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The performance of modern processors depends on their ability to execute multiple

instructions per cycle, requiring increasing levels of instruction-level parallelism (ILP)

to be exposed in programs. One of the major challenges to increasing available ILP is

overcoming the limitations imposed by branch instructions. One paradigm presented to

help overcome problems with branches both at run time and at compile time is predica-

tion. Predication allows the elimination of branch instructions by providing an alternate

means of controlling the condition of execution for individual instructions. E�ective use

of hardware support for predication requires advanced compiler support.

Many existing techniques for compilation using predication make approximations or

use heuristics, the inaccuracy of which reduces achievable performance. In some cases,

these techniques realize a performance loss compared to codes without predication. This

dissertation proposes and investigates a systematic approach to compiling for predication

which consistently generates eÆcient predicated code.

The four key compiler technologies presented here work synergistically to realize the

potential of predication. The Partial Reverse If-Conversion Framework provides the �rst

compilation framework to accurately balance control and predication, while providing

other compiler components with complete access to the predicated code for further op-

timization. Though the full potential of the Partial Reverse If-Conversion Framework

remains unexplored, current compiler technology justi�es its worth.
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To operate on predicated code, the optimizer, scheduler, and register allocator re-

quire accurate information regarding the relationships among predicates. The Predi-

cate Analysis System is the �rst eÆcient predicate relationship database to provide an

approximation-free representation.

Optimization, scheduling, and register allocation also require accurate knowledge of

the 
ow of information in the predicated code. Using the Predicate Analysis System,

the Predicate Data
ow Graph is built to provide data
ow information. The Predicate

Data
ow Graph was developed to provide accurate data
ow information in the presence

of predication without requiring a change in the data
ow analysis equations.

In the context of the Partial Reverse If-Conversion Framework, some otherwise un-

necessarily complex optimizations become feasible. One example is the Program Deci-

sion Logic Optimizer, which uses predicated code and the Predicate Analysis System

to represent program decision logic as Boolean expressions. These expressions are min-

imized, factored, and reformulated to create programs with optimized decision compo-

nents. Within the given compilation framework, the PDLO has been demonstrated to

break many performance bottlenecks due to program decision.

The Partial Reverse If-Conversion Framework, the Predicate Analysis System, the

Predicate Data
ow Graph, and the Program Decision Logic Optimizer are demonstrated

to work synergistically in the compiler to generate eÆcient code for nonnumeric programs.

Using predication, these techniques e�ectively optimize codes in the presence of complex

branch control 
ow.
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1. INTRODUCTION

In the continuing e�ort to increase computing power, computer architects have often

explored the extraction and use of parallelism. The total execution time of programs

can be reduced dramatically by concurrently executing meaningful independent compu-

tations. To extract parallelism, a program must be divided into independent parts at

one or more levels of granularity. Coarse-grained parallelism involves the presentation

of programs as a small number of large, independent code segments to large, weakly

connected parallel processor hardware structures. These independent code segments,

typically threads or processes, contain hundreds to millions of instructions and are exe-

cuted by a multi-processor architecture. Medium-grained parallelism breaks computation

into segments of tens to thousands of instructions. This parallelism, often at the loop

or trace-level, is presented to architectures with high bandwidth interaction among pro-

cessing structures, such as in multiscalar or vector processors. Fine-grained parallelism

exploits independence at the instruction level. Such instruction-level parallelism (ILP)

is characterized by the simultaneous presentation of independent instructions to a single

processor with multiple data paths and functional units.
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Though trade-o�s exist between the various levels of granularity, �ne-grained paral-

lelism is often most desirable in certain applications. Although a dual processor parallel

architecture and a dual instruction issue processor architecture can both theoretically

double performance, the dual issue processor requires signi�cantly less hardware to im-

plement. The size of hardware has a dramatic e�ect on cost and power, making wide-issue

ILP processors ideal for embedded devices, portables, and desktop computers, as well as

for high-performance workstations. Furthermore, ILP is generally easier to produce for

most applications than eÆcient multiprocessor codes. The suitability of ILP processors

to a range of tasks is evident by their recent and increasing proliferation.

1.1 Branch Control E�ects on ILP

The performance of current ILP processors depends on the ability consistently to

present it with a suÆcient number of independent instructions. Studies have shown that

by using conventional code optimization and scheduling methods, wide ILP processors

have diÆculty sustaining a speedup of more than two for nonnumeric programs [1], [2], [3].

These low speedups are a result of numerous challenges encountered in the process of

extracting ILP.

Although ILP can be extracted solely by the compiler, or solely by the hardware, the

compiler and hardware have individual strengths and the task of extracting ILP should

be divided accordingly. For example, the compiler has the ability to perform detailed

analyses on large portions of the program, while the hardware has access to information

that can only be determined at run time. Though extracting ILP is necessary to achieving

large speedups in ILP processors, the architecture must also be able to execute the
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extracted ILP eÆciently. Hardware often fails to capitalize on extracted ILP due to

stalls in the hardware caused by the long latency of operations in certain exceptional

conditions. For example, a load from memory may stall the processor while the data is

fetched from the relatively slow main memory. Hardware techniques that minimize these

stalls, such as cache in case of memory, are essential for realizing the full potential of ILP.

One of the major challenges to e�ectively extracting and eÆciently executing ILP code

which has not been addressed satisfactorily by hardware-only techniques is overcoming

the limitations imposed by branch control 
ow.

At run time, the branching implementation of control introduces uncertainty of out-

come and nonsequentiality in instruction layout, which limit the e�ectiveness of instruc-

tion fetch mechanisms. Sophisticated branch prediction techniques, speculative execu-

tion, and advanced fetch hardware are currently necessary to prevent instruction starva-

tion in high-performance processor cores [4], [5], [6], [7].

For nonnumeric benchmarks, researchers report that approximately 20% to 30% of

the dynamic instructions are branches, an average of one branch for every three to �ve

instructions. As the number of instructions executed concurrently grows, the sustained

rate of branches executed per cycle must grow proportionally to avoid becoming the bot-

tleneck. Handling multiple branches per cycle requires additional pipeline complexity,

which includes multiported branch prediction structures. In high issue rate processors, it

is much easier to duplicate arithmetic functional units than to predict and execute mul-

tiple branches per cycle. Therefore, for reasons of cost, limited branch handling capabili-

ties in ILP processors will likely have limited performance in nonnumeric applications. In
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those which do support multiple branches per cycle, the prediction mechanisms are sub-

ject to diminishing prediction accuracy created by compounding branch outcomes. This

problem is made more signi�cant by the fact that branch prediction mechanisms with

good accuracy on a single branch per cycle often have undesirable scaling characteristics.

It is thus unlikely that a hardware-only solution to the problem of branch overhead can

be found.

Branching control imposes a yet more fundamental limitation on ILP performance

than the problem of predictability. An instruction is control dependent on a branch

when located such that the outcome of the branch will a�ect its execution. Control de-

pendences from a branch to other instructions (including other branches) are determined

by positional relationships within the code. The set of possible layouts for a program is

limited by the need to respect proper control dependence connections. In many cases,

respecting these control dependences limits the creation of layouts with desirable ILP

characteristics. For example, consider two instructions that have independent conditions

of execution and that execute frequently. Because the condition of execution for each

instruction is determined by its position relative to the branches that control it, these

instructions must remain in separate blocks. A technique that eliminated the positional

nature of program control would enable these instructions to execute in parallel.

At compile time, branches present barriers to eÆcient extraction of ILP in a compiler's

back end. Branches impose control dependences that often serialize the execution of sur-

rounding instructions, reducing the number of naturally independent instructions. The

compiler must handle control dependences separately from data dependences, complicat-

ing aggressive compiler transformations. Typically, compilers avoid this complication by
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limiting many optimizations to within a single basic block. Optimization of a code win-

dow containing multiple basic blocks requires either transformation of the code, usually

with duplication, or application of complex and expensive global optimization techniques.

Global basic block techniques often need to make trade-o�s between the performance of

di�erent paths. The uncertainty of branch outcome forces the compiler to make path

selection decisions based on estimates which can often be inaccurate.

1.2 Overcoming Branch Problems with Predication

Many techniques and devices have been proposed to overcome the limitations of

branching control, some of which have been discussed above. A signi�cant new ap-

proach taken in Explicitly Parallel Instruction Computing (EPIC) architectures allows

the compiler to substantially reduce the amount of branching control in programs. This

approach is called predication [8], [9]. Predication is a model that allows the elimination

of control dependences by providing an alternate means of controlling the condition of

execution for individual instructions. Predication is typically discussed in two contexts:

its use as a representation and its operation during program execution.

The predicated representation is a low-level N -address program representation in

which each operation has a Boolean source operand, its guard predicate, whose value

determines whether the operation is executed or nulli�ed. The values of these guard

predicates can be manipulated by a set of predicate-de�ning instructions. The use of

predicates to guard instruction execution can reduce or even completely eliminate the

need for branch control dependences. When all operations that are control dependent on

a branch are predicated to guard execution in the same manner as the branch, that branch
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can be removed without changing program semantics. The process of replacing branches

with appropriate predicate computations and guards is known as if-conversion [10], [11].

The predicated representation provides a useful and eÆcient model for compiler opti-

mization and scheduling. The use of predicates to guard instruction execution can reduce

or even completely eliminate the need for branch control dependences, because branches

can legally be removed through the if-conversion process. Control dependences between

branches and other instructions are thus converted into data dependences between pred-

icate computation instructions and the newly predicated instructions. In the predicated

representation after if-conversion, control 
ow transformations can be performed as tra-

ditional data 
ow optimizations. In the same way, the predicated representation allows

scheduling among branches to be performed as a simple reordering of sequential in-

structions. Removal of control dependences increases scheduling scope and a�ords new

freedom to the scheduler [12].

Predicated execution is an architectural model in which code expressed in the predi-

cated representation can be executed directly. With respect to a conventional instruction

set architecture, the new features are a predicate register �le containing the values of the

guard predicates, an additional source operand specifying the predicate register guarding

each operation, and a set of predicate de�ning operations used to manipulate the pred-

icate register values. Predicated instructions are fetched regardless of their predicate

value. Instructions whose predicate values are true are executed normally. Conversely,

instructions whose predicates are false are nulli�ed and thus are prevented from modifying

the processor state.
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The removal of branches yields performance bene�ts in the execution of the ILP

code, the most notable of which is the elimination of branch misprediction penalties.

In particular, the removal of frequently mispredicted branches yields large performance

gains [13], [14], [15]. Predicated execution also provides an eÆcient mechanism by which

a compiler can explicitly present the overlapping execution of multiple control paths

to the hardware. In this manner, processor performance is increased by the compiler's

ability to �nd ILP across distant multiple program paths. Another, more subtle, bene�t

of predicated execution is that it facilitates the movement of redundant computation to

less critical portions of the code [16].

1.3 Systematic Compilation for Predicated Execution

Since predication allows the compiler tremendous freedom in combining computation

from multiple paths of control, compilation takes on some new challenges. High per-

formance depends on forming predicated regions which do not oversubscribe available

resources, but which include enough predication to make the transformation worthwhile.

Furthermore, since code from multiple basic blocks is combined into a single block, local

optimizations must recognize the e�ects of predication to achieve accurate and eÆcient

results. E�ective use of predicated execution thus requires e�ective compiler support.

Many compiler techniques, including those for predication, have in the past been based

on complicated estimation and approximation techniques. Unfortunately, these tech-

niques often su�er due to variations in codes that do not conform to the models used

to develop these heuristics. With the complexity added by predication, the problem
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becomes serious, and the performance potential is often not reached as a result of inac-

curate decisions. The contribution of this thesis is to create a systematic approach to

compiling for predicated execution which exploits the predicated representation to fully

realize predication's potential.

At the most basic level, compilers support predicated execution by performing if-

conversion at some point in the compilation process. Previous work has demonstrated

the value of introducing predication in an early compilation phase for purposes of later

optimization; in particular, the hyperblock compilation framework has been shown to

generate eÆcient predicated code [17]. The hyperblock compilation framework is able

to deliver better performance than late if-conversion because it allows the compiler to

enhance optimization and scheduling through the use of the predicated representation.

The hyperblock framework has some limitations. While early if-conversion allows the

compiler to take full advantage of the predicated representation, the decision of what to

if-convert is diÆcult. The over-application of predication with respect to a particular

machine will result in the oversaturation of processor fetch and potentially execution

resources. A delicate balance between control 
ow and predication is required in order

to maximize predication's potential. Early if-conversion decisions are made based on the

code's characteristics prior to further optimization. Unfortunately, code characteristics

change dramatically due to optimizations applied after if-conversion, potentially render-

ing originally compatible traces incompatible. In cases where estimates of �nal code

characteristics are wrong, the �nal code may perform worse for having had predication

introduced. Postoptimization if-conversion yields more stable but much less impressive
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performance gains due to the removal of the predicated representation from the compi-

lation path [18].

This work presents a solution to the accurate early if-conversion problem. Early

if-conversion is performed in an aggressive hyperblock framework. Optimizations are

then performed on the predicated representation. Finally, a new technique called partial

reverse if-conversion operates at schedule time to balance the amount of control 
ow and

predication present in the generated code, based on the target processor's characteristics.

Partial reverse if-conversion replaces some predicated code with branch control 
ow by

reintroducing branches.

E�ective optimization, scheduling, and register allocation of code in the predicated

representation, however, require the compiler to understand the logical relationships

among predicates because execution conditions are no longer solely dependent on branches.

Previous work has demonstrated the importance of accurate predicate relation analysis

to some phases of compilation, such as register allocation [19]. This work presents a


exible, powerful, and eÆcient Predicate Analysis System (PAS) and demonstrates its

importance in performing optimization of predicated code.

Data
ow analysis requires information from the PAS and from branch control 
ow

in order to generate accurate results. A new structure called the Predicate Data
ow

Graph (PDFG) is presented which can accurately represent both predicate and branch

execution conditions. Traditional iterative data
ow equation solvers can be applied to

the PDFG with little modi�cation.

To further take advantage of the predicated representation's usefulness in manipu-

lating program decision, a new technique called Predicate Decision Logic Optimization
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(PDLO) is introduced. PDLO extracts program semantics from the predicate compu-

tation logic. Represented as Boolean expressions in a binary decision diagram (BDD),

the predicate network is optimized using standard factorization and minimization tech-

niques. PDLO then translates the simpli�ed program decision logic back into more

eÆcient predicate de�ne networks. Combined with aggressive early if-conversion and

sophisticated late partial reverse if-conversion, PDLO can be used to optimize the entire

decision component in programs.

The Partial Reverse If-Conversion Framework, the Predicate Analysis System, the

Predicate Data
ow Graph, and the Predicate Decision Logic Optimizer together form an

e�ective compilation framework for variants of the IMPACT EPIC architecture including

IA-64. This framework is extremely e�ective in diminishing the previously assumed

overhead due to program control 
ow.

1.4 Contributions

The contributions of this work are four key technologies which, taken together, provide

an e�ective, systematic approach to compiling for predicated execution.

� The Partial Reverse If-Conversion (PRIC) Framework. In order to ap-

ply if-conversion e�ectively, two major issues must be addressed: what should be

if-converted and when should the if-conversion be performed? A compiler's use

of predication as a representation is most e�ective when large amounts of code

are if-converted and when if-conversion is performed early in the compilation pro-

cedure. On the other hand, eÆcient execution of code generated for a processor
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with predicated execution requires an appropriate balance between control 
ow and

predication. This balance is tightly coupled with scheduling decisions based on de-

tailed processor characteristics. This work presents a compilation framework based

on partial reverse if-conversion that allows the compiler to maximize the bene�ts

of predication as a compiler representation while delaying the �nal balancing of

control 
ow and predication to schedule time.

� Predicate Analysis System (PAS). E�ective use of the predicated representa-

tion requires that the compiler be aware of the logical relations among predicates,

which are digests of the control 
ow graph replaced by if-conversion. This work

describes the design and implementation of the accurate and eÆcient PAS, which

provides this support. Previous approaches to predicate analysis have attempted

to represent only those relationships encountered in particular modes of use of

predicate de�ning instructions, resulting in a loss of accuracy when more general

de�nition networks are analyzed. Furthermore, databases designed within these

assumptions used special-purpose facilities based inherently on the semantics of

the predicate de�ning instructions to represent the relationship among predicates.

PAS instead maps predicate relationships to Boolean expressions in a very general

and easily extensible manner, enabling both the accurate analysis of arbitrary uses

of predicate de�ning instructions and the application of well-developed computer-

aided design (CAD) techniques to the representation problem.
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� Predicate Data
ow Graph (PDFG). Performing data
ow queries and opti-

mizations on predicated code requires that all queried information be predicate-

aware. Data
ow analysis is extremely important to optimization, scheduling, and

register allocation. Using information from the PAS, the PDFG is built. A tra-

ditional data
ow analysis engine then operates on the PDFG to provide accurate

data
ow results. Previous approaches to predicate data
ow analysis have made

approximations that may result in performance losses, especially after the code has

been heavily transformed. Additionally, the PDFG enables a new transformation

called predicate partial dead code removal, which demotes instructions to the most

restrictive allowable predicates. This technique, similar to partial redundancy elim-

ination, proves valuable in implementing the PRIC, as well as in other applications.

� Program Decision Logic Optimization (PDLO). One of the major imped-

iments to achieving high levels of ILP has been ineÆcient programmatic control


ow. Historically, the compiler has translated the programmer's original control

structure directly into assembly code with conditional branch instructions. Tradi-

tional branch handling techniques cannot signi�cantly alter the program's inherent

control structure. Original predicate techniques preserved remnants of the original

control 
ow. However, the PAS models the underlying program logic, not a par-

ticular control 
ow structure. This logical form, referred to as a program decision

logic network, can represented as a set of Boolean equations. The PDLO mini-

mizes these equations using modi�ed versions of logic synthesis techniques. After
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minimization, the more eÆcient version of the program's original control 
ow is

re-expressed in predicated code.

1.5 Overview

This dissertation is composed of nine chapters.

An overview of predicated execution is �rst presented in Chapter 2. Predicated ex-

ecution provides an alternative to branches in representing program control. Hardware

support for predication provides the compiler with the 
exibility to present control ef-

�ciently to the hardware. This chapter presents the architecture and instruction set

architecture extensions essential to predicated execution as provided by the IMPACT

Explicitly Parallel Instruction Computing (EPIC) architecture. The IMPACT EPIC ar-

chitecture supports a general form of predicated execution which will be the target of

the compiler techniques presented herein.

Chapter 3 describes the challenges in compiling for a predicated architecture. This

discussion leads to a review of the hyperblock compilation framework, an earlier compi-

lation model created within IMPACT. It also explores feasibility of alternatives to the

hyperblock compilation framework including the one developed in this work, the PRIC.

Chapters 4 through 7 present the four chief contributions of this thesis. Each is

presented with individual relevant experimental results. The combined e�ect of all these

mechanisms within the IMPACT compilation framework is presented in Chapter 8.

PAS and PDFG are outlined in Chapters 4 and 5. PAS and PDFG are necessary for

optimizations to reach their full potential when operating in the predicated code domain.

One advanced predicate-speci�c optimization, the PDLO, is made possible by PAS, and
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is described in Chapter 6. Chapter 7 presents the partial reverse if-converter, an essential

element of the PRIC Framework. It then presents an experimental comparison of the

hyperblock and PRIC frameworks.

Finally, Chapter 9 develops conclusions and directions for future research based on

the results of this thesis.
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2. PREDICATED EXECUTION

Discussion and experimental evaluation of the techniques proposed by this work as-

sume the features of the IMPACT EPIC architecture. This chapter presents an overview

of architectural support for predicated execution in the IMPACT EPIC architecture.

First, an overview of the predicated execution concept is presented. Then, the general

form of predication supported in the IMPACT EPIC architecture is detailed. This chap-

ter concludes with a brief survey of predicated execution support in present and past

processors which possess a subset of the predication support in the IMPACT EPIC so

that the applicability and signi�cance of this work can be appreciated.

2.1 Overview of Predication

Predicated execution refers to the conditional execution of instructions based on the

value of a Boolean source operand, referred to as the predicate. If the value of the

predicate is true (a logical 1), the instruction is allowed to execute normally; otherwise

(a logical 0), the instruction is nulli�ed, preventing it from modifying the processor state.
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Figure 2.1: A simple code segment (a), after if-conversion (b), and after scheduling (c).

Figure 2.1 contains a simple example illustrating the concept of predicated execution.

Figure 2.1(a) shows two sequential if-then-else constructs, called hammocks. The branch

outcomes are determined by the evaluation of the independent branch conditions Cond1

and Cond2. Depending on the outcome of the �rst branch register, r1 is either incre-

mented or decremented. Register r2 is incremented only when Cond2 is false. In order

to respect the branch control dependences, the target of the �rst branch must be selected

before the second branch can execute.

The basic compiler transformation used to exploit predicated execution is known as

if-conversion [10], [11]. If-conversion replaces conditional branches in the code with com-

parison instructions that de�ne one or more predicates. Instructions that are control

dependent on a branch are then converted to predicated instructions, utilizing the ap-

propriate predicate register. In this manner, control dependences are converted to data

dependences.

Figure 2.1(b) shows the code segment after if-conversion, and Figure 2.1(c) shows the

code after scheduling. Here the two branch conditions are now part of two predicate

de�nes. Four predicates are de�ned to be true or false depending on the evaluation of

the conditions. For example, if Cond1 is satis�ed, P1 is set to true and P2 is set to false.
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In the next cycle, instructions 2, 4, and 6 are executed based on the values stored in the

predicate registers. These instructions now do not need to respect positional dependence

with any branches, and are free to be scheduled simultaneously, as they are here. The

�nal result is that ILP can be increased within a code segment as simple as this. Another

bene�t is the potential reduction in instruction count. Instruction 3 is no longer necessary

since within this block of code execution conditions are no longer determined solely by

fetch pattern. Further, fetch hardware now has a single very simple fetch pattern to

perform instead of four patterns, of which only one is correct for each execution of the

branching code segment.

Predicated code requires hardware which can support predicate de�ning instructions,

predicate registers, and instructions having an additional predicate source operand. The

remainder of this chapter presents systems that support predicated execution. First, the

IMPACT EPIC architecture is presented, because it is a superset of existing systems and

is the architecture chosen as the target to evaluate this work.

2.2 Predicated Execution in the IMPACT EPIC Architecture

An architecture supporting predicated execution must be able to conditionally nullify

the e�ects of a predicated instruction based on the value of its predicate. Additionally,

the architecture must support eÆcient computation of predicate values. The IMPACT

EPIC architecture model (a statically scheduled, in-order issue, EPIC processor) is a

generalization of the Cydra 5 and the HPL PlayDoh architectures [9], [20] described in

Sections 2.3.3 and 2.3.1.
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The IMPACT EPIC model of predicated execution contains a set of 64 independently

addressable single-bit predicate registers. Predicate register 0 is de�ned to always hold

the value 1. The model has a full set of instructions which have a guard predicate source

and an orthogonal set of predicate de�ning instructions. These predicate de�ning in-

structions are classi�ed broadly as predicate comparison instructions, predicate clear/set

instructions, and predicate save/restore instructions.

2.2.1 Predicate comparison instructions.

The most common way to set predicate register values is with a set of predicate

comparison instructions. Predicate comparison instructions compute predicate values

using condition semantics similar to those for compare-and-branch instructions. The

major di�erence is that these instructions write the comparison to one or two destination

registers instead of changing 
ow of control. The predicate comparison instruction format

is as follows:

�
Pdest1

type1
 �; Pdest2

type2
 �

�
(src0 [cmp] src1) hPguardi

This computes the condition C = src0 [cmp] src1 and optionally assigns a value to each

of two destination predicates Pdest1 and Pdest2 according to the predicate types (type1 and

type2, respectively), C, and the guarding predicate Pguard, as shown in Table 2.1. (In

the table, a dash indicates that no value is deposited.) The IMPACT EPIC architecture

de�nes six deposit types that specify the manner in which the result of a condition

computation and the guard predicate are deposited into a destination predicate register.

The unconditional (U), or (O), and (A), and conditional (C) types are as de�ned in the HP
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Pguard C UT UF OT OF AT AF CT CF _T _F ^T ^F

0 0 0 0 - - - - - - - 1 0 0

0 1 0 0 - - - - - - 1 - 0 0

1 0 0 1 - 1 0 - 0 1 1 1 0 -

1 1 1 0 1 - - 0 1 0 1 1 - 0

Table 2.1: IMPACT EPIC predicate deposit types.

Labs PlayDoh Speci�cation [20]. The and (A), or (O), conjunctive (^), and disjunctive

(_) type predicate deposits are termed parallel compares because multiple de�nitions of

a single one of these types can commit simultaneously to the same predicate register.

Although simple if-conversion generates only unconditional and or-type de�nes [11], the

other types are useful for optimizing predicate de�ne networks, so an e�ective predicate

analysis system should fully support their general use.

Unconditional predicate register destinations are always written, regardless of the

value of Pguard and the result of the comparison. If the value of Pguard is 1, the result of

the comparison (or its complement for UF ) is placed in the predicate register. Otherwise,

a 0 is written to the predicate register. Unconditional predicates are utilized for blocks

that are executed based on a single condition; i.e., they have a single control dependence.

The or-type predicates are useful when execution of a block can be enabled by mul-

tiple conditions, such as logical and (&&) and logical or (||) constructs in C. Or-type

destination predicate registers are set if Pguard is 1 and the result of the comparison is 1

(0 for OF ); otherwise, the destination predicate register is unchanged. Note that or-type

predicates must be explicitly initialized to 0 before they are de�ned and used. However,

after they are initialized, multiple or-type predicate de�nes may be issued simultane-

ously and in any order on the same predicate register. This is true because the or-type

predicate either writes a 1 or leaves the register unchanged, allowing implementation as
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a wired logical or condition. This property can be utilized to compute an execution

condition with zero dependence height using multiple predicate de�ne instructions.

The and-type predicates are analogous to the or-type predicates. And-type destina-

tion predicate registers are cleared if Pguard is 1 and the result of the comparison is 0 (1 for

AF ); otherwise, the destination predicate register is unchanged. The and-type predicate

is particularly useful for transformations such as control height reduction [16], [21].

Conditional-type predicate de�nes have semantics similar to regular predicated in-

structions, such as adds. If the value of Pguard is 1, the result of the comparison is placed

in the destination predicate register (or its complement for CF ). Otherwise, no actions

are taken. Under certain circumstances, a conditional predicate may be used in place

of an or-type predicate to eliminate the need for an initialization instruction. However,

conditional predicates may not issue in parallel as do the or-type predicates. For this

reason, the IMPACT compiler chooses not to generate conditional type predicates.

Two predicate types are introduced to facilitate generating eÆcient code using the

minimization techniques described in Chapter 6. These are referred to as disjunctive-type

(_T or _F ) and conjunctive-type (^T or ^F ). Table 2.1 (right-hand portion) shows the

deposit rules for the new predicate types. The ^T -type de�ne clears the destination

predicate to 0 if either the source predicate is FALSE or the comparison result is FALSE.

Otherwise, the destination is left unchanged. Note that this behavior di�ers from that

of the and-type predicate de�ne, in that the and-type de�ne leaves the destination unal-

tered when the source predicate evaluates to FALSE. The conjunctive-type thus enables

the compiler to form easily and eÆciently the logical conjunction of an arbitrary set of

conditions and predicates.
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The disjunctive-type behavior is analogous to that of the conjunctive-type. With the

_T -type de�ne, the destination predicate is set to 1 if either the source predicate or

the comparison result is TRUE (FALSE for _F ). The disjunctive-type is thus used to

compute the disjunction of an arbitrary set of predicates and compare conditions into a

single predicate.

2.2.2 Predicate clear/set instructions.

The stylized use of or-type, and-type, disjunctive-type, and conjunctive-type predi-

cates described previously requires that the predicates be precleared and preset. Three

sets of instructions are provided for these purposes. First, to individually clear and set

individual predicates, pred clr and pred set instructions are added to the instruction set.

Each takes up to two destination predicate registers and sets those destinations to the

value of 0 or 1. Note that unconditional predicate comparison instructions could also be

used to initialize individual predicates at the start of or-type, and-type, disjunctive-type,

or conjunctive-type predicate computation chains. The clear and set instructions provide

either a code-size bene�t, by combining multiple initializations into a single operation,

or a dependence height bene�t, by allowing all condition evaluations in a composite

predicate computation to be issued using parallel semantics.

A second set of instructions to clear and set groups of registers using a mask are

provided. These instructions are aptly called pred clr mask and pred set mask . These

instructions set a contiguous group of predicate registers to 0 or 1 using a mask. Any

combination of predicates addressed by the immediate mask can be cleared or set.
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2.2.3 Predicate save/restore instructions.

Extensions to the base instruction set allow two methods of saving and restoring

the contents of the predicate register �le. The pred ld blk and pred st blk instructions

allow the loading and storing of the predicate register �le in word-sized blocks. These

instructions are primarily used to save/restore the caller-save predicates across subroutine

calls and to save/restore the callee-save predicates at function entry and exit points. They

also make saving the contents of the predicate register �le during a context switch more

eÆcient.

The second method acts on individual predicate registers and is only required if the

need arises to spill predicate registers. The IMPACT compiler employs an intelligent

allocation algorithm method to avoid spilling predicate registers. In the rare situation

in which a predicate register has to be spilled, pld and pst instructions are used. These

instructions allow an individual predicate register to be loaded from and stored to mem-

ory. In this manner, the compiler has the freedom to handle predicate registers in the

same way as the conventional register types.

2.2.4 Predicate register �le.

As previously mentioned, an Nx1 register �le is added to the baseline architecture

to hold predicates. For several reasons, introducing a new register �le to hold predicate

values is preferable to using the existing general purpose register �le. First, it is ineÆcient

to use a word-sized general register to hold a one bit predicate. Second, register porting

is expected to be a signi�cant problem for wide-issue processors. By keeping predicates
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in a separate �le, additional port demands are not added to the general purpose register

�le. Within the architecture, the predicate register �le behaves no di�erently than a

conventional register �le. For example, the contents of the predicate register �le must

be saved during a context switch. Furthermore, the predicate �le is partitioned into

caller-save and callee-save sections based on the chosen calling convention.

2.3 Other Predicated Architectures

The IMPACT EPIC architecture is derived from and is a superset of a number of

previous architectures supporting predication. These architectures are described in this

section.

2.3.1 PlayDoh

The basis for predication in the IMPACT EPIC architecture is the PlayDoh architec-

ture developed at Hewlett-Packard Laboratories [20].

PlayDoh is a parameterized EPIC architecture intended to support public research on

ILP architectures and compilation [20]. PlayDoh predicate de�ne instructions generate

two Boolean values using a comparison of two source operands and a source predicate.

A PlayDoh predicate de�ne instruction has the form

�
Pdest1

type1
 �; Pdest2

type2
 �

�
(src0 [cmp] src1) hPguardi

The instruction is interpreted as follows: pD0 and pD1 are the destination predicate

registers; type0 and type1 are the predicate types of each destination; src0 [cmp] src1 is

the comparison, where [cmp] can be equal (==), not equal (! =), greater than (>), etc.;
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and pSRC is the source predicate register. The value assigned to each destination is

dependent on the predicate type. PlayDoh de�nes four predicate types, unconditional

(UT or UF ), conditional (CT or CF ), wired-or (OT or OF ), and wired-and (AT or AF ).

Each type can be in either normal mode or complement mode, as distinguished by the

T or F appended to the type speci�er (U, C, O, or A). Complement mode di�ers from

normal mode only in that the condition evaluation is treated in the opposite logical sense.

For each destination predicate register, a predicate de�ne instruction can either de-

posit a 1, deposit a 0, or leave the contents unchanged. The predicate type indicates

which function of the source predicate and the result of the comparison is to be applied

to derive the resultant predicate. The eight left-hand columns of Table 2.1 show the

deposit rules for each PlayDoh predicate type in both normal and complement modes,

indicated as T and F in the table, respectively.

The major limitation of the PlayDoh predicate types is that logical operations can

only be performed eÆciently among compare conditions. There is no convenient way to

perform arbitrary logical operations on predicate register values. While these operations

could be accomplished using the PlayDoh predicate types, they often require either a

large number of operations or a long sequential chain of operations, or both.

With traditional approaches to generating predicated code, these limitations are not

serious, as there is little need to support logical operations amongst predicates. The

Boolean minimization strategy described in Chapter 6, however, makes extensive use

of logical operations on arbitrary sets of both predicates and conditions. In this ap-

proach, intermediate predicates are calculated that contain logical subexpressions of the

�nal predicate expressions to facilitate reuse of terms or partial terms. The intermediate
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predicates are then logically combined with other intermediate predicates or other com-

pare conditions to generate the �nal predicate values. Without eÆcient support for these

logical combinations, gains of the Boolean minimization approach are diluted or lost.

2.3.2 Predicated execution support in Intel IA-64

The Intel IA-64 architecture supports full predication with a bank of 64 predicate

registers and a complement of two-destination predicate de�ning instructions. IA-64

supports the four basic deposit types proposed in the HP PlayDoh model, although the

predicate de�ning instructions have a di�erent format than in the earlier model. IA-64

provides predicate de�ning instructions which support several combinations of types for

the two deposits performed; for example, a template is provided which deposits using

an AT semantic into one destination and an OF semantic into the other destination.

Not all combinations of deposit types can be combined into a single predicate de�ning

instruction [22]. Like the PlayDoh model, the IA-64 model is a subset of the IMPACT

EPIC model, which is capable of combining predicate deposit types arbitrarily as well

as of using two new predicate deposit types not de�ned in IA-64. Thus, techniques

presented here for analysis of IMPACT-style predication are directly applicable to IA-

64 [22], and techniques presented for predicate optimization are applicable with some

modi�cation [23].

2.3.3 Predicated execution support in the Cydra 5

The Cydra 5 system is a very long instruction word (VLIW), multiprocessor system

utilizing a directed-data
ow architecture [9], [24]. Each Cydra 5 instruction word contains



26

seven operations, each of which may be individually predicated. An additional source

operand added to each operation speci�es a predicate located within the predicate register

�le. The predicate register �le is an array of 128 Boolean (one bit) registers.

The content of a predicate register may only be modi�ed by one of three operations:

stu� , stu� bar , or brtop. The stu� operation takes as operands a destination predicate

register and a Boolean value as well as an input predicate register. The Boolean value is

typically produced using a comparison operation. If the input predicate register contains

1, the destination predicate register is assigned the Boolean value. Otherwise, the desti-

nation predicate is assigned the value 0. The stu� bar operation functions in the same

manner, except the destination predicate register is set to the inverse of the Boolean

value when the input predicate value is 1. The semantics of the unconditional predicates

are analogous to those of the stu� and stu� bar operations in the Cydra 5. The brtop

operation is used for loop control in software pipelined loops and sets the predicate con-

trolling the next iteration by comparing the contents of a loop iteration counter to the

loop bound.

Figure 2.2 shows the previous example after if-conversion for the Cydra 5. Setting

the mutually exclusive predicates for the di�erent execution paths shown in this example

requires three instructions. First, a comparison must be performed, followed by a stu�

to set the predicate register for the true path (predicated on P1) and a stu� bar to set the

predicate register for the false path (predicated on P2). This results in a minimum de-

pendence distance of 2 from the comparison to the �rst possible reference of the predicate

being set.
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mov r1,0

mov r2,0

ld i r3,A,0

L1:

ld i r4,r3,r2

gt r6,r4,50

stu� p1,r6

stu� bar p2,r6

add r5,r5,1 (p2)

add r6,r6,1 (p1)

add r1,r1,1

add r2,r2,4

blt r1,100,L1

Figure 2.2: Example of if-then-else predication in the Cydra 5.

In the Cydra 5, predicated execution is integrated into the optimized execution of

modulo scheduled inner loops to control the prologue, epilogue, and iteration initia-

tion [25], [26]. When used in conjunction with a rotating register �le, predicated exe-

cution eliminates almost all code expansion otherwise required for modulo scheduling.

Predicated execution also allows eÆcient modulo scheduling of loops with conditional

branches.

2.3.4 Predicated execution support in ARM

The Advanced RISC Machines (ARM) processors consist of a family of processors,

targeted for embedded and multimedia applications, that specialize in low cost and very

low power consumption [27]. The ARM instruction set architecture supports the con-

ditional execution of all instructions. Each instruction has a 4-bit condition �eld that

speci�es the context for which it is executed. By examining the condition �eld of an in-

struction and the condition codes in a processor status register, the execution condition
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of each instruction is calculated. The condition codes are typically set by performing

a compare instruction. The condition �eld speci�es under what comparison result the

instruction should execute, such as \equal to," \less than," or \less than or equal to."

When the compare instruction result contained in the processor status register matches

the condition �eld, the instruction is executed. Otherwise, the instruction is nulli�ed.

With this support, the ARM compiler can eliminate conditional branches from the in-

struction stream.

2.3.5 Conditional instructions in TI C6X

Texas Instruments' TMS320C6000 VelociTI architecture supports a form of predi-

cated execution. Five general purpose registers, two in the A bank and three in the B

bank, may be used to guard the execution of instructions, either in the positive (execute

when the register contains a nonzero value) or negative (execute when the register con-

tains zero) sense. These values may be written using any ordinary instruction, and a set

of comparison instructions which deposit into these registers is also provided.

2.3.6 Limited predicated execution support in other systems

Many other contemporary processors o�er some form of limited support for predicated

execution. A conditional move instruction is provided in the DEC Alpha, SPARC V9,

and Intel Pentium Pro processor instruction sets [28], [29], [30]. A conditional move is

functionally equivalent to a predicated move. The move instruction is augmented with

an additional source operand specifying a condition. As with a predicated move, the

contents of the source register are copied to the destination register if the condition is true;
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otherwise, the instruction does nothing. The DEC GEM compiler can eÆciently remove

branches utilizing conditional moves for simple control constructs [31]. The HP PA-

RISC instruction set provides each branch, arithmetic, and logic instruction the ability

to conditionally nullify the subsequent instruction [32]. This feature has been utilized

extensively in the IMPACT compiler to emulate predicated execution support on the HP

platform.

The Multi
ow Trace 300 series machines supported limited predicated execution by

providing select instructions [33]. Select instructions provide more 
exibility than con-

ditional moves by adding a third source operand. The semantics of a select instruction

in C notation are as follows:

select dest,src1,src2,cond

dest = ( (cond) ? src1 : src2 )

Unlike the conditional move instruction, the destination register is always modi�ed

with a select instruction. If the condition is true, the contents of src1 are copied to the

destination; otherwise, the contents of src2 are copied to the destination register. The

ability to choose one of two values to place in the destination register allows the compiler

to e�ectively choose between computations from \then" and \else" paths of conditionals

based upon the result of the appropriate comparison.

Vector machines have had support for conditional execution for many years in the

form of mask vectors [34]. A mask of a statement S is a logical expression whose value

at execution time speci�es whether or not S is to be executed. The use of mask vectors

allows vectorizing compilers to vectorize inner loops with if-then-else statements.
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Although there are a great variety of implementation styles for predicated execution,

all can be mapped to the generalized IMPACT EPIC model for purposes of analysis and

optimization using the techniques presented here.
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3. COMPILATION FRAMEWORKS FOR PREDICATION

E�ective use of predicated execution presents a diÆcult challenge for ILP compilers.

Although predication o�ers the potential for large performance gains when eÆciently

utilized, an imbalance of predication and control 
ow in the generated code can lead to

dramatic performance losses. The primary determining factor is whether the compiler

can select the appropriate sets of paths for inclusion in predicated regions. The 
exibility

of the hyperblock makes it a natural choice for the basic unit of predicated code used in

this work. The hyperblock is a structure created to facilitate optimization and scheduling

for predicated architectures [17], [35]. A hyperblock is a set of predicated basic blocks

in which control may enter only from the top, but may exit from one or more locations.

Hyperblocks are formed by applying tail duplication and if-conversion over a selected set

of paths.

This chapter begins with a characterization of hyperblock quality, which provides valu-

able insight into the selection of an appropriate hyperblock formation mechanism and

compiler phase ordering. Next discussed is the motivation for performing if-conversion
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early in the compilation process. The chapter concludes with an exposition of the prob-

lems that arise in developing a heuristic for performing early (pre-schedule-time) hy-

perblock formation. The predication compilation framework presented in Chapter 7 is

motivated by the desire to extract high levels of ILP through the e�ective use of both

predicated execution and the predicated representation despite the complications pre-

sented in this chapter.

The principles developed in the following section are demonstrated using speci�cally

designed, hand-crafted code examples. For clarity, these examples are necessarily smaller

than hyperblocks typically created during compilation. The ideas illustrated, however,

are culled from years of experience compiling real benchmarks in a hyperblock compilation

framework. Unless noted otherwise, all schedules are for a three-issue, uniform functional

unit machine with unit latencies.

3.1 Bene�cial Path Inclusion

Building good hyperblocks entails selecting the appropriate execution paths for inclu-

sion. As might be expected, the scope of hyperblock-based optimizations and the bene�t

to be derived from run-time e�ects of predication increase with hyperblock size, as long

as included paths are well selected. The following example demonstrates some of the

characteristics of a well-formed hyperblock.

Figure 3.1 demonstrates the if-conversion of two consecutive if-then-else constructs,

or hammocks. Figure 3.1(a) shows a very simple control 
ow graph before hyperblock

formation. It consists of six instructions, three of which are branches. The instructions

in Figure 3.1(a) are given numbers which uniquely identify them and which indicate in
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r1 = r1 − 1r1 = r1 + 1

branch Cond1

branch Cond2

jump

T <p4>F

F

(4)

(3)

(1)

(5)

r2 = r2 + 1(6)

(2)

(a)

(b)

1

2

p1, p2 = Cond1

r1 = r1 + 1 r1 = r1 − 1

p3, p4 = Cond2

r2 = r2 + 1<p1> <p2>

(1)

(2)

(5)

(4) (6)

Figure 3.1: Formation of a hyperblock (b) from consecutive if-then-else constructs(a).

what order the code would be laid out. The static basic block schedule for this code on

a traditional machine cannot have a height of less than four cycles due to its dependence

height. Parallel execution of this code segment is limited solely by control dependences.

One subset of these control dependences, which sets a lower bound on the dependence

height, consists of the control dependences 1 ! 2, 2 ! 5, and 5 ! 6. Other properties

worth noting in the original code are related to the number and types of instructions.

There is a total of six instructions: two conditional branches, one unconditional branch,

and three computation instructions. The preponderance of branches in this code segment

has a parasitic e�ect on performance, the severity of which depends on the branch-

handling capabilities of the target architecture.

Figure 3.1(b) shows the same code segment after hyperblock formation including all

paths. Conditional branches 1 and 5 have been converted to predicate de�ne instruc-

tions. Branch 3 has been removed by combining the four original control 
ow paths

into one. Elimination of branch 3 reduces the instruction count of this code from six

to �ve. The removal of all branches eliminates their corresponding control dependences.

While the resulting hyperblock contains no control dependences, it does contain new
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data dependences 1 ! 2, 1 ! 4, and 5 ! 6 created by the sourcing and sinking of

predicate registers. However, these data dependences are more desirable than the origi-

nal control dependences because they allow a two cycle schedule and allow overlapping

the consecutive hammocks. The ability to overlap noncomplementary paths can be a

source of signi�cant ILP. Assuming the three-issue machine described earlier, neither the

dependence height nor the resource subscription force the schedule to more than two

cycles. The result is a code schedule that halves the execution time even in the presence

of perfect branch prediction.

The bene�ts of the resulting hyperblock do not stop at the static code schedule.

The removal of two conditional branches eliminates their mispredictions and associated

misprediction penalties. Any taken branch penalties which may have existed are also

removed. The hyperblock's straight-line code segment can be a great improvement over

the disjoint blocks of the original code for instruction fetch mechanisms.

3.2 Harmful Path Inclusion

As suggested by the previous section, the bene�ts of hyperblock formation increase

with the inclusion of more paths. However, for practical machines, compilers, and code

characteristics there are many constraints on the size of e�ective hyperblocks.

One reason why including a path can be detrimental to good hyperblock performance

is that it causes excessive resource consumption. Figure 3.2 illustrates this problem.

Figure 3.2(a) is a single hammock with two control 
ow paths controlled by branch in-

struction 1. The taken path consists of �ve instructions and has a dependence height of 2

cycles. The fall-through path also consists of �ve instructions and also has a dependence
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(1) 1

2

3

4

(6)

(5)

(4)

(3)

(2) r1 = MEM[A]

r2 = MEM[B]

r3 = MEM[C]

branch Cond p1, p2 = Cond(1) r1 = MEM[A]

r4 = MEM[D]

r5 = MEM[E]

(b)r6 = MEM[F]

r7 = r1 + r2

r4 = MEM[D]

r2 = MEM[B] r5 = MEM[E]

r7 = r1 + r2

r3 = MEM[C]

(2)

r6 = MEM[F] (5)

(4)(3) <p1> <p1>

<p1><p2>

<p2>

<p2>

T F

r7 = r4 & r5

r7 = r4 & r5

r8 = r5 & r6jump (11)

(10)

(9)

(8)

(7)

(7)

(8)

(9) (10)

(11) r8 = r5 & r6 <p2>

(a)

Figure 3.2: Hyperblock formation saturating processor resources.

height of two. Since the machine model assumed for the examples has uniform functional

units, instruction count can be an accurate measure of the subscription to machine re-

sources. Scheduling the code of Figure 3.2(a) for this machine model results in each path

�tting into two cycles.

Figure 3.2(b) shows the hyperblock formed by the if-conversion of these paths to-

gether. As expected, the resulting number of instructions is roughly equal to the sum of

the instruction counts of the original paths. Scheduling for the three-issue machine model

shows that this hyperblock requires four cycles for completion, compared with the three

cycles needed for the original code. This does not take into account the branch and cache

penalties eliminated by if-conversion. However, in some machines these bene�ts would

be stripped by the increase in schedule height. Certainly, in actual code where path

instruction counts number in the hundreds, resource over-subscription has the potential

to negate all bene�ts of hyperblock compilation.

The problem of predicting the resource consumption due to including a path is not

easily solved. In the uniform functional unit machine, the expected resource height is

simply the sum of all instructions in each path included divided by the issue width after

accounting for the removal of branches and creation of predicate de�ne instructions.
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However, in practical machines, the types and number of instructions that can be issued

together complicate this calculation.

The example of Figure 3.2 clearly illustrates that resources available in the target

machine must be considered when choosing whether or not to include a path. While

resource height is important, it is not the only consideration. Dependence height can

also cause harmful path interaction. Consider a simple hammock of two paths, one with

a dependence height of two cycles and the other with a dependence height of eight cycles.

A hyperblock containing both paths cannot complete until all of its constituent paths

have completed. Therefore, the overall height of the hyperblock must be the maximum

of all the original path's dependence heights. This means that every time the short path

would have been executed in two cycles, it is now executed in eight cycles{four times

slower{resulting in poor hyperblock performance.

The problem is more complicated than solving independently for resource consump-

tion and dependence height in the hyperblock formation decision process. There can exist

many interactions between dependence height and resource consumption in a code sched-

ule. For instance, the number of instructions available for issue in the �rst cycle may be

much greater than the number of instructions available for issue later in the schedule due

to 
ow dependences among the instructions. This is the case in Figure 3.6 on page 45, as

will be discussed later. Considering this issue alone suggests that hyperblock formation

decisions may belong in the scheduling phase.



37

3.3 Phase Ordering Considerations

Having established a concept of what make good and bad paths for inclusion in

hyperblocks, or the \what to if-convert" question, we now turn our attention to the

other question, of when it is most pro�table to perform if-conversion in an ILP com-

piler. Although the previous section concluded with a strong justi�cation for delaying

hyperblock formation until schedule time, there are many compelling reasons for wanting

to incorporate predication as early as possible in the compiler back-end. The bene�ts

of performing signi�cant optimization subsequent to if-conversion fall into two general

categories. The �rst category consists of optimizations which could be performed in a

nonpredicated environment, but which can be e�ected much more naturally and with

less compiler complexity in the predicated domain. The second category consists of op-

timizations which take particular advantage of the features of predicated execution, and

which cannot be implemented without it.

Applying if-conversion to create hyperblocks early enables the full use of the predi-

cated representation by the compiler to facilitate ILP optimizations and scheduling. The

formation of relatively large hyperblocks early in the compilation process allows many

local transformations to have global scope. Consider the local scheduling of a hyperblock

for example, in which instructions from various paths can be scheduled freely with re-

spect to each other. To achieve the same e�ect in a nonpredicated environment, a global

scheduler would have to be employed to move code among the constituent basic blocks.

The formation of hyperblocks early in the compilation process also enables local data



38


ow optimizations to optimize across dependences which were converted from control

dependences. This can have a powerful e�ect on the quality of code generated.

Furthermore, when traditional data 
ow optimizations are applied to predicate de-

�nes themselves, powerful control optimizations can result. For example, common sub-

expression elimination when applied to predicate de�nes can have the same e�ect as

branch merging. Put another way, branch merging and many other control 
ow trans-

formations can be performed by simple data 
ow transformations which already exist

in most compiler infrastructures. The need to implement optimizations that perform

control 
ow transformations can be eliminated. While these bene�ts of early hyperblock

formation are important in simplifying compiler design, a compiler could be built that

performs all the necessary optimizations to achieve the same level of code quality.

Finally, there exists a large and growing body of optimizations whose e�ectiveness de-

pends on being able to generate a predicated result, or which have no practical control 
ow

equivalent. The predicated representation allows complex control 
ow transformations to

be recast into the data dependence domain, making them practical and pro�table. Exam-

ples of such transformations include branch reordering, control height reduction [16], and

branch combining [36], and optimization of program decision logic [23]. Some outcomes

of these and other optimizations can only be represented e�ectively to the hardware using

predication. The introduction of predication after most optimizations are complete would

make these optimizations impossible or at least would reduce their e�ectiveness. Work

continues in exploring the full potential of predication and the predicated representation

and the case for early hyperblock formation can thus be expected to strengthen.
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Figure 3.3: Early heuristic hyperblock formation estimates �nal code characteristics. Op-
timization changes a good hyperblock decision into a poor one.

3.4 The Hyperblock Compilation Framework

Having examined the rationale for performing if-conversion early, we �nally turn to

a consideration of the means by which paths could be selected for inclusion in hyper-

blocks. Balancing control 
ow and predication in hyperblocks is a relatively easy process

when performed after all other code transformations are complete. However, to take

full advantage of predication, optimization and scheduling passes must be performed on

the hyperblocks. The following discusses various mechanisms for selecting paths, and

problems with performing hyperblock path selection before schedule time.

The original approach used in the IMPACT compiler to support predicated execu-

tion is called the Hyperblock Compilation Framework and is shown in Figure 3.3. In this

framework hyperblocks are formed using a path selection heuristic in an early compilation

phase. The early phase if-conversion exposes the predicated representation throughout

all the back-end compilation phases. Inclusion of a particular path into a hyperblock is
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done by considering its pro�tability. Pro�tability is determined by �ve pieces of infor-

mation: resource utilization, dependence height, hazard presence, execution frequency,

and branch behavior. Ideally, a hyperblock contains paths which together fully utilize

machine resources, which are balanced in height, and which do not contain hazards.

Further, in a model hyperblock most instructions are not nulli�ed often, and only well-

behaved branches remain. Heuristic hyperblock formation has been shown to perform

well for relatively regular machine models [36]. In these machines, resource consump-

tion, dependence height, and hazards are managed e�ectively by the carefully crafted

heuristics.

Hyperblock formation is a complex decision making process which requires a carefully

crafted heuristic. Clearly, the heuristic must be sophisticated enough to consider the

resource utilization, dependence height, hazard presence, and execution frequency for

each path. Additionally, the heuristic must understand how an included path will interact

with other included paths. For example, the inclusion of two paths which share a branch

allows for that branch's removal, so the heuristic must also consider the run-time behavior

of shared branches in candidate path sets. Path selection is further complicated by the

fact that the inclusion or exclusion of particular paths can have a dramatic in
uence on

the e�ectiveness of further optimizations and scheduling, as well as on how well the code

after optimization will utilize the target machine's resources.

Oversubscription to resources and imbalances in dependence height are the two most

common causes of poor hyperblock performance. However, other less obvious factors

play a role in a hyperblock's e�ectiveness. One such factor is the presence of hazards. A

hazard is any instruction or set of instructions which hinders eÆcient scheduling of paths
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other than its own. Hazards can exists as instructions referencing registers which cannot

be renamed, as ambiguous stores, or as jsr's with unknown or con
icting side-e�ects.

Since hazards a�ect other paths by de�nition, their negative e�ects can be eliminated by

keeping them separate from other paths. This can be done by excluding them through

tail duplication.

Figure 3.4(a) shows the control 
ow graph of a code segment which contains a hazard.

Since the fall-through path contains one instruction and has a dependence height of one,

it seems that including it would not adversely a�ect the hyperblock's dependence height

and resource consumption characteristics. Figure 3.4(b) shows the hyperblock formed

by including this fall-through path. In this schedule, it is assumed that the jsr has an

unknown pointer store. Since the called procedure could potentially store to locations

B or C, memory dependences 4 ! 5 and 4 ! 6 need to be created and respected. The

result of this hyperblock schedule is that six cycles are required regardless of branch 3's

direction. Figure 3.4(c) shows a hyperblock formed by excluding the fall-through path.

Here the schedule is only three cycles when the branch is not taken. The destination

of instruction 3 is a block containing instruction 4 as well as a copy, or tail duplication,

of instructions 5 through 8. This tail duplication makes it possible to obtain the short

schedule on the fall-through path. It is important to note that the path containing the

jsr still has a six cycle schedule, three cycles in the Figure 3.4(c) hyperblock and three

cycles in the tail-duplicated code.

As demonstrated, identifying and excluding hazards is very important to resulting

code performance. Unfortunately, identifying hazards is a diÆcult problem. Consider

the same example if we had assumed that all of instruction 4's memory operations were
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(1) r1 = MEM[A]

(2)

(3)

r1 = r1 + 1

branch r1 > 10

(6)

(7)

(8)

r2 = MEM[B]

r3 = MEM[C]

r4 = r2 + r3

MEM[D] = r4

(5)

6

(4) jsr FUNC

1

2

(1)

(2)

3

4 <p2>(4) jsr FUNC

r1 = MEM[A]

r1 = r1 + 1

(3) p1, p2 = r1 > 10

F

(a)

(5) r2 = MEM[B] (6) r3 = MEM[C]

r4 = r2 + r3

MEM[D] = r4

(7)

(8)

(b)

1

2

3

r1 = MEM[A](1)

(2) r1 = r1 + 1

(3) branch r1 > 10

(5) r2 = MEM[B] r3 = MEM[C](6)

r4 = r2 + r3(7)

(8) MEM[D] = r4

(c)

5

Figure 3.4: Hyperblock formation of code (a), including (b) and excluding (c) a path
containing a hazard.

known to be independent with respect to instructions 5 and 6. In that case, the resulting

hyperblock would have been four cycles for both paths. Clearly, the jsr is only a hazard

when it creates dependences between itself and instructions in other paths. The type and

number of hazards is often a function of the capabilities of the compiler. For example,

the level of memory disambiguation in a compiler determines which store instructions

are hazards to eÆcient code generation.

3.5 Challenges Posed by Post-If-Conversion Optimization

While it might seem reasonable that a heuristic could be designed to take all these

e�ects into account, the following example will show that optimization subsequent to

hyperblock formation may render early heuristic-based selection decisions incorrect.

Figure 3.5(a) shows another simple hammock to be considered for if-conversion. The

taken path consists of a dependence height of two and a resource consumption of three

instructions after if-conversion. The fall-through path consists of a dependence height of

six and a resource consumption of six instructions. A simple estimate would indicate that
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(1) branch Cond

T F

(2)

(3)

(4)

r1 = MEM[A]

MEM[B] = r1

r1 = MEM[C]

MEM[D] = r1(5)

(6)

(7)

(8)

(9)

r1 = r3 + 2

(10)

jump

r1 = r2 + 1

r2 = MEM[A]

r1 = r1 + 2

(11) r9 = MEM[r1]

r9 = MEM[r1]

(a)

1

2

3

(8)

<p1>

(2,6) r2 = MEM[A]

r1 = r2 + 1

p1, p2 = Cond(1)

(4,11)

(3)

<p2>

r3 = MEM[C]

MEM[D] = r3(9)

(b)

(7) MEM[B] = r2 <p2> (10) <p2>

r9 = MEM[r1]

Figure 3.5: Bene�cial hyperblock formation of seemingly incompatible paths due to code
transformations. The T and F annotations in (a) indicate the taken and fall-
through paths for the conditional branch. r2 is not referenced outside the T
block. (b) shows the hyperblock schedule.

combining these paths together would result in a four-cycle penalty for the taken path

due to the fall-through path's long dependence height. Figure 3.5(b) shows this code

segment after hyperblock formation and further optimizations. The �rst optimization

performed, renaming, eliminates the false dependences 7! 8 and 8! 10. This reduces

the dependence height of the hyperblock to three cycles.

If a heuristic could foresee that dependence height would no longer be an issue, it

might still choose not to form this hyperblock due to its level of resource consumption.

Based on an inspection of Figure 3.5(a), a heuristic might estimate a hyperblock size of

10 instructions. Unfortunately, execution of 10 instructions requires at least four cycles

on a three-issue machine, penalizing the taken path by one cycle. Thus a heuristic might

decide that the combination of these paths would not be bene�cial. After an instruction

merging optimization in which instructions 2 and 6 are combined and 4 and 11 are

combined, the instruction count becomes 8. The �nal schedule takes only three cycles, a

win for both paths when the control dependence from instruction 1 is considered.
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The example of Figure 3.5 shows that even in simple cases an early hyperblock for-

mation heuristic must anticipate the optimizations to be applied afterwards in order to

form hyperblocks e�ectively. In this example, some optimizations, such as renaming,

could have been performed before hyperblock formation. Others like operation merging,

however, can be performed only after hyperblock formation. In addition, some optimiza-

tions may be done di�erently because of di�erent trade-o�s which would be made in the

context of the di�erent code characteristics.

Anticipating exactly how e�ective future optimizations would be is an intractable

problem, but perhaps empirical data could be used to estimate the aggregate e�ective-

ness of optimization. Using this information, the hyperblock former might be able to

make intelligent decisions. Assume that empirical data correctly suggests that the re-

source consumption of the resulting hyperblock will be 66% of the original, and that its

dependence height will remain unchanged. Under these conditions the generated esti-

mates may still be misleading, as the example of Figure 3.6 demonstrates. Figure 3.6(a)

consists of two paths, each with a dependence height of four. The resource consumption,

or equivalently for this machine, the instruction count, is 18 instructions. Using the pre-

dicted optimization e�ects, the resulting hyperblock should contain 12 instructions and

have a dependence height of four cycles, for a total cycle count of four cycles. Indeed,

Figure 3.6(b) shows that the optimized code meets these expectations. Unfortunately,

predicting the outcome of optimization in this way is inaccurate in the majority of cases.

Consider the code segment shown in Figure 3.6(c). Like the code in Figure 3.6(a), this

segment of code also has two paths with dependence heights of 4 and 18 instructions.

Figure 3.6(d) shows this code after optimization. Here the predicted dependence height
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(a)

(c)

(b)

(d)

1

2

3

p1, p2 = Cond(1) r1 = MEM[A]
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5

6

(2)

<p2>

(1) branch Cond

T F

(2)

(3)

(4)

r2 = MEM[B]

r3 = MEM[C]

r1 = MEM[A]

jump

r4 = MEM[D]

r5 = r1 + r2

(5)

(6)

(7)

(8)

(9)
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(11) r1 = MEM[E] <p2>(12) r2 = MEM[F] r3 = MEM[C]

(17)

(4) <p1>

(6,15) r5 = r1 + r2 r3 = MEM[G]

r6 = r3 + r4

r7 = MEM[E]

r8 = MEM[F]

r9 = MEM[G]

r7 = r5 + r6

MEM[S] = r7

r6 = r3 + r4

r7 = r5 + r6

MEM[S] = r7

(8,17)

(9,18)

r11 = r7 + r8

r12 = r9 + r10

r3 = r11 + r12

MEM[S] = r13

(7,16)

(13) <p2>

r10 = MEM[D]

r4 = MEM[D](5,14)

1

2

3

4

(1) branch Cond

T F

(2)

(3)

(4)

r2 = MEM[B]

r3 = MEM[C]

r1 = MEM[A]

jump

r4 = MEM[D]

r5 = r1 + r2

MEM[R] = r5

r5 = r5 − r3

MEM[S] = r4

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

r6 = MEM[A]

r7 = MEM[B]

r8 = MEM[C]

r9 = MEM[D]

r10 = r10 + r8

MEM[T] = r10

r4 = MEM[D](5,14) r5 = r1 + r2

r5 = r5 − r3

MEM[R] = r5

r10 = r6 + r7

r10 = r5 + r8

(6,15)

MEM[S] = r4

(2,11) r1 = MEM[A] (3,12) r2 = MEM[B] r3 = MEM[C](4,13)

p1, p2 = Cond(1)

MEM[U] = r9

MEM[U] = r4<p2> <p2>

<p1>

<p1> MEM[T] = r10

(7)

(8) (18)

(9)(16)

Figure 3.6: Hyperblock formation of seemingly compatible paths with negative results.
Hammock (a) results in a bene�cial hyperblock (b). Hammock (c), with less
opportunity for cross-path optimization, results in a performance-degrading
hyperblock (d).

and resource count was obtained. However, the resulting schedule height is six cycles,

50% higher than the estimate. The discrepancy between the predicated schedule and

the actual schedule is caused by the destructive interaction between dependences and

resources. This e�ect demonstrates that to be useful the exact outcome of further opti-

mization must be predicted not just at a high level, but in a very accurate and precise

manner. Due to the complex interactions of di�erent optimizations, the only reliable way

to predict the exact outcome of optimizations is actually to perform them. Since these
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optimizations need to be applied to each candidate path selection set for each hyperblock,

the optimization anticipation method is either cost-prohibitive or too inaccurate to be

useful.

The challenge of forming eÆcient hyperblocks does not end there. Further complica-

tions result when we consider the fact that including part of a path may sometimes be

more bene�cial than including or excluding that entire path. This gives a hyperblock for-

mation heuristic many more possibilities to consider. It also gives it the responsibility to

be accurate at the instruction level, not just the path level. Taken together, this further

complicates the already seemingly impossible task it must perform. If-conversion which

can include parts of paths is referred to as partial if-conversion. Partial if-conversion

is generally e�ective when the resource consumption or dependence height of an entire

candidate path is too large to permit pro�table if-conversion, but there is a performance

gain to be had by overlapping a part of the candidate path with the other paths selected

for inclusion in the hyperblock.

Figure 3.7 shows an example in which partial path inclusion results in better code

than full inclusion or exclusion. Figure 3.7(a) shows two otherwise incompatible paths.

However, by including all of the taken path and 4 instructions from the fall-through path

an eÆcient hyperblock is created. This hyperblock is shown in Figure 3.7(b). Notice that

branch instruction 2 has been split into two instructions: the condition computation,

labeled 20, and a branch based on that computation, labeled 200. The schedule did not

bene�t from the complete removal of branch instruction 2, as the branch instruction 200

has the same characteristics of the original. However, the schedule did bene�t from the
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(1)

(3)

(4)

(5)

(2)

FT

r1 = MEM[A}

branch r1 > r10

r2 = MEM[B]

MEM[R] = r2

jump

r3 = MEM[C]

r4 = MEM[D]

r5 = MEM[E]

r6 = r3 + r4

r7 = r6 + r5 (c)
MEM[F] = r7(11)

(10)

(9)

(8)

(7)

(6)

(a)

1

2

3 <p1> <p2>

(6)(3)(1)

(4)

(7) (8)

(9)MEM[R] = r2

p1, p2 = r1 > r10

r1 = MEM[A]

jump

r5 = MEM[E]

r3 = MEM[C]r2 = MEM[B]

r4 = MEM[D]

r6 = r3 + r4 <p2>

(2’)

(2’’)

(10)

(11)

r7 = r6 + r5

MEM[F] = r7

1

2

(b)

Figure 3.7: An eÆcient hyperblock (b) and tail (c) formed from hammock (a) through
the inclusion of a partial path.

extra speculation drawn from both paths. The destination of branch instruction 200 is

shown in Figure 3.7(c).

3.6 Compilation Frameworks

Thus far, this chapter has described the challenges of compiling e�ectively for pred-

icated execution. EÆcient code must exhibit a delicate balance between control 
ow

and predication. This balance is highly dependent on �nal code characteristics and the

resource characteristics of the target processor. An e�ective compilation framework for

predicated execution must provide a means of making intelligent trade-o�s between con-

trol 
ow and predication so the desired balance can be achieved. The best time to create

an accurate balance is after all code transformations have been performed. An over-

simplistic solution to this problem is to apply if-conversion at schedule time, after all

other optimizations have been performed. While this phase ordering can use predication

in a bene�cial way, performance will fall short of predication's full potential.



48

As described in Section 3.3, if-conversion must be done before optimization in order

to take full advantage of the predicated representation and of predicate optimizations. In

the IMPACT compiler this has been accomplished in the context of the Hyperblock Com-

pilation Framework, as described in Section 3.4. The remainder of this section examines

two frameworks, the If-Conversion during Scheduling Framework and the Partial Reverse

If-Conversion Framework, which attempt to reconcile the need to perform optimization

after if-conversion with the need to form carefully selected regions. The Partial Reverse

If-Conversion Framework, the subject of this chapter, is successful because it is designed

to capture the desirable properties of both other frameworks.

3.6.1 The If-Conversion during Scheduling Framework

Given the diÆculties with forming hyperblocks early in the back-end compilation

process, a seemingly natural strategy is to perform if-conversion in conjunction with

instruction scheduling [18]. This can be achieved by integrating if-conversion into the

scheduling process itself. The scheduler not only accurately models the detailed resource

constraints of the processor but also understands the performance characteristics of the

code. Therefore, the scheduler is ideally suited to making intelligent if-conversion deci-

sions. In addition, all compiler optimizations are usually complete when scheduling is

reached, thus the post-if-conversion path transformation problem is reduced.

Delaying if-conversion until scheduling, however, prevents the compiler from using the

predicated representation to perform control 
ow transformations or predicate-speci�c

optimizations as shown in Chapter 3.3. One solution to this problem, the If-Conversion
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Figure 3.8: The If-Conversion during Scheduling Framework.

during Scheduling Framework shown in Figure 3.8, delays to schedule time the optimiza-

tions which require predication. Unfortunately, delaying only some optimizations until

schedule time creates a problematic compiler phase ordering. Generally, most transforms

have profound e�ects on one another and must be applied repeatedly in turn to achieve

desirable results. For example, one predicate-based transformation, such as control height

reduction [16], may expose a critical data dependence edge that should subsequently be

broken by expression reformulation. Unless the control dependence height is reduced,

however, the potential instruction-count cost of applying expression reformulation com-

bined with the apparent lack of any bene�t will prevent the compiler from applying the

transform. Thus, for if-conversion during scheduling to yield code of quality compa-

rable to that produced in an early formation scheme, traditional optimizations must be

performed along with if-conversion and predicate-speci�c optimizations, in the scheduler.

For this framework to generate high-quality predicated code, the scheduler must si-

multaneously perform global scheduling, partial path if-conversion, predicate optimiza-

tions, tail duplication, ILP optimizations, and traditional optimizations. While studies
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Figure 3.9: The Partial Reverse If-Conversion Predication Framework.

have exhibited the possibility and pro�tability of performing optimizations at schedule

time [37], in the If-Conversion during Scheduling Framework much more complexity is

added to an ILP scheduler that must already consider many issues, including control

speculation, data speculation, and register pressure. That this additional complexity is

tolerable in a commercial instruction scheduler is highly doubtful, but for such a frame-

work to produce quality code it is absolutely necessary.

3.6.2 The proposed compilation framework

Given that performing if-conversion at schedule time limits the use of the predicated

representation for optimization and given that if-conversion at an early stage is limited in

its ability to estimate �nal code characteristics, it is logical to look to an alternative com-

pilation framework. This chapter presents such a framework. This framework overcomes

limitations of other schemes by utilizing two phases of predicated code manipulation to

support predicated execution. Aggressive if-conversion is applied in an early compilation
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phase to create the predicate representation and to allow 
exible application of predi-

cate optimizations throughout the back-end compilation procedure. Then, at schedule

time, the compiler adjusts the �nal amount of predication to match the target architec-

ture. The Partial Reverse If-Conversion Predication Framework, shown in Figure 3.9,

consists of two phases of predicate manipulation surrounding classical, predicate-speci�c,

and ILP optimizations. The �rst predicate manipulation phase, hyperblock formation,

has been addressed thoroughly in [17]. The second predicate manipulation phase, the

adjustment of hyperblocks during scheduling termed partial reverse if-conversion, was

proposed in [38], and is discussed in further detail here.

The �rst phase of the compilation framework consists of performing aggressive hyper-

block formation. The hyperblock former does not need to compute exactly what paths,

or parts of paths, will �t in the available resources and be completely compatible with

each other. Instead, it forms hyperblocks that are larger than the target architecture

can handle. The large hyperblocks increase the scope for optimization and scheduling,

further enhancing the bene�t derived from the predicated representation. In many cases,

the hyperblock former will include almost all the paths. This is generally an aggressive

decision because the resource height or dependence height of the resulting hyperblock is

likely to be much greater than the corresponding heights of any of its component paths.

However, the if-converter relies on later compilation phases to ensure that this hyperblock

is eÆcient. One criterion that is still enforced in the �rst phase of hyperblock formation

is that paths containing hazards are excluded. As was discussed in Chapter 3, hazards

reduce the compiler's e�ectiveness for the entire hyperblock; thus, they should be avoided

to facilitate more aggressive optimization.



52

The second phase of the compilation framework consists of adjusting, via partial

reverse if-conversion, the amount of predicated code in each hyperblock as the code

is scheduled. Partial reverse if-conversion is conceptually the application of reverse if-

conversion to a particular predicate in a hyperblock for a selected set of instructions.

Reverse if-conversion was originally proposed as the inverse process to if-conversion. In

that process, branching code that contains no predicates is generated from a block of

predicated code. This allows code to be compiled using a predicated representation, but

to be executed on a processor without support for predicated execution [39].

The scheduler with partial reverse if-conversion operates by identifying the paths

composing a hyperblock. Paths which overlap pro�tably remain unchanged. Conversely,

a path that interacts poorly with the other paths is removed from the hyperblock. In

particular, the partial reverse if-converter decides to eject certain paths, or parts of paths,

to enhance the schedule. To do this, the reverse if-converter inserts a branch that is taken

whenever the removed paths would have been executed. This has the e�ect of dividing

the lower portion of the hyperblock into two parts, corresponding to the taken and fall-

through paths of the inserted branch. The decision to reverse if-convert a particular path

consists of three steps. First, the partial reverse if-converter determines the savings in

execution time to be obtained by inserting control 
ow and applying the full resources of

the machine to each of two hyperblocks instead of dividing them between the two paths

in the single hyperblock. Second, it computes the loss created by any penalty associated

with the insertion of the branch. Finally, if the gain of the reverse if-conversion exceeds

the cost, it is applied. Partial reverse if-conversion may be applied repeatedly to the

same hyperblock until the resulting code is desirable.
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A very important point is that regardless of the best possible balance of predication

and control 
ow, the code has bene�ted from originally being predicated. Even if the

partial reverse if-converter decides to completely restore control 
ow, the resulting code

bene�ts from the freedom provided to optimizations and scheduling [39]. For example,

portions of all paths exist and execute in parallel in various parts of the hyperblock due

to the freedom provided to the scheduler.

The strategy used for this compilation framework can be viewed as analogous to the

use of virtual registers in many compilers. With virtual registers, program variables are

promoted from memory to reside in an in�nite space of virtual registers early in the

compilation procedure. The virtual register domain provides a more e�ective internal

representation than do memory operations for compiler transformations. As a result, the

compiler can perform more e�ective optimization and scheduling on the virtual register

code. Then, at schedule time, virtual registers are assigned to a limited set of physi-

cal registers and memory operations are reintroduced as spill code when the number of

physical registers was over-subscribed. The framework presented in this chapter does

for branches what virtual registers do for program variables. Branches are removed to

provide a more e�ective internal representation for compiler transformations. At sched-

ule time, branches are inserted according to the capabilities of the target processor.

The branches reinserted have di�erent conditions, targets, and predictabilities than the

branches originally removed. The result is that the branches in the code �t the perfor-

mance constraints for a particular processor, rather than the code structure decisions

made by the programmer.
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The key to making this predication and control 
ow balancing framework e�ective is

the partial reverse if-converter. The mechanics of performing partial reverse if-conversion,

as well as a proposed policy used to guide partial reverse if-conversion, are presented in

Chapter 7.
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4. PREDICATE ANALYSIS SYSTEM

In the Partial Reverse If-Conversion Framework, code is rendered in an early phase

by the compiler into the predicated representation through if-conversion. E�ective op-

timization, scheduling, and register allocation of code in the predicated representation,

however, require the compiler to understand the logical relationships among predicates

because execution conditions are no longer solely dependent on branches. Previous work

has demonstrated the importance of accurate predicate relation analysis to some phases

of compilation, such as register allocation [19]. This chapter presents a 
exible, pow-

erful, modular, and eÆcient analysis framework that surpasses all previously published

systems in accuracy of predicate relationship representation. This framework, called the

Predicate Analysis System (PAS), includes a mechanism for incorporating range analysis

of conditions into the logical database, where previous techniques do not. This chapter

presents results indicating the importance of accurate predicate analysis in performing

optimizations, and the eÆciency of the selected binary decision diagram (BDD) repre-

sentation in answering required queries.



56

4.1 Predicate Analysis

In traditional nonpredicated codes, a program control 
ow graph speci�es the execu-

tion condition of each instruction. Whether or not a control 
ow graph is used explicitly,

compilers must often consider an instruction's position in the control 
ow graph rela-

tive to others to determine if a particular transformation is legal, or to compute useful

data
ow analyses [40]. Because in predicated codes an instruction must be fetched and

its guard predicate must hold a value of 1 in order to execute, the control 
ow graph

speci�es the fetch condition rather than the execution condition, which is the logical

conjunction of the fetch condition and the guard predicate condition. Because program

state is modi�ed with respect to execution conditions, compiler transformations must be

concerned with both the guard predicate and fetch conditions. As such, many notions of

code properties must be revisited. For example, let fetch dominance (fdom) assume the

traditional de�nition of dominance:

I1 fdom I2 i� every fetch path from the unique entry node START to I2 includes I1.

Let execution dominance (edom) be de�ned as:

I1 edom I2 i� I1 fdom I2 and PI1 � PI2.

One of the most signi�cant changes to a compiler in rendering it predicate-aware is the

replacement of traditional dominance queries with execution dominance queries.

A simple example demonstrates the application of edom. Figure 4.1 shows two code

segments which are considered for application of a constant propagation optimization.

In Figure 4.1(a), constant propagation cannot be applied because instruction 2, the
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Figure 4.1: Constant propagation optimization in a predicated region. Branching code
(a) and hyperblock (b) in which optimization is invalid, branching code (c)
and hyperblock (d) in which it is valid.

assignment to r3, does not dominate instruction 4, the assignment to r4. In Figure 4.1(c),

however, the �rst de�nition dominates the second, so the optimization is valid. After if-

conversion of (a) into (b) and (c) into (d), which does not alter program semantics,

instruction 2 fetch-dominates instruction 4 in both cases. A compiler that ignored the

e�ect of predication on execution dominance would erroneously apply the optimization

to the code of Figure 4.1(b). On the other hand, a compiler incapable of recognizing

execution dominance relations between predicated instructions when they do exist, in

this case between instructions 2 and 4 in Figure 4.1(d), would fail to apply valid and

pro�table optimizations in predicated regions.

To ensure that legitimate optimizations are applied, but that illegal ones are pre-

vented, a predicate relationship query system is required. In particular, a subset query

function must be implemented to compute execution dominance for the example in Fig-

ure 4.1. One very straightforward (but highly conservative) subset query function could

be implemented as

Subset (Pi; Pj) := (Pj = 1) _ (Pi = Pj).
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Unfortunately, the conservative nature of this implementation could adversely a�ect �nal

code quality. Figures 4.1(c) and 4.1(d) show a code segment in which this is the case. In

Figure 4.1(c), constant propagation between instructions 2 and 4 should be performed

because the required dominance relation holds. Logically, the same transformation should

be applicable after if-conversion, as in Figure 4.1(d). Likewise, I2 edom I4 since I2 fdom

I4 and P1 � P2. The conservative subset query cannot identify relations between two

variable predicates; thus, the execution dominance test fails, and the optimization is not

performed. Results presented later will support the suggestion made in this example that

conservative predicate analysis results in signi�cant loss of performance.

While the subset relation is important for the computation of the execution dominance

relationship, other relationships such as equivalence, nonintersection, inverse, etc. are

desirable for other purposes. PAS provides these queries (as indicated in Table 4.2 on

page 69) to the rest of the compiler.

The most intuitive approach to supporting these queries is to perform traditional

control 
ow analysis on the code prior to or during if-conversion, and then to retain this

information throughout the predicated compiler back end. This method was rejected for

several reasons. First, frameworks such as the PDLO, presented in Chapter 6, funda-

mentally alter the control logic of programs, making it desirable that the analysis should

be independent of the means originally used to express control prior to if-conversion.

Second, direct analysis of predicated code permits re-optimization or rescheduling of

existing binaries, which may be an e�ective technique for scaling software to new gen-

erations of EPIC architectures. Finally, optimizations on the predicated representation,

such as instruction merging and predicated branch combining, may create instructions



59

whose condition of execution does not correspond to that of any instruction in the orig-

inal control 
ow graph. The decision to perform direct analysis is further aÆrmed by

others' previous work [41] in the area.

4.2 Previous Mechanisms

Two previous general approaches to predicate analysis have been described in the

literature, both of which apply to hyperblock code with restricted predicate de�ne types.

The �rst and most intuitive, the Predicate Hierarchy Graph (PHG), was introduced with

the IMPACT hyperblock compilation framework [17], [35]. The PHG relates predicates

simply by keeping track of which predicates guarded the de�nition of each predicate,

or of each term component for OR-type expressions. The PHG is inaccurate on code

in which predicate subexpressions are reused in ways that generate predicates that do

not �t neatly into a hierarchical graph. The PHG is also unable to represent networks

that contain and-type, conjunctive-type, and disjunctive-type predicate de�nes. This is

a serious problem for many types of control height reduction optimizations such as those

presented in [23] and [42] as it precludes accurate direct analysis.

The second approach, the Predicate Query System (PQS) [41], exists within the

Hewlett-Packard Elcor framework. The representational mechanism of PQS, the partition

graph, can accurately describe only those predicate expressions that can be expressed as

logical partitions. (P2 and P3 partition P1 i� P1 = P2 [ P3 and P2 \ P3 = ;.) This

relation can be formed only for unconditional predicate de�nes and for or-type predicate

de�nes with disjoint terms. Thus, PQS accurately represents directly if-converted forms,

but does not support other predicate types commonly used in modulo scheduling and
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predicate optimization [23]. Conservative approximations of relations among these other

de�ne types have been proposed; unfortunately, the mechanisms for coping with partition

graph inaccuracy introduce the possibility of building for a given set of predicate de�ning

instructions several di�erent partition graphs with varying degrees of accuracy [19]. The

primary advantages of PAS over PQS, therefore, are its abilities to perform perfectly

accurate direct analysis of code utilizing any desired predicate de�ning semantics, and

the ability to incorporate knowledge of condition relations into its logical database, as

will be described shortly.

4.3 The Predicate Analysis System

As described in the previous section, previous approaches have constructed a repre-

sentation based on characteristics of the subset of predicate de�ne types deemed useful

at the time. Today, the full complement of predicate de�ne types is used in various opti-

mizations. Thus, PAS is built upon a general Boolean relationship database commonly

used in CAD, a binary decision diagram (BDD), which can accurately represent arbi-

trary Boolean relations composed using arbitrary predicate de�ning instructions. First,

the derivation of a BDD representation for a single-hyperblock sequence of predicate-

de�ning instructions will be considered; Section 4.3.2 details techniques for extending

the presented analysis beyond a single hyperblock.

4.3.1 Intrahyperblock analysis and the BDD

A hyperblock is a single-entry, possibly multiple-exit acyclic region, e�ectively a

straight-line block of predicated code, potentially with side exits. Consider that prior to



61

analysis, predicates are given single static assignment (SSA) equivalents, as was assumed

in PQS. For the moment excluding predicate values live into the hyperblock, a single,

sequential pass over the predicate de�nes in the hyperblock is suÆcient to determine the

logical relationships among any predicates in the hyperblock, based on an accumulation

of the predicate deposit semantics of Table 2.1. While any system that can represent

Boolean functions can be used to represent the network of predicate de�nitions, eÆciency

of the representation in space and time for useful queries must be considered in selection

of a representational form.

In general, a Boolean function f (x0; x1; : : : ; xn) can be represented in a number of

forms. A Boolean expression comprised of a conjunction of disjunctions of variables or

complements of variables is in conjunctive normal form (CNF). CNF expressions have

the form

m̂

j=1

 
n_
i=1

ti;j

!

where ti;j is either a variable xi, a variable xi, or the constant 1. A Boolean expression

comprised of a disjunction of conjunctions of variables or complements of variables is in

disjunctive normal form (DNF). DNF expressions have the form:

m_
j=1

 
n̂

i=1

ti;j

!

where ti;j is either a variable xi, a variable xi, or the constant 0. Although some analysis

on DNFs and CNFs is relatively inexpensive, performing a tautology check on DNFs and
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testing for satis�ability on CNFs are both NP-hard. A di�erent form which is eÆcient

both in tautology and satis�ability is the if-then-else normal form (INF).

INF uses only the if-then-else (ITE) operator to represent Boolean functions. ITE is

de�ned as

ITE (x; y; z) = (x ^ y) _ (x ^ z)

Unlike CNF and DNF which are 
at, INF de�nes Boolean functions recursively using the

Shannon expansion:

f (x0; x1; : : : ; xn) = (xn ^ f (x0; x1; : : : ; xn�1; 1)) _ (xn ^ f (x0; x1; : : : ; xn�1; 0))

f (x0; x1; : : : ; xn) = ITE (xn; f (x0; x1; : : : ; xn�1; 1) ; f (x0; x1; : : : ; xn�1; 0))

In INF, the ITE operator is used exclusively so that the expression consists of non-

terminal interior ITE nodes and terminal leaf nodes 0 and 1. When no subexpressions

are shared in an INF constructed in this way, the INF is called a decision tree. If all

equal subexpressions are shared in a decision tree, the resulting INF expression is termed

a BDD. Two consequences of the Shannon expansion, which hold for the BDD as well,

are that the variables appear in the same order in any path from root to leaf, and that

a given variable appears at most once in any such path. A BDD with these properties is

an ordered BDD (OBDD). If the OBDD has all identical ITE nodes shared and contains

no redundant tests, then the OBDD is a reduced OBDD (ROBDD). The order of the

variables in the ROBDD has a large e�ect on the size of the resulting ROBDD [43].
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ROBDDs represent Boolean functions in an eÆcient and canonical manner. (When

referring to BDDs, one usually means ROBDDs.) The canonical nature of ROBDDs

makes them very eÆcient for certain queries. For example, it is possible to test if two

functions are identical in constant time. This is useful, especially for testing if a function

evaluates to the constant 0 or the constant 1. The cost of this canonicity is that the BDD

can become exponentially complex in the number of variables involved in an expression.

This is a problem frequently encountered in the use of BDDs in logic synthesis applica-

tions, in which circuits such as multipliers require an exponential representation [44]. In

this application, however, BDDs do not exceed a reasonable level of complexity, even in

aggressively transformed predicated codes.

Much work has been done in the development of eÆcient ROBDD implementations,

mostly intended for use in the domain of Boolean logic circuit optimization [45]. BDDs

have also been applied in software problems, usually in the veri�cation domain. One

extension created for eÆciency is the use of \invert" arcs, which can be used instead of

\else" arcs to implement the function:

f (x0; x1; : : : ; xn) = (xn ^ f (x0; x1; : : : ; xn�1; 1)) _
�
xn ^ f (x0; x1; : : : ; xn�1; 0)

�
(4.1)

This extension allows for constant-time inversion and avoids the addition of extra inter-

nal nodes when a complement of an existing subgraph is required [46]. PAS uses the

Colorado University Decision Diagram (CUDD) implementation of BDDs [47] with this

complement extension.
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Within this framework, a \forest" of BDDs is created to represent the interaction of

the various predicate functions. The BDD is initialized with a single terminal node hav-

ing the value 1. PAS then sequentially examines each predicate de�ne in the hyperblock,

adding any newly encountered conditions as BDD variables and recording the expression

of the destination predicate in the BDD as a function of the predicate source, the pre-

vious value of the predicate destination, and the condition. The BDD is extended using

the function ITE (x; y; z) to implement the logical relationships between predicates and

conditions, where x, y, and z already exist in the BDD. During the addition of the ITE

expression, internal functions process the BDD to ensure that it remains in canonical

form. Dynamic programming techniques are used to keep the running time of creating

an ITE (x; y; z) expression at O(jxjjyjjzj) where jf j is the number of edges reachable by

function node f . While this can create a BDD with exponential size in the worst case,

the BDDs in the PAS are extremely well-behaved.

Table 4.1 shows the ITE expressions used to represent the various types of assignment.

The expressions are shown in the familiar format used in the C language, where C ? A : B

indicates that if C is true, the expression takes the value A; otherwise, the expression

takes the value B. In the �gure, the BDD node associated with the predicate Pi;j is

represented as ni;j. Topologically traversing the acyclic control subgraph ensures that

the predicate source and the previous value of the predicate destination are both available

as nodes in the BDD at the time a de�nition sourcing them is encountered.

Nodes representing the conditions evaluated in predicate-de�ning instructions can be

created in several ways. The most straightforward is to create a new variable in the

BDD for each unique condition evaluated, ignoring any relationship among conditions
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Table 4.1: Predicate deposit logic.

SSA pred. def. ITE Expression

Pi;j

UT
 � (C) hPgi ni;j = C?ng : 0

Pi;j

UF
 � (C) hPgi ni;j = C?0 : ng

Pi;j

OT
 � (C) hPgi ni;j = C?(ng?1 : ni;j�1) : ni;j�1

Pi;j

OF
 � (C) hPgi ni;j = C?ni;j�1 : (ng?1 : ni;j�1)

Pi;j

CT
 � (C) hPgi ni;j = C?ng : ni;j�1

Pi;j

CF
 � (C) hPgi ni;j = C?ni;j�1 : ng

Pi;j

AT
 � (C) hPgi ni;j = ng?(C?ni;j�1 : 0) : ni;j�1

Pi;j

AF
 � (C) hPgi ni;j = ng?(C?0 : ni;j�1) : ni;j�1

Pi;j

^T
 � (C) hPgi ni;j = ng?(C?ni;j�1 : 0) : 0

Pi;j

^F
 � (C) hPgi ni;j = ng?(C?0 : ni;j�1) : 0

Pi;j

_T
 � (C) hPgi ni;j = C?1 : (ng?1 : ni;j�1)

Pi;j

_F
 � (C) hPgi ni;j = C?(ng?1 : ni;j�1) : 1

that exist in the code. In a graph constructed on this basis, logical relationships between

predicates are fully represented, but the conditions on which they are based are treated as

independents. A slightly more sophisticated approach is to recognize opposites among the

conditions, for example, (r1 < r2) and (r1 >= r2), and to treat these two conditions

as the normal and complemented senses of a single BDD variable. This provides the BDD

with a limited amount of knowledge of logical interdependence among the conditions, so

the predicate P1
UT
 � (r1 < 1) hTi and the predicate P2

UT
 � (r1 >= 1) hTi would be

recognized as opposites. Previous work treats conditions at this level.

In PAS it is possible to represent more complex relations among families of conditions

that are based on comparing the same register values [48]. Such a system is able to

represent, for example, the exclusivity of (r1 == 1) and (r1 == 2) while indicating

that both are subsets of (r1 > 0). This system has been implemented in BDD form
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using a technique known as �nite domain representation [44]. When using this technique,

conditions which can be identi�ed as related are entered into the BDD as related sub-

BDDs rather than as independent variables, transparently providing an additional layer

of analysis within the PAS framework.

4.3.2 Interhyperblock relationships

In the IMPACT and Elcor compilers, predicated code is generated within the context

of hyperblock regions, which are single-entry, multiple-exit acyclic code regions formed

by if-conversion and tail-duplication [17]. The hyperblock compilation framework, which

includes hyperblock formation routines and support for predication, was developed to

simplify global optimization and scheduling. By operating on single-entry regions, code

motion and optimization across branches is simpli�ed. For example, because no prede-

cessor merges can exist in control 
ow within a hyperblock, the need for compensation

code when speculating instructions is eliminated. Analysis within hyperblock regions is

also simpli�ed, as indicated in the previous section.

Signi�cant bene�ts, however, may be gained by extending predicate analysis beyond

the hyperblock scope. In EPIC environments, control is likely to be implemented as a

mixture of branches and predication due to performance constraints, lending appeal to

an analysis that could analyze control through a multihyperblock region. This support

is essential because the Partial Reverse If-Conversion Framework presented in this work

creates predicates with multiple hyperblock scope. Furthermore, rotation of instructions

around loop backedges to achieve software pipelining is aided by the ability to analyze
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predicates whose live ranges propagate through backedges, though this may pose a more

formidable analysis problem.

For the moment disallowing predicate liveness around backedges, we consider the

relationships of predicates as de�ned by predicate de�nes in the acyclic control 
ow sub-

graph. The acyclic control 
ow subgraph is derived from the program's reducible control


ow graph by removing all natural loop back edges. Given the directed control 
ow graph

G(V;E), consider the set of back-edges B = fei = (vtail; vhead) jei 2 E; vhead fdom vtailg.

The acyclic control 
ow subgraph in which each node is reachable from the root is then

given by G0 = (V;E � B). In G0, the acyclic control 
ow graph, all uses of an SSA

predicate will appear after all reaching de�nitions in the topological sort of the instruc-

tions. Thus, the desired predicate relation information can be extracted in a single

topologically ordered traversal of G0. In this process, the � functions introduced at pred-

icate value merges as part of the SSA representation are processed as predicate de�nes.

Pi;l = � (Pi;j; Pi;k) becomes ni;l = Ci;l?ni;j : ni;k where Ci;l is a variable representing which

path was traversed into the merge.

Previous work related to PQS [19] introduced a conceptual full if-conversion technique

that could treat control 
ow and predication uniformly in an acyclic region, a technique

that could relatively easily be incorporated into PAS as well. In PQS, however, no

attempt was made to achieve accurate analysis of predicates live around back edges.

Code having predicates live around back edges can be subdivided into two classes. The

�rst class contains situations in which a predicate is live around a back edge, but in which

the predicate is initialized before loop entry and unconditionally killed in each iteration.

This case would result, for example, if in the process of loop rotation, a predicate-de�ning
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instruction were rotated from the top of the block to the bottom, around the back edge

(with duplication in the preheader). This case, because it creates a merge but not a

dependence cycle, is handled simply by treating the resulting � as before.

The other, more interesting case occurs when a dependence cycle exists in the predi-

cate data 
ow graph. This would occur when, for example, a loop contains an and-type

predicate assignment with an initialization to 1 in the loop preheader. In this case, rep-

resenting this construct requires summarizing a Boolean accumulation across all possible

loop iterations into a simple structure in the BDD. The ability to handle predicate depen-

dence cycles would enable new means of using predicate-de�ning instructions to control

loops. However, its development is not crucial to the success of the work presented here.

4.3.3 Predicate relationship query interface

The predicate BDD having been built, a query interface is made available to compiler

transformations. For this purpose, predicate register operands in the compiler's internal

representation are annotated with their SSA equivalents in the predicate analysis system.

The query functions internally query the BDD with respect to the nodes associated with

these SSA predicates and return results accordingly.

Just as the BDD is constructed to represent logical relationships using ITE (), the

same function is used to query the BDD as to the relation of two or more functions de-

scribed by it. For example, consider testing if fa implies fb. This implication holds as long

as whenever fa is true, fb is never false. Thus, the query node q = ITE(fa; NOT (fb); 0)

is formed and tested for identity to 0. If q = 0, the implication holds. Similar queries can

be constructed for, among others, the useful relations mentioned previously. A garbage



69

Table 4.2: Predicate query operations and their complexity. fi is the Boolean function
for Pi.

Query Complexity
Equivalent (Pi; Pj) O(1)
Inverse (Pi; Pj) O(1)
Subset (Pi; Pj) O(jfijjfjj)
Intersect (Pi; Pj) O(jfijjfjj)

Exhaust (Pi; Pj0; Pj1; : : : ; Pjn) O(jfijjfj0jjfj1j : : : jfjnj)

collection mechanism built into CUDD prevents build-up of retired query nodes in the

forest.

Table 4.2 shows the basic predicate relation queries supported by this framework,

along with an estimate of the average complexity of the underlying BDD algorithms.

Due to the canonicity and complement-arc features of the CUDD ROBDD, checks of

identity and inverse are performed in constant time. Other checks are made with BDD

query functions particular to CUDD which perform very eÆcient recursive descents into

the BDD, extensively applying the ROBDD canonicity properties and memoization tech-

niques to reduce query time [47].

4.4 Evaluation

Unlike PQS or PHG, PAS perfectly represents all the Boolean relations it is able to

discern from predicate de�ne networks.

It is necessary to consider the speed of PAS to determine if the bene�ts of its accurate

representation justify the increase in compile time due to implementing it. Regardless of

representation, describing an arbitrary Boolean function is provably exponential in the

worst case, and BDDs provide no exception. To determine the suitability of BDDs to
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the task of representing predicate relations, an experimental evaluation was performed.

To assess the eÆciency of PAS, its run time was measured across a set of real programs.

The benchmarks 008.espresso, 022.li, 026.compress, and 072.sc, of SPEC CINT92;

124.m88ksim, 129.compress, and 130.li of SPEC CINT95; and cccp, lex, and wc (which

are Unix utilities) were chosen for this evaluation to match those presented in [23].

These programs were compiled with the IMPACT compiler version 990714-R using func-

tion inlining, classical optimization, aggressive hyperblock formation, ILP optimization,

scheduling, and register allocation.

The PAS analysis function was run once on each of the compiled programs on an

HP 9000/785/400 workstation operating at a clock frequency of 400 MHz with 1 GB

RAM. The total time required to build the BDDs representing all relationships in the

�nal code of all the above benchmarks was 2.1 s. Typically, the BDD needs to be rebuilt

only when predicate de�nition optimizations are performed, keeping the compile time for

BDD construction acceptable for a production compiler. To measure query eÆciency, all

pairs of predicates within each hyperblock were tested for subset, superset, and disjoint

relationships. A total of 1,177,491 queries were made in 3.3 s. This rapid query response is

due in part to the canonicity of the BDD and in part to memoization techniques applied in

CUDD [47]. This result is expected, as the control 
ow of structured programs results in

predicate relationship equations that are relatively small and well-behaved in comparison

to the large circuits the BDD was speci�cally designed to handle.

Finally, it is important to consider the applicability of PAS. Of the 1 177 491 queries

performed in the above experiment, 391 596 (33%) could be resolved trivially to an

aggressive result (comparisons to true or of two identical predicates). The intermediate, or
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hammock, analysis, resolves only an additional 2338 queries (0.2%) aggressively, although

it has some palpable e�ect on performance for a number of the benchmarks. PAS resolves

67 303 further queries (6%) to aggressive (optimization-enabling) results. A compiler that

lacked a predicate analysis system would be unable to identify these relations, and thus

would likely overlook legal and pro�table optimizations.

To assess the real importance of this, two low-cost predicate analysis solutions were

developed. The IMPACT compiler was then run three times on the benchmarks, once

with the PAS active and once each with \trivial" and \intermediate" predicate analy-

sis. Trivial predicate analysis returns nonconservative answers to queries regarding pairs

that include the TRUE predicate or pairs of identical predicates. Intermediate predicate

analysis builds relations between a predicate and its immediate parent only, providing

a low-cost answer that is accurate for simple hammocks. The performance e�ect on

the generated code is shown in Figure 4.2, which shows the speedup obtained by apply-

ing post-if-conversion (traditional and ILP) optimizations with and without PAS. The

reader is referred to previous results that have shown the e�ectiveness of a predication

compilation framework in conjunction with predicated execution support in enhancing

performance on ILP processors [38], [49].

Accurate analysis improves the �nal code quality for all the benchmarks except wc.

The benchmark wc, although it contains a very complex predicate network, has few pred-

icated instructions, reducing the potential e�ect of accurate predicate analysis. Other

benchmarks, such as 008.espresso, 022.li, 099.go, and lex, exhibit signi�cantly higher

performance with accurate analysis. In a cycle-weighted average, code processed using
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Figure 4.2: Speedup due to post-if-conversion optimization, Predicate Analysis System
and approximate methods.

accurate predicate analysis executed 20% faster than code using either simple analy-

sis scheme. These performance di�erences are due to better application of traditional,

predicate, and ILP optimization after if-conversion. In particular, constant manipulation

optimizations, copy propagation, dead code removal, code motion, accumulator expan-

sion, strength reduction, and loop invariant code removal were applied at least 10%

more frequently with accurate predicate analysis. Note that these optimizations were

also applied prior to if-conversion and that these counts are with respect to opportuni-

ties exposed by the hyperblock formation process. When PAS was employed, predicate

merging, an optimization that replaces two or more instructions with a single instruc-

tion predicated on the union of their original execution conditions, was applied three

times more often than when it was not. In addition to additional optimization applica-

tions, better register allocation and scheduling enabled by the accurate analysis further

improved performance [19].
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The utility of PAS is not limited to improving existing compiler operations. PAS

also plays a key role in PDLO as presented in [23]. PDLO extracts Boolean expressions

that describe the predicate de�ne network, performs Boolean minimization on these

expressions, and reformulates the result into a new predicate de�ne network. PDLO must

use a perfectly accurate representation in order to generate correct code. Approximations

used in other systems would result in invalid code. PDLO performance enhancement was

excluded from Figure 4.2 in fairness to the compiler without PAS, which could not employ

it. As will be documented in Chapter 6, the analysis system described here enables

PDLO to achieve signi�cant gains for some benchmarks which do not show signi�cant

opportunity for other types of predicate-enabled optimization (notably wc).

4.5 Signi�cance

PAS provides eÆcient and accurate information to support e�ective compiler opti-

mization and scheduling. The power of PAS comes from the ROBDD's suitability for

representing relations of the type present among predicates. While essential for most

optimizations, predicate relationships are not the only type of information necessary

to perform global optimization. Data
ow information, such as live-ranges, reaching-

de�nitions, and the like, must also be made available. Data
ow analysis is complicated

by the the presence of predicated code, but through the use of PAS, a data
ow analysis

engine is devised to provide accurate information in a timely manner. This data
ow

engine is described in the next chapter.
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5. THE PREDICATE DATAFLOW GRAPH

5.1 Predicate-Aware Data
ow Analysis

Program analysis is a prerequisite for important program transformations performed

by compilers. Data
ow analysis is the determination of the 
ow of data through reg-

isters in the presence of program control. Data
ow analysis techniques have typically

operated on graphs which are used to represent branch control 
ow. Popular classical

program representations used for analysis include the control 
ow graph (CFG) and the

program dependence graph (PDG) [50]. As originally de�ned, these representations can

only represent conditional execution based on branches. To obtain accurate data
ow

information, all sources of conditional execution much be considered. When conditional

execution originates from both predication and branches, these representations are not

suÆcient for accurate analysis.

One means of conducting data
ow analysis in the presence of predication is to extend

current iterative data
ow analysis techniques. Accurate results can be obtained when

these techniques, modi�ed slightly, are applied on special 
ow graphs which represent
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both predicate and branch conditional execution. These augmented 
ow graphs are

termed predicate 
ow graphs (PFGs).

The advantage of predicate 
ow graphs is that predicate aware data
ow can be ob-

tained with only minor modi�cation of existing data
ow analysis routines. This section

describes and studies the PFG-based approach to predicate data
ow analysis, beginning

with the de�nition of the PFG.

Figure 5.1 shows a basic block and its PFG, which can be thought of as a reverse if-

conversion of the predicated region. As an exercise, consider performing data
ow analysis

on the basic block in a conservative manner, ignoring the interrelation of the predicates

involved. Here, instruction 4 consumes r3, and instruction 3 (on a di�erent predicate)

produces r3. Without knowledge of the interrelation of the predicates guarding instruc-

tions 3 and 4, it is impossible to determine if the de�nition at instruction 3 dominates

the consumption at instruction 4; thus, liveness for r3 must extend out the entry point

of the block. Consider on the other hand analysis performed on the predicate 
ow graph

for the same code segment, shown on the right in the �gure. Here, it is apparent that

the de�nition of r3 dominates the consumption in 4; thus, it is determined that the live

range of r3 includes only instructions 3 and 4. This simple example shows the bene�t of

performing data
ow analysis using the predicate 
ow graph. Subsequent sections of this

chapter discuss the PFG's characteristics and construction in detail.
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Figure 5.1: A predicate 
ow graph example.

5.2 Predicate Flow Graph

In this section, we de�ne the PFG by extending the de�nition of the CFG to the

predicated code domain. The node in the CFG, the basic block, is a single-entry single-

exit region uniquely identi�ed with a fetch and equivalent execute condition. In the

predicate 
ow graph, a new node type must be de�ned which accurately represents the

now di�erent fetch and execute conditions.

Basic block. A basic block is a sequence of consecutive statements in which the


ow of control enters at the beginning and leaves at the end without halt or possibility

of branching except at the end. Any given instruction exists in exactly one basic block.

The essence of a basic block is that it groups together a set of consecutive, control 
ow

equivalent statements. The execution of the �rst statement in a basic block guarantees

the complete sequential execution of all statements in that basic block before another

basic block is executed.

Control 
ow graph. A control 
ow graph is a directed graph G augmented with a

unique entry node START and a unique exit node STOP such that each node in the graph
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(a)

Z = Z − 1;
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else
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Y = Y + 1
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<p1>

<p2>

beq A, B

(b) (c)

X = X + 1 Y = Y + 1

Figure 5.2: A simple if-then-else construct in the original C code (a), the control 
ow
graph for nonpredicated code (b), and the control 
ow graph for the predi-
cated code (c).

has at most two successors. We assume that nodes with two successors have attributes

\T" (true) and \F" (false) associated with the outgoing edges originating at a real or

implied branch. We further assume that for any node N in G there exists a path from

START to N and a path from N to STOP. All nodes in this graph represent basic blocks.

Figure 5.2 demonstrates the limitation of the traditional control 
ow graph when

applied to predicated code. A simple if-then-else construct is shown in Figure 5.2(a).

The CFG for this segment without predication is shown in Figure 5.2(b). Here the CFG

clearly shows that one and only one side of the if statement may execute. The CFG of

the predicated code is shown in Figure 5.2(c). In this case all the code falls into one basic

block because there is no possibility of branching until the end of the set of instructions.

Although a CFG-based data
ow algorithm might treat all instructions in Figure 5.2(c) as

control equivalent due to their common fetch condition, for compiler transformations the

execution condition is a more useful foundation for analysis. The PFG is an extension

of the CFG that represents the relations among the execution rather than the fetch

conditions of instructions. The CFG represents the fetch behavior of a program, whereas

the PFG represents the execution behavior. In codes without predication, where fetch
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behavior and execute behavior are equivalent, the CFG is suÆcient for analysis. In

a manner analogous to the de�nition of the control 
ow graph, the de�nition of the

predicate 
ow graph begins with the de�nition of the predicate block. The predicate

block is the predicated code equivalent of the basic block.

Predicate block. A predicate block is a sequence of consecutive statements in

which the 
ow of control enters at the beginning and leaves at the end without halt

or possibility of branching except at the end. Additionally, a predicate block has the

restriction that all instructions it contains will execute together only under a set of given

predicate values. Instructions may exist in one or more predicate blocks.

The TRUE predicate value set is a set of predicate register numbers which must be

1 in the associated predicate block. The FALSE predicate value set is a set of predicate

register numbers which must be 0 in the associated predicate block. Predicates not in

the TRUE or FALSE predicate value sets for a predicate block may either assume any

value or be unde�ned during the execution of that predicate block.

Instructions cannot be in the same predicate block if they would not have been in the

same basic block. A predicated instruction may only exist in a predicate block if that

predicate block's predicate value set speci�es a condition under which it would execute.

Predicate 
ow graph. A predicate 
ow graph is a directed graph G augmented

with a unique entry node START and a unique exit node STOP such that each node in

the graph has at most two successors. We assume that nodes with two successors have

attributes \T" (true) and \F" (false) associated with the outgoing edges originating at a

real or implied branch or the start of a predicate's active range. We further assume that
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Figure 5.3: The CFG (b) and PFG (c) for a simple if-then-else construct (a).

for any node N in G there exists a path from START to N and a path from N to STOP.

All nodes in this graph represent predicate blocks.

Figure 5.3 shows a PFG for a simple if-then-else construct. Figure 5.3(a) shows the

original branch code in a CFG. Figure 5.3(b) shows the CFG of the same code after if-

conversion. The graph in Figure 5.3(b) provides only fetch information, not the execution

information necessary for proper data
ow analysis. Figure 5.3(c), the PFG, represents

the conditional execution of instructions 2 and 3 and, as such, has a structure very similar

to that of the original branch code. Clearly, in this example, data
ow analysis run on

the CFG in Figure 5.3(a) would return the same result as if it were run on the PFG in

Figure 5.3(c) except for queries on the newly introduced predicate registers.

5.2.1 Active range

The de�nition of the PFG uses the term active range, which is an essential component

of the proper creation of predicate 
ow graphs. Conceptually, a PFG is a CFG with

additional split and merge points. The CFG in Figure 5.3(b) was modi�ed by the addition

of a single split point after instruction 1 and by the addition of a single merge point before

instruction 4. Split points are placed at the start of any new active range. Likewise, merge
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Figure 5.4: An example of incorrectly using live range as active range.

points are placed at the end of any active ranges. In this example, the two active ranges,

those for p1 and p2, had the same start and end points, so only one spilt and one merge

were necessary, as shown in Figure 5.3(c). This trivial example suggests that the active

range of a predicate could be the same as the live range of that predicate. Unfortunately,

accurate data
ow analysis requires a more sophisticated de�nition.

Figure 5.4(b) shows the if-converted version of the simple code segment in Fig-

ure 5.4(a). Using the live range as the active range, the PFG in Figure 5.4(c) is de-

rived. Clearly, there exist paths in the PFG which did not exist in the original CFG. In

the PFG, the variable X appears to be live entering the graph because the de�nition in

instruction 2 does not kill all uses in instruction 4. As this example shows, the active

range of a predicate must extend to all points which are a�ected by the outcome of that

predicate, often beyond the predicate's live range.

Active range. An active range for a predicate pN consists of the set of instructions

on all fetch paths from all uses of pN to all instructions whose conditions of execution

are logically dependent on the value of pN.
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The next section presents the PFG construction algorithm. The �rst step in this

process is the computation of the active ranges.

5.2.2 Predicate 
ow graph construction

In this section, the algorithm used in the creation of PFGs is presented. For the

purposes of this discussion, predicates are assumed not to be active across hyperblock

boundaries or back edges. With this assumption, an accurate PFG can be created by

replacing each hyperblock in the CFG with its PFG. This is possible because all active

ranges begin and end within a hyperblock. The splits and merges in the graph do not

a�ect the hyperblock's entries and exits. The remainder of this section presents an

algorithm for creating a predicate 
ow graph segment from a single hyperblock.

Figure 5.5 is the algorithm to compute predicate active ranges, the �rst step in the

process of creating the PFG. In lines 1-5, each instruction which is the last use of a

predicate is tagged with that predicate in the Op:LastUse �eld. Because the active range

starts at the �rst use and continues at least until the last use, this information will be

useful as it is the earliest point at which that predicate's active range may end. The

loop in lines 8-16 traverses the hyperblock to compute PredsActive, the set of active

predicates, at each operation. This set is stored in Op:ActiveSet for each operation in

the hyperblock. Lines 9 and 10 add �rst uses of a predicate to the active set. The

predicate then stays in the active set for each subsequent operation until it is removed in

lines 11-15. As each predicate's last use is encountered and is added to PredsDone set,

the set of all predicates whose active range has ended or will end when the loop passes

all last uses of predicates related to it. Each predicate in the PredsActive set is tested
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ComputeActiveRanges(Block Hyperblock)
(1) PredsSeen = ;;
(2) FOREACH Op IN REVERSE Hyperblock:Ops DO
(3) IF (NOT Op:Pred 2 PredsSeen) THEN
(4) Op:LastUse = Op:Pred;
(5) PredsSeen = PredsSeen [ fOp:Predg;

ENDIF
END

(6) AllPreds = All preds live in hyperblock;
(7) PredsActive = ;;
(8) FOREACH Op IN Hyperblock:Ops DO
(9) IF (NOT Op:Pred 2 PredsActive) THEN
(10) PredsActive = PredsActive [ fOp:Predg;

ENDIF

(11) PredsDone = PredsDone [ fOp:LastUseg;
(12) PredsRelevant = AllPreds� PredsDone;
(13) FOREACH Pred IN PredsActive DO
(14) IF (NOT PredsRelated(Pred; PredsRelevant)) THEN
(15) PredsActive = PredsActive� fPredg;

ENDIF
END

(16) Op:ActiveSet = PredsActive;
END

Figure 5.5: Algorithm to compute predicate active ranges for a hyperblock.

in line 14. If a predicate is not related to any predicates whose last use has not been

encountered, then it can be removed from the active set in line 15. Line 16 stores the

state of the active set into each operation in the hyperblock for use in the construction

of the predicate graph described next.

The active ranges for hyperblocks determine where splits and merges in the graph are

to be made. A split creates two new successor predicate blocks for an existing predicate

block. A merge creates a single new predicate block, which is the successor for two

existing predicate blocks. As discussed earlier, a predicate block is partially de�ned by
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its predicate value sets. The algorithms presented here utilize the two sets de�ned earlier,

PRED TRUE and PRED FALSE, to represent this predicate value set. PRED DEF

is the set of predicates which are active throughout the predicate block and is de�ned as

the set union PRED TRUE [ PRED FALSE.

Instructions can be duplicated to exist in more than one predicate block. To avoid

confusion, the term operation is used to refer to the unique operation in the predicated

code. The term instruction is used to describe the instantiation of an operation in each

predicate block.

The algorithm in Figure 5.6 uses the active range information computed in the al-

gorithm in Figure 5.5 to construct the predicate 
ow graph. To start the construction

process, an empty entry predicate block is created with PRED DEF and PRED TRUE

initialized to contain only the always TRUE predicate (lines 1-3). In line 4, an active

predicate block list, PredBlockList, is initialized to contain only the entry predicate

block as its single entry. The hyperblock is processed top down, operation by operation

in the main loop in lines 6-17.

In the main loop, three tasks are performed. The �rst task is the spliting of the

predicate 
ow graph to handle the new possible predicate outcomes. The graph is split

at the start of each predicate active range. Lines 7-9 determine which active ranges

have begun and call SplitPredBlock for each newly activated predicate. In a similar

manner, lines 10-11 perform the second task, merging paths that are no longer necessary

after a predicate's active range has ended. MergePredBlocks is called once for each

merge to be performed each point in the operation list. The �nal task (lines 12-17)

involves populating the instructions in the current list of predicate blocks with source and
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CreatePredicateFlowGraph(Block Hyperblock)
(1) EntryPredBlock = NewPredBlock();
(2) EntryPredBlock:PRED TRUE = fTg;
(3) EntryPredBlock:PRED DEF = fTg;
(4) PredBlockList = EntryPredBlock;

(5) PrevActiveSet = ;;
(6) FOREACH Op IN Hyperblock:Ops DO
(7) PredsActivated = Op:ActiveSet� PrevActiveSet;
(8) FOREACH Pred IN PredsActivated DO
(9) PredBlockList = SplitPredBlocks(PredBlockList; P red);

ENDIF

(10) PredsDeactivated = PrevActiveSet�Op:ActiveSet;
(11) PredBlockList =MergePredBlocks(PredBlockList; P redsDeactivated);

(12) FOREACH PredBlock IN PredBlockList DO
(13) Inst = NewPredInst(Op; PredBlock);
(14) PredBlock:Insts = PredBlock:Insts+ Inst;
(15) Op:Insts = Op:Insts+ Inst;

END
(16) InsertInstructionOperands(Op);
(17) PrevActiveSet = Op:ActiveSet;

END

Figure 5.6: Algorithm to create the predicate 
ow graph for a hyperblock.

destination operands. The function InsertInstructionOperands places these operands

only into predicate blocks with the appropriate predicate value conditions. The functions

SplitPredBlock, MergePredBlocks, and InsertInstructionOperands are discussed in

detail below.

The algorithm in Figure 5.7 creates one or two new predicate blocks for each predicate

block in the current predicate block list. The predicate values in the current predicate

block, PRED TRUE and PRED DEF , may allow Pred, the newly activated predicate,

to assume only 1, only 0, or either value. Calls to the TrueV alue and FalseV alue
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List SplitPredBlocks(List PredBlockList, Operand Pred)

(1) FOREACH PredBlock IN PredBlockList DO

(2) IF (TrueV alue(Pred; P redBlock:PRED TRUE;PredBlock:PRED DEF AND

FalseV alue(Pred; P redBlock:PRED TRUE;PredBlock:PRED DEF ) THEN

(3) PredBlockTrue = NewPredBlock();

(4) PredBlockTrue:PRED TRUE = PredBlockTrue:PRED TRUE + fPredg;

(5) PredBlockTrue:PRED DEF = PredBlockTrue:PRED DEF + fPredg;

(6) PredBlockFalse = NewPredBlock();

(7) PredBlockFalse:PRED DEF = PredBlockFalse:PRED DEF + fPredg;

(8) PredBlockList = GraphSplit(PredBlockList; P redBlock;

P redBlockTrue; P redBlockFalse);

(9) ELSEIF (TrueV alue(Pred; P redBlock:PRED TRUE;PredBlock:PRED DEF ) THEN

(10) PredBlockTrue = NewPredBlock();

(11) PredBlockTrue:PRED TRUE = PredBlockTrue:PRED TRUE + fPredg;

(12) PredBlockTrue:PRED DEF = PredBlockTrue:PRED DEF + fPredg;

(13) PredBlockList = GraphLink(PredBlockList; P redBlock; P redBlockTrue);

(14) ELSEIF (FalseV alue(Pred; P redBlock:PRED TRUE;PredBlock:PRED DEF ) THEN

(15) PredBlockFalse = NewPredBlock();

(16) PredBlockFalse:PRED DEF = PredBlockFalse:PRED DEF + fPredg;

(17) PredBlockList = GraphLink(PredBlockList; P redBlock; P redBlockFalse);

ENDIF

END

(18) RETURN PredBlockList;

Figure 5.7: SplitPredBlocks function for creation of Predicate Flow Graph.

functions are used to determine the possible predicate value sets. When 1 is a possible

value for Pred, a PredBlockTrue block is created to represent this execution condition.

Likewise, when 0 is a possible value for Pred, the PredBlockFalse block is created to

represent this execution condition. One or both of these new predicate blocks are then

linked as a successors to the original predicate block.

The algorithm in Figure 5.8 creates a single successor predicate block for each pair

of predicate blocks which assume the same predicate condition value set, PRED TRUE

and PRED DEF , disregarding predicates to be deactivated. The algorithm proceeds

using one predicate in the PredsDeactivated set at a time. Lines 2-8 compare each pair

of predicate blocks to see if the predicate value sets would be the same if the predicate

being deactivated were no longer relevant. If such a pair is found, a new predicate block
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List MergePredBlocks(List PredBlockList, Set PredsDeactivated)
(1) FOREACH Pred IN PredsDeactivated DO
(2) FOREACH PredBlock1 IN PredBlockList DO
(3) FOREACH PredBlock2 IN PredBlockList AFTER PredBlock1 DO
(4) NEW PRED TRUE 1 = PredBlock1:PRED TRUE � Pred;
(5) NEW PRED DEF 1 = PredBlock1:PRED DEF � Pred;
(6) NEW PRED TRUE 2 = PredBlock2:PRED TRUE � Pred;
(7) NEW PRED DEF 2 = PredBlock2:PRED DEF � Pred;
(8) IF (NEW PRED TRUE 1 == NEW PRED TRUE 2 AND

NEW PRED DEF 1 == NEW PRED DEF 2) THEN
(9) PredBlock = NewPredBlock();
(10) PredBlock:PRED TRUE = NEW PRED TRUE 1;
(11) PredBlock:PRED DEF = NEW PRED DEF 1;
(12) PredBlockList = GraphMerge(PredBlockList; P redBlock1;

P redBlock2; P redBlock);
ENDIF

END
END

END
(13) RETURN PredBlockList;

Figure 5.8: MergePredBlocks function for creation of Predicate Flow Graph.

is created that has the new predicate value sets (lines 9-11). The new predicate block is

then linked as a successor to the two original predicate blocks in line 12.

The �nal step in the creation of the predicate 
ow graph is the insertion of operands.

This step is necessary to prepare the graph for use in data
ow analysis. The idea is

to place source and destination operands in only those predicate blocks whose predicate

value conditions make the operands visible. For example, consider the operation r1 =

r2 + 1 < p1 >. Assume that this operation has two instructions in two predicate blocks

in the predicate 
ow graph. The �rst predicate block has p1 as 1, and the second

predicate block has p1 as 0. In the �rst predicate block, the instruction will execute

normally; r2 and p1 are both sampled as source registers, and the destination r1 is
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modi�ed with the result of the computation. Thus, p1 and r2 are both source registers,

and r1 is a destination register. In the second predicate block, however, the situation is

di�erent. The predicate p1 is still sampled by the machine and found to be 0, causing

the instruction to be nulli�ed. Because r2 is not (meaningfully) sampled and r1 is not

written, the instructon in the second predicate block contains only p1 as a source register

and contains no destination registers.

The InsertInstructionOperands function, shown in Figure 5.9, traverses every in-

struction of the parameter operation Op. Predicate registers are always sourced, so

regardless of the predicate block's predicate value sets, the predicate register is always

placed in instruction's source register list (line 2). Most other registers are sourced or

written only when the source predicate is 1. Therefore, in line 4 and line 7 the predicate

block's PRED TRUE set is examined for the source predicate. If the source predicate

is in the PRED TRUE set, the operand is inserted into the instruction's operand list

lists. Some source and destination operands are unconditionally used or de�ned, such as

in the case of unconditional-type predicate de�nes. Line 4 and line 7 also test for these

special operands and add them to the operand lists as appropriate.

At the completion of predicate 
ow graph construction for each hyperblock, the hy-

perblocks in the original CFG are replaced, for purposes of analysis. The result is a PFG

for the entire function complete with source and destination operands in the appropriate

locations. The PFG is at this point ready for data
ow analysis.
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InsertInstructionOperands(Op)
(1) FOREACH Inst IN Op:Inst DO
(2) Inst:Src = Inst:Src+Op:Pred;
(3) FOREACH Operand IN Op:Src DO
(4) IF (Op:Pred 2 Inst:P redBlock:PRED TRUE OR

UnconditionalOperand(Operand)) THEN
(5) Inst:Src = Inst:Src+Operand;

ENDIF
END

(6) FOREACH Operand IN Op:Dst DO
(7) IF (Op:Pred 2 Inst:P redBlock:PRED TRUE OR

UnconditionalOperand(Operand)) THEN
(8) Inst:Dst = Inst:Dst+Operand;

ENDIF
END

END

Figure 5.9: Insertion of operands into the Predicate Flow Graph of a Hyperblock.

5.2.3 The graph width explosion problem

Depending on the nature of the code, the PFG created by these algorithms can grow

exponentially. Consider the example in Figure 5.10(a). Here three independent predicates

are de�ned in operations 1-3 and used in operations 4-6. In the predicate 
ow graph, each

possible execution set must be represented. For n independent predicates there are a total

of 2n execution sets. If these independent predicates have active ranges which overlap,

the width of the predicate 
ow graph is 2n. This is the case in Figure 5.10(b), where

3 predicates create a PFG of width 23 = 8. At some point the exponential growth of

graph width becomes unmanageable. When this occurs a graph width explosion problem

is said to have occured.

To manage the graph width explosion problem, the predicate 
ow graph generation

algorithm should contain a limiting function. To accomplish this, a test of the list
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Figure 5.10: Explosion of a predicate 
ow graph (b) representing independent predicates
with overlapping active ranges (a).

size of the PredBlockList should be inserted in the the alogorithm of Figure 5.6 to

suppress the call to the SplitPredBlocks function in line 9 when PredBlockList reaches

a predetermined size. For predicates for which a split was suppressed, data
ow analysis

may be conservative, however, this is a necessary trade-o� to bound compile time. In

the subsequent description of the data
ow analysis engine, a modi�cation is made to the

traditional data
ow analysis equation solver to support conservative analysis for split

suppressed predicates.

5.3 Data
ow Analysis on the Predicate Flow Graph

One goal of the predicate data
ow graph was to enable the use of traditional data
ow

equation solvers. This goal is met with the exception of two modi�cations which must be

made to all data
ow analyses. The �rst modi�cation relates to the solution of the path

explosion problem presented earlier. Essentially, the data
ow analysis routines must be

aware of which predicates are treated conservatively. This modi�cation is the same one

that traditional data
ow routines must undergo to handle predicated code in a correct,
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albeit conservative, manner. An e�ect of this is that if a control 
ow graph is used instead

of a predicate 
ow graph, correct but conservative data
ow results.

When a predicate is not contained in the predicate value sets for a predicate block

it must be treated as it can assume any value. As shown earlier in this chapter, this

yeilds conservative results, such as extended live ranges. Predicated instructions with

predicates in the predicate value sets are treated in an accurate manner.

All de�nitions of instructions having conservatively treated predicates must be as-

sumed conditional. This means that the de�nitions cannot be considered to kill a live

range. Figure 5.11 shows the de�nition and use predicate block set computation for live

variable analysis. This algorithm is identical to that used for basic blocks in a control


ow graph with the exception of the if-statement in line 9 which guards line 10. The if-

statement simply tests for the predicate register in the PRED DEF set. If the predicate

exists in the set, then the operand is known to be unconditional. As an unconditional

destination operand, the de�nition can be considered to kill any live variable range. Sub-

sequent steps in the computation of register live ranges are una�ected by the predicate


ow graph.

Once the desired data
ow sets have been computed for all instructions in all predicate

blocks, this information needs to be combined to create the data
ow information that is

associated with each real operation. (Many sophisticated optimizations, one of which is

partial dead code removal to be described later, use the information on the predicate 
ow

graph directly.) This is done by using the con
uence operator to create a single operand

set from all instruction sets. Figure 5.12 shows the standard form for collecting this

information. Here the con
uence operator is repesented by
V
. For live variable analysis,
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(1) FOREACH PredBlock IN Program:PredBlocks

(2) DEF = ;;
(3) USE = ;;
(4) FOREACH Inst IN PredBlock:Insts DO
(5) FOREACH Operand IN Inst:Op:Src DO
(6) IF (NOT Operand 2 DEF ) THEN
(7) USE = USE [ fOperandg;

END
(8) FOREACH Operand IN Inst:Op:Dest DO
(9) IF (Inst:Op:Pred 2 PredBlock:PRED DEF OR

UnconditionalOperand(Operand)) AND
NOT Operand 2 USE) THEN

(10) DEF = DEF [Operand;
ENDIF

END
END

(11) Block:USE = USE;
(12) Block:DEF = DEF ;

END

Figure 5.11: Predicate block de�nition and use computation for live variable analysis.

the con
uience operator is set union,
V
= [. Intuitively, the live range of a variable is

the union of its live range in all valid predicate value sets.

5.4 Predicate Partial Dead Code Elimination

Up until now, this chapter has concerned itself with presenting traditional optimiza-

tions with accurate data
ow information in the presence of predication. This information,

derived by merging of data
ow sets for traditional queries, keeps the optimizations per-

forming well in the presence of multiple overlapped predicate paths. However, the PFG
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(1) FOREACH Block IN Program:Blocks

(2) FOREACH Op IN Block:Ops DO
(3) Op:IN = ;;
(4) Op:OUT = ;;
(5) FOREACH Inst IN Op:Insts DO
(6) Op:IN = Op:IN

V
Inst:IN ;

(7) Op:OUT = Op:OUT
V
Inst:OUT ;

END
END

END

Figure 5.12: Merging of data
ow sets for traditional queries.

contains additional information about individual predicate paths is critical to the suc-

cess of the Partial Reverse If-Conversion Framework. This information is extracted and

applied in an optimization referred to as predicate partial dead code elimination.

Traditional dead code elimination deletes instructions which do not a�ect program

execution. If values de�ned by an instruction are never used, then that instruction is

dead. This optimization uses each instruction's live-out set to determine whether or

not it is dead. If the live-out set does not contain any of the destination registers,

that instruction is dead. A related optimization, partial dead code elimination, is the

equivalent to dead code elimination on the PFG. Predicate partial dead code removal is

related to other types of partial dead code removal [51].

Figure 5.13 shows the hyperblock from Figure 5.1 and its PFG. In this example, we

are concerned with performing dead code analysis on the predicate 
ow graph. Live

variable analysis on the predicate 
ow graph indicates that when the predicate p1 is

false the result generated by instruction 5 is not used. Using the rule for eliminating

dead code, we can delete instruction 5 from the \p1 is false" path. Since the instruction
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(5)(5)

(1) p1 = (r1 < 0)

p2 = (r2 < 0)(2) (2)

(5)
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(4)(4)
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(6)

(7)

(7)

(1) p1 = (r1 < 0)

p2 = (r2 < 0)

(7)(7)

(6)(6)(6)

<p1>

<p1>
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p2

<p2>

<p1>

<p2>

r3 = r4 + r5

r8 = r3 + 1

r7 = r4 + r6

r4 = r7 − 1
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<p1>

<p2>

<p2>

<p1>

<p2>

r8 = r3 + 1

r7 = r4 + r6

r4 = r7 − 1

r9 = r9 / 2

r7 = r4 + r6

r4 = r7 − 1
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<p2>

<p2>

<p1>

<p2>

r3 = r4 + r5 <p1>

<p1>

<p1>

p1’p1

p2’

Figure 5.13: Partial dead code in a predicate 
ow graph.

generates a value which is used in other paths, we cannot delete the instruction in the

original hyperblock.

The Partial Reverse If-Conversion Framework uses the fact that instruction 5 is par-

tially dead in two ways. In the �rst use, partial reverse if-conversion must know when an

instruction is live under each predicate in order to determine how to reverse if-convert a

hyperblock under a speci�c predicate. In this example, a reverse if-conversion on p1 would

not need to have a copy of instruction 5 in the newly created \p1 is false" hyperblock.

Details of this application are presented in Chapter 7.

The second use of partial dead code is for demotion. An optimization, called pro-

motion, is applied aggressively to all instructions in hyperblocks. Promotion reduces

the strength or even completely removes predicates when it is possible to do so without

a�ecting program outcome. This is done so that the scheduler can have the freedom to

schedule instructions prior to the predicate de�nes which once guarded them. This is a

form of speculation since the instructions are as a result executed in more situations than

in the original program. After prepass scheduling, it is wise to demote, or increase the
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strength of, guard predicates. By increasing the strength of guard predicates, instructions

will be made to execute less frequently. In the case of instructions with side e�ects, this

can improve program performance. Demoting loads, for example, eliminates unnecessary

memory accesses. Demoting after prepass preserves the promotion necessary to improve

the code schedule, while eliminating unnecessary speculation.

Performing demotion is a two-step process. The �rst step, partial dead code elimina-

tion is performed as described above. The second step is selecting the strongest possible

predicate which can legitimately guard the instruction. To do this, each predicate path

in which the instruction exists is examined. The intersection of all the PRED TRUE sets

for predicate blocks containing the instruction is formed. This set is the set of predicates

that can guard the instruction. Since the best candidate for demotion is the predicate

which most strongly guards the instruction, the predicate that is true in the fewest num-

ber of predicate blocks is chosen. Consider instruction 5 in Figure 5.13. Predicates p1

and p2 are de�ned at instruction 5; however, only predicate p1 is in the intersection of

the PRED TRUE sets for two leftmost paths. Predicate p1, being the only predicate in

the intersection, is necessarily the most restrictive. Demotion occurs when instruction 5

is predicated on p1. This is intuitive since the value r7 is consumed only by instruction

6, which in turn executes only when p1 is true.

5.5 Signi�cance

The PFG is essential to the success of the proposed framework. Using the information

extracted from the PAS, a PFG is built representing the true 
ow of information within

a hyperblock by means of a reverse if-conversion. Predicate-aware data
ow analysis
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can then be performed simply by applying standard iterative data
ow analysis to the

PFG. The resulting data
ow information is as accurate as traditional analysis applied

to the equivalent nonpredicated code. Partial dead code elimination, performed on the

PFG, is necessary to enhance scheduling freedom and to enable eÆcient partial reverse

if-conversion.
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6. BOOLEAN MINIMIZATION OF PROGRAM DECISION LOGIC

One fundamental limitation of most branch handling techniques is that they do not

signi�cantly alter the program's control 
ow logic. As the compiler translates high-level

language control constructs into assembly-level branches, it does not alter the basic con-

trol structure. Instead, techniques focused on exposing and increasing ILP within a �xed

control structure are applied. With control speculation, this is obvious. Control depen-

dences are removed to enable the motion of instructions above branches. The branches

themselves are not altered. Likewise, when predication is applied by the process of if-

conversion, branches are transformed into predicate computations and control dependent

instructions are rendered conditional by the addition of guarding predicates. This pro-

cess converts control 
ow and control dependences into data 
ow and data dependences,

but preserves the original program's control structure.

Restricting a compiler to use the program's unaltered control structure is undesirable

for several reasons. First, a high-level language such as C or C++ represents program

control 
ow in a sequential manner through the use of nested if-then-else statements,

switch statements, and loop constructs. Each control construct is fully evaluated before
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proceeding to the next. This sequential computation often de�nes critical paths that

constrain the available ILP. Second, programmers often represent control 
ow for un-

derstandability or for ease of debugging rather than for eÆcient execution on the target

architecture. As a result, software often contains redundant control constructs that are

diÆcult to detect with traditional compiler techniques. These may involve evaluating

the same conditions multiple times or evaluating conditions that partially overlap. An

e�ective ILP compiler should be capable of transforming the program control structure

to eliminate these problems.

The ability to restructure code aggressively is a critical feature of an e�ective ILP com-

piler. The most obvious situation where aggressive transformation is regularly applied

is on arithmetic expressions. Compilers often completely restructure the programmer's

arithmetic computations into more parallel forms using a variety of transformations.

These include expression re-association, tree height reduction [52], and blocked back

substitution [53]. Although ILP compilers may aggressively restructure computation,

they typically preserve the program's original control structure. This conservative ap-

proach can seriously limit the level of eÆciency as well as the level of ILP achieved in

branch-intensive programs.

Approach. Motivated by the potential of aggressive techniques for transforming

arithmetic expressions, this chapter presents a new approach to optimizing program

control 
ow. The goal is to develop a systematic methodology for reformulating program

control 
ow for more eÆcient execution on an ILP processor. Control expressed in

branches and predicate de�ne instructions is �rst extracted and represented as a program

decision logic network . Then, a new, more eÆcient network is synthesized with the goals
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of reducing dependence height and redundancy. To accomplish the desired optimization

and synthesis, the program decision logic network is modeled as a Boolean equation.

Boolean minimization techniques are then applied to simplify and optimize the equation.

Finally, the optimized network is re-expressed in the form of predicated assembly code.

One unique feature of this approach is that all branches and predicates within a segment

of code are treated jointly in a systematic manner [49].

Previous Work. Previous research in the area of control 
ow optimization can be

classi�ed into three major categories: branch elimination, branch reordering, and control

height reduction. Branch elimination techniques identify and remove those branches

whose direction is known at compile time. The simplest form of branch elimination is loop

unrolling, in which instances of back edge branches are removed by replicating the body

of the loop. More sophisticated techniques examine program control 
ow and data 
ow

simultaneously to identify correlations among branches [54], [55]. When a correlation is

detected, a branch direction is determinable by the compiler along one or more paths, and

the branch can be eliminated. In [55], an algorithm is developed to identify correlations

and to perform the necessary code replication to remove branches within a local scope.

This approach is generalized and extended to the program-level scope in [54]. The second

category of control 
ow optimization work is branch reordering. In this work, the order in

which branches are evaluated is changed to reduce the average depth traversed through

a network of branches [56].

The �nal category of control 
ow optimization research focuses on the reduction of

control dependence height. This work attempts to collapse the sequential evaluation of

linear chains of branches in order to reduce the height of program critical paths [21].
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In an approach analogous to a carry look-ahead adder, a look-ahead branch is used

to calculate the taken condition of a series of branches in a parallel form. Subsequent

operations dependent on any of the branches in the series need only to wait for the

lookahead branch to complete. The control dependence height of the branch series is

thus reduced to that of a single branch. The mechanisms introduced herein also serve

to reduce control dependence height. This chapter, however, introduces an approach to

minimization and re-expression of control 
ow networks that is far more general than

those proposed in previous work.

6.1 Overview of Compiler Techniques

This section presents a conceptual overview of the program decision logic minimiza-

tion process, starting with the conversion of code to the predicated representation for

subsequent optimization. In order to simplify the extraction and manipulation of control

expressions, the compiler applies if-conversion and reformulation of nonbranch control

constructs to transform all programmatic control 
ow into the predicated representation.

In the IMPACT compiler, this conversion is fully performed within acyclic code regions

formed using hyperblock formation heuristics [17]. To a great extent, the ability of these

control logic optimization techniques to improve performance depends on the scope of

these regions, as only the control structure transformed into the predicate domain is avail-

able for subsequent optimization. In order to promote e�ective hyperblock formation,

aggressive function inlining is performed.

An example extracted from the Unix utility wc illustrates the application and bene�t

of the described techniques. Figure 6.1 shows the code segment before and after complete
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(b)

Jump Loop

r2 = 0 <p5>

p5_of = (r4 != 9) <p8>

p5_of, p8_ut = (r4 != 32)

F

<p7>

MEM[71] = r61 <p6>

r61 = r62 + 1 <p6>

r62 = MEM[r71] <p6>

r2 = r2 + 1 <p3>

MEM[r72] = r26 <p3>

r26 = r27 + 1 <p3>

r27 = MEM[r72] <p3>

p7_ut = (r4 != 10) <p4>

p5_of, p6_uf = (r4 != 10) <p4>

p3_ut = (r2 == 0) <p2>

p4_ot, p2_uf = (r4 >= 127) <p1>

p4_ot, p1_uf = (32 >= r4)
r4 = MEM[r24]

F

r27 = MEM[r72]

r26 = r27 + 1

MEM[r72] = r26

r2 = r2 + 1

r2 = 0

MEM[71] = r61

r61 = r62 + 1

r62 = MEM[r71]

T
F

F

T

T

T

F

F

T

T

Branch r4 >= 127

Branch r2 == 0 Branch r4 != 10

Branch r4 != 9

Branch r4 != 32

Branch 32 >= r4

Jump Loop

r24 = MEM[r3]

r23 = r24 + 1

MEM[r3] = r23

r4 = MEM[r24]

22

Loop:Loop:

Figure 6.1: A portion of the inner loop of the Unix utility wc. The control 
ow graph (a),
and the corresponding hyperblock formed after complete if-conversion (b).

if-conversion. As shown in Figure 6.1(a), the code before if-conversion consists of basic

blocks and conditional branches (shown in bold) which direct the 
ow of control through

the basic blocks. As shown in Figure 6.1(b), the code after if-conversion consists of only

a single block of sequential instructions, a hyperblock [36]. The conditional branches

have been replaced with predicate de�ne instructions (shown in bold), and the predicate

registers de�ned have been placed as source operands on all guarded instructions in

accordance with their execution conditions.

After if-conversion, control speculation is performed to increase opportunities for op-

timization. Control speculation is a means of breaking a control dependence by allowing

an instruction to execute more frequently than is necessary. In a predicated represen-

tation, this is performed in predicate promotion, the process by which predicate 
ow
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r26 = r27 + 1
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r2 = 0

Jump Loop22

Loop: Loop:

p1

Figure 6.2: The wc hyperblock after speculation but before logic minimization (a) and
its corresponding logic diagram (b). The hyperblock after logic minimization
(c) and its corresponding logic diagram (d).

dependences are broken and instructions are made to execute speculatively by changing

an instruction's guard predicate to another predicate, whose expression subsumes that of

the original [17]. When instructions are aggressively promoted, some predicates may no

longer be utilized as guards on computation. When a predicate is no longer necessary,

the program decision logic is simpli�ed. Figure 6.2(a) shows the wc hyperblock segment

after predicate promotion. Comparison with Figure 6.1(b) shows that four instructions

(12, 13, 16, and 17) have had their predicates promoted to the TRUE predicate, denoted

in the �gure as the absence of a source predicate. However, no predicates were rendered

completely unused by this process.

Next, the program decision logic network is constructed. Since predicates can only

assume Boolean values, predicates and predicate de�nes in an acyclic region can be viewed
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as a combinational logic circuit. To derive the Boolean functions from a hyperblock, the

compiler needs only to examine the predicate de�ne instructions. Consider instructions

7 and 8 in Figure 6.2(a), in which the expression for p1 can be written as p1 = C0 and

p2 can be written as: p2 = p1C1, where C0 is the condition: (32 � r4) and C1 is the

condition: (r4 � 127). The expression for p2, in terms of conditions, is p2 = C0C1. In the

course of this complete back substitution, expressions based on condition variables are

formulated for all predicate de�ne instructions. The composition of all these expressions

is the program decision logic network. This network can be modeled as a logic circuit that

represents all the decisions made in the program. The logic circuit has conditions as its

input and the predicates which control computation as its output. The multiple-output

Boolean logic circuit for the wc code segment is shown in Figure 6.2(b).

Once the logic circuit has been derived, many computer-aided design (CAD) tech-

niques can be employed to simplify the program decision logic network. In the IMPACT

compiler, the derived Boolean function is represented with a BDD [43]. The BDD algo-

rithms used are described in [45]. The predicate BDD contains the relationship among

predicates as de�ned by the network of predicate de�ne operations. The predicate BDD

is used throughout the compiler as a database for queries made by optimizations when

operating on predicated code. For example, one common query is to determine if one

instruction executes only when another instruction has executed. This query is equiva-

lent to the dominance relationship in the control 
ow domain. Here, the BDD is queried

to determine if the predicate expression of one instruction subsumes the predicate ex-

pression of another. Queries to the BDD are made in IMPACT by the optimizer, the

scheduler, and data
ow analysis.
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For the purposes of decision logic minimization, the BDD provides a simple method

by which expressions describing the hyperblock logic can be derived. The only expres-

sions requested from the BDD are those expressions describing the essential predicates.

Essential predicates are those predicates that guard real computation instructions (any

instruction that is not a predicate de�ne). In Figure 6.2a, the essential predicates are

p3, p5, and p6. Predicates p1, p2, p4, p7, and p8 are nonessential predicates as they are

used only as intermediates in evaluation of the essential predicates.

The BDD maintains a canonical representation of the decision logic functions, from

which a Boolean sum-of-products expression can be produced for any represented func-

tion. Note that the expression thus generated re
ects the canonical nature of the BDD's

internal representation and is usually not optimal for expressions with multiple product

terms. Therefore, it is necessary to optimize the derived expression before attempting to

synthesize a predicate de�ning structure.

The expressions describing the evaluation of the essential predicates are optimized

using techniques which eliminate redundant terms in the function and which reexpress

the Boolean function in a more parallel form. The resulting expression is reformulated

back into predicate de�ne instructions in the hyperblock. Section 6.2 presents the details

of the Boolean logic optimizers and reformulators studied in this work. These optimizers

and reformulators must balance the reduction of dependence height with the number of

predicate de�nes that can be accommodated in the code schedule. This involves making

an accurate estimate of how much time is available for computation of control functions

based on the availability times of conditions and when predicates need to be consumed.
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These and other considerations make the design of an optimizer and a reformulator

nontrivial.

Figures 6.2(c)and 6.2(d) show the reformulated hyperblock and corresponding logic

circuit after the minimization process is complete. The number of logic gates in the cir-

cuit implementation is reduced from ten to three. In addition, the six-level gate network

in Figure 6.2(b) is reduced to a single-level gate network in Figure 6.2(d). All nonessen-

tial predicates were also eliminated as part of this process. An example optimization

performed on the logic circuit takes the form: C0 + C1C0 ! C0 + C1. An application of

this optimization occurs between instructions 7 and 8 when computing p4.

The values of variables in the decision logic network are supplied by evaluating con-

ditions on predicate de�ne instructions. It is important to recognize that these variables

are not necessarily independent, and that knowledge of the relationships between these

variables can allow for signi�cant further optimization of the predicate de�ne structure.

Consider the computation of p6 in Figure 6.2(a). Instruction 10 computes p6 uf = C3

hp4i. Logically, this leads to the expression p6 = C3(C0 + C1), where C0 = (32 � r4),

C1 = (r4 � 127), and C3 = (r4 6= 10). Here, since C3 implies C0 and excludes C1,

the expression for p6 can be simpli�ed to p6 = C3. In this approach, the relationships

between conditions are represented in a BDD, termed the condition BDD, which can

be queried to determine if logical implications exist between conditions and, if so, what

they are. The current implementation of this mechanism identi�es \families" of integer

register-constant comparisons which are based on the same de�nition of a given register.

Then, within each family, a number line is created and divided into disjoint segments
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Cycle Instructions issued

0 op1 op2 op3 op12 op16
1 op4 op6 op13 op17
2 op5 op7

3 op8

4 op9 op10 op11

5 op14 op15 op18 op19

6 op20

7 op21 op22

(a) Schedule for the hyperblock in Figure 6.2(a).

Cycle Instructions issued

0 op1 op2 op3 op12 op16
1 op4 op6 op9 op13 op17
2 op5 op7 op8 op10 op19 op20

3 op14 op15 op18 op21 op22

(b) Schedule for the hyperblock in Figure 6.2(c).

Figure 6.3: Comparison of the static schedules for the wc hyperblock before and after
logic minimization.

from which the set of register values yielding a \TRUE" evaluation for any member con-

dition can be composed by union [48]. Finally, the relationships between the comparisons

are described in BDD form using a �nite domain technique [44]. Various elements of the

optimizer query this BDD to determine the inherent relationships between conditions,

which are the decision network's input variables.

The overall e�ectiveness of the program decision logic minimization process on the

wc example is best shown by comparing the schedules of the code before and after op-

timization. For illustration purposes, a six-issue processor with no restrictions on the

combination of instructions that may simultaneously be issued is assumed. Furthermore,

all instructions are assumed to have a latency of one cycle. Figure 6.3 presents the

schedules for the example hyperblock before and after optimization. The instructions
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in bold correspond to the predicate de�nes in each hyperblock. The schedule for the

pre-optimization hyperblock (Figure 6.3(a)) is relatively sparse due to the sequentiality

of the predicate de�nes. The overall schedule length is eight cycles. The schedule after

logic minimization is reduced by a factor of two. The chain of predicate de�ne instruc-

tions in the original hyperblock is replaced by a parallel, more eÆcient computation in

the optimized hyperblock. The reformulated hyperblock requires only a single level of

predicate de�nes to compute the essential predicates as opposed to the �ve-level network

used in the original code, yielding a signi�cant increase in performance.

6.2 Minimization of Program Decision Logic

The previous section provided an overview of the process of program control height

minimization through the optimization of the predicate de�ne network. This section

describes in detail the mechanisms by which the predicate de�ne optimizer generates

new predicate de�ne instructions to evaluate more eÆciently the program's essential

predicate functions. The discussion in this section assumes that the program's decision

logic has been represented by the predicate BDD and the condition BDD, and that

sum-of-products (SOP) expressions for the essential predicates have been extracted as

described in the previous section. Once the program decision logic has been extracted,

program control is optimized and reexpressed in three steps. First, SOP expressions are

optimized using condition analysis and traditional Boolean logic minimization techniques.

The resulting optimized expressions are then optionally factorized based on condition

availability times and resource constraints. Finally, program control is reexpressed in
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predicate de�ne instructions, either in a two-level network or in a multilevel network,

depending on whether or not factorization was performed.

The generation of an eÆcient predicate de�ne network begins with the extraction

and subsequent optimization of the SOP for the predicate functions. Figure 6.4(b) shows

the expressions extracted for the essential predicates in the wc example, as well as the

conditions to which the variables in the expressions correspond. Figure 6.4(a) shows

the original predicate de�ne network for reference. Because the control expressions are

completely represented by the predicate BDD in terms of conditions, the nonessential

predicates are eliminated from consideration. This process maps the predicate de�ne

structure, in this case �ve stages of predicate de�ne instructions, into a SOP which

can be synthesized into a two-cycle sequence of predicate de�ne instructions. However,

this expression can exhibit a large number of redundant and constant-FALSE products,

and must be re�ned before use in de�ne regeneration. From Figure 6.4(b), two-level

regeneration of the unoptimized expressions of the wc example would require 13 predicate

de�nes in the �rst level and six in the second, far more than the seven required in the

initial network.

6.2.1 Optimization of predicate expressions

Predicate expressions are optimized in two steps. First, expressions are reduced using

condition BDD information. For example, conditions that imply or exclude each other

(i.e., (r1 < 4) implies (r1 < 5) and excludes (r1 >= 7)), can cause predicate expressions

to contain redundant or constant-FALSE products, as well as redundant literals in useful
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<p4>

p4_ot, p1_uf = (32>=r4)
p4_ot, p2_uf = (r4>=127)
p3_ut = (r2 == 0)
p5_of, p8_ut = (r4 != 32)
p5_of = (r4 != 9)

<p1>
p5_of, p6_uf = (r4 != 10)<p2>

<p7>
<p8>

p7_ut = (r4 != 10) <p4>

(a) Original predicate de�ne structure.

C0 (32>=r4)

C1 (r4>=127)

C2 (r2==0)

C3 (r4!=10)

C4 (r4!=32)

C5 (r4!=9)

p3 C0C1C2

p6 C0C3+C0C1C3

C0C3+C0C1C3+

p5 C0C3C4+C0C1C3C4+

C0C3C4C5+C0C1C3C4C5

(b) Conditions and original predicate
expressions.

p3 C0C1C2

p6 C3

p5 C3+C4+C5

(c) Optimized predicate expressions.

... p5_of, p6_uf = (r4 != 10) p5_of = (r4 != 9)

p3_af = (32 >= r4) p3_af = (r4 >= 127) p3_at = (r2 == 0) ...

p5_of = (r4 != 32)

(d) Optimized predicate de�ne structure.

Figure 6.4: Example: optimization of wc predicate network.

products. These extraneous features are removed in this phase. One such case from the

benchmark wc was examined in Section 6.1.

Once redundant and constant-FALSE products and literals have been removed from

the predicate expressions, the general Boolean logic optimization program espresso is

used to generate a minimal SOP implementation.

Figure 6.4(c) shows the expressions to which the essential predicates of the wc example

are reduced in the logic optimization phase. These expressions are both less complex and

more parallel than the original functions.
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6.2.2 Two-level predicate synthesis

Following optimization of the predicate expressions, the control logic can be synthe-

sized most intuitively as a two-level predicate de�ne network which directly evaluates

the minimized SOP expression. In this approach, two levels of predicate de�ne instruc-

tions are used for each predicate. The �rst level consists of and-type predicate de�nes

of the form pi at = CihT i, where one predicate pi is de�ned for each product term in

the predicate expression, and T is the TRUE predicate, which always has the value 1.

The second level consists of or-type predicate de�nes of the form pj ot = (condT )hpii,

where there is one such predicate de�ne for each product (pi) and condT is an invariant

TRUE condition (e.g., (0 == 0)). Thus, a predicate expression having L literals and M

products consumes M + 1 predicates and performs L +M predicate assignments.

Continuing the wc example in Figure 6.4(d), note that the two special cases of two-

level predicate synthesis occur, in which the computation of functions containing a single

product and functions that are disjunctions of single-literal products can be performed

in a single cycle. Note also that predicates which have products in common can share

intermediate predicates, allowing for some savings through reuse. In most cases, how-

ever, two-level synthesis generates an enormous number of predicate de�ne instructions,

because redundancy between products is not reduced. Furthermore, since the evaluation

of such a predicate de�ne network usually takes at least two cycles after the last condition

becomes available (one for the and-level and one for the or-level), the result may also be

suboptimal in latency, even when scheduled for in�nite issue. Results demonstrating both
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these phenomena are presented in Section 6.4. Clearly, a more sophisticated technique

is required.

6.2.3 Factorization

In the example of the previous section, the code sample from wc exhibited a large ratio

of control height to computation height, and the computation was nearly completely de-

pendent on the outcome of the decision mechanisms. Thus, it was important to compress

the height of the entire decision structure as much as possible, as any reduction in the

decision height improved performance. Furthermore, since the predicate conditions were

strongly related, the resulting predicate de�ne structure actually reduced the predicate

and predicate de�ne count. In many other situations, however, predicates are based on

more independent conditions and the number of predicate de�ne instructions required to

generate a two-level network may be quite large. Factorization seeks to use the code's

computation or datapath height to hide some portions of the decision latency which are

not on the critical path. Thus, the optimizer is free to focus on reducing implementa-

tion size rather than delay when implementing these noncritical sections, saving valuable

predicate registers and instruction issue resources.

The factored generation method determines how much factoring can be performed

at no cost. The availability times of conditions and the time at which predicate values

are needed by the computation component drive the factorizer. If parallel computation

height, rather than predicate de�ne height, is the critical path through the code segment,

then it is bene�cial to perform factorization instead of full expression 
attening.
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To measure the availability times of conditions and the time at which predicate values

are needed, a special version of the code is scheduled. This version of the code has all the

predicate dependences between predicate de�nes removed. For each condition, a predi-

cate destination is added for each predicate whose function depends on that condition.

In the resultant code, predicate de�ne instructions are placed as early in the schedule as

their condition availability will allow. Also, all uses of a predicate are placed as early as

possible, but after all the conditions which may be needed to compute it. By extract-

ing the issue time of these predicate de�nes and predicate uses, the amount of time the

new predicate network has to compute predicates without performance penalty is ascer-

tained. This information is then used together with the previously extracted predicate

expressions in later stages of optimization.

With factorization, the goal is to form intermediate predicates as the conditions to

compute them become available, and then to reuse these intermediate predicates in the

computation of the essential predicates. This activity factors the optimized sum-of-

products expression or its products so that the resulting de�ne structure may take more

cycles, but can reuse more intermediate predicates, thus saving predicate de�nes and

predicate registers.

In certain cases, when resource utilization is very high and predicate functions are

very complex, factorization becomes critical for performance. In some cases, genera-

tion of code which would optimally generate the predicate results on an in�nitely wide

machine could actually degrade performance in a real machine due to excessive width.

In these situations, an additional factorization preprocessing stage is applied, in which
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predicates are selectively factored on subexpressions available in essential predicates gen-

erated earlier in the original code. This activity, shown in lines 2 though 8 of Factorize

in Figure 6.5, has the e�ect of moderating the restructuring of control in cases where

reordering of the predicate expressions would generate a de�ne network too wide for the

target architecture.

Figure 6.6 shows an example extracted from the function cofactor of the 008.espresso

benchmark. The minimal sum-of-products is computed for each of the �nal predicates,

as shown in Figure 6.6(a). Next, with the help of condition availability and predicate

use times from Figure 6.6(a) and 6.6(b), all useful predicates are factorized, and common

expressions are shared. Figure 6.6(c) shows the result of this method. This factoring

results in the reduction of the number of predicate de�ne instructions from 37 to 13.

Furthermore, the useful predicates (p1 and p2) are available a single cycle after the last

condition is evaluated, sooner than would be possible using a two-level synthesis of the

predicate expressions, two cycles after the last condition evaluation.

In the direct sum-of-products conversion, the computation of p1 and p2 begin respec-

tively at cycle 5 and cycle 6, at the availability time of their latest conditions; results are

available two cycles later. With the factorization method, however, predicates p1 and

p2 can be evaluated in a single cycle after the availability of C5 and C6. Thus, in some

cases, the factorization method is able to reduce predicate latency by one cycle compared

to the result of the direct sum-of-products conversion.
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Factorize(func list; sched)
1 factor list = Empty list();

2 FOREACH func x IN func list DO

3 FOREACH func y IN func list BEFORE func x DO

4 IF Factor simpli�es(func y, func x) THEN

5 IF Resource constrained(func x:id) THEN

6 IF NOT (List member(func y, factor list) THEN

7 List insert last(factor list, func y);

8 func x = Factor SOP(func x, func y);

9 FOR cycle = sched:min cycle TO sched:max cycle DO

10 FOREACH func IN func list DO

11 FOREACH product IN func DO

12 ready prod = Ready product(product, cycle);

13 match prod = Match term(ready prod, factor list);

14 IF match prod THEN

15 ready factor = match prod;

16 ELSE

17 ready factor = ready prod;

18 ready factor:id = Unique token();

19 List insert(factor list, ready factor);

20 Factor term(product, ready factor);

21 List insert last(factor list, func list);

22 Factor common disjoint subexpr(factor list, func list);

23 RETURN func list, factor list;

Factor common disjoint subexpr(factor list, func list)
1 FOREACH func IN func list DO

2 product factor list = Extract ready products (func);

3 fact func = Find factor(product factor list, func);

4 IF fact func THEN

5 match fact = Match factor(fact func, factor list);

6 IF NOT (match fact) THEN

7 fact func:id = Unique token();

8 List insert(factor list, fact func);

9 match fact = fact func;

10 Factor term(func, match fact);

Figure 6.5: Pseudo-code for performing optimization of predicate expressions
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Pred Expression Use Cycle

p1 C0C2C4C5+ 6

C0C2C3C5+

C0C1C5

p2 C0C2C4C5C6+ 7

C0C2C3C5C6+

C0C1C5C6

(a) Optimized predicate expressions.

C0 C1 C2 C3 C4 C5 C6

1 1 2 3 4 5 6

(b) Condition availability.

Time Predicate expression

1 p3 ut = C0

p4 at = C0

p4 at = C1

2 p5 ut = C2

p6 ut = C2 hp3i
3 p7 ut = C3 hp6i
4 p8 ut = C4 hp6i
5 p1 of = C5 hp7i

p1 of = C5 hp8i
p1 of = C5 hp4i

6 p2 ut = C6 hp1i

(c) Factoring with schedule time information.

Figure 6.6: Factorized predicate de�ne optimization.
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6.3 Architectural Support for Synthesis

Description of the predicate optimization in previous sections has disregarded the

means by which Boolean expressions are converted back into predicate de�ning instruc-

tions. This section examines the instruction set considerations that evolved in supporting

an e�ective predicate synthesis system.

Implementation of two-level predicate synthesis is straightforward in the HPL Playdoh

predicate architecture. For example, in Figures 6.2 and 6.4(c), a simple sum-of-products

expression is converted into a small set of predicate de�nes.

Synthesis of multilevel factored functions is not as simple as product-of-sums or sum-

of-products expressions, but yields signi�cant improvements in both performance and

predicate de�ne count. When an expression is factored out of one or more predicate

expressions, its value is computed and stored in a predicate for later use. After factoring,

expressions to be synthesized thus contain predicates as well as conditions. To illustrate

the use of factoring, the example in Figure 6.7 is presented. In Figure 6.7(a), predicate

p1 is a subexpression of p2. Factoring C1 + C2, or p1, out of p2 allows more sharing

of predicate de�nes between predicate computations. As can be seen in Figure 6.7(b),

this subexpression can be computed in cycle 1 using or-type predicate de�nes. The

availability of this expression before the computation of p2 allow an eÆcient application

of factorization. In cycle 3, the conjunction of the subexpression stored in p1 with the

previous value of p2 and C3 is required. This expression is awkward to compute using the

PlayDoh predicate de�ne semantics because the logical combination of predicates is not

directly supported. With the extension to the PlayDoh predicate de�ne semantics, this
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Pred Expression Use Cycle

p1 C1 + C2 3
p2 C0C1C3 + C0C2C3 4

(a) Optimized predicate expressions.

C0 C1 C2 C3

1 2 2 3

(b) Condition availability.

Time Predicate expression

1 p2 ^t = C0

2 p1 ot = C1

p1 ot = C2

3 p2 ^t = C3 hp1i

(c) Factorization with conjunctive-type
predicate de�nes.

Time Predicate expression

1 p3 at = C0

p4 at = C0

2 p1 ot = C1

p1 ot = C2

p3 at = C1

p4 at = C2

3 p3 at = C3

p4 at = C3

4 p2 ot = TRUE hp3i
p2 ot = TRUE hp4i

(d) No factorization

Time Predicate expression

1 p2 at = C0

2 p1 ot = C1

p1 ot = C2

p3 af = C1

p3 af = C2

3 p2 at = C3

p2 af = TRUE hp3i

(e) Factorization without
conjunctive-type predicate de�nes.

Figure 6.7: Various methods of predicate expresssion regeneration.

expression can be computed with a single conjunctive-type predicate de�ne. Figure 6.7(c)

shows the �nal set of predicate de�nes used to compute the factored predicate expressions.

The two expressions are computed using a total of two predicates and four predicate

de�nes. The last predicate de�ne conjoins p1 and C3 to the previous contents of p2 (C0)

to �nish the computation of the p2 expression.

The primary use of the conjunctive-type predicate de�nes is to reduce the number of

instructions required to compute factored expressions. This reduction is best illustrated

when the generation of the predicate expressions is done without the conjunctive type.

Figures 6.7(d) and 6.7(e) show two generation options that do not use the conjunctive
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type. In Figure 6.7(d), no factorization is performed and the direct sum-of-products

expressions are computed. This approach requires a total of ten predicate de�nes, six

more instructions than was required in Figure 6.7(c). Further, the two-level nature of the

sum-of-products generation adds an extra level of dependence height. In Figure 6.7(e),

factorization is performed, but the conjunctive-type is not used. Here, a total of seven

predicate de�nes, three extra instructions, is necessary. Of these, two predicate de�nes are

needed to compute the complement of the factored expression. This is done by applying

DeMorgan's theorem. Another method of complementing p1 could have been used, but

it would have cost a cycle of latency. The third extra predicate de�ne is used to nullify

p2 if the complement of the factored predicate is TRUE. Note that the disjunctive-type

predicate de�nes are analogously useful when product-of-sums expressions are used.

6.4 Evaluation

The e�ectiveness of the Boolean minimization techniques for generating predicated

code are evaluated in this section. These techniques have been implemented within the

IMPACT experimental compiler framework and applied to a set of benchmarks.

6.4.1 Processor model and benchmarks

The processor modeled is an eight-issue processor with in-order execution and reg-

ister interlocking. The processor has no limitation on the combination of instructions

that may be issued each cycle, except that only one branch may be executed per cy-

cle. The instruction latencies assumed match those of the HP PA-7100 microprocessor.

The instruction set contains a set of nontrapping versions of all potentially excepting
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instructions, with the exception of branch and store instructions, to support aggressive

speculative execution. The instruction set also contains support for predicated execution

as described in Chapter 2.

The execution time for each benchmark was obtained using the IMPACT emulation-

driven simulator. Some dynamic e�ects such as branch mispredictions, cache misses, and

TLB misses were not measured. This decision was made to ensure that the experimental

results highlight the e�ects of the techniques being evaluated. Since the reformulation of

the predicate decision logic does not a�ect the basic nature of memory access patterns and

branch histories, any change in these dynamic e�ects between the original and optimized

codes would be spurious in nature.

The benchmarks used in this experiment consist of 13 nonnumeric programs: four

of the SPECINT 92 benchmarks, 008.espresso, 022.li , 026.compress, 072.sc; six of the

SPECINT 95 benchmarks, 099.go, 124.m88ksim, 126.gcc, 129.compress, 130.li , 132.ijpeg ;

and three Unix utilities, cccp, lex , wc.

6.4.2 Results

The �rst set of results presented compare the performance of a code set transformed

with the described techniques to the performance of a baseline code set. The baseline

code consists of the best code generated by the IMPACT compiler (version 990123-I) for a

predicated architecture using hyperblock compilation techniques. The transformed code

corresponds to the baseline hyperblock code after Boolean minimization techniques are

used to restructure the predicate de�nes, and after the code is rescheduled. Performance

is derived by computing the ratio of the execution cycle count for the baseline code to
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numbers is that they re
ect only the dependence height of predicate de�nes, while elim-

inating their resource consumption characteristics. These results suggest a logical upper

bound for gains possible with more e�ective factorization techniques. In most bench-

marks, the optimizer produced a number of predicate de�nes that was appropriate for the

schedule and machine model. However, in four benchmarks, 008.espresso, cccp, 126.gcc,

and lex, the optimizer was unable to balance height reduction with resource consumption

and performance was penalized. This e�ect was very dramatic in 008.espresso because

it is very decision height limited. Unfortunately, the excessive optimization opportunity

available in 008.espresso allowed the current minimization heuristic to be overly aggres-

sive in reducing height. With more advanced factorization techniques, the number of

predicate de�nes could be reduced in these instances, more closely approximating the

\8-issue, 256-preds" results.

Overall, the full benchmark results are encouraging. In most cases, the bene�t of these

technique was limited solely by the bottleneck created by program computation height.

During experimental exploration, I observed that as optimizations targeting computa-

tion height were improved, the decision logic became dominant, and relative speedups

improved. In particular, data and memory dependences seemed to hide much of the

program decision height reduction in many important hyperblocks. As the various com-

ponents of compiler technology mature, the overall e�ectiveness of Boolean minimization

will improve, as will the importance of an intelligent height versus count selector in the

factorizer.
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Table 6.1: Speedup and predicate de�ne count for selected functions.

Original Two-Level Synthesis Factored Synthesis

Benchmark, Function Pred. De�nes Pred. De�nes (1) (8) Pred. De�nes (1) (8)

008.espresso, essen parts 39 1293 1.29 0.39 49 1.24 1.16

022.li, xleval 48 485 1.07 0.66 80 1.10 1.10

022.li, mark 42 67 1.48 1.48 53 1.50 1.48

026.compress, compress 60 456 1.20 1.03 221 1.23 1.23

072.sc, update 141 240 1.15 1.15 159 1.23 1.23

099.go, gete�ibs 98 1083 1.06 0.98 204 1.07 1.07

124.m88ksim, execute 41 47 1.12 1.12 40 1.12 1.12

124.m88ksim, goexec 176 175 1.10 1.09 155 1.09 1.08

124.m88ksim, load data 42 54 1.30 1.30 53 1.30 1.30

124.m88ksim, loadmem 84 88 1.13 1.13 84 1.13 1.13

126.gcc, invalidate 89 202 1.27 1.24 125 1.22 1.21

126.gcc, 
ow analysis 64 92 1.77 1.69 58 1.86 1.86

126.gcc, canon hash 89 149 1.88 1.20 116 1.90 1.74

129.compress, compress 63 154 1.21 1.21 98 1.26 1.26

130.li, mark 55 148 1.15 1.14 101 1.19 1.19

132.ijpeg, forward DCT 31 47 1.46 1.35 32 1.46 1.43

cccp, skip if group 157 208 1.23 1.05 190 1.32 1.24

lex, cgoto 236 330 1.31 1.10 260 1.18 1.14

wc, main 56 48 1.22 1.31 48 1.22 1.22

To better understand the e�ect program decision logic minimization has on complete

programs, I measured the performance and code size characteristics of a number of se-

lected functions. Table 6.1 examines the performance of one or more functions from

each of the benchmarks. These functions were chosen based on two criteria: signi�cant

program execution time and potential for optimization (e.g., the control height was sig-

ni�cant relative to the computation height). The table compares the e�ectiveness of

two strategies for program logic transformation: two-level predicate synthesis and fac-

torization. For each strategy, the static number of predicate de�ne instructions, the per-

formance gain on an eight-issue processor with unconstrained predicate de�ne resources

(1), and the performance gain on the eight-issue processor are reported. In addition, the

static number of predicate de�ne instructions in the code before minimization is reported.
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From the table, the two-level synthesis approach shows mixed results. For the un-

constrained machine, the reduction in height translates directly into large speedups.

However, the unconstrained performance does not always translate into the same per-

formance gain on the eight-issue processor. This is most pronounced in 008.espresso,

essen parts where the 1.16 speedup is sharply reduced to 0.39. The primary reason for

this behavior is the large increase in the number of predicate de�ne instructions, which

oversaturates processor resources and results in loss of performance. Correspondingly,

when the number of predicate de�nes is not increased by a large amount, the uncon-

strained performance does indeed translate directly into performance on the eight-issue

processor. Clearly, factored synthesis is necessary for successful optimization of program

decision logic.

As shown in the table, the factored approach yields both larger and more consis-

tent speedups. Both methods reduce the predicate computation height, but the factored

approach dramatically reduces the number of predicate de�nes required for the opti-

mization. The function 126.gcc, canon hash provides a good example of this behavior.

Both methods achieve good speedup for the unconstrained processor. However, the

two-level synthesis approach requires 149 predicate de�nes to accomplish the improve-

ment. For the eight-issue processor, most of the performance gain is lost due to this

increase in instructions. The factored approach reduces the number of predicate de�nes

to 116, increasing the eight-issue speedup to 1.74. The number of predicate de�nes is

still more than the original 89. Note, however, that simply increasing the number of

predicate de�nes from the original code is not necessarily viewed as a negative. Boolean

minimization approaches do this systematically to improve performance by identifying
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condition subexpressions that can be computed early. This allows the �nal predicate to

be made available as soon as possible after the �nal condition is ready. However, the

factored approach is consistently more e�ective because it factors predicate expressions

into multiple-level structures which are less demanding of processor resources than two-

cycle evaluations. Another interesting result is that for some functions such as update

from 072.sc the factored synthesis method outperforms the two-level method, even at

in�nite issue. This is due to the ability of the factorizer to generate expressions in one

cycle rather than the two usually required by the two-level synthesis approach.

6.5 Signi�cance

The PDLO is a new method for optimizing programmatic control 
ow. It provides

a systematic methodology for reformulating program control 
ow for more eÆcient exe-

cution on ILP processors. Control expressed through branches and predicate de�nes is

extracted and represented as a program decision logic network . Boolean minimization

techniques are applied to the network both to reduce dependence height and to simplify

the component expressions. Redundancy is controlled by employing a schedule-sensitive

factorization technique to identify intermediate logical combinations of conditions that

can be shared. After optimization, the network is reformulated into predicated code.

As compiler technology progresses to make use of predication more extensive and

e�ective, minimization of program decision logic is likely to become an increasingly more

important part of total program optimization.
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7. PARTIAL REVERSE IF-CONVERSION

As discussed in Chapter 3, an e�ective compiler strategy for supporting predicated

execution must address the \what" and \when" questions of if-conversion. This chapter

presents the mechanism called partial reverse if-conversion that operates at schedule

time to balance the amount of control 
ow and predication present in the generated

code, based on the characteristics of the target processor [38]. The Partial Reverse If-

Conversion Framework enables the compiler to extract the full bene�ts of the predicated

representation by applying aggressive if-conversion early in the compilation procedure,

while at schedule time reducing the or eliminating the e�ect of overaggressive hyperblock

formation.

7.1 Partial Reverse If-Conversion

The partial reverse if-conversion process consists of three components: analysis, trans-

formation, and decision. These components are integrated into an instruction scheduler

in the Partial Reverse If-Conversion Framework. This section consists of a description
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of these components and their integration into a hyperblock scheduler. The section con-

cludes with a realistic code example to illustrate the operation of the framework.

7.1.1 Analysis

Before any manipulation or analysis of execution paths can be performed, these paths

must be identi�ed in the predicated code. Execution paths in predicated code are re-

ferred to as predicate paths. Immediately after hyperblock formation, the structure of

the predicate paths is identical to the control 
ow graph of the code before hyperblock

formation. The structure of the predicate paths can be represented in a form called the

predicate 
ow graph (PFG) as described in Chapter 5. Recall that the predicate 
ow

graph is simply a control 
ow graph (CFG) in which predicate execution paths are also

represented.

Figure 7.1 shows a predicated code segment and its PFG. The PFG shown in Fig-

ure 7.1(b) is created in the following manner. The �rst instruction in Figure 7.1(a) is

a predicate de�nition. At this de�nition, p1 can assume TRUE or FALSE. A path is

created for each of these possibilities. The complement of p1, p2, shares these paths be-

cause it does not independently create new conditional outcomes. The predicate de�ne

instruction 2 also creates another path. In this case, the predicates p3 and p4 can only be

TRUE if p1 is TRUE because their de�ning instructions is predicated on p1; therefore,

only one more path is created. The creation of paths is determined by the interrelations

of predicates, which are provided by mechanisms addressed in other work [19], [41]. For

the rest of the instructions, the paths that contain these instructions are determined by

the predicate guarding their execution. For example, instruction 3 is based on predicate
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(1) p1, p2 = r1 > r11

(2) <p1>

<p1>

(4)

(3)

r4 = r3 + 1

(5) r4 = MEM[E] <p2>

(6)

(7)

MEM[V] = r4 <p2>

<p3>

(2) p3, p4 = NULL (2) p3, p4 = r2 > r11 <p1>

(3) <p1>r3 = MEM[D]

(4) r4 = r3 + 1

(5) <p2>

(6)

(7)

<p2>

<p3>

(3) r3 = MEM[D] <p1>

(4) r4 = r3 + 1

(5) <p2>

(6)

(7) MEM[L] = r4

<p2>

<p3>

p1 = F, p2 = T

p3, p4 = F

p1 = T, p2 = F

(b)

p3 = F, p4 =T p3 = T, p4 = F

p1, p2 = r1 > r11(1)

<p3>

<p2>

<p2>

<p1>r3 = MEM[D]

r4 = r3 + 1

r4 = MEM[E]

MEM[V] = r4

MEM[L] = r4

(3)

(4)

(5)

(6)

(7)

(a)

<p1>p3, p4 = r2 > r11

Figure 7.1: Predicate 
ow graph (b) for predicated code segment (a). Partial dead code
elimination is applied, given that r3 and r4 are not live out of this region.

p1 and is therefore only placed in paths where p1 is TRUE. Instruction 4 is not predicated

and therefore exists in all paths. The type of predicate de�nes used in all �gures in this

chapter are unconditional, meaning they always write a value [20]. Because they write

some value regardless of their predicate, their source predicates can be ignored, and the

instruction's destinations must be placed in all paths.

Paths in a PFG can be merged when a predicate is no longer used and does not a�ect

any other predicate later in the code. However, this merging of paths may not be suÆcient

to solve all potential path explosion problems in the PFG. This is because the number of

paths in a PFG grows exponentially with respect to the number of independent predicates

whose live ranges overlap. Fortunately, in practice this never becomes prohibitively

expensive except during code scheduling. After code scheduling, a complete PFG will

have a large number of paths and may be costly. How the partial reverse if-converter

overcomes this problem is described in Chapter 5.

With a PFG, the compiler has the information necessary to know which instructions

exist in which paths. In Figure 7.1, if the path in which p1 and p3 are TRUE is to be

extracted, the instructions which would be placed into this path would be 3, 4, and 7.
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The instructions that remain in the other two paths seem to be 3, 4, 5, and 6. However,

inspection of the data
ow characteristics of these remaining paths reveals that the results

of instructions 3 and 4 are not used, given that r3 and r4 are not live out of this region.

This fact makes these instructions dead code in the context of these paths. Performing

traditional dead code removal on the PFG, instead of the CFG, determines which parts

of these operations are dead. Because this application of dead code removal indicates

that these instructions are dead only under certain predicate conditions, this process is

termed predicate partial dead code removal and is described in Chapter 5. The result

of partial dead code removal indicates that instructions 3 and 4 would generate correct

code and would not execute unnecessarily if they were predicated on p3.

At this point, all paths have been identi�ed, and unnecessary code has been removed

by partial dead code removal. The analysis and possible ejection of these paths now

becomes feasible.

7.1.2 Transformation

Once predicate analysis and partial dead code elimination have been completed, per-

forming reverse if-conversion at any point and for any predicate requires a small amount

of additional processing. This processing determines whether each instruction belongs

in the original hyperblock, the new block formed by reverse if-conversion, or both. Fig-

ure 7.2 is used to aid this discussion.

The partial reverse if-converted code can be subdivided into three code segments.

These are: the code before the reverse if-converting branch, the code ejected from the

hyperblock by reverse if-conversion, and the code which remains in the hyperblock below
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p1, p2 = r1 > r11(1)

(2) p3, p4 = r2 > r11 <p1>

jump <p1>

(5) r4 = MEM[E] <p2> (3) r3 = MEM[D] <p1>

p1 = T, p2 = F

(4) r4 = r3 + 1(6) MEM[V] = r4 <p2>

(7) MEM[L] = r4 <p3>

(b)

(a)

(3) r3 = MEM[D] <p1>

(4) r4 = r3 + 1

(7) MEM[L] = r4 <p3>

(5) r4 = MEM[E] <p2>

(6) MEM[V] = r4 <p2>

(1) p1, p2 = r1 > r11

(2) <p1>p3, p4 = NULL

p1 = F, p2 = T

(2) p3, p4 = r2 > r11 <p1>

Figure 7.2: Predicate 
ow graph (a) and a partial reverse if-conversion of predicate p1
located after instructions 1 and 2 (b).

the reverse if-converting branch. Instructions before the location of the partial reverse

if-converting branch are left untouched in the hyperblock. Figure 7.2(b) shows the partial

reverse if-conversion created for p1 after instructions 1 and 2. This means that instruc-

tions 1 and 2 are left in their originally scheduled locations, and the reverse if-converting

branch, predicated on p1, is scheduled immediately following them. The location of

instructions after the branch is determined by the PFG. To use the PFG without ex-

periencing a path explosion problem, the PFGs generated during scheduling are done

only with respect to the predicate being reverse if-converted. This keeps the number of

paths under control since the single-predicate PFG can contain no more than two paths.

Figure 7.2(a) shows the PFG created for the predicate to be reverse if-converted, p1.

Note that the partial dead code has already been removed as described in the previous

section. Instructions that exist solely in the \p1 is FALSE" path, such as 5 and 6, remain

in the original block. Instructions that exist solely in the \p1 is TRUE" path, such as 3,
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4 2 34 4
(a)

1 2 43
(b)

1 4 3

Figure 7.3: Simple code size reduction on multiple partial reverse if-conversions applied
to an unrolled loop. Each square represents an unroll of the original loop.

4, and 7, are moved from the original block to the newly formed region. An instruction

which exists in both paths must be placed in both regions.

Notice that the hyperblock conditionally jumps to the code removed from the hyper-

block, but there is no branch from this code back into the original hyperblock. While

this is possible, it was not implemented in this work. Branching back into the hyperblock

would violate the hyperblock semantics because it would no longer be a single entry re-

gion. Violating hyperblock semantics may not be problematic since the bene�ts of the

hyperblock have already been realized by the optimizer and prepass scheduler. However,

the postpass hyperblock scheduler may experience reduced scheduling freedom since each

side entry into the hyperblock e�ectively divides the region into two smaller hyperblocks.

The advantage of branching back into the original hyperblock is a signi�cant reduc-

tion in code size through elimination of unnecessarily duplicated instructions. However,

as will be shown in the experimental section, code size was generally not a problem. One

code size optimization that was performed merges targets of partial reverse if-conversion

branches if the target blocks are identical. This resulted in a signi�cant code size reduc-

tion in codes where loop unrolling was performed. If a loop in an unrolled hyperblock
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needed to be reverse if-converted, it is likely that all iterations needed to be reverse if-

converted. This creates many identical copies of the loop body subsequent to the loop

being reverse if-converted. Figure 7.3(a) shows the original result of repeated reverse

if-conversions on an unrolled loop. Figure 7.3(b) shows the result obtained by combin-

ing identical targets. While this simple method works well in reducing code growth, it

does not eliminate all unnecessary code growth. Eliminating all unnecessary code growth

would require a mechanism capable of inserting a reentry target at an opportune location

in the hyperblock.

7.1.3 Policy

After creating the predicate 
ow graph and removing partial dead code, the identity

and characteristics of all paths in a hyperblock are known. With this information, the

compiler can make decisions on which transformations to perform. The decision process

for partial reverse if-conversion consists of two parts: deciding which predicates to reverse

if-convert and deciding where to reverse if-convert the selected predicates. To determine

the optimal reverse if-conversion for a given architecture, the compiler could exhaus-

tively try every possible reverse if-conversion, compute the optimal cycle count for each

possibility, and choose the one with the best performance. Unfortunately, there are an

enormous number of possible reverse if-conversions for any given hyperblock. Consider

a hyperblock with p predicates and n instructions. This hyperblock has 2p combina-

tions of predicates that could be selected for reverse if-conversion. Each of these reverse

if-conversions can then locate its branch in up to n locations in the worst case. Given

that each of these possibilities must be scheduled to measure its cycle count, this can
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be prohibitively expensive. Obviously, a heuristic is needed. While many heuristics may

perform e�ective reverse if-conversions, only one is studied in this chapter. This heuristic

may not be the best solution in all applications, but for the machine models studied in

this work, it achieves a desirable balance between �nal code performance, implementation

complexity, and compile time.

The process of choosing a heuristic to perform partial reverse if-conversion is a�ected

greatly by the type of scheduler used. Because partial reverse if-conversion is integrated

into the prepass scheduler, the type of information provided by the scheduler and the

structure of the code at various points in the scheduling process must be matched with

the decision of what and where to reverse if-convert. An operation-based scheduler may

yield one type of heuristic, and a list scheduler may yield another. The policy presented

here was designed to work within the context of an existing list scheduler described

in [57] and [58]. This list scheduler performs a cycle-by-cycle greedy schedule using an

instruction priority function. The partial reverse if-conversion algorithm as integrated in

this scheduler is shown in Figure 7.4.

The �rst decision addressed by the proposed heuristic is where to place a predicate

selected for reverse if-conversion. If one location can be shown to be generally more

e�ective than the rest, then the number of locations to be considered for each reverse

if-conversion can be reduced from n to 1, an obvious improvement. Such a location exists

under the assumption that the reverse if-converting branch consumes no resources and

the code is scheduled by a perfect scheduler. It can be shown that there is no better

placement than the �rst cycle in which the value of the predicate to be reverse if-converted
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1 Initialize ready priority queue;

2 ric queue = NULL;

3 cycle = 0;

4 num unsched = Number of operations;

5 schedno ric = Compute dynamic cycles for hyperblock;

// Each trip through this loop is a new cycle

6 WHILE num unsched != 0 DO

// Handle reverse if-converting branches �rst

7 FOREACH ric op IN ric queue DO

8 IF Schedule Op(ric op, cycle) THEN

9 Compute location for each unscheduled op;

10 schedric taken = Compute dynamic cycles in ric taken path;

11 schedric hb = Compute dynamic cycles in ric hyperblock;

12 mipredric = Estimate ric mispreds * miss penalty;

13 ric cycles = schedric hb + schedric taken;

14 ric cycles = ric cycles+mispredric;

15 IF (schedno ric > ric cycles) THEN

16 schedno ric = schedric hb;

17 Place all ops in their no ric schedule location;

18 ELSE

19 Unschedule OP(ric op);

20 Remove ric op from ric queue;

// Then handle regular operations

21 FOREACH regular op IN ready priority queue DO

22 IF Schedule Op(regular op, cycle) THEN

23 Remove regular op from ready priority queue;

24 num unsched = num unsched� 1;

25 IF Is Predicate De�ne(regular op) THEN

26 Add reverse if-converting branch to ric queue;

27 cycle = cycle+ 1;

Figure 7.4: An algorithm incorporating partial reverse if-conversion into a list scheduler.

is available after its predicate de�ne instruction.1 Since the insertion of the branch has

the same misprediction or taken penalty regardless of its location, these e�ects do not

favor one location over another. However, the location of the reverse if-converting branch

does determine how early the paths sharing the same resources are separated and given

the full machine bandwidth. The perfect scheduler will always do as well or better when

1There exist machines where the placement of a branch a number of cycles after the computation

of its condition removes all of its mispredictions [59]. In these machines, there are two locations which

should be considered, immediately after the predicate de�ne instruction and in the cycle in which the

branch mispredictions are eliminated.
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the full bandwidth of the machine is divided among fewer instructions. Given this, the

earlier the paths can be separated, the fewer the number of instructions competing for

the same machine resources. Therefore, a best schedule will occur when the reverse

if-converting branch is placed as early as possible.

Despite this fact, placing the the reverse if-converting branch as early as possible is a

heuristic. This is because the two assumptions made, that the scheduler is perfect and

that there is no cost for the reverse if-converting branch, are in general not valid. It

seems reasonable, however, that this heuristic would do well despite these imperfections.

Another consideration is code size, since instructions existing on multiple paths must be

duplicated when these paths are separated. The code size can be reduced if the reverse

if-converting branch is delayed. Depending on the characteristics of the code, this delay

may have no cost or a small cost which may be less than the gain obtained by the

reduction in code size. Despite these considerations, the placement of the partial reverse

if-converting branch as early as possible is a reasonable choice.

The second decision addressed by the heuristic is what to reverse if-convert. Without

a heuristic, the number of reverse if-conversions that would need to be considered with the

heuristic described above is 2p. The only way to optimally determine which combination

of reverse if-conversions yields the best results is to try them all. A reverse if-conversion of

one predicate can a�ect the e�ectiveness of other reverse if-conversions. This interaction

among predicates is caused by changes in code characteristics after a reverse if-conversion

has removed instructions from the hyperblock.

In the context of a list scheduler, a logical heuristic is to consider each potential

reverse if-conversion in a cycle-by-cycle fashion, in the order in which the predicate
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de�nes are scheduled. This heuristic is used in the algorithm shown in Figure 7.4. This

has the desirable e�ect of making the reverse if-conversion process �t seamlessly into a

list scheduler. It is also desirable because each reverse if-conversion is considered in the

context of the decisions made earlier in the scheduling process.

In order to make a decision on each reverse if-conversion, a method of evaluating its

pro�tability must be employed. For each prospective reverse if-conversion, three schedules

must be considered: the code schedule without the reverse if-conversion, the code schedule

of the hyperblock with the reverse if-converting branch inserted and paths excluded, and

the code schedule of the paths excluded by reverse if-conversion. Together they yield a

total of 3p schedules for a given hyperblock. Each of these three schedules needs to be

compared to determine if a reverse if-conversion is pro�table. This comparison can be

written as: sched cyclesno ric > sched cyclesric hb + sched cyclesric taken + (mispredric �

miss penalty) where sched cyclesno ric is the number of dynamic cycles in the schedule

without reverse if-conversion applied, sched cyclesric hb is the number of dynamic cycles

in the schedule of the transformed hyperblock, sched cyclesric taken is the number of

dynamic cycles in the target of the reverse if-conversion, and mispredric is the number

of mispredictions introduced by the reverse if-conversion branch. The mispredric can be

obtained through pro�ling or static estimates. miss penalty is the branch misprediction

penalty. This comparison is computed by lines 10 through 14 in Figure 7.4.

While the cost savings due to the heuristic is quite signi�cant, 3p schedules can still

be costly for the more complicated machine models. To reduce this cost, it is possible to

reuse information gathered during one schedule in a later schedule.
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The �rst source of reuse is derived from the cycle-by-cycle operation of the list sched-

uler itself. At the point which each reverse if-conversion is considered, all previous in-

structions have been scheduled in their �nal locations by lines 8 or 22 in Figure 7.4.

Performing the scheduling on the reverse if-conversion and the original scenario only

needs to start at this point. The number of schedules is still 3p, but the number of

instructions in each schedule has been greatly reduced by the removal of instructions

already scheduled.

The second source of reuse takes advantage of the fact that, for the case in which

the reverse if-conversion is not done, the schedule has already been computed. At the

time the previous predicate was considered for reverse if-conversion, the schedule was

computed for each outcome. Because the resulting code schedule in cycles is already

known, no computation is necessary for the current predicate's sched cyclesno ric. This

reuse reduces the total number of schedules computed to 2p + 1, with each schedule

considering only the unscheduled instructions at each point due to the list scheduling

e�ect. This reuse is implemented in Figure 7.4 by lines 5 and 16.

Another way to reduce the total number of instructions scheduled is to take advantage

of the fact that the code purged from the block is only di�erent in the \then" and \else"

blocks but not in the control equivalent split or join blocks. Once the scheduler has

completely scheduled the \then" and \else" parts, no further scheduling is necessary

since the remaining schedules are likely to be very similar. The only di�erences may be

dangling latencies or other small di�erences in the available resources at the boundary. To

be more accurate, the schedules can continue until they become identical, which is likely

to occur at some point, though is not guaranteed to occur in all cases. An additional use
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for the detection of this point is code size reduction. This point is a logical location to

branch from the ejected block back into the original hyperblock.

With all of the above schedule reuse and reduction techniques, it can be shown that the

number of times an instruction is scheduled is usually 1+2d, where d is that instruction's

depth in its hammock. In the predication domain, this depth is the number of predicates

de�ned in the chain used to compute that instruction's guarding predicate.

If the cost of scheduling is still high, estimates may be used instead. There are

many types of scheduling estimates which have been proposed and can be found in the

literature [58]. It is possible to create a hybrid scheduler/estimator which may balance

good estimates with compile time cost. As mentioned previously, the schedule height

of the two paths in the hammock must be obtained. Instead of purely scheduling both

paths, which may be costly, or just estimating both paths, which may be inaccurate, a

part-schedule and part-estimate approach may obtain more accurate results with lower

cost. In the context of a list scheduler, one solution is the following: The scheduler

could schedule an initial set of operations and estimate the schedule on those remaining.

Accurate results will be obtained for the scheduled portion, in addition, the estimate may

be able to bene�t from information obtained from the schedule, as the characteristics of

the scheduled code may be likely to match the characteristics of the code to be estimated.

In the experiments presented in the next section, actual schedules are used in the decision

to reverse if-convert because the additional compile time was acceptable.
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branch r98 < 1

Parm0 = r3
jsr filbuf
r4 = Ret0
jump

branch r4 == -1

branch 32 >= r4

branch r4 >= 127

branch r4 == 10
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jump
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jump
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Figure 7.5: The control 
ow graph from the Unix utility wc.

7.1.4 Code example

The examples presented up to this point in this section have been arti�cially crafted

to illustrate the application of partial reverse if-conversion. It is, however, useful to

examine the operation of the framework in a more realistic setting. The inner loop

from the smallest benchmark considered, the Unix utility wc, is chosen for this purpose.

Figure 7.5 presents the original control 
ow graph for this code segment. Instructions

are numbered 1 through 34 for reference. For this code segment, there are 22 paths of

execution. The hyperblock formation heuristics must consider all of the possible paths

to identify those pro�table for inclusion in a hyperblock. The interaction between the

paths is also important because they share many instructions.
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The hyperblock formation heuristics select all instructions except 5-8 to combine into

a single hyperblock. The resultant schedule of the hyperblock for an example three-issue

processor is shown in Figure 7.6(a). The processor utilized for this example is assumed

to consist of one arithmetic unit, one memory unit, and one branch unit. All instructions

have a latency of one cycle except loads, which have a latency of two cycles. Using branch

pro�le information, the estimated execution cycle count for the hyperblock is 2.0M cycles.

Unfortunately, the original code in which each basic block is scheduled separately requires

only 1.7M cycles to execute. The hyperblock formation heuristics were too aggressive,

leading to an oversubscription of the processor resources.

The partial reverse if-conversion framework is used to overcome this performance

loss. The main problem with the original hyperblock is that the arithmetic unit is over-

saturated with instructions. Therefore, the scheduler needs to choose one or more paths

to eject to reduce the pressure on the arithmetic unit. The resultant schedule with partial

reverse if-conversion is shown in Figure 7.6(b). Two reverse if-conversions are performed.

First, predicate p3 is reverse if-converted by inserting a new jump instruction (180). The

jump conditionally branches to a new hyperblock, labeled B, when p3 is TRUE. The new

jump is inserted into the schedule of the original hyperblock at the earliest cycle when

p3 is available, cycle 8. All unscheduled instructions are put into one of three categories:

required when p3 is TRUE, required when p3 is FALSE, or required for either value of

p3. Instructions 19, 21, 22, 23, and 24 are only needed when p3 is TRUE; thus, they

are ejected from the original hyperblock. Instructions 15 and 16 are needed for either

value of p3; thus, they must be replicated in both the original and the new hyperblock.

The remainder of the instructions are required when p3 is FALSE, so they remain in
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(a)

A: 1

2

3

4

5

6

7

9

8

10
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13

14

r18 = r98 - 1

r21 = MEM[r3 + 4]

r98 = MEM[r3](1)

(9)

(2)

(3) MEM[r3] = r18 (4) branch r98 < 1 (10) r20 = r21 + 1

(11) MEM[r3 + 4] = r20

(12) r4 = MEM[r21]

r24 = MEM[r73](14)

(13) branch r4 == -1, EXIT (17) p5(ot), p2(uf) = 32  >= r4 (21) r27 = MEM[r72]

(18) p5(ot), p3(uf) = r4 >= 127 <p2> (26) r62 = MEM[r71]

(19) p4 = 0 == r2 <p3>

<p5>(20’) p7(ot), p6(uf) = r4 == 10

(30) p7(ot), p8(uf) = r4 == 32 <p6>

(15) r23 = r24 + 1

p9 = r4 == 10(20) <p5> (16) MEM[r73] = r23

16

17

19

18

15

(24) r2 = r2 + 1 <p4> <p4>

r26 = r27 + 1(22)

(23) MEM[r72] = r26

(27) r61 = r62 + 1

(31) <p8>p7(ot) = r4 == 9 (28) MEM[r71] = r61 <p9>

(33) r2 = 0 <p7> jump A

(33)

(b)

2

3

2

3

4

(15)

(16)

(19’)

r23 = r24 + 1(15)

MEM[r73] = r23

jump C r23 = r24 + 1
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(23)

jump A

jump A

(16) MEM[r73] = r23

A: 1

C: 1

(24) r2 = r2 + 1

<p4>

B: 1

(21)

(19) p7(ot) = r4 == 9

(22) r26 = r27 + 1
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4

5
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7

9
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11

12
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14

<p2>

<p5>

p5(ot), p3(uf) = r4 >= 127(18)

p5(ot), p2(uf) = 32  >= r4(17)

branch r98 < 1(4)

r20 = r21 + 1(10)

(13)

p9 = r4 == 10

r24 = MEM[r73]

MEM[r3 + 4] = r20

MEM[r3] = r18

r4 = MEM[r21]

r18 = r98 - 1

r21 = MEM[r3 + 4]

r98 = MEM[r3](1)

(9)

(2)

(12)
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<p3>(18’)r62 = MEM[r71]
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p7(ot) = r4 == 9 <p8>

(15) r23 = r24 + 1

MEM[r73] = r23(16)r61 = r62 + 1

<p7> MEM[r71] = r61

<p9>

<p9>

branch r4 == -1, EXIT

jump B

jump Ar2 = 0

(26)

(30)

(31)

(27)

(28)

Figure 7.6: Schedule for wc after hyperblock formation and optimization (a), and sched-
ule after partial reverse if-conversion of that hyperblock (b).
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the original hyperblock. The remainder of the original hyperblock is scheduled without

further reverse if-conversions.

A second reverse if-conversion is applied when hyperblock B is scheduled. Predicate

p4 is reverse if-converted by introducing a new jump instruction (190). The jump con-

ditionally branches to the new hyperblock, labeled C, when p4 is TRUE. As a result

of the transformation, instructions 21, 22, 23, and 24 are ejected from hyperblock B.

Instructions 15 and 16 are again replicated. The scheduling process is complete when

hyperblock C is scheduled.

The overall result is that execution of the code with partial reverse if-conversion

is reduced to 1.3M cycles. This compares favorably with 2.0M cycles for the original

hyperblock code and 1.7M cycles for the original basic block code. The primary reason

for the improvement in this example was the ability to eject instructions to reduce the

contention for the arithmetic unit.

7.2 Experimental Evaluation

The partial reverse if-conversion framework described in this chapter has been imple-

mented in the second generation instruction scheduler of the IMPACT compiler version

971004-R. This section presents an experimental evaluation of this framework.

7.2.1 Methodology

The IMPACT compiler utilizes a machine description �le to generate code for a pa-

rameterized superscalar processor. To measure the e�ectiveness of the partial reverse
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if-conversion technique, a machine model similar to many current processors was se-

lected. The machine modeled is a four-issue, in-order superscalar processor that contains

two integer arithmetic-logic units, two memory ports, one 
oating point ALU, and one

branch unit. The instruction latencies assumed match those of the HP PA-7100 micropro-

cessor [32]. The instruction set contains nontrapping versions of all potentially excepting

instructions, with the exception of branch and store instructions, to support aggressive

speculative execution. The instruction set also contains support for predication similar

to that provided in the PlayDoh architecture [20].

The execution time for each benchmark is derived from the static code schedule

weighted by dynamic execution frequencies obtained from pro�ling. Static branch pre-

diction based on pro�ling is also utilized. Benchmark performance ignores dynamic stall

cycles associated with the memory system including instruction and data cache misses.

Previous experience with this method of run time estimation has demonstrated that it

accurately estimates simulations of an equivalent machine with perfect caches.

The benchmarks used in this experiment consist of 14 non-numeric programs: the six

SPEC CINT92 benchmarks, 008.espresso, 022.li, 023.eqntott, 026.compress, 072.sc, and

085.cc1; two SPEC CINT95 benchmarks, 132.ijpeg and 134.perl; and six Unix utilities

cccp, cmp, eqn, grep, wc, and yacc.

7.2.2 Results

For the experiments, the performance of the traditional hyperblock and the new par-

tial reverse if-conversion frameworks are compared. The hyperblocks formed in these

experiments represent those formed by the IMPACT compiler's hyperblock formation
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134.perl , and cccp, partial reverse if-conversion signi�cantly magni�ed relatively small

gains achieved by hyperblock compilation. These results indicate that the partial reverse

if-converter was successful at undoing many of the poor hyperblock formation decisions

while capitalizing on the e�ective ones. For the four benchmarks where hyperblock tech-

niques were highly e�ective, 023.eqntott , cmp, grep, and wc, partial reverse if-conversion

did not have a large opportunity to increase performance since the hyperblock formation

heuristics worked well in deciding what to if-convert.

It is useful to examine the performance of the worst performing benchmark, 085.cc1 ,

more closely. For this benchmark, both frameworks result in a performance loss with

respect to superblock compilation. Partial reverse if-conversion was not completely suc-

cessful in undoing the bad hyperblock formation decisions. This failure is due to the

policy that requires the list scheduler to decide the location of the reverse if-converting

branch by its placement of the predicate de�ne instruction. Unfortunately, the list sched-

uler may delay this instruction as it may not be on the critical path and is often deemed

to have a low scheduling priority. Delaying the reverse if-conversion point can have a neg-

ative e�ect on code performance. To some extent this problem occurs in all benchmarks,

but is most evident in 085.cc1 .

Figure 7.8 shows the performance of the benchmarks in the same manner as Fig-

ure 7.7 except with a branch misprediction penalty of four cycles. In general, the relative

performance of hyperblock code is increased the most when mispredicts are considered

because it has the fewest mispredictions. The relative performance of the partial re-

verse if-conversion code is also increased because it has fewer mispredictions than the
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superblock code. Partial reverse if-conversion, however, inserts new branches to accom-

plish its transformation, so this code contains more mispredictions than the hyperblock

code. For several of the benchmarks, the number of mispredictions was actually larger

for hyperblock and partial reverse if-conversion than that of superblock. When applying

control 
ow transformations in the predicated representation, the compiler will actually

create branches with much higher misprediction rates than those removed. Additionally,

the branches created by partial reverse if-conversion may be more unbiased than the

combination of branches in the corresponding superblock.

Function-level performance. It is illustrative to examine performance at a �ner

granularity for a better understanding of the results. Figure 7.9 compares the perfor-

mance of selected functions from the benchmarks in the same manner as Figure 7.7.

The �gure assumes no branch misprediction penalty for the results. The functions were

selected based on two criteria: contributing a high fraction of the overall benchmark

execution time and bene�ting a large amount from partial reverse if-conversion. The

�gure shows the potential of partial reverse if-conversion to increase performance dra-

matically. In particular, two functions in 132.ijpeg achieve greater than 250% gain with

partial reverse if-conversion. Hyperblock compilation is relatively ine�ective for these

two functions. The ability to adjust the control structure of the code during scheduling,

however, allows the execution time of these same hyperblocks to be reduced dramatically.

Even the worst overall benchmark, 085.cc1 , contains an important function that achieves

100% gain with partial reverse if-conversion.
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Common to all the benchmarks which exhibit a large code growth was a failure

of the simple code size reduction mechanism presented Section 7.1. Inspection of the

resulting code indicates that many instructions are shared in the lower portion of the tail

duplications created by the partial reverse if-converter. For this reason, one can expect

these benchmarks to respond well to a more sophisticated code size reduction scheme.

Application statistics. Finally, the frequency of partial reverse if-conversions that

were performed to generate the performance data is presented in Table 7.1. The \Reverse

If-Conversions" column speci�es the actual number of reverse if-conversions that occurred

across the entire benchmark. The \Opportunities" column speci�es the number of re-

verse if-conversions that could potentially have occurred. The number of opportunities

is equivalent to the number of unique predicate de�nitions in the application, since each

predicate de�ne can be reverse if-converted exactly once. All data in Table 7.1 are static

counts. The table shows that the number of reverse if-conversions that occur is a small

fraction of the opportunities. This behavior is desirable as the reverse if-converter should

try to minimize the number of branches it inserts to achieve the desired removal of in-

structions from a hyperblock. In addition, the reverse if-converter should only be invoked

when a performance problem exists. In cases where the performance of the original hy-

perblock cannot be improved, no reverse if-conversions need to be performed. The table

also shows the expected correlation between large numbers of reverse if-conversions and

larger code size increases of partial reverse if-conversion over hyperblock (Figure 7.10).
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Table 7.1: Application frequency of partial reverse if-conversion.

Benchmark Reverse If-Conversions Opportunities
008.espresso 204 1552
022.li 50 393
023.eqntott 43 443
026.compress 11 56
072.sc 33 724
085.cc1 479 3827
132.ijpeg 134 1021
134.perl 42 401
cccp 77 1046
cmp 4 49
eqn 33 326
grep 3 103
wc 0 88
yacc 247 1976

7.3 Signi�cance

The partial reverse if-converter, a mechanism which allows the compiler after aggres-

sive if-conversion and predicate domain optimization to, at schedule time, balance predi-

cation and control 
ow ideally for a target architecture. A �rst generation partial reverse

if-converter was implemented and the e�ectiveness of the framework was measured for

this chapter. The framework was able to capitalize on the bene�ts of predication without

being subject to the sometimes negative side e�ects of overaggressive hyperblock forma-

tion. Furthermore, additional opportunities for performance improvement were exploited

by the framework, such as partial path if-conversion. These points were demonstrated

by the hyperblock performance losses which were converted into performance gains, and

by moderate gains which were further magni�ed. In addition, the framework provides
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an important mechanism for eliminating the negative e�ects of overly aggressive trans-

formations at schedule time. With such a backup mechanism, unique opportunities are

introduced for the aggressive use and transformation of the predicate representation early

in the compilation process.
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8. SYSTEMATIC COMPILATION FOR PREDICATED EXECUTION

8.1 System Overview

The techniques presented in Chapters 4 through 7 are combined together in the

IMPACT compiler to create a mechanism that can systematically compile for architec-

tures with predicated execution support. A block diagram of the new backend com-

pilation path is shown in Figure 8.1. After Lcode generation, classical optimizations

are performed on the traditional, nonpredicated code. This provides the if-converter

with relatively clean code upon which to work. The if-converter then aggressively forms

predicated code by converting large amounts of control 
ow to the predicated representa-

tion. Iteratively, ILP optimizations and predicate optimizations are performed. Iterative

application of optimizations is essential because optimizations expose opportunities for

other operations in an unordered manner. Optimizations include loop unrolling, register

renaming, and induction variable expansion. The Predicate Decision Logic Optimizer

presented in this work is included among the predicate optimizations.
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Decision Logic Optimizer

Lcode Generation

Classical Optimizations

Aggressive If−Conversion

ILP Optimizations

Traditional Code

Predicated Code

Dataflow Analysis

Dataflow Equation Solver

PDFG  Generator

Predicate Analysis System

Scheduling/PRIC

Register Allocation

Predicate Optimizations

Figure 8.1: Block diagram of the backend compilation path with hyperblocks.

After the code has been suÆciently optimized, usually to a locally optimal state for

the given set of optimizations, the scheduler performs partial reverse if-conversion during

the prepass scheduling phase. The Partial Reverse If-Converter (PRIC) reinserts control


ow in order to provide a balance of predication and control 
ow ideal for the modeled

target machine. The PRIC need only reintroduce control 
ow to achieve the appropriate

balance because the code it is operating on has already been if-converted aggressively

with respect to the target machine.

The PRIC is run after the Predicate Decision Logic Optimizer (PDLO) for two rea-

sons. First, in certain hyperblocks, the PDLO may favor 
attening over subexpression

reuse, creating a large number of partially redundant parallel predicate de�nes. In some

cases, the number of predicate de�nes in the optimized code exceeds the resources of the

machine. Here, the PRIC can rectify the situation by dividing the oversubscribing in-

structions between two blocks, each with a portion of the total predicate de�ne network.

Second, the reverse if-converting branch cannot be placed before the de�nition of its
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guard predicate. Because the e�ectiveness of a reverse if-conversion is tied to how early

the reverse if-converting branch can be placed, 
attening the predicate de�ne network is

desirable before placing it. In this way, the PDLO may in
uence the PRIC to perform a

now pro�table reverse if-conversion which it would previously have ignored.

During processing of predicated code in the compiler, information regarding the 
ow of

data and the relationships among predicates is consumed by the optimization, scheduling,

and register allocation routines. To provide essential, accurate information, the PAS

analyzes and stores in a database the relationships among predicates. These predicate

relationships are provided directly to the optimizer, scheduler, and register allocator.

The PDLO ties heavily into the PAS's database in order to perform its functions, which

are only possible due to the perfect accuracy of the PAS. Additionally, the PAS assists in

the creation of the predicate data
ow graph (PDFG). The PDFG represents the 
ow of

data through the predicated code matrix in such a way that traditional data
ow analysis

solvers can operate on it directly, as they do on traditional control 
ow graphs.

8.2 System Example

To illustrate the synergistic manner in which the PRIC Framework, the PAS, the

PDFG, and the PDLO operate, a running code example is used in this section. Fig-

ure 8.2(a) shows the control 
ow graph of a segment of code crafted for this purpose.

This code is characteristic of the code seen after Lcode generation in the phase ordering

shown in Figure 8.1. (Typically, real codes are larger and more complex, making them

unsuitable for the purposes of illustration.) This code segment, a loop, consists of seven

internal branches and a loop exit branch. These internal branches form the decision
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p3_ot, p4_uf = (r1 == 1)
p3_ot, p5_uf = (r1 == 2)
p3_ot, p6_uf = (r1 == 3)

M[r12] = r14

br (r8 == 0)

jump

<p4>
<p5>

<p8>
<p8>
<p8>
<p8>
<p8>

<p6>
<p3>

p8_ot = (r6 > r7) <p9>

<p1>
p1_ut, p2_uf = (r1 >= 0)

<p3>

p8_ot, p9_uf = (r4 > r5) <p7>
p7_ut = (r2 > r3) <p2>

<p2>r2 = r9 + 2

br (r1 == 1)

br (r1 == 2)

br (r1 == 3)

jump

br (r1 >= 0)

br (r4 > r5)

br (r8 == 0)jump

br (r2 > r3)

br (r6 > r7)

r2 = r9 + 2

(a) (b)

COMP A

COMP A 

COMP B1
COMP B2
M[r12] = r14

r10 = 10

r10 = 5

r10 = 10

r10 = 5

r11 = r10 + 2
r12 = r13 << 2

r11 = r10 + 2
r12 = r13 << 2

COMP B1
COMP B2

Figure 8.2: Control 
ow graph for a loop (a) and its corresponding hyperblock (b).

component of this loop. The dashed lines emanating from each branch correspond to the

\true" or \taken path," and the solid lines represent the \false" or \fall through path."

The computation in the loop consists of nine instructions arranged in �ve basic blocks.

For simplicity of illustration, some computation is simply shown as COMP followed by

an identi�er. The three-instruction computation utilizing register r10 illustrates opti-

mization in the predicated domain, while the register r2 illustrates an interaction on the

computation component/decision component boundary.

Figure 8.2(b) shows the code, now a hyperblock, in the CFG after aggressive if-

conversion. Aggressive if-conversion is performed in such a way that target machine

resources will likely be over-saturated. Unlike the Hyperblock Compilation Framework,

the Partial Reverse If-Conversion Framework does not require carefully crafted heuristics

at this phase of the compilation. In the complete if-conversion of this loop, each internal
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C0 (r1>=0)

C1 (r1==1)

C2 (r1==2)

C3 (r1==3)

C4 (r2>r3)

C5 (r4>r5)

C6 (r6>r7)

p1 C0

p2 C0

p4 C0C1

p5 C0C1C2

p6 C0C1C2C3

p3 C0C1+C0C1C2+C0C1C2C3

p7 C0C4

p9 C0C4C5

p8 C0C4C5+C0C4C5C6

(a) (b)

Figure 8.3: The conditions (a) and predicate expressions (b) for the code segment.

conditional branch is replaced by a de�nition of one or more predicates. The network

of predicate computation generates nine predicates, one for each conditionally executed

basic block in the original control 
ow graph. The computation in each of these basic

blocks is guarded by a predicate source operand with the same execution condition as

the original code. Control 
ow is removed since the only remaining conditional branch

is the loop exit condition.

Before optimization can proceed in the predicated code domain, the PAS must com-

pute the relationships among all predicates. This information is analogous to that pro-

vided by control 
ow analysis, such as dominator sets, except with the added accuracy

provided by consideration of the branch/predicate de�ne conditions. The conditions

extracted from the predicated code in Figure 8.2(b) are shown in Figure 8.3(a). For

example, the �rst predicate de�ning instruction performs comparison C0, which is the

register constant inequality (r1 >= 0). These conditions are the constituent variables for

the expressions characterizing each predicate. For example, the �rst predicate de�ning

instruction uses the result of the C0 comparison to de�ne p1. As shown in Figure 8.3(b),
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(a) (b)

p3_ot, p4_uf = (r1 == 1)
p3_ot, p5_uf = (r1 == 2)
p3_ot, p6_uf = (r1 == 3)

br (r8 == 0)

jump

<p4>
<p5>

<p8>
<p8>
<p8>
<p8>

r12 = r13 << 2

<p8>

<p6>
<p3>

p8_ot = (r6 > r7) <p9>

<p1>
p1_ut, p2_uf = (r1 >= 0)

<p3>

p8_ot, p9_uf = (r4 > r5) <p7>
p7_ut = (r2 > r3) <p2>

<p2>r2 = r9 + 2

COMP A 

p3_ot, p4_uf = (r1 == 1)
p3_ot, p5_uf = (r1 == 2)
p3_ot, p6_uf = (r1 == 3)

br (r8 == 0)

jump

<p4>
<p5>

<p8>
<p8>
<p8>
<p8>
<p8>

<p6>
<p3>

p8_ot = (r6 > r7) <p9>

<p1>
p1_ut, p2_uf = (r1 >= 0)

<p3>

p8_ot, p9_uf = (r4 > r5) <p7>
p7_ut = (r2 > r3) <p2>

<p2>r2 = r9 + 2

COMP A 

r10 = 10

r10 = 5

r11 = r10 + 2

COMP B1
COMP B2
M[r12] = r14

r11 = 12

COMP B1
COMP B2
M[r12] = r14

r10 = 5

r12 = r13 << 2

Figure 8.4: The hyperblock before (a) and after (b) an application of the constant prop-
agation optimization.

p1 = C0. The information summarized in Figure 8.3 is stored by the PAS in a man-

ner that allows relationship among predicates to be determined easily for use in code

manipulation.

In Figure 8.4(a), three references to register r10 are made. In the �rst two references,

r10 is assigned a constant while in the third reference, r10 is used to de�ne r11. In a

non-predicated environment this situation seems ideal for a constant propagation opti-

mization. In the predicated representation, however, the execution conditions of these

instructions must be considered. The �rst de�nition is unconditional; r10 always assumes

the value 10 at the beginning of the hyperblock. Depending on the value of predicate

p3, r10 maybe be rede�ned to 5. Because the third instruction executes only under p8,

a constant propagation to this instruction need only be valid when p8 is 1. The question
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which must be considered by the constant propagation optimization is: What constant

value, if any, does r10 hold when p8 is 1? To answer this question, the relationship of

p8 and p3 must be considered. The PAS is queried and indicates that p3 and p8 do not

intersect; p3 \ p8 = ;. This can be con�rmed by considering the expression for these

predicates when C0 is 1 and when C0 is 0. This result indicates that for each iteration

of this loop r10 = 10 whenever p8 is 1. The constant propagation can proceed as shown

in Figure 8.4(b).

As shown in Figure 8.1, predicate optimizations are performed iteratively with ILP

optimizations. However, PDLO is applied only once. before scheduling. The PDLO

simpli�es the program's decision component, extracted by the PAS and represented by

Boolean expressions, and reformulates it into a more eÆcient form. The decision compo-

nent consists of two types of predicates: essential and nonessential. Essential predicates

are those which guard the execution of computation in the program, and as such are the

only predicates which must be reformulated by the PDLO. Nonessential predicates are

predicates used solely as intermediates to compute essential predicates.

Prior to the determination of the essential predicates, another predicate speci�c op-

timization called promotion should be performed. Promotion is the predicate domain's

equivalent to speculation by code motion. With promotion, an instruction's guard pred-

icate is weakened. Under the weaker predicate, the instruction will execute more fre-

quently. However, the promotion has broken a data dependence between the de�nition

of the original predicate and the promoted instruction. Breaking data dependences in

this way provides the scheduler more freedom in extracting ILP. Since promotion changes

which predicates guard computation, it also determines which predicates are essential.
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Essential Predicates:
p3, p6, p8

Non−Essential Predicates:
p1, p2, p4, p5, p7, p9

After Promotion

(b)

p3_ot, p4_uf = (r1 == 1)
p3_ot, p5_uf = (r1 == 2)
p3_ot, p6_uf = (r1 == 3)

br (r8 == 0)

jump

<p4>
<p5>

r12 = r13 << 2

<p8>

<p6>
<p3>

p8_ot = (r6 > r7) <p9>

<p1>
p1_ut, p2_uf = (r1 >= 0)

<p3>

p8_ot, p9_uf = (r4 > r5) <p7>
p7_ut = (r2 > r3) <p2>
r2 = r9 + 2

COMP A 

p3_ot, p4_uf = (r1 == 1)
p3_ot, p5_uf = (r1 == 2)
p3_ot, p6_uf = (r1 == 3)

br (r8 == 0)

jump

<p4>
<p5>

<p8>
<p8>
<p8>
<p8>
<p8>

<p6>
<p3>

p8_ot = (r6 > r7) <p9>

<p1>
p1_ut, p2_uf = (r1 >= 0)

<p3>

p8_ot, p9_uf = (r4 > r5) <p7>
p7_ut = (r2 > r3) <p2>

<p2>r2 = r9 + 2

COMP A 

(a)

r11 = 12 r11 = 12

r10 = 5r10 = 5

M[r12] = r14

COMP B1
COMP B2

COMP B1
COMP B2
M[r12] = r14

r12 = r13 << 2

Figure 8.5: The hyperblock before (a) and after (b) promotion is performed.

Figure 8.5 shows the hyperblock before and after promotion. Before promotion, predi-

cates p2, p3, p6, and p8 guard computation. Promotion is able to remove most uses of

p8 and the use of p2, leaving p2 nonessential. The essential predicates, those which must

be computed in any reformulated decision logic, are p3, p6, and p8.

After promotion, the PDLO minimizes the program decision logic Boolean expres-

sions. The logic expressions for p3 and p6 before minimization are shown as gates in

Figure 8.6(a). Intermediate predicates p1, p4, and p5 are lost after the optimization,

as shown in 8.6(b). In the reformulated code, there is often a one-to-one relationship

between level of gate delay in these circuits and dependence height. The relationship

between the number of gates and the number of predicate de�ning instructions is less

reliable, but typically fewer is better. In this example, the levels of gate delay height has
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C2
C1

C0

C2 C3

p5p5

p4p4

p1

C3

p3

C1C0

p1

(b)(a)

p3p6

p6

Figure 8.6: The logic network for the computation of predicates p3 and p6 before (a) and
after (b) optimization.

dropped from four to one, and the number of gates has been signi�cantly reduced from

seven to two.

In Figure 8.7, the e�ect of these reductions can been seen. The code in the running

example is scheduled on a general four-issue machine. Figure 8.7(a) shows the decision

component as consisting of seven predicate de�nes with a dependence height of four. This

dependence height delays the execution of the four highlighted instructions to cycle �ve.

Assuming the path weighting shown in the �gure, the average execution time for each

invocation of this hyperblock is 5.8 cycles. The promoted instruction r2 = r9+ 2 can be

executed in cycle one rather than a later cycle because of the broken data dependence on

p2. The movement of this de�nition of r2 one cycle earlier has the even more desirable

e�ect of allowing the computation of p7, which uses the value of r2, to proceed a cycle

earlier. While this allows M [r12] = r14 to proceed one cycle earlier, this does not a�ect

the hyperblock's performance in this case.
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p3_ot, p4_uf = (r1 == 1)
p3_ot, p5_uf = (r1 == 2)
p3_ot, p6_uf = (r1 == 3)

<p4>
<p5>

COMP A <p6>

p1_ut, p2_uf = (r1 >= 0)
<p1>

<p3>

p7_ut = (r2 > r3) <p2>
p8_ot, p9_uf = (r4 > r5)

p1_ut, p2_uf  = (r1 >= 0)

<p7>
<p9>p8_ot = (r6 > r7)

jump

br (r8 == 0) <p3><p8>

6 cycles

Total:

5 cycles
6 cycles

5.8 cycles

(r1 < 0) path [30%]:
(r1 >= 0, r8 == 0) path [20%]:
(r1 >= 0, r8 != 0) path [50%]:

r2 = r9 + 2 

Total:

jump

p3_ot, p6_af = (r1 == 1) p3_ot, p6_af = (r1 == 2) p3_ot, p6_af = (r1 == 3)
<p3><p3>

<p8>

p7_ot = (r4 > r5) p7_ot = (r6 > r7)
p8_ut = (r2 > r3) COMP A <p6>

<p2> <p2>
<p7>

2 cycles
5 cycles

5 cycles

4.4 cycles

(r1 >= 0, r8 != 0) path [50%]:
(r1 >= 0, r8 == 0) path [20%]:

(r1 < 0) path [30%]:

br (r8 == 0)
r2 = r9 + 2

17%
60%
17%

24%

(b)

(a)

r11 = 12

r10 = 5

COMP B1 COMP B2

M[r12] = r14

r11 = 12

COMP B1
r10 = 5

COMP B2
M[r12] = r14

r12 = r13 << 2

r12 = r13 << 2

Figure 8.7: Hyperblock before (a) and after (b) Program Decision Logic Optimization.

After the decision logic has been minimized, PRIC balances control 
ow during

prepass scheduling. PRIC must decide which predicates, if any, to reverse if-convert.

To do this it must ascertain the pro�tability of each predicate. A signi�cant factor in an

if-conversion's pro�tability is the schedule it enables in the reverse if-conversions taken

and fall-through paths. To determine these schedules, the location of each instruction

(taken path, fall through path, or both) must be determined. Figure 8.8 shows the pred-

icate 
ow graph after partial dead code elimination. All possible paths are enumerated

in this �gure for illustration. In practice the number of paths could become excessive,

so active range computations are done, as described in Chapter 7, to reduce the space

and time required to compute partial dead code. Each path has a set of true and false

predicates.
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<p3>

<p3>

<p2>p7_ot = (r4 > r5)

p7_ot = (r6 > r7) <p2>

COMP B1

r2 = r9 + 2

p8_ut = (r2 > r3) <p7>

COMP B2

COMP A

M[r12] = r14

jump

p3_ot, p6_af = (r1 == 2)

p3_ot, p6_af = (r1 == 3)

r11 = 12

p1_ut, p2_uf = (r1 >= 0)

r10 = 5

r12 = r13 << 2

br (r8 == 0)

<p3>

<p3>

<p2>p7_ot = (r4 > r5)

p7_ot = (r6 > r7) <p2>

COMP B1

r2 = r9 + 2

p8_ut = (r2 > r3) <p7>

COMP B2

COMP A

M[r12] = r14

jump

p3_ot, p6_af = (r1 == 2)

p3_ot, p6_af = (r1 == 3)

r11 = 12

p1_ut, p2_uf = (r1 >= 0)

r10 = 5

r12 = r13 << 2

br (r8 == 0)

<p3>

<p3>

<p2>p7_ot = (r4 > r5)

p7_ot = (r6 > r7) <p2>

COMP B1

r2 = r9 + 2

p8_ut = (r2 > r3) <p7>

COMP B2

COMP A

M[r12] = r14

jump

p3_ot, p6_af = (r1 == 2)

p3_ot, p6_af = (r1 == 3)

r11 = 12

p1_ut, p2_uf = (r1 >= 0)

r10 = 5

r12 = r13 << 2

br (r8 == 0)

<p3>

<p3>

<p2>p7_ot = (r4 > r5)

p7_ot = (r6 > r7) <p2>

COMP B1

r2 = r9 + 2

p8_ut = (r2 > r3) <p7>

COMP B2

COMP A

M[r12] = r14

jump

<p8>

<p6>

<p8>

<p6>

<p8>

<p6>

<p8>

<p6>

p3_ot, p6_af = (r1 == 1) p3_ot, p6_af = (r1 == 1) p3_ot, p6_af = (r1 == 1)

<p8>

p3_ot, p6_af = (r1 == 1)

<p6>

p3_ot, p6_af = (r1 == 1)

p3_ot, p6_af = (r1 == 2)

p3_ot, p6_af = (r1 == 3)

r11 = 12

p1_ut, p2_uf = (r1 >= 0)

r10 = 5

r12 = r13 << 2

br (r8 == 0)

<p3>

<p3>

<p2>p7_ot = (r4 > r5)

p7_ot = (r6 > r7) <p2>

COMP B1

r2 = r9 + 2

p8_ut = (r2 > r3) <p7>

COMP B2

COMP A

M[r12] = r14

jump

p3_ot, p6_af = (r1 == 2)

p3_ot, p6_af = (r1 == 3)

r11 = 12

p1_ut, p2_uf = (r1 >= 0)

r10 = 5

r12 = r13 << 2

br (r8 == 0)

p6 = F

p8 = F
p7 = F
p8 = F

p3 = F
p6 = T

p3 = F p3 = F p3 = F

p1 = F
p2 = T

p1 = F p1 = F
p2 = T p2 = T

p7 = T p7 = T
p6 = F

p8 = T

p1 (Not Taken)(Taken)

p8 = F
p7 = F

p2 = F
p1 = T

p8 = F
p7 = F
p6 = F
p3 = T
p2 = F
p1 = T

p6 = F

Figure 8.8: Partial Dead Code Elimination after Program Decision Logic Optimization.

The �rst step is to eliminate all instructions in a path predicated on a false predicate.

For example, the instruction \M [r12] = r14" in the �rst path is based on predicate p8

which is false. The following step, run iteratively until there is no change, is to run

live variable analysis on the code and to remove all instructions from paths in which its

destination is not live out. For example, r12 in \r12 = r13 << 2" of the �rst column is

no longer live out since \M [r12] = r14", its consumer, has been marked dead in the same

column. The process iterates and the resulting graph is shown in the �gure. The shaded

regions of code are are the portion of the code which is dead. Notice that predicate

uses are never marked as dead because a predicate is used even if it is false, unlike

the rest of the instruction. For the purposes of partial reverse if-conversion, another

partial dead code elimination step is taken which cannot be done for other tasks such

as scheduling. This step is the removal of predicate source operands for instructions in
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which the predicate is always false. Consider the predicate 
ow graph as a complete

reverse if-conversion. In a path, instructions which are never executed can be removed

from that path. If an instruction does not exist in a path, its source predicate is no longer

necessary to prevent its execution in that path. With the removal of source predicates,

other instructions, such as predicate de�nes, can also be deleted. One result of this step

is the deletion of the predicate de�nes of p7 and p8 in the �rst column.

At some point, the partial reverse if-conversion selection process considers predicate

p1. To determine where instructions fall with respect to this predicate, the predicate


ow graph in Figure 8.8 is divided in two parts, a \p1 is true" or \taken" part and a

\p1 is false" or \fall through" part. For each part, each instruction is considered for

inclusion. If an instruction is live in either path of the bisection, it exists in that part.

An instruction can exist in one part, both parts, or neither part in the case of dead code.

The result of this process is shown in the �gure as the colored squares at each side of

the �gure. These squares indicate that the instruction in the corresponding row exists in

this part. For example, \M [r12] = r14" will only exist on the path where p1 is false.

Once the location of each instruction has been determined, the partial reverse if-

converter estimates the execution time by considering the schedule before the partial

reverse if-conversion, the schedule in the taken path and the schedule in the fall through

path. In this example, after measuring the cost of inserting p1, it determines that a p1

if-conversion is pro�table.

The result of this reverse if-conversion is shown in Figure 8.9. The PDLO optimized

code shown in Figure 8.9(a) has an average execution time for each invocation of this

hyperblock of 4.4 cycles, assuming the path weighting shown in the �gure, on a four-issue
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machine. After 
attening of the predicate network, the code becomes resource limited.

Looked at another way, the code is not operating at its full potential because the issue

rate of the machine is only four instructions per cycle. To reduce the issue requirements,

the reverse if-converter split the code by inserting the the reverse if-converting jump

on predicate p1. The shaded code in this example corresponds to the instructions that

must exist on the taken path and is a subset of the instruction marked in Figure 8.8.

These instructions can be removed from the block and placed in the taken path. In this

case, three of the six instructions were removed from the block. Three predicate de�nes

remain in the original block since they were scheduled before the reverse if-converting

branch. The back edge jump must exist on both paths since it is e�ective regardless

of the value of p1. The de�nition of p1 remains in the original block before the reverse

if-conversion. The back edge jump must be scheduled after all the code in the block due

to control dependences; therefore, it is duplicated so that it may exist on both the fall

through and taken paths. The resulting average execution time for each invocation of

this region containing two hyperblocks is 3.3 cycles, down from 4.4 cycles, with the same

assumptions.

In this example, the synergy between the PDLO and the PRIC was illustrated. The

PDLO code reduced the dependence height but over-saturated the assumed machine.

The PRIC recognized this fact and undid the decision to if-convert on p1 early in the

compilation process. The code is better for having if-converted p1 early because it allowed

some instructions from the p1 block, namely the instructions de�ning predicates p3 and

p6, to migrate to the dominating header block. In e�ect, global scheduling was performed

by the local scheduler with reverse if-conversion capability.
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jump

p3_ot, p6_af = (r1 == 1) p3_ot, p6_af = (r1 == 3)
<p3>br (r8 == 0)<p3>

<p8>

p7_ot = (r4 > r5) p7_ot = (r6 > r7)
p8_ut = (r2 > r3) COMP A <p6>

<p2> <p2>
<p7>

p1_ut, p2_uf = (r1 >= 0)

Total:

5 cycles
2 cycles
5 cycles

4.4 cycles

(r1 < 0) path [30%]:
(r1 >= 0, r8 == 0) path [20%]:
(r1 >= 0, r8 != 0) path [50%]:

p3_ot, p6_af = (r1 == 2)

r2 = r9 + 2

(a)

p3_ot, p6_af = (r1 == 1)p1_ut, p2_uf = (r1 >= 0) p3_ot, p6_af = (r1 == 3)
jump <p1>p7_ot = (r4 > r5) <p2>

p8_ut = (r2 > r3) <p7>
jump

COMP A <p6> <p3> br (r8 == 0) <p3> jump

Total: 3.3 cycles

3 cycles
3 cycles
4 cycles(r1 < 0) path [30%]:

(r1 >= 0, r8 == 0) path [20%]:
(r1 >= 0, r8 != 0) path [50%]:

p7_ot = (r6 > r7) <p2>

<p8>

p3_ot, p6_af = (r1 == 2)

20%

40%

25%

(50%)

(43% Overall)

r2 = r9 + 2

(b)

r10 = 5
r11 = 12

COMP B1
COMP B2
M[r12] = r14

r11 = 12 COMP B1
COMP B2 M[r12] = r14

r10 = 5

r12 = r13 << 2

r12 = r13 << 2

Figure 8.9: Hyperblock before (a) and after (b) partial reverse if-conversion.

8.3 Experimental Evaluation

The e�ectiveness of predicated execution using the proposed compilation techniques

is evaluated in this chapter.

8.3.1 Experimental methodology

For the evaluation of the entire compilation framework presented in this work, IMPACT

version 991224-I was used. The PAS, PDFG, PDLO, and PRIC were all implemented

together in an integrated fashion within the IMPACT compiler framework.

A block diagram of the IMPACT compiler is presented in Figure 8.10. The compiler

is divided into three distinct parts based on the level of intermediate representation (IR)

used. The highest level IR, Pcode, is a parallel C code representation with loop constructs
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Dependence Analysis
Loop Transformations

Intel x86

Memory System Optimizations

Inlining
Execution Profiling

Flattening

Code Layout

MCODE

Peephole Optimization
Code Scheduling
Software Pipelining
Register Allocation

MDES

IMPACT EPIC

SPARCHP PA−RISC

HPL PDIntel IA−64

Classic Code Optimization
Superblock/Hyperblock Formation
ILP Code Optimization
Interprocedural Safety Analysis

LCODE

PCODE

C/Fortran Source

Figure 8.10: The IMPACT compiler.

intact. In Pcode, memory dependence analysis [61], [62], loop-level transformations [63],

execution pro�ling, function inlining, and memory system optimizations [64], [65] are

performed.

The next level of IR in the IMPACT compiler is referred to as Lcode, which is a

generalized register transfer language similar in structure to most load/store proces-

sor assembly instruction sets. Lcode is designed to be a machine-independent IR. The

machine-speci�c IR is called Mcode. The data structures for the Lcode and Mcode are

identical. The di�erence is that Mcode is broken down such that there is a one-to-one
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mapping between Mcode instructions to the target machine's assembly language. There-

fore, to convert Lcode to Mcode, the code generator breaks up Lcode instructions into one

or more instructions which directly map to the target architecture. Lcode instructions

are broken up for a variety of reasons including limited addressing modes, limited opcode

availability, ability to specify a literal operand, and �eld width of literal operands.

At the Lcode level, all machine independent classic optimizations are applied [66].

These include constant propagation, forward copy propagation, backward copy propa-

gation, common subexpression elimination, redundant load elimination, redundant store

elimination, strength reduction, constant folding, constant combining, operation folding,

operation cancellation, code reordering, dead code removal, jump optimization, unreach-

able code elimination, loop invariant code removal, loop global variable migration, loop

induction variable strength reduction, loop induction variable elimination, and loop in-

duction variable reassociation. Additionally at the Lcode level, interprocedural safety

analysis is performed [57]. This includes identifying safe instructions for speculation and

function calls that do not modify memory (side-e�ect free).

Predication is introduced through if-conversion performed in the Lcode IR and the

Predicate Hierarchy Graph (PHG) is used to analysis the predicate relationships. Pred-

icate data
ow analysis is performed in a conservative manner.

All code generation in the IMPACT compiler is performed at the Mcode level. The

two largest components of code generation are the instruction scheduler and register al-

locator. Scheduling is performed via either acyclic global scheduling [57], [67] or software

pipelining using modulo scheduling [12]. For acyclic global scheduling, code scheduling is

applied both before register allocation (prepass scheduling) and after register allocation
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(postpass scheduling) to generate an eÆcient schedule. For software pipelining, loops

targeted for pipelining are identi�ed at the Pcode level and marked for pipelining. These

loops are then scheduled using software pipelining, and the remaining code is scheduled

using the acyclic global scheduler. In addition to control speculation, both scheduling

techniques are capable of exploiting architectural support for data speculation to achieve

more aggressive schedules [62], [68], [69].

Graph coloring based register allocation is utilized for all target architectures [70].

The register allocator employs execution pro�le information if it is available to make

more intelligent decisions. For each target architecture, a set of specially tailored peep-

hole optimizations are performed. These peephole optimizations are designed to remove

ineÆciencies during Lcode to Mcode conversion, to take advantage of specialized op-

codes available in the architecture, and to remove ineÆcient code inserted by the register

allocator.

A detailed machine description database, Mdes, is also available to all Lcode compila-

tion modules [71]. The Mdes contains a large set of information about target architectures

to assist with optimization, scheduling, register allocation, and code generation. Infor-

mation such as the number and type of available function units, size and width of register

�les, instruction latencies, instruction input/output constraints, addressing modes, and

pipeline constraints is provided by the Mdes. The Mdes is queried by the optimization

phases to make intelligent decisions regarding the applicability of transformations. The

scheduler and register allocator rely more heavily on the Mdes to generate eÆcient as

well as correct code.
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Table 8.1: Machine models used in the evaluation.

Machine Issue Integer Memory Branch Floating Point

6G 1BL 6 6 6 1 6
6L 1BL 6 4 2 1 2
8G 1BL 8 8 8 1 8
8L 1BL 8 5 4 1 3
8L 2BL 8 5 4 2 3

Many architectures are actively supported by the IMPACT compiler. Among them are

SPARC [72], HP PA-RISC, and Intel x86. Three other supported architectures, IMPACT

EPIC, HPL PD [20], and IA-64 [22], are ILP architectures which support predicated

execution. For this thesis, all experiments target the IMPACT EPIC architecture as

discussed in Chapter 2.

The systematic compilation framework proposed in this work is implemented at the

Lcode and Mcode levels. The PAS completely replaces the Predicate Hierarchy Graph for

all transformation done after if-conversion. The Predicate Data
ow Graph is also used

to perform predicate-aware data
ow analysis for all these transformations as well. The

Predicate Decision Logic Optimizer is performed on Lcode using information from the

scheduling framework [37]. The Partial Reverse If-Converter is done at prepass scheduling

time. To see how these techniques relate to one another refer to Figure 8.1.

8.3.2 Derivation of results

To measure the e�ectiveness of the proposed compilation model, �ve in-order EPIC

machine models were selected. Table 8.1 shows the IMPACT machine model name and

its corresponding functional unit mix. With the exception of memory latencies which
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were 3 cycles, the instruction latencies assumed match those of the HP PA-7100 mi-

croprocessor [32]. The instruction set contains non-trapping versions of all potentially

excepting instructions, with the exception of branch and store instructions, to support

aggressive speculative execution.

The benchmarks used in this experiment consist of 17 non-numeric programs: the six

SPEC CINT92 benchmarks, 008.espresso, 022.li, 023.eqntott, 026.compress, 056.ear, and

072.sc; �ve SPEC CINT95 benchmarks, 124.m88ksim, 129.compress, 130.li, 132.ijpeg,

and 134.perl; and six Unix utilities cccp, cmp, grep, lex, wc, and yacc.

8.3.3 Results

Overall performance. The execution time for each benchmark is derived from the

static code schedule weighted by dynamic execution frequencies obtained from pro�ling.

Benchmark performance ignores dynamic stall cycles associated with the memory system

including instruction and data cache misses. Previous experience with this method of

run time estimation has demonstrated that it accurately estimates simulations of an

equivalent machine with perfect caches.

Figures 8.11 through 8.15 compare the overall benchmark performance of the Hy-

perblock Framework, the PDLO, and the PRIC Framework. All models were generated

using the PAS and Predicate Data
ow Graph. Performance is reported as the speedup

in execution cycles versus the Superblock Compilation Framework.

These �gures show the performance of the of the system assuming no branch mispre-

diction penalty. Since branch mispredictions are not factored in, benchmarks exhibiting

performance improvement in these graphs show that predication has performed well as a
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Figure 8.11: System performance on machine 6G 1BL relative to superblock.
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Figure 8.12: System performance on machine 6L 1BL relative to superblock.
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Figure 8.13: System performance on machine 8G 1BL relative to superblock.
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Figure 8.14: System performance on machine 8L 1BL relative to superblock.
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Figure 8.15: System performance on machine 8L 2BL relative to superblock.

compilation model. In particular, the compiler has successfully overlapped the execution

of multiple paths of control to increase ILP. Hyperblock compilation achieves speedup for

most of the benchmarks. However, for some benchmarks, the Hyperblock Compilation

Framework performed worse than the Superblock Compilation Framework, most notably

in 072.sc and 130.li which behaved this way in all machine models. In all cases, decision

logic optimization combined with partial reverse if-conversion beat or matched the per-

formance of the superblock code. For �ve of the benchmarks, the framework was able to

change a loss in performance by hyperblock compilation into a gain. In all but two bench-

marks the PDLO, matched or improved on superblock program performance. In these

cases, 132.ijpeg and lex, the optimizer inappropriately chose 
attening over factorization,

causing an oversaturation of resources.
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Figure 8.16: Code size on machine 8G1BL relative to superblock.

Code size. The static size of code generated using these techniques is compared to

the size of superblock code in Figure 8.16. From the �gure, the use of predicated execution

by the compiler has dramatically reduced the size of the code than the superblock model

due to performing less tail duplication. With superblocks, tail duplication is performed

extensively to customize individual execution paths. With predication, multiple paths

are overlapped via if-conversion, so less tail duplication is required. Further, predicate

optimizations, such as operation merging, remove redundant code which exists in the

unoptimized code. The �gure also shows that the code produced with the partial reverse

if-conversion framework is consistently larger than the hyperblock framework, by 4%,

with the largest growth occurring for 026.compress at 6%.

With consistently good performance at a low code size overhead, the compilation

system proposed in this work demonstrates that early predication has very desirable
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properties. As the a prototype predication compilation framework, it has demonstrated

that predication, used correctly, is extremely desirable, and that given a reliable substrate

predicate optimizations can be consistently e�ective. The framework has also exposed

the next set of obstacles to ever higher levels of ILP and has revealed hints on how to

overcome them.
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9. CONCLUSION

9.1 Summary

Predicated execution has been shown to be a powerful tool for enhancing ILP by

reducing or eliminating the detrimental e�ects of branching control 
ow. E�ective ap-

plication of this technology, however, requires the compiler to fully understand the new

paradigm on which it is based. This dissertation presented a set of four related subsys-

tems which, when combined, provide a systematic method of compilation for producing

predicated code with consistent high performance. Three techniques, the Partial Re-

verse If-Conversion (PRIC) Framework, the Predicate Analysis System (PAS), and the

Predicate Data
ow Graph (PDFG), provide improvement over previous methods by elim-

inating inaccuracy and the need for predictive heuristics. One technique, the Predicate

Decision Logic Optimizer (PDLO), performs a new type of optimization made possible

only by the increased accuracy of the PAS.

The PRIC Framework allows early aggressive if-conversion to be performed early

in the compilation process while delaying the delicate balancing of control 
ow and
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predication until schedule time when �nal code characteristics are evident. Early if-

conversion is necessary to allow optimizations access to predicated code and to be more

e�ective.

E�ective optimization, scheduling, and register allocation of code in the predicated

representation require the compiler to understand the logical relationships among predi-

cates since execution conditions are no longer solely determined by branches. The PAS

extracts and presents information on these relationships in an exact manner. The accu-

racy of this relationship database makes possible a new mechanism called the PDLO.

Data
ow analysis requires information about both predicate 
ow and branch control


ow in order to generate accurate results. A new structure called the Predicate Data
ow

Graph accurately represents both predicate and branch execution possible outcomes while

allowing traditional iterative data
ow equation solvers to be employed.

PDLO extracts the semantics of the predicate decision logic and represents it as a set

of Boolean expressions. The predicate network is then optimized using standard Boolean

factorization and minimization techniques. The PDLO reformulates the program decision

logic back as more eÆcient predicate de�ne networks.

The proposed techniques work in a synergistic manner. More aggressive if-conversion

made possible by the PRIC makes predicate optimizations, such as the PDLO, more

e�ective. The PAS, necessary to accurately support the high level of predication also

makes PDLO possible by providing the Boolean expressions which completely describe

the decision logic. The PDLO restructures the predicate de�nition network which is

then, in some cases, converted into control 
ow by PRIC. This new control 
ow often

does not resemble the ineÆcient control created by the programmer, but it is a new,
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more eÆcient layout for the given target architecture. Predicate data
ow analysis makes

eÆcient reverse if-conversion possible by eliminating unnecessary code duplication when

a branch is reinserted. The predicate data
ow analysis also saves compiler components

a loss in e�ectiveness which would occur as a result of aggressively if-converting code in

a conservative analysis environment.

The presented set of tightly coupled systematic compilation techniques for predicated

execution allows a large bene�t from predication to be extracted without much risk of

performance penalty originating from poor compilation decisions.

9.2 Future Research

The work presented in this dissertation motivates several promising opportunities for

future research.

The PAS and PDLO only operate on predicated codes. However, both of these

techniques could be useful in the context of branch-only code. The PAS could be made

to extract basic block relationships directly into represented Boolean expressions. This

information could then be used to perform decision logic minimization and regenerate

new branch code. Extracting the expressions directly from the branches would allow the

PDLO to act as a sophisticated if-converter when predicate de�nes are reformulated in

place of branches.

As an alternative to instruction execution control, predication is quite e�ective at

reducing the ill e�ects of branches. However, predication provides relief only in acyclic

execution control, and loop iteration control must, at some level, still be performed by

branch control 
ow. The application of predicate-like control to represent instruction
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iteration information may be useful in enhancing scheduling and optimization in the

presence of loops, as well as in the presence of acyclic branch structures. As a limitation

of this work and a research opportunity, extensions along this line may facilitate the

extraction of ILP by enabling scheduling and optimization techniques to be applied on a

much larger scale within a program.

A system enabling the application of the PDLO and other predicate optimizations to

branch code could be implemented within a complete if-converting/reverse if-converting

framework. This framework would be similar to the partial reverse if-converting frame-

work in that it would eliminate the need for control 
ow optimizations by converting all

control 
ow to data 
ow and applying the appropriate data
ow optimizations. Combined

with a mechanism to represent cyclic regions, complex control and loop transformations

could be performed eÆciently with more desirable results.
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