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Graphical interfaces and windowing systems are now the norm for computer-human

interaction. Also, advances in computer networking have given computer users access to

immense distributed resources accessible from anywhere on the network. In this setting,

the desktop, or personal, computer plays the role of a user-interface engine that mediates

access to the available resources. Interface paradigms, such as the \desktop metaphor"

and \direct manipulation," provide the user with a consistent, intuitive view of the re-

sources. Traditional computer research has focused on enhancing computer performance

from the numerical processing and transaction processing perspectives. In the research

described in this thesis a systematic framework is developed for analyzing and improv-

ing the performance of window systems and graphical user interfaces. At the system

level a protocol-level pro�ling strategy has been developed to pro�le the performance of

display-server computers. A sample protocol-level pro�ler, Xprof , has been developed

for applications under the X Window System. At the microarchitecture level the memory

access characteristics of windowing programs are studied. Cache tradeo�s for a frame-

bu�er cache are presented. A cache organization is proposed to improve the frame-bu�er

performance.
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1. INTRODUCTION

Graphical user interfaces, or GUIs, have emerged as the standard means of human-

computer interaction. The widespread availability of inexpensive personal computers and

workstations has led to the design of computers oriented to interactive, visual activity

between the computer and the user. Traditional computer research has focused on the

design of computers for numerical and transaction-oriented applications. However, in

this thesis research, the focus is on the design of the computer as a user-interface engine,

or display server .

Three major trends have fueled the importance of designing computers with atten-

tion to the visual interface. First, personal computers and workstations have come into

widespread use. Unlike the time-shared machines of the early days, these are typically

dedicated to providing service to a single user. Consequently, much of the available com-

puting power may be dedicated to the user-interface mechanism. Second, this emphasis

on user-interface technology has led to a new paradigm of computer-human interfaces in

which computers are made accessible to nontechnical users. In this paradigm, which is
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still evolving, the computer interface is presented to the user in the form of real-world

metaphors, such as the desktop metaphor , thus enriching the human-machine dialog. Ex-

amples of this evolution in user-interface technology include GUIs, window systems, audio

input, and pen-based computing. Consistent look-and-feel speci�cations hide the com-

plexities and details of the underlying hardware and ease the migration of applications

across di�erent architectures and operating systems. Third, widespread use of computer

networks encourages access of resources anywhere on the network and from anywhere on

the network. Thus, users can access vast resources from within their personal computers

and have access to a \metacomputer" that spans the computation capabilities of the

fastest supercomputer and the data availability of every on-line database. The Internet

is probably the best known and most widely used research computer network today. Pri-

vate networks, such as Compuserve, have brought networked resource access to businesses

and individuals. For instance, the Easy Sabre system on Compuserve enables users to

query airline 
ight reservation information and to make their own 
ight reservations on

the major U.S. airlines from their homes. Also, wireless computer networks, such as the

Ardis system built by IBM and Motorola, can be accessed from within their portable

computers.

1.1 Graphical User Interfaces

In the early days of computing, computer interfaces were geared towards highly skilled

technicians who had a detailed knowledge of the machine language. Now, graphical user
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interfaces, or GUIs, provide ordinary users with easy access to a wide variety of computer

applications.

The �rst generation of computers, in the 1950s, were batch processing systems. Users

typically submitted their jobs, on punch cards, to an operator who then queued the

jobs on a single-tasking computer. After a job was completed, the output would be

returned to the user. By the early 1960s, multiprogrammed computers were able to

support multiple user programs concurrently. Time-sharing systems were developed to

support on-line sessions of multiple users. In such systems, users could interact with the

computer system over a teletype terminal . This was the origin of the familiar command-

line interface, or CLI, in which a shell program mediates between the user and the

computer system. Such systems made it possible for users to develop programs and

to locate and correct errors interactively instead of having to wait several hours for a

job to complete in a batch processing environment. By the mid 1970s, advances in

microprocessors and in computer networking were making it possible to provide personal

computers, or PCs, and personal workstations on the desks of individual users. This trend

gave the impetus to the development of graphical user interfaces. At �rst, menu systems

were provided to abstract the user from the symbolic, mnemonic, details of the command

line interfaces. Gradually, the availability of inexpensive bit-mapped displays has led to

the widespread adoption of graphical user interface standards such as Apple Computer's

Macintosh GUI, Microsoft's Windows, IBM's Presentation Manager, Next Corporation's

NextStep, SunSoft's OpenLook, and the Open Software Foundation's Motif. Window
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systems, such as the X Window System, developed at MIT, have provided the operating

system foundations for building such interfaces.

The foundations of graphical user interfaces were laid in the mid 1970s in the Alto

project at Xerox PARC, the Palo Alto Research Center [1, 2]. The unique innovations of

the Alto included the use of a high-resolution, bit-mapped, raster-scan display designed

to resemble a sheet of paper. The Alto was meant to be used in a networked environment

in which servers, such as �le-servers and shared printers, would provide services over an

Ethernet [3, 4] network. The user interface was built around the desktop metaphor , which

views the computer display as a virtual desktop on which user processes are arranged

much as overlapping sheets of paper lie on a real desktop. Input devices included the

standard keyboard and a mouse1 pointing device. Icons were used to represent computing

objects in the form of familiar real-world objects. Thus, instead of seeing �les and

directories, users were presented with icons resembling folders and �le cabinets. The

icons were manipulated by invoking a direct manipulation [7, 8] metaphor. For instance,

clicking on a folder would open a word processor for modifying the folder. In contrast,

all other systems at the time followed the tool metaphor in which a user �rst opens an

application, or tool, and then acts upon a data object.

The Alto was a prototype and not a commercial product. Eventually, Xerox marketed

the Xerox Star computer. Many of the ideas from the Alto and the Star found their

way into the Apple Lisa [9], and its successor the Apple Macintosh [10, 11], which was

1The mouse was invented by Doug Engelbart's group at the Stanford Research Institute [5, 6].
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introduced in 1984. The overwhelming commercial success of the Macintosh brought wide

acceptance of the desktop metaphor and also led to the development of the Microsoft

Windows system in the competing market for IBM PCs.

In the Unix workstation domain, proprietary window systems and GUIs prevailed

for a while. The industry eventually accepted the X Window System [12, 13, 14, 15]

from MIT as an industry standard. One characteristic of Unix workstation users is that

they are frequently developers, or hackers, who prefer the tool-oriented metaphor over

the desktop metaphor. Nevertheless, GUI standards such as Motif and Open Look have

been developed to provide intuitive user interfaces as a layer over the underlying window

system. The X Window System is discussed in greater detail in Section 1.3.

Future directions in user interfaces will certainly enrich the human-computer interac-

tion in new and creative ways. Emerging interaction devices such as the DataGlove [16]

allow a computer to sense hand position and orientation in three dimensions. Virtual re-

alities [17, 18] are computer-generated environments with realistic appearance, behavior

and interaction techniques. The emerging discipline of scienti�c visualization [19, 20, 21]

employs computer graphics techniques to render results of scienti�c computations in the

form of visual images. Multimedia computing [22, 23, 24, 25, 26, 27, 28] aims at integrat-

ing live video and speech input into computing environments. One consequence of such

an integration is the blurring of the the dividing line between computers and consumer

electronics devices. Data compression standards are being developed to support transfer

of image data over existing low-bandwidth channels [29, 30, 31].
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1.2 Distributed Computing

The widespread proliferation of computer networks has made distributed computing

accessible to a large population of users. Thus, a user has access not only to the resources

on the desktop, but also to distributed resources worldwide. For instance, a researcher in

oceonography at the Oregon State University, located in Corvallis, Oregon, can submit

computation jobs to the supercomputer center at the University of Illinois, located in

Urbana, Illinois, and receive the results over the Internet network. Similarly, e-mail

standards and �le transfer protocols allow widespread dissemination of information to

the interested communities. Electronic banking machines, airline reservation systems,

and on-line electronic bulletin boards are common examples of the utility of distributed

computing systems.

The client-server model of computing [32, 33] allows transparent access to resources

distributed across a computer network. In this model resources are managed by servers,

which provide high-level services to application programs, or clients. The client programs

communicate with the servers by means of a high-level protocol. Thus, the client-server

model allows computers of widely di�erent types to share resources as long as they

follow the appropriate communication protocol. Common examples of this model include

the Network �le system, or NFS [34], which allows for distributed �le access, and the

XWindow System, which allows distribution of window system components. As shown in

Figure 1.1, a distributed system may contain, among others, �le servers for maintaining

the disk storage in the system, computation servers, which are fast numerical processing
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Figure 1.1: Distributed system model.

oriented machines, and display servers, which are the window-oriented display units with

or without the ability to perform user computations. In Figure 1.1 the display servers

that also have general-purpose computation capability are referred to as workstations,

and the ones that are optimized as dedicated display servers are referred to as bit-map

displays. In the X Window domain, the latter are commonly referred to as X terminals.

Distributed operating systems have evolved over time [35]. These enable resource

sharing over networks, to varying degrees of transparency. As yet, there is no standard

distributed operating system, but various solutions have been proposed and implemented

over time and have in
uenced the nature and con�guration of distributed computers.

The Athena project [36] at MIT is one of the largest centrally managed educational
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networks of heterogeneous workstations. Popular innovations from Athena, which is

designed to support several thousand workstations, include the XWindow System and the

authentication protocol Kerberos. The network protocol used in Athena is the popular

Ethernet, which came out of the Xerox Alto/Star project discussed earlier in Section 1.1.

Network services available in Athena include name service, �le service, printing, e-mail,

noti�cation service, service management, authentication, and installation and update.

Athena was established in 1983 and is still growing.

The Andrew [37, 38] project at Carnegie Mellon University is similar to Athena in

being a system for supporting educational and research computing. A distributed �le

system called the Andrew File System, or AFS, has been developed in the Andrew project.

In this �le system, scalability and security in a distributed environment were primary

design concerns. Andrew and Athena have shared ideas over time. For instance, Andrew

now uses the X Window System and Athena uses the Andrew File System. In the wider

research and commercial setting, the de facto standard in distributed �le sharing is the

Sun Network File System, or NFS [34].

Athena and Andrew address the requirements of resource sharing over a local network.

Some other projects have studied the sharing of resources over networks that span a

much larger geographical extent. Amoeba [39, 40], which has been developed at the Free

University and the Centre for Mathematics and Computer Science in Amsterdam, is

designed to run in both local and wide area networks. An experimental system currently

connects Amoeba systems in wide area networks spanning several countries in Western
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Europe. The Grapevine system [41], which is used extensively within the Xerox corporate

environment, is another example of a transnational distributed system.

Other examples of distributed operating system projects include Sprite [42] at the Uni-

versity of California, Berkeley, Eden [43, 44] at the University of Washington, Mach [45]

at Carnegie Mellon University, V [46] at Stanford University, Locus [47] at the University

of California, Los Angeles, and Clouds [48] at the Georgia Institute of Technology. Other

projects in distributed systems have evolved algorithms for distributed object manage-

ment [49, 50, 51].

1.3 The X Window System

The X Window System [12, 13, 14, 15] has emerged as the de facto standard in the

Unix workstation domain. It was developed in the early 1980s as part of project Athena at

MIT. Portability was an early design concern in XWindow since MIT was using a diverse

group of computer workstations from di�erent vendors. It was designed as a distributed,

device-independent, network-transparent windowing and graphics system. Being an open

standard, it gained wide acceptance in industry. Currently, the development of the

X Window standard is administered by the X Consortium, whose members include all of

the major workstation vendors such as Sun, HP, DEC, IBM, SGI, and Tektronix.

As shown in Figure 1.2, the X Window System follows the client-server model of

computing. A display server, the X server [52], manages the actual graphics-display

hardware and controls access to the graphics and window functions on the display. It
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Figure 1.2: The X Window System.

also receives user input from input devices such as the keyboard and mouse. The applica-

tion programs, or clients, achieve graphics and window functions by means of high-level

messages exchanged with the display server; the messages follow a network protocol, the

X protocol [53]. The display server alone has access to the actual display hardware and

renders the high-level requests on it. The interaction between the client and server pro-

grams is network transparent in the sense that the communication protocol is followed

even when the client program runs on the same processor host as the display server.
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An important characteristic of the X Window System design is that the base win-

dow system provides mechanism, not policy [12]. The base window system provides

mechanisms such as graphics primitives. Window management policies are enforced by

a window manager [54], which is simply another user process and can be freely chosen

by a user. User interface characteristics are enforced by toolkits and GUI speci�cations,

such as Motif, which are built as a layer on top of the base system. Also, there is a

built-in mechanism for extending the core protocol. Any proposed extensions are sub-

mitted to the X Consortium, and useful ones are included in future distributions. Some

current extensions include PEX [55], or PHIGS Extensions to X, which is a 3-dimensional

imaging model. The Display Postscript, or DPS, imaging model is also supplied as an

extension with some X implementations. This versatility of X is an important reason

for its widespread popularity. Figure 1.3 shows the software model of the X Window

System.

1.4 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 develops a new protocol-level

pro�ling strategy for analyzing client-server interaction. Chapter 3 describes a protocol-

level pro�ler, Xprof , which has been developed in this research for generating meaningful

execution pro�les of X Window applications. Chapter 4 presents results from Xprof anal-

ysis of some common window-oriented applications. Chapter 5 reviews factors in memory

system design. Chapter 6 discusses the frame-bu�er memory access characteristics for
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some common X Window programs. Trace-driven simulation is done to analyze this

memory behavior for extensive low-level traces collected on a DECstation 3100 worksta-

tion. This discussion motivates the development of di�erent caching strategies studied

in Chapter 7. Finally, Chapter 8 summarizes the contributions of this research.
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2. PROTOCOL-LEVEL PROFILING

The widespread use of workstations and personal computers as display-servers mo-

tivates a desire to identify the critical design issues for supporting display-oriented ap-

plications. Execution pro�les are important in analyzing the performance of computer

programs on a given computer system. Such pro�les are helpful in providing information

about the dynamic, or run-time, behavior of the program. This run-time information can

lead to insights about the performance bottlenecks in a program, allowing the developers

to better focus their e�orts when tuning the performance of a program or of the computer

system.

However, accurate and complete pro�les are di�cult to achieve for programs that

follow the client-server model of computing. In this model, which is followed by programs

in the X Window System, the client programs request various services from servers by

exchanging messages with them. In the client program, the routines that invoke the

computation at the server are merely stub routines that send the appropriate request

message to the server. The request may invoke substantial computation at the server,
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but the execution time of this computation may not be re
ected in the pro�led execution

time of the stub routine.

A meaningful pro�le for a client program, in a client-server model, must account for

several aspects. The �rst aspect is the execution pro�le of the client program itself. This

can be measured by a traditional execution pro�ler [56, 57]. The second aspect is the

server-time spent in servicing the requests at the server. The �nal aspect is the time spent

in transferring the requests, and results, between the client and server. This is especially

meaningful when the two programs are run on di�erent machines and exchange messages

over a network.

In the course of this research a new pro�ling strategy has been developed for analyzing

client-server interaction. The central idea of this protocol-level pro�ling strategy is to

analyze a protocol-level trace of the interaction between the client application and the

server and thereby construct an execution pro�le from the trace and a set of metrics

about the display server.

A protocol-level pro�ler, Xprof , has been developed for generating meaningful pro�les

for X Window applications [58, 59, 60]. Xprof estimates the time spent in the display

server and the network connection and constructs an execution pro�le of the requests

made by a client program. It achieves this by analyzing a trace of the interaction be-

tween the client and the display-server programs at the X protocol level. It assigns a

computation cost to each request on the basis of its attributes by consulting a set of

parameters about the display server. The network time for each request is estimated on
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the basis of the size of the request message and the speed and latency of the network

connection.

The principal advantages of a protocol-level pro�ling strategy are as follows. First,

one can identify the most time consuming part of the client application by taking all

aspects into account, including the time spent in the server and the network. Second, by

combining the results with the results of a conventional execution pro�le of the application

program, one can identify how the computation is being distributed between the client

and the display server. Third, this technique permits cross-server pro�ling. One can

take a trace from a particular client-server con�guration and generate pro�les for other

servers and the same client. This allows application developers to tune their applications

for many di�erent servers at the same time. Also, system designers can use the tool to

predict the performance of applications on new or hypothetical hardware.

Other advantages of this strategy include the following. Since the trace collection is

done at a protocol level, there may be no need to recompile the client or server programs

for tracing. This feature is especially useful in the X Window System since the user does

not have to recompile the X server or the X libraries, both of which are fairly large and

complex pieces of software, for pro�ling. Also, even though the tracing procedure causes

some slow down in the processing of the requests, this may not matter for the client

programs that tend to make asynchronous requests. The trace collector may be run on

a third processor host to minimize the con
ict for computation resources. Furthermore,

for most client programs, if the tracing program is slow, it a�ects the arrival distribution
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of the messages but not their information content. Thus the postprocessing of the trace

can still provide a meaningful picture of the computation invoked by the clients.

In the following section, several pro�ling strategies are reviewed in the context of the

X Window system.

2.1 Review of Pro�ler Strategies

2.1.1 Client pro�le

Procedure-level pro�lers such as Prof [56] and Gprof [57] are frequently used to derive

the execution pro�les of conventional programs. These pro�lers entail recompiling the

source code of the program to insert pro�ling code within the object code and are useful

in studying the computation bottlenecks within a client program. As shown in Figure 2.1,

procedure-level pro�lers generate information about the procedure calling pattern within

a program. The information is in the form of the dynamic call graph for the functions

within the program. The call graph consists of nodes, which represent each function, and

edges, which represent calls from one function to another. The call graph is annotated

to re
ect the execution time spent in each function and the call frequency along each

edge. However, for a client program in the client-server model, these procedure-level

pro�lers lose the information about the execution time of requests at the server. This is

because the routines that invoke the computation at the server, such as procedure P9 in

Figure 2.1, are merely stub routines that send the appropriate request messages to the

server.
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Figure 2.1: Procedure-level pro�lers in a client-server environment.

2.1.2 Server pro�le

The traditional procedure-level pro�lers can also be used to instrument the display

server. There are several disadvantages to this approach. First, the display server is

usually a fairly large program and its size can grow appreciably when it is recompiled for

pro�ling. Second, the server pro�le fails to give any information about the link between

the requests from a speci�c client and the corresponding execution in the server. Third,

the pro�le usually gives overall information about the functions invoked and the total

time spent in them. Since requests are frequently made with di�erent attributes, it is

not possible to analyze the distribution of the weight of each request as executed in the

server.
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In an e�ort to identify server bottlenecks, we instrumented the X Window display-

server for a Sun 4/IPC Sparcstation using the popular procedure-level pro�ler Gprof.

However, the pro�les generated were not very meaningful. It turned out that the pro-

cedure calling pattern within the X Window server is quite complex with a number of

self-referential loops in the calling graph and with multiple calling paths for many of

the leaf procedures. Gprof uses a statistical approach for estimating the pro�le in order

to keep pro�ling overhead low. In doing so, it propagates execution time up along the

calling graph equally along each calling path. For a simple calling sequence this approach

works well, but, for the X server pro�led, the resulting pro�le could not be used to draw

any meaningful conclusions.

Another approach is to measure the execution times of frequently invoked requests. In

this strategy, which is used by the X Window program x11perf , 1 a special measurement

program measures the run times of requests for a set of values of the possible attributes.

The information collected is very useful for comparing the performance of two di�erent

display servers. However, the data obtained are of limited utility for gauging the per-

formance of a given application program since the user has to make a judgement about

which of the requests are critical to the program and for which attribute values. Xprof

makes a partial use of this approach: a measurement program is used to generate a set

of parameters for the target display server, and the parameters are used in addition to a

protocol trace to construct an execution pro�le.

1X11perf is distributed with the X Window source code available from MIT.
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2.1.3 Network pro�le

Traditionally, network tra�c is studied by measuring the load on a network by using

a network monitor that logs all of the packets on the network [61, 62]. Such measure-

ments can give a good idea of the transport time for request messages and the overall

distributions of arrival time and byte size of the packets. As with x11perf, it is di�cult

to relate such measurement to the performance of the actual application programs. How-

ever, there is a close correlation between the X protocol tra�c and the actual tra�c on

the underlying network [63]. Therefore, the network aspect of an X Window application

may also be deduced from the protocol trace. Such a study has been done by Linton and

Dunwoody [64].

2.1.4 Xprof: protocol-level pro�ling

Xprof automates the process of evaluating the performance of an application program

on a target display server by consulting a set of performance parameters collected by an

associated measurement program, Xmeasure. Thus, it combines the information about

the client-server interaction in the trace with the information about the display server

to arrive at a meaningful execution pro�le. It also estimates the time spent in network

communication on the basis of the size of each request, in bytes, and the speed and

latency of the network. It is thus able to arrive at a meaningful execution pro�le for an

application with respect to the display server processing and the network communication

overhead and identi�es the contribution of each request type to this execution time.
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2.2 Protocol-level Pro�ling

Protocol-level pro�ling involves the analysis of a protocol-level trace, which character-

izes the interaction between the client and server programs. From this trace, the pro�ler

constructs a statistical analysis of the messages exchanged and also constructs an execu-

tion pro�le of the session on the basis of parameters describing the target server and the

network connection.

For an application program running in a client-server environment, the total execution

time T of the program can be expressed as the sum of the total time spent in the client

program itself and the time spent in servicing the requests, i.e.,

T = Tclient + Tserver (2.1)

When the client and server programs execute, asynchronously, on di�erent computa-

tion hosts, their activities go on with some degree of concurrency, and thus the actual

execution time would be less than the term T calculated above. Therefore, the above

equation is actually an approximation of the total program execution time.

Therefore,

T = Tclient + Tserver � Toverlap (2.2)

The time spent in the server, Tserver is the sum of the time spent in servicing the

client requests and the time spent in processing real-time events, which are sent from

the server to the client. For instance, in the context of the X Window system, mouse
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movement and key strokes would result in event messages. Thus,

Tserver = Trequests + Tevents (2.3)

For an X Window application, Xprof estimates the Trequests in Equation (2.3) on the

basis of the contribution of each type of request. Let R be the set of all request messages

sent to the display server and let ri be the ith message. If Tri is the time spent in

servicing the message ri, then the total time of processing requests, Trequests, is given by

the following equation:

Trequests =
X

ri2R

Tri (2.4)

The time Tri can be expressed as the sum of the time actually spent in executing the

requested operation on the display server, i.e., T server
ri

, and the time spent in transporting

the request message across the network, i.e., T net
ri

.

Tri = T server
ri

+ T net
ri

(2.5)

2.2.1 Server time

For computing the server time term, T server
ri

, the information content, or attributes,

of each message must be taken into account. A particular invocation of a request may

be made from a wide range of values for various attributes of the message. For example,

in order to draw a line, the width and the length of the line drawn are both important

in determining the execution time of the request. Other attributes include the line style,

i.e., whether to draw the line continuous or dashed. Thus,

T server
ri

= f(attributesri) (2.6)
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2.2.2 Network time

The network time term, T net
ri

may be computed in terms of the size of each request

in bytes and the average network speed and latency. The network latency matters only

for synchronous requests, which block until they receive a reply from the display server.

With each request one can associate a Boolean variable, blockingri, which is true if the

request type is synchronous and false otherwise. Then, for the ith request,

T net
ri

= (bytesizeri=netspeed) + (blockingri � netlatency) (2.7)
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3. XPROF: AN EXECUTION PROFILER FOR THE X WINDOW SYSTEM

In this chapter we describe Xprof, a protocol-level pro�ler that generates meaningful

pro�les of X Window applications. The pro�ler estimates the time spent in servicing

request messages in the display server and in the network connection by analyzing the

protocol-level trace of messages exchanged between the application and the display server.

In addition, the statistical distributions of the arrival time and the operation sizes of the

requests are analyzed. The resulting pro�le provides a detailed picture of the server-side

execution of the application program.

3.1 Messages in the X Window System

The X protocol supports a rich variety of message types for client-server communi-

cation [53, 12]. There are, broadly speaking, four categories of messages, i.e., Requests,

Replies, Events, and Errors. Request messages are sent by the client program to the

display server to request various windowing and graphics functions. Replies are sent

from the display server to the client programs in response to requests that ask for some
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Figure 3.1: X protocol messages.

information from the server. Events are sent from the server to the client programs and

are usually a consequence of real-time activities of the user, such as mouse movements

and key presses. Last, errors are warning messages of various types that are sent from

the server to the client. Figure 3.1 shows this broad hierarchy of message types. The

subtypes of each message category are not enumerated because the number of message

types de�ned in the X Window System is over two hundred. The X Window protocol

manual describes the details of each message type [53].

3.1.1 Requests

The Request messages invoke computation on the server, as requested by the client.

These messages are analyzed in detail by Xprof for their statistical distribution and for

the processing invoked on the server. Asynchronous, or one-way, request messages form

the bulk of the messages traded in a typical X Window session. Since they do not

require a reply from the server they can be pipelined on the network connection. The

synchronous, or round-trip, messages, on the other hand, block until a reply is received

and thus incur the overhead of network latency.
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3.1.2 Request attributes

Each of the messages has a number of attributes associated with it; for example,

the byte size of each message is simply the actual size of the messages, in bytes. Event

and Error messages are always 32 bytes long, but Requests and Replies can range in

length from 32 bytes to 64 K depending on their information content. Other attributes

depend on the type of the message; for example, the CopyArea request has associated

with it the information about the location and size of the source and the location of the

destination. Similarly the line drawing request, PolyLine, invokes the attributes such as

the line length, line width and �llstyle.

3.2 Trace Collection

As discussed earlier, in the X Window System, application programs, or clients,

communicate with a display server program to request windowing and graphics services

on the display. The communication is speci�ed by a high-level protocol. A trace of

the protocol messages is enough to characterize the computation invoked by the client

program at the display server. Xprof is designed to analyze such a trace. An advantage

of this approach is that there is no need to recompile the applications, or the display

server, for collecting the pro�les. An existing program, Xscope,1 was selected as the

trace collection program. It is distributed with the source code of the X Window System

and is thus available on all X Window platforms.

1Xscope was written by James Peterson of MCC.
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Figure 3.2: Protocol trace collection.

As shown in Figure 3.2, the tracing program, Xscope, is set up to communicate with

the display server and to act as a \pseudo-server." The client programs communicate

with it as if dealing with an X server. Xscope passes on all of the messages to and

from the actual display server after logging them in a �le. The degree of detail of the

trace collection may be set up as a command line option. Each of the three programs in

Figure 3.2 may run on its own computation host. The slowdown of the client program,

caused by the trace collection, depends on the speed of the trace-collector host. In

practice, clients that make high-level requests, such as for geometrical �gures, incur very

little performance degradation, but clients that request large data transfers with the

server may be slowed down by an order of magnitude.
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3.3 Trace Analysis: Xprof

The protocol-level trace, collected by Xscope, is analyzed by Xprof , the trace analyzer

and pro�ler program. This program constructs a statistical analysis of the messages ex-

changed and also constructs an execution pro�le of the session on the basis of parameters

describing the target display server and the network connection.

After running Xprof on a trace, the end user may chose to re�ne the trace analysis in

order to bring out the details of interest. These re�nements would be made in terms of

better selection of sizes of the data structures that are used to accumulate statistics or

by supplying more precise values of the pro�ling parameters for critical requests. These

steps are discussed, in greater detail, in Section 3.6. The analysis process is summarized

in Figure 3.3.

3.3.1 Steps in processing the trace input

The pro�ler, Xprof, thus analyzes the protocol-level trace and makes use of the metrics

supplied to it about the target display server and the network connection. For each

request, as seen in the trace, Xprof goes through the following steps.

Step 1: Read in the timestamp, the byte size of the request message and the relevant

attributes. Compute the operation size, or op-size, for the message.

Step 2: Update the histograms of byte size, op-size, and arrival time distributions.



29

Display-server and

Customizations

Execution 
Analysis

Statistical 

Generator

Profile

Analyzer

Trace

Trace

File

Network Parameters

Profile

Figure 3.3: Overview of trace analysis.

Step 3: Compute T net
ri

for the request on the basis of its byte size and enter it in the

data structure for this request type.

Step 4: Compute T server
ri

for the request on the basis of its op-size and other attributes

and enter it in the data structure for this request type.

Some messages a�ect the state of the display server, e.g., messages that change the

graphics context a�ect the attributes of future graphical requests. Xprof maintains the

server state and computes the attributes of a�ected requests from it.

When the trace analysis is complete, Xprof prints out the statistical distribution of

the messages and a summary of the time spent in serving each type of request.
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3.4 Collection of Server Metrics: Xmeasure

The Xmeasure program is used to collect the server parameters for a given display

server. It runs measurements for each of the requests de�ned in the X Window protocol,

for a wide range of attribute values. This program is thus similar to the X Window

program x11perf 2 and is designed to output its results in a format suitable for parsing by

Xprof. For each request, the measurements are made for a wide range of attribute values

critical to that request. Each measurement is made by requesting a large number of

operations within two carefully measured synchronization points. The rate of operation

execution is printed out along with the attributes.

For each request type, the key attribute identi�ed is the op-size, which is de�ned

appropriately for the request. The op-size is a measure of the grain of the computation

invoked on the server and thus di�erent from the \byte size" of the request packet. For

instance, for a data transfer request, such as PutImage or CopyArea, the op-size would

be the area of the target. For a line drawing request the line length is taken to be its

op-size. Table 3.1 shows some measurement results for typical request invocations on

three popular color workstations, i.e., Sun 4/IPC, DECStation 3100, and HP 9000.

2x11perf is distributed with the X Window source code available from MIT.
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Table 3.1: Xmeasure measurements for common client requests.

Request Size Typical Time per operation (ms)

Attributes Sun 4/IPC DS 3100 HP 9000/350

PutImage 10x10 depth=8 0.29 0.84 1.46

100x100 depth=8 10.50 11.39 51.23

300x300 depth=8 89.45 96.25 537.63

PolyLine length=10 width=0 0.035 0.046 0.105

length=100 width=0 0.043 0.056 0.159

length=300 width=0 0.087 0.092 0.361

PolyText8 strlen=8 font=6x13 0.32 0.38 2.60

strlen=32 font=6x13 1.07 1.13 6.71

ClearArea 10x10 depth=8 0.43 0.31 3.36

100x100 depth=8 1.69 1.48 3.37

300x300 depth=8 10.19 9.51 5.21

CopyArea 10x10 depth=8 0.31 0.38 6.55

100x100 depth=8 1.86 1.84 4.81

300x300 depth=8 15.36 15.36 6.79

PolyFillRectangle 10x10 �llstyle=Solid .049 .055 .189

100x100 �llstyle=Solid 1.17 1.07 0.49

300x300 �llstyle=Solid 9.58 9.01 2.84

The Xmeasure results, or server parameters, are supplied to Xprof in the form of

a description language. Each entry in the parameters description �le has the following

format:

Request Name [attribute 1 =< value 1 >] [attribute 2 =< value 2 >] : : :

: : : [attribute n =< value n >] (opsize; rate) (3.1)

where attributes 1 through n are the attributes appropriate to that message and the

\rate" is the number of operations per second that were measured for the speci�ed op-

size. Any number of entries may be given for a particular request, e.g., for di�erent values

of op-sizes and attributes.
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It turns out that the op-size is adequate to characterize the performance of most

of the Request types. The graphics requests3 are a notable exception to this general

observation. At an early stage of the design, it was decided to limit the types of possible

graphics attributes handled by Xprof to four. These are as follows:

1. Gxmode refers to the Boolean function that is used to combine source and destina-

tion pixels. Typically, an application will either replace the destination pixel with

a completely new value or combine the old value with the new value of the desti-

nation and write it back. The second type of operation is usually more expensive

than the �rst type because of the extra memory access involved. Therefore, this

attribute is maintained for these two types.

2. Linewidth is the width of a line, in pixels. Zero width has a special meaning in

the X Window System and o�ers a hint to the server that it may use a hardware

algorithm, if one exists, to draw a line of width 1. All other linewidths are generally

drawn by a software algorithm. Any number of linewidths could be invoked by an

application. Owing to practical considerations, this variable is allowed to have up

to four values. Computation time for other line widths is interpolated from the run

times for the available line widths.

3There are 8 graphics requests, i.e., PolyPoint, PolyLine, PolySegment, PolyRectangle, PolyArc,

FillPoly, Poly�llRectangle, and PolyFillArc.
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CreateWindow (0,4717)

...

PolyLine gxmode=GXcopy linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (100,19161)

PolyLine gxmode=GXcopy linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (300,10428)

PolyLine gxmode=GXxor linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (100, 8423)

PolyLine gxmode=GXxor linestyle=LineSolid fillstyle=FillSolid \

linewidth=0 (300, 3309)

...

PolyLine gxmode=GXxor linestyle=LineDoubleDash fillstyle=FillOpaqueStippled \

linewidth=10 (100, 45.3)

PolyLine gxmode=GXxor linestyle=LineDoubleDash fillstyle=FillOpaqueStippled \

linewidth=10 (300, 20.7)

...

PolyText8 fontname=6x13 ( 8, 3121)

PolyText8 fontname=6x13 (32, 934)

...

Figure 3.4: Typical Xmeasure entries for server parameters.

3. Fillstyle may call for solid �lling, in the default case, or specify �lling a region with

a standard tile or with a supplied pixmap. Again, one instance of this attribute is

allowed to have a value of solid �ll and the others are all clubbed together.

4. Linestyle may require solid lines or various types of dashed lines. The solid line style

is treated as one value of this attribute and the others are treated together.

Figure 3.4 shows entries for requests to create windows and to draw lines. These were

gathered from an actual measurement run for the Sun 4/IPC Sparcstation. For example,

the �rst entry in the �gure states that the CreateWindow requests could be serviced at

the rate of 4717.03 requests per second.
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3.5 Xprof Details

3.5.1 Server time

The approach followed in Xprof is to estimate the server execution time, i.e., T server
ri

,

for a given request by interpolating from a supplied list containing information about

execution speeds of the requests for typical values of op-size and other attributes. This

information is provided to Xprof in the format discussed earlier and is typically generated

by running the program Xmeasure on the target workstation.

Thus, the problem of estimating the cost of a request reduces to one of selecting and

interpolating from values supplied in a list of information about the costs of a set of

standard requests. Since a very large number of attributes are possible for each request

and each could have limitless values, it is necessary to limit the range of attributes that

are actually measured and used. The design choice made in Xprof is to use the op-size as

the sole attribute for the vast majority of requests. The graphics requests are measured

for all four attributes discussed earlier. In the current implementation the linewidth is

allowed to have up to four values and the other attributes are allowed to have up to two

values each. Thus, 32 variations of the graphics attributes are possible for each value

of op-size chosen. The text rendering requests are also maintained for up to 32 possible

fonts.

As described earlier, for each set of attribute values, Xmeasure makes many di�erent

measurements for the possible values of op-sizes. Thus, it is necessary to devise a way

of storing and retrieving the measured information. Xprof maintains the display-server
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typedef union _MsgCost {

CostCell *window; /* Pointer to a list of costs */

CostCell **gfx; /* Array of graphics cost lists */

CostCell **txt; /* Array of text cost lists */

} MsgCost;

typedef struct _CostCell {

float size; /* OpSize for this measurement */

float speed; /* Speed in size units per second */

struct _CostCell *nextcost; /* Next data point in the list */

} CostCell;

Figure 3.5: C language data structures for the cost model of messages.

measurements in an array of lists as shown in Figures 3.5 and 3.6. The data shown

in Figure 3.6 are for measured values for a Sun 4/IPC workstation as shown earlier in

Figure 3.4.

Figure 3.6 shows the request CreateWindow as representative of most request mes-

sages, which have associated with them a linked list of size and speed pairs. Graphics

requests, such as PolyLine, have an array of lists: one list for each combination of allowed

attribute values. Initially, each list is empty. During initialization, the entries, as shown

in Figure 3.4, are read, and the size-pair entry is then entered in the appropriate list,

which is maintained in ascending order of size for easy searching. In terms of the C lan-

guage, there is an array of pointers called MsgCost that has one entry for each request.

For the graphics and text requests, the array entry points to an array of lists comprised

of the CostCell structure. All other requests have an entry that points to a single list of

CostCell structures. During trace analysis, for each request encountered, Xprof searches
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Figure 3.6: Message costs as maintained by Xprof.
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for an entry matching its size and attributes in the MsgCost array. There are three pos-

sible outcomes of this search. First, an exact match may be found for the given request's

attributes and op-size. In this case the Tri term is easily computed from the speed of the

matching entry. Second, an exact match for the attributes may be found, but the entry

for the exact op-size may not be found in the linked list. In this case, the solution is

to interpolate the term for speed from the entries that match the desired op-size most

closely. Third, in the worst case, there may be no exact match for the attributes desired.

In this case, for each of the nonmatching attributes, Xprof substitutes another measured

attribute on the basis of heuristics. For example, in the current implementation of Xprof,

the gxmode gxand would be replaced by the more common gxmode gxxor , which is also

a two-operand function. Similarly the gxmode gxset would be replaced by gxcopy, which

is a one-operand operation as well. In this way a set of attributes is obtained for which

there is an entry in the MsgCost array, and a cost is computed as in the earlier cases. A

warning message is printed out detailing the substitutions made.

Example

The following example illustrates the computation of Tri. Suppose that Xprof sees

the following three PolyLine requests in the trace. In each case the op-size refers to the

length of the line in pixels. Also, PolyLine is a graphics request and the various graphics

attributes have to be taken into account. Figure 3.6 is used to calculate the computation

time for each case.
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1. Op-size=100, gxmode=GXcopy, linestyle=LineSolid, �llstyle=FillSolid,

linewidth=0:

In this case, the matching entry in the PolyLine cost array is at index 0. From

Figure 3.6, the appropriate list entry for op-size of 100 yields a speed of 19161

operations per second. From this, the time spent can be computed as 1/19161, i.e.,

Tr1 = 0:052 ms

2. Op-size=200, gxmode=GXcopy, linestyle=LineSolid, �llstyle=FillSolid,

linewidth=0:

Again, the index is 0. However, there is no exact match for the op-size, since there

is no list entry for lines having these attributes and length 200. The solution is to

interpolate from the supplied speeds for op-size 100 and 300. Op-size 100 implies

an execution time of 0.0522 ms and op-size 300 implies 0.0959 ms. Therefore,

Tr2 = 0:0522 + 0:0959�0:0522
300�100

� (200 � 100) = 0:074 ms

3. Op-size=100, gxmode=GXxor, linestyle=LineDoubleDash, �llstyle=FillStippled,

linewidth=10:

For this set of attributes, there is no entry corresponding to the �llstyle, i.e., Fill-

Stippled. According to the substitution heuristic, this attribute is to be replaced

by the attribute FillOpaqueStippled . This substitution leads to a match at index

31. From Figure 3.6 we �nd that an operation of size 100 is executed with a speed

of 45.3 operations per second. From this,

Tr3 = 1=45:3 = 22:1 ms
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typedef struct {

Boolean invoked; /* Has this structure been invoked before? */

long number; /* Total number of these messages seen */

long total_bytes; /* Total number of bytes seen for this msg */

long last_time; /* The time stamp of previous message */

Grain size_grain; /* Size grain for this measurement */

Detailed detailed; /* Are we maintaining detailed information?

If so, the following are updated too. */

long *iat_distbn; /* Interarrival time distribution */

long min_iat, max_iat;/* Range of values of the raw data */

long *size_distbn; /* Size distribution */

long min_size, max_size;

} MsgStats;

Figure 3.7: C language data structure for message statistics.

3.5.2 Statistical distributions

Xprof collects the statistical distributions of the interarrival time and op-size distri-

butions of each X message type, i.e., all requests, replies, events, and errors. The grain

size for the measurement can be set at run time as discussed below.

Figure 3.7 shows the data structure employed to collect the statistics for each of the

message types. Since each X message type has a copy of MsgStats associated with it, the

total number of instances of the MsgStats data structure is over two hundred. Thus, it

is important to keep the size of the data structures within a reasonable bound. In order

to achieve this, the two arrays for collecting the distributions of interarrival times and

operation sizes, i.e., iat distribution and size distbn, are allocated dynamically from heap

memory at run time.
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The distribution of interarrival times can be expected to have a very wide range of

values. Therefore, early in the design process, it was decided to collect the corresponding

histogram on a log scale. The dimension of the corresponding array was set to 32. Given

that the grain size for the measurement of time on a Unix system is 10 ms, this choice is

enough to cover interarrival times for up to a year, which should be adequate for most

applications. This choice of size of the iat distbn array implies an overhead of about

128 bytes4 for each data structure, which is quite reasonable. The choice of the size of

histogram array for the operation size, or op-size, is trickier. The range of op-sizes is

di�erent for each message type. Also, the op-sizes are distributed fairly uniformly within

that range. Thus, to be meaningful, these measurements should allow for the di�erent

ranges and also be measured on a linear scale. The design choice made was to set the

array size of size distbn to 4096, which is changeable at run time, and to allow for a

di�erent grain-size of measurement for each request. A good choice of grain-size for a

request would thus be one that distributes its range uniformly over the array.

Since each request has a di�erent grain for its size measurement, the information

about the grain is also maintained in the MsgStats in the size grain variable, and the

size histogram is interpreted only with reference to this grain. Default size-grains are set

up at initialization time and may be set by the user. To illustrate the choice of a suitable

size-grain, it may be noted that some requests, such as PolyLine, generally involve small

operations; therefore a size-grain of one is adequate for such requests. The PutImage

4Assuming that the computer uses four bytes for each long integer
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request, on the other hand, can involve the copying of data of up to 64 K and would

require a size-grain of 16 for the above choice of 4096 buckets to accommodate all possible

values. As an extreme example, the ClearArea request can involve the clearing of very

large sections of the display screen. For clearing an entire screen of a display that is 1024

by 1024 pixels with 8 bits per pixel, the server has to process 1 M of data, which implies

that a size-grain of 256 is needed for this operation. Xprof has built-in default values for

the grain of each message type, which are adequate for most cases.

Given a choice of 4096 for the number of buckets in the size distribution, the MsgStats

array accounts for 16 K5 of heap memory per message measured. Since over 200 instances

of this structure may be needed, the total space usage amounts to over 3 M. To reduce

this worst-case memory requirement, two further optimizations are made.

First, the variable detailed determines whether the user is interested in collecting the

histogram at all. If not, the distribution arrays are not allocated or maintained at run

time. This may be true if the user is not interested in certain requests or is interested

only in the execution pro�le and not in the message distributions. This variable can be

set for each message type individually.

Second, the Boolean variable invoked , which is false by default, is used to track

whether the message has been encountered at all in the trace. The allocations of the

size distbn array from heap memory are actually made the �rst time the message is seen.

Since a typical X Window session uses only a subset of the possible message types, this

5Assuming that the computer uses four bytes for each long integer.
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feature can save a lot of heap memory. In practice, 30-50 message types are typically

seen in a trace. This implies a memory usage of 480-800 K, which is a vast improvement

over the worst case usage of over 3 M calculated earlier.

Thus, the customizable parameters for the histograms are the size-grains for the

operation size on a per-message basis, the choice of whether to maintain the detailed

histograms, and the sizes of the histogram arrays. Default values for each are built into

Xprof and are customizable by the user.

3.6 Re�ning the Measurements

Since Xprof is a trace-driven pro�ler, it is possible to rerun it on the same trace to

bring out information of interest to the user. For instance, after running Xprof once on

the trace input, the user may �nd that the trace involves requests with combinations of

attributes that are not covered in the server parameters list. For such a case, the user may

choose to collect the necessary data by running Xmeasure on the target display server

for the necessary combination of attributes, and then augmenting the server parameter

list. Then, Xprof may be rerun to generate a more accurate pro�le of the trace.

Several runtime variables may be tweaked in order to re�ne the statistical analysis of

the messages. Some of these are discussed below. First, the array size of the size distbn

array may be changed at run-time. This choice is driven by the available physical memory

to run Xprof. The default choices embedded in Xprof re
ect the resources available on

current machines. Second, the size grain may be modi�ed on a per message basis. This
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choice depends on the range of sizes, seen in the trace for each message type, and may thus

be re�ned after the trace has been analyzed once through. Third, the detailed variable

mentioned earlier may be used to selectively turn o� the statistical measurements but

not the pro�ling of certain requests. Such a choice would not a�ect the computation

requirement of Xprof, but might reduce its dynamic memory usage substantially.

Each request type has an associated action function that processes each instance of

the request, as seen in the trace, by following the steps described in Section 3.3. If

for some reason the user wants to rewrite the actions, a template �le is included with

the source code. Thus, users could extend Xprof to support future extensions to the

X protocol or, for example, change the de�nitions of the op-size for a request, as they

choose.

In some cases, users may want to set up Xprof to consume trace data in real time.

To support such a usage, Xprof captures the following signals in the Unix environment:6

1. SIGHANGUP: This signal causes Xprof to print out the results accumulated up to

the current point.

2. SIGKILL: This causes Xprof to reset its data structures to their initial values, clear

all histogram arrays, and reread the server parameter �le.

6These signals are communicated to Xprof by using the kill command from a Unix shell: e.g., for

sending SIGHANGUP, the user would type: kill -1 [Xprof-process-number] , and for sending SIGKILL,

kill -2 [Xprof-process-number] .
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4. RESULTS FROM XPROF ANALYSIS

The output generated by Xprof consists of the estimated execution pro�le for the

requests at the server and the statistical distribution for the messages and the message

categories, i.e., Requests, Replies, Events, and Errors.

Three popular workstations were selected for the following study. These were the

Sun4/IPC, DecStation 3100, and HP 9000/350. Each of these supports 8-bit color, has

at least 8 M of memory and runs release 4 of version 11 of the X Window system.

The applications programs selected for pro�ling were Ximage, Xtex, Xtetris, and

Xmagic. Ximage is a scienti�c visualization tool that is used to display the results of

scienti�c computations as color pictures. It can be set up to display a succession of such

pictures as an animation sequence. The data set chosen was a sequence of 60 pictures

each 300x300 pixels in 8-bit color, i.e., 90 K each. The sequence was run through 10

times to generate the protocol trace. Xtex is a previewer for documents formatted by

the LaTEXdocument processing system. The protocol trace was collected for display of

a 19-page research report. Xtetris is an interactive game played by the user against the



45

computer in which the player guides falling blocks to form �lled rows. A protocol trace

was taken for a session lasting about 10 min. Xmagic is a CAD layout tool that is used

in the VLSI design class at the University of Illinois. The trace was collected for the

layout of a 4-bit D-latch. All protocol traces were collected on the Sun4/IPC system.

4.1 Execution Pro�le for Requests

The execution pro�le consists of a list of all requests that are made during the exe-

cution of the program, with the total estimated time of execution for each. This time

is divided into the computation and communication parts. The number of messages

received, in each category, and the mean execution time per request are also printed out.

Table 4.1 shows the execution pro�le for Xtex for the �ve most time-consuming re-

quests, which together account for over 90% of the execution time. Not surprisingly, the

text rendering messages, PolyText8 , account for a large number of the messages: over

86%. Yet, the computation part for these messages is responsible for only about 7% of

the pro�led execution time. The dominant message, from the viewpoint of the display

server, is the PolyFillRectangle request. It turns out that in the design of Xtex, this

request is invoked to clear a page before rendering text on it. Obviously, text rendering

itself is not the computation bottleneck for this application. However, when we look at

the network part, the PolyText8 requests take up a major proportion of the time spent in

the network communication. The overall performance of this program on the hardware
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Table 4.1: Excerpt of the execution pro�le of Xtex.
Network speed = 100.00 K/s, Latency = 10.00 ms

Request Time %of Compute Network Number of Time/

Name (ms) total part part messages call (ms)

PolyFillRectangle 3137 50.7 47.2% 3.5% 508 ( 5.9%) 6.2

PolyText8 2130 34.4 7.1% 27.3% 7389 (86.1%) 0.3

MapSubwindows 103 1.7 1.7% 0.0% 5 ( 0.1%) 20.6

MapWindow 100 1.6 1.6% 0.0% 23 ( 0.3%) 4.4

QueryFont 227 3.7 1.1% 2.6% 16 ( 0.2%) 14.2

: : :

Grand Total6 6191 100.00 62.1% 37.9% 8580 0.7

Table 4.2: Excerpt of the execution pro�le of Xtex.
Network speed = 1000.00 M/s, Latency = 0.00 ms

Request Time %of Compute Network Number of Time/

Name (ms) total part part messages call (ms)

PolyFillRectangle 2924 76.0 76.0% 0.0% 508 ( 5.9%) 5.8

PolyText8 441 11.5 11.5% 0.0% 7389 (86.1%) 0.1

MapSubwindows 103 2.7 2.7% 0.0% 5 ( 0.1%) 20.5

MapWindow 99 2.6 2.6% 0.0% 23 ( 0.3%) 4.3

QueryFont 66 1.7 1.7% 0.0% 16 ( 0.2%) 4.1

: : :

Grand Total 3846 100.0 99.9% 0.0% 8580 0.5

studied could be improved by reducing the computation cost of clearing a page and the

network cost of communicating the text rendering requests.

To gain an idea of the server-side computation, the user may be interested in looking

at the computation pro�le separately. Table 4.2 shows the estimated pro�le with network

speeds and latency values that e�ectively make the network component irrelevant. Such

an analysis emphasizes the computation bottlenecks in the pro�le.
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Table 4.3: Message statistics for Xtex.

***** Statistics for Requests *****

Interarrival time distribution (ms):

Number Range Mode Median Mean Std. Dev.

(All points) 8580 0-8990 0 0 13.22 165.58

(Zeros removed) 150 30-8990 630 310 756.13 1003.27

Size distribution:

Number Range Mode Median Mean Std. Dev.

(All points) 8580 4-96 24 23 24.07 9.41

4.2 Message Statistics

Xprof prints out the statistical distribution for the message categories, as well as for

the individual messages. In addition, it can be set up to print out the detailed histograms

from which these statistics are derived. The statistics are printed for the interarrival time

and size distributions of the messages.

4.2.1 Message categories

Table 4.3 shows the overall distributions for the Request messages in the Xtex trace.

The interarrival distribution has a large number of zero entries in it owing to the bu�ering

of messages within the X library, which makes a lot of messages arrive together at the

server. Hence, the arrival distribution for the actual message packets can be estimated

by discarding the zero values. This distribution is also computed and printed. For the

Request messages, the sizes refer to the actual byte sizes of the requests. The total bytes

for each request message are also computed and printed as shown in Table 4.4. Similar
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Table 4.4: Total bytes for each request in the trace of Xtex.

Request messages Total Bytes Number

PolyFillRectangle 21,368 bytes (10.35%) 508 ( 5.92%)

PolyText8 168,964 bytes (81.80%) 7,389 (86.12%)

MapSubwindows 40 bytes ( 0.02%) 5 ( 0.06%)

MapWindow 184 bytes ( 0.09%) 23 ( 0.27%)

QueryFont 128 bytes ( 0.06%) 16 ( 0.19%)

: : :

Grand Total 206,548 bytes 8,580

printouts are made for the other categories of messages, i.e., Replies, Events, and Errors,

but, in order to save space, those are not shown here.

Table 4.3 shows that the Xtex messages are bu�ered frequently by the X protocol.

Most messages are relatively small, with a mean size of about 24 bytes. Table 4.4 shows

that the PolyText8 request accounts for over 80% of the network tra�c for Xtex. This

explains why these requests have a relatively high network component in the execution

pro�le. The average size of these requests is about 23 bytes, which is close to that for

the overall pro�le.

4.2.2 Individual messages

The last section of the Xprof output lists the distributions of each message type

individually. Table 4.5 shows the distribution for the PolyText8 request for Xtex. As

noted earlier, for the overall request distribution, the e�ect of bu�ering of messages can

be seen here in the large number of entries for zero arrival time. In the size distribution,

the op-size for this request is the length of the requested string of text. The distribution

shows that the text requests are made, on the average, for very short string lengths of
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Table 4.5: Statistics for PolyText8 messages in the trace of Xtex.

***** Statistics for PolyText8 *****

Interarrival time distribution (ms):

Number Range Mode Median Mean Std. Dev.

(All points) 7389 0-21340 0 0 13.99 284.42

(Zeros removed) 108 150-21340 630 310 957.41 2152.07

Size distribution:

Number Range Mode Median Mean Std. Dev.

(All points) 7389 1-43 3 2 3.46 2.35

about 3.5 characters. Since the average PolyText8 message is about 23 bytes long, as

noted earlier, this means that the message is not very e�cient at transmitting the strings.

Longer string lengths in each request might improve the network performance.

4.3 Cross-server Pro�ling

Table 4.6 is a summary of a cross-server pro�ling study of the performance of the

Xtex trace on several di�erent architectures. In addition to the Sun 4/IPC, Xprof was

run on the trace with server parameter lists for the DECStation 3100 and HP 9000/350

computer systems, each of which is a color workstation with 8-bit color and running

version 11 release 4 of the X Window System. To emphasize the computation part at

the display server, the pro�le was run for network parameters that e�ectively make the

network component irrelevant.

The data show that the PolyFillRectangle requests are the computation bottleneck

for both the Sun and DEC machines. For the HP, however, the PolyText8 requests are

dominant in the pro�le. Note that on the HP, the text rendering is about 8 times slower
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Table 4.6: Cross-server pro�le for Xtex.

Message Execution Pro�le

Request Distribution Sun 4/IPC DecStation 3100 HP 9000/350

Name No. of % of Time % of Time % of Time % of

msgs. total (s) total (s) total (s) total

PolyFillRectangle 508 5.9 2.92 75.9 2.67 72.4 1.14 14.9

PolyText8 7389 86.1 0.44 11.5 0.59 16.2 4.28 56.3

MapSubWindows 5 0.1 0.10 2.7 0.03 0.7 0.14 1.8

MapWindows 23 0.3 0.99 2.6 0.12 3.2 0.33 4.4

QueryFont 16 0.2 0.66 1.7 0.11 2.9 0.42 5.6

All Messages 8580 3.85 3.69 7.60

than on the other machines. Therefore, its pro�le is skewed towards the text rendering

function. However, because it has a fast implementation of PolyFillRectangle, its total

time for Xtex is only about 2 times that for the other two machines. This example clearly

demonstrates the importance of correctly identifying the critical server functions, for a

given workload, to optimize the server performance. For all three machines, only a few

requests account for 70-90% of the computation time on the display server.

Table 4.7 shows the pro�les for execution of Ximage, the scienti�c visualization tool.

The PutImage requests account for over 90% of the processing time on each of the ma-

chines even though they constitute only about 15% of the messages. These requests

involve the transfer of the actual image to be displayed on the screen and are an im-

portant component of the image manipulation functions of Ximage. The ClearArea and

CopyPlane operations account for only about 5% of the processing time yet account for

over 60% of the messages. It turns out that they are invoked by functions that manage

the user interface of the program, such as the scrollbars and input buttons, and require
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Table 4.7: Cross-server pro�le for Ximage.

Message Execution Pro�le

Request Distribution Sun 4/IPC DecStation 3100 HP 9000/350

Name No. of % of Time % of Time % of Time % of

messages total (s) total (s) total (s) total

PutImage 1333 15.3 55.11 95.3 64.92 93.8 350.56 92.4

ClearArea 2782 31.8 1.23 2.1 1.26 1.8 9.16 2.4

CopyPlane 2685 30.7 0.82 1.4 1.86 2.7 12.83 3.4

CopyArea 670 7.7 0.22 0.4 0.46 0.7 4.32 1.1

MapWindow 49 0.6 0.18 0.3 0.29 0.4 0.71 0.2

ImageText8 719 8.2 0.06 0.1 0.07 0.1 0.56 0.2

All Messages 8737 57.84 69.18 379.44

Table 4.8: Cross-server pro�le for Xtetris.

Message Execution Pro�le

Request Distribution Sun 4/IPC DecStation 3100 HP 9000/350

Name No. of % of Time % of Time % of Time % of

msgs. total (s) total (s) total (s) total

ClearArea 7587 60.3 3.77 57.4 2.85 55.7 25.52 87.9

PolyFillRectangle 4389 34.9 2.10 32.0 1.63 31.9 0.27 0.9%

CopyArea 44 0.4 0.49 7.4 0.50 9.8 0.10 0.4

All Messages 12577 6.57 5.11 29.04

only a small amount of processing on the display-server. For this application, the Sun

4/IPC and DecStation 3100 are roughly on par on performance. The HP 9000/350 is

about 6 times slower than the other two because of its slower PutImage function.

Table 4.8 shows the pro�le for Xtetris, the interactive game. Again, a few requests

account for over 90% of the messages and over 90% of the server-side processing. The

total times for processing range from 5.11 s for the DecStation, to 29.04 s, for the HP.

Since the trace is for a session lasting about 500 s, the server processing is adequate for

the demands posed by the game in each case. The critical functions are ClearArea, which
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Table 4.9: Cross-server pro�le for Xmagic.

Message Execution Pro�le

Request Distribution Sun 4/IPC DecStation 3100 HP 9000/350

Name No. of % of Time % of Time % of Time % of

msgs. total (s) total (s) total (s) total

PolyFillRectangle 1383 16.8 9.59 92.8 8.80 92.9 3.65 53.8

SetClipRectangles 803 9.8 0.33 3.2 0.18 1.9 0.71 10.5

PolySegment 1316 15.9 0.25 2.4 0.34 3.6 1.31 19.3

PutImage 44 0.5 0.07 0.7 0.03 0.4 0.41 6.0

PolyPoint 995 12.1 0.01 0.1 0.01 0.1 0.08 1.3

PolyText8 803 9.8 0.04 0.4 0.05 0.5 0.33 4.8

ChangeGC 2588 31.4 0.00 0.0 0.00 0.0 0.00 0.0

All Messages 8234 10.33 9.48 6.79

is invoked to clear the game surface, and PolyFillRectangle, which is invoked to draw the

game tokens on the screen.

Table 4.9 shows the pro�le for Xmagic, the VLSI CAD layout tool. The function

PolyFillRectangle accounts for the bulk of the server-side execution in each of the display-

servers. Xmagic invokes this function frequently since its output consists of a large

number of rectangular objects. The HP 9000 outperforms the other computers since it

has special architectural support for area-�lls.

In general, the Xprof pro�les clearly point out the critical functions with reference

to the server-side processing. Also, since Xprof is capable of doing cross-display-server

pro�ling, it is easy to compare the performance of a trace on many di�erent workstations.

The information collected can be used to tune the display-server software and also to

achieve better load-balancing between client and server processing.
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Table 4.10: Client-server load partitioning for the Sun4/IPC.

Client Client Time Server Time Total Pro�le Actual Time Ratio

Program (Gprof) (Xprof) (Gprof+Xprof) (wallclock) (Pro�le/Actual)

XImage 255.0 s 57.8 s 312.8 s 320.0 s 98%

Xtex 2.5 s 3.9 s 6.4 s 7.0 s 91%

4.4 Client-server Load Partitioning

To quantify the distribution of computation between the client and server programs,

the client program may be pro�led by a conventional procedure-level pro�ler. The client

pro�le time may then be compared to the server pro�le time, as estimated by Xprof.

Table 4.10 shows the results of such a measurement for Xtex and Ximage.

The data in Table 4.10 demonstrate that Xprof complements the client-side pro�le

by providing an accurate server-side pro�le. For the applications shown, the sum of the

client time, as measured by Gprof, and the server time, as measured by Xprof, is very

close to the actual wall clock time. Since both the application and the display server were

run on the same computation host, the network time is not relevant to this measurement.

4.5 E�ect of Network Speed

In the client-server model of computing, processing is partitioned between the client

and server programs. However, the overall performance also depends on the network

connection between the two processes. In this section we study the impact of the network

parameters on the Xtex application. The pro�les are constructed for the Sun4/IPC with

the client and server communicating over a network with latency of 10 ms and a speed of

either 100 K/s or 1000 K/s. The y-axis in Figure 4.1 is normalized to the total processing
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Figure 4.1: E�ect of network speed on Xtex pro�le.

time since the objective is to see how the overall request service time is divided between

the network and the display server.

Figure 4.1 shows that Xtex is not a�ected too much by the network speed for the

trace studied. The critical function PolyFillRectangle is not a�ected much by the network

speed at all. This is because it is a graphics request without much data content. The

text rendering request PolyText8 is a�ected more by the network speed. In fact, this

request constitutes over 80% of the request bytes. Overall, this pro�le shows that the

Xtex requests take 50% longer to execute for the slower network.

Figure 4.2 shows that the Ximage application is deeply a�ected by the network speed.

For the trace studied, the slower network causes the Ximage requests to take 6 times

longer to execute. Ximage transfers a large amount of data from client to server in the

form of the PutImage requests. The trace studied involves a total transfer of 59.4 M of

data. Almost all of this is accounted for by the PutImage requests.

Figure 4.3 shows that Xtetris executes quite well for either network speed. The critical

messages for it, i.e., ClearArea and PolyFillRectangle, are high-level graphics requests.
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Figure 4.2: E�ect of network speed on Ximage pro�le.

ClearArea PolyFillRct CopyArea

20%

40%

60%

80%  
Net speed 100 KB/s
Total time: 9.3 s

Network
Server

ClearArea PolyFillRct CopyArea

20%

40%

60%

80%  
Net speed 1000 KB/s
Total time: 7.11 s

Network
Server

Figure 4.3: E�ect of network speed on Xtetris pro�le.
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Figure 4.4: E�ect of network speed on Xmagic pro�le.

Therefore, the requests for this application take only about 25% longer for the slower

network.

Figure 4.4 shows that the Xmagic program is not seriously a�ected by the network

speed. The important request for this program is PolyFillRectangle, which is a tightly

encoded request.

Thus, Xprof gives a good idea of the distribution of the request processing between

the display-server and the network. The analysis of the impact of the network can be

quite valuable in gauging the performance of a client-server-model based program. Future

systems are likely to emphasize visualization applications, and the network bottlenecks

will become important to the performance of display systems such as the X Window

System.
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4.6 Limitations of Xprof

The pro�ling approach developed in this thesis uses a protocol-level trace, which has

no knowledge of the lines of code that gave rise to the protocol messages. Therefore, the

current implementation of Xprof cannot connect the critical server functions to speci�c

lines of client code. To collect such information, the trace would have to be generated

by an instrumented version of the client program, which would emit the source code

information along with the protocol messages. This would involve the recompilation of

the client program source code with a compiler that inserts the appropriate trace routines

in the object code.

There are several extensions to the server cost model that could add to the pro�ling

information available from Xprof. Currently, the cost of server events, such as mouse

movements, is ignored. The server cost model could be extended to include the cost of

processing the real-time events. This aspect will become more important as sophisticated

input mechanisms, such as speech and handwriting recognition, become widely used for

computer input. Also, the computation of the request service time takes only the direct

cpu cost into account. However, X clients can create X resources in the server, which

use up server memory. If enough resources are created, the virtual memory needed by

the server may exceed the physical memory available. The resulting swapping may a�ect

execution time signi�cantly. Thus, the user may be interested in the dynamic allocation

pro�le of the X resources. The trace analyzer in Xprof could be extended to generate such

a dynamic pro�le to help the user understand the server-resource consumption pattern for
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a certain client. For this, the server parameter information would need to be augmented

with information such as the number of bits per pixel for the target display-server.

Estimation of the cost of a request, as described in Chapter 2, may involve two

kinds of approximations, i.e., interpolation of the operation size and the substitution

of one attribute by another. In either case a warning message is printed out. These

approximations could yield erroneous results and must be understood well by the user.

First, the interpolation function is linear. If the actual cost function is nonlinear with

respect to the operation size, the computed cost may be inaccurate. The best defense

against this is to measure the actual speed of the request for the needed operation size and

augment the server parameter information. Second, the substitution of a nonmeasured

attribute by a measured attribute is done on the basis of certain heuristics. These

heuristics may not be valid in some instances. For example, there may exist special

hardware support for one class of attributes but not for others. The user should examine

the warning messages carefully and alter the substitution heuristics, if necessary. A more

precise solution would be to measure the costs of the requests for the attributes of direct

interest.

The network cost model in the current implementation of Xprof gives the user an idea

of the order of magnitude of the communication time on the basis of supplied network

speed and latency. A more sophisticated network simulation could model the performance

of actual network protocols, such as the collision sensing protocols in wide use in local

area networks today.
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4.7 Xprof Audiences

The pro�les generated by Xprof may be useful to many di�erent audiences:

1. Xprof supports cross-display-server pro�ling. Thus, users of display servers such as

workstations could evaluate the performance of di�erent workstations for their own

applications by pro�ling traces of interest to them for several target servers. All

they need is the server parameter data for each workstation, which can be generated

by Xmeasure in a standardized manner.

2. Developers of X Window-based software can identify bottlenecks in their software

and tune it for di�erent platforms. Conventional pro�lers do not give a coherent

picture of the overall execution pro�le of a client-server program.

3. Designers of display servers can determine the critical requests made by typical

applications and tune their systems to execute such requests faster.

4. Administrators of distributed systems can quantify the partitioning of computation

between the client and display server programs and also the network load imposed

by typical applications.

As distributed systems come into widespread use, the client-server paradigm of com-

puting will become increasingly important. The protocol-level pro�ling methodology

followed in Xprof may be used to design pro�les for any general client-server system.

Information gained from such pro�les would be of great help in designing strategies for

task partitioning and load balancing.
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5. FACTORS IN MEMORY-SYSTEM DESIGN

Cache memory is frequently used to improve memory access performance [65, 66, 67,

68, 69, 70, 71, 72]. Graphical displays make use of a specialized frame-bu�er memory to

maintain the bit-map image of the display. However, the bene�t of using conventional

caches is not clear for frame-bu�er accesses since these accesses have large working sets

and are mainly writes. As computers with graphical user-interfaces become increasingly

popular, it is important to study methods to improve the performance of frame-bu�er

access. In this chapter and in the following chapters we look at memory-system design

with respect to the access characteristics of the frame-bu�er.

5.1 Cache Memory

The basic idea behind a cache memory is to exploit spatial and temporal locality

of accesses, which is exhibited by typical programs, using a small high-speed memory

between the processor and the main memory. This fast memory caches recently accessed
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Figure 5.1: Memory hierarchy in computer systems.

items and provides high-speed access to them on reuse. Cache design is tricky since a

poorly designed cache can actually degrade the overall system performance.

As shown in Figure 5.1, in typical computer systems, the total memory consists of

a hierarchy of di�erent storage technologies. The memory closer to the processor is

faster and more expensive than the memory further down in the hierarchy. A balanced

memory system design aims at minimizing the system cost while maintaining acceptable

performance. Recent RISC architectures have large register sets, but the high instruc-

tion execution rates of these processors have made cache design even more critical. In

general, cpu speeds have been advancing at rates faster than the rate of improvement

in memory access speed. Note that caches are only one way of improving access time.
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Other strategies, including memory interleaving, page-mode access, write-bu�ering, syn-

chronous DRAMs, and specialized designs such as Rambus, may be applied to comple-

ment the cache design [71].

As shown in Figure 5.2, current computer systems use a split cache con�guration

with separate caches provided for the instruction (I-cache) and data (D-cache) streams.

One motivation for this approach is that pipelined RISC systems may require both an

instruction fetch and a memory fetch to complete within a processor cycle. Also, the

instruction and data streams may have su�ciently di�erent behaviors to warrant separate

organization. Even though the caches are separate, they frequently communicatewith the

main memory system over the system bus and can thus in
uence each other's performance

by way of the demands placed on the bus. Since the bus may also be used for input-output
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operations, it is important to minimize the bus tra�c, and this aspect is an important

concern in the cache design.

5.2 Issues in Cache Design

An important goal of cache design is to minimize the overall access time and not

simply the miss-rate. In this thesis the metrics of performance of a cache are the overall

access time and the tra�c ratio. These and other terms are de�ned below. In general,

these conform to the terminology used by A.J. Smith in his detailed survey of cache

design methodologies [65].

Cache: Cache memories are small, high-speed bu�er memories that hold, temporarily,

an actively used subset of the contents of the main memory. A cache can either

be a uni�ed cache or be split into a separate instruction-cache, or I-cache, and

data-cache, or D-cache.

Block: A block, also called a line, is the minimum unit of data transfer between the

cache and main memory. A tag is maintained for each line of data. Proper line size

selection is an important part of the cache design.

Tag: The tag of a cache block speci�es the block address. A tag has to be maintained

for each line of data. This tag memory can be an appreciable part of the chip area

that implements the cache. Larger block sizes incur less tag-memory cost.
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Set: A set is a grouping of blocks whose tags are checked in parallel when searching for

a data item in the cache.

Associativity: The degree of associativity of a cache is the number of blocks in a set. In

a fully-associative cache the entire cache forms a single set. At the other extreme,

a direct-mapped cache has sets with one block each. The caches that fall between

these extremes are called set-associative caches.

In general, set-associative caches are more expensive to implement than direct-

mapped caches. Most practical caches are either direct-mapped or 2-way set-

associative. According to Hill [68], it is di�cult to build a set-associative cache

that delivers a higher overall performance than that of a comparable direct-mapped

cache.

Hit/miss: A hit is a memory access that is found in the cache, while a miss is one

that is not found in the cache. The hit/miss rate is the number of hits/misses

as a proportion of the total accesses. One objective of cache design is to reduce

the miss-rate. The hit time is the time to access the item in the cache. The miss

penalty is the time to replace the cache block with a block fetched from the main

memory. This can be divided into the access latency, which is the time to access

the �rst word of the missing block, and the transfer time, which is the time to

transfer the remaining words in the block.
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Tra�c ratio: The tra�c ratio is the ratio of the tra�c between the processor and the

memory with and without the cache. Thus, if the tra�c ratio is less than unity, the

cache serves to reduce the memory tra�c on the system bus. This has the e�ect of

improving overall system performance.

Replacement Strategy: The replacement strategy is the algorithm for choosing which

block in a set will be replaced by a newly fetched block. The most common choices

are Least Recently Used (LRU) and Random.

Write strategy: The write strategy is the policy followed when a write is made to the

cache. There are two basic choices:

� Write through (also called store through): The data are written to both the

cache block and the lower-level memory.

� Write back (also called copy back): The data are written only to the cache

block. The modi�ed block is written to main memory only when it is replaced.

A dirty bit has to be maintained to track the blocks which need to be written

back.

Both these policies have their own advantages and disadvantages. Also, write

bu�ers may be maintained for both of the above strategies. These allow the pro-

cessor to continue operations while the memory is being updated.

On a write miss some more choices have to be made:

� Write allocate: The necessary block is loaded into the cache.
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� No write allocate: The block is modi�ed only in the main memory and is not

loaded into the cache.

Generally, copy-back caches use the write-allocate policy, and write-through caches

use no write allocate.

Fetch strategy: The fetch strategy is the strategy for deciding when to fetch a block

from the main memory. Demand fetching is the most common policy, but various

prefetching algorithms can enhance performance for speci�c applications. Some

recent microprocessors have provided special instructions that allow the compiler

to embed prefetch hints in the user code.

Some other interesting issues in cache design include multiprocessor caches, multi-

level caches, and virtual vs. real addressed caches.

5.3 The Video RAM

Typical raster-display hardware consists of a frame-bu�er memory, a video controller,

and a CRT display. The graphics computations are done either on the main cpu or on

a specialized graphics processor. The processor computes the graphics primitives and

writes the computed image into the frame-bu�er. The video controller reads the pixel

data from the frame-bu�er and drives the display. Thus, both the processor and the

video controller contend for access to the frame-bu�er memory.

The video controller itself requires a high-bandwidth access to the frame-bu�er mem-

ory. For instance, for a 1024 � 864 pixel screen with 8 bits per pixel refreshed at 60 Hz,
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the memory bandwidth required for the video controller is 1024 � 864 � 60 = 5:3 M/s.

Another way of looking at this is that the video controller must read a fresh byte every

18.84 ns. Conventional DRAMs are unable to sustain this access rate.

The twin requirements of dual-port access and high-bandwidth serial access are met

by a novel memory design called Video RAM , or VRAM [73, 17, 74]. Video RAMs were

invented by Texas Instruments in 1981 and now are a standard feature in most raster-scan

displays. As shown in Figure 5.3, a VRAM augments a conventional DRAM organization

with the addition of a Serial Data Register , or SDR, which can be parallel loaded with an

entire DRAM row. The SDR acts as a high-speed secondary channel for use by the video

controller. The �rst VRAMs, introduced by TI, had a 16K x 1-bit-wide organization.

Currently, the popular VRAMs are available in 64K x 4-bit-wide organization and are

made by companies such as TI, Fujitsu, NEC, and, Mitsubishi.

Figure 5.3 shows the organization of a 64K x 4-bit-wide VRAM, as typi�ed by the

Fujitsu MB81461-12 VRAM [74]. This VRAM consists of four 256 � 256 DRAM cell

arrays and corresponding 256-bit Serial Data Registers, which are also referred to as

Serial Access Memory, or SAM . Each SDR is connected to its corresponding Cell Array

by 256 vertical bit lines, which are used to transfer data to and from the storage arrays.

The SDRs can be parallel loaded by applying the transfer signal, TR, while a row of

memory is being read. The SDR has its own clock, S-Clock , which can then be used

to transfer data out serially, at high speed to the video controller. This serial transfer

can go on asynchronously with processor access to the DRAM arrays, thus providing the
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desired dual-port access capability. The SDR requires an access to the DRAM array only

once every 256 cycles. Thus, a substantial improvement in performance is obtained for

a small increase in chip area. However, due to considerations of economies of scale, the

VRAM chips typically cost twice as much as corresponding DRAMs.

In Figure 5.3, the following signals account for the usual signals of a 64K x 4 DRAM:

� Eight multiplexed address lines, A7-A0.

� Four bidirectional data lines, D3-D0.

� Row Address Strobe, RAS.

� Column Address Strobe, CAS.

� Write Enable, WE.

To access the data in the DRAM, the following steps are required. First, a row is selected

by signaling RAS while the desired row address is on the address lines A7-A0. Next,

the desired column is selected by signaling CAS while the desired column address is on

the address lines A7-A0. Thus, the address lines are multiplexed for both the row and

column addresses. The selected bits are either written to or read from depending on the

status of the write-enable signal WE.

The DRAM may support a faster access mode, called page mode, for successive ac-

cesses to memory locations on the same row, or DRAM page. In page-mode access, the

row address is presented only once and the RAS signal is maintained low while succes-

sive columns are accessed by changing the column address bits and activating the CAS
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signal. This mode can save power dissipation and exhibit a faster access time. Typically,

page mode accesses are twice as fast as an ordinary memory access cycle.

The addition of the Serial Data Register (SDR) in the VRAM necessitates the fol-

lowing signals:

� Data Transfer, TR.

� Serial Clock, S-Clock.

� Serial Output Enable, SE.

� Serial Output Data bits, SD3-SD0.

The data transfer signal, TR, is used in conjunction with the RAS;CAS, and, WE

signals to transfer the data from one selected 256-bit row in each cell array to the corre-

sponding SDR. The Serial-clock signal, S-Clock, in conjunction with the Serial Output

Enable, SE, can then be applied to shift the data out of the Serial Output lines SD3-S0.

Table 5.1 shows some parameters for the Fujitsu MB81461-12 VRAM chip.
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Table 5.1: Selected parameters for the Fujitsu MB81461-12 VRAM chip.

� DRAM Port:

{ Access Time (tRAC): 120 ns

{ Cycle Time (tRC): 230 ns

{ Page Mode Cycle Time (tPC): 120 ns

� SAM Port:

{ Access Time (tSAC): 40 ns

{ Cycle Time (tSC): 40 ns

� 24-pin DIP and ZIP packages

� 256 refresh cycles every 4 ms
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6. MEMORY ACCESS CHARACTERISTICS OF DISPLAY-ORIENTED PROGRAMS

Memory system analysis may be done by following trace-driven simulation or an-

alytical modeling. In trace-driven simulation, which is employed as the cache-analysis

methodology in this research, a detailed address trace of an actual program execution is

collected and analyzed. In contrast, analytical models are driven by mathematical mod-

els of the high-level behavior of the application programs. Both approaches have their

own strengths and weaknesses. Simulation studies have the advantage of being based on

real programs, but may be based on traces that are unrepresentative or are too short.

Analytical models can yield insights into the high-level tradeo�s but are by their nature

an approximation of reality. This research is based on trace-driven simulation of detailed

traces collected for X Window programs.

6.1 Instruction-level Trace Collection

Instruction-level pro�ling techniques are an important aid in the design and analysis

of computer architecture [67]. Some examples of instruction-level pro�ling environments
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include pixie [75] for the MIPS architecture, shade [76] for SPARC, and goblin [77] for

the IBM RS/6000.

The data presented in this thesis are based on detailed instruction-level traces col-

lected for an X Window server running on a DECstation 3100 workstation. The traces

were generated by an instrumented version of the X server compiled with the IMPACT

C compiler [78], which was set up to perform local, global, jump, and loop optimizations.

The X window server used was version 11, release 4 of the MIT X Window distribution.

The frame-bu�er manipulation functions, or \color-frame-bu�er library," of the X server

were instrumented. Thus, the results shown here emphasize the graphics behavior of the

X Window System programs.

The experimental computer, the DECstation 3100, has a simple memory-mapped

frame bu�er without any special graphics processor hardware [79, 80]. The frame bu�er

supports 864 lines, each with 1024 pixels. Each pixel is represented by a byte of data.

All frame bu�er operations are handled by the main processor, which is a 16.67 MHz

MIPS R2000. Thus, the address traces of the X server contain all of the references to

the frame bu�er in addition to the non-frame-bu�er references.

It is important to note that the results shown here are for the execution of the

XWindow server when driven by a certain client program. Thus, the instrumentation and

analysis are done for the server-side aspect of the program execution. Since the X server

alone has access to the frame-bu�er, its traces give us information about the graphical

rendering performed on behalf of the corresponding client program. For instance, for
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a computer animation program, the analysis relates to the activity of the X server in

rendering the animation sequence on the display. The results do not re
ect the activity

of the client program such as extracting the animation images from the appropriate disk

�les. The software architecture of client-server systems and of the X Window System is

described in greater detail in Chapter 1.

6.2 Benchmark Programs

Six popular programs were selected as representative of execution under X Window.

Ghostscript is an interpreter for the Postscript page-description language. The interpre-

tation is done by the client program, and the results here show the activity invoked in

rendering the interpreted results into the frame bu�er, at the display server. Ximage is

a scienti�c visualization tool that involves transfer of image data from the client to the

frame bu�er for viewing as an animation sequence. Xtetris is a popular computer game

involving interactive placement of small objects. Xmagic is a popular VLSI CAD layout

tool. X�g is an interactive tool for drawing and editing �gures. Xterm is a terminal

emulator and is thus used to display text within a window. One characteristic of this

benchmark is that scrolling the displayed text requires the copying of vast amounts of

data from one part of the screen to another. Thus, this program would be expected to

invoke substantial numbers of loads from, as well as stores to, the frame bu�er. The

remaining programs are oriented mainly to stores.
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Table 6.1: Benchmark programs.

Program Description Dyn. Instr. Count

Ghostscript Postscript previewer 9:2� 106

Ximage Scienti�c visualization / animation 6:4� 106

Xterm Terminal emulator 6:3� 106

Xtetris Computer game 5:3� 106

Xmagic VLSI CAD layout tool 9:5� 106

X�g Interactive drawing tool 7:6� 106

For the purpose of this paper, the data sets used to collect the traces are as follows.

The Ghostscript traces are collected for display of three pages of the Postscript version

of a technical report. The Ximage data is for an animation sequence of 100 images, each

300 pixels square, i.e., 90 K of data. The Xterm data are for a 24-line terminal screen

displaying and scrolling 60 lines of text. The Xtetris trace is for a game involving the

placement of 5 objects. The Xmagic trace is for display of a sequence of 15 layout objects

used in a class project. These objects range from a nand gate to a 4-bit adder circuit.

The X�g data are for display of the �gure shown earlier in Figure 5.3. Table 6.1 shows

the dynamic instruction count for the X server when driven by these benchmarks. These

range from about �ve to nine million instructions. Once again, note that these counts

cover only the color-frame-bu�er library of the X display-server.

6.3 Dynamic Instruction Distributions

Table 6.2 shows the distribution of dynamic instruction counts for the X Window

server for servicing requests from the measured programs. Memory access instructions

account for most of the instructions and range from about 21% for X�g, to about 73%
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Table 6.2: Dynamic instruction distribution.

Program Load Store Move Branch Alu Falu Other

Ghostscript 13.92% 16.01% 4.95% 31.74% 32.83% 0.00% 0.54%
Ximage 36.02% 36.54% 1.08% 10.57% 16.81% 0.00% 0.03%
Xterm 29.22% 28.79% 0.61% 10.01% 31.35% 0.00% 0.02%
Xtetris 15.58% 7.13% 5.37% 17.55% 54.31% 0.00% 0.06%
Xmagic 8.30% 14.04% 4.03% 31.01% 42.74% 0.00% 0.30%
X�g 9.11% 11.74% 8.29% 21.67% 49.03% 0.00% 0.16%

for Ximage. Integer ALU operations are quite frequent too and range from about 16%

for Ximage to about 54% for Xtetris. These are used mainly in the address computations

for the memory operations. None of the benchmarks invoked 
oating-point ALU opera-

tions. In fact, the X Window server code does not use 
oating-point operations since it

deals with a rasterized frame bu�er with integer-addressed pixels. With 3-d applications

gaining in popularity, however, 
oating-point operations may become more important.

Three-dimensional X-server extensions such as PEX [55] use 
oating-point operations

extensively. For the benchmarks studied, the memory, alu, and control-
ow instructions

account for over 95% of the processing.

6.4 Working Sets

Table 6.3 shows the memoryworking sets corresponding to the execution of the bench-

mark programs. The frame-bu�er working sets show the amount of screen real estate

occupied by the program. The maximum size of the target frame bu�er of the DECsta-

tion 3100 is 864 K. The frame-bu�er working sets range from about 90 K for Ximage to
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Table 6.3: Memory access working sets.

Working sets
Program Total Frame bu�er Non-frame-bu�er

Ghostscript 944 KB 535 KB (57%) 409 KB (43%)
Ximage 211 KB 91 KB (43%) 120 KB (57%)
Xterm 273 KB 266 KB (97%) 8 KB ( 3%)
Xtetris 214 KB 205 KB (96%) 9 KB ( 4%)
Xmagic 452 KB 431 KB (95%) 21 KB ( 5%)
X�g 1158 KB 683 KB (59%) 475 KB (41%)

about 680 K for X�g. These data con�rm that frame-bu�er accesses have large working-

sets. Clearly a very large cache size would be needed to contain the full frame-bu�er

working sets of these programs.

The non-frame-bu�er working sets for these programs range from 7.6 K for Xterm

to about 475 K for X�g. In each case, the frame-bu�er working sets are a substantial

portion of the overall memory trace. It should be noted that the traces are collected

only for the graphics code of the X server. Thus, all of the frame-bu�er references are

covered, but the non-frame-bu�er working sets could very well be much larger than what

is shown in Table 6.3.

6.5 Memory Tra�c

Table 6.4 shows the memory tra�c, in megabytes, broken down into the frame-bu�er

and non-frame-bu�er references. The data con�rm the notion that most of the frame-

bu�er accesses are writes. The ratio of frame-bu�er memory stores to loads ranges from

about 100 for Ximage to about 1.3 for Xterm. The reason for this observation is that
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Table 6.4: Memory tra�c.
(All �gures are in megabytes)

Program Total Frame-bu�er accesses Non-frame-bu�er accesses

tra�c Load Store Load Store

Ghostscript 10.3 MB 0.06 ( 0.6%) 2.41 (23.4%) 4.61 (44.8%) 3.22 (31.3%)

Ximage 18.5 MB 0.09 ( 0.5%) 9.18 (49.8%) 9.07 (49.1%) 0.11 ( 0.6%)

Xterm 14.5 MB 5.59 (38.5%) 7.21 (49.6%) 1.73 (11.9%) 0.00 ( 0.0%)

Xtetris 4.7 MB 0.29 ( 6.2%) 0.83 (17.6%) 2.94 (62.3%) 0.65 (13.9%)

Xmagic 7.9 MB 1.03 (13.0%) 4.76 (60.3%) 1.83 (23.1%) 0.29 ( 3.6%)

X�g 6.2 MB 0.09 ( 1.5%) 2.83 (45.9%) 2.60 (42.0%) 0.66 (10.7%)

most of the visually oriented applications update the screen frequently but do not usually

have to read the screen data. In the case of Xterm, scrolling the screen image requires

a large number of reads. Ximage, on the other hand, involves mainly the transfer of a

large amount of animation data to the display.

In fact, a handful of functions account for most of the memory tra�c for these appli-

cations. For Ghostscript over half of the frame-bu�er stores, and an equivalent number

of non-frame-bu�er loads, are accounted for by the cfbDoBitblt function, which transfers

a precomputed Postscript image to the display.1 Also, the function cfbFillBoxTileOdd

accounts for another third of the frame-bu�er stores. This function is used to clear por-

tions of the display before writing data on it. In the case of Ximage, the cfbDoBitblt

function accounts for over 97% of the frame-bu�er stores and a corresponding number of

non-frame-bu�er loads. Clearly, the principal task of this application is in the transfer of

the animation images to the display. For Xterm, the cfbDoBitblt function is invoked to

1In Ghostscript, the Postscript rendering is done by the client program and the server only maps

this to the display. In contrast, the Display Postscript Extension to X has the server perform both

computation and display.
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copy data from one part of the display to another during scrolling of the screen image.

This accounts for over 85% of the frame-bu�er accesses. A smaller proportion of the

frame-bu�er accesses come from the rendering of text onto the screen. These requests,

which are implemented by the cfbTEGlyphBlt8 function, involve copying of font bit maps

from the non-frame-bu�er memory to the frame bu�er. This function also accounts for

over 96% of the non-frame-bu�er accesses, which are made from a very small working set

of 7.5 K consisting mainly of the font information. In the case of Xtetris, nearly 60% of

the frame-bu�er accesses are made by cfbFillBoxSolid in order to clear the active area

on the display. Another 38% is accounted for by the request cfbUnnaturalStippleFS to

draw small geometric objects on the screen. This function also accounts for over 98%

of the non-frame-bu�er references. For Xmagic, over 63% of the frame-bu�er references

are made by the cfbFillBoxSolid function to draw the rectangular �gures that make up

a VLSI CAD layout. In the case of X�g, too, the cfbFillBoxTileOdd and cfbFillBoxSolid

functions together account for over 97% of the frame-bu�er references.

6.6 Sequential-access Length Distributions

Table 6.5 summarizes the sequential-access characteristics of the benchmark pro-

grams. It tabulates the statistics about the run lengths of references to consecutive

addresses in the frame bu�er. The table shows that frame-bu�er accesses tend to be of

a \sweep" nature with long sequences of accesses to consecutive memory locations. This

feature is to be expected given that most of the frame-bu�er references are dominated by
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Table 6.5: Frame bu�er sequential-access lengths (in bytes).

Program Loads Stores

Range Mean Mode Range Mean Mode

Ghostscript 1 - 12 4.9 4 (76%) 1 - 752 494.6 556 (82%)

Ximage 1 - 300 291.8 300 (97%) 1 - 308 300.0 300 (99%)

Xterm 1 - 720 703.8 720 (98%) 1 - 744 622.9 720 (83%)

Xtetris 1 - 60 24.4 24 (41%) 1 - 308 93.4 192 (32%)

Xmagic 1 - 412 53.8 4 (23%) 1 - 664 387.5 496 (61%)

X�g 1 - 4 4.4 4 (89%) 1 - 916 693.4 800 (75%)

884735
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883712

0

A A

A A

11 12

2221

Figure 6.1: Relationship of frame-bu�er addresses and screen real estate.

a handful of data-transfer functions, as shown in the previous section. These functions

are optimized for the frame-bu�er organization.

As shown in Figure 6.1, the frame-bu�er memory is organized as a chunk of memory,

which is treated as an array of display rows and columns. For the DECstation 3100,

the frame-bu�er address space consists of 864K of memory organized in 864 rows of 1024

columns each. An operation that clears the entire screen, for example, would sequentially

access every byte in the address space. However, most programs access only a subset

of the address space in the form of a window that occupies a subset of the screen real
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estate. Thus, for the window shown with coordinates (A11; A12; A21; A22), clearing the

window would involve access to address strips each of which is A12 �A11 pixels wide.

Table 6.5 shows that the applications have frequent long sequential accesses. As

pointed out earlier, these have a correspondence with the the screen-image width of

the application. For instance Ximage displays a 300x300 image on the screen, thus the

sequences of 300 bytes account for almost 99% of the references. The Xterm program,

which has the highest proportion of frame-bu�er loads in the benchmark set, shows long

load runs as well. This program frequently involves a copy of data from one screen line

to another. Thus, it has two active screen pointers and copies from one to another. In

other words, it exhibits a sequential access to two lines concurrently, with each line being

about 720 bytes long.

6.7 Summary of Access Characteristics

The memory reference characteristics for the frame bu�er are summarized below.

First, the references tend to have very large working sets. In the context of D-cache

design, this implies that the frame-bu�er references may \crowd-out" other references

from the cache. Also, they may result in excessive TLB thrashing. In fact some recent

microprocessors support variable-size TLB pages to allow for the mapping of an entire

frame-bu�er address space in one page [81, 82]. Second, the references are oriented

towards writes. Third, the references have a \sweep" behavior with long, consecutive

access sequences. Another aspect of the accesses is that copying operations require

concurrent maintenance of two pointers to long data structures.



82

7. DESIGN OF A FRAME-BUFFER CACHE

7.1 Introduction

Caches are frequently employed to bridge the speed gap between processors and mem-

ory. This section presents a trace-driven simulation study of various choices in cache-

memory design for window-oriented programs. The instruction-level traces were collected

on a DECstation 3100 workstation with a simple memory-mapped frame bu�er without

any special graphics processor hardware. The previous chapter presented some char-

acteristics of the memory accesses and motivated the desire for a special frame-bu�er

cache.

The focus of this study is on the improvement of frame-bu�er memory accesses for

display servers, i.e., computer systems dedicated to providing the user-interface mecha-

nisms to users. X terminals and inexpensive workstations are popular display servers in

the X Window domain. These are frequently designed around common microprocessors



83

and o�-the-shelf components [83, 84, 79, 80, 85, 86]. High-end workstations use spe-

cialized graphics processors to o�oad some of the graphical computation from the main

processor [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98]. These specialized processors can be

integrated closely with the frame bu�er to improve the memory performance. However,

the system cost of the graphics processor can be prohibitive. An enduring tradeo� in the

functionality between the special-purpose processor and the general-purpose processor

is the \wheel of reincarnation" identi�ed by Myer and Sutherland [99]. Special-purpose

hardware is more expensive than general-purpose hardware, and eventually designers of

general-purpose hardware build the special-purpose functionality into the next generation

of their products, thus making the need for the special-purpose mechanisms obsolete. Ac-

cordingly, the desire here is to identify general-purpose memory mechanisms to enhance

frame-bu�er performance.

The memory-systemmodel is shown in Figure 7.1, which is di�erent from Figure 5.2 in

that the data cache is augmented by a separate frame-bu�er cache. All memory accesses

are serviced by a common bus. Thus, the caches a�ect each other in the sense that high

tra�c on any one cache a�ects the queueing delays for bus service on the other caches.

However, these delays are not modeled in the simulation results presented here. Note

that the instruction-cache issues are not studied here either. The focus is on studying

the tradeo�s in various organizations for the data cache.

As mentioned earlier, the traces were collected on a DECstation 3100 workstation,

which is a 16.67 MHz R2000-based workstation. Since it represents the technology of a
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Figure 7.1: Memory system model.
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few years ago, the simulations are based on a 33 MHz processor, i.e., a cpu cycle time

of 30 ns. The frame-bu�er memory is assumed to be built out of 4 banks of interleaved

VRAM chips with a 240 ns cycle time and 120 ns burst mode access. This is similar to

the Fujitsu MB81461-12 VRAM chip discussed in Chapter 5. With these assumptions, a

burst mode access to the VRAM would cost 8 cpu cycles for the �rst byte and one cycle

for each subsequent byte. Most accesses are to words of four bytes each, and the cost of

a word access would be 11 cycles, i.e., 2.75 cycles per byte. This access time represents

the upper limit on the tolerable access time.

7.2 Guiding Principles

A frame-bu�er cache would be useful only if it improves the memory-access time at

a reasonable implementation cost. On the basis of the data presented in Chapter 6, the

following design principles suggest themselves.

7.2.1 Cache size

The frame-bu�er accesses have large working sets, which correspond to the screen

size of the displayed image. A naive interpretation of these data is that large cache

sizes would be needed to accommodate the working sets in memory. However, several

factors work against large frame-bu�er caches. First, the total size of the VRAM in a

typical color display-server is only about 1 M. Instead of investing in a large frame-bu�er

cache, the designers could choose to upgrade to a faster VRAM. Second, the embedded
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processors used in low-end display servers, are single-chip solutions with limited silicon

real estate on the VLSI chip. It is not practical to suggest a large frame-bu�er cache

for such chips. Third, the desire for a 
ushing mechanism, in the frame-bu�er cache, as

discussed later in Section 7.2.5, could add excessive complexity to a large cache.

7.2.2 Write policy

Most of the frame-bu�er accesses are writes. Also, the writes come in long, con-

secutive sequences. Write-through caches do not typically make use of the burst-access

characteristics of writes. Copy-back caches are the logical choice for such accesses since

the unit of a memory write in such caches is an entire cache line. An additional advantage

of a copy-back write policy is that fewer bus transactions would be invoked for a given

amount of memory tra�c as compared to the write-through policy.

7.2.3 Associativity

Direct-mapped caches are easier to implement than set-associative ones and are the

common choice in cache design [67]. However, frame-bu�er copies require maintenance

of two frame-bu�er lines in the cache and bene�t from associativity. In a later sec-

tion we show that for caches larger than a threshold size, the direct-mapped caches are

good enough. Below this threshold a set-associative organization is necessary to avoid

thrashing.
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7.2.4 Write-allocate policy

Since the frame-bu�er accesses have been shown to consist mainly of burst writes,

cache lines would frequently be overwritten entirely before being written back. Therefore,

we study the usefulness of the compiler strategy of giving the cache controller an allocate-

no-fetch hint. This hint suggests that a cache line be allocated but not fetched from the

main memory. Clearly, this hint is potentially very useful when the program intends to

overwrite the entire cache line anyway. A drawback is that the compiler needs to have

knowledge about the line size of the target cache. However, this may not be too limiting

for use by the display-server programs, which are frequently delivered by the vendor as an

integral part of the overall system. Some recent processors, such as the MC88110 [100]

and HP-PARISC [81], have provided special instructions to support allocate-no-fetch.

Our results suggests that such a strategy is e�ective in improving frame-bu�er access

time.

7.2.5 The need for 
ushing mechanisms

Frame-bu�er writes have an e�ect on the visual appearance of the displayed objects.

Thus, if frame-bu�er accesses are cached, the cache must be kept consistent with the

frame-bu�er memory. Typically, the frame-bu�er contents are displayed on the screen

60-72 times per second. The cache controller must 
ush the cache contents to the frame

bu�er memory at least this often. In the following simulation, the e�ects of such 
ushing
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are studied. As shown later, such a 
ushing has the e�ect of increasing the tra�c ratio

for the cache only slightly.

7.2.6 Write bu�ers

In any memory-system design, write bu�ers are frequently used to bu�er write ac-

cesses to the main memory. Proper write-bu�er design can a�ect the actual access time

substantially. In our simulation we compute the range of access times for in�nite write

bu�ers and with no write bu�er. These can give the designer an idea of the bounds on

performance for the bu�er design. Actual access time would lie in this range, but would

be highly dependent on issues such as the actual arrival rates of the write requests and

the overall bus tra�c.

7.3 A Suggested Frame-bu�er Cache

Table 7.1 shows data for a suggested frame-bu�er cache. The data are presented for

the frame-bu�er access time seen by the benchmark applications. The frame-bu�er cache

parameters chosen are as follows:

� Cache size: 64 bytes.

� Line size: 16 bytes.

� Associativity: 2-way.

� Write policy: copy-back with 
ushing.

� Write allocation policy: allocate-no-fetch.
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Table 7.1: Access time for suggested frame-bu�er cache.

Cache Ghostscript Ximage Xterm Xtetris Xmagic X�g

con�guration

No cache 0.31-2.75 0.27-2.75 1.34-2.75 0.90-2.75 0.69-2.75 0.33-2.75

64B, 2-way, ANF 0.25-1.75 0.27-1.72 1.05-2.01 0.31-1.87 0.35-1.89 0.29-1.85

The table shows an improvement in access time for all of the benchmark applications.

There is a striking improvement in the values of access time with no write bu�ers. This

is a consequence of the burst-mode access characteristics for �lling and for writing cache

lines. The impact of various cache parameters in achieving this performance gain is

examined in the following sections.

7.4 Line Size E�ects

Figure 7.2 shows the access-time curves for an 8 K 
ushed 2-way-set-associative copy-

back cache with allocate-no-fetch policy. The curve for no write bu�ers shows optimal

line sizes of between 8 and 64 bytes for the various applications. Xtetris, which draws

small objects on the screen has an optimum line size of 8 bytes. On the other extreme,

Ximage, which paints animation frames on the screen, has an optimum at 64 bytes.

However, all applications would be well served by a line size choice of 16 or 32 bytes.

The curve for in�nite write bu�ers is monotonically increasing for all applications

except Xterm. Since Xterm has a large proportion of frame bu�er reads, it bene�ts

from longer burst reads | up to a point. For all other applications, the longer line sizes
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Figure 7.2: E�ect of line size on access time.

only increase the probability of cache pollution. This e�ect is ampli�ed by the allocate-

no-fetch policy, which increases the relative penalty of fetching lines that are not to be

entirely overwritten. Thus, the optimum line size is smaller than would be expected from

the long burst write nature of the frame-bu�er writes.

7.5 Cache Size E�ects

Figure 7.3 shows the access-time curves for a 
ushed 2-way-set-associative copy-back

cache with allocate-no-fetch policy and a line size of 16 bytes. The curves show that

for small cache sizes up to about 4 K all caches exhibit the same access time. The

explanation for this behavior lies in the \sweep" nature of the cache accesses. Also, the

need for 
ushing makes larger caches behave equivalently to smaller ones. Xterm shows

some improvement for larger cache sizes. This can be explained by the need to scroll
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Figure 7.3: E�ect of cache size on access time.

data on the screen. For a cache size beyond a certain point, the entire screen image can

be contained in the cache and moved e�ciently within it; the read operations for the

memory copy do not require memory fetches. However, as pointed out in Section 7.2,

smaller frame-bu�er cache sizes are preferable.

7.6 Associativity E�ects

Figure 7.4 shows the access-time curves for a 2-way set-associative cache and a direct-

mapped cache. Both curves are for 
ushed copy-back caches with allocate-no-fetch policy

and a line size of 16 bytes. The data show that for the frame-bu�er references it is

helpful to have a 2-way-set-associative cache when the cache-size is relatively small. The

application that requires higher associativity in this case is Xterm. The reason is that

Xterm is a \scrolling" application that frequently requests large data copies from one
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Figure 7.4: Associativity e�ects.

part of the display to another. To do this, it needs to read from one cache line and

write to another. For a small cache, the source and destination are quite likely to map

to the same cache line, thereby causing the cache to thrash. For a cache larger than 2K,

it is possible to cache the data for two complete display lines. Thus, larger caches can

be direct-mapped without causing problems for the data-copy class of applications. We

studied 4-way set-associative caches as well, but these show no improvement over the

2-way set-associative caches.

7.7 Flushing E�ects

The copy-back frame-bu�er caches discussed in this chapter are all assumed to have

hardware to 
ush their contents to the frame-bu�er 60 times every second. To quan-

tify the extra memory tra�c due to this 
ushing requirement Figure 7.5 compares the
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Figure 7.5: Flushing e�ects.

two tra�c-ratio curves for 2-way-set-associative copy-back caches with allocate-no-fetch

policy and a line size of 16 bytes.

Interestingly, the 
ushed caches exhibit memory tra�c that is almost identical to that

for un
ushed caches. The explanation for this behavior is that the frame-bu�er caches

tend to be \self-
ushing" due to the long write accesses that sweep through large working

sets. Thus, the performance penalty of adding the 
ushing hardware is not great.

7.8 E�ect of Allocate-no-fetch Policy

Figure 7.6 shows the advantage e�ected by the allocate-no-fetch policy. The curves are

plotted for the tra�c-ratios exhibited by 2-way-set-associative 
ushed copy-back caches

with a line size of 16 bytes. The data assume that the compiler can successfully predict

each instance in which the allocate-no-fetch hint is useful to the cache controller. It
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Figure 7.6: E�ect of allocate-no-fetch policy.

turns out that each of the benchmark applications bene�ts from implementation of such

a policy.

7.9 Cache Con�gurations

Table 7.2 shows access-time numbers for some cache con�gurations in addition to the

suggested cache con�guration discussed earlier. Table 7.3 shows the tra�c ratios corre-

sponding to these caches. These ratios represent the normalized frame-bu�er memory

tra�c seen by the system bus. All data are shown for a 
ushed 2-way-set-associative

copy-back cache with allocate-no-fetch policy and a line size of 16 bytes.

The tables show that the suggested cache (item B) has better access-time than the

no-cache case (item A) but the memory tra�c is slightly higher. It should be noted that

the cache will reduce the number of memory bus transactions since each memory request

is made in units of cache line size, which, for the data shown, is four memory words.
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Table 7.2: Access time for frame-bu�er caches.

Cache Ghostscript Ximage Xterm Xtetris Xmagic X�g

con�guration

A. No cache 0.31-2.75 0.27-2.75 1.34-2.75 0.90-2.75 0.69-2.75 0.33-2.75

B. 64B, 2-way, ANF 0.25-1.75 0.27-1.72 1.05-2.01 0.31-1.87 0.35-1.89 0.29-1.85

C. 64B, 2-way 1.68-3.18 1.64-3.09 1.77-2.74 1.75-3.31 1.73-3.26 1.75-3.31

D. 64K, 1-way 1.65-3.12 1.64-3.09 1.01-1.81 1.07-2.01 1.52-2.86 1.54-2.92

Table 7.3: Tra�c ratios for frame-bu�er caches.

Cache Ghostscript Ximage Xterm Xtetris Xmagic X�g

con�guration

A. No cache 1.00 1.00 1.00 1.00 1.00 1.00

B. 64B, 2-way, ANF 1.09 1.07 1.27 1.17 1.18 1.16

C. 64B, 2-way 2.08 2.02 1.78 2.18 2.13 2.17

D. 64K, 1-way 2.04 2.02 1.11 1.25 1.84 1.89

In contrast, most uncached requests are serviced in units of one memory word. Item B

shows that without an implementation of the allocate-no-fetch policy, the frame-bu�er

cache actually performs substantially worse than the uncached case. Item D shows that

the larger cache of 64K size does not perform much better than the small cache. As

pointed out earlier, there is not much sense in implementing a larger cache size anyway

since designers could choose to upgrade the VRAM instead.

7.10 Future Work

Memory system design is usually chosen from a rich design space. Many di�erent

choices are usually available to the designers. For instance, the conventional design

choice is to use write-through data caches and to mark the frame-bu�er cache accesses as

uncacheable. Write-bu�ers are employed to avoid stalling the processor during a memory
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write. Depending on the arrival rates of the write accesses, such a design could deliver

acceptable performance. It would be interesting to study the utility of a �nite number of

write-bu�ers in both cached and uncached designs and derive guidelines for the optimal

number of write-bu�ers for either design. Note that the analysis presented in this thesis

does suggest that the cached design has better performance than the uncached design over

the range of write-bu�er choices. However, clever write-bu�er designs, such as combining

write bu�ers or write caches [72], could make use of the sequential write characteristics of

the frame-bu�er accesses even when the primary write policy is write-through. But, such

write-bu�er designs do not improve the access-time for reads, thus they may not deliver

adequate performance for applications such as Xterm, which do a lot of frame-bu�er

reads.

Access time for cached read accesses can also be improved by following policies such

as load forwarding. In this scheme, the needed data are forwarded to the processor

before the line is entirely loaded into the cache. A prefetching strategy can be used to

decrease the read latency as well. Such a strategy typically requires compiler support.

Recent microprocessors have provided special instructions to support prefetching. Many

studies have been made of the use of such a strategy for I-cache performance in RISC

and superscalar processors, but there is no published work on the utility of prefetching

for frame-bu�er data.
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7.11 Conclusions

This chapter promotes the use of a small set-associative copy-back cache with support

for allocate-no-fetch policy to improve frame-bu�er performance. The principal advan-

tage accruing from such a cache is that it makes use of burst-access to the VRAM in

units of the line size. The tra�c seen by the memory bus is not reduced by such a cache

though the number of bus transactions are.

A motivation for separate caches is that the frame-bu�er references have large working

sets of a \sweep" nature and could crowd out the non-frame-bu�er references from a

uni�ed cache. Also, the frame-bu�er references are made by only one program, the X

display-server, which can be closely integrated with the cache hardware. The frame-bu�er

cache should follow a copy-back policy to exploit the burst writes. A copy-back policy

necessitates a 
ushing mechanism that makes the cache consistent with the underlying

frame-bu�er 60 times a second for visual consistency. However, it turns out that the

implementation of such a mechanism does not cause any substantial increase in the

memory tra�c.

The cache size of 64 bytes is shown to be good enough for the applications studied.

Designers may choose to implement a slightly larger cache size, e.g., 256 bytes. The

advantage of such a cache is that it could contain 16 lines of size 16 bytes each. Thus,

for an application that exhibits reference locality in \tiling" patterns, an entire 16x16

tile could be contained in the cache.
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The traces collected in this study are for a frame-bu�er with one byte of data per

pixel. Future color displays will use a full word of data for each pixel. It is to be expected

that the optimal cache and line size parameters for such displays will be 4 times the values

suggested in this study, i.e., cache sizes of 256 bytes with 64 byte line sizes. To cover the

needs of di�erent color displays, designers could choose to implement, for example, 256

byte frame-bu�er caches with 32 byte line sizes.
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8. CONCLUSIONS

This thesis research systematically explores the performance aspects of computers

with graphical user interfaces. Traditional computer research, in contrast, has focused

on the design of computers for numerical and transaction-oriented applications. The

widespread use of workstations and personal computers as display-servers motivates the

desire to identify the critical design issues for supporting display-oriented applications. In

this research we look at performance issues for display-server computers at both system

and microarchitecture levels.

At the system level, a new execution pro�ling strategy, called protocol-level-pro�ling,

has been developed for analyzing client-server interaction. The central idea behind this

strategy is to construct a pro�le of the server-side execution by analyzing a protocol-level

trace of the client-server interaction. A protocol-level pro�ler, Xprof , has been developed

for generating meaningful pro�les for X Window applications. Results from this pro�ling

techniques are presented for typical programs running on some typical workstations.

Xprof constructs pro�les of both the server-execution time and the network-transport

overhead incurred on behalf of an application program. It also allows users to compare
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the performance of di�erent servers and di�erent networks for execution of the same

protocol trace.

At the microarchitecture level, a detailed instruction-level-tracing study investigates

the frame-bu�er-memory access characteristics of typical programs under the X Window

System. The traces are collected by an instrumented version of the X display-server

running on a DECstation 3100 workstation. Since X Window follows the client-server

model of computing, the instruction-level traces of the X server encapsulate all accesses

made to the frame-bu�er on behalf of the application programs. The traces are analyzed

for processing done on behalf of some typical X applications. The frame-bu�er accesses

are shown to be mainly writes that tend to occur in long bursts and have large working

sets. This behavior occurs due to the fact that a handful of data-movement functions

dominate the traces.

Choices in data-cache design are studied. Since the frame-bu�er accesses have large

working sets, they tend to crowd out the non-frame-bu�er data in the data-cache. There-

fore, the design of a separate frame-bu�er cache is studied. The need for 
ushing copy-

back caches for maintaining visual consistency with the display is simulated. A compiler

policy of \allocate-no-fetch" is shown to be useful in reducing the tra�c on the frame-

bu�er cache. It turns out that a small 2-way-set-associative cache with the allocate-no-

fetch write policy can improve the overall memory-system performance. The cache does

not reduce the frame-bu�er tra�c seen by the bus, though it does reduce the number of

bus transactions. The main advantage of this cache is in improving the access time due

to the burst access behavior.
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