© Copyright by Ben-Chung Cheng, 2000

COMPILE-TIME MEMORY DISAMBIGUATION FOR C PROGRAMS

BY
BEN-CHUNG CHENG

B.S., National Taiwan University, 1992
M.S., University of Illinois, 1997

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

COMPILE-TIME MEMORY DISAMBIGUATION FOR C PROGRAMS

Ben-Chung Cheng, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 2000
Wen-mei W. Hwu, Advisor

Static memory disambiguation is a compile-time technique which determines whether
or not two memory instructions access the same memory location at run-time. With
fully disambiguated memory accesses, instruction scheduling and code optimization can
be conducted in a much more aggressive manner. As the speed gap between the processor
and memory widens, the value of optimized memory accesses will scale accordingly. To
disambiguate memory accesses beyond scalar local variables, a critical task in an opti-
mizing compiler is to perform interprocedural pointer analysis in order to handle indirect
memory accesses through pointers in the presence of function calls with side-effects.
Interprocedural pointer analysis has long been considered as too expensive to afford.
Therefore unlike function inlining, register allocation, and SSA analysis, interprocedural
pointer analysis has not been integrated into commercial compilers.

The core of this dissertation is a new modular interprocedural pointer analysis algo-
rithm which significantly improves the feasibility of static memory disambiguation. The
proposed algorithm can handle much larger C programs with realistic language features.
Due to its modular feature, the amounts of time and memory requirements are greatly
reduced. The dissertation also evaluates the effectiveness of the proposed algorithm on
the complete SPECcint92 and SPECcint95 benchmark suites. Significant performance

improvements are observed from these pointer-intensive programs.

iii

DEDICATION

To my famaly.

v

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Wen-mei Hwu, for his
guidance and support during my studies. His sharp sense always can correct my research
flaws at the earliest stage and keep my stream of though on the right track. It is a great
honor and pleasure to have an advisor like him.

Next, I would like to extend my gratitude to the other members of my dissertation
committee, Professor David Padua, Professor Constantine Polychronopoulos, and Pro-
fessor Laxmikant Kale. Their suggestions significantly improved the quality of this work.

For different periods of my studies at Illinois, there are different people for me to
express my gratitude. During my initial stage as a graduate student, I would like to
thank Liang-Chuan Hsu and Grant Haab the most. With Liang-Chuan’s experience,
I could pass my comprehensive and oral qualifying examinations within the shortest
amount of time; and with Grant’s kindness to answer all my tedious questions regarding
IMPACT, I quickly built a solid background to initiate my research. In my middle stage
as a graduate student, I really appreciate Carole Dulong and Jim Pierce who gave me
an internship opportunity at Intel Corporation. The project I worked there during the
summer of 1997 eventually evolved into my PhD research topic. As I am getting closer
to graduation, I really cherish the support and friendship from Le-Chun Wu. Whenever I

felt frustrated in making progress for my research, I always could sense the same or even

greater level of frustration from him. A brief visit to his office always gave me enough
joy and energy to get back to my own problems.

The research presented in this this dissertation would not have been possible without
the support of the members of the IMPACT research group, both past and present. Dan
Connors has always been there to answer my questions regarding the backend of the
IMPACT compiler. I also owe thanks to John Gyllenhaal, Brian Deitrich, Dan Lavery,
David August, Teresa Johnson, Rick Hank, and David Gallagher for answering numerous
IMPACT compilation questions that cannot be handled by Dan Connors. Other members
including Marie Conte, Matt Merten, John Sias, Erik Nystrom, Andy Trick, Ron Barnes,
Hillery Hunter, and Hong-Soek Kim also provided valuable assistance to my software
enhancements and presentation practices. I would also like to thank my office mate,
Sabrina Hwu, who made my stay in the group as warm as at home. Other than research
partners, I also cherish the happy memories from my campus buddies, including Tai-Yi
Huang, Ching-Han Tsai, Yu-Ming Chang, Hao-Hua Chu, Chi-Li Sung, Hao-Chung Kuo,
Chien-Wei Li, Mei-Yen Tsai, Jane Wang, and Christine Jiau.

Finally, I would like express the most sincere gratitude to my parents, Wei-Tung and
Ching-Wen Cheng, and my wife, Szu-Wen Kuo, for their endless love and support in
all aspects. My wife’s passion for knowledge and achievements in research have always
been my models ever since our undergraduate days, leading me through many difficult
challenges. I am truly blessed to have a lovely wife who is also the greatest companion

in study and work.

vi

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION e e 1
1.1 Contribution 3
1.2 Overview oL 5
2 OVERVIEW OF STATIC MEMORY DISAMBIGUATION 7
2.1 Background Information 0oL 7
2.1.1 Flow sensitivityo 8
2.1.2 Context sensitivityo 8
2.1.3 Whole-program or modular analysis 10
2.1.4 Abstract memory representation 11
2.1.5 Coverage of language features 12
2.1.6 Evaluation of interprocedural pointer analysis 13
2.2 A New Modular Interprocedural Pointer Analysis Algorithm 14
2.3 Related Work 19
3 INTRAPROCEDURAL POINTER ANALYSIS 21
3.1 Access Paths 22
3.2 Right-Most Access Paths and Pointer Assignments 25
3.3 Algorithm of Intraprocedural Pointer Analysis 33
3.3.1 Code transformation 33
3.3.2 Pointer analysis Lo 36
3.3.3 Example L 37
3.4 Complexity Analysis L 39
4 INTERPROCEDURAL POINTER ANALYSIS 41
4.1 Summary Behavior Extraction 0oL 42
4.2 Algorithm of Interprocedural Pointer Analysis 49
4.2.1 Phase 0: call graph construction 49

4.2.2 Phase I”: propagation of summary functions and callee-allocated
heap objects 51
4.2.3 Phase IT': propagation of function names 59
4.2.4 Phase I1”: propagation of all concrete values 63
4.2.5 Phase III: identification of parameter aliases 63
4.3 Issues about Library Functions 65
4.4 Complexity Analysis 66

vil

5 CODE OPTIMIZATION USING MEMORY DISAMBIGUATION INFORMA-

TION . . e 68
5.1 A Motivating Exampleo oo 71
5.2 Sync Arcs Generationo 73
5.3 Optimizations Using Sync Arcs 81
5.3.1 Imstruction scheduling 82

5.3.2 Redundant load/store elimination 84

5.3.3 Loop-invariant access migration 86

5.3.4 A Working Example 0oL 91

6 DEEP ANALYSIS ON FUNCTION POINTERS 95
6.1 Case Studies of Function Pointers 97
6.1.1 Function pointers as simple variables 98

6.1.2 Function pointers as parameters 100

6.1.3 Function pointers as statically initialized global arrays 100

6.1.4 Function pointers as anonymous objects 102

6.2 Call-Graph Resolution of SPEC Benchmarks 106

7 EXPERIMENTAL RESULTS 110
7.1 Analysis Costs 111
7.2 Accuracy Measurement 114
7.3 Performance Improvements 118
7.4 Case Studieso 132
7.4.1 Register promotiono 133

74.2 Scheduling Lo o 133

7.4.3 Spurious memory disambiguationo 136

8 CONCLUSIONS e e e e 139
8.1 Summary and Contribution 139
8.2 Future Worko 140
REFERENCES e 142
VITA . e 148

viii

LIST OF TABLES

Table Page
4.1 Rules of identifying expressions causing memory accesses. 44
6.1 Statistics of function pointers in SPEC benchmarks. 106
6.2 Resolution of function pointers. 107
6.3 Uninitialized indirect call sites of SPEC benchmarks found by interprocedural
pointer analysis. Lo 108
7.1 Benchmark characteristics. Lo 111
7.2 Resource requirements of conducting interprocedural pointer analysis. 113
7.3 Resolutions of interprocedural pointer analysis. 115
7.4 Processor configurations. L oL Lo 118

X

LIST OF FIGURES

Figure

2.1 An example about context-sensitivity: (a) code, (b) pointers resolved using
context-sensitive transfer functions, (c) context-sensitive aliases among pa-
rameters. L L Lo e

2.2 Modular interprocedural pointer analysis: (a) the RCI algorithm for a subset
of C++, (b) the proposed new modular analysis algorithm for complete C. .

2.3 Storage- and path-based transfer functions (shown by dashed edges): (a) code,
(b) two versions distinguished by alias contexts, (c) one generic version appli-
cable to both calling contexts. oL

3.1 Constructing points-to relations from pointer assignments: (a) code, (b) cor-
responding points-to relations for each assignment.
3.2 Handling access paths involving recursive data types: (a) results of the first
iteration, (b) results of the second iteration, (c) results controlled by k=1.
3.3 Algorithm of inserting interface variables.
3.4 Algorithm of the intraprocedural pointer analysis stage.
3.5 Code example with interface variables.
3.6 Results of intraprocedural pointer analysis.

4.1 Example of function summary behavior.o 0000
4.2 Handling heap objects: (a) code example, (b) function summary behavior, (c)
representing dependence among accesses to heap objects.
4.3 Algorithm of constructing extended access paths.
4.4 Pass function names across functions: (a) code example, (b) summary be-
havior, (c¢) information obtained after the first invocation of phase I”, (d)
information obtained after the first invocation of phase II’.
4.5 Pseudo code of the interprocedural pointer analysis stage.

5.1 Relevant IMPACT modules for static memory disambiguation.
5.2 Code example: (a) source program, (b) points-to relations for pointers con-

tained in the program.o Lo
5.3 Moderately optimized code due to the lack of memory disambiguation infor-

mation. e e e
5.4 Summary behavior of code in Figure 5.2.o
5.5 Complete summary behavior of function main in Figure 5.2.
5.6 Pseudo code of sync arcs generation.o

72

75

5.7 Generating sync arcs for functon main: (a) loads/stores/jsrs in the function,
(b) accessed locations for each memory expression and function call, (c) sync

ATCS. + v ot e e e e e e e e e e e 80
5.8 Algorithm that determines the safety of reordering load/store/jsr instructions. 82
5.9 Converts possible sync arcs to definite sync arcs. 84
5.10 Algorithm of redundant load/store elimination. 85
5.11 Algorithm of partitioning loop-invariant memory instructions. 87
5.12 Algorithm of determining the safety of loop-invariant migration. 89
5.13 Aggressive code optimization with memory disambiguation information. . . . 92
6.1 Partial call graph of 008.espresso. 99
6.2 Partial call graph of 124.m88ksim. 101
6.3 Partial call graph of 132.45peg. L 103
6.4 Partial call graph of 147.vortex. 105
7.1 Distribution of pointer definitions. L. 117
7.2 Performance improvements enabled by memory disambiguation on an 8-issue

PTOCESSOT. . .« v v v e i i e e e e e e e e e e e 120
7.3 Reduction rates of load and store instructions. 121
7.4 Ratio of the performance improvements enabled by scheduling only versus full

memory access optimizations. 123
7.5 The memory latency factor: (a) L1 and L2 hit ratios, (b) cycles blocked due

to pending loads.o oL 125
7.6 Performance improvements on a 8-issue processor with perfect data caches. . 126

7.7 Effectiveness of static memory disambiguation with increased machine resources.128
7.8 The effectiveness of static memory disambiuation versus perfect data specu-

lation. e 129
7.9 Performance losses due to reduced machine resources. 131
7.10 Code example extracted from 124.m88ksim. 134
7.11 Code example extracted from 132.45peg. 135
7.12 Code example extracted from 134.perl. 137

xi

CHAPTER 1

INTRODUCTION

A wide-issue superscalar processor cannot sustain its peak speed unless the memory
system can provide data at the same rate as they are consumed by the processor. Since
the performance gap between the processor and the memory keeps growing, the memory
access latency has an even greater impact on performance, motivating the need for tech-
niques that either eliminate memory instructions or at least tolerate the latency of load
instructions.

Various hardware techniques that can hide the latency of load instructions have been
investigated in the past. In addition to improvements made on the cache designs, reducing
the load latency by accessing the memory earlier than the normal pipeline stage using a
speculatively generated effective addresses can successfully reduce the cache hit latency
by one or two cycles [1, 2, 3, 4, 5, 6]. Similarly, the concept of value prediction [7, 8|
has introduced machine models that exceed the limit imposed by data dependences by
predicting the outcome values of instructions. All these speculative mechanisms will not
eliminate load instructions contained in the program. Instead, they may increase the total
amount of memory traffics if mis-prediction prevails. In general, the effectiveness of these
dynamic approaches is more significant if the underlying programs are less aggressively

optimized.

To address the memory latency problem, another set of techniques use the compiler to
aggressively transform load and store instructions under the guidance of static memory
disambiguation information. The most effective way is to perform register promotion
so that instructions communicate through registers instead of the memory. If register
promotion is not possible due to hazardous memory instructions or function calls, a less
ambitious approach is to schedule load instructions as ahead of the original position as
possible until a potentially conflicting store is reached. In this way either the entire
memory latency or at least part of it can be hidden. Without interprocedural pointer
analysis, the compiler can only disambiguate direct accesses to local variables. For in-
direct accesses or accesses to global variables, they can only be disambiguated in a very
limited code scope, which may be even smaller than a basic block. Given a program
with intensive usage of pointers and function calls, analysis in such a scope can only
provide modest performance gains. Therefore interprocedural pointer analysis plays a
pivotal role in determining the quality of static memory disambiguation, which in turn
determines the aggressiveness of memory access optimizations. However, conventional
wisdom holds that interprocedural pointer analysis is not practical to be conducted in
commercial compilers, so dynamic memory disambiguation mechanisms are persuaded as
alternative approaches to tolerate the memory latency [9, 10].

This dissertation addresses the memory latency problem using aggressive static mem-
ory disambiguation. An efficient and effective interprocedural pointer analysis algorithm
for C programs is proposed to demonstrate that static memory disambiguation can be

practically integrated into an optimizing compiler. With interprocedural pointer analysis,

the compiler can optimize programs in a much larger scope. Without any architectural
modifications, the total amount of memory traffics can be reduced by the compiler while
remaining memory instructions in the program can be scheduled in a much wider range
to tolerate the memory latency. To demonstrate that the new interprocedural pointer
analysis algorithm does raise the applicability of static memory disambiguation to the
next level, the complete suites of SPECcint92 and SPECcint95 [11] are analyzed in the
experiments. The SPEC suites are the most commonly used benchmarks to evaluate
the performance of modern computer systems. Due to their sizes and many realistic C
features, they are often conservatively optimized by pure static methods, leaving many
novel architectural designs guided by sub-optimal program traces. Through aggressive
memory access optimizations, significant performance improvements are observed which
not only demonstrate the effectiveness of the proposed algorithm but also provide new

insights to these benchmarks so that their optimized behaviors can be understood.

1.1 Contribution

The contributions of this dissertation are described by the following aspects.

e An efficient and effective interprocedural pointer analysis algorithm is proposed.
The challenges faced by an interprocedural pointer analysis algorithm often include
the control of resource usage and the coverage of realistic language features. To
address the first challenge, the proposed algorithm uses the modular [12] and flow-

insensitive [13, 14] paradigm to shorten the analysis time and lessen the memory

consumption. To overcome the second challenge, the proposed algorithm handles
all C features including unions, type casts, and function pointers. Consequently,

the analysis result is safe and can be used to guide aggressive optimizations.

A systematic way to exploit optimization opportunities using memory disambigua-
tion information is demonstrated. With fully disambiguated memory accesses, the
dependency between a pair of memory instructions can be accurately defined as
dependent, independent, and ambiguous. These classifications are referenced by
optimization routines to transform the program. However, a certain degree of con-
servative assumptions are inevitable for any static analysis algorithms including
the proposed one. Therefore memory address profiling [15] is conducted in this
dissertation to estimate the performance benefit that would be available if the con-
ducted static memory disambiguation were perfect. Experimental results indicate
that the extra performance gain is negligible compared to the performance improve-
ments enabled by the new interprocedural pointer analysis algorithm, meaning a

significant degree of accuracy has been achieved.

An in-depth understanding of the usage of function pointers is provided. In ad-
dition to improving the performance the programs, static memory disambiguation
information can also improve the productivity of programmers. Among many pro-
gramming tools, a call graph extractor is a very important one since it helps the
programmer understand the overall structure of the program. However, in the pres-

ence of function pointers, the complete and accurate call graph cannot be easily

constructed. This dissertation presents a comprehensive study of the usage of func-
tion pointers found in the SPECcint92 and SPECcint95 suites. Experience from
these benchmarks argues that function pointers can be as complicated as regular
pointers. That is, an accurate call graph extractor would not be available unless

full scale interprocedural pointer analysis is performed.

1.2 Overview

This dissertation consists of eight chapters. Chapter 2 explains various issues involved
in interprocedural pointer analysis in detail. A comprehensive review of previous work
is also discussed in this chapter.

Chapter 3 and Chapter 4 present the intraprocedural and interprocedural stages of
the proposed modular interprocedural pointer analysis algorithm, respectively. Given a C
program, each function is first analyzed as an isolated compilation unit where parameters
and global variables are temporarily assumed to have uninitialized values. The analysis
conducted in this stage will summarize the intraprocedural behavior of a function in a
flow-insensitive manner, including how it can affect memory accesses in the caller and
callee functions, and how its memory accesses can be affected by the caller and callee
functions. The summarized behavior of each function is the only information to be
processed in the next stage, the interprocedural stage. Because of the significant size
reduction in the summarized representation than the full function body, much larger

programs can be handled by the proposed modular algorithm.

Chapter 5 details how to utilize static memory disambiguation to guide memory access
optimizations, including redundant load /store elimination, loop-invariant code migration,
and instruction scheduling. Chapter 6 classifies the usage of function pointers using the
SPEC suites. Comprehensive case studies extracted from representative benchmarks
are shown to illustrate the intricacy of pointer manipulations. Resolutions of function
pointers are presented to quantify the accuracy of interprocedural pointer analysis.

Chapter 7 quantitatively compares the performance of programs compiled with and
without interprocedural pointer analysis. Different architectural configurations and opti-
mization routines are evaluated to understand the relationship between machine resources
and compiler capabilities. A quantitative upper-bound analysis using memory address
profiling is also presented in this chapter. Finally, Chapter 8 presents conclusions and

future research suggestions.

CHAPTER 2

OVERVIEW OF STATIC MEMORY
DISAMBIGUATION

Interprocedural pointer analysis is a critical component of accurate static memory
disambiguation and has been addressed by many researchers over the past twenty years.
The analysis goal has evolved from detecting aliases among formal parameters for Fortran
programs to aliases among multi-level pointer dereferences in C, C++ and Java. How-
ever, interprocedural pointer analysis is still not mature on the whole, since the feasibility
of a fully functional interprocedural pointer analysis algorithm which can accommodate
realistic large programs has not been demonstrated in the literature. Unlike function in-
lining [16], register allocation [17], and SSA analysis [18], interprocedural pointer analysis

has not been integrated into commercial compilers.

2.1 Background Information

The key issues that need to be addressed by an interprocedural pointer analysis al-
gorithm include the following. It will be demonstrated later that the proposed modular
interprocedural pointer analysis algorithm indeed raises the applicability of interproce-

dural pointer analysis to the next level.

2.1.1 Flow sensitivity

A flow-sensitive pointer analysis algorithm considers the effects of pointer assignments
with respect to statement orders. The benefit is that a later assignment may kill earlier
definitions of the same pointer, referred to as strong update. However, situations that
arise in real code often do not benefit from flow-sensitive analysis. For example, most
algorithms only allow scalar pointers to be strongly updated [19, 20, 12]. In reality, most
dereferences are off heap-based pointers or pointer fields in structures/unions, and most
scalar pointers are rarely redefined unless they are used in loops to traverse arrays or
linked lists. However, such data structures are often treated conservatively as a single
aggregate element. As a result, the accuracy yielded is not proportional to the time spent,

and earlier work reports that little benefit is observed on most studied benchmarks [21].

2.1.2 Context sensitivity

A context-sensitive interprocedural pointer analysis algorithm distinguishes different
caller contexts for a common callee so that alias information carried by one caller will
not leak into the other. Strictly speaking, maintaining context sensitivity can be further
distinguished as maintaining context-sensitive parameter aliases and context-sensitive
transfer functions. In the context of interprocedural pointer analysis, transfer functions
represent the side-effects of function calls and operate by taking a set of pointers that
are accessible via parameters or global variables and returning a set of target locations

that are pointed to by these input pointers. Consider the code example in Figure 2.1a.

int *P1, *P2, *P3, G1, G2, G3;

int *foo(int **p, int **q, int *r) 6
¢
S1: *p = r;
S2: (x*p)++; S7/S5
S3: Gl++; H
S4: G2++; S7/S1
S5: return *q; E
b
main() u S8/S5
{

int *a, *b; S8/s1

S6: P1 = &G1;
S7: a = foo(&P2, &P1, &G2);
S8: b = foo(&P3, &P2, &G3);
}
(a) (b) (c)

Figure 2.1 An example about context-sensitivity: (a) code, (b) pointers resolved using
context-sensitive transfer functions, (¢) context-sensitive aliases among parameters.

2]

By calling function foo twice with different values passed as parameters, pointers are
initialized differently by instantiated statements contained in foo.

When the concrete values bound to parameters are distinguished in the caller’s per-
spective, a context-sensitive transfer function is resulted and it can prevent the impossible
path problem [22]. Figure 2.1b shows the points-to relations [19] obtained after applying
the context-sensitive transfer function of foo, where each edge is annotated with the
labels of corresponding statements. For example, pointer P3 in Figure 2.1b will not be
resolved to point to G2 if the transfer function of function foo is aware that addresses
of P3 and G2 are not passed to function foo in the same context. On the other hand,

Figure 2.1c shows the context-sensitive alias relations among formal parameters of func-

tion foo, where contexts are distinguished by the call-site statement labels. When the
concrete values bound to parameters are distinguished in the callee’s perspective, not
only true aliases among parameters are identified to guarantee the correctness of opti-
mizations applied to the callee function body, but also spurious aliases among parameters
can be eliminated to enable more optimizations. For example, the third parameter r in
function foo may point to G1 if foo is invoked from S7, and G2 if foo is invoked from
S8. If these alias relations are not detected, the compiler may overlap the execution of
statements S2, S3, and S4, violating the semantic order of the program since these three
statements have WAW dependences. However, the first two parameters of function foo,
p and g, may point to P2 but they never do so simultaneously. Therefore the compiler
can schedule the load instruction that retrieves data from *q before the store instruction
that writes value to *p in order to hide the load latency.

Context-sensitive pointer analysis shows little or no precision benefits from bench-
marks studied in [23]. However, for those where context-sensitivity is beneficial, the
proposed algorithm in this dissertation can maintain context-sensitive transfer functions

inexpensively. However, context-sensitive parameter aliases are not maintained.

2.1.3 Whole-program or modular analysis

The most straightforward way to maintain the context sensitivity of parameter aliases
and function call side-effects is to analyze a whole program following the flow of state-
ments, including statements in invoked functions [22, 19]. For example, the program in

Figure 2.1a can be analyzed by following statements S6 — S7 — S1-5 — S8 — S1-5.

10

When the program is large and the call graph is dense, the analysis cost will be too high
for practical use. Partial transfer functions, as proposed by Wilson and Lam [20], use
memoization to avoid the redundant analysis of an invoked subset of the call-graph. For
the example shown in Figure 2.1, the alias relations among parameters for call sites S7
and S8 are identical, so the memoized transfer function obtained from S7 can be reused
for S8 so that S1 through S5 need not be analyzed again. However, function bodies along
a call-graph path need to be memory resident simultaneously due to the algorithm’s
flow-sensitive feature, affecting the scalability of the algorithm.

The recent flow- and context-sensitive modular analysis proposed by Chatterjee et
al. [12] handles a subset of the C++ language. Their method further reduces the memory
requirement of interprocedural pointer analysis because only method bodies belonging
to the same strongly connected components (SCC) [24] in a C++ program need to be
memory resident simultaneously. For methods belonging to different SCCs, only the
summary transfer functions are brought to memory for propagation. Since real programs

contain large SCCs, it is desirable to further reduce the memory requirement for analyzing

a single SCC.

2.1.4 Abstract memory representation

A static algorithm often needs to use an abstract notation to represent run-time
accessed memory locations. Storage-based representation uses extended variable names
for physical memory locations [22, 19, 20, 12]. To avoid ambiguity, it is often required that

a single memory location cannot be represented by more than one storage name. Due to

11

different aliases among formal parameters, more than one version of transfer functions,
either separately maintained [20], or collectively maintained but differentiated by alias
contexts [12], are required. Access paths [22, 25|, on the other hand, simply represent
physical memory locations by how they are accessed from an initial variable in a store-less
model. As long as the length of access paths can be bound in the presence of recursive
data structures, a context-independent representation of the summary transfer function
and an easier way to produce unique names for heap objects can be enabled. However,
the literature does not explain how summary transfer functions are to be maintained
in access paths. In this thesis, the concept of access paths will be further explained in

Section 3.1.

2.1.5 Coverage of language features

A compiler needs a full coverage of all language features in order to perform correct
and aggressive optimizations. For example, if individual fields of a structure cannot be
disambiguated, indirect accesses from field pointers will be considered as ambiguous and
stay unoptimized. This is definitely an undesired situation, since structures are handy
programming features and are ubiquitous in modern programs. But many other lan-
guage features like type casts, unions, and function pointers have long been neglected
as well. The recent work proposed by Wilson and Lam [20] is the first to cover all C
features in performing interprocedural pointer analysis, but its applicability is limited by
the memory requirement of whole-program analysis. On the other hand, although many

flow-insensitive and context-insensitive algorithms are asymptotically faster [13, 26, 27],

12

handling realistic C features may have a drastic impact on their complexity. For exam-
ple, without handling structures and unions, Steensgaard’s algorithm has almost linear
complexity [26]; when structures and unions are considered, the complexity becomes

exponential [28].

2.1.6 Evaluation of interprocedural pointer analysis

Most earlier algorithms are evaluated by resource consumptions, pointer resolutions,
and statistics of improved optimization opportunities [29, 30, 31, 32]. These numbers can
provide a high-level judgment on the effectiveness about an algorithm, but the real value
of interprocedural pointer analysis should be judged by how much performance improve-
ment can be gained from its analysis results. The work by Wilson and Lam in [20] uses
pointer analysis results to guide loop parallelizations for one SPEC benchmark, whereas
the work by Diwan et al. [32] uses type-based alias analysis to guide redundant load elim-
ination and loop-invariant load migration for a set of Modula-3 programs. Cooper and
Lu [30] study the effect of register promotion for variables in the presence of pointers, but
indirect accesses to heap objects and fields of aggregates are not handled. In this thesis,
interprocedural pointer analysis results are used to guide much more aggressive memory
access optimizations including redundant load/store elimination, loop-invariant memory
access migration, and load /store scheduling, which will be described in Chapter 7. These
optimizations are more aggressive because C is not a type-safe language, and both stack-
and heap-based memory accesses can be optimized even for code regions containing func-

tion calls. Since a formal verification for the correctness of pointer analysis results is still

13

absent, using the analysis results to guide aggressive optimizations provides a pragmatic

alternative for verification.

2.2 A New Modular Interprocedural Pointer Analy-

sis Algorithm

In this dissertation, a fully functional interprocedural pointer analysis algorithm which
can handle widely used C programs is proposed. The design emphasizes the practical
aspect of interprocedural pointer analysis, adopting the modular and flow-insensitive
paradigm. The propagation of summary transfer functions is conducted in a context-
sensitive but inexpensive manner using access paths and points-to analysis [19]. In ac-
commodating realistic C features, the new algorithm controls its memory requirement
and maintains its accuracy in the presence of function pointers by starting with an
under-estimated call graph which is augmented iteratively along the course of interpro-
cedural pointer analysis [19]. The offset representation for structure/union fields is also
incorporated into access paths to seamlessly handle aliases caused by unions and type
casts [20, 33]. In addition, it is demonstrated that the number for recursive heap objects
can be bound and the location of acyclic heap objects can be easily disambiguated using
access paths.

The proposed algorithm consists of two major stages: the intraprocedural stage and

the interprocedural stage. In the intraprocedural stage, each function is analyzed as an

14

isolated compilation module where formal parameters, callee return values !, and global
variables are all assumed to have unknown values. Indirectly accessed locations through
unknown pointers are represented by access paths. By the end of the intraprocedural
stage, a summary behavior of each function is calculated, including a set of memory
locations accessible across function boundaries, a set of call-site names, a set of pointer
definitions involving pointers accessible across function boundaries, and a set of pointer
assignments involving formal parameters and global variables. The third set is considered
as the summary transfer function and represented by points-to relations. In the interpro-
cedural stage, bottom-up propagation of summary transfer functions along the call graph
is performed. In the presence of function pointers, it is also necessary to perform top-
down propagation of function names along the partially resolved call graph, since some
indirect call-sites may receive concrete function names through parameters. Because the
transfer function of a just-discovered indirect callee may define function pointers used
elsewhere in the program, the bottom-up and top-down propagations need to be per-
formed iteratively until a fixed point is reached. The aliases among formal parameters
are then calculated after top-down propagation of concrete values along the complete call
graph.

At a high-level, the idea behind the proposed algorithm in this dissertation is simi-
lar to Relevant Context Inference (RCI), proposed by Chatterjee et al. [12], since both
algorithms use modular analysis to reduce the resource requirements. However, several

significant differences distinguish the two pieces of work, as highlighted in Figure 2.2.

IFor simplicity the term parameters will be used to collectively mean function return values.

15

)))

Build estimated Analyze local Propagate concrete Determine parameter
call graph. statements values. aliases.
(flow-sensitive).
Propagate summary
transfer functions
(context-sensitive).

| Intraprocedural | Interprocedural ‘

I T 1

Analyze local Build accurate Propagate summary Propagate concrete Propagate concrete Determine parameter
statements call graph transfer functions function names. values. aliases.
(flow-insensitive). (context-insensitive). (context-sensitive).

(b)

Figure 2.2 Modular interprocedural pointer analysis: (a) the RCI algorithm for a
subset of C++, (b) the proposed new modular analysis algorithm for complete C.

First, RCI covers a subset of C++ constructs where many general C features includ-
ing explicit address operator (&), function pointers, structure members, and general
pointer assignments are excluded. The proposed algorithm covers complete C features
and can generate safe analysis results to guide code optimizations. Secondly, RCI uses
an over-estimated call graph. For an indirect call-site, all functions with names taken
and compatible signatures are considered as possible callees. In 152.4jpeg, a SPECcint95
benchmark, there are 188 functions whose names are taken and the majority of them
have the same signature. Furthermore, there are 641 indirect call-sites in the program.
Therefore the estimated call graph will be very inaccurate, which will waste time in prop-
agating summary transfer functions and produce spurious results. Lastly, RCI uses alias

contexts to lazily enumerate potential aliases among parameters in order to distinguish

16

different versions of transfer functions for different calling contexts. In the proposed
method, access paths enable a context-independent representation of transfer functions
so that the memory overhead used to represent multiple versions of summary transfer
functions is reduced.

Consider the example shown in Figure 2.3a. When an estimated call graph is used,
*fn2 may invoke both fn3 and fn4 since both their names are taken and they have
matching signatures. In reality, only fn3 can be called through *fn2, so propagating
the summary transfer function of fn4 would be spurious and unnecessary. Figure 2.3b
shows how summary transfer functions are represented for fn3 in RCI. Nodes 7;,;; and
Sinit Tepresent the objects pointed by r and s, respectively. The upper dashed edge
indicates that r;,;.next points to r;,;; when r and s receive the same concrete value,
while the lower dashed edge shows that r;,;;.next points to s;,;; when r and s receive
different concrete values. The enumeration is unnecessary since the caller knows better
than the callee whether or not identical values are passed to different parameters. As
long as the abstract memory name in the transfer function faithfully represents how the
memory location is accessed through formal parameters or global variables in a context-
independent manner, the caller can easily determine where the location is after replacing
the formal parameter with a concrete value. As shown in Figure 2.3c, by using postfix
access paths [25], it is straightforward for call-site S2 to derive that r* stands for sti
and s* stands for st2, and for call-site S3 to derive that both r* and s* stand for st3.
Therefore both points-to relations (st1.next, st2) and (st3.next, st3) can be derived

from a single summary points-to relation (r*.next, s*).

17

typedef struct S { void fnil(void (*xfa) (Sx, Sx),

int *key; /% 0_3 %/ void (*fb) (Sx, Sx),
struct S *next; /* 4_7 %/ void (*fc) (S*, Sx))
}'s; {
main() void (k*temp) (S*, S*);
{ S4: temp = fa;
void (*fn2) (S*x, Sx); S5: x*temp = fb;
S stl, st2, st3; }
S1: fni1(&fn2, fn3, fnd); void fn3(S *r, S *s)
S2: (xfn2) (&stl, &st2); {
S3: (*fn2) (&st3, &st3); S6: r->next = s;
} }
void fn4(S *r, S *s)
{
S7: s—>next = r;
}
(a)
st3 st3
ey | key ||
next | next |
finit - e
Bl :Zt | Tinit € Sinit et - e SR) gnext = stanext
Sinit k irinit Ned. Sipjt s—ms =~ g:.gez(égté%sil)s;‘énext:$1.next
s [ke | a! stll'
ned] o ke | | key |
.next next
2 | 2 |
ke | ke |
next next
(b) (c)

Figure 2.3 Storage- and path-based transfer functions (shown by dashed edges): (a)
code, (b) two versions distinguished by alias contexts, (c) one generic version applicable
to both calling contexts.

18

Details of the operations performed in the intraprocedural and interprocedural stages

will be explained in the next two chapters.

2.3 Related Work

In addition to previous discussions, more related work will be summarized in this
section. Landi et al. [22] use the may-alias representation to perform flow- and context-
sensitive interprocedural pointer analysis. This is the pioneer work in improving the
accuracy of pointer analysis using the interprocedural control-flow graph (ICFG). The
analyzed language is simplified from C, and memoization is not used. Emami et al. [19]
propose the points-to representation to model the storage shape graph. Since their analy-
sis is flow-sensitive, their points-to relations can be classified as definite or possible, while
the proposed work in this dissertation only generates possible relations. Their algorithm
is not designed to aggressively disambiguate heap objects, and memoization is not used
either. They also handle a subset of C, but function pointers are included. Choi et al. [34]
propose a sparse representation for the alias pairs, and they use the invocation path to-
wards memory allocation sites to name heap objects. However, experimental results and
implementation details are not provided. To look beyond tradition applications of pointer
analysis, Rugina and Rinard [35] perform pointer analysis for multithread programs.

Many pointer analysis algorithms use types to perform alias analysis [32, 36, 26, 37].
Deutsch [25] uses postfix symbolic access paths to analyze the alias relations among ac-

cesses to recursive structures on well-typed programs. In this dissertation, although the

19

access path notation employed is also postfix, the low-level offsets are adopted for fields.
Types are also used differently since they are not directly used to resolve aliases due to
type casts in C, but used to control the length of access paths in the presence of recur-
sive data structures. The flow-insensitive analysis proposed by Andersen [27] has cubic
worse-case running time, and the work from Fahndrich et al. [38] shows that Andersen’s
method can be practical for large programs. Shapiro et. al [31] propose a hybrid method
with configurable complexity between Steensgaard’s and Anderson’s algorithms. Hasti et
al. [39] propose the idea of iteratively improving the accuracy of pointer analysis in SSA
form [18], but empirical results are not available. Zhang et al. [40] and Stocks et al. [41]
balance the complexity by switching between various algorithms. The largest benchmark
handled has around 60,000 lines of code. The algorithm proposed in this dissertation
is the first to demonstrate that a flow-insensitive analysis accommodating complete C
features can handle programs of more than 200,000 lines of code.

Besides resolving aliases for general pointer dereferences, a lot of researchers have
focused on obtaining detailed shape descriptions for heap objects [42, 43, 44, 45, 46, 25].
The proposed algorithm accurately resolves heap objects of scalar types, but conserva-

tively assumes that all heap objects of recursive data types form cyclic data structures.

20

CHAPTER 3

INTRAPROCEDURAL POINTER ANALYSIS

Pointer analysis is a data-flow analysis which deals with the flow of pointer values.
Given two pointers pl and p2, they cannot point to the same location unless they are
initialized by the same value, so the fundamental job in a pointer analysis algorithm is to
analyze pointer assignments to calculate the flow of pointer values. Since the C language
allows multi-level pointers, a correct pointer analysis algorithm needs to deal with aliases
of pointers as well. Once the address of a pointer is passed to another function, like
the example in Figure 2.1, pointer analysis needs to be conducted in the interprocedural
scope otherwise some pointers cannot be resolved.

In this chapter, how to handle pointer assignments and determine aliases among
pointers will be the main focus of discussions. For pointers that are defined through
local statements, they can be fully resolved in the intraprocedural stage. For pointers
that are defined through function calls, they are only identified in the intraprocedural
stage and will be resolved in the interprocedural stage. These interprocedurally accessi-
ble pointers are represented in a context-independent format using access paths, based
on which a summary behavior of each function is constructed, including MOD/REF
information for interprocedurally accessible locations, callee information, and summary

transfer functions. The summarized behavior is the only data structure to be maintained

21

in the interprocedural stage so that significant reduction in analysis time and memory

usage can be achieved.

3.1 Access Paths

For a C expression that accesses the memory, it can be as simple as a direct access to
a variable, or an indirect access through a sequence of dereference operations with offset
adjustments. Since different variables represent different memory locations, disambiguat-
ing accesses of the former case is simple. To disambiguate accesses of the latter case,
both the sequence of dereference and offset operations and the contents of intermediate
pointers are required.

An access path is a string recording the sequence of intermediate dereference and
offset operations to meet the first requirement of memory disambiguation. Described in
regular expressions, the grammar of an access path is v(fd|d)*(f|e). The initial token,

Y

v, is simply a variable name. Symbol f is of the form ”.so_eo” which denotes the
starting and end byte-level offsets of a field in a structure/union, and symbol d denotes
the dereference operation and is symbolically shown as ”*” elsewhere in this dissertation
when there is no confusion with the closure symbol in regular expressions. Unless the
contents of intermediate pointers in an access path are known, an access path is simply

an encoded postfix string and is not bound with any particular locations, but simply

represents how the denoted location is accessed.

22

Definition 1 (Construction of access paths) AP denotes the function that recur-
sively determines the postfiz access path for a C expression that retrieves or deposits data

from/to the memory:

AP(exp) if exp is a function name
AP (xexp) = (3.2)

AP(exp)x otherwise

AP(exp) if exp is of an array type but

AP(explindez]) = not a formal parameter (3:3)

AP(exp)x otherwise

AP(exp op expl) = AP(exp) (3.4)
AP(exp— field) = AP(exp)*.so_eo (3.5)
AP(exp.field) = AP(exp)*.so_eo (3.6)
NM(a.sol_eol.so2 eo2) = «a.s03_eo3 (3.7)

where s03 = sol + so2 and eo3 = sol + eo2

Instead of generating all possible access paths from any variables, access paths are gener-
ated lazily from observed C expressions in each function. Definition 1 shows the rules that
recursively determine the access path of a C expression. Rule (3.1) is the terminal case
which initiates the access path with the corresponding variable name. Rule (3.2) handles
the dereference operation by appending a ”*” symbol after the access path corresponding

to the being dereferenced pointer expression unless the prefix string is a function name.

23

The C language grammar allows function names to be dereferenced, but at run-time the
dereference does not occur, which is reflected in Rule(3.2). Similarly, Rule (3.3) handles
the duality between array and pointer accesses. If the array expression truly has an array
type and is not a formal parameter, no dereference is necessary since the expression ac-
cesses a constant location; otherwise a ”*” symbol is appended. As shown by Rule (3.4),
explicit pointer arithmetics are ignored by the AP function, resulting in a coarse but
safe access path for linearly accessed locations. However, offsets added to pointers by the
field operators, ”.” and ”->", are faithfully represented in access paths since they are
always constants thus can be accurately determined.

Traditionally, fields in access paths are represented by their symbolic names [22, 34,
25]. Although symbolic names serve the purpose to differentiate individual fields in
a structure, they do not provide adequate information regarding the aliases caused by
unions and type casts [20, 33]. For example, given a nested structure field access s1.s2.f1
where f1 is the first field in structure s2, type casts alone without any pointer assign-
ments can create an alternative expression, ((struct * S2) (&s1))->f1, to access the
same f1 field. This is because the programmer can take advantage of the knowledge that
the address of a structure is the same as the address of the first field of the structure.
When symbolic names for fields are used, two different access paths result: s1.s2.f1 and
s1.f1, respectively. They can be explicitly marked as aliases with extra annotations, but
offsets for structure fields provide a better solution. In Rules (3.5) and (3.6), the starting
offset (so) and end offset (eo) of a field relative to the in-most enclosing structure are

calculated and used to represent the field. Assuming the size of s2 is 100 bytes and f1

24

occupies 4 bytes in s2, the encoded access path of s1.82.f1 is s1.0_99.0_3, while the
encoded access path of ((struct * S2) (&s1))->f1 isis s1.0_3. Then Rule (3.7) is
defined so that back-to-back field offsets are coalesced into a single field by translating
the relative offsets from the in-most enclosing structure to the out-most one. The nor-
malization simply proceeds by adding the starting offset of the enclosing structure to the
starting and end offsets of the enclosed field. For example, the normalized access path of
$1.0_99.0_3 is s1.0_3, since 0+0 = 0 and 0+3 = 3. As a result, two aliased expressions
have a common access path based on normalized field offsets. Without explicit pointer
assignments, access paths using byte offsets can resolve aliases caused by type casts and
pointer arithmetics. The next section discusses how to resolve aliases in the presence of

arbitrary pointer assignments.

3.2 Right-Most Access Paths and Pointer Assign-

ments

The points-to relation proposed by Emami et al. [19] is also adopted in this disserta-
tion to represent the data-flow facts of pointer assignments. The original points-to rela-
tion is a three-tuple of the form (p, t, P|D) where p and t are two storage names rep-
resenting physical pointer and target memory locations, respectively. The third operand,
P|D, specifies whether the pointer possibly or definitely points to the target. In the points-
to notation defined for this dissertation, both p and t are represented in access paths,

and the P|D attribute is not used since only possible points-to relations are generated.

25

Given a pointer assignment 1hs = rhs where both 1hs and rhs are pointer-type C
expressions and rhs is not NULL, the first step of determining the corresponding points-
to relations is to construct the corresponding access paths for 1hs and *rhs, noticing the
dereference operator added to the rhs expression. Due to the effects of earlier pointer
assignments, lhs and *rhs may have aliases. For example, given a pointer p and a
prior pointer assignment q = &p, both access paths, p, q*, are aliases. Similarly, given a
pointer r and a prior pointer assignment r = &i, r* and i are also aliases. As a result,
any of the following four statements can cause p to point to i: p = &i, p = r, *q = &i,

Or *q = T.

Definition 2 (Right-most access path) Given a direct access to a variable, its right-
most access path is simply the variable’s name. If a memory location is accessed indirectly,
its right-most access path is contrived based on the access paths of the pointers that appear
as the very first RHS operand in a sequence of pointer assignments that propagate the

address of the indirectly accessed memory location.

One way to correctly represent the effects of the above set of pointer assignments is to
create four points-to relations using the cross products of all aliases of the LHS pointer
and all aliases of the RHS target as (p, i), (p, r*), (g%, i), and (g*, r*). However,
the complete enumeration is unnecessary since there are ways to transform an access
path into a normalized form based on the observations that aliases are caused by pointer
assignments, and pointers must be initialized before they can be used. So for every pointer

dereference, there must be one or a small number of right-most access paths, as explained

26

in Definition 2, which denote the accessed memory location whose addresses are assigned
to the dereferenced pointer through an arbitrary number of pointer assignments. As long
as all encoded access paths from C expressions can be normalized to the right-most access
paths, fewer access paths are ended up and therefore fewer points-to relations need to be
maintained. Definition 3 shows how to use the encoded access path from a C expression
and existing points-to relations to find the entire set of right-most access paths, where
Definition 4 shows how to add points-to relations based on right-most access paths for a
pointer assignment. Notice that the evaluated result is a set of access paths instead of
a singular path due to that a pointer may have more than one definition. This is either
caused by conditional definitions made to a pointer or the flow-insensitive nature of the

pointer analysis algorithm.

Definition 3 (Finding the right-most forms of an access path) Under a set of
points-to relations Sprr, the evaluation function, EVAL, recursively parses an access

path and returns the entire set of right-most access paths as defined below:

EVAL(v | (&v)%, Sprr) = {v} (3.8)
EV AL(ax,Sprr) = {830 € EVAL(a, Sprr), (0,8) € Sprr} (3.9)
EVAL(af,Sprr) = {v|30 € EVAL(a, Sprr),y = NM(0f)} (3.10)
EV AL(ax, Sprg) = {0% |30 € EVAL(a, Sprr), (8, 8) € Sprr} (3.11)

EVAL(CY*, SPTR) = {5 | 6 € EVAL(O&, SPTR)aéngk)\ = 9} <> (312)

27

Definition 4 (Path-based points-to relations) Given a pointer assignment lhs =
rhs in function fn where both lhs and rhs are pointer-type C expressions and rhs is not
NULL, let Sprr be the set of points-to relations already added for fn. For every w €
EVAL(AP(lhs), Sprr) and T € EVAL(AP(xrhs), Sprr), points-to relation (w, T) is

added to Sprr. &

EVAL is a closure function which takes an access path and a set of points-to relations
and then returns the set of right-most aliases of the input path. Rule (3.8) handles the
trivial case where no dereference is encountered, or the dereference is simply canceled
by address operator (&). Since the trivial case accesses a definitive memory location,
the right-most access path is simply the variable itself. For an access path containing
a sequence of dereference and offset operations, the path is processed by parsing the
composing operations, or tokens, from left to right, reflecting the actual sequence of
memory dereferences that would occur at run-time. Rule (3.9) addresses the case where
the next token is a dereference operation and the pointer access path has outgoing points-
to relations, meaning that the pointer is initialized. Since the tokens are parsed from left
to right, the evaluation result of « is already available before ax is evaluated. Then for
each access path 6 found in EVAL(a, Sy), the targets of §’s points-to relations are the
right-most aliases of ax. Rule (3.10) handles the offset token by concatenating the offset
to each path found in the evaluation result of the prefix path. Back-to-back fields also
need to be normalized. This whole process can be considered as following the fan-out

tree of a set of points-to relations where the root is the initial variable in the access path.

28

Si:
S2:
S3:
S4:
SH:
S6:

Figure 3.1 Constructing points-to relations from pointer

S stl, st2, st3;
S *spl, *sp2, *sp3, *sp4d;

spl = &sti;

sp2 = &st2;

spl->next = sp2;

sp3 = &st3;

sp4 = &st3;

sp3->next = sp4;
(a)

LHS *RHS
spl st1
sp2 st2
spl*x.4_7 sp2x
sp3 st3
sp4 st3

Sp3*.4_7 sp4x

corresponding points-to relations for each assignment.

=> (spl, stl)
=> (sp2, st2)
=> (8t1.4_7, st2)
=> (sp3, st3)
=> (sp4, st3)
=> (8t3.4_7, st3)

(b)

assignments: (a) code, (b)

Rules (3.11) and (3.12) will be ignored for now and the example in Figure 3.1 will be

considered first. The code in Figure 3.1a is derived from the inlined version of function

main in Figure 2.3a. The left part of Figure 3.1b lists the encoded access paths for 1hs

and *rhs before FVAL is invoked. The right part of Figure 3.1b lists the added points-to

relations for each statement based on the right-most access paths. For statements S1 and

S2, the encoded access paths from C expressions have no dereference operators so only

Rule (3.8) is applied when evaluating the access paths. For statement S3, the right-most

access path of the LHS expression is st1.next, or st1.4_7 in byte offsets, which can be

discovered in three steps:

1: EVAL(spl,{(spl, stl), (sp2, st2)})

2: EVAL(splx, {(spl, stl), (sp2, st2)})

3: EVAL(spl x.4.7,{(spl, st1), (sp2, st2)})

29

= {spl}
= {stl}

= {st1.4.7}

Similarly, the right-most access path of the memory location pointed to by the RHS

expression is st2, which can be discovered in two steps:

1: EVAL(sp2, {(spl,stl), (sp2,st2)}) = {sp2}

2: EV AL(sp2x,{(spl, stl), (sp2,st2)}) = {st2}

As a result, the points-to relation added for statement S3 is (st1.4_7, st2). The
points-to relations added for statements S4, S5, and S6 can be derived in the same
manner.

Rules (3.8) through (3.10) in Definition 3 guarantee that all initialized pointers must
point to at least one right-most access path after being evaluated. Rules (3.11) generates
temporary right-most access paths for indirectly accessed locations from uninitialized
pointers. This situation can arise when parameters and global variables are assumed as
uninitialized in the intraprocedural stage of the modular interprocedural analysis algo-
rithm and the function body contains expressions which dereference from these pointers.
The straightforward way, as denoted by Rule (3.11), is to append a ”*” symbol after the
right-most access paths of the dereferenced pointer. For indirect accesses using pointers
of non-recursive types, there are a finite number of locations that can be reached from
the pointer, so the total number of access paths that can be generated from the pointer
is finite. However, when uninitialized pointers to recursive data structures are involved,

infinite access paths may be produced by Rule (3.11).

30

(spl, spix) (spl, spilx) (spl, spix)
(spl*.4_7, splx.4_7%) (spl*.4_7, splx.4_Tx) (spl*.4_7, splx)
(spl, splx.4_7x%) (spl, splx.4_7x%)

(spl*.4_7x.4_7, splx.4_T*.4_T%)

(spl, spl*.4_7*.4_7x)

(a) (b) (c)

Figure 3.2 Handling access paths involving recursive data types: (a) results of the first
iteration, (b) results of the second iteration, (c) results controlled by k=1.

Consider the common pointer-chasing statement spl = spl->next in a linked-list
traversal loop where spl is a formal parameter. It will be shown later that pointer
assignments need to be analyzed iteratively otherwise the resolved points-to relations are
not complete. When the statement is analyzed for the first time, the resultant points-
to relations are shown in Figure 3.2a. Path spl# is created when evaluating the prefix
path spi* in the RHS path spi*.4_7* according to Rule (3.11). The field operator
.4_7 is then appended to spl#*, then spl*.4_7% is produced since spl*.4_7 is also an
uninitialized pointer.

In the second iteration, spl will be found to point to sp1* and spl*.4_7*. Therefore
when evaluating the RHS access path sp1*.4_7%, the evaluation result of the prefix path
spl* is {spl*, splx.4_7*}. So when sp1*.4_7 is evaluated, path spl*.4_7*.4_7 is
added, then when sp1*.4_7x is evaluated, path spl*.4_7*.4_7x* is added. When itera-
tion 2 finishes, as shown in Figure 3.2b, a new points-to relation (spl, spl*.4_7*.4_7%)
will be found in the points-to relation set. Inductively, the analysis will iterate forever

and after the nth iteration, (spl, spl*.(4_7%)") is produced.

31

To address this problem, a recursion-sensitive parameter k is introduced which dif-
ferentiates the first k£ objects in a linked list accessed from an uninitialized pointer. As
defined in Rule (3.12), if no more than & prefix paths of path § which corresponds to an
uninitialized pointer has the same recursive data type as the intended target access path,
a ”*” symbol is appended after the pointer path like the case of Rule (3.11). Otherwise,
the longest prefix path with the same recursive data type is reused as the right-most
access path of the pointer’s target. The implication is that after the kth instance of
recursive objects in a linked list, a cycle is always assumed to exist and all later in-
stances of recursive objects are collectively represented by the kth object. This is similar
to the k-limiting approach used in [22], but only the lengths of access paths involving
recursive data types are controlled. Figure 3.2c shows the limited representation of re-
cursive access paths where k is set to 1. When evaluating sp1*.4_7*, the types of splx
and spl*.4_7* are both S. Since spl* is a prefix path of spl*.4_7*, points-to relation
(spl*.4_7, spl*) instead of (sp1l*.4_7, spl*.4_7%) is generated. Because C is not a
strong-typed language, each expression may have more than one type due to type casts,
implying each access path may have more than one type as well. However, the total
number of types is still bound in a program, and a prefix can subsume a suffix path as
long as they have partial overlaps in associated types. Section 3.4 will discuss the upper

bound of the number of access paths that can be generated from an uninitialized pointer.

32

3.3 Algorithm of Intraprocedural Pointer Analysis

Based on the previously illustrated definitions of access paths and path-based points-
to relations, there are two major tasks performed in the intraprocedural stage: code
transformation and pointer analysis. Their rationale and pseudo codes are given below

with a detailed example.

3.3.1 Code transformation

When a function is analyzed as an isolated compilation unit, its formal parameters
are assumed to have unknown values, so indirect accesses from these pointers will be
represented by access paths initiating from formal parameters. To determine the actual
location denoted by the path in a caller function, it can be determined by replacing
the formal parameter with the corresponding actual parameter and following the points-
to relations found in the caller as briefly discussed in Figure 2.3c. However, what is
not shown in the simple example is the mapping between formal and actual parameter
pairs, since formal parameters can be named arbitrarily by the programmer, and actual
parameters can be arbitrarily complex C expressions. Instead of grouping each formal-
actual parameter pair explicitly, they can be easily identified through systematically
designed interface variables.

There are four categories of interface variables: formal interface variables, actual in-
terface variables, outgoing return variables, and incoming return variables. The templates

of these interface variables are explained below.

33

f_i_foo: the ith formal parameter of function foo.

a_i_bar_foo_n: the ith actual parameter passed to function foo from function bar

at the the nth call-site.

o_foo: the outgoing return value of function foo.

i_bar_foo_n: the incoming return value from callee bar in function foo of the nth

call-site.

The initial field of each interface variable is designed to distinguish its category. The
other fields in interface variables have their special meanings to guarantee the uniqueness

of an interface variable in the same function or across function boundaries:

1. distinguishes individual parameters in a parameter list.

foo: distinguishes parameters in different functions.

bar: distinguishes actual parameters passed to to different callees.

n: distinguishes multiple call-sites to the same callee in the same function.

Figure 3.3 lists the pseudo code of the placement of interface variables. The idea is
that all right-most access paths that would stem from the original formal parameters and
incoming function return values are now represented by paths that stem from interface
variable. This can be guaranteed by Definition 3 and the algorithm listed in Figure 3.3
since formal interface variables and incoming return variables appear as the right-most

RHS expressions in each function. In addition, all paths that are accessible from complex

34

Add_Interface_Variable(foo)

{

1: n=0;

2: FOR (each formal parameter fp) {

3: Let 7 be the rank of formal parameter fp;
4: Add statement ” fp = fi_foo” to foo;
5.}

6: FOR (each call-site bar()) {

7 n = n+l;

8: FOR (each actual parameter ap) {

9: Let i be the rank of actual parameter ap;
10: Let barpen, = AP (bar);

11: Add statement "a_i_barp.n-foon = ap” to foo;
12: }

13: IF (statement "rec = bar()” € foo) {

14: Add "rec = i_barpen-foon” to foo;
15: }

16: }

17: FOR (each return statement) {

18: Assume the return expression is ret;

19: Add "o_foo = ret” to foo;

20: }

Figure 3.3 Algorithm of inserting interface variables.

actual parameters and outgoing return values can be easily grasped from their interface
counterparts due to their associated points-to relations created by the interface assign-
ments. Line 0 initializes the call-site counter which is incremented by 1 for every call-site
at line 7. Lines 2 through 5 insert interface formal variables and assign them to original
formal parameters, while lines 13 to 15 handle callee return values according to similar
rules. The field bar,q, means the access path of the function call expression, which is

either simply a function name for a direct call, or the directly encoded access path of

35

the indirect call expression. Lines 8 to 12 insert interface actual parameters which are
assigned by original actual parameters, where line 17 to 20 insert interface outgoing re-
turn values. From these interface variables, the targets of actual parameters and return

values can be easily identified.

3.3.2 Pointer analysis

Pointer assignments in each function are analyzed by their lexical order to calculate
the points-to relations. The analysis is conducted iteratively until no new points-to
relations are created. Although the analysis is flow-insensitive, meaning that a later
assignment will not kill an earlier definition anyway, analyzing the function following the
lexical order can reduce the total number of iterations since right-most access paths will
emerge earlier.

Figure 3.4 shows the intraprocedural pointer analysis algorithm after interface vari-
ables have been inserted. For assignments involving a whole structure, points-to analysis
is performed for each individual pointer field, as shown in lines 7 to 12. When the algo-
rithm terminates, all pointer assignments made to indirectly accessed memory locations
through formal parameters will result in points-to relations involving access paths with
formal interface variables, and memory locations that can be accessed by callee functions
can be found by following the points-to relations from actual interface variables. Details
about how to process the intraprocedural pointer analysis results, together with addi-

tional information derived in the intraprocedural stage, will be discussed in Chapter 3.

36

Intraprocedural Pointer_Analysis(fn)

{

1: Sprr(fn) = 0;

2: DO {

3: FOR (each pointer assignment ”"lhs = rhs” € fn) {

4: Let APL = EVAL(AP(lhs)), APR = EVAL(AP (xrhs));
5: SPTR:SPTRU{(Oé,ﬁ) | o€ APL andﬁEAPR},

6: }

T FOR (each structure/union assignment "lhs = rhs” € fn) {
8: FOR (each pointer field f in the structure/union) {

9: Let APL = EVAL(AP(lhs.f)), APR = EVAL(AP (xrhs.f));
10: Sprr = SPTRU{(Q,,B) | a € APL andﬁGAPR},
11: }

12: }

13: } WHILE (new access paths or points-to relations are added)

}

Figure 3.4 Algorithm of the intraprocedural pointer analysis stage.

3.3.3 Example

The example in Figure 2.3 is used here to explain the insertion of interface variables
and the results of intraprocedural pointer analysis. Shown in Figure 3.5, statements with
labels in are extra interface statements to enable interface variables to participate in
the generation of right-most access paths and points-to relations. Statements i4 and i5
are worth mentioning here since the actual parameters are passed to an indirect callee.
Before the indirect call-site is resolved, the callee name is simply the encoded access
path of the call expression, which is fn2* in this case. With these interface variables
in place, Figure 3.6 shows the corresponding intraprocedural pointer analysis results of

the code example. The corresponding source statement labels are put along with each

37

main() fnl ((x*fa) (S*, S*),

{ (xfb) (Sx, Sx), (xfc)(S*, S%))
void (*fn2) (S*, Sx); {
S st1l, st2, st3; (x*temp) (S*, S*);
il: a_1_fnl _main_1 = &fn2; i8: fa = f_1_£fni1;
i2: a_2_fnl_main_1 = fn3; i9: fb = f_2_fni;
i3: a_3_fnl_main_1 = fn4; i10: fc = £_3_£fn1;
S1: fni1(&fn2, fn3, fn4d); S4: temp = fa;
S5: *temp = fb;
i4: a_1_fn2*_main_2 = &sti; }
i5: a_2_fn2*_main_2 = &st2; fn3(S *r, S *s)
{
S2: (xfn2) (&stl, &st2); ill: r = f_1_fn3;
i12: s = f_2_fn3;
i6: a_1_fn2%_main_3 = &st3;
i7: a_2_fn2x_main_3 = &st3; S6: r->next = s;
}
S3: (xfn2) (&st3, &st3); fnd4(S *r, S *g)
} {
i13: r = f_1_fn4;
il4: s = f_2_£fn4;

—_——)

S7: s->next = r;

}

Figure 3.5 Code example with interface variables.

points-to relation for reference. For example, the side-effect of statement S6 of function
fn3 is represented by points-to relation (f_1_fn3*.4_7, £_2_fn3%), which can be clearly
interpreted as the second word field of the indirectly accessed structure object from the

first parameter will point to whatever location pointed to by the second parameter.

38

main

il: (a_1_fnl_main_1, fn2)
i2: (a_2_fnl_main_1, fn3)
i3: (a_3_fnl_main_1, fn4)
i4: (a_1_fn2*_main_2, stl)
i5: (a_2_fn2*_main_2, st2)
i6: (a_1_fn2*_main_3, st3)
i7: (a_2_fn2*_main_3, st3)

fnl

i8: (fa, f_1_fnix)

i9: (fb, f_2_fnlx)

i10: (fc, £_3_fnilx)

S4: (temp, f_1_fnilx)

S5: (f_1_fnlx, f_2_fnlx)

fn3

i11: (r, f_1_fn3x%)

i12: (s, f_2_fn3x%)

S6: (f_1_fn3x.4_7, f_2_fn3x)

fnd

i13: (r, f_1_fndx*)

i14: (s, f_2_fndx)

S7: (f_2_fn4x.4_7, f_1_fndx*)

Figure 3.6 Results of intraprocedural pointer analysis.

3.4 Complexity Analysis

In this section the complexity of the intraprocedural pointer analysis is discussed.
The complexity is measured based on a set of parameters. V; is the sum of variables and
call-sites in a single function, including interface variables. T is the number of data types
declared in the program, where k is the recursive-sensitive parameter which controls the
number of unique instances distinguished for linked lists. Although C is not well-typed,
T is still a finite number. f is the total number of fields with distinct starting and end
offsets in all structures/unions. S is the number of pointer assignments in a function

including interface assignments, and M is the number expressions that result in memory

accesses in a function.

39

First it is demonstrated that the number of access paths stemmed from a variable
is bound by O(f*T). Since a prefix access path can be casted into a structure type,
any prefix path can be widened by field tokens, but the length of each access path is
controlled by the number of types in the program and number of unique instances of
linked lists. Therefore the space complexity to store access paths in the intraprocedural
phase for a single function is O(V} f*T). The space complexity to store points-to relations
in the intraprocedural phase for a single function is therefore O(V7 f?7). The algorithm
in Figure 3.4 will terminate because the number of access paths, points-to relations, and
types are finite.

As for the time complexity, generating an access path for a C expression takes O(1)
steps, as [is a small and fixed number of dereference and field accesses associated with
each expression. Evaluating an access path to find its right-most forms using Definition 1
takes O(V}f*T) steps. Since the intraprocedural algorithm evaluates every memory ac-
cess and pointer assignment, the time complexity for each iteration is O((M + S)V} f*7T).

And since the algorithm is flow-insensitive, the time for analyzing each function can be

bound by O(S(M + S)V} f*T).

40

CHAPTER 4

INTERPROCEDURAL POINTER ANALYSIS

When the iterative intraprocedural pointer analysis finishes, pointers that are defined
by local assignments can be resolved. However, some information is still missing, in-
cluding the concrete values passed to formal parameters and global variables, and the
contents of pointers that are modified by pointer assignments in invoked functions. These
missing parts will be analyzed in the interprocedural stage.

The tasks performed in the interprocedural phase are carefully staged to reduce the
memory and analysis time requirements. First, a summary behavior for each function is
extracted. A summary behavior is a subset of function-level activities that can interact
with activities in other functions. For example, memory accesses to local variables whose
addresses are never taken need not to be analyzed in the interprocedural stage since the
scope of their lifetime is strictly limited within the function. The summary behavior
extraction is actually conducted at the end of the intraprocedural stage, but it is more
appropriate to be discussed in the context of interprocedural pointer analysis. Then, the
core of the interprocedural pointer analysis is entered, including three iterative phases
followed by two acyclic phases. Operations conducted in the iterative phases involve the
construction of the call graph, and the propagation of summary transfer functions and

concrete function-type parameter values along the call graph. Then operations conducted

41

in the acyclic phases are much simpler since the major job is to determine the aliases
among parameters. Details about the summary behavior extraction will be presented
first, followed by the explanation of individual phases in the interprocedural pointer

analysis stage.

4.1 Summary Behavior Extraction

A function in a C program often starts with a list of parameters, followed by a set of
local variable declarations, and a set of statements that perform computations. Among
these many computation activities, only the following types of information need to be

maintained in the interprocedural stage:

1. Caller-allocated locations. Memory locations that are allocated by the caller can
be accessed by the callee if their addresses are passed through formal parameters or
global variables. Identifying these locations is critical to guarantee the correctness
of load/store optimizations performed for the callee function body. If a certain
combination of concrete values passed from one calling context causes two accesses
to be aliases, unless function cloning is performed, the alias relation should be
respected by the optimizer for all calling contexts. Whether a C expression will
access the memory or not can be determined by the rules listed in Table 4.1.
Among many C expressions, only five forms of non-array type expressions can
access the memory: direct accesses through variable names, field accesses through

structure/union names/addresses, indirect accesses through pointers, and indirect

42

accesses through base addresses and indexes. However, a memory expression’s
parent expression may decide whether to bypass the memory access or not since
sometimes the memory content is of no interests to the computation. For example,
expression i access the content of variable i, but expression &i does not access the
memory since all it needs is the address of i, which is irrelevant with i’s content.
Similarly, expression (sizeof i) does not access the memory either since the result
of the expression is determined by its type. In fact, sometimes it is the grand parent
expression to determine the existence of memory accesses. For example, expression
((int) i) accesses the content of i, but &((int) i) does not, even though type
cast (int) is the immediate parent expression in both cases. It is because some
C operators only have syntax significance instead semantic significance, and only
semantic-significant parent operators determine whether the memory needs to be
accessed or not. In C, type casts and parentheses only have syntax significance,
so they are not considered as significant parents in determining memory accesses.
As shown in the top row of Table 4.1, parent operators like &, ., and sizeof do
not care about the content of the child expression, so the implied memory access is
not performed. On the other hand, semantic-significant parent operators like ->,
* [1, and other unary/binary operators need the content of the child expression
for computation or memory dereference, so the implied memory access in the child

expression is performed .

IThe () operator means that the child expression is the top-level expression.

43

Table 4.1 Rules of identifying expressions causing memory accesses.

Semantic-Significant Parent Operators

Content Irrelevant Content Relevant
&, ., sizeof 0, =>, *, [1, other unary/binary operators
var
Non- .
Array | -> NO YES
Type *
[1]

Before register allocation, each identified memory access will have a correspond-
ing load or store instruction in the low-level code, and whether such a memory
instruction accesses locations that are also accessible by the caller or not can be
easily determined by checking the right-most access paths found by the EVAL
function for the directly encoded access path: if path elements starting from for-
mal interface parameters or global variables are found in the evaluation result,
they are caller-allocated locations. Each such access path then will be annotated
with the MOD/REF attributes inherited from the C expression. These attributes
will be analyzed by the optimizer when memory instructions are scheduled across
jump-subroutine-call (jsr) instructions. More optimizations details will be given

in Chapter 5.

. Summary transfer function. Since expressions in the callee function may access
caller-allocated locations through pointer-type parameters or global variables, the

caller function needs to be aware of any new modifications made to these locations

44

by assignments in the immediate or descendant callees. A summary transfer func-
tion collectively represents the side-effects of these assignments, and in the context
of interprocedural pointer analysis, a summary transfer function is represented by

a set of points-to relations.

Assignments to caller-allocated pointers by local assignments in the callee will be
explicitly represented by points-to relations whose pointer and target paths both
originate from formal interface parameters or global variables. It is because the
EVAL function is defined to find the source variable of a chain of pointer defini-
tions and truthfully append a sequence of dereference and offset tokens after the
source variable. In addition, the invoked function may allocate heap objects for
the caller to use. Since these heap-objects may be of pointer types and may be
initialized by statements in the callee, they should also be considered as parts of
the summary transfer function of the callee. For these objects to be used by the
caller, their addresses must be assigned to formal parameters or global variables.
However, since formal parameters and global variables are assigned with heap-
objects’ addresses, these pointers are not uninitialized any more, meaning accesses
to these heap objects will not be normalized to right-most access paths stemming
from interface formal parameters and global variables. Later in this chapter the
procedures of how to identify callee-allocated heap objects and how to name those
will be explained. Once these heap objects are identified, their associated points-to

relations are also included in the summary transfer functions.

45

3. List of invoked functions. Points-to relations extracted by the above two aspects
only represent the side-effects of local statements but not the side-effects of further
invoked function calls. These single-level summary transfer functions will be prop-
agated along the call graph in later phases of the interprocedural pointer analysis
stage so that the targets of pointers initialized across multiple-level function calls
will be contained in the immediate callee functions’ summary transfer function.
To facilitate the call-graph construction algorithm which will be described later,
each function’s summary behavior includes a list of callee function names. In the
presence of indirect calls, the directly encoded access path of the indirect call-site
is temporarily considered as the callee name. If the FVAL result of an indirect call-
site path contains right-most access paths starting from formal interface parameters
or global variables, they are also kept in the summary behavior since they contain

information about how to resolve this function pointer across function boundaries.

4. Assignments involving uninitialized pointers. When the EVAL function is
invoked, intermediate pointers in the input access path are processed to identify
their targets. When an uninitialized pointer is reached, all remaining dereference
and offset tokens in the input path will be transferred and appended after the access
path denoting the uninitialized pointer. Therefore the temporary right-most access
paths from uninitialized pointers still contain enough information indicating how
many more levels of dereferences and offset adjustments to apply once the pointer

is resolved. In the interprocedural pointer analysis stage, uninitialized pointers

46

may be resolved through pointers passed down from callers or after applying the
transfer functions of the callees. So the problems involved here are two folds: how
to determine pointers that could be defined interprocedurally and how to re-run the
EVAL function to generate the up-to-date right-most access paths, and therefore

to generate the up-to-date points-to relations.

To address the first problem, an access path involves pointers that could potentially
receive new definitions in the interprocedural stage if the access path initiates from
a formal interface parameter or a global variable, or the path is accessible through a
depth-first-search (DFS) from an actual interface parameter or a global variable. To
address the second problem, any existing access path involving a prefix path which
qualifies as a pointer that could be potentially defined interprocedurally is processed
by the EVAL function again and the evaluation result will include all new right-most
access paths. These new right-most access paths will inherit the same MOD/REF
and type information from the input access path. Then if a points-to relation’s
pointer path or target path involves a prefix path which qualifies as a pointer that
could be potentially defined interprocedurally by the aforementioned rule, both the
pointer and target paths in the original points-to relation are evaluated. The cross-
product points-to relations added between the evaluation results of the pointer path

and the target path will accommodate all new points-to relations.

As an example, Figure 4.1 shows the summary behavior of functions listed in Fig-

ure 3.5. The MOD/REF sections exclude direct accesses to interface variables since they

47

fnl

main ## HOD.
ol f.l fnlx*
fn2 _1_1Tn
fn3
POINTS_TO:
g (f 1 _fnix, £ 2 fnix)
fn2%* _1_1fnl*, £ 2 1In
POINTS_TO: ;ngnS ##
(a_1_fnl_main_1, fn2) f-l coan 4 7
(a_2_fnil_main_1, fn3) _1_fn3x.4_
(a_3_fnl_main_1, fn4)
POINTS_TO:

(a_1_fn2*_main_2, stl)
(a_2_fn2*_main_2, st2)
(a_1_fn2*_main_3, st3)

(f_1_fn3%.4_7, f_2_£fn3%)

(a_Q_an*_main_3’ st3) ## fnd ##
MOD:
CALL_LIST: f_2_fndx.4_7
e s POINTS_TO:
fn2x, id = 2 _TO:
fn2x, id = 3 (f_2_fndx.4_7, f_1_fndx)

Figure 4.1 Example of function summary behavior.

are inserted only for analysis purpose and real code will not be generated for them. Simi-
larly, direct accesses to local variables whose addresses are never passed to other functions
need not be included in the summary behavior either. Some points-to relations shown
in Figure 3.6 are not included in the summary behavior if the pointer path represents
a local variable or a formal parameter which cannot be accessed interprocedurally. For
example, points-to relation (temp, f_1_fnix) of function fn1 is not included in its sum-
mary behavior since temp’s address is not taken. However, points-to relation (f_1_fn1x*,
f_2_fn1x) is included since both the pointer and target paths represent caller-allocated

locations. It is only the summary behavior instead of the whole function body to be

48

maintained in the interprocedural stage. This greatly improves the memory requirement
of the algorithm, and it will be shown later how context-sensitivity for transfer functions

are maintained.

4.2 Algorithm of Interprocedural Pointer Analysis

The interprocedural stage of the proposed pointer analysis algorithm has three iter-
ative phases followed by two acyclic phases as shown in Figure 2.2b. The fundamental
tasks performed in these phases are similar to RCI [12], so the same major phase num-
bers are used. On the other hand, significant differences in operation details also exist,

so minor annotations are added to the major phase numbers.

4.2.1 Phase 0: call graph construction

Starting from the callee list in the summary behavior of function main, the call graph
can be iteratively constructed performing a DFS. If the program has no indirect function
calls, the complete call graph can be constructed in the first invocation of phase 0 anal-
ysis. Otherwise, as opposed to approaches which over-estimate the call graph based on
function signatures, functions invoked through indirect call-sites are temporarily excluded
from the call graph. Through studies over larger programs like the SPEC benchmarks,
many indirectly invoked functions share the same function signatures but are called from
different call-sites, therefore the estimated call graph will be too large which both affects

the accuracy and lengthens the analysis time of the interprocedural stage.

49

In the proposed mechanism, each unresolved indirect call-site is represented by the
encoded access path of the indirect call expression. Through the points-to relations
discovered from the side-effects of callees or from the concrete function names passed
via formal parameters, an indirect call-site can be resolved by evaluating the temporary
right-most access paths of the corresponding call-site. For example, statement S2 in Fig-
ure 2.3 is an indirect call-site. Since function pointer £n2 is initialized through function
calls, analysis conducted in the intraprocedural stage cannot resolve it. Therefore, in
the summary behavior of main, the call-site is temporarily represented as fn2*, which is
the corresponding access path of C expression *fn2. After points-relation (fn2, fn3)
is propagated to main, which will happen in phase I”, evaluating access path fn2* in
the phase 0 analysis of the next iteration will reveal fn3 as the callee, since EVAL(fn2x,
{(fn2, £fn3), ...}) = {fn3}. Although not shown in this simple example, an indirect
call-site may be resolved to have multiple possible callees. Since the proposed interpro-
cedural pointer analysis algorithm is flow-insensitive in terms of the side-effects of local
assignments and the transfer functions of callees, and is context-insensitive in terms of
parameter aliases, these multiple callees will not be further differentiated.

The constructed call graph, which could be incomplete in the middle of the iterative
process, is partitioned into strongly connected components and viewed as a directed
acyclic graph (SCC-DAG) [24]. That is, the SCC node containing function main is
considered as the root of the SCC-DAG, and functions in a recursive chain are grouped
as a single SCC node. Then these SCCs are sorted by a bottom-up and a top-down

topological order with respect to the root node, the summary behavior of function main.

50

As will be explained in the next two phases, abiding by these orders can shorten the

number of iterations of the analysis.

4.2.2 Phase I”: propagation of summary functions and callee-
allocated heap objects

The problems to be dealt with in the phase I" analysis include what to propagate,
where to propagate, and when to propagate. As briefly mentioned before, caller-allocated
locations and newly allocated heap objects need to be propagated. The propagation is
simply conducted by replacing the formal parameter variable in an access path with
corresponding actual parameters in the calling contexts, resulting a context-sensitive
representation of summary transfer functions. And the propagation is conducted follow-
ing a bottom-up topological order of the SCC-DAG since the caller’s transfer function
should include summary transfer functions of all invoked callees, including callees invoked
through more than one level of function calls. Given h as the maximum height of the
SCC-DAG, propagating summary transfer functions in a top-down order may require h
iterations of the analysis, while only one iteration is required in a bottom-up order. After
a function receives propagated points-to relations from the summary transfer functions
of all callees, existing points-to relations involving unknown variables are evaluated to
augment the summary behavior with new right-most access paths and points-to relations.
Then the information contained in the summary behavior is ready to be propagated to

further callers.

51

Let (ra, sf3) be a points-to relation in function fn’s summary behavior where r, s are
formal interface parameters or global variables, and «, 3 are two suffix access paths. If s3
is not symbolically represented as rax, meaning that r« is not an uninitialized pointer,
this points-to relation obviously should be considered as part of the summary transfer
function of fn since it reflects a pointer assignment which can affect a caller-accessible
pointer. Since a pointer field in a structure object may point to another field in the same

structure object, r and s may be the same variable.

Definition 5 (Propagation of points-to relations) Let (ra, sg3) be a points-to rela-
tion in function fn’s summary transfer function where r, s are formal interface parameters
or global variables, and o, 3 are two suffix access paths. The propagated points-to relations
of (ra, sB) to caller fm are: {(§, 6) | 36 € EVAL(a«, Sprr(fm)) and 30 € EVAL(bS,
Sprr(fm))} where a = rif r is a global variable. Otherwise a is the corresponding actual

parameter in fm. The same relation holds between b and s.

As shown in Definition 5, the first step of propagating such a points-to relation from the
callee to the caller is to identify what locations are denoted by the pointer access path
and the target access path in the caller, respectively. Access path ra simply states that
from variable r, the final memory location is accessed via a sequence of dereference and
offset adjustment operations denoted by a. Since the dereference and offset adjustment
operations are context-independent, they are applicable to all calling contexts. As long as
the formal parameter in the access path is replaced by the corresponding actual parameter

and the transformed access path is evaluated in the caller’s context of points-to relations,

92

the denoted locations by the access path can be discovered in a context-sensitive manner.
If the caller passes the address of a local variable to the callee, the local variable’s name
will appear as a right-most access path in the evaluation result. If the caller passes a
pointer value received from formal parameters or global variables further down to the
callee, the evaluation result will convey the dereference and offset tokens to the source
formal parameters or global variables, meaning the caller’s summary transfer function is
augmented to accommodate the callee’s summary transfer function and will be reported
to grand callers. Since the formal parameters of the caller are still considered uninitialized
in the interprocedural stage, the augmented transfer function is still context-independent.

For example, to propagate points-to relation (f_1_fni1*, £_2_fn1*) from fnl to main
in Figure 2.3, £_1_fn1 is first replaced by a_1_fnl_main_1. Then the evaluation re-
sult of EVAL(a_1_fnl_main_1*, Sprr(main)) = {fn2} can be found, since points-to
relation (a_1_fnil_main_1, fn2) is added for function main due to interface statement
i1l. Similarly, £_2_fn1 is replaced with a_2_fnl_main_1 and the evaluation result of
EVAL(a_2_fn1_main_1%*, Sprg(main)) = {fn3} can be obtained, since points-to rela-
tion (a_2_fnl_main_1, fn3) is added for function main due to interface statement i2.
So the points-to relation propagated to main from fn1 is (fn2, fn3).

The next interesting question is how dynamically allocated objects are handled by ac-
cess paths and their existences are propagated across function boundaries. Instead of gen-
erating pseudo variable names using synthesized call-site paths, heap objects are named
by access paths which are differentiated by interface variables and suffix dereference and

offset tokens. If the heap objects are allocated through calling malloc directly via local

93

fn50) my_malloc(int **ql, int **q2, int **q3)
{ {

int *pl, *p2, *p3; i4: qi

ib: g2

f_1_my_malloc;
f_2_my_malloc;
il: a_1l_my_malloc_fn5_1 = &pil; i6: g3 = f_3_my_malloc;
i2: a_2_my_malloc_fnb_1 &p2; i7: *ql = i_malloc_my_malloc_1;
i3: a_3_my_malloc_fnb5_1 = &p3; i8: *q2 = i_malloc_my_malloc_2;

S1: my_malloc(&pl, &p2, &p3); S5: *ql = (int *) malloc(sizeof(int));
S2: xpl = 1; S6: *q2 = (int *) malloc(sizeof (int));
S3: *p2 = 2; S7: *q3 = *q2;
S4: xp3 = 3; T
}
(a)
fnd ## ## my_malloc
MOD: MOD:
plx f_1_my_mallocx
p2* f_2_my_mallocx
p3* f_3_my_mallocx
REF: REF:
pl f_2_my_mallocx*
P2
p3 POINTS_TO:
(f_1_my_malloc*, i_malloc_my_malloc_1%)
POINTS_TO: (f_2_my_malloc*, i_malloc_my_malloc_2x%)
(a_1_my_malloc_fn5_1, p1) (f_3_my_malloc*, i_malloc_my_malloc_2%)
(a_2_my_malloc_fn5_1, p2)
(a_3_my_malloc_fn5_1, p3) CALL_LIST:
(p1, pil*) malloc, id =1
(p2, p2%*) malloc, id = 2
(p3, p3*)
CALL_LIST:
my_malloc, id =1
(b)
(p2, H) or (p2, p3*)
(p3, H) (p3, p2%)

(c)

Figure 4.2 Handling heap objects: (a) code example, (b) function summary behavior,
(c) representing dependence among accesses to heap objects.

54

statements, these objects are named in the form of i_malloc_foo_n*, assuming foo is
the name of the function containing these calls to malloc. Since n is a unique number as-
signed to each call-site, multiple heap objects allocated in the same function via different
call-sites can be effectively distinguished. If the heap objects are allocated through call-
ing wrapping functions, these objects are aggressively distinguished by different access
paths extended from different variables or different suffix access paths appended after
the same variable. That is, all heap objects allocated through calling wrapping functions
are assumed to be independent unless they are proven to be dependent.

Consider the example shown in Figure 4.2. In function fn5, there are three integer
pointers pl, p2, and p3, and through calling my_malloc, two instances of heap-based
integer objects are allocated. In function my_malloc’s summary behavior, these two
objects are uniquely named as i_malloc_my_malloc_1% and i_malloc_my_malloc_2%,
respectively. Before propagating these heap objects from my_malloc to fn5, p1, p2,
and p3 are assumed to point to disjoint locations as denoted by pl*, p2*, and p3*
in Figure 4.2b. However, in this example p2 and p3 point to the same location, and
disregarding this fact may cause WAW hazards for statements S3 and S4. There are
two options to represent the dependence as either creating an explicit right-most access
path like H, a special form of artificial variables for heap objects, in Figure 4.2c, or
adding at least one of the two points-to relations from p2 to p3* or from p3 to p2x*.
The advantage of the latter option is that it requires no special representation for heap
objects, therefore it is chosen in this dissertation and the algorithm used to detect the

dependence is presented in Figure 4.3.

95

Determine_Extended_Access_Path(fn)

{

1: Sgap(fn) = 0;

2: FOR (each access path « found in fn’s summary behavior) {

3: Sgap(fn) = Sgap(fn) U {a} if « initiates from an interface variable
or global variable;

4: EAP(a) = o;

5.}

6: DO {

7: Let 7 be the first element in Sg4p(fn) and remove v from Sgap(fn);

8: IF (3 B such that (v, 8) € Sprr(fn) and EAP(f) is not defined) {

9: EAP(B) = EAP(y)*;

10: } Spap(fn) = Spap(fn) U {B};

11:

12: IF (3 B.so-eo and EAP(8.s0_e0) is not defined) {

13: EAP(f.s0_e0) = EAP(f).s0_eo;

14: } Sgap(fn) = Sgap(fn) U {B.so-eo};

15:

Figure 4.3 Algorithm of constructing extended access paths.

The basic idea behind the algorithm is that if a callee function allocates a heap object
for the caller to use, the object must be reachable by conducting a DFS following the
points-to relations initiated from formal interface parameters and global variables. An
ertended access path, or EAP, can be considered as a reverse-engineered access path
obtained from DFS and indicates a potential way for the object to be accessed from a
parameter or a global variable. Set Sgp is the working list containing access paths whose
EAPs have been determined, where lines 2 to 4 fill Sg4p with access paths starting from

interface variables and global variables. The EAPs of these access paths are simply the

o6

access paths’ name. For example, the EAP of path f_1_my_malloc* is f_1_my_malloc*
itself.

Lines 6 through 16 process elements in the working list and determine the EAPs based
on the relative access paths. Given a points-to relation (v,), lines 8 to 11 determine
the EAP of 8 by appending a ”#*” after the the EAP of y. The reason is obvious since
the location denoted by (3 can be reached from the location denoted by v through one
level of dereference. Due to the nature of aliases, an access path may have multiple
ways to be accessed, therefore an access path may have more than one potential EAP.
The proposed algorithm defines that the first EAP found for an access path is chosen as
the persistent name to be viewed by the caller. For example, i_malloc_my_malloc_1%
has a unique EAP as f_1_my_mallloc**, but i_malloc_my_malloc_2* may be assigned
as f_2_my_mallloc** or f_3_my_mallloc**, depending on whether the DFS is per-
formed from f_2_my_mallloc or f_3_my_mallloc first. In the particular case where
the DFS is performed from f_2_my_mallloc before from f_3_my_mallloc, the EAP
of i_malloc_my_malloc_2% is f_2_my_mallloc**. After the EAPs of aggregates are
determined, lines 12 to 15 determine the EAPs of enclosed fields.

In fact, the constituent points-to relations in the summary transfer function can be
identified solely by EAPs. If an access path’s EAP is not defined, it means that the
denoted location is not accessible by the caller, therefore points-to relations with EAP-
less access paths are not considered as part of the transfer function. If the pointer path

in a points-to relation is EAP-less, the target path is definitely EAP-less since it will

o7

never be put into the working list. The revised version of Definition 5, which propagates

transfer functions and detects dependence among accesses to heap objects, is given below.

Definition 6 (Propagation of summary transfer functions using EAPs) Let (v,
A) be a points-to relation in fn. It is part of fn’s transfer function if EAP(y) # 0.
Assuming EAP(y) = ra and EAP()\) = sf3, r and s must be formal interface interface
parameters or global variables. The propagated points-to relations of (v, A) to caller
fm are: {(0, 0) | 30 € EVAL(ac, Sprr(fm)) and 30 € EVAL(®S, Sprr(fm))}. The

conditions are identical to those in Definition 5. {

With EAPs and Definition 6, the points-to relation from path f_3_my_malloc* to
path i_malloc_my_malloc_2x* is included in my_malloc’s transfer function. The transfer
function is represented as (f_3_my_malloc*, f_2_my_malloc*x*). After propagating that
from my_malloc to £fn5, the points-to relation from p3 to p2* will be added. Otherwise if
the DFS is performed for g3 before q2, points-to relation (p2, p3*) will be added. It does
not matter which one is actually added, as long as EVAL(p2*, Sprzr(fn5)) N EVAL(p3*,
Sprr(fn5)) # 0 is true since it asserts the dependence of two memory accesses, which
will in turn assert the correct execution order of statements S2, S3, and S4.

In addition to summary transfer functions, the summarized MOD/REF memory ac-
cesses are also propagated to caller functions. The purpose is to augment the caller’s
summary behavior so that it also summarizes the footprints of memory accesses of all

invoked single level or multi-level callees. The pseudo code of how to propagate the

o8

MOD/REF access paths is omitted here since it is also based on EAPs and the transla-

tion rules shown in Definition 6.

4.2.3 Phase II’: propagation of function names

In a C function, a function pointer may receive values through local assignments,
callees’ side-effects, or through values passed via formal parameters. For the first case, it
is resolved in the intraprocedural pointer analysis stage; for the second case, it is resolved
in the phase I” analysis of the interprocedural stage when the summary transfer functions
of the callees are propagated. The analysis conducted in phase IT’ of the interprocedural
stage is to resolve function pointers initialized by the third case. If a function pointer
is resolved in the intraprocedural stage, a native function name should appear as a
right-most access path of the directly encoded access path of the call-site. If a function
pointer is resolved by accommodating the side-effects of the callees, re-evaluating the
access path of the indirect call-site will find the propagated function name. If a function
pointer is resolved through formal parameters, a right-most access path associated with
the call-site access path and initiated from a formal interface variable should be found
in the REF section of the callee function. To search for the potential function names
passed down from callers, the right-most access path is first transformed with the actual-
formal parameter replacement then evaluated in the caller’s scope. If the evaluation
result contains concrete function names, meaning the function pointer is resolved, they
are propagated down to the callee’s summary behavior. If parameter-based access paths

instead of concrete function names are found, the REF section of the caller function’s

99

summary behavior will be augmented and it will be the caller’s responsibility to search
for concrete function names from further callers, even though the indirect call-site is not
contained in the caller function.

Figure 4.4a shows an example where the indirect call-site in function £8 uses the value
passed through a parameter which is initialized in function £6. The function body of foo
is omitted here since it is irrelevant. The summary behavior of each function is shown in
Figure 4.4b. Access path £_1_fn8+* shown in square braces is a right-most access path
associated with the call-site path fn2#* in fn8’s summary behavior, and the right-most
access path is found by conducting EVAL(fn2*, {(fn2, f_1_fn8x)}).

Figure 4.4c shows the propagated access paths and points-to relations for each func-
tion after invoking the phase I” analysis for the first time. Function £6’s summary
behavior indicates that the dereferenced location from the first formal parameter is
modified, so the MOD section of main is added with path fn, which is the result of
EVAL(a_1_fn6_main*, {(a_1_fn6_main, fn)}). Similarly, points-to relation (fn, foo) is
propagated into function main from £6. Now fn* is not a right-most access path since fn
has outgoing points-to relations. After re-evaluating points-to relation (a_1_fn7_main,
fnx), a new points-to relation (a_1_fn7_main, foo) is also added. Along with the other
SCC chain in the call graph, path £f_1_fn7%* is propagated to the REF section of fn7
from fn8, and in turn it is propagated to the REF section of main as fn*. Since the
MOD/REF sections in a summary behavior are augmented to include caller-allocated lo-
cations accessed not only by local expressions but also by invoked callees, the top-down

propagation of concrete function names are conducted in a lazy manner: each function

60

main() fn6é ((x*fnp) ()) fn7((xfn) O)) fn8((*fn) ()

{ { { {
void (*fn) (); S3: *fnp = foo; S4: fn8(fn); S5: (xfn) ();
S1: fn6(&fn); } } }
S2: fn7(fn);
}
(a)
main ## ## fn6 ## ## fn7
REF: MOD: POINTS_TO:
fn f_1_£fnb6* (a_1_fn8_fn7, f_1_fn7x*)

POINTS_TO:

(a_1_fn6_main, fn)

POINTS_TO:
(f_1_fn6*, foo)

(a_1_fn7_main, fnx*)

CALL_LIST:
fn6, id=1
fn7, id=2

main
MOD:
fn

REF:
fn

POINTS_TO:
(fn, foo)

##t fn7 #it
REF:
f_1_fn7*

(a_1_fn7_main, fn)

(c)

CALL_LIST:
fn8, id=1

fn8
REF:
f_1_fn8+*

CALL_LIST:
fn2*, id=1 [f_1_fn8%]

fn7

POINTS_TO:
(f_1_fn7, foo)
(a_1_fn8_fn7, foo)

fn8

POINTS_TO:
(f_1_fn8, foo)

(d)

Figure 4.4 Pass function names across functions: (a) code example, (b) summary
behavior, (c) information obtained after the first invocation of phase I”, (d) information
obtained after the first invocation of phase IT’.

61

only requests concrete function names for access paths found in the REF section from
immediate callers, and each function never communicates with functions other than im-

mediate callers or callees.

Definition 7 (Concrete value retrieval) Let ra be an access path in function fn’s
REF section and rax is also found in function fn’s MOD or REF sections, where r is
a formal interface parameter or a global variable, and « is a suffix access path. The
targets pointed by concrete values passed via ra from caller fm are: {0 | 360 € EVAL(ac,
Sprr(fm)) and 3 (0, 8) € Sprr(fm)} where a = rif ris a global variable. Otherwise a

is the corresponding actual parameter in fm.

Definition 7 shows how to retrieve concrete values from callers. Since a structure may
contain multiple scalar fields, where some fields may be pointers to other structures,
a single structure-pointer parameter may convey multiple concrete values to the callee.
So the actual-formal parameters binding is performed not only for simple variables, but
also for access paths starting from formal interface parameters and global variables.
Since there are many fields that can but are not used to convey values from a partic-
ular caller to a particular callee, concrete values are retrieved lazily: only dereferenced
pointers found in the immediate or deeper callees are bound. So in this example, func-
tion fn7 searches its MOD/REF sections and finds path f_1_fn7#*, which stands for
an indirect access through a function pointer. According to Definition 7, the corre-
sponding access path of £_1_fn7# in function main is a_1_fn7_main*. The result of

EVEL(a_1_fn7_main*, {Sprr(main)}) is {foo}, so a new points-to relation is propa-

62

gated down to £7 as (f_1_£fn7, foo), shown in Figure 4.4d. Now f_1_£fnT7* is not a right-
most access path, and after re-evaluating points-to relation (a_1_fn8_fn7, £_1_fn7%*), a
new points-to relation, (a_1_fn8_fn7, foo), can be added. When function fn8 requests
the content of the function-pointer parameter £f_1_fn8, the concrete function name foo

can be discovered and the indirect call-site in £8 can be resolved.

4.2.4 Phase IT”: propagation of all concrete values

*

Phase II” analysis is conducted after the fixed point of phases (0-I"-II")* is reached.
At this moment the complete call graph should have been constructed. Then along a
top-down topological order of the SCC traversal, access paths representing deferences of
formal parameters and global variables in the MOD/REF sections are bound with their
concrete values passed from the callers. Unlike the phase II’ analysis which only retrieve

function-type concrete values, all types of concrete values are retrieved in this phase, and

the retrieval is also conducted lazily for dereferenced pointers only.

4.2.5 Phase III: identification of parameter aliases

Among many concrete values passed down from callers, only a small portion of them
are necessary. For example, passing the address of a local variable as an actual parameter
is insignificant unless the same address is passed through two different caller-accessible
pointers, and both pointers are dereferenced by the callee. So in the phase III analysis,
if the evaluation result of an access path found in the MOD/REF sections never has

common right-most access paths with the evaluation results of other access paths, its

63

Interprocedural Pointer_Analysis(prog)

— = © 00 =
o © PR

12:
13:

14

15:
16:

17:
18:
19:

DO {

Resolve function pointers for each indirect call-site;
Use DFS to compose SCC-DAG for reachable functions € prog;
FOR (each SCC € prog in bottom-up order) {
Determine EAPs for access paths of each function € the SCC;
Iteratively propagate points-to relations within the SCC if the SCC
has more than one function;
Reanalyze EAPs for each function if new points-to relations are received;
Propagate the summary transfer function of the SCC to its caller SCCs;
}
FOR (each SCC € prog in top-down order) {
Iteratively propagate function names within the SCC if the SCC has
more than one function;
Propagate function names from the SCC to its callee SCCs;

}

: } WHILE (call graph is changed in the previous iteration)
FOR (each SCC € prog in top-down order) {

Iteratively propagate concrete values within the SCC if the SCC has
more than one function;
Retrieve concrete values from caller SCCs;

Determine aliases among parameters;

Figure 4.5 Pseudo code of the interprocedural pointer analysis stage.

bound values are excluded from the summary behavior since the memory access is always

independent with other parameter dereferences across all calling contexts. The trimmed

summary behavior will be merged into each function to guide code optimizations, where

details of the merge process will be covered in Chapter 5. The pseudo code listed in

Figure 4.5 summarizes various phases of analyses conducted in the interprocedural stage.

64

4.3 Issues about Library Functions

A lot of commonly invoked library functions have side-effects that can be used as
alternative ways to initialize pointers. For example, given two pointers p and q, a library
call in the form of memcpy (&p, &q, 4) achieves the same effect as the pointer assignment
p = q- To accommodate their side-effects appropriately in the interprocedural pointer
analysis stage, each library function with side-effects are written with template state-
ments. Although these template statements cannot replace the original functionality of
library calls, but the equivalent summary behavior can be derived by analyzing these
template statements using the algorithm shown in Figure 3.4. For example, the template

version of memcpy is written as:

memcpy (void *p, *q, int n)
{
*((char **) p) = *x((char **) q);

By analyzing the template statement, the summary transfer function of memcpy will
include points-to relation (f_1_mem#, f_2_memx*), which will be processed in the inter-
procedural stage to expose the effect of the hidden pointer assignment in memcpy.

Currently there are 186 library functions modeled by template statements in the
IMPACT compiler. They cover all the library functions invoked by SPECcint92 and
SPECcint95, MediaBench [47], and many Unix utility benchmarks. For library functions
without pointer assignments, as long as they indirectly access locations via formal param-

eters, they are also represented by template expressions to obtain their memory access

65

footprints that will be referenced by optimization routines to be discussed in Chapter 5.
For example, the template version of function atoi, which converts a string into an

integer, is:

atoi(const char *str)
{

char i;

i = str[0];

Because of the pseudo expression that uses str[0], access path £_1_atoix will be
posted in the REF section of atoi’s summary behavior. So when a code region contain-
ing a call to atoi is optimized, a later store to the dereferenced location of the actual
parameter passed to atoi will not be scheduled before the function call to avoid the

WAR hazard.

4.4 Complexity Analysis

In this section the complexity of the interprocedural stage algorithm is examined.
In addition to the set of intraprocedural parameters introduced in Section 3.4, more
parameters are needed to bound the interprocedural complexity. F' is the number of
user and library functions contained in the program. FE is the number of call sites in
the program. The space complexity to store all summary behavior of invoked functions
simultaneously in the memory is O(F' sz f?*T) where in the proposed algorithm no more

than two need to be memory-resident simultaneously. For time complexity, transferring

66

an access paths along the call graph is bound by O(V}f*T), and performing a DFS to
partition the call graph into SCC-DAG takes O(F + F) steps, where E may be different
from iteration to iteration when indirect function pointers are resolved. In the worst case,
E can be bound by O(F?). Performing a DFS to determine EAPs takes O (V7 f**T) steps.
Resolving an indirect call site also takes the time of O(Vfl f*T)| so assuming there are i
indirect call-sites in the program and the height of the call graph is h, the complexity of
the interprocedural algorithm can be bound as O(h((E+%) V] f*7 + (V2 f**T) +(F + E))).

The worst-case complexity occurs when all pointers, including pointer variables and
fields, are casted so that they can point to all possible data types. Empirical results

indicate that the worst-case complexity is not observed for the studied benchmarks.

67

CHAPTER 5

CODE OPTIMIZATION USING MEMORY
DISAMBIGUATION INFORMATION

In this chapter, the IMPACT compiler optimization framework for memory instruc-
tions is presented. The memory disambiguation results generated by the proposed mod-
ular interprocedural pointer analysis are used to guide three aggressive compile-time
memory access optimizations: scheduling, redundant load/store elimination, and loop-
wmvariant access migration. The potential of these optimizations has been studied by
earlier researchers [30, 48|, but advanced static memory disambiguation was not avail-
able, causing a significant number of indirect memory accesses not optimized.

In the IMPACT compiler, interprocedural pointer analysis is conducted in the fron-
tend, the Pcode level as shown in Figure 5.1. The proposed analysis conducted in the
function-level phase is implemented in the main Pcode module, where the analysis con-
ducted in the interprocedural phase is performed by a stand-alone module named PIP,
which stands for Pcode InterProcedural analysis. A complete round of interprocedural
pointer analysis involves the first invocation of Pcode module which analyzes each C
function and summarizes its behavior. Then the PIP module is invoked to propagate

the summary behavior along the call graph. Finally, the Pcode module is invoked for the

68

C source
Y Pcode/PI P/Pcode
Pcode Pir;/line
" PcoddID\iP/Pcode
Hcode
Y
Lcode Lopt
SM
Y
Emulation/Simulation

Figure 5.1 Relevant IMPACT modules for static memory disambiguation.

second time to merge the interprocedural analysis results regarding aliases among formal
parameters and function side-effects back to each function.

In the overall compilation course of the IMPACT compiler, the Pcode/ PIP/Pcode-trio
are invoked before the middle-level IR, Hcode, is reached. Optionally, the trio can be
invoked before function inlining to take advantage of function pointers resolved to a small
number of callee functions [56]. Hcode is the old frontend IR in IMPACT and is in the
process of being phased out. Lcode is the low-level IR where classic and ILP optimiza-
tions are conducted. To convey the memory disambiguation information between the

high-level and low-level IRs, a binary relation called synchronization arcs or sync arcs

69

proposed in [49] are used. In the Lcode IR, load, store, and subroutine call (jsr) are the
three types of instructions than can access the memory. Each jsr is considered as a macro
memory instruction which is a collection of load/store instructions accommodating mem-
ory accesses not only contained in the immediate callee but also descendant callees. This
information is derivable since the interprocedural pointer analysis algorithm can build the
complete call graph, where the MOD/REF sections in the summary behavior of a func-
tion are fully propagated to callers in the phase I” analysis. With fully resolved pointers,
the compiler can classify the relation between two memory instruction as dependent, in-
dependent, or ambiguous. An ambiguous relation is often called as possibility dependent.
To schedule a later load above an earlier store, they need to be independent with each
other, and all intermediate store instructions also need to be independent. However, to
enable redundant load/store elimination and loop-invariant access migration, it requires
stronger relations as two memory instructions need to be dependent. The absence of sync
arcs between a pair of memory instructions indicates that they are independent, while
the presence of sync arcs between a pair of memory instructions indicates they are depen-
dent or ambiguous, requiring their executions to be synchronized by the semantic order.
Since the conducted interprocedural pointer analysis is comprehensive, meaning it can
handle all C constructs, it can safely assert that two memory instructions are indepen-
dent. However, since the pointer analysis is flow-insensitive, it can only produce possibly
dependent sync arcs. This is a trade-off between complexity and accuracy, since a flow-
and context-sensitive interprocedural pointer analysis algorithm has not been shown in

the literature to scale well to handle large programs. Through simple local analysis to be

70

shown later, many possible dependent sync arcs can be converted into definitely depen-
dent sync arcs, enabling memory traffic reduction optimizations. Load/store elimination
and loop-invariant access migration routines are implemented in the Lopti module, where
SM is the scheduling manager which can reference the sync arcs to determine whether it
is safe or not to percolate loads and stores above other memory instructions.

The remaining chapter is organized as follows. First, an example will be used to
point out the benefits provided by advanced static memory disambiguation. Secondly,
how sync arcs are annotated to the low-level IR from the interprocedural pointer analysis
conducted in the high-level IR will be presented. Finally, algorithms about how to gen-
erate definite sync arcs, and how to use sync arcs to guide memory access optimizations

will be proposed.

5.1 A Motivating Example

The example in Figure 5.2 is designed to illustrate the problem faced by an optimizing
compiler and how well the compiler can optimize the code when all uncertainties about
memory dependences are cleared. In the code segment shown in Figure 5.2a, there are
two global integer variables i and j, and one dynamically allocated instance of structure
S. An instance of S contains three pointers: two integer pointers pi and pj, and one
function pointer pf. Statements S1 through S4 in function foo initialize pi to point
to i, pj to point to j, and pf to point to function bar. The corresponding points-to

relations between pointer and target memory cells contained in this example are shown

71

typedef struct S { bar (s *q)

int *pi; {
int *pj; S5: return *xq->pi;
int (xpf) (); h
}S;
main()
int i, j; {
S *p;
foo(s *xpp)
{ S6: foo(&p);
S1: *pp = malloc(sizeof(S)); S7: while (i < 10) {
S2: (xpp)->pi = &i; S8: i = (xp->pf) (p) + 1;
S3: (*pp)->pj = &j; S9: *p->pj = *p=>pj + 23
S4: (xpp)->pf = bar; S10: }
} }
(a)
- Stack: Heap: Global:
foo pp| * i
i
N
_ pi Code:
main D pj
.pf | bar
==
bar g
(b)

Figure 5.2 Code example: (a) source program, (b) points-to relations for pointers
contained in the program.

72

in Figure 5.2b. Consider the body of the while-loop contained in function main, where
an unoptimized version of the code is shown on the left portion of Figure 5.3. With
limited memory disambiguation information acquired intraprocedurally, the compiler can
only eliminate a few redundant accesses to local variable p. Since the address of p
is passed as a parameter to foo, any function call in the loop should be considered
as containing potential killing stores to p. Therefore op29 cannot be eliminated even
though it is dependent with op20, leaving a lot of redundant memory accesses in the
loop as shown on the right portion of Figure 5.3. However, it is safe to schedule op29
above op28, since it is trivial for the compiler to determine that they access independent
locations and there are no intervening ambiguous memory instructions. But for all other
memory instructions, their relations are either ambiguous or there are ambiguous memory
instructions in between. As a result, the optimized loop body still contains six loads, two

stores, and one jsr.

5.2 Sync Arcs Generation

In this section, a systematic description of how to annotate the low-level memory
instructions with sync arcs is presented. The first step is to run intraprocedural pointer
analysis for each function, where Figure 5.4 shows the summary behavior of each function.
Then after interprocedural pointer analysis, the indirect call-site in function main can be
resolved, since propagating points-to relation (f_1_foo**.8_11, bar) from foo to main

results in (p*.8_11, bar). Also, propagating the summary transfer function of foo to

73

cbh3: cbh3:
0p20: Id_i rl0,SP(-4) p 0p20: Id_i PO, SP(-4) ;p
op21: mov PO, rl0 op23: Id_i r12, PO(8) ;p->pf
—_— -
op22: Id_i rl1, SP(-4 ; op24: jsr rl2
P - 4) P SP(-4) is constant P ! .
op23: Id_i rl2,r11(8) ;p->pf op29: Id_i r15, SP(-4) P
. r15(4) = r19(4)
op24: jsr rl2 R . op27: add rl14, P15,1
pand _i areindependent S .
op25: mov rl3, P15 i . op28: st_i _i(0), r14 i
ambiguous everything else _ .
op26: mov rl,rl13 op30: Id_i rl16, r15(4) P->pi
op27: add rl14,r1, 1 op31: Id_i rl7,r16(0) *p->pj
op28: st_i _i(0), r14 i op32: add r18,rl7,2
op29: Id_i r15,SP(-4) p op35: st_i r16(0), r18 *p->pj
op30: Id_i rl6, r15(4) P->pj op36: Id_i r21, _i(0) i
op31: Id_i rl7,r16(0) *p->pj op37: blt r21, 10, cb3
op32: add r18,rl7,2
op33: Id_i r19, SP(-4) P
op34: Id_i r20, r19(4) P->pj
op35: st_i r20(0), r18 *p->pj
op36: Id_i r21,_i(0) i
op37: blt r21, 10, chb3

Figure 5.3 Moderately optimized code due to the lack of memory disambiguation
information.

main can resolve pointers p, p—>pi, and p—>pj. The complete summary behavior after
interprocedural pointer analysis for function main is shown in Figure 5.5. Since functions
foo and bar are leaf functions in the call graph, and there are no parameter aliases to
maintain, their summary behaviors remain the same as the intraprocedural summary.
To determine the dependence among low-level memory instructions, intraprocedural
pointer analysis shown in Figure 3.4 is conducted again when each function is being trans-
lated from high-level IR to low-level IR. But instead of extracting information to form
the summary behavior for each function, the augmented summary behavior produced by
interprocedural pointer analysis of the function itself and callee functions is merged back.

Merging the interprocedural summary behavior of the function being compiled resolves

74

main ## ## foo #it

MOD: MOD:
i f_1_foox*
p*x.4_7x f_1_foo**.0_3
f_1_foo**x.4_7
REF: f_1_foo*x.8_11
p
px.4_7 REF:
pXx.4_Tx* f_1_foox
p*.8_11
p*x.8_11x% POINTS_TO:
(f_1_foox, i_malloc_foo_1%)
POINTS_TO: (f_1_foox*x,0_3, 1)
(a_1_foo_main_1, p) (f_1_foox*x.4_7, j)
(a_1_p*.8_11%_main_1, px*) (f_1_foox*.8_11, bar)
CALL_LIST: ## bar ##
foo, id = 1 REF:
px.8_11%, id = 2 f_1_bar*.0_3

Figure 5.4 Summary behavior of code in Figure 5.2.

the aliases among formal parameters, pointers initialized by callees, and the potential
direct callees for each indirect call-site. Then merging the summary behavior of each
callee resolves the interaction between local loads/stores and jsr instructions. Although
the interprocedural summary behavior of the current function already includes the mem-
ory locations accessed by all callees due to the phase I” analysis of the interprocedural
stage, acquiring the memory footprint from each individual callee is necessary here, since

the MOD/REF information propagated from all callees in phase I” are accumulated to-

75

main ## POINTS_TO:

MOD: (a_1_foo_main_1, p)
i (a_1_p*.8_11%_main_1, p*)
px.4_Tx (px.0_3, i)
p*.0_3 (px.4_7, j)
p*.4_7 (px.8_11, bar)
p*.8_11
REF: CALL_LIST:
p foo, id =1
p*.4_7 p*.8_11%, id = 2 [bar]
p*x.4_7x
p*.8_11
p*.8_11%
p*.0_3
p*x.0_3%

Figure 5.5 Complete summary behavior of function main in Figure 5.2.

gether, where in the code-generation phase the memory footprint of each jsr instruction
needs to be separated.

Figure 5.6 lists the pseudo code that generates sync arcs between potentially depen-
dent memory and jsr instructions. Line 1 performs intraprocedural pointer analysis to
resolve pointers that are defined locally and setup the interface variables with callers
and callees. Line 2 merges points-to relations that are propagated down from callers and
propagated up from callees to the points-to set of fn, where Line 3 merges the list of
potential callees of each indirect call site c_exp. For example, function main receives
points-to relations for p*.0_3, px.4_7, and p*.8_11. In addition, the indirect call-site
also receives the name of bar as a potential callee. The next step is to determine the

memory locations that are accessed by a function call. As shown by lines 4 through 11,

76

Generate_Sync_Arcs(fn)

{

1: Intraprocedural Pointer_Analysis(fn);

2: Merge points-to relations from fn’s interprocedural summary behavior;
3: Merge resolved callee names for each indirect call-site;

4: FOR (each call-site c_exp) {

5: Swop(cezp) = 0;

6: Srer(cexp) = 0;

T FOR (each invoked callee fm of c_exp) {

8: Suop(c-exp) = Suon(c-exp) U EVAL(Suop(fm), Sprr(fn));
9: } Srer(cexp) = Sgrpr(c-exp) U EVAL(Srpr(fm), Sprr(fn));
10:

11: }

12: FOR (each expression m_exp found by rules in Table 4.1)
13: Suem(m_exp) = EVAL(AP(m_exp), Sprr(fn));

14: Ssync_arcs = 0
15: FOR (each m_expl) {

16: FOR (each m_exp2 reachable from m_expl)
17: IF (Syem(m_expl) N Syrear(m_exp2) # 0)
18: Ssync_arcs = Ssync_arcs U (m_expl, m_exp2, P);
19: FOR (each c_exp reachable from m_expl) {
20: IF ((m_expl is a load) and (Syream(m_expl) N Syop(cexp) # D))
21: Ssync_arcs = Ssync_arcs U (m_expl, c_exp, P);
22: IF ((m_expl is a store) and
(Suem(m_expl) N (Syop(c_exp) U Sper(c_exp)) # D))
23: Ssync_arcs = Ssync_arcs U (m_expl, c_exp, P);
24: }
25: }
26: FOR (each c_exp) {
27: FOR (each store m_exp reachable from c_exp)
28: IF (Syem(m_exp) N (Syop(cexp) U Srer(cexp)) # 0)
29: Ssync_arcs = Ssync_arcs U (c_exp, m_exp, P);
30: }
31: }

Figure 5.6 Pseudo code of sync arcs generation.

7

each call-site c_exp has a MOD set, Sy;op, and a REF set, Sggr, where the access paths
in each callee fm’s MOD/REF sections are translated and evaluated in the context of
fn’s points-to relations to find the corresponding right-most access paths. The evalua-
tion results are accumulated in each call-site’s MOD and REF sets. Then lines 12 and 13
apply the rules listed in Table 4.1 to identify expressions that cause memory accesses, and
their evaluation results are recorded in set Sy;gn. Then the sync arcs set Ssync_arcs
is generated by lines 14 through 31. Each pair of memory/memory and memory/jsr
instructions are checked by comparing their EVAL results. For memory/memory in-
structions, RAR, RAW, WAR, and WAW relations are respected by generating sync arc
(expl, exp2, P), which means that expression ezpl should be executed before exp2, and
P means the dependence relation is possible. In other words, the relation between the
memory locations accessed by expl and exp2 is ambiguous. For memory /jsr instructions,
only RAW, WAR, and WAW relations are respected, since redundant load instructions
are not eliminated across function boundaries. Sync arc (expl, exp2, P) generated in the
high-level IR will be represented as (opl, op2, P) in the low-level IR, where opl and op2
are the corresponding assembly instructions of expl and exp2, respectively.

Function main of Figure 5.3a is used as an example here to demonstrate how mem-
ory accesses are disambiguated. The merged points-to relations can be found in Fig-
ure 5.5. Expression *p->pf from statement S8 is an indirect function call, and it is
resolved to invoke function bar as shown in Figure 5.5. So the MOD/REF sections
of bar will be included to identify the memory locations accessed by call-site S8. In

this particular example, bar only reads data from two memory locations: gq->pi and

78

xq->pi, or £_1_bar.0_3 and f_1_barx.0_3* in terms of access paths using interface
variables. With points-to relations (a_1_p*.8_11*_main_2, p*) and (p*.0_3, i) found
in Sprr(main), their corresponding right-most access paths in main’s name space are
p*.0_3 and i, respectively, since EVAL(a_1_p*.8_11*_main_2*.0_3, Sprr(main)) re-
sults in {p*.0_3} and EVAL(a_1_p*.8_11%_main_2%.0_3*, Sprg(main)) results in {i}.
Both access paths will be included in set Sgrr(*¥p->pf) of the indirect call-site. As for
expressions causing memory accesses, if a memory expression appears as the top-level
LHS expression of an assignment, it will be translated into a store instruction in the
assembly code, while all other memory expressions are translated into loads in the as-
sembly code. Figure 5.7a shows the memory expressions of main classified by whether
they are translated into loads or stores. The associated right-most access paths of each
memory expression is shown in Figure 5.7b. With the EVAL results, the dependence
between pair-wise memory and jsr instructions can be determined. Although the under-
lying pointer analysis is flow-insensitive, the control-flow information can still be used to
determine whether or not the dependence information between a pair of memory instruc-
tions needs to be posted. For example, if two dependent memory instructions are on the
opposite paths of a branch and the branch is not in a loop, since these two instructions
cannot reach each other, their dependence can be ignored. In this example, in addition
to accesses from expressions with the same access paths are considered as potentially
dependent, the indirect jsr will be found as potentially dependent with the store to i.
As mentioned before, the RAR dependence between a jsr and a load instruction is not

posted, since redundant load elimination is not conducted across function boundaries,

79

LOAD: SYNC_ARCS:

S7: i (op 36) Suem(i) = {i} (op20, op22, P)
S8: p (op 20) Svem(p) = {p} (op22, op20, P)
S8: p (op 22) Suem(p->pf) = {p*.8_11} (op20, op29, P)
S8: p->pf (op 23) Suem(p >pJ)——{p* 4_7} (op29, op20, P)
S9: p (op 29) Suem(p->pi*) = {j} (op20, op33, P)
S9: p->pj (op 30) Syop(p->pf*) = {} (op33, op20, P)
S9: p->pj* (op 31) Sppp(p->pf*) = {p*.0_3, i} (op22, op29, P)
S9: p (op 33) (op29, op22, P)
S9: p->pj (op 34) (op22, op33, P)
(op33, op22, P)

STORE: (op29, op33, P)
S8: i (op 28) (op33, op29, P)
S9: p—>pj* (op 35) (op24, op28, P)
(op28, op24, P)

JSR: (op28, op36, P)
S8: *p->pf (op 24) (op36, op28, P)
(op30, op34, P)

(op34, op30, P)

(op31, op35, P)

(op35, op31, P)

(a) (b) (c)

Figure 5.7 Generating sync arcs for functon main: (a) loads/stores/jsrs in the function,
(b) accessed locations for each memory expression and function call, (¢) sync arcs.

RAR dependence is equivalent as independent for instruction scheduling. The generated
sync arcs for function main are listed in Figure 5.7c. Since these memory instructions

are in a loop, the generated sync arcs are all symmetric.

80

5.3 Optimizations Using Sync Arcs

After generating sync arcs based on the interprocedural pointer analysis results, the
compiler can perform very aggressive instruction-level optimizations to schedule instruc-
tions and to eliminate redundant memory accesses. In addition, the high-level code
optimizations can also benefit from fully resolved pointers as well. For example, if an
indirect call-site is resolved to invoke only one callee, the indirect call-site can be con-
verted into a direct callee to save the overhead involved with indirect function calls. If the
converted call-site is executed very often, the callee body can be inlined to completely re-
move the function call overhead and function barrier for code optimizations. This would
not be possible if function pointers are not resolved. If a function pointer is resolved to
have a small number of callees, the indirect call-site can be converted into a sequence of
direct calls guarded by comparisons of the function pointer contents. The benefit of such
transformation is to trade the indirect call overhead with branch penalties. If the pointer
is resolved to have multiple callees, no strictly beneficial transformations are available,
but the side-effects of the indirect call-site can be bound much more accurately since the
number of potentially reachable callees is reduced from all functions with same signatures
to a subset of functions whose names are propagated to the function pointers.

In this section, algorithms that use sync arcs to guide memory access optimizations
will be proposed. Three optimization techniques will be discussed in detail, including
load /store/jsr scheduling, redundant memory access elimination, and loop-invariant ac-

cess migration. The code example will be based on the inlined version of function main

81

Bool Load_Store_Jsr_Scheduling(fn, opl, op2)
{
1: IF (((Opl, op2, P‘D) € SSYNC_ARCS(fn)) and
((opl is not a load) or (op2 is not a load)))
RETURN false;
FOR (each intermediate instruction op3 between opl and op2) {
IF (op2 is register-dependent on op3)
RETURN false;
IF (op2 is a store or jsr and (op3, op2, P|D) € Ssync_arcs(fn))
RETURN false;
IF (op3 is a store or jsr and (op3, op2, P|D) € Ssync_arcs(fn))
: RETURN false;
0: }
1: RETURN true;

I e e I A ol

Figure 5.8 Algorithm that determines the safety of reordering load/store/jsr instruc-
tions.

from Figure 5.2, where the indirect call-site at S8 is replaced by the function body of

bar.

5.3.1 Instruction scheduling

In the IMPACT compiler, instruction scheduling is performed in the scope of a control
block, or cb. A control block may be a simple basic block, a superblock which is formed
by coalescing several basic blocks along a frequently executed path using the superblock
formation algorithm [50], or a hyperblock formed for predicated code [51]. A cb still has
a single entrance at the top, but may have multiple side exists. Control speculation is
allowed so that load instructions can percolate above earlier branch instructions in the

control block. The basic idea of instruction scheduling is to reorder the execution of two

82

instructions if the earlier one is stalled while the later one is free to go, or the earlier is not
on the critical path but the later one is. The precondition for scheduling is that the later
instruction is not dependent on all bypassed instructions. For instructions other than
loads, stores, and jsr, the inter-instruction dependence can be easily determined by the
register ids of source and destination operands. But for instructions that involve memory
accesses, dependence is not determined by register ids but by their contents. With
interprocedural pointer analysis performed in the high-level IR in IMPACT, dependence
caused by memory instructions are explicitly represented by sync arcs, and the algorithm
listed in Figure 5.8 uses sync arcs to determine whether it is safe to reorder a pair of
load /store/jsr instructions.

In this algorithm, lines 1 and 2 check if the later instruction, op2, is ambiguous with
(denoted by P in the sync arc) or dependent on (denoted by D in the sync arc) the earlier
instruction, opl. If a sync arc exists, unless both instructions are loads, they cannot
be reordered since either RAW, WAR, or WAW dependence will be violated. Lines 3
through 10 check if intermediate instructions prevent op2 from being executed earlier.
Lines 4 and 5 simply check if op2’s source operands are data-dependent on an arbitrary
intermediate instruction op3. For example, if op2 is a load instruction whose base register
is produced by op3, op2 cannot be scheduled above op3, effectively preventing op2 from
being scheduled above opl. If op2 is a store or jsr instruction, lines 6 and 7 check if any
intermediate instruction has a RAW or WAW dependence with op2. If op2 is a load, lines
8 and 9 bypass RAR hazards but respect WAR hazards. If all the checks are passed, op2

can be scheduled before opl.

83

Generate_Definite_Sync_Arcs(fn, opl, op2)

{
1. IF ((opl, op2, P) & Ssync_arcs(fn))
2: RETURN;
3: IF ((SRC_OP1(opl) == SRC_OP1(0p2) and
SRC _OP2(opl) == SRC_OP2(op2)) or
(SRC_OP1(opl) == SRC_OP2(0p2) and
SRC_OP2(opl) == SRC_OP1(0p2))) {

4: FOR (each intermediate instruction op3 between opl and op2) {
5: IF (DEST_OP(op3) == SRC_OP1(op3) or
DEST OP(op3) == SRC_OP2(op3))
6: RETURN;
T }
8: } Ssync_arcs(fn) = Ssync_arcs(fn) - {(opl, op2, P)} U {(opl, op2, D)};
9:
}

Figure 5.9 Converts possible sync arcs to definite sync arcs.

Unlike conventional schedulers which treat function calls as implicit scheduling barri-
ers, the proposed algorithm in Figure 5.8 allows instructions to percolate across function
calls in the same control block as long as the associated sync arcs do not post RAW,

WAW, or WAR hazards.

5.3.2 Redundant load/store elimination

While instruction scheduling mostly relies on the independent classification for mem-
ory instructions, eliminating a redundant load or store instruction requires a pair of
memory instructions with definite memory dependence. Since the underlying interproce-
dural pointer analysis algorithms produce may-alias and must-not-alias relations instead

of must-alias relations, additional analysis is required to resurrect the definite-alias re-

84

Bool Redundant_Load _Store_Elimination(fn, opl, op2)

{
1: IF ((opl does not dominate op2) or
((op1, 0p2, D) & Ssync_arcs(fn)))
RETURN false;
IF ((op2 is a store but opl is a load)
RETURN false;
FOR (each intermediate instruction op3 between opl and op2) {
IF (op3 is a store or jsr and (op3, op2, P|D) € Ssync_arcs(fn))
RETURN false;

}
RETURN true;

Figure 5.10 Algorithm of redundant load/store elimination.

lation. The proposed analysis is straightforward: if two memory instructions have the
same source registers and literal operands, and the source registers are not modified by
intermediate instructions, these two instructions are dependent. To increase the suc-
cessful rate of pattern matching, copy propagation is aggressively conducted for register
operands. The algorithm to generate definite sync arcs is listed in Figure 5.9. In the
Lcode IR of IMPACT, the addressing mode of a load or store could be register/register
or register/literal, where SRC_O Pn(op) means the nth source operand of instruction op,
and DEST _OP(op) means the destination operand of op.

With definite sync arcs, Figure 5.10 lists the pseudo code which eliminates redundant
load /store instructions in the same control block. The predicate function returns true if
it is safe to eliminate op2 and use the destination operand of opl if it is a load or the

third source operand of opl if it is a store. The preconditions are that opl dominates

85

op2, and opl and op2 are definitely dependent. If the control block is a hyperblock,
meaning instructions may be guarded by predicates, opl may not dominate op2 unless
opl’s predicates are a superset of op2’s predicates. Otherwise if the control block is a
basic block or superblock, instructions with the earlier order in the code layout dominate
later instructions. Lines 3 and 4 check the applicability of store/store elimination, since
an earlier load cannot eliminate a later store. Then unless an intermediate store or jsr is
not independent with op2, which is checked by lines 5 through 8, it is safe to eliminate

op2.

5.3.3 Loop-invariant access migration

Loop-invariant access migration is a technique that promotes a loop-invariant location
into a register so that the dynamic count of memory instructions can be reduced, since
the register only needs to be filled once before the loop is entered, and the same memory
location only needs to be updated once at each exit block of the loop. Notice that here
loop-invariance means the effective address of a memory instruction but not its content.
Loop-invariant effective address can be easily asserted if the source addressing operands
of a memory instruction are loop-invariant. However, it is not trivial to identify the the
location which can be safely promoted if the loop contains indirect memory accesses and
jsrs. If the location is read-only in the loop, it is still safe to identify a subset of loads
that access the location, albeit some redundant loads are still present in the loop. If
the invariant location is ever updated in the loop, failing to identify the whole group of

instructions that access the invariant location may cause incorrect results, since migrated

86

Partition_Loop_Invariant_Locations(fn, loop)

{

1. Sinv(loop) = 0;

2. n=1;

3: FOR (each loop-invariant load or store instruction op € loop) {
4: G, = {op};

5: Sinv (loop) = Siyv(loop) U Gy;

6: n+ +;

7}

8 DO {

9: FOR (each pair of G; and G; € loop) {

10: IF ((opi, opj, D) € Ssync_arcs(fn) where opi € G; and opj € G;) {
11: Gl = Gz U Gj;

12: S[Nv(ZOOp) = SINv(ZOOp) - G]';

13: }

14: }

15: } WHILE (S;yv(loop) changes)
}

Figure 5.11 Algorithm of partitioning loop-invariant memory instructions.

loads/stores are using a register’s content which is not updated by the remaining store
instructions in the loop. Therefore, like redundant load/store elimination, loop-invariant
access migration also needs definite sync arcs.

The first step in performing loop-invariant access migration is to partition the loop-
invariant memory instructions into several groups so that instructions in the same group
are definitely dependent with each other while different groups access disjoint locations.
The algorithm in Figure 5.11 forms disjoint groups using sync arcs. Lines 1 to 7 form an
initial set of n groups of loop-invariant locations where n is the number of loop-invariant
memory instructions in the loop and each group only has one instruction. Then an

iterative process in lines 8 through 15 merges two groups of loop-invariant memory in-

87

structions if instructions from one group are definitely dependent with instructions in the
other group. Since the dependent attributes produced by pattern matching is transitive,
checking a single pair of instructions can determine whether two groups represent the
same location or not.

The groups finalized by the algorithm in Figure 5.11 only guarantee that all intra-
group instructions access the same loop-invariant location. Additional analysis is needed
to determine whether a group can be safely migrated or not. As shown in Figure 5.12,
lines 2 and 3 of the algorithm first separate the load and store instructions in each
group. Then depending on whether the group of instructions are write-only, read-only,
or read/write, and how the group interacts with other memory and jsr instructions in

the loop, different migration decisions are made as shown below:

e Write-only group (lines 4 to 5). A group is write-only if its LOAD set created at
line 2 is empty, meaning all instructions in this group are store instructions. Since
store instructions are usually not on the critical path of a computation chain and
dedicating a register may increase the register pressure, a write-only group is not

migrated.

e Read-only group (lines 6 to 15). If a group is read-only, meaning that there
are no store instructions in the group, whether the group can be promoted or not
depends on how many loads can be removed and how many refill loads need to
be added. If none of the store or jsr instructions in the loop can ever modify the

same location of the read-only group, the content of the accessed location is also

88

Loop_Invariant_Access_Migration(fn, loop)

9.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

}

FOR (each G; € Sinv(loop)) {
LOAD(G;) = {opl | opl € G; and opl is a load};
STORE(G;) = {ops | ops € G; and ops is a store};
IF (LOAD(G;) == 0)
CONTINUE;
IF (STORE(G;) == 0) {
refill_load = 0;
FOR . (each store or jsr op € loop - G;)
IF ((op, opl, P) € Ssync_arcs(fn))
refill_load + +;
IF (refill_load == 0)
Migrate(fn, loop, G;);
ELSE IF (refill load < |[LOAD(G;)|)
Migrate_ With_Register Refill(fn, loop, G;);
}
ELSE {
refill_load = 0;
needs_spilling = 0;
IF ((3 store or jsr op € loop - G;) and ((op, opl, P) € Ssync_arcs(fn)))
needs_spilling = 1;
FOR . (each store or jsr op € loop - G;)
IF ((op, opl, P) € Ssync_arcs(fn))
refill_load + +;
IF (refill_-load == 0)
IF (needs_spilling # 0)
Migrate_With_Register_Spill(fn, loop, G;);
ELSE
Migrate(fn, loop, G;);
ELSE IF (n < |[LOAD(G)|)
IF (needs_spilling # 0)
Migrate_ With_Register Spill and_Refill(fn, loop, G;);
ELSE
Migrate_ With_Register Refill(fn, loop, G;);

}

Figure 5.12 Algorithm of determining the safety of loop-invariant migration.

89

loop-invariant. So loading the content into a register once prior to the beginning of
the loop can provide up-to-date value for the entire course of the loop. However, if
there are potentially or definitely dependent store or jsr instructions in the loop, the
promoted register may hold obsolete values. One way to fix the consistency problem
is to reload the dedicated register from the promoted location after every conflicting
store and jsr instruction, should the number of conflicting store/jsr instructions is
less than the number of load instructions in the group otherwise it is not beneficial.

This check is done by line 13.

Read/write group (lines 16 to 34). If a group is read/write, more complicated
conditions need to be checked before instructions in the group can be migrated,
since there are more chances that the memory content may be inconsistent with the
promoted register. If there are potentially conflicting load instructions in the loop,
the promoted register needs to be spilled before each conflicting loads to guarantee
that the load retrieves the up-to-date value. If there are potentially conflicting
store instructions in the loop, the dedicated register is spilled right before the store
and refilled right after the store to get the up-to-date content, if it is ever modified.
Similarly, if there is a conflicting jsr, the dedicated reciter will also be spilled then
loaded around the jsr. So the cost-effective factor is the number of conflicting loads
and jsrs in the loop: if it exceeds the number of load instructions in the loop, it is

not beneficial to migrate this group.

90

In Figure 5.12, there are three types of load/store migrations. They all perform the
same style of code transformation by migrating all the loads in the group to the loop
preheader, and by migrating all stores to every loop exit block. Since all of them are
definitely dependent memory instructions, only one load and one store will be left af-
ter performing redundant load/store elimination. Then all instructions that consume
the value loaded by the migrated loads will use the dedicated register which holds
the content of the promoted memory location. In addition to the basic operations,
Migrate_With_Register_Refill reloads the dedicated register after all conflicting stores
and jsrs, where Migrate_With_Register_Refill will added reloads as well as spilling stores
around all conflicting stores and jsrs. Since these transformations are straightforward,

their pseudo codes are omitted.

5.3.4 A Working Example

Here the loop in function main of Figure 5.2 will be revisited as a working example to
show the optimization process. Redundant load/store elimination, copy propagation, and
loop-invariant access migration are conducted iteratively until a fixed point is reached.

As shown in Figure 5.13, the loop can be optimized in four stages:

1. The assembly code shown in stage 1 is generated by inlining both functions foo
and bar into main. Instructions op12 to op14 are absorbed from foo, where op29
to op31 are included from bar. Inlining the indirect call-site is possible since
the function pointer p—>pf is resolved to a single callee. Shown on the left of an

instruction is the list of instruction ids that have earlier semantic order and definite

91

D! omitted P D! omitted P
‘ opll: ld_i r5, SP(-4) pp ‘ opll: ld_i r5, SP(-4) pp
opl2: st_i r5(0), _i ;(*pp)->pi opl2: st_i r5(0), _i ;(*pp)->pi
opl3: st_i r5(4), _j (*pp)->pj opl3: st_i r5(4), _j ;(*pp)->pj
opl4: st_i r5(8), _bar ;(*pp)->pf . | opl4d: st_i r5(8), _foo ;(*pp)->pf
‘ 11 fop2sidi—rit SPtH— ip
© ch3: ' :]
11,2933 |0p23: Id_i rll, SP(-4) p f | ch3: :
©lop24: Id_i r12,r11(0) p->pi L 12 12 © |op24: Id_i r12,r5(0) p->pi :
op25: Id_i rl13,r12(0) *p->pi | 28,36 D lop25: Id_i r13,r12(0) *p->pi | 28,36
op26: mov rl,rl3 op26: mov rl,rl3
. |op27: add rl4,r1,1 : . |op27: add rl4,r1,1 :
36 : |op28: st_i _i(0), r14 i © 25 36 : |op28: st_i _i(0), r14 i © 25
11,2333 |0p29: Id_i r15,SP(-4) ip : 13,34 |op30: Id_i rl6,r5(4) :p->pi :
© | op30: Id_i r16, ri5(4) P->pj 013,34 op31: Id_i rl7,r16(0) *p->pj © 35
op3l: Id_i rl7,r16(0) *p->pj L35 | |op32: add r18,r17,2 ‘
| op32: add r18,rl7,2 13,30 : |op34: Id_i r20,r5(4) P->pj :
11,23,29 op33: ld_i r19, SP(-4) HY : op35: st_i r20(0), r18 *p->pj 31
.| op34: Id_i r20, r19(4) P->pi 13,30 28 : | op36: Id_i r21, _i(0) i © 25
| |op35: st r20(0),r18 *p->pj P31 ' | op37: bit r21, 10, cb3 :
28 : |op36: ld_i r21, _i(0) i © 25
© | op37: blt r21, 10, cb3 :
L
D: omitted D: omitted
' lopll: Idi r5,SP(-4) ipp ' loplli Idi 15, SP(-4) i*pp
© | opl2: st r5(0), _i (*pp)->pi op25: ld_i rl3, _i(0) i
opl3: st_i r5(4), _j ;(*pp)->pj op31l: Id_i rl17, _j(0) i
. | opl4: st_i r5(8), _foo ;(*pp)->pf opl2: st_i r5(0), _i ;(*pp)->pi
12 [op2idi—ri2 50— ip->pi op13: st_i r5(4), j :(*PP)->pj
13 © rop30:td—i—ri6,15(4— ;p->pj opl4: st_i r5(8), _foo ;(*pp)->pf
i cbh3: i cbh3:
28, 36 op25: Id_i r13, _i(0) *p->pi ‘ op27: add r13,r13,1
op26: mov rl,rl3 op32: add rl7,rl7,2
. |op27: add r14,r1,1 op37: blt rl3, 10, cb3
25, 36 op28: st_i _i(0), r14 i
35 |op31l: ld_i rl17,_j(0) *p->pj
| op32: add r18,rl7, 2 :
31 op35: st_i _j(0), r18 *p->pj 25 op28: st_i _i(0), r13 i
25,28 : |op36: Id_i r21,_i(0) i 31 |op35: st_i _j(0), r17 §]
| | op37: bit r21, 10, cb3 ‘
L

Figure 5.13 Aggressive code optimization with memory disambiguation information.

sync arcs with the instruction, while instruction ids involved in possible sync arcs
are shown on the right. In stage 1, the only loop-invariant group contains op23,
op29, and op33. Since none of them have conflicting stores and jsrs in the loop,
they are simply migrated to the loop preheader and no spill/refill instructions are

needed.

. The original register dedicated for holding the content of p is r11 in stage 2. But
since op23 and opl1l are definitely dependent, and no intermediate instructions
conflict with p, op23 can be eliminated. As result, all data-dependent instructions
in the loop that use r11, r15, and r19 in stage 1 now all use r5 in stage 2.
Consequently, the relations between op13, 30, and op34 now become definitely
dependent. They also form a loop-invariant group, since r5 is not defined in the
loop. The other loop-invariant group contains a single instruction as op24. Since
no conflicting stores and jsrs are contained in the group with these two groups,

they are also migrated to the loop preheader.

. The original registers dedicated for holding the contents of p->pi and p->pj are
r12 and r16, respectively. Again, they can be eliminated because of op12 and
opl3, after propagating the labels of _i and _j to source operands of memory
instructions in the loop. Then all the sync arcs in the loop become definite sync
arcs. Consequently, two more loop-invariant groups are identified, containing op25,
op28, op36, and op31, op35, respectively. Since both groups are read /write groups,

loads are migrated to the loop preheader and stores are migrated to the exit blocks.

93

4. Instructions op25 and op31 load i and j before the loop is entered. Since there are
no sync arcs between these two loads and other stores in the preheader, both loads
can be scheduled prior to the stores to hide their latency. Control block ¢cb3 now
only contains 3 arithmetic instructions and can be executed much more efficiently

then the code shown in Figure 5.3.

These optimization algorithms are independent with the interprocedural pointer anal-
ysis conducted in the frontend as long as sync arcs are generated in the assembly code,
meaning these optimizations can directly benefit from future improvements made on
static memory disambiguation. The quantitative contribution of these memory access

optimizations will be presented in Chapter 7.

94

CHAPTER 6

DEEP ANALYSIS ON FUNCTION POINTERS

A fundamental requirement for performing interprocedural optimizations is a com-
plete call graph, which represents the dynamic invocation of functions for a program. For
a programming language which only allows functions to be invoked statically, the con-
struction of a complete call graph can be done in a single traversal of the program starting
from the entry function, and the resultant call graph is precise. However, if the program-
ming language supports function pointers, which defer the actual callee determination
until run-time, the construction of a complete call graph requires extra compile-time
analysis. The least precise but still valid call graph can be constructed by assuming that
an indirect call-site reaches all functions in the program, including library functions. A
straightforward improvement is to rule out functions whose names are neither passed as
parameters nor assigned to other variables. However, for programs containing a signif-
icant number of indirect call-sites with disjoint callees, the resulting call graph can be
quite inaccurate, which can hurt potential optimization opportunities. Although a call
graph is required for the interprocedural data-flow analysis, the call graph construction
itself requires an incremental interprocedural data-flow analysis, since function pointers
may be defined interprocedurally. The final call graph is resolved iteratively where ex-

isting function pointers receive new function names propagated from already discovered

95

functions in the partial call graph, and newly added functions may add more function
pointers [52, 53, 54]. Murphy et al. [55] evaluate nine call graph extractor tools using
three software systems (mapmaker, mosaic, and gec). All of the tools generate false
negative call graphs: calls that can in fact take place in some execution of the program,
but which are omitted from the call graph. Although this is acceptable to some software
engineering purposes, a compiler needs a false positive call graph in order to perform
correct optimizations.

Although algorithms for call graph construction have been widely studied in the
literature, some characteristics found in the SPEC benchmarks cannot be handled by
earlier algorithms. The major reason comes from the underlying programming language,
C, used for these benchmarks. C allows functions to be invoked through function pointers,
where function pointers may be accessed through non-function pointers via multi-level
pointers and structure/union fields, and function pointers may be manipulated as non-
function pointers due to type casts. Therefore earlier techniques geared towards Fortran
will not suffice [53, 54]. It is difficult, if not impossible, to resolve function pointers
separately from other general pointers. In fact, for programs written in C, the call graph
construction problem has evolved into an interprocedural pointer analysis problem; once
all pointers are resolved, all function pointers are also resolved, and the call graph can
be generated. Stated in another way, an interprocedural pointer analysis is not complete
if it cannot resolve all function pointers. Due to either simplified assumptions or high

complexity in the algorithm, recent work in interprocedural pointer analysis has not

96

demonstrated the ability to construct the complete call graph for significant programs
like SPEC [22, 34, 19, 20, 26, 31].

In this chapter, a comprehensive study of function pointers using SPEC benchmarks is
reported. SPEC benchmarks are selected for this study because of their size, wide accep-
tance, and realistic function pointer manipulation. Benchmarks included in this study
are 008.espresso, 023.eqntott, 072.sc, 085.cc1, 124.m88ksim, 126.gcc, 130.1i, 132.ijpeg,
134.perl; and 147.vortex, which have complicated code constructs that are not handled

by conventional call graph extractor.

6.1 Case Studies of Function Pointers

In this section, code examples extracted from the SPEC benchmarks are presented.
These examples can provide insight to the manipulation of function pointers in realistic
programs. The usual motivation for programmers to use function pointers is to write
concise code: using a single indirect call-site to invoke multiple similar callees instead
of multiple individual static call-sites. However, pointers and type casts in C make the
problem much harder than in Fortran. In general, function pointers can be classified into

four categories with difficulty levels ranked from the easiest to the hardest as follows:

1. Simple variables. Function pointers declared as local or global variables whose
addresses are never taken. That is, the definition and usage of such pointers can

be accurately identified without the need to consider aliases.

97

2. Function parameters. Function pointers declared as parameters like those used

in Fortran.

3. Statically initialized global function pointers. Function pointers declared
and initialized in the global data section. Function pointers may be fields in global

structures/unions.
4. Heap objects. Function pointers allocated dynamically from the heap.

Function pointers used as simple variables can be resolved by traditional data-flow
analysis, where function pointers passed as parameters can be handled by the BoundTo
analysis as proposed by Hall and Kennedy [54]. Function pointers initialized statically
can be handled properly as long as various forms of structure/union initialization can
be processed. However, heap-based function pointers cannot be resolved without using a
general interprocedural pointer analysis algorithm. For each category of function point-
ers, at least one code example is provided to better illustrate the difficulties involved and
the potential solutions. For clarity and space reasons, only directly related code segments

are extracted.

6.1.1 Function pointers as simple variables

Function pointers declared as simple variables without aliases are easy to resolve using
traditional data-flow analysis. For example, in function emit_case_nodes of 085.cc1, the

following code segment can be found:
gen_bgt_pat = unsignedp 7 gen_bgtu : gen_bgt;

98

SO_espresso()

foreach_output_function(
so_do_espresso,
S0_save);
foreach_output_funtction(
so_do_exact,
SO_save);

}

SO_espresso

*funcl

so_both_espresso

| _>
I

{
I_>

s0_both_espresso()

foreach_output_function(
so_both_do_espresso,
so_both_save);

foreach_output_function(
so_both_do_exact,
so_both_save);

}

foreach_output_function(func, funcl)
{

(*func)();

(*funcl)();
}

Figure 6.1 Partial call graph of 008.espresso.

(xgen_bgt_pat) () ;

It is trivial to find functions gen_betu and gen_bgt as the potential callees of the in-

direct call-site. In the proposed interprocedural pointer analysis algorithm, this type

of function pointers can be easily resolved by the points-to relations added in the in-

traprocedural stage. Another case is found in 726.gcc, where global function pointer

decl_printable_name is assigned with decl_name in function main and used in many

other functions. Although the function pointer has no aliases across function boundaries,

interprocedural pointer analysis is still required in this case to construct the complete call

graph since global variables are involved. Surprisingly, these simple cases only happen in

these two largest benchmarks of SPEC.

99

6.1.2 Function pointers as parameters

Function pointers passed as parameters can also be handled with widely studied tech-
niques. For example, in benchmark 008.espresso, function foreach_output_function
can be called form four call-sites in two callers as shown in Figure 6.1. Throughout this
chapter, solid edges in the call graph are direct call-sites, while dashed edges are indirect
call-sites with the call-site expression annotated. The functions invoked by the two in-
direct call-sites in function foreach_output_function depend on the actual binding of
parameters func and funcl, which can be resolved using the analysis conducted in phase
IT’ in the interprocedural stage, where the evaluated access path starts from an formal
interface parameter followed by a single dereference operator. If the interprocedural anal-
ysis is context-sensitive in parameter aliases [19], it can further assert that some compo-
nents of the call graph are mutually exclusive. For example, foreach_output_function

never calls so_do_espresso and so_both_save in the same invocation.

6.1.3 Function pointers as statically initialized global arrays

An alternative way to achieve call-site reuse is to initialize a global table containing
function pointers which can be retrieved later through indices. It is a common technique
used by language-processing programs like 085.cc1, 124.m88ksim, 126.gcc, and 130.1:.

In Figure 6.2 which is extracted from benchmark 7124.m88ksim, the instruction
structure is defined as the data structure to store information regarding each assembly

instruction’s mnemonic name, opcode, and the native function’s address. Global variable

100

struct instruction

¢ assembler(buffer, ptr, addr)
{ xfra -

{

char *name; struct instruction *cmd,;

struct
{ xfrrl -
unsigned imm:6, imm10: 6, rrr:11;

} opc;
int (*funct)();
e

cmd = a_choice(mnemonics, cmdptrs[0]);
(cmd->funct)(cmd, ptr);
}

Y

cmd->funct

a choice

struct instruction mnemonics[] =
{
{"jsr", {0, 0, 0x640}, xfra}, !
{"jmp", {0, 0, 0x600}, xfra}, mkwrd T
{"bgr", {0x32,0,0}, xfrri},
{"br", {0x30,0, 0}, xfrri},

struct instruction *a_choice(cmdptr, cmdbuf)

while (cmdptr->name)

if (strcemp(cmdbuf, cmdptr->name) == 0)

{"fxcr", {0, 0.. 0x640}, a ctl}, return cmdptr;
{"word", {0, 0, G}, mkwrd}, cmdptr++;
{0, {0}, 0}, }

} }

Figure 6.2 Partial call graph of 12/.m88ksim.

mnemonics is declared as an instruction array, and is initialized in the data section
of file asmcmdstr.c. Function assembler has an indirect call-site using the statically
initialized mnemonics table. But instead of directly indexing the table, an indexing
function a_choice is used. To handle this case right, the interprocedural pointer analysis
algorithm has to handle global variable initializations including structure fields. When
function return values are propagated back to the caller in the phase I” analysis of the
interprocedural stage, variable cmd in assembler can be identified as holding the address
of array mnemonics, indicating cmd->funct and mnemonics[x].funct to be aliases .

Thus the function names stored in the mnemonics array are resolved to be the possible

callees of cmd->funct.

IThe whole array is treated as a single object.

101

6.1.4 Function pointers as anonymous objects

Benchmark 132.4jpeg uses function pointers to maintain the program’s portability. As
an image-processing program, many function pointers are initialized at the program entry
point to use a platform-specific set of intrinsic functions. When studying the benchmark,

several important characteristics are interesting as discussed below.

o Extensive use of heap-based function pointers. Once a heap-object is allo-
cated by the callee and attached to the formal parameter, as discussed in Chapter 4,
in addition to propagating values from the caller to the callee, values will need to
be propagated from the callee to the caller as well. In function compress, cinfo is
a local variable of type jpeg_compress_struct which is listed in the top portion of
Figure 6.3. The address of variable cinfo is passed as a formal parameter named
as cinfo also to all subsequent callees 2. In function jinit_memory_mgr, it allo-
cates a structure object of type my_memory_mgr, which is a superset of structure
jpeg_memory_mgr. Then it initializes expression cinfo->memory->alloc_small,
which is a function pointer for dynamic memory allocation, as alloc_small. When
function jinit_memory_mgr returns, the memory location accessed via expression
cinfo->mem->alloc_small is still alive, so its content needs to be propagated back
to the caller, function jpeg_create_compress. Eventually, the phase I” analysis
will report the points-to relation of (cinfo.mem->alloc_small, alloc_small) to

function compress.

2The type of cinfo in compress is ”struct jpeg_compress_struct” but is ”struct jpeg_compress_struct
*7 in all other functions.

102

struct jpeg_compress_struct {
struct jpeg_memory_mgr *mem;
struct jpeg_comp_master * master;

h

struct jpeg_memory_mgr {
void * (*aloc_small)();

struct jpeg_c_main_controller *main; Y

struct my_memory_mgr {
struct jpeg_memory_mgr pub;

It

struct jpeg_comp_master {
void * (*prepare_for_pass)();

struct my_comp_master {
struct jpeg_comp_master pub;

struct jpeg_c_main_controller {
void * (*start_pass)();
void * (*process_data)();

b
struct my_main_controller {
struct jpeg_c_main_controller pub;

b b h
J'(init_memory_mgr(cinfo) compress() start_pass_main(cinfo)
_ {
struct my_memory_mgr *menm; struct jpeg_compress_struct cinfo; struct my_main_controller *main;
mem = jpeg_get_smal I(E] jpeg_create_compress(& cinfo); main = (struct my_main_controller *) cinfo->main;
nv1em->pubAalloc_smaI I=d '_0‘3_5“31 I jpeg_start_compress(& cinfo); main->pub.process_data= process data_simple_main;
) cinfo->mem = & mam->pub; jpeg_write_scanlines(&cinfo); }
}

Ipeg wite seanfines

*ci nf0~>\masxer->prepare_f or_pass | *cinfo->main->process_data

Y 2 4

jinit_memory_mgr} [jinit_master_oomprass] [prepare_for_pass } [process_data_simple_main }
7

jpeg_create_compress

1 1

T : .
*cinfo->mem->aloc_small / 1 |, *cinfo->main->start_pass
2 I’ 3
jinit_master_compress(cinfo, i
J{ - ~compress(anto) 4 master_selection start_pass_main J
!
struct my_comp_master * master; ,

/
1

master = (*cinfo->mem->alloc_small)(); ! " jinit_c_main_controller(cinfo)

cinfo->master = (struct jpeg_comp_master *) master;

1
! {
I jinit_c_main_controller struct my_main_controller *main;
) 1

master->pub.prepare_for_pass = prepare_for_pass;
, =

P main = (*cinfo->mem->alloc_small)();
-7, d nfo->mem->alloc_small cinfo->main = (struct jpeg_c_main_controller *) main;

main->pub.start_pass = start_pass_main;
aloc_small }

Figure 6.3 Partial call graph of 132.4jpeg.

e Function pointers indirectly accessed from parameters. Passing a pointer
parameter allows not only the parameter itself but also all locations accessible
from the pointer to be visible to the callee. Following top-down traversal of the

SCC nodes conducted in phase II’, the function pointer cinfo->mem->alloc_small

103

in jinit_master_compress and jinit_c_main_controller can be found to be
bound to alloc_small, thus the indirect call-sites can be resolved. Unlike function
pointers passed as parameters, resolving function pointers indirectly accessed from
parameters involves the evaluation of access paths starting from formal interface

parameters followed by at least two dereference operators.

Function pointers initialized with type casts. As explained in [33] and Chap-
ter 3, structure pointers can be used interchangeably if their target structures share
a common initial sequence of fields. In the 132.ijpeg example listed in Figure 6.3,
pointer mem->pub.alloc_small is an alias of cinfo->mem->alloc_small, since
the structures pointed by mem and cinfo->mem share the same initial sequence of
fields. With normalized field representation in byte offsets, the proposed postfix

access paths can resolve these function pointers in the presence of type casts.

Iterative nature of call-graph construction. The number associated with
each indirect call-site indicates the order of the callee being added to the call
graph. Function start_pass_main initializes the function pointer used in function
jpeg_write_scanlines. But it cannot be discovered until the indirect call-site in
prepare_for_pass is resolved, which is initialized in jinit_c_main_controller.
And prepare_for_pass is not connected to the call graph until the initialization
in jinit_master_compress is discovered. That is, the construction of the partial
call graph requires at least four iterations. And whether the optimal number of

iterations can be achieved depends on if the phase I” analysis is performed in the

104

Point_InitClass C_RefToTkn()

Point_InitClass
Env_L oadGetTknCode

{
ShellLoadT okenCode} [ShellGetTokenCode} [Point_GetToken } Mem_GetFuncPtr(CodeAddr);
}

Env_L oadGetTknCode(Point_GetToken); tokentype (*pmf1)();

}

ShellGetTokenCode(& pmf1);
(*pmf1)();

Env_L oadGetTknCode(void * (*CodePtr)())

C_FefToTkn

{
ShellL oadTokenCode(CodePtr);
\ [pmfl Shell GetTokenCode(void * (** CodeAddr)())

}

ShellLoadTokenCode(void * (* CodeAddr)()) *

{
Mem_PutFuncPtr(CodeAddr); e e
} Mem_PutFuncPtr Mem_GetFuncPtr Mem_GetFuncPtr(void * (** FuncPtr)())
{
Ut_MoveBytes(Theory, FuncPtr);
}
Mem_PutFuncPtr(void * (* FuncPtr)())
{ Ut_MoveBytes
Ut_MoveBytes(& FuncPtr, Theory); Ut_MoveBytes(void * Source, void * Target)

} N —
memcpy(Target, Source, 4);
}

=

Figure 6.4 Partial call graph of 147.vortex.

bottom-up traversal of the call graph and the phase I’ analysis is performed in the

top-down traversal of the call graph.

Benchmark 147.vortex basically shares the same features as 132.7jpeg. In addition,
instead of using explicit assignments to propagate function addresses, 147.vorter is a
real example that uses library call memcpy as an alternative approach for pointer as-
signments. In Figure 6.4, function Point_InitClass 3 passes the address of function
Point_GetToken as a parameter all the way down to function Ut_MoveBytes, which in-
vokes memcpy to store Point_GetToken into an anonymous object retrievable from global
variable Theory. In function C_RefToTkn which contains an indirect call-site, function

pointer pmf1 is initialized by passing its address to function ShellGetTokenCode, which

3These function names are extracted after macro expansions.

105

Table 6.1 Statistics of function pointers in SPEC benchmarks.

Benchmark Characteristics

Lines | Functions | Dead Func. | Dir. Call | Ind. Call | & Function
008.espresso 14838 361 46 2674 15 12
023.eqntott 12053 62 2 358 11 5
072.sc 8639 179 8 1459 2 20
085.ccl 90857 1452 51 8332 67 588
124. m88ksim 19092 252 13 1496 3 57
126.gcc 205583 2019 187 19731 132 229
130.1i 7597 357 1 1267 4 190
132.ijpeg 29290 477 16 1016 641 188
134.perl 26874 276 13 4367 3 3
147.vortex 67205 923 295 8521 15 44

eventually invokes memcpy to retrieve the address of function Point_GetToken. Since
the transfer functions of library routines are also analyzed in the interprocedural pointer

analysis stage, the case represented by 1/7.vorter can be handled properly.

6.2 Call-Graph Resolution of SPEC Benchmarks

Table 6.1 lists the size information and the usage of function pointers of the studied
SPEC benchmarks. For each benchmark, Lines, Functions, and Dead Func. show the
number of lines, functions, and unreachable functions in each program. The Dir. Call,
Ind. Call, and & Function columns show the number of direct call-sites, indirect call-
sites, and functions whose addresses are taken. Unreachable functions can be found
in large programs developed by multiple programmers over time, or found in programs

after extensive code transformations like function inlining performed by the compiler.

106

Table 6.2 Resolution of function pointers.

Bench- Simple
mark | |

g
— &
=
&
— 2
@
-t
@
1
Q
o
o
I
=
s
@
&
]

O|OOO|O|O|O|O| OO o

—lolo|olw ool o| | ||~
v

(o] el Nen] Renl] i Ken] Hen) Ren) Nen] Reol | N

v

N OO OO OO OO =

—_

008.espresso
023.eqntott
072.sc
085.ccl
124.m88ksim
126.gcc

130.1i
132.ijpeg
134.perl
147.vortex

—
—_

—

OO OO U OO N
—

OO OO OO | OO =~

-J
O OO W W W N O OO i~

w
oo
=IO = O OOoOWo|Ioo|| -

—
OO O|O|OO|O|O|O|| N

[y
OO+ OO OO| ||| W

—_

OO OO| ||| OO O
o|lolo|Io|I=loololo|lo| -
O|lo|oO|o|o|o|lo|o|o|oflo
O OOO| OO OO W o
OO OO~ OO w
(o] el Nen] Nenl] il Ken] Hen) Fen] Hen] Hen] | Nan
jen] Fen] en) Hen) Hen] Fen) Hen) Bun] Ren] Ken) | N
W | OO OoOo|Io|o|o|| O

Unreachable functions can be determined after all function pointers are resolved: for
functions that are not connected to the call graph starting from main or not registered
through signal handling routines, they can be safely removed from the program. This
optimization can improve both the compilation time and binary size. The resolution of
a worst-case call-graph extractor is bound by the product of Ind. Call and € Function,
which will be very large for benchmarks like 132.ijpeg and 085.cc1. The resolution of
the call graph using the proposed interprocedural pointer analysis algorithm is shown in
Table 6.2.

In Table 6.2, number n at cell (a, b) represents that in benchmark a, n instances
of function pointers are resolved to b callees. Data presented in this table are obtained
before function inlining is performed. The ideal case is to resolve a function pointer
into one callee, since the indirect call-site can be converted into a direct one, so that

the overhead associated with indirect function calls can be eliminated. If the compiler

107

Table 6.3 Uninitialized indirect call sites of SPEC benchmarks found by interprocedural
pointer analysis.

| Benchmark | Uninitialized function pointers (file/function/call-site) |

126.gcc function.c/push_function_context/*save_machine_status
function.c/pop_function_context/*save_machine_status
sched.c/actual_hazard_this_instance/function_units[unit].blockage_function
132.ijpeg jecapi.c/jpeg write_scanlines/*cinfo—progress— progress_monitor
jdapi.c/jpeg_read_scanlines/*cinfo—progress—progress_monitor
jecapi.c/jpeg finish_compress/*cinfo—progress— progress_monitor
jdapi.c/jpeg_start_decompress/*cinfo—progress—progress_monitor
134.perl stab.c/stab_str /*uf—uf_val

stab.c/stabset /*uf—uf_set

doarg.c/do_subr/*sub—usersub

147.vortex | trans0l.c/C_CreateObject/*pmfl

supports inlining, the callee can even be inlined. As the table shows, benchmark 132.ijpeg
would benefit most from the converted calls: 381 out of 427 indirect call-sites can be
transformed into direct ones . But on the other hand, there are 4 indirect call-sites
in 130.0:, with 190 functions whose addresses are taken. The resolved pointers indicate
that 3 indirect call-sites can invoke 187 possible callees, while the other indirect call-site
can invoke 3 possible callees. Even in this case, a more accurate estimate of the indirect
call-site’s side-effects can be obtained since only a subset of the functions in the whole
program can be reached.

Table 6.2 also indicates that heap-based indirect call-sites tend to have a small number

of resolved callees, where parameter and statically initialized global call-sites have more

callees. The situation for parameter call-sites can be improved by performing function

4There are 214 function pointers found in dead functions and excluded.

108

cloning or inlining, at the cost of increased code size. Table 6.2 also shows that some
benchmarks have unresolved function pointers. To make sure that they are caused by
flaws of the interprocedural pointer analysis algorithm, these function pointers are verified
by tracing the program with the system debugger. It is found that these pointers are
indeed uninitialized and not exercised with multiple profile inputs. Detailed descriptions

for these pointers can be found in Table 6.3.

109

CHAPTER 7

EXPERIMENTAL RESULTS

In this dissertation, a wide range of experiments were conducted to evaluate various
aspects of the presented static memory disambiguation framework. First, the resource
requirements of the modular interprocedural pointer analysis algorithm are reported,
including the analysis time and memory usage. To demonstrate the feasibility of the
proposed algorithm, the SPEC suites are analyzed, which are much larger than the com-
mon benchmarks analyzed by previous work. In addition, a personal computer equipped
with an Intel Pentium II processor running at 450 MHz with 256 MB of RAM instead
of a high-end workstation is adopted to be the experimental platform. The underlying
operating system is Linux RedHat 6.0, where all IMPACT modules are compiled using
GNU C version 2.91.66 as the native compiler with the ”-O” option turned on. Secondly,
the accuracy of the modular interprocedural pointer analysis algorithm is studied. Since
flow-sensitivity is traded for lower complexity based on the argument that pointers to
acyclic data structures are rarely redefined, quantitative statistics are provided to back
up the argument. Finally, a set of quantitative studies of performance improvements
enabled by static memory disambiguation are presented, incorporating the optimization
techniques discussed in Chapter 5. Performance data are obtained on an emulated pro-

cessor with parameter-controlled issue width, numbers of functional units, and memory

110

Table 7.1 Benchmark characteristics.

‘ Benchmark H Lines ‘ Fns ‘ D. Fns ‘ Libs ‘ Sts/Uns ‘ M. Flds ‘ SCCs ‘ M. SCC ‘
008.espresso 14838 | 361 62 24 20 19 317 2
023.eqntott 12053 62 7 21 4 17 76 1
026.compress 1503 16 2 24 1 14 38 1
072.sc 8639 | 179 13 53 13 31 208 7
085.ccl 90857 | 1452 84 44 88 126 | 1258 148
099.go 29246 | 372 26 11 5 20 353 1
124.m88ksim 19092 | 252 25 36 81 138 261 3
126.gcc 205583 | 2001 238 45 125 229 | 1421 363
129.compress 1934 24 12 5 1 14 17 1
130.1 7597 | 357 9 27 14 44 67 309
132.ijpeg 29290 | 473 231 18 90 161 258 3
134.perl 26874 | 277 14 72 34 61 292 23
147.vortex 67205 | 923 331 33 86 292 576 33

system configurations. Programs represented in the Lcode IR can be emulated by reverse
translated C code, whose execution is used to gather the profile information and guide
the simulation process.

The following sections begin with quantitative results followed by some real examples
showing the strength and weakness of the proposed modular interprocedural pointer

analysis.

7.1 Analysis Costs

In this section, the analysis costs for the SPECcint92 and SPECcint95 benchmarks
are reported. As listed in Table 7.1, some general characteristics of each benchmark are

shown first, including the numbers of lines, functions, dead functions, invoked library

111

functions, structures/unions, number of unique fields in structures/unions, strongly con-
nected components (SCC), and functions contained in the largest SCC. The number of
lines directly affects the time spent in the intraprocedural stage, whereas the number of
functions plays an important role in determining the complexity in the interprocedural
stage. As discussed in Chapter 6, removing dead functions can speedup the compilation
process and improve the run-time performance. In addition to inherited dead functions in
the program, after function inlining with up to 60% of code increase, more dead functions
are found in many benchmarks !. Since the proposed interprocedural pointer analysis
algorithm also considers the summarized behavior of library functions, the effective num-
ber of functions being analyzed is the number of total functions minus the number of
dead functions plus the number of library functions, whose number ranges from 5 to 72
in these SPEC programs. The number of structures/unions determines the number of
unique types in the programs. Together with the number of unique fields considered
from all aggregate data types, they determine the number of derivable access paths from
a variable. Since benchmark 726.gcc has 125 aggregate declarations and 229 unique byte-
offset representations for fields, as will be shown shortly after, analyzing this benchmark
takes the longest time and the largest amount of memory. When each SCC has exactly
one function, the total number of functions contained in the program plus the number
of invoked library functions minus dead functions will be equal to the number of SCCs,
as found in 023.eqntott, 026.compress, 099.go and 129.compress. Due to the common

recursive feature in language processing programs, 085.cc1, 126.gcc and 130.li have large

1The number of dead functions shown in Table 6.1 reflects the original code prior to inlining.

112

Table 7.2 Resource requirements of conducting interprocedural pointer analysis.

Benchmark Intraprocedural stage Interprocedural stage Total time
Time (Sec) Time (Sec) | Mem. (MB) (Sec)
008.espresso 5.66 20.20 14.26 25.86
023.eqntott 0.75 0.99 2.81 1.54
026.compress 0.12 0.48 1.93 0.60
072.sc 2.42 3.15 6.34 5.57
085.ccl 33.61 277.67 79.22 311.28
099.go 2.82 0.21 8.13 3.03
124. m88ksim 2.36 3.54 8.09 5.90
126.gcc 76.68 520.85 238.00 597.53
129.compress 0.09 0.10 1.26 0.19
130.1 2.33 149.59 30.58 151.92
132.ijpeg 7.34 99.16 29.97 106.50
134.perl 14.43 468.33 51.14 482.76
147 vortex 15.08 166.90 74.80 181.98

SCCs. The proposed modular analysis technique in Chapter 4 can reduce the memory
usage in analyzing a single SCC since only the summary behavior of each function needs
to be maintained.

Table 7.2 shows the resource consumption statistics collected from the PC-based
experimental environment. The elapsed time is shown in seconds excluding the disk I/O
time and the memory usage is shown in mega-bytes (MB). The time in the Intraprocedural
stage column sums up the analysis time spent on each function. The high-water mark of
memory usage in the intraprocedural stage is not shown since each function is analyzed in
isolation and therefore the memory usage is no different than other function-level analysis.

The Interprocedural stage columns show the elapsed analysis time in the interprocedural

113

stage and the high-water mark of memory usage. The sum of analysis time spent in both
stages is shown in the last column of Table 7.2.

As expected, analyzing 126.gcc consumes the most memory and longest time due to its
size (2001 functions/205,583 lines of code), complex structure declarations, and intensive
usage of type casts. Due to similar characters found in 085.cc1 and 147.vortex, they
also require more resources than other benchmarks. The conventional wisdom holds that
interprocedural pointer analysis is an expensive task which requires a high-end computer
system with a huge amount of memory to accomplish. With the statistics shown in
Table 7.2, it is demonstrated that the proposed modular interprocedural pointer analysis
algorithm indeed raises the applicability of pointer analysis to the next level. Not only
that the analyzed programs are one step closer to real-world programs, but also the
system requirements can be met by a personal computer. In the following two sections,
it will be shown that the new algorithm is also accurate and can provide significant

performance improvements.

7.2 Accuracy Measurement

In the literature, there are several metrics defined to measure the accuracy of pointer
analysis. One common metric is to count the number of targets that each pointer points
to, and a general rule to judge the accuracy of a pointer analysis algorithm is that the
closer the number of targets is to 1, the better the analysis result. However, the target-

per-pointer metric may be misleading when used alone since the most trivial pointer

114

Table 7.3 Resolutions of interprocedural pointer analysis.

Targets per pointer Pointer per target
Benchmark 1] 2] 3|>4]Avs 1] 2] 3] >4[Avg
008.espresso 3071 | 436 | 40| 24| 1.16 | 1341 | 329 | 253 | 282 | 1.76
023.eqntott 310 | 115 0 7] 1.31 165 30| 31 37 | 1.77
026.compress 34 1 1 0| 1.08 21 6 2 2| 1.52
072.sc 662 46 | 13 6| 1.12 || 291 88 | 36 40 | 1.62
085.ccl 9231 | 1659 | 384 | 189 | 1.26 || 2527 | 617 | 607 | 980 | 2.01
099.go 312 0 0 0| 1.00 159 24 5 21 | 1.46
124.m88ksim 622 49 3| 15| 1.15 || 562 88| 35 16 | 1.29
126.gcc 16147 | 3679 | 705 | 451 | 1.31 | 4481 | 1092 | 795 | 1852 | 2.00
129.compress 37 2 0 0| 1.05 36 9 0 0| 1.20
130.1i 1576 | 243 | 50 41 1.19 | 588 | 239 | 58| 126 | 1.73
132.ijpeg 3897 | 766 | 135 | 23 | 1.23 || 3166 | 829 | 201 | 144 | 1.38
134.perl 2873 | 691 | 340 | 435 | 1.62 || 1205 | 477 | 206 | 543 | 2.04
147 .vortex 6768 | 121 | 41 51 1.03 || 4848 | 671 | 214 | 347 | 1.35

analysis algorithm can simply assume that all pointers point to the same target, causing
the algorithm to be falsely judged as perfect. So a symmetric metric which measures
the number of pointers that point to the same target is usually used to avoid the biased
measurement. Similarly, a better algorithm should also have the pointer-per-target metric
reasonable.

Table 7.3 shows the statistics of the target-per-pointer metric and the pointer-per-
target metric observed on right-most access paths after merging the interprocedural
pointer analysis results to each function. Each benchmark has gone through function
inlining which allows 60% of code growth. Numbers in the target-per-pointer columns
reflect the numbers of outgoing points-to relations carried by pointer-type access paths,

where numbers in the pointer-per-target columns reflect the opposite. Different targets

115

passed to pointer-type formal parameters from different calling contexts are considered as
a single object since the multiple instances of targets are the results of the programming
style and therefore are irrelevant with the accuracy of pointer analysis. The average num-
bers of targets resolved for pointer paths range from 1.00 to 1.62, indicating that most
pointers are resolved to a single target path. The average numbers of pointer-per-target
range from 1.31 to 3.20, showing that there are usually more than one pointer pointing
to the same target. Given hundreds or thousands of pointers in each program and the
low numbers shown by both metrics, the new modular interprocedural pointer analysis
algorithm is very accurate.

The most accurate comparison between flow-sensitive and insensitive pointer analysis
algorithms is to conduct both analyses on the same programs. Via the statistics gathered
regarding resource requirements, pointer resolutions and performance improvements, the
pros and cons of both methods can be obtained. However, it takes a lot of overhead
to implement both methods in the same compiler, and it has never been shown in the
literature that a flow-sensitive pointer analysis algorithm can handle the complete SPEC
suites. Therefore, comparison is conducted indirectly in this dissertation.

Figure 7.1 classifies pointer definitions found in each program into four categories
as unique, anonymous, named_cyclic, and named_acyclic. The unique category repre-
sents pointers that are defined no more than once in each function. For example, if a
local pointer variable is initialized after being declared and never redefined in a func-
tion, it belongs to the unique category. Also, if a pointer-type parameter is defined

by the caller and passed to the callee for dereferences only, the pointer belongs to the

116

E Unique @ Anonymous ONamed_cyclic O Named_acyclic

Distribution
(61 e))
o O
2 3
| *
|
|]
-
m

[
|]
|
|
|
=
[

R R e e e I e T e e I e I e e e I e S
0% A4 11ttt rt it
20 11—ttt
10 —H +— 11—ttt -
O% T T T T T T

O & o L N O . SO NS 3 @
@fo(’ &\\o Q&% ,\qﬁ (000 qq‘g (8@@690 & ,&0 .@e D(QQ’ A0{\‘2’ Q’@Q
6Q(bg,o@ O ® Q(@'\?’o(Q Q) §\’$\
Q)’QJQQ’COQ D qg’ %

Benchmark

Figure 7.1 Distribution of pointer definitions.

unique category as well. As shown in Figure 7.1, on average over 57% of pointers are
not redefined. The anonymous category, which accounts for 7% of pointer definitions on
average, covers pointers that are not simple variables but are defined for multiple times.
The named _cyclic portion, accounting 26% of pointer definitions, covers pointer variables
which are defined in loops, where the named_acyclic category represents pointer variables
that have more than one definition in acyclic code regions. For pointers that are rede-
fined, a flow-sensitive pointer analysis algorithm can update the target information if the
pointer is a variable and the definitions happen in acyclic code regions. The study shows

that there are only about 10% of pointer definitions that potentially could be better re-

117

Table 7.4 Processor configurations.

| [Issue | Mem | IALU | FALU | Branch | Mem. Latency (L1/L2/main) |

1 4 2 2 2 2 2/4/100
6 3 3 3 2 2/4/100
3 8 4 4 4 2 2/4/100

solved by a flow-sensitive algorithm. As will be shown in the next section, the additional
performance improvement provided by these 10% of pointers is fairly small compared to
that provided by static memory disambiguation as a whole, arguing the worth of trading

flow-sensitivity for lower complexity.

7.3 Performance Improvements

In order to understand the potential benefits of memory access optimizations for
future processors, the optimized programs are evaluated on a set of simulated processors
to obtain the performance data. As shown in Table 7.4, these simulated processors can
fetch, decode, and issue from 4 to 8 instructions per cycle in order. The numbers of
ALUs, memory ports, and floating point ALUs are proportional to the issue width of
the processor, where the numbers of branch units, integer and floating point registers are
fixed at 2 and 64, respectively. The memory system consists of a 64K direct-mapped,
non-blocking data cache with 64 byte block size. The data cache is write-through with
no write allocate and has a hit latency of 2 cycles and a miss penalty of 4 cycles if hit

in the second-level cache. The second-level cache is a unified 1024K, 4-way associative

118

cache with a miss penalty of 100 cycles. The instruction cache is assumed to be perfect
since the goal of the experiments is to understand the data access behavior. The branch
prediction scheme is a 1K-entry BTB with 2 bit counters. The instruction set architecture
and instruction latencies used match those of the HP PA-7100 microprocessor, where
integer operations besides loads have 1-cycle latency [57].

Three sets of parameters in the IMPACT compiler are configured to generate three
versions of programs with different levels of sophistication in memory disambiguation.
The base version assumes all memory instructions are ambiguous and all function calls
have pessimistic side-effects. Such pessimistic assumptions completely prevent regis-
ter promotion and scheduling 2. The standard version employs memory disambiguation
information derived intraprocedurally. Memory disambiguation of this level, which is
commonly used by commercial compilers without interprocedural pointer analysis, can
effectively disambiguate accesses to spill locations, local variables, global variables, and
indirect accesses with equivalent base registers and offsets, but revert to ambiguous re-
lations for other combinations. The precise side-effects of library function calls can be
modeled, but the pessimistic side-effects are still assumed for user functions. The ad-
vanced version utilizes the complete memory disambiguation information generated by
interprocedural pointer analysis and uses the memory disambiguation information to
guide memory access optimizations as described in Chapter 5. Side-effects of all func-

tions can be accurately modeled in this version. Except for the differences mentioned

2For temporary variables inserted by the compiler and local variables whose addresses are never taken,
they are always promoted to registers nevertheless.

119

@ Std/base B Adv/base

2.2

1.8

1.6

Speedup

1.4

Benchmark

Figure 7.2 Performance improvements enabled by memory disambiguation on an 8-
issue processor.

above, all three versions are compiled through inlining up to 60% of code increase [56],
classical optimizations [58], and superblock optimization [59]. The training input sets
are used for all levels of experiments in this dissertation.

Figure 7.2 plots the speedups in execution time of the standard and advanced ver-
sions over the base version observed on the 8-issue processor configuration as shown
in configuration 3 of Table 7.4. This figure indicates that memory optimizations with
memory disambiguation performed intraprocedurally can provide an average speedup of

1.07. With much more optimization opportunities enabled by the advanced memory

120

@ Load M Store

Reduction rate
o
N
|
|

Benchmark

Figure 7.3 Reduction rates of load and store instructions.

disambiguation techniques discussed in this dissertation, the average speedup is boosted
to 1.43. The additional performance improvement from the standard version to the ad-
vanced version, which has a ratio about 600%, reflects the advancement of performance
improvements derived from the compile-time memory disambiguation technology.

To better understand the merits of advanced static memory disambiguation, the run-
time behaviors of the standard and advanced versions of code are further studied. As
discussed in Chapter 5, promoting values from the memory to the register is the most
effective technique for the compiler to optimize memory accesses, and load /store schedul-

ing can be used to effectively hide the latency of remaining loads. However, it is hard to

121

derive their exact contributions in the final performance improvement since their effects
may overlap in some cases. For example, the latency of a redundant but remaining load
may be fully hidden by the scheduler. Therefore, this dissertation approximates each
optimization’s contribution by: (i) showing the amount of reduction of dynamic loads
and stores, and (ii) showing the performance improvement achieved without aggressive
load/store scheduling. The left bar of each benchmark in Figure 7.3 shows the reduc-
tion of dynamic loads between the standard and advanced versions. As these numbers
show, using simple copy propagation to convert ambiguous relations to dependent rela-
tions can eliminate as much as 40% of dynamic loads for 026.compress, with an average
reduction rate of 16%. Attributing the minor variance (+ 3%) in speedup numbers to
the normal deviation of detailed simulation, loads in benchmarks 023.eqntott, 126.gcc,
1530.1i, 132.1jpeg, and 134.perl are not eliminated in a significant manner. The right bar
of each benchmark in Figure 7.3 stands for the percentage of stores that are eliminated.
For some benchmarks, the numbers of loads and stores are actually increased due to
two reasons. The first reason is many load instructions are speculatively executed. For
example, consider the code sequence "branch-store-load”. Without interprocedural
pointer pointer analysis, the relation between the store and the load may be ambiguous
and therefore the load is only executed after the branch is not taken. If the memory
disambiguation information indicates that the store and the load are independent and
there are empty memory slots above the branch, the load can be executed speculatively
before the branch. If the branch is not taken, the load instruction has been issued and

its latency can be hidden. Otherwise an unnecessary load is executed whose result will

122

@ No scheduling

120%
o 100%]
® —
c —
S —
£ 8% (1= —11
s _
S 60% T -
°
[
o 40% H —
2
[&]
< 20% H — —
O% T T T \D\H\
O X 6 L DN O Q& K N DR @
& & T 00 oF &8 8 F
Q?Q,beo@ggbg&@o@ %,{/b&\.@
Q v % N

Benchmark

Figure 7.4 Ratio of the performance improvements enabled by scheduling only versus
full memory access optimizations.

be discarded. The second reason is the increased register pressure due to more memory
contents are held in registers, which may increase both the numbers of load and store
instructions because of register spilling and refilling. As shown in Figure 7.2, signifi-
cant performance improvements are still obtained even though there are extra memory
instructions.

Figure 7.4 shows the contribution of register promotion to the overall performance
improvement with memory disambiguation. The 100% speedup is derived from the per-

formance difference between the standard version and the advanced version, where the

123

achieved performance improvement shown by each bar is obtained by disabling the use of
sync arcs in guiding instruction scheduling. Comparing Figure 7.3 and 7.4, it shows that
register promotion and scheduling both can provide significant performance improve-
ments. Benchmarks like 008.espresso and 026.compress obtain all of their performance
improvements from register promotion. Without speculatively executed load instructions
which may cause extra cache misses, the performance is even slightly better. On the other
hand, for benchmark like 152.ijpeg with a negative load-reduction rate, the performance
speedup between the advanced and the standard version is as high as 1.70, where only
10% of the total speedup is achieved when scheduling is disabled.

In modern processors, the L1 cache latency is usually more than one cycle and the
main memory latency can easily approach 100 cycles. The effectiveness of redundant
memory access elimination and loop-invariant memory access migration is less sensitive
to the memory latency since the memory instructions are eliminated. In fact, the longer
the memory latency is, the better the performance improvement. However, instruction
scheduling is more sensitive to the memory latency since scheduling is usually performed
under the assumption of a uniformed memory latency, which is the L1 cache hit latency.
If both L1 and L2 caches suffer misses, given the memory latency of 100 cycles, it is
hard for the compiler to schedule the load instruction far enough to tolerate the memory
latency even in the presence of accurate memory disambiguation information. Figure 7.5
studies the relation between the impact of static memory disambiguation and extreme
memory latencies. First, Figure 7.5a shows the L1 and L2 cache hit ratios for the fully

disambiguated and optimized programs on the 8-issue processor. Figure 7.5b shows the

124

1 [[[[[| 7
.IIIIIIII
1--------
[[[| |

1 [[1 |] |
.1-------
A N N N S

arel IH

Benchmark

_pc/std_100 \

v_100/std_100 B Adv

‘mAd

Benchmark

Figure 7.5 The memory latency factor: (a) L1 and L2 hit ratios, (b) cycles blocked

due to pending loads.

125

@ Adv_100/std_100 mAdv_pc/std_100

Speedup

Benchmark

Figure 7.6 Performance improvements on a 8-issue processor with perfect data caches.

relative percentage of cycles blocked due to a pending load instruction. The 100% scale
reflects the load-stalled cycles in the standard version, the left bar is the normalized stall
ratio of the advanced version given the memory latency to be 100 cycle, and the right bar
reflects the normalized stall ratio under a perfect L.1 data cache. The left bar in Figure 7.6
shows the relative performance of the 100-cycle main memory latency configuration over
the standard version, while the right bar shows the relative performance of the perfect
cache configuration over the same base performance. There are three major observations

from Figure 7.5 and Figure 7.6:

126

1. The L1 and L2 cache hit ratios are pretty high, meaning the main memory latency

is rarely experienced by load instructions.

2. Around 32% of load-stalled cycles are eliminated by fully disambiguated memory

accesses, where a perfect cache can eliminate 20% more stalled cycles.

3. A perfect cache provides around 30% more speedups, which can be considered as
the upper boundary condition to interpolate the performance improvements enabled
by static memory disambiguation for memory latencies between 0 and 100 cycles.
Benchmark 026.compress benefits the most from perfect caches due to its low L1
cache hit rate. Benchmark 1/7.vorter is the second largest beneficiary due to most

of its cache misses happen on the critical path of during its execution.

As shown in Figure 7.5b, static memory disambiguation can reduce the wasted cycles
due to pending load instructions. Therefore it is interesting to see how they are translated
to better utilization of increased machine resources. For each benchmark, the three
processor configurations as summarized in Table 7.4 are studied. For each processor
configuration, the standard version and the advanced version of programs are simulated
to evaluate the performance variance. In Figure 7.7, each benchmark has 5 bars where
each bar shows the relative speedup to the 4-issue processor without interprocedural
pointer analysis. As the trend shows, without memory disambiguation, the compiler
cannot effectively utilize the machine resources. As a result, the trend of the speedups is
flat for the standard versions. On the other hand, the performance of programs optimized

with interprocedural procedural pointer analysis keep climbing higher as the machine has

127

04 adv/4_std m6_std/4_std (06_adv/4_std [(08_std/4_std B 8_adv/4_std

2
1.9
1.8
1.7 =
1.6 TH
15 i MH
1.4 i i i
1.3 i i i
1.2 i i i

1.1 ﬂ 1 1
1 44 [l Ll |

Speedup

Benchmark

Figure 7.7 Effectiveness of static memory disambiguation with increased machine re-
sources.

more resources. Benchmark 132.ijpeg shows the ideal case where the performance speedup
is improved from 1.32 to 1.67 to 1.88 when the processor issues 4, 6, or 8 instructions per
cycle. Figure 7.7 demonstrates that the proposed memory disambiguation framework is
able to provide scalable performance improvements.

It is also interesting to see how well the proposed static memory disambiguation does

compared to a perfect pointer analysis algorithm, together with the ideal usage of the dy-

128

@ Std_mem/adv B Adv_mem/adv

1.15

11

1.05 ~

Speedup

OO N O N W
> QO 2
S (F L E L P
RSN PRI
RS
o N

Benchmark

Figure 7.8 The effectiveness of static memory disambiuation versus perfect data spec-
ulation.

namic memory disambiguation mechanism incorporated in the IA-64 architecture [9, 10].
Therefore memory address profiling [15] is conducted to generate perfect sync arcs which
will allow more optimization and scheduling opportunities which could have been dis-
abled by spurious pointer analysis results. That is, as long as the input to a benchmark
is fixed, a new version of binary called the profiled version which is optimized under the
guidance of profile-generated sync arcs can be generated. When memory address profiling
is conducted on the advanced version of the program, the performance number reflects
the additional improvement that can be obtained from instruction scheduling given per-

fect memory disambiguation information. On the other hand, when memory address

129

profiling is conducted on the standard version of the program, the performance number
reflects the performance improvement that can be obtained from solely dynamic mem-
ory disambiguation. With statistics collected from the 8-issue processor configuration,
for each benchmark in Figure 7.8, the left bar shows the relative performance between
the advanced version and the profile-guided standard version, while the right bar shows
the relative performance between the profile-guided advanced version and the advanced
version. The average speedup for the left bar is 0.96, where it is as low as 0.9 for 072.sc
and as high as 1.07 for 134.perl. On the other hand, the average speedup of the right bar
is 1.03, with the maximum of 1.12 from 134.perl. Two main observations from Figure 7.8

are:

1. Generally speaking, the proposed interprocedural procedural pointer analysis and
compile-time memory optimizations outperform perfect run-time data speculation
due to the benefit of redundant load/store elimination and loop-invariant access
migration. If data speculation is not guided by perfect knowledge like memory
access profiling, the benefit of data speculation is expected to be much lower due

to mis-speculation penalties.

2. The classification of ambiguous/independent relations between memory accesses
provided by the proposed interprocedural pointer analysis algorithm is accurate,
since only 3% more performance can be exploited by the scheduler when spurious

dependent relations are removed.

130

@ 4-issue/std W 4-issue/adv [8-issue/std [8-issue/adv

10%

5% |
0% - T:|:|‘r
-5%

-10%

Performance loss

-15%

-20%

Benchmark

Figure 7.9 Performance losses due to reduced machine resources.

Benchmark 134.perlindicates that there are more than 10% performance losses caused
by spurious memory disambiguation information. Together with examples extracted from
other benchmarks, the strength and weakness of the proposed compile-time memory
disambiguation technique will be discussed in the next section.

Due to various design restrictions like the circuitry complexity and power consump-
tion, it may not be possible to afford abundant memory ports to fully harvest the results

of static memory disambiguation. Therefore another experiment is conducted to under-

131

stand the performance loss due to reduced memory resources. As shown in Figure 7.9,
each bar shows the performance loss of the specified processor configuration with the
specified sophistication of memory disambiguation when the number of memory port is
cut by 50% compared to the original specification listed in Table 7.4. Without advanced
memory disambiguation, most loads and stores are executed in a serialized manner, there-
fore reducing the number of memory ports by half has less performance impact than the
case with interprocedural pointer analysis, where more loads and stores could be executed
in parallel. Because only one memory port is employed by the 4-issue processor config-
uration, it suffers more performance loss than the 8-issue processor case. The average
negative effect on the 8-issue case with interprocedural pointer analysis is 4.5%, which is
very small compared to the enabled performance gain. Benchmarks 008.espresso, 085.cc1,
and 124.m88ksim actually observe some performance improvements due to streamlined
memory resources. The reason is fewer speculative loads are executed when the sched-
uler sees more memory port contentions, resulting fewer L1 data cache misses. From
the observation of Figure 7.9, the majority of benefits provided by the proposed static
memory disambiguation framework can be achieved even when the memory resources are

reduced.

7.4 Case Studies

This section will proceed by case studies showing the significant benefits of regis-

ter promotion and scheduling, followed by programming features that harden accurate

132

static memory disambiguation. The goal is to provide a more solid understanding of the
strength and weakness of the modular interprocedural pointer analysis algorithm using

real code examples.

7.4.1 Register promotion

Figure 7.10 lists the source code of function alignd from benchmark 124.m88ksim.
The function is used to align 64-bit floating point numbers. Because the indirect memory
accesses in the loop involve pointer-type parameters, the compiler is not able to determine
their independence without interprocedural pointer analysis and therefore leaves the loop
body conservatively unoptimized. With the modular interprocedural pointer analysis
proposed in this thesis, the compiler is able to determine that *s, *bmantlo, *bmanthi,
and *amanthi all stand for independent and loop-invariant locations, so they can be
completely migrated out of the loop. As a result, the loop body which originally contains
7 loads and 4 stores now only contain arithmetic instructions after performing loop-
invariant access migration. The profiling weight indicates that the loop executes for
more than 1 million times. After this optimization, the length of the critical path drops
from 18 cycles to 3 cycles on an 8-issue processor, eliminating more than 15 million cycles

in total during the execution of the program.

7.4.2 Scheduling

Figure 7.11 lists the source code of function rgb_ycc_convert from benchmark

132.15peg. Similar to the example in 124.m88ksim, the for-loop in rgb_ycc_convert

133

void alignd(int aexp,ULONG *amanthi,ULONG *amantlo,int bexp,
ULONG *bmanthi,ULONG *bmantlo,int *resexp,ULONG *s)

{

int expdiff;
expdiff = aexp - bexp;
*amanthi <<= 2;
xamanthi |= *amantlo>>30;
*amantlo <<= 2;
*bmanthi <<= 2;
*bmanthi |= *bmantlo>>30;
*bmantlo <<= 2;
if (expdiff >= 0) {
for (s = 0 ; expdiff > 0 ; expdiff--) {

*s |= xbmantlo & 1;
*bmantlo >>= 1;
*bmantlo |= *bmanthi<<31;
*bmanthi >>= 1;
}
*xresexp = aexp;
}
else {
expdiff = -expdiff;
for (s = 0 ; expdiff > 0 ; expdiff--) {
*s |= *amantlo & 1;
*amantlo >>= 1;
xamantlo |= *amanthi<<31;
*amanthi >>= 1;
}
*resexp = bexp;
}

Figure 7.10 Code example extracted from 124.m88ksim.

134

static void

rgb_ycc_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)

my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int r, g, b;

register INT32 * ctab = cconvert->rgb_ycc_tab;

register JSAMPROW inptr;

register JSAMPROW outptr0O, outptrl, outptr2;

register JDIMENSION col;

JDIMENSION num_cols = cinfo->image_width;

while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf [0] [output_row];
outptrl = output_buf [1] [output_row];
outptr2 = output_buf [2] [output_row] ;
output_row++;
for (col = 0; col < num_cols; col++) {

r = ((int) (inptr[0 1)) ;
g = (Gnt) (inptr[1 1)) ;
b = ((int) (inptr[2])) ;

inptr += 3 ;
outptrO[col]l = (JSAMPLE)
((ctab[r+0]+ctab[g+(1* (255 +1))]+ctab[b+(2%(255+1))])>>16);
outptri[col]l = (JSAMPLE)
((ctab[r+(3*(255+1))]+ctab[g+(4*(255+1))]+
ctab[b+(5%(255+1))1)>>16) ;
outptr2[col]l = (JSAMPLE)
((ctab[r+(5%(255+1))]+ctab[g+(6*%(255+1))]+
ctab[b+(7*(255+1))]1)>>16) ;

Figure 7.11 Code example extracted from 132.ijpeg.

135

contains indirect accesses involving pointer-type parameters. For example, in the for-
loop the first access expression, inptr[0], dereferences the second pointer parameter,
input_buf, by two levels. Also in the for-loop, the last store expression, outptr2[col],
modifies the memory location accessed through three levels of indirection via the third
pointer parameter, output_buf. The critical path of the for-loop takes 23 cycles. After
unrolling the loop by 4 times, due to the ambiguous relation between the first load of
the next iteration and the last store of the previous iteration, these unrolled loop bodies
cannot be mixed at all, resulting a critical path of 92 cycles. With interprocedural pointer
analysis, the compiler can prove that all the indirect memory accesses are independent,
enabling the scheduler to place load instructions before store store instructions to hide
the load latency. Even though the total number of memory instructions contained in the
loop body remains the same, the scheduler is able to reduce the length of the critical
path down to 30 cycles. The profiling weight indicates that the loop is executed for 1
million times, meaning a total reduction of 60 million cycles for the total execution time

by the scheduler.

7.4.3 Spurious memory disambiguation

Unlike the previous two cases, Figure 7.12 shows a negative example which exposes
some weakness of the proposed interprocedural pointer analysis algorithm. In Figure 7.12,
function do_splice contains a for-loop inside which two pointers src and dst point to
the same array but with an offset of diff. Since the conducted pointer analysis treats

the whole array as a single object, *src and *dst are considered as ambiguous memory

136

do_splice(ary,gimme,arglast)
register ARRAY *ary;
int gimme;
int *arglast;
{
register STR *xst = stack->ary_array;
register int sp = arglast[1i];
int max = arglast[2] + 1;
register STR **src;
register STR **dst;

newlen = max - sp;
diff = newlen - length;

src = &ary->ary_arrayloffset-1];

dst = src - diff;

for (i = offset; i > 0; i--)
*dst—-— = *src-—;

Figure 7.12 Code example extracted from 134.perl.

accesses, preventing both redundant access elimination and scheduling. Unless the offset
diff is replaced by a literal, this situation cannot be helped by a flow-sensitive algorithm
since the content of diff may be zero. With memory access profiling, it is detected that
diff is always nonzero, allowing the load of *src to be scheduled before the store of
*dst when the loop is unrolled. Therefore the length of the critical path is reduced from
12 cycles to 7 cycles. The profiling weight shows that the loop is executed for 9 million
times, therefore perfect memory disambiguation can further reduce 45 million cycles.

With well-defined compile-time heuristics, it is possible to use run-time data speculation

137

to seek optimization opportunities on cases like this code example. However, it is beyond

the scope of this dissertation.

138

CHAPTER 8

CONCLUSIONS

8.1 Summary and Contribution

The need for advanced compile-time memory disambiguation techniques is more and
more imminent as the advancement in the processor keeps outpacing the improvement
in the memory subsystem. This thesis has presented a practical interprocedural pointer
analysis algorithm which uses the modular feature to tolerate the resource requirements.
Unlike previously proposed algorithms which either handle only a subset of language
features or only small programs, this dissertation presents a comprehensive method to
handle all C constructs and significant programs like the SPECcint92 and SPECcint95
benchmark suites.

This dissertation also presents three effective optimization techniques to utilize mem-
ory disambiguation information including scheduling, redundant memory access elimina-
tion, and loop-invariant access migration. The validated results through simulation not
only demonstrate the correctness of the conducted analysis and optimization, but also
show that significant performance improvements can be obtained. The case studies of the
usage of function pointers not only provide concrete examples to help understand pointer

manipulations, but also provide valuable real examples for future algorithms to verify.

139

The case studies about the strength and weakness of static memory disambiguation also
provide concrete examples to understand the capability of the proposed flow-insensitive

and context-sensitive pointer analysis algorithm.

8.2 Future Work

The experiment results demonstrate that the proposed static memory disambiguation
framework is very feasible and can provide accurate results and significant performance
improvements on the SPEC-class programs. Besides the encouraging results, there are
several open issues for future research.

With the upcoming IA-64 architecture which supports hardware-assisted data spec-
ulation, it provides a viable run-time alternative for memory disambiguation. From the
studies conducted in this dissertation, the perfect use of data speculation can provide
performance improvements close to the level provided by the full scale interprocedural
pointer analysis. With the perfect use of data speculation on top of static memory dis-
ambiguation, additional performance benefits may be obtained. Therefore an interesting
question is whether both techniques can be used constructively together. Memory ac-
cess profiling better fits as a tool to understand the upper-bound of the effectiveness
of the proposed static memory disambiguation framework than as guidances for data
speculation due to its expense to perform. So heuristics that can judge the confidence

of static dependence classifications are valuable because if they are accurate, both static

140

and dynamic memory disambiguation techniques can be integrated together to explore
the ultimate performance.

Although the size and intricacy of the SPEC benchmarks post an important milestone
towards the practical use of static memory disambiguation, their sizes are still a frac-
tion of those of many real world applications. There may very well be many cases that
are handled too conservatively by the proposed modular interprocedural pointer analysis
algorithm. The proposed redundant load/store elimination, loop-invariant access migra-
tion, and scheduling techniques can be applied to any static memory disambiguation
framework as long as the sync arcs representation is also adopted. Together with the
demonstrated low resource consumptions, the proposed memory disambiguation frame-
work has a great potential to be ported into a product compiler. Therefore it would be
extremely valuable to learn if the modular feature can keep scaling well to large applica-

tions.

141

REFERENCES

[1] T. M. Austin and G. S. Sohi, “Zero-cycle loads: Microarchitecture support for re-
ducing load latency,” in Proceedings of the 28th Annual International Symposium
on Microarchitecture, December 1995, pp. 82-92.

[2] C. Chen and A. Wu, “Microarchitecture support for improving the performance of
load target prediction,” in Proceedings of the 30th Annual International Symposium
on Microarchitecture, December 1997, pp. 228-234.

(3] R. J. Eickemeyer and S. Vassiliadis, “A load-instruction unit for pipelined proces-
sors,” IBM Journal of Research and Development, vol. 27, pp. 547-564, July 1993.

[4] M. Golden and T. N. Mudge, “Hardware support for hiding cache latency,” Univer-
sity of Michigan, tech. rep., February 1993.

[5] J. Gonzalez and A. Gonzalez, “Speculative execution via address prediction and
data prefetching,” in Proceedings of the 1997 International Conference on Super-
computing, July 1997, pp. 196-203.

(6] B. Cheng, D. A. Connors, and W. W. Hwu, “Compiler-directed early load-address
generation,” in Proceedings of the 31st Annual International Symposium on Microar-
chitecture, December 1998.

[7] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value prediction,”
in Proceedings of the 29th International Symposium on Microarchitecture, December
1996, pp. 226-237.

[8] G.S. Tyson and T. M. Austin, “Improving the accuracy and performance of memory
communication through renaming,” in Proceedings of the 30th Annual International
Symposium on Microarchitecture, December 1997, pp. 218-227.

[9] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu,
“Dynamic memory disambiguation using the memory conflict buffer,” in Proceedings
of 6th International Conference on Architectual Support for Programming Languages
and Operating Systems, October 1994, pp. 183-193.

[10] Intel Corporation, Santa Clara, CA, IA-64 Application Developer’s Architecture
Guide, May 1999.

[11] “Spec newsletter.” http://www.spec.org.

142

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

R. Chatterjee, B. G. Ryder, and W. A. Landi, “Relevant context inference,” in Pro-
ceedings of the ACM Symposium on Principles of Programming Languages, January
1999, pp. 133-146.

M. Burke, P. Carini, J. D. Choi, and M. Hind, “Flow-insensitive interprocedural alias
analysis in the presence of pointers,” in Lecture Notes in Computer Science, 892,
K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds., Springer-
Verlag, 1995, pp. 234-250. Proceedings from the 7th Workshop on Languages and
Compilers for Parallel Computing.

S. Horwitz, “Precise flow-insensitive may-alias analysis is NP-hard,” ACM Transac-
tions on Programming Languages and Systems, vol. 19, January 1997.

D. A. Connors, “Memory profiling for directing data speculative optimizations and
scheduling,” M.S. thesis, Department of Electrical and Computer Engineering, Uni-
versity of Illinois, Urbana, IL, 1997.

R. Allen and S. Johnson, “Compiling C for vectorization, parallelization, and inline
expansion,” in Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, June 1988, pp. 241-249.

F. Chow and J. Hennessy, “Register allocation by priority-based coloring,” in Pro-
ceedings of the SIGPLAN 1984 Symposium on Compiler Construction, June 1984,
pp. 222-232.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
Transactions on Programming Languages and Systems, vol. 13, pp. 451-490, October
1991.

M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural points-
to analysis in the presence of function pointers,” in Proceedings of the ACM SIG-
PLAN °94 Conference on Programming Language Design and Implementation, June
1994, pp. 242-256.

R. P. Wilson and M. S. Lam, “Effective context-sensitive pointer analysis for c
programs,” in Proceedings of the ACM SIGPLAN °95 Conference on Programming
Language Design and Implementation, June 1995, pp. 1-12.

M. Hind and A. Pioli, “Assessing the effects of flow-sensitivity on pointer alias
analyses,” in Lecture Notes in Computer Science, Springer-Verlag, 1998. Proceedings
from the 5th International Static Analysis Symposium.

W. Landi and B. G. Ryder, “A safe approximate algorithm for interprocedural
pointer aliasing,” in Proceedings of the ACM SIGPLAN °92 Conference on Pro-
gramming Language Design and Implementation, June 1992, pp. 235-248.

143

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

E. Ruf, “Context-insensitive alias analysis reconsidered,” in Proceedings of the ACM
SIGPLAN 95 Conference on Programming Language Design and Implementation,
June 1995, pp. 13-22.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms. The
MIT Press and McGraw-Hill, 1992.

A. Deutsch, “Interprocedural may-alias analysis for pointers: Beyond k-limiting,”
in Proceedings of the ACM SIGPLAN °9; Conference on Programming Language
Design and Implementation, June 1994, pp. 230-241.

B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the ACM
Symposium on Principles of Programming Languages, January 1996, pp. 32—41.

L. O. Andersen, “Program analysis and specialization for the ¢ programming lan-
guage,” Ph.D. dissertation, DIKU, University of Copenhagen, May 1994.

B. Steensgaard, “Points-to analysis by type inference in programs with structures
and unions,” in Lecture Notes in Computer Science, 1060, T. Gyimothy, Ed.,
Springer-Verlag, 1996, pp. 136-150. Proceedings from the International Conference
on Compiler Construction.

R. Ghiya and L. J. Hendren, “Putting pointer analysis to work,” in Proceedings
of the ACM Symposium on Principles of Programming Languages, January 1998,
pp.- 121-133.

)

K. D. Cooper and J. Lu, “Register promotion in ¢ programs,” in Proceedings of the
ACM SIGPLAN 1997 Conference on Programming Language Design and Implemen-
tation, June 1997, pp. 308-319.

M. Shapiro and S. Horwitz, “Fast and accurate flow-insensitive points-to analysis,”

in Proceedings of the ACM Symposium on Principles of Programming Languages,
January 1997, pp. 1-14.

Y

A. Diwan, K. McKinley, and J. E. B. Moss, “Type-based alias analysis,” in Proceed-
ings of the ACM SIGPLAN °98 Conference on Programming Language Design and
Implementation, June 1998, pp. 106-117.

S. Yong, S. Horwitz, and T. Reps, “Pointer analysis for programs with structures
and casting,” in Proceedings of the ACM SIGPLAN 99 Conference on Programming
Language Design and Implementation, May 1999, pp. 91-103.

J. D. Choi, M. G. Burke, and P. Carini, “Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects,” in Proceedings of the 20th
ACM Symposium on Principles of Programming Languages, January 1993, pp. 232—
245.

144

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. Rugina and M. Rinard, “Pointer analysis for multithreaded programs,” in Pro-
ceedings of the ACM SIGPLAN ’99 Conference on Programming Language Design
and Implementation, May 1999, pp. 77-90.

M. C. Rinard and P. C. Diniz, “Commutativity analysis: A new analysis framework
for parallelizing compilers,” in Proceedings of the ACM SIGPLAN 1996 Conference
on Programming Language Design and Implementation, June 1996.

E. Ruf, “Partitioning dataflow analyses using types,” in Proceedings of the ACM
Symposium on Principles of Programming Languages, January 1997.

M. Fahndrich, Z. S. J. S. Foster, and A. Aiken, “Partial online cycle elimination in
inclusion constraint graphs,” in Proceedings of the ACM SIGPLAN 98 Conference
on Programming Language Design and Implementation, June 1998, pp. 85-96.

R. Hasti and S. Horwitz, “Using static single assignment form to improve flow-
insensitive pointer analysis,” in Proceedings of the ACM SIGPLAN °98 Conference
on Programming Language Design and Implementation, June 1998, pp. 97-105.

S. Zhang, B. G. Ryder, and W. A. Landi, “Experiments with combined analysis
for pointer aliasing,” in Proceedings of the 1998 Workshop on Program Analysis for
Software Tools and Engineering, June 1998.

P. A. Stocks, B. G. Ryder, W. Landi, and S. Zhang, “Comparing flow and context
sensitivity on the modifications-side-effects problem,” in International Symposium
on Software Testing and Analysis, March 1998, pp. 21-31.

N. D. Jones and S. S. Muhnick, “A flexible approach to interprocedural data flow
analysis and programs with recursive data structures,” in Conference Record of the
9th ACM Symposium on Principles of Programming Languages, January 1982.

J. R. Larus and P. N. Hilfinger, “Detecting conflicts between structure accesses,”
in Proceedings of the ACM SIGPLAN °88 Conference on Programming Language
Design and Implementation, July 1988, pp. 21-34.

L. J. Hendren and A. Nicolau, “Parallelizing programs with recursive data struc-
tures,” IEFE Transactions on Parallel and Distributed System, vol. 1, pp. 35-47,
January 1990.

D. R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of pointers and structures,”
in Proceedings of the ACM SIGPLAN °90 Conference on Programming Language
Design and Implementation, June 1990, pp. 296-310.

L. Hendren, J. Hummel, and A. Nicolau, “Abstractions for recursive pointer data
structures: Improving the analysis and transformation of imperative programs,”
in Proceedings of the ACM SIGPLAN °92 Conference on Programming Language
Design and Implementation, June 1992, pp. 249-260.

145

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: A tool for evalu-
ating and synthesizing multimedia and communications systems,” in Proceedings
of the 30th Annual International Symposium on Microarchitecture, December 1997,
pp- 330-335.

R. Bodik, R. Gupta, and M. L. Soffa, “Load-reuse analysis: Design and evaluation,”
in Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation, May 1999, pp. 64-76.

D. M. Gallagher, “Memory disambiguation to facilitate instruction-level parallelism
compilation,” Ph.D. dissertation, Department of Electrical and Computer Engineer-
ing, University of Illinois, Urbana, IL, 1995.

W.W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
“The superblock: An effective structure for VLIW and superscalar compilation,”
Center for Reliable and High-Performance Computing, University of Illinois, Urbana,
IL, tech. rep., February 1992.

S. A. Mahlke, “Exploiting instruction level parallelism in the presence of conditional
branches,” Ph.D. dissertation, Department of Electrical and Computer Engineering,
University of Illinois, Urbana, 1L, 1995.

B. G. Ryder, “Constructing the call graph of a program,” IEEE Transactions on
Software Engineering, SE-5, 3, pp. 216226, May 1979.

A. Lakhotia, “Constructing call multigraphs using dependence graphs,” in Confer-
ence Record of the 20th Annual ACM Symposium on Principles of Programming
Languages, January 1993.

M. W. Hall and K. Kennedy, “Efficient call graph analysis,” ACM Letters on Pro-
gramming Languages and Systems, vol. 1, pp. 227-242, September 1992.

G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An empirical study
of static call graph extractors,” ACM Transactions on Software Engineering and
Methodolody, vol. 7, pp. 158-191, April 1998.

B. Cheng, “A profile-driven automatic inliner for the impact compiler,” M.S. thesis,
Department of Computer Science, University of Illinois, Urbana, IL, 1997.

Hewlett-Packard Company, Cupertino, CA, PA-RISC' 1.1 Architecture and Instruc-
tion Set Reference Manual, 1990.

A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Reading, MA: Addison-Wesley, 1986.

146

[59] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,

“The Superblock: An effective technique for VLIW and superscalar compilation,”
The Journal of Supercomputing, vol. 7, pp. 229-248, January 1993.

147

VITA

Ben-Chung Cheng was born in Taipei, Taiwan, in 1969. He attended Taipei Munici-
pal Chien-Kuo Senior High School. He received his B.S. degree in Computer Science and
Information Engineering from National Taiwan University in 1992. After committing two
years to military service, he came to the U.S. in 1994 to pursue the Ph.D. degree in Com-
puter Science at the University of Illinois at Urbana-Champaign. He joined the IMPACT
research group directed by Professor Wen-mei Hwu in the spring semester of 1995. His
doctoral research focuses on effective and efficient interprocedural pointer analysis for C
programs. He spent the summer of 1997 at Intel Corporation in Santa Clara, California,
working on static memory disambiguation issues of the [A-64 research compiler. After
completing his Ph.D. work in 2000, he joined Sun Microsystem in Sunnyvale, California,

as a software engineer.

148

