andtheresultingprofile dervation(beforescaling)hasbeen

annotatedo the correspondingdplocksin Figure4.10(c).
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4.3.5 Regiontransitions

Eachregion is designedo containall of the hot codeneededor executionin a phase.To
accomplistthis goal,codereplicationis usedto includecustomizableopiesof this codeinto
theregions. Along with copiesof the selecteiecesof calledfunctions,theselectegiecesof
therootfunctionarealsoreplicatednto eachregion. If all regionshave disjointrootfunctions,
thena one-to-onanappingexists betweenlaunchpointsandentry blocks. However, it is not
uncommonfor multiple regionsto have the sameroot function, often due to a main driver
outerloop thatmakesdifferentcalls during differentphasesThus,theremay be no definitive
locationin the original codeto launchinto eachdistinctregion. This scenarias evidentfrom
the two extractedphasesn Figure4.7(c) wherethe mainloop in function A hastwo distinct
executionpatterns.The launchpointis only ableto link anoriginal codeblock with a single
region. For example,in 134.per| thedriverloop _eval () makesdifferentservicecallsbased
onthetypesof expressiondeingevaluated suchasmathor string.

In the VacuumPacking mechanisma branchis placedat the launchpoint that redirects
executionto theregion. However, thetargetregion of this branchmaynotalwaysbetheregion
formedfor the currentdynamicphaseof execution. In onesolution,the launchpoint branch
couldbedynamicallymodifiedto pointto theexpectedoestregion. However, somemechanism
would needto make the modificationbaseduponsomeprediction. Oneindicatorof a phase
transitionis executionalonga region exit paththatis a hot pathin anotherregion. While a
monitoringcodesnippetcould beintroducedalongthe exit pathto feedsomesortof dynamic

predictor an easy static solutionis to link the side exits from oneregion to corresponding
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pointsin another An exampleof this linking processcanbe seenin Figure4.7(d). Branch
Ajs falls throughto A, in the left region andtakesto Ag in theright region. Insteadof A; in
the left region branchingto the original Ag, alink to the right region hasbeeninstalled. If
thistransitiontruly represents phasechangethenexecutionwill continuein theright region.
Thealgorithmfor detectingandlinking alongbranchesvith variedbehaior basecontheBBB

profilesis outlinedbelow.

e For eachstaticbranchthatis in atleastoneBBB profile:
Performpairwisecomparisorof the staticbranchin all BBB profiles
If abs(dif ference in taken fractions) > MAX_VARIATION (e.g.0.1)
Indicatebranchhasvariedbehaior
e Whenarootfunctionis createdpr functionis partially inlined, scaninstructions for ary indicated

branches

If found, keeppointerto scannednstructionin a list associatedwvith the original indicated
branch
e For eachrootor inlinedinstanceof original indicatedbranch
If branchtaken (or fall through)directionis aregion exit
Link to taken (or fall through)tamet of anotherinstanceif region calling contets are

identical

Cautionmust be exercisedto ensurethat the calling contets from the root function to
the link siteswithin both regions are identical since executioncould traverseinto incorrect
functionsalonginlined partialreturnsin thetargetregion. In Figure4.11,two vacuum-packd

regionshave beenformedandlinked. The function B hasbeeninlined into both regions, but
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Figure4.11 Invalid linking of hot spotsinsidedifferentcontexts.

this inlining hasbeendoneinto different contexts. The two regions are improperly linked
becausexecutioncould begin in function A on the left, travel into andalongthelink atthe
endof block Bs into theright region, andreturnincorrectlyinto functionC'.

In somecasespranchesnay be cold and causeexits to original codein oneregion, but
might be hot in several others. Our strat@y is to selectthe next sequentiakegion (basedon
detectionorder)that containsthe branchin the desireddirection. The next sequentiategion
is a logical choicebecausea changein behaior of this branchmay have signaleda new hot
spotduring the detectionprocess. It also setsup the possibility of a round robin searchof
the hot spotsthroughseveral sideexits until the matchingregion is found. This stratgy helps
executionfind the bestregion asopposedo the mostgeneralregion. Otheroptionsinclude

selectingheregionwith themostbiasedversionor possiblythemostheavily executedversion.
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CHAPTER 5

RESULTS

5.1 Experimental Setup

Listedin Table5.1arebenchmarksepresentingwide varietyof applicationtypesselected
from SPECCPU95,SPECCPU200Qincludingshortenedeferencenputsfrom the University
of Minnesota(UMN)[30]), andMediaBench31] to testthe performancef theregion extrac-
tion. Thebenchmarksvereeachcompiledusingthe IMPACT compiler[32] with control-flow
profiling, profile-driveninlining [33], classicabptimization,pointeraliasinganalysiq34], and
instructionschedulingwith controlspeculation.

The performanceneasurementeportedn thiswork weregeneratedby Linterpret,a cus-
tom softwareemulatorthatperformscycle-by-g/cle full-pipeline simulationof eachinstruction
shown in Figure5.1. This emulatorfully accountdor the effectsof branchprediction,wrong
pathexecution,cacheutilization andpollution, varyingmemorylateng, interlocking,andby-
passing.It directly simulateghe executionof the IMPACT compiler’s machine-lgel internal
representatiofor theIMPACT EPICarchitecturd35]. A completedescriptionof thestructure
of the IMPACT compilerandits internalrepresentatiosanbe foundin [36].

The architectureanodeledconsistsof a 10-stageEPIC pipeline containingfive functional

unittypes(integerALU, FP, LongLateny FR Memory, andControl). Thesimulationanclude

47



Table5.1 Benchmarksandinputsusedin experiments.

[ Benchmark [ Inputs | Instr |
099.go A:SPECTrain 337M
124.m88ksim | A:SPECTrain 89M

A:SPECTrain 122M
130.i B:6 Queens 32M
C:ReducedRef. 362M
A:SPECTrain 1094M
132.ijpey B:CustomFaces 57M
C:CustomScenery 320M
A:SPECTrain1 1512M
134.perl B:SPECTrain2 28M
C:SPECTrain3 8M
164.gzip A:ReducedTrain 1902M
175.vpr A:SPECTest 1012M
181.mcf A:SPECTest 105M
197.parser A:UMN _sm.red 178M
A:UMN _sm.red 63M
255.\ortex B:UMN_md_red 315M
C:UMN_Ig_red 886 M
300.twolf A:UMN _sm.red 167M
mpeg2dec A:MediaTrain 99M

Cycle-By—-Cycle Full-Pipeline Simulator
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Function and
Data and Inst.
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Figure5.1 Linterpret:aninterpretation-basedaycle-by-g/cle simulation.
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Table5.2 SimulatedEPIC machinemodel.

[ Parameter | Setting |
Instructionissue 8 units
Integer arithmeticandlogic unit 5 units
Floating-pointarithmeticunit 3 units
Memoryunit 3 units
Branchunit 3 units
Branchpredictor 10-bit historygshare

3 predictionspercycle

BTB size 1024entry
RAS size 32entry
Branchresolution 7 cycles
LD/ST buffer size 8 entryeach
L1 datacache 64KB
L1 instructioncache 64KB
Unified L2 cache 512KB
BBB associatiity 4-way
Num BBB sets 512sets
Candidatéoranchthresh 16
Refreshtimerintenal 8192branches
Cleartimerintenal 65536branches
Hot spotdetectcntr size 13 bits
Hot spotdetectcntrinc 2
Hot spotdetectcntrdec 1
Execandtakencntr size 9 bits

amultilevel memoryhierarchyandbranchandreturnaddresgrediction.Table5.2reflectsthe

architecturaparametershoserfor the evaluationsystem.

5.2 Evaluation

A primary concernfor a post-link optimizeris the percentof programexecutionthat is
spentin the codethatis optimized. This is even more importantfor systemsthat are gen-
eratingcodeat run time. To measurethis percentagethe emulatortracked the numberof
executednstructionghatoriginatedfrom within the extractedregionsandthosefrom theorig-
inal codebase.Higher quality regionsleadto a greatempercentagef executionfrom the hot
spotregions. Figure 5.2 shaws the percentagef all dynamicinstructionsoriginating from

an extractedregion. The first (lighter) bar for eachexperimentshows this percentagevhen
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Figure5.2 Percenbf dynamicinstructionsfrom within extractedhot spots.

region constructions haltedafterweight-guidedolock layoutis performed(describedn Sec-
tion 4.3.4). The second(darker) bar shows the benefitsof directlinkage betweenhot regions
asdescribedn Section4.3.5. Without direct link