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To expose su�cient instruction-level parallelism (ILP) to make e�ective use of wide-issue

superscalar and VLIW processor resources, the compiler must perform aggressive low-level

code optimization and scheduling. However, ambiguous memory dependences can signi�cantly

limit the compiler's ability to expose ILP. To overcome the problem of ambiguous memory

dependences, optimizing compilers perform memory disambiguation.

Both dynamic and static approaches to memory disambiguation have been proposed. Dy-

namic memory disambiguation approaches resolve the dependence ambiguity at run-time. Com-

piler transformations are performed which provide alternate paths of control to be followed

based upon the results of this run-time ambiguity check. In contrast, static memory disam-

biguation attempts to resolve ambiguities during compilation. Compiler transformations can be

performed based upon the results of this disambiguation, with no run-time checking required.

This dissertation investigates the application of both dynamic and static memory disam-

biguation approaches to support low-level optimization and scheduling. A dynamic approach,

the memory con
ict bu�er, originally proposed by Chen [1], is analyzed across a large suite of

integer and 
oating-point benchmarks. A new static approach, termed sync arcs, involving the

passing of explicit dependence arcs from the source-level code down to the low-level code, is

proposed and evaluated. This investigation of both dynamic and static memory disambiguation

allows a quantitative analysis of the tradeo�s between the two approaches.
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CHAPTER 1

INTRODUCTION

Superscalar and VLIW processors attempt to achieve high performance by exploiting avail-

able instruction-level parallelism (ILP). The compiler is responsible for transforming the original

program to expose su�cient ILP to keep the processor's functional units busy. This task of

exposing parallelism requires aggressive low-level code optimization and scheduling.

A major impediment to exploiting ILP is ambiguous memory dependences. When two

memory instructions (e.g., a load and a store) may possibly reference the same memory location,

the two instructions have an ambiguous memory dependence between them. As a result of this

dependence, the compiler must ensure that the memory operations are executed in the original

program order. Any code transformation that would alter the order of execution is prevented.

Figure 1.1 shows two examples of how ILP compilation is hindered by ambiguous memory

references. In Figure 1.1(a), the load address is assumed to be loop invariant (it references the

same address during all iterations of the loop). However, loop invariant code removal cannot

be performed to move the load out of the loop unless it can be determined the store instruction

never writes to the same memory location as the load. The ambiguous memory dependence thus

inhibits an important code optimization. In Figure 1.1(b), a simple loop, assumed to consist

of a load instruction, several arithmetic instructions, and a store instruction, has been unrolled

in an attempt to expose greater ILP to the scheduler. Again, if it cannot be determined that

the store in the �rst iteration always references a di�erent memory location than the load in

second iteration, the two iterations cannot be overlapped and no additional ILP is achieved.

1
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Figure 1.1 Importance of Memory Disambiguation.

To overcome the problem of ambiguous memory dependences, optimizing compilers perform

memory disambiguation, the process of determining whether two memory instructions might

ever access the same location. Techniques for performing memory disambiguation generally are

classi�ed as either dynamic or static. Dynamic memory disambiguation determines at run-time

whether two memory instructions ever reference the same location. To facilitate optimization

or scheduling, the compiler provides di�erent execution paths for the code depending upon

whether the instructions are independent; at run-time, the dynamic memory disambiguation

will determine which execution path is followed. In contrast, static memory disambiguation

attempts to determine at compile-time the correct dependence relationship between memory

instructions, using information available within the program's source code. If static memory

disambiguation is successful in proving two memory instructions are independent, the compiler

is able to perform optimization/scheduling at compile-time, and no run-time checking is required

to ensure correct execution.

The potential bene�t of dynamic and static memory disambiguation applied to low-level

code optimization and scheduling has not been well-understood. Most existing dynamic mem-

ory disambiguation approaches are best suited for narrow-issue processors, and the bene�t of

2



dynamic approaches for wide-issue superscalar or VLIW processors has not previously been

demonstrated. Static memory disambiguation is most frequently applied to source-level code

transformations, and its potential bene�t for low-level code transformations has also not been

demonstrated. Ideas for improved static disambiguation have been postulated, but few have

actually been implemented in a working superscalar/VLIW compiler.

This dissertation examines both dynamic and static memory disambiguation approaches

within the context of the IMPACT compiler project. Dynamic and static approaches have

been implemented within the IMPACT compiler, targeted toward facilitating low-level code

optimization and scheduling. Through detailed simulation, a quantitative analysis of both

techniques is performed to better understand the merits of and tradeo�s between dynamic and

static disambiguation.

1.1 Contributions

The four major contributions of this dissertation are discussed below.

� A dynamic memory disambiguation approach, the memory con
ict bu�er, is examined

and developed. The memory con
ict bu�er is shown to be an e�ective means of over-

coming the problem of ambiguous memory dependences, particularly for applications for

which static analysis is not available. Contributions speci�c to this thesis include a new

hardware design, development of an e�ective simulation environment, full integration into

the IMPACT compiler, and a detailed quantitative evaluation of the bene�t of the memory

con
ict bu�er for ILP processors.

3



� The sync arc technique proposed in this thesis provides an e�ective framework for provid-

ing source-level dependence information for use by low-level optimization and scheduling.

The technique is described in detail, de�ning the type of information to be carried by

the sync arc, how the information is maintained through aggressive code transformations,

and how the dependence information is used by low-level transformations. A quantitative

analysis of the e�ectiveness of sync arcs demonstrates their potential bene�t.

� The source-level dependence analysis required to support sync arcs is studied. The chal-

lenges for dependence analysis posed by the C language are discussed. In particular, the

need for interprocedural analysis of C programs to support e�ective memory disambigua-

tion for low-level code, and the required granularity of this analysis, is quantitatively

investigated.

� The tradeo�s involved in selecting a static or dynamic memory disambiguation approach

are explored. This analysis is unique in that an example of each approach has been

implemented within a single compiler environment, enabling a fair comparison of the

relative merits. Both approaches are shown to provide good memory disambiguation and

to have applicability in di�erent problem domains.

1.2 Overview

This dissertation is composed of eight chapters. Chapter 2 presents an overview of the

organization of the IMPACT compiler. All compiler techniques discussed in this thesis are

implemented within the framework of the IMPACT compiler. The simulation methodology

employed in the thesis is also described. Chapter 3 discusses two approaches to deal with
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ambiguous memory dependences: dynamic memory disambiguation and static memory disam-

biguation. The two approaches are reviewed and the tradeo�s between them are discussed.

A general technique for dynamic memory disambiguation, the memory con
ict bu�er, is

presented in Chapter 4. This technique, which combines both hardware and compiler support,

allows memory operations to be reordered during low-level code scheduling despite the presence

of ambiguous memory dependences. The hardware support is responsible for detecting when

truly dependent memory operations have been reordered. In the event this occurs, the compiler

provides code to correct program execution.

Chapter 5 introduces sync arcs, a technique for maintaining explicit dependence information

within the intermediate code. Static memory disambiguation is used to extract this dependence

information from source-level code and to generate the sync arcs. A detailed discussion of how

the sync arcs are preserved through and used by code transformations is presented.

Chapter 6 discusses the C dependence analysis used to provide the static memory disam-

biguation required for sync arcs. The interprocedural alias and side-e�ect analysis that supports

this analysis is also presented. The experimental results using this dependence analysis and

sync arcs are then presented in Chapter 7. A quantitative analysis of the bene�t of improved

memory disambiguation is given. This is followed by a comparative analysis of the relative

bene�t of the dynamic and static disambiguation approaches presented in this dissertation.

Finally, Chapter 8 presents conclusions and suggests directions for future research.
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CHAPTER 2

COMPILATION AND SIMULATION ENVIRONMENT

The compiler techniques necessary to investigate dynamic and static memory disambigua-

tion approaches for this thesis are implemented within the framework of the IMPACT compiler

project. The IMPACT compiler is a retargetable, optimizing C compiler being developed at

the University of Illinois to investigate architectural and compilation techniques to support ILP

processors. A block diagram of the IMPACT compiler is presented in Figure 2.1. The compiler

accepts source code written in C, as well as Fortran code translated using the f2c translation

tool [2]. The compiler can be divided into three distinct sections, each based upon a di�erent

intermediate representation (IR).

The highest level IR, Pcode, is a parallel C code representation with loop constructs intact.

At the Pcode level, source-level techniques such as memory dependence analysis [3], loop-level

transformations [4], and memory system optimizations [5], [6] are performed. Pcode is further

described in Section 2.1. The middle-level IR is referred to as Hcode. In Hcode, the control

structure of the code has been 
attened into a basic block structure with simple if-then-else

and go-to control 
ow constructs, but expressions are still maintained hierarchically. During

this phase of compilation, basic-block-level pro�ling, as well as pro�le-guided code layout and

function inline expansion [7], [8], [9], are performed.

The lowest level of IR in the IMPACT compiler is referred to as Lcode. Lcode is a gen-

eralized register transfer language similar in structure to most load/store processor assembly

instruction sets. The majority of ILP code transformations within the IMPACT compiler are
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performed at the Lcode level. Section 2.2 details these code transformations. A detailed ma-

chine description database, Mdes, for each target architecture is available for use by all Lcode

compilation modules [10].

Seven architectures are currently supported by the IMPACT compiler. These include the

AMD 29K [11], MIPS R3000 [12], SPARC [13], HP PA-RISC, 1 and Intel X86 [14], [15]. The

other two supported architectures, IMPACT and HP Playdoh [16], are experimental ILP ar-

chitectures, which provide a framework for compiler and architectural research. The IMPACT

architecture models a generic superscalar processor which executes the Lcode instruction set.

After machine speci�c annotation of the Lcode, the IMPACT code generator can produce

code for extended versions of the HP PA-RISC (IMPACT-HPPA) and the SPARC (IMPACT-

SPARC) architectures. For this thesis, all experiments are based upon the IMPACT-HPPA

architecture.

The remainder of this chapter details portions of the IMPACT compiler project especially

important to this thesis. Sections 2.1 and 2.2 discuss the Pcode and Lcode levels of compilation.

The superblock technique, which is foundational to much of IMPACT's ILP compilation, is

presented in Section 2.3. Finally, the simulation environment used in this thesis is presented in

Section 2.4.

2.1 Pcode

High-level analyses, transformations, and optimizations which bene�t from the availability

of explicit source-level information are performed at the Pcode level. Within the Pcode IR,

program code is represented in an abstract syntax tree containing hierarchical statement and

1The HP PA-RISC code generator was developed by Richard E. Hank.

8



expression nodes. This hierarchical intermediate representation facilitates the manipulation of

program structures such as loops and blocks of statements.

The Pcode module contains several code restructuring transformations and optimizations.

General purpose loop transformations currently implemented include loop distribution or loop

�ssion, rectangular loop interchange, loop skewing, and loop reversal [4]. These loop transfor-

mations are usually exploited as tools to improve the applicability of other transformations and

optimizations. In addition, conversion of while-type loops into for-type loops to facilitate data

dependence analysis is also supported. Loop parallelization is currently limited to identi�ca-

tion of loops which can be software pipelined. Loops that are identi�ed as good candidates for

software pipelining are marked at the Pcode level, but the software pipelining transformation

is actually accomplished at the Lcode level during code generation [17], [18].

Memory system optimizations include loop blocking (also called iteration space tiling) to

improve cache access locality [5], software prefetching, and data relocation and prefetching [6],

a hardware-assisted form of software prefetching which simultaneously relocates array data to

reduce cache mapping con
icts.

To support these transformations and optimizations, Pcode performs several types of anal-

ysis. Control-
ow analysis provides the structural framework upon which many of the trans-

formations and other analyses are built. It consists of control-
ow graph construction, loop

detection and nesting determination (used mostly for unstructured loops), support for data

dependence analysis, and unreachable code removal. Data-
ow analysis determines the 
ow of

program values, variables, and expressions through the control-
ow graph. Traditional types

of data-
ow information are computed including sets of reaching de�nitions and uses, available

de�nitions and uses, and live variables [19]. In addition, an extended type of data-
ow analysis
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called loop-carried data-
ow analysis is used to calculate loop-carried reaching de�nitions and

uses, which are useful for determining accurate dependence direction vectors for scalar variables.

Data dependence analysis [3] calculates the dependence relationship between each access

pair in the function. It consists of several steps. First, a variable access table containing

information for each distinct variable reference in the function is built. Next, aliases are added

between accesses in the access table as necessary. These aliases may stem from several sources,

such as aliases between elements of a union, pointer aliasing caused by assignment expressions,

or aliases determined during interprocedural analysis. Finally, the dependence relationship

between pairs of accesses is determined. The Omega Test [20], developed by William Pugh

at the University of Maryland, is employed to produce the data dependence equations and

inequalities used to generate distance and direction vectors for pairs of variable references.

Pcode's existing data dependence analysis lays the foundation for the dependence analysis

used to support the sync arc research presented in this thesis. Chapter 6 further discusses

Pcode data dependence analysis and the enhancements made to it as part of this thesis.

2.2 Lcode

The Lcode level performs low-level code optimization and scheduling to expose and exploit

a program's inherent ILP. Lcode is logically subdivided into two subcomponents: machine-

independent optimizations performed prior to code generation and machine-dependent opti-

mizations performed during code generation. Although the internal data structures used dur-

ing these two components of Lcode are identical, the machine-dependent portion of the Lcode

is sometimes referred to as Mcode. The di�erence between Mcode and Lcode is that Mcode

is broken down such that there is a one-to-one mapping between Mcode instructions and the
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target machines' assembly languages. For example, when generating code for the X86 archi-

tecture, the Lcode will be in 3-operand format during machine-independent optimization, and

then is converted to 2-operand format during the machine-dependent phases; once in 2-operand

format, the code would be referred to as Mcode. Lcode instructions are broken up for a variety

of reasons, such as limited addressing modes, limited opcode availability (e.g., no 
oating-point

branch), ability to specify a literal operand, and �eld width of literal operands.

During the �rst step of Lcode compilation, all machine-independent classic optimizations

are applied [21]. These include constant propagation, forward copy propagation, backward copy

propagation, common subexpression elimination, redundant load elimination, redundant store

elimination, strength reduction, constant folding, constant combining, operation folding, oper-

ation cancellation, code reordering, dead code removal, jump optimization, unreachable code

elimination, loop invariant code removal, loop global variable migration, loop induction variable

strength reduction, loop induction variable elimination, and loop induction variable reassocia-

tion. Additionally, analysis is performed to identify safe instructions for speculation [22].

The next step in Lcode compilation is to perform superblock code transformation and

optimization. The superblock compilation structure is explained in detail in Section 2.3. When

predicated execution support is available in the target architecture, hyperblocks [23] rather

than superblocks are used as the underlying compilation structure. All superblock optimization

techniques have also been extended to operate on hyperblocks. In addition, a set of hyperblock-

speci�c optimizations to further exploit predicated execution support are available. For this

thesis, the superblock was the primary compilation structure used for memory disambiguation

experiments.
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Following superblock transformations, machine-speci�c code generation is performed for one

of the seven architectures shown in Figure 2.1. Code generation within the IMPACT compiler

consists of three phases. During Phase I, Lcode to Mcode conversion is performed to transform

the Lcode into a one-to-one correspondence to target machine assembly. During Phase II of

code generation, machine-speci�c optimizations, code scheduling, and register allocation are

performed. Finally, during Phase III of code generation, Mcode is translated into the target

architecture's assembly language.

Two of the most signi�cant components of code generation are the instruction scheduler and

register allocator, both of which are common modules shared by all code generators. Scheduling

is performed via either global acyclic scheduling [22], [24] or software pipelining [17], [18].

Global acyclic scheduling is applied both before register allocation (prepass scheduling) and

after register allocation (postpass scheduling) to generate an e�cient schedule. Loops targeted

for software pipelining are identi�ed and marked at the Pcode level. These loops are pipelined

using modulo scheduling and the remaining code is scheduled using the global acyclic scheduler.

Additionally, code transformations to support the memory con
ict bu�er technique described

in Chapter 4 are applied during code scheduling.

Register allocation is performed using a graph-coloring-based scheme [25]. The register allo-

cator employs pro�le information, if available, to better prioritize virtual registers for allocation

to physical registers.

For each target architecture, a set of specially tailored peephole optimizations is performed.

These peephole optimizations are designed to remove ine�ciencies introduced during Lcode to

Mcode conversion, to take advantage of specialized opcodes available in the architecture, and
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to take advantage of new optimization opportunities after spill code has been added by the

register allocator.

2.3 Superblocks

For most non-numeric programs, the ILP available within individual basic blocks is ex-

tremely limited [26], [27], [28]. An ILP compiler must be able to optimize and schedule in-

structions across basic block boundaries to �nd su�cient parallelism. An e�ective structure

for ILP compilation is the superblock [23], [29]. The formation and optimization of superblocks

increases the ILP available to the scheduler along important execution paths by systematically

removing constraints due to the unimportant paths. Superblock scheduling is then applied to

exploit ILP by mapping it to the available processor resources.

A superblock is a block of instructions for which the 
ow of control may only enter from

the top, but may leave at one or more exit points. It is formed by identifying sets of basic

blocks which tend to execute in sequence (called a trace) [30]. These blocks are coalesced to

form the superblock. Tail duplication is then performed to eliminate any side entrances into

the superblock [31].

The formation of superblocks is illustrated in Figure 2.2, taken from [23]. Figure 2.2(a)

shows a weighted 
ow graph which represents a loop code segment. The nodes in the graph

correspond to basic blocks and the arcs represent the possible control transfers. The number in

each node represents the execution frequency of the basic block (as determined by pro�ling).

Likewise, the number associated with each arc represents the number of times that particular

control transfer path is followed. Because the most frequent control 
ow is along the path

fA;B;E; Fg, this trace is selected for superblock formation. To eliminate side entrances to this
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superblock, tail duplication replicates basic block F , and control 
ow from blocks C and D is

redirected to this duplicated block. The result is the 
ow graph shown in Figure 2.2(b).

Following superblock formation, ILP is further exposed through superblock optimizations.

Classic optimizations are reaccomplished within the scope of the superblock. Superblock en-

larging optimizations such as loop unrolling and loop peeling are employed to increase the size

of superblocks, providing more visible instructions to the scheduler. Dependence-removing op-

timizations such as register renaming, induction variable expansion, and accumulator expansion

are performed to remove data dependences, increasing available ILP. For a detailed explanation

of the superblock optimizations, see [23].

The superblock compilation framework can be viewed as an attempt to reduce the impact

of control transfer instructions on ILP. For an architecture that supports control speculation,

the greater optimization and scheduling freedom a�orded by superblocks signi�cantly reduces

the negative impact of branches on ILP. The importance of this result to this thesis is that

reducing the impact of branches on ILP has exposed ambiguous memory dependences as a

secondary impediment to ILP. The potential ILP exposed by superblock formation cannot be

fully exploited unless e�ective methods are developed to overcome the restrictions imposed by

memory dependences.

2.4 IMPACT Simulation Environment

All experiments performed for this thesis were done using the IMPACT simulation envi-

ronment. The IMPACT simulator models in detail the target architecture's prefetch and issue

unit, instruction and data caches, branch prediction mechanism, and hardware interlocks. This

allows the simulator to accurately model the number of cycles required to execute a program,
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as well as provide detailed analysis such as cache hit rates or branch prediction performance.

The simulator also allows proposed new hardware, such as the memory con
ict bu�er, to be

accurately modeled and analyzed. Supported architecture types include in-order superscalar

and very long instruction word (VLIW) architectures.

The IMPACT simulation approach is referred to as emulation-driven simulation. Figure 2.3

shows the compilation path for the simulation used throughout this thesis. The �gure assumes

the Lcode has already been compiled through classic and ILP code optimizations, including

superblock formation. Because the simulation performed for this thesis assumes an instruction

set architecture which is an extension of the HP PA-RISC 1.1 instruction set, the optimized code

is �rst run through the initial phase of the HP PA-RISC code generator, which transforms the

code into HP Mcode. The code is then passed through pre-pass scheduling, register allocation,

and post-pass scheduling for the target architecture, using the generic IMPACT code generator.

During this stage, architectural features of the simulated architecture are assumed. For example,

if the architecture being simulated can issue eight instructions per cycle, the scheduler reorders

the code based upon this model. For the MCB experiments detailed in Chapter 4, the MCB

code transformations are performed during pre-pass scheduling.
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Following this stage of compilation, the intermediate code is in a form which could be

executed by the simulated architecture. However, to create an executable �le to drive the sim-

ulation, any unsupported architectural features of the simulated architecture must be emulated

to allow the code to execute on the host architecture, an HP PA-RISC 7100-based workstation.

For example, if the simulated architecture contains hardware support for MCB, emulation code

must be added to allow the code to execute properly on the host architecture. Following inser-

tion of required emulation code, a second phase of register allocation, assuming host architecture

register �le constraints, is performed. The code is then instrumented to gather address and

branch direction data for the simulation, and then the �nal phases of the code generation are

performed to create an executable �le. This executable �le serves two purposes. First, because

the executable can be run to provide correct program results, it veri�es that code transforma-

tions have been performed correctly. Second, it generates the trace information required to

drive the simulation.

Simulation is performed on the modeled architecture's code, using address and branch di-

rection data from the emulation path. The result is a highly accurate measure of the number of

cycles required to execute the program on the simulated architecture. Due to the complexity of

simulation, sampling [32] is used to reduce simulation time for large benchmarks. For sampled

benchmarks, a minimum of 10 million instructions are simulated, with at least 50 uniformly

distributed samples of 200,000 instructions each. Testing has shown sampling error to be less

than 1% for all benchmarks.

Further details of the architecture being modeled for various experiments is provided within

the experimental sections of this thesis.
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CHAPTER 3

OVERVIEW OF MEMORY DISAMBIGUATION

Control 
ow instructions (e.g., branches and function calls) have been widely recognized as

the major impediment to exposing ILP. Because such a high percentage of instructions (20-

30%) in typical C programs are control 
ow instructions, the compiler must be able to search

beyond the individual basic block for parallelism. Techniques such as trace scheduling [30],

superblocks [29], and hyperblocks [23] have been developed to expand the size of blocks in

which the compiler performs optimization and scheduling. Speculative execution techniques

have been developed to allow code motion between basic blocks [33], [34], [35]. As a result of

these techniques, the impact of control 
ow instructions on ILP can be signi�cantly reduced.

However, this reduction of the impact of control 
ow instructions on ILP has exposed a

secondary impediment to ILP: ambiguous memory dependences [1]. In much the same way

that branches can restrict code optimization and scheduling, ambiguous memory dependences

also prohibit these important transformations. In particular, dependences between loads and

stores result in the greatest restriction to ILP.

Dependences between two loads (referred to as an input dependence) usually have little or no

impact on ILP. Dependences between two store operations (referred to as an output dependence)

rarely restrict optimization, and there tends to be limited bene�t from reordering stores during

code scheduling. However, dependences between load and store operations are a much more

serious problem for the compiler. During code scheduling, 
ow dependences (the situation

when a load operation sequentially follows a dependent store operation) often severely restrict
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code reordering. Anti dependences (when a load sequentially precedes a dependent store) tend

to be a minor problem during scheduling because load operations tend to move upward and

stores tend to move downward during code scheduling. During optimization, both 
ow and anti

dependences severely restrict transformations.

To overcome the problem of ambiguous memory dependences, optimizing compilers perform

memory disambiguation. To illustrate the potential bene�t of memory disambiguation, an

experiment was conducted using a suite of twelve benchmarks, including �ve unix benchmarks,

�ve SPEC-CINT92 benchmarks, and two SPEC-CFP92 benchmarks. The benchmarks were

scheduled using the three di�erent models of disambiguation. In the �rst model, no memory

disambiguation was performed, i.e., all memory operations were assumed to be dependent

on all other memory operations. The second model used the existing (prior to this thesis)

IMPACT low-level memory disambiguation. This disambiguation model is typical of the static

analysis performed on low-level code by current commercial compilers. The analysis is strictly

intraprocedural and uses only information available within the low-level code for its analysis,

i.e., no source-level information is used to aid the analysis. It is designed to be fast and

fully safe, but is limited in its e�ectiveness. The �nal model used in this experiment is ideal

disambiguation, where all memory operations are considered to be independent unless the static

analysis proves them to be dependent. Note that this disambiguation model makes unsafe

assumptions and may result in incorrect code if truly dependent operations are reordered.

However, this model provides an upper bound on the performance which could potentially be

achieved from scheduling with improved memory disambiguation.

For this experiment, an 8-issue architecture with 64 integer and 64 
oating-point registers

is assumed. No restrictions are placed on the combination of instructions that may be issued
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in a cycle. Instructions latencies of the HP PA-7100 are also assumed. Because the executable

generated from the ideal disambiguation model could execute incorrectly, the experiment was

performed using cycle count estimates provided by the scheduler rather than the full simulation

approach described in Section 2.4. To estimate the number of cycles required for execution,

the code was pro�led prior to scheduling to determine the execution frequency of each control

block. The code was then scheduled, using the various levels of disambiguation, to determine

the number of cycles each block would take to execute. From this, an accurate estimate of

required execution cycles can be determined, excluding cache e�ects and branch-misprediction

penalties.

Figure 3.1 presents the results of this experiment. The vertical bars on the graph re
ect

the relative speedup of the current static and ideal disambiguation models over the baseline no-

disambiguation case. Thus, a speedup of 1.0 indicates equivalent performance to the baseline

case. Several items should be noted from this �gure. First, the ideal disambiguation results

indicate that by eliminating memory dependences a signi�cant amount of potential ILP can be

exposed. For six of the twelve benchmarks tested, more than 50% speedup could be achieved

if all ambiguous memory dependences could be eliminated. A second point to note is that

IMPACT's current low-level memory disambiguation is in large part ine�ective at removing

ambiguous memory dependences and exposing parallelism. It appears that a signi�cantly more

powerful disambiguation technique is required to eliminate ambiguous dependences and provide

performance closer to the ideal disambiguation case. Finally, the experiment demonstrates that

although improved memory disambiguation can signi�cantly increase performance, it is not a

panacea which can increase performance on all benchmarks. For example, in the benchmark

023.eqntott, over 80% of the execution time is spent in an inner loop which contains no store
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Figure 3.1 E�ect of Memory Disambiguation on Performance.

operations; thus, improved memory disambiguation has little e�ect on performance. Note

that this experiment only measures the potential bene�t of improved memory disambiguation

during scheduling; one would also expect a signi�cant bene�t for optimization. This bene�t is

quanti�ed in Chapter 6.

The remainder of this chapter examines two general memory disambiguation approaches:

dynamic and static. Tradeo�s between these two approaches are examined, followed by a review

of related work for each of the two approaches.

3.1 Tradeo�s Between Dynamic and Static Approaches

Various solutions have been proposed to provide improved memory disambiguation. In

general, these solutions can be categorized as either dynamic or static. Static memory dis-

ambiguation, also referred to as dependence analysis, attempts to determine the relationship

between pairs of memory references at compile time. Once the compiler has determined the
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Table 3.1 Tradeo�s of Dynamic and Static Memory Disambiguation.

Dynamic Less compile-time investment
More accurate
Compiler support con�ned to backend
Useful when source not available

Static Requires no hardware support
Requires no instruction overhead
May be nearly as accurate in practice

dependence relationship for memory references, this information can be used to safely direct

subsequent code transformations. In contrast, dynamic memory disambiguation attempts to de-

termine at run-time whether two references could possibly reference the same memory location.

The compiler may speculatively perform a code transformation based upon an assumed depen-

dence relationship between memory references, and then provide some means of dynamically

determining at run-time if the assumed relationship was correct. In the event of an incorrect

assumption, the dynamic approach must provide a mechanism to ensure correct execution.

Both dynamic and static memory disambiguation approaches are targeted toward increasing

processor performance. Tradeo�s exist between the approaches; a particular implementation

may employ static techniques, dynamic techniques, or some combination of both. Table 3.1

highlights some of the relative advantages of the two approaches.

Dynamic approaches usually require signi�cantly less compile-time investment than static

approaches. In general, the compiler algorithms to support most currently proposed dynamic

approaches do not signi�cantly impact the overall compilation time. In contrast, static memory

disambiguation requires an in-depth analysis which can dominate the time required for compi-

lation. Languages such as C, which require interprocedural analysis to provide high accuracy,

require an even greater investment in compilation time. For applications requiring extremely
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for ( i = 0; i < M; i++)

A[i] = A[i*i + 3];

while (ptr != 0)

    ptr = ptr->next;

(c) non-linear references (d) pointer references

for ( i = 0; i < M; i++)

    for ( j = 0; j < N; j++)

        A[j] = A[ B[i] ];

for ( i = 0; i < M; i++)

A[i] = A[M-i];

(a) indirect references (b) occasional dependence

Figure 3.2 Limitations of Static Memory Disambiguation.

fast compilation, a dynamic memory disambiguation technique may prove to be a better ap-

proach.

Because dynamic approaches do not attempt to determine the dependence relationship be-

tween two operations until run-time, they are inherently more accurate than static approaches.

During program execution, the dynamic approach knows the exact memory address being ac-

cessed by each reference and, thus, can determine dependence relationships with complete

accuracy. Although static memory disambiguation approaches can be highly accurate for many

applications, current techniques are unable to accurately determine dependence relationships

in certain circumstances. Figure 3.2 highlights code segments for which static memory disam-

biguation is less e�ective. In Figure 3.2(a), the reference to A[B[i]] is an indirect reference

through a second array. Because the static analysis cannot determine the value stored in the

location B[i], it is unable to accurately determine the dependence relationship of this reference

of the array A to other references to the same array.
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Figure 3.2(b) illustrates the problem that occasional dependences cause for static memory

disambiguation. In this example, a loop-carried dependence exists between the two references

to the array A. However, the dependence distance (the number of loop iterations from the

iteration in which one reference accesses a certain memory location until the other reference

accesses the same address) is not constant between loop iterations. Thus, the static dependence

analysis cannot accurately determine the dependence relationship. If the value forM cannot be

determined by the compiler, the static analysis also cannot determine when and if a zero distance

(non-loop carried) dependence exist between the two references. In Figure 3.2(c), the problem

of non-linear references is shown. Because most static memory disambiguation approaches

cannot handle non-linear array indices, the reference to A[i � i + 3] cannot be disambiguated

from other references to the same array. Finally, Figure 3.2(d) shows an example of the problem

with performing static analysis for languages which support pointers. In this example, a simple

loop that walks a linked list data structure is shown. Unless the dependence analysis is able to

somehow determine that the list in acyclic, the dependence relationship between the references

to ptr and ptr!next cannot be accurately determined.

Supporters of static memory disambiguation would likely contend that the array examples

shown in Figure 3.2 do not occur frequently enough in most applications to result in signi�cant

loss of accuracy for static analysis. Little or no data exist to quantify how often these situations

occur on real applications. Static analysis of pointers has improved greatly in recent years,

reducing this accuracy advantage of dynamic approaches. Thus, although dynamic approaches

are inherently more accurate, static approaches may prove to be nearly as accurate for most

applications.
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Another advantage of dynamic memory disambiguation approaches is that their compiler

support is usually con�ned to the back end of the compiler. Code transformations to support

dynamic approaches are normally performed on the low-level form of the code being compiled.

Thus, a single implementation of a dynamic approach can provide memory disambiguation for

an application that supports numerous front-end source languages. The transformations are

independent of the source language. Static approaches, on the other hand, are normally per-

formed on high-level source code. If an application that must support multiple source languages

employs static memory disambiguation, a unique implementation will likely be required for each

of the supported languages.

The primary advantage of static memory disambiguation is that it requires no support be-

yond the analysis performed by the compiler. In contrast, dynamic approaches can require

several types of overhead. First, dynamic approaches usually require the insertion of extra

instructions into the code stream to provide the run-time checking. Even for wide-issue archi-

tectures, these additional instructions may result in a performance penalty. Thus, for a static

approach and a dynamic approach that provide comparable accuracy, the static approach will

likely have better performance due to the instruction overhead of the dynamic approach. Sec-

ond, dynamic approaches often require instruction-set architecture (ISA) support, in the form

of new instructions. This requirement limits the application of some dynamic approaches for

existing architecture families. Also, the addition of new instructions to the ISA which require

additional bits may be very di�cult and require extensive redesign. Finally, some dynamic

approaches require signi�cant hardware support. The hardware cost of the approach must

be considered along with the potential performance improvements from the improved memory

disambiguation, i.e., does the performance improvement provided by the dynamic technique
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outweigh the potential improvement if the same amount of chip area was applied to some

alternate hardware feature (e.g., a larger cache)?

It should not be construed that the tradeo�s discussed above, or the performance compar-

isons provided later in this thesis, are intended to imply that either static or dynamic memory

disambiguation is a better approach for all applications. The strengths and weaknesses of the

approaches may make either, or possibly a combination of both, the best solution for a par-

ticular application. In fact, certain applications force the use of one approach or the other.

For example, a static memory disambiguation approach that relies on use of source-level infor-

mation is not possible for an application such as binary translation, in which no source-level

information is available. For applications that must be compatible across an architecture family,

such as the X86 family, a dynamic approach requiring changes to the ISA would not be useful.

3.2 Dynamic Memory Disambiguation Approaches

Dynamic memory disambiguation attempts to determine at run-time whether two references

could possibly reference the same memory location. Most dynamic approaches deal speci�cally

with memory 
ow dependences, attempting to remove these dependences and allow loads to

execute before ambiguous stores. When a load operation, and possibly the load's dependent

operations (
ow dependences associated with the destination register of the load), bypass an

ambiguous store operation, the operations that pass the store are being executed speculatively

before it is determined that the value the load accesses is valid. This is termed data speculation.

In contrast to control speculation, in which operations are executed before it is determined that

they should have been executed according to original program control 
ow, data speculation

executes instructions before it is determined that the data being used are valid.
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M(R3+R7) = R1

If (R5+R8 == R3 + R7)

    R4 = R1
R6 = R4 + 1

R1 = R2 * R3
R4 = M(R5+R8)

If (R5+R8 == R9 + R10)

M(R9+R10) = R11

    R4 = R11

b)  Runtime Code

R4 = M(R5+R8)

R6 = R4 + 1

M(R3+R7) = R1

R1 = R2 * R3

M(R9+R10) = R11

a)  Original Code

Figure 3.3 Run-time Memory Disambiguation Example.

In this section, several models of data speculation are discussed, requiring varying degrees

of architectural support. These models also vary in what instructions can be speculated, i.e.,

whether only load instructions, or both the load and its dependent operations, are allowed to

bypass stores. First, a compiler-only model known as run-time disambiguation is presented.

As presented, this model allows only load instructions to be speculated, but it could easily be

extended to also allow dependent operations to be speculated. Next, �ve models that use a

combination of architectural and compiler support are examined. Two of these allow only loads

to be speculated, and the remainder allow dependent operations to be speculated also. Finally,

the hardware-only model of dynamic memory disambiguation is reviewed.

3.2.1 Run-time disambiguation

Nicolau has proposed a software-only data speculation technique known as run-time disam-

biguation [36]. Run-time disambiguation inserts explicit address comparisons and conditional

branch instructions into the code which allow memory 
ow dependences to safely be removed,

enabling load instructions to percolate upward past ambiguous stores during code scheduling.

Figure 3.3 illustrates the application of run-time disambiguation. The original code segment in
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Figure 3.3(a) has two store operations followed by an ambiguous load. Figure 3.3(b) re
ects

the application of run-time disambiguation to the code: the load has been moved above both

stores, and explicit address comparison code has been added. When the address comparison

code determines that the addresses of the load and the store were identical, the value being

stored is simply moved into the destination register of the load. In the example shown, if the

address of the load operation (R5 +R8) is the same as the store address (R9 +R10), then the

subsequent move operation places the value from R11 in the load's destination (R4). Similar

code is also added following the second store operation.

The major advantage of run-time disambiguation is that it requires no ISA or hardware sup-

port, and thus could be applied to existing architectures or families of architectures. However,

it has several major limitations, particularly when applied to ILP processing. First, the tech-

nique can result in an extremely large amount of code growth when used with ILP compilation

techniques. The number of address comparison and conditional branch instructions inserted

can be prohibitive as a result of aggressive code reordering: if m loads bypass n stores, m� n

comparisons and branches are required. Second, the technique adds branch instructions to the

code. Although superscalar and VLIW processors can issue and execute many operations each

cycle, they are typically very limited in the number of branch operations they can execute (usu-

ally only one branch per cycle). These added branches are usually highly predictable, but they

may impact performance in branch intensive code. A third limitation of run-time disambigua-

tion is that it does not readily address the access width problem. Simple address comparison

is insu�cient to detect ambiguity in the presence of memory instructions of di�erent size (e.g.,

an integer store followed by a character load). To ensure correct execution, a number of the

least-signi�cant-bits of the addresses must be ignored during address comparison, requiring
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further instruction overhead. Finally, the technique as proposed allows only load operations,

and not their dependent operations, to bypass stores. This signi�cantly limits the scheduling

freedom necessary for exploiting ILP. Run-time disambiguation could be extended to allow the

load's dependent operations to bypass the store, using the compilation techniques described in

Chapter 4.

3.2.2 Preload register update

A major limitation of run-time disambiguation discussed above is the requirement that

explicit address comparisons be added to the code. The preload register update technique

proposed by Chen et al. [37] attempts to relieve this problem by using hardware to perform

the address comparisons and move operations. A preload instruction informs the hardware

that a load is being speculated above ambiguous stores, and therefore requires its address be

saved and checked against subsequent store addresses. If a match occurs between a store and

load address, the hardware \updates" the destination register of the load with the store value.

Address comparisons for the preload continue until a commit instruction is executed. A commit

instruction is needed so that the coherence mechanism (the checking of store and load addresses

and execution of potential updates) can be turned o� for this particular load. This ensures that

only stores that were originally located before a speculated load are allowed to update the load's

destination register. The compiler must ensure that a commit instruction is not moved above

or below a store instruction during code transformations.

Figure 3.4 demonstrates the preload register technique using the previous code example.

Note in Figure 3.4(b) that the load has again bypassed the stores, and has been marked as a

preload. Following the last store, a commit instruction has been added. Note also that, like
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R4 = M(R5+R8)

R6 = R4 + 1

M(R3+R7) = R1

R1 = R2 * R3

M(R9+R10) = R11

R1 = R2 * R3

R4 = M(R5+R8)  (preload)

M(R9+R10) = R11

M(R3+R7) = R1

R6 = R4 + 1

commit (R4)

a)  Original Code b)  Preload Register Update Code

Figure 3.4 Preload Register Update Example.

run-time disambiguation, the dependent operation (R6 = R4 + 1) is not allowed to bypass the

stores.

Preload register update successfully eliminates the code growth problem of run-time disam-

biguation, and it does not require the addition of branches. Hardware mechanisms could also

be provided to overcome the access width problem. The major limitations of the technique are

that it requires both ISA and hardware support and that it does not allow the load's dependent

operations to bypass stores.

3.2.3 HP smart load

Hewlett Packard has developed a scheme, similar to preload register update, which also

allows load instructions to be moved above ambiguous stores [38]. Every speculated load de�nes

a watch window which indicates how many instructions above its original position the load has

been speculated. The register �le is modi�ed to store the address of the preload in addition

to the data, and includes counters used to determine when the preload's watch window is no

longer active. Additionally, a 2-bit 
ag records whether the register contains an active (being

watched) load value and whether a subsequent store has matched the speculated load's address.
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If an incoming instruction is a load and it has been speculated, its destination register has

to be initialized. This initialization includes setting the counter to the number of instructions

above its original position that a load has been speculated and setting the 
ag to indicate

the register contains an active load. When a store instruction is issued, its address must be

checked against all the active load addresses found in the register �le. If a match is found, the

corresponding bit in the register �le is set to record the match. When the original position of

a speculated load instruction is reached, a new load is generated if the 
ag state indicates that

a store address match has occurred.

The compiler support required for this technique is also very similar to preload register

update. Rather than marking the load as a preload as shown in Figure 3.4(b), the smart

load technique would mark it as being speculated two instructions. Thus, after the two store

operations it bypassed have been executed, the counter associated with R4 would have the

value zero and the load would be committed. No explicit commit instruction is required.

One variation on this scheme utilizes forwarding. If a store address con
icts with a spec-

ulative load address, the data contained in the store are used instead of the data obtained by

the load. This method is very similar to preload register updating, and makes generation of

the extra load instruction unnecessary.

3.2.4 Speculative disambiguation

Huang et al. have proposed speculative disambiguation [39], a combined hardware and

compiler technique to allow aggressive code reordering using predicated instructions. It is

similar to run-time disambiguation, but employs compiler techniques that allow both a load

and its dependent instructions to bypass an ambiguous store. The method also allows two
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R1 = R2 * R3

M(R9+R10) = R11

M(R3+R7) = R1

R6 = R4 + 1

R4 = M(R5+R8)

R4 = M(R5+R8)

R6 = R4 + 1

M(R3+R7) = R1

R1 = R2 * R3

M(R9+R10) = R11

a)  Original Code b)  Speculative Disambiguation  Code

p = (R5+R8==R9+R10)

R6 = R1 + 1 (q)

q = (R5+R8==R3+R7)

R6 = R11 + 1 (pq’)

Figure 3.5 Speculative Disambiguation Example.

ambiguous stores to be reordered. This is accomplished by generating code for both the case

when the two instructions are independent and for when they are dependent. The two versions

of the code are conditioned by opposite predicates, so that only one version of the code is

actually executed.

Figure 3.5 illustrates this technique using the running code example. In Figure 3.5(b), the

predicated code is shown in several columns, corresponding to di�erent predicate cases. The

�rst column shows the case in which the load is independent of the stores, and it can be freely

scheduled past the stores. The second column handles the case in which the �rst store con
icts

with the load, but not the second. This is indicated by predicate p being true and predicate q

being false. In this case, the add instruction which originally used R4 now uses the store value,

R11, as its input. Note that the load is not re-executed in the case of a con
ict, but all uses

of the load's destination register are re-executed using the alternate value. The third column

shows the case when the load con
icts with the second store, indicated by predicate q being

true. Here, the add instruction is re-executed using the value stored in R1.

Note the code growth from a single load with only one dependent operation bypassing

two stores. In the presence of aggressive code reordering, code growth would be prohibitive.
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Additionally, the issue bandwidth of the ILP processor would quickly be saturated. Thus,

the technique cannot be generally applied to support ILP compilation, and is more suitable

for narrow-issue processors requiring only minimal code reordering. The primary advantages

of the technique are that it requires no additional hardware overhead (for processors already

supporting predication) and that it does allow the load's dependent operations to bypass stores

to a limited extent.

3.2.5 Unsafe loads

Silberman and Ebcioglu presented a dynamic memory disambiguation scheme as part of

their framework for supporting heterogeneous instruction set architectures [40]. This framework

was developed to allow applications written for one instruction set to be migrated to a higher

performance architecture without a signi�cant investment by the user or developer.

They use both a base machine engine which executes the original instruction set architecture

and a native machine engine with a higher performance architecture (e.g., a RISC engine) to

implement their scheme. Two versions of the code are generated, one for each engine. For

best performance, the goal is to execute the native version of the code as much as possible,

periodically updating the base machine state at predetermined checkpoints. The approach

employs the concept of both architected registers (registers present in original instruction set)

and nonarchitected registers (extra registers present in the native engine).

In the native version of the code, they allow loads whose destination is a nonarchitected

register to be speculated above ambiguous stores. The nonarchitected registers have additional

�elds which store the memory address of the load, its length, and an extension tag which

indicates whether an address con
ict has occurred.
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At each checkpoint, the nonarchitected registers are copied into the architected registers to

update state. If the extension 
ag of the nonarchitected register is set, an address con
ict has

occurred since the previous checkpoint and the native machine state may not be valid. In this

case, the processor re-executes the section of code containing the speculated load in the base

machine engine and re-enters the native engine at the next opportunity.

Although applied within the context of the heterogeneous instruction set architectures, this

approach to dynamic disambiguation has general application. The hardware requirements are

very similar to the hardware requirements for the memory con
ict bu�er approach presented

in Chapter 4. Although requiring extensive hardware support, the technique allows both loads

and their dependent instructions to bypass stores.

3.2.6 Hardware-only disambiguation

Hardware-only dynamic memory disambiguation techniques have been widely used for archi-

tectures which employ dynamic instruction scheduling. Early dynamic architectures such as the

IBM 360/91 [41] and the CDC 6600 [42] employed simple store queues which allowed subsequent

loads to execute out-of-order. The HPS architecture [43] proposed node tables which bu�ered

memory operations awaiting operands, allowing subsequent memory operations to execute. A

store queue was also employed to allow loads to bypass stores. Franklin and Sohi proposed the

address resolution bu�er [44], which also allows dynamic reordering of memory operations. It

provides special support allowing subsequent memory operations to execute even if the address

of an earlier store operation has not been resolved. For wide-issue ILP architectures, each

of these dynamic scheduling techniques is limited by the size of the visible instruction win-
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dow, restricting the aggressive code reordering necessary to obtain high utilization of multiple

functional units.

3.3 Static Memory Disambiguation Approaches

Static memory disambiguation, or dependence analysis, attempts to determine the relation-

ship between two references at compile-time. Most frequently, dependence analysis has been

applied at the source code level, and is used to facilitate source-to-source code transformations.

In-depth static analysis has seldom been applied to assist compilation of low-level code; in

most commercial compilers, memory disambiguation for low-level code is performed using only

information available within the low-level code (i.e., no source-level information). A few of the

newest optimizing compilers attempt to pass some limited source information to the interme-

diate code, but this information is usually limited to array references. Because so little work

has previously been done on performing dependence analysis to facilitate low-level code opti-

mization and scheduling, the discussion in this section focuses on techniques which are being

developed primarily to support source-level transformations. This related work is presented in

the context of the several complications to dependence analysis which must be addressed to

provide accuracy.

The �rst complication to dependence analysis is disambiguating array references, partic-

ularly in the context of loops. To test for dependence between array references, compilers

have traditionally relied on several well-known algorithms based on a set of Diophantine equa-

tions [45], [46]. More recently, techniques have been developed which are able to handle multi-

dimensional arrays and more complex array subscripts [47], [48], [49], [50]. Although array

dependence analysis has reached a fair level of maturity, current techniques may achieve inex-
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act results due to complicated reference patterns or occasional dependence, as was illustrated

in Figure 3.2.

A second complication to dependence analysis is the presence of aliasing, the situation

when two or more distinct variables simultaneously refer to the same memory location. In

languages without pointers, such as Fortran, aliasing occurs most frequently due to the binding

of formal parameters upon subroutine entry. Alias analysis for such languages is well under-

stood [51], [52]. However, languages which allow pointers (e.g., C) severely complicate depen-

dence analysis. Numerous interprocedural analysis techniques have been proposed to resolve

pointer aliasing [53], [54], [55]. These techniques can provide good pointer disambiguation,

but may be limited in application due to their compilation time and memory requirements.

Dependence analysis for C will be discussed further in Chapter 6.

A third complication of dependence analysis is the presence of recursive data structures.

As discussed earlier, it may be di�cult to disambiguate between di�erent elements of a linked

list unless the analysis can prove the list is not circular. Much of the research in this area has

been focused on automatically identifying the nature of abstract data structures (i.e., is the

structure cyclic, a directed acyclic graph, or a tree) [56], [57]. Hendren has proposed augmenting

the source language to allow the user to describe data structures, providing the compiler with

additional information for disambiguating these structures [58]. Hummel et al. have proposed

an axiom-based dependence test for references to recursive data structures, using the principles

of theorem proving [59].

Much progress has been made toward overcoming these complications. However, little work

has been done to apply this type of source-level analysis to aid low-level optimization and
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scheduling. In Chapter 5, a technique to propagate the results of a source-level analysis down

to the low-level code is proposed.
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CHAPTER 4

DYNAMIC MEMORY DISAMBIGUATION USING THE

MEMORY CONFLICT BUFFER

Dynamic memory disambiguation may be a good choice for resolving dependences for many

applications, including those requiring rapid compilation and those for which static analysis is

otherwise not practical. However, the solutions examined in Section 3.2 have limited application

to ILP compilation. These solutions either su�er from prohibitive code growth when applied

during ILP compilation, or fail to expose su�cient ILP because they do not allow a load's

dependent operations to bypass stores. Testing performed as part of this thesis indicates that

scheduling without allowing the load's dependent operations to percolate past stores provides

only about 20% of the potential performance bene�t as compared to allowing both the load

and its dependent operations to bypass stores.

The memory con
ict bu�er (MCB) scheme, �rst proposed in Chen's thesis [1], provides

a good solution to both of these problems. Code growth is bounded, and full scheduling

freedom is allowed. The MCB approach extends the idea of run-time memory disambiguation

by introducing a set of hardware features to eliminate the need for explicit address comparison

instructions. The MCB approach involves the introduction of two new instructions: 1) preload,

which performs a normal load operation, but signals the hardware that a possible dependence

violation exists for this load; and 2) check, which directs the hardware to determine if a violation

has occurred and to branch to con
ict correction code if required. Figure 4.1 demonstrates

the MCB approach using the code example from Chapter 3. In the original code prior to
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Correction: R4 = M(R5+R8)

R6 = R4 + 1

Jmp Back

R1 = R2 * R3

R6 = R4 + 1

R4 = M(R5+R8)   (preload)

R6 = R4 + 1

R4 = M(R5+R8)

M(R3+R7) = R1

M(R9+R10) = R11

R1 = R2 * R3

a)  Original Code b)  MCB Code

M(R3+R7) = R1

Check R4, Correction
Back:

M(R9+R10) = R11

Figure 4.1 Memory Con
ict Bu�er Example.

scheduling (Figure 4.1(a)), the load operation (R4 = M(R5 +R8)) and its register dependent

operation (R6 = R4 + 1) follow two ambiguous stores. In Figure 4.1(b), both the load and

its dependent operation have bypassed these stores. Note the load has been changed to a

preload, and a check instruction has been inserted at the original location of the load. If

the hardware determines an address con
ict has occurred, the check instruction will branch

to correction code, which re-executes the load and any dependent instructions. In contrast

to run-time memory disambiguation, only one check operation is required regardless of the

number of store instructions bypassed by the preload. As a result, the MCB scheme allows

the compiler to perform aggressive code reordering with signi�cantly less code expansion and

execution overhead than other dynamic memory disambiguation techniques. The drawback of

the approach is that it requires a signi�cant ISA and hardware investment.
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4.1 Architectural Support

With the introduction of the preload and check opcodes, the compiler is free to move

load instructions and their dependent operations past ambiguous stores. The MCB hardware

supports such code reordering by 1) detecting the situation in which the ambiguous reference

pair each access the same location and 2) invoking a correction code sequence supplied by the

compiler to restore the correctness of program execution. The situation in which a preload

and an ambiguous store access the same location will be referred to as a con
ict between the

two instructions. When this occurs, the reordered load and any dependent instructions which

bypassed the store must be re-executed.

In order to detect con
icts as they occur, the MCB hardware records address information

for each preload instruction when it is issued. The addresses of subsequent store instructions

are then compared to this address information to determine whether a con
ict has occurred.

The hardware records the occurrence of the con
ict; when the corresponding check instruction

is encountered, the hardware performs a conditional branch to correction code if a con
ict

has been recorded. The correction code re-executes necessary instructions and then returns to

normal program execution. In this section, the MCB hardware to detect and record load-store

con
icts is presented and other issues a�ecting the hardware are discussed.

4.1.1 MCB design

The MCB hardware is responsible for storing preload address information for comparison

to subsequent store addresses. In his thesis, Chen [1] discusses three possible hardware designs

for the MCB: 1) fully associative, 2) set associative, and 3) hashing. Perhaps the most direct

approach of the three is to store all address bits in some form of fully associative structure.
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However, a fully associative search of any reasonably-sized MCB implementation would likely

impose constraints upon processor pipeline timing. Additionally, the hardware costs to record

32 or more bits of address information for each preload would be expensive. Chen's fully

associative design required one MCB entry corresponding to each architectural register. Thus,

the design does scale well as the number of architectural registers increases. As an alternative,

Chen proposed a set associative MCB design, similar in concept to a set associative cache. The

preload address is used to select a set in the MCB array, and both the preload address and

the destination register number are then stored in an available entry. Although this approach

eliminates the requirement for a fully associative search of the MCB, it still su�ers from large

storage requirements. Also, neither the fully associative nor the set associative design addresses

the access width problem, which occurs when accesses of di�erent sizes con
ict even though

their addresses are not identical. Thus, Chen proposed the hashing MCB design, which uses

a direct-mapped approach. Unlike the other two approaches, the load address is not explicitly

stored within the MCB array. Only the destination register number is stored. The size of the

MCB is signi�cantly smaller, but false con
icts arise when two di�erent addresses map to the

same MCB location. To minimize these false con
icts, a hashing scheme is used to map the

incoming preload or store address to a particular MCB array location. The hashing scheme

was primarily developed to address the access width problem; this will be explored further in

Section 4.1.3. Only the fully associative and hashing schemes were evaluated in Chen's thesis.

This thesis proposes an MCB hardware design which combines the best features of Chen's

set associative and hashing schemes. This design, shown in Figure 4.2, was developed with

scalability, access time, and physical size constraints in mind. The MCB hardware consists of
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Figure 4.2 Set Associative MCB Design.

two primary structures, corresponding to the needs to store address information and to record

con
icts which occur: 1) the preload array; and 2) the con
ict vector.

The preload array is a set associative structure similar in design to a cache. Each entry in

the preload array contains four �elds: 1) the preload destination register number; 2) the preload

access width; 3) an address signature or tag; and 4) a valid bit indicating whether the entry

currently contains valid data. The preload register �eld simply contains the register number

of the preload destination. The address signature contains bits which contain a hashed version

of the preload address. Rather than storing the entire address as in Chen's set associative

scheme, only a few bits are stored to reduce false con
icts. The access width �eld contains two

bits to indicate whether the preload was of type character, half-word, word, or double word;

additionally, this �eld contains the three least signi�cant bits of the preload address. The use

of the access width �eld will be discussed in Section 4.1.3.

The con
ict vector is equal in length to the number of physical registers, with one entry

corresponding to each register. Each entry contains two �elds: the con
ict bit and the preload
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pointer. The con
ict bit is used to record that a con
ict has occurred for a preload to this

register. The preload pointer speci�es which preload array line currently holds the preload

associated with this register and allows the preload entries to be invalidated by the check

instruction.

When a preload instruction is executed, the address of the preload is hashed to select which

set in the preload array will store the preload. (The hardware to perform this hashing, as

well as address signature generation, is detailed in the next section.) The preload array is set

associative; selecting an entry in which to store the preload information is identical to selecting

an entry in a set associative cache. If there is an entry within the set which does not have its

valid bit set, the preload information can be placed in this entry. When no invalid entry exists,

a random replacement algorithm is used to select which entry to replace. If a valid entry is

replaced, a load-load con
ict has occurred; in this situation safe disambiguation can no longer be

provided for the preload which is being removed from the array. It must therefore be assumed

a con
ict has occurred for this entry and the con
ict bit corresponding to the register number

being removed must be set. Note that for processors which support the execution of multiple

preload instructions per cycle, the preload array must be multiported to allow simultaneous

insertion of multiple preloads.

Having determined which entry in the preload array will be used for the current preload

instruction, the destination register number and access width information are stored in the

array. A second, independent hash of the preload address is performed to create the preload's

address signature, which is stored in the signature �eld of the array. Unlike the tag �eld of a

cache which must provide exact matching, this signature �eld can be hashed to reduce its size;

the MCB can tolerate the occasional false con
icts which result from hashing. Simultaneously
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with storing the preload in the preload array, the con
ict vector associated with the load's

destination register is updated, resetting the con
ict bit and establishing the pointer back to

the preload array.

When a store instruction is executed, its address is hashed identically to the preload to

determine the corresponding set in the preload array and to determine the store's address

signature. The store's access width data (2 size bits and 3 LSBs) are also presented to the

array. To determine whether a con
ict has occurred, the store's signature and access width

information are compared with the data stored within each entry of the selected set. For each

entry in the set which is determined to con
ict with the store, the con
ict bit corresponding

to the preload register is set; this requires that the con
ict array be multiported to a degree

equivalent to the associativity of the preload array. Two types of con
icts can arise when a store

instruction is executed. If the load address and store address were identical or overlap, a true

con
ict has occurred. However, if the two addresses were di�erent, and the con
ict resulted

from the hashing scheme used, this is termed a false load-store con
ict.

Thus, bits within the con
ict vector can be set in one of three ways: 1) a true con
ict;

2) a false load-store con
ict resulting from the hashing scheme; or 3) a false load-load con
ict

resulting from exceeding the set associativity of the preload array. Regardless of the source

of the con
ict, the hardware must assume it is valid and execute correction code to ensure

program correctness. This is accomplished using the check instruction. The format for the

check instruction is check Reg, Label , where Reg is a general purpose register, and Label speci�es

the starting address of the correction code supplied by the compiler. When a check instruction

is executed, the con
ict bit corresponding to Reg is examined. If the con
ict bit is set, the

processor performs a branch to the correction code marked by Label. The correction code
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provides for re-execution of the preload and its dependent instructions. A branch instruction

at the end of the correction code brings the execution back to the instruction immediately after

the check, and normal execution resumes from this point.

The con
ict bits are reset in two ways. First, a check instruction resets the con
ict bit for

register Reg as a side e�ect. Second, any preload that deposits a value into a general purpose

register also resets the corresponding con
ict bit. The valid bits within the preload array

are reset upon execution of the corresponding check instruction, using the pointer within the

con
ict vector. Note that in the event the 
ow of control causes the check instruction not to be

executed, the preload valid bits will remain set. However, this causes no performance impact

because another preload of the destination register must occur before another check instruction

can occur, resetting any spurious con
ict.

Note that only preloads, stores, and checks have to access the address registers and the

con
ict vector. Accesses to the preload array are performed using the virtual address to avoid

address translation delay. For store instructions, these accesses can be performed as soon

as the store address is calculated; it is not necessary to wait until the store data have been

computed. For load instructions, MCB accesses are performed in parallel with the data cache

access. Because the MCB is very similar to a cache in design and smaller than most caches, it

is unlikely that the MCB will a�ect the processor pipeline timing. However, further study of

MCB timing is required within the context of a speci�c pipeline architecture.

4.1.2 MCB address hashing

Incoming preload and store addresses are used to select a corresponding set in the preload

array. The most direct method to select one of n MCB lines is to simply decode log2n bits of
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the address. However, testing revealed that this approach resulted in a higher rate of load-load

con
icts than a baseline software hashing approach, most likely due to strided array access

patterns causing additional con
icts. As a result, the MCB employs the permutation-based

hardware hashing scheme proposed by Chen [1].

Mathematically, the hardware hashing approach can be represented as a binary matrix mul-

tiplication problem, where matrixA is a non-singular matrix and hash address = load address�

A. For example, consider the following 4x4 A matrix, used to hash 4-bit addresses:

1001

0010

1110

0101

To mathematically compute the hash address for incoming address 1011, the address is simply

multiplied by the matrix, obtaining hash address 0010. If matrix A is non-singular, an e�ective

hash of the incoming address is assured [60]. When mapping this scheme to hardware, each

bit in the hash address is simply computed by XORing several of the incoming address bits,

corresponding to the 1's in each column of the matrix. Thus h3, the most signi�cant bit of the

hash address, is the XOR of a3 and a1 of the incoming address; h2 is the XOR of a1 and a0,

etc. This simple hardware scheme provides excellent hashing with only a small cost in time and

hardware.

This same hashing approach is used to generate the address signature for incoming preload

and store instructions. The signature is hashed in order to reduce the size of the MCB and

to speed signature comparison. The signature is stored in the MCB for each preload, and is

compared to the signature for incoming store instructions to determine if a con
ict has occurred.
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4.1.3 Handling variable access sizes

Many instruction set architectures allow memory references to have byte addressability and

variable access sizes. Thus, there arises the possibility that two memory references could access

slightly di�erent addresses, yet actually con
ict. For example, the references:

load_char R1, 0x40000001

store_int 0x40000000, R1

represent a true load-store con
ict. Although con
icts such as this are rare, they can occur

in real code. An example where this might occur is the union construct in C. To provide

correctness, any code reordering scheme based upon memory disambiguation must account for

the possibility of con
icts by memory operations with di�erent access widths. One solution to

this problem is to legislate it away; hardware designers can simply declare that accessing the

same location with di�erent width instructions is a poor programming practice and decide their

hardware will not support it. A more general solution would require that any disambiguation

technique provide adequate checks to ensure program correctness in the presence of variable

width accesses.

The hashingMCB design proposed by Chen addressed the access width problem by removing

the two least signi�cant bits (LSBs) from the address hash and allowing four register numbers to

be stored in each location in MCB array. The four register locations in each entry correspond

to the di�erent values of the two LSBs. Figure 4.3 shows how this concept is used to solve

the access width problem. In Figure 4.3(a), an incoming byte load deposits its destination

register, R1, in the appropriate slot in the MCB based upon its size and the LSB values of

its address. When the subsequent word-size store, shown in Figure 4.3(b), occurs, the store
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ld_char  R1, 0x40000001

st_int  R2, 0x40000000

R1

R2R2 R2 R2/R1

11          10         01         00

11          10         01         00

(b)

(a)

Figure 4.3 Hashing MCB Array Entry.

essentially con
icts with any register in any of the four locations, and the con
ict bit associated

with R1 must be set.

For the set associative design proposed in this thesis, the MCB does not use the three LSBs

of preload and store instructions when hashing to select the preload array line corresponding

to the memory reference. Instead, these three bits, as well as two bits indicating the access

size, are stored within the array for preload instructions. When a store occurs, its �ve bits are

evaluated with the �ve bits stored for the preload to determine whether a con
ict has truly

occurred. A simple design for determining con
icts for these two �ve-bit vectors requires only

seven gates and two levels of logic, assuming the architecture enforces aligned memory accesses.

Thus, the proposed design provides accurate disambiguation for variable access sizes with a

straightforward and less costly approach than Chen's hashing MCB design.

4.1.4 Handling context switches

Whenever a general purpose register must be saved to memory due to context switches,

neither the MCB con
ict vector nor the preload array must be saved. The only requirement is
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for the hardware to set all the con
ict bits when the register contents are restored from memory.

This simple scheme causes performance penalty only when the context switch occurs after a

preload instruction has been executed but prior to the corresponding check instruction. Setting

all con
ict bits ensures all con
icts that were interrupted by the context switch are honored, but

may cause some unnecessary invocations of correction code. The scheme also handles virtual

address aliasing across multiple contexts.

4.1.5 Speculative execution

Executing an instruction before knowing that its execution will be e�ective is termed spec-

ulative execution. If an instruction is moved above preceding conditional branches prior to

resolving their direction, control speculation has been performed. The MCB approach applies

data speculation, in which instructions are executed before knowing whether the data are valid.

In particular, a preload and its dependent instructions are executed before knowing if the value

loaded by the preload is valid. The execution of these speculative instructions must be corrected

if a con
ict occurs.

There are two aspects of correcting the execution of speculative instructions. First, the

values generated by these instructions must be corrected. The compiler algorithm described in

Section 4.2 is responsible for ensuring these values are corrected. Second, the program state

must be correctly maintained in the event an exception occurs. Because the value preloaded

into the register may not be correct, there is a chance that a 
ow dependent instruction that

uses the preload result may cause an exception which otherwise would not have occurred. In

the example in Figure 4.4, taken from [1], if R1 equals R2, the value 7 is loaded into R3 in

the original code segment. However, the value 0 may be preloaded into R3, in which case the
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R3 = M (R2)

R4 = R4 / R3

Check R3, Correction

b)  MCB Code

M (R1) = 7

R3 = M (R2)

R4 = R4 / R3

a)  Original Code

M (R1) = 7

Figure 4.4 Speculative Execution of Excepting Instructions.

divide instruction will cause an exception. Since the exception is due to an incorrect execution

sequence, it must be ignored.

One solution is to provide architectural support to suppress the exceptions for speculative

instructions [61]. A potential trap-causing instruction executed speculatively should be con-

verted into the non-trapping version of the instruction. Therefore, the exception caused by the

divide instruction in the example above would be ignored. However, the exception should be

reported if there is no con
ict between the preload and the store. Several schemes for precise

exception detection and recovery have been proposed [34], [35], [62].

4.1.6 Discussion of hardware requirements

Chen estimated the hardware requirements for a 2-way set associative MCB with 32 sets

in CMOS technology to be 60,100 transistors [1]. He also estimated the critical path through

the MCB to be 13 gate delays, for both preload and store instructions. The set associative

design employed for this thesis would have similar hardware requirements. However, because

this design stores only an address signature rather than the entire address, the main MCB

array size would be signi�cantly smaller (17 bits per MCB entry versus 35 bits with Chen's

design). Scaling Chen's estimates to account for the smaller MCB array, the proposed design

would require less than 40,000 transistors.

50



Because of the similarity of the MCB design to a cache, the MCB size can be estimated

in terms of number of cache bytes it is equivalent to. This comparison may be particularly

meaningful because the inclusion of MCB hardware into a design could potentially require a

corresponding reduction in the size of the on-chip cache. Using this comparison, the main

MCB array of a 64-entry MCB (8 sets of 8 entries each) requiring 17 bits per entry would have

approximately the same storage requirement as 128 bytes of cache. Although this comparison

does not take into account the overhead support logic for the MCB design, Chen's estimates

indicate that most of the MCB hardware cost is in the main array.

4.2 Compiler Support

To take full advantage of the MCB hardware support, the compiler must remove ambiguous

memory dependences, allowing store/load pairs to be reordered, and insert code to ensure cor-

rect execution in the event truly dependent instructions are reordered. The compiler must also

take into account the side e�ects of aggressive code reordering. For example, over-speculating

preload instructions can signi�cantly increase register pressure and could result in a loss of

performance due to spilling. In this section, the algorithms implemented in the IMPACT C

compiler for exploiting the MCB hardware support are discussed.

4.2.1 Basic MCB scheduling algorithm

To expose su�cient instruction-level parallelism to allow e�ective code scheduling, the com-

piler must be able to look beyond basic block boundaries. In the IMPACT compiler, basic blocks

are coalesced to form superblocks, which re
ect the most frequently executed paths through the
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code (see Section 2.3). The superblock is the basic structure for scheduling in the IMPACT

compiler.

The basic MCB scheduling algorithm involves the following steps for each frequently exe-

cuted superblock:

(1) Build the dependence graph.

(2) Add a check instruction immediately following each load instruction, inserting necessary
dependences.

(3) For each load, remove dependences to preceding stores.

(4) Schedule the superblock, removing any unnecessary check instructions.

(5) Insert required correction code.

The initial preparations for code scheduling, including building the dependence graph, are un-

changed by the MCB algorithm. After the dependence graph has been built, a check instruction

is added after each load instruction in the superblock. The destination register of the load be-

comes the source operand of the check, making the check instruction 
ow dependent upon the

load. Initially, the correction block of the check is not de�ned. During code scheduling, the

check instruction must maintain correct dependences; thus, it must be dependent upon the

load and also inherit some of the load's dependences. Because we want 
ow dependent instruc-

tions of the load to be able to bypass the check, the check inherits only memory and control

dependences from the load. Dependences to the previous and subsequent branch instructions

are also added to the check instruction to ensure it remains within the load's original basic

block. Figures 4.5(a) and 4.5(b) show unscheduled code from the earlier example (with two

instructions added to highlight dependences) and the code after the check instruction and its

dependences are inserted.
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M(R3+R7) = R1

Check R4, Correction

M(R9) = 0

R20 = R10 + 1

M(R9+R10) = R11

R6 = R4 + 1

R4 = M(R5+R8)   (preload)

R1 = R2 * R3

Correction: R4 = M(R5+R8)

R6 = R4 + 1

Jmp Tail_Dup

R20 = R10 + 1

M(R9) = 0Tail_Dup:

c)  Tail Duplication Code

R6 = R4 + 1

R4 = M(R5+R8)

M(R3+R7) = R1

R20 = R10 + 1

M(R9) = 0

R1 = R2 * R3

M(R9+R10) = R11 M(R3+R7) = R1

R4 = M(R5+R8)

R6 = R4 + 1

R20 = R10 + 1

M(R9) = 0

Check R4, -

R1 = R2 * R3

M(R9+R10) = R11

b)  Dependences to Check

Correction: R4 = M(R5+R8)

R6 = R4 + 1

Jmp Back

Back:

M(R3+R7) = R1

Check R4, Correction

M(R9) = 0

R20 = R10 + 1

R6 = R4 + 1

M(R9+R10) = R11

R4 = M(R5+R8)   (preload)

R1 = R2 * R3

d)  Tail Duplication Deleted

a)  Original Code

Figure 4.5 MCB Code Compilation.
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The next step in MCB scheduling is to remove ambiguous store/load dependences. For each

load, the algorithm searches upward, removing any dependence arcs to store instructions not

determined to have a de�nite dependence. Associated with each load, the algorithm maintains

a list of store instructions whose dependence has been removed. The algorithm currently only

removes dependences to stores which precede the load, i.e., only removes 
ow dependences.

Although nothing prevents dependences to subsequent stores (anti-dependences) from being

removed, experience has shown there is little or no bene�t from removing these dependences.

To limit over-speculation of loads, the algorithm limits the number of store/load dependences

which can be removed for each load. If too many dependence arcs are removed, a greedy

scheduling algorithm is likely to move the load far ahead of its initial position, needlessly

increasing register pressure and the probability of false con
icts in the MCB. Additionally, the

algorithm ensures dependences are formed between the load instruction and any subroutine call

in the superblock, preventing loads from bypassing subroutine calls. Thus, no MCB information

is valid across subroutine calls.

Next, the superblock is scheduled. Each time a load instruction is scheduled, the list of stores

associated with the load is examined. If all stores on the list have already been scheduled, the

load did not bypass any stores during scheduling, and the associated check instruction can be

deleted. The 
ow dependence between the load and the check ensures the check cannot be

scheduled prior to the load; thus deletion of the check (and removal of its dependences) does

not impact instructions already scheduled. If it is determined the load has bypassed a store

during scheduling, the load is converted to its preload form. In our current implementation, one

check instruction is required for each preload instruction. However, multiple check instructions

could potentially be coalesced to reduce the execution overhead and code expansion incurred by
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the potentially large number of checks. Because the check is a single-operand instruction, extra

bits should be available to accommodate a mask �eld to specify a set of registers which are to

be checked by this instruction. For example, if a register bank with 64 registers is partitioned

into eight sets of eight registers each, the check instruction would use three bits to specify which

bank was being checked and eight bits to specify the register mask. The coalesced check would

branch to correction code, which would have to provide correct execution regardless of which

preload instruction experienced a con
ict. Further research is required to assess the usefulness

of coalescing check instructions.

4.2.2 Inserting correction code

The compiler provides correction code for each preload instruction. When a check instruc-

tion determines that a con
ict has occurred, it branches to the correction code. The correction

code re-executes the preload instruction and all dependent instructions up to the point of the

check. (In the infrequent case that the load has bypassed a single store, the correction code

can replace the re-execution of the preload with a simple move from the store's source register.

In fact, the move itself may become unnecessary via forward copy propagation.) The original

load instruction will not be a preload within correction code (because its check has already

occurred), but any dependent instructions which are preloads must be re-executed as preloads.

During insertion of correction code, the compiler must check for any anti-dependences which

would overwrite source operands, such that these operands would not be available for execu-

tion within the correction code. If anti-dependences are detected, they are removed by virtual

register renaming.
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Because scheduling is performed on superblocks that do not allow side entrances, the cor-

rection code cannot jump back into the superblock after re-executing the required instructions.

Instead, the correction code jumps to tail duplication code, which is simply a duplicate copy

of all superblock instructions subsequent to the check instruction. This tail duplication code

(Figure 4.5(c)) ensures all dependences and register live ranges are calculated correctly during

register allocation and post-pass scheduling. Following post-pass scheduling, however, the su-

perblock structure is no longer necessary to the compiler and the code can be restructured to

allow jumps back into the superblock. At this point, all jumps within the correction code are

redirected to jump back into the superblock immediately following the check instruction, and

all tail duplication code can be deleted. Thus, the tail duplication code is only a temporary tool

used by the compiler to maintain correct dependences and live ranges during register allocation

and post-pass scheduling, and is removed prior to �nal code generation (Figure 4.5(d)).

4.3 Experimental Evaluation

To evaluate the MCB approach, experiments were conducted on a set of twenty-nine bench-

mark programs, including nine common Unix utility programs, six programs from SPEC-

CINT92, and fourteen programs from SPEC-CFP92. Experimental results were obtained using

the detailed emulation-driven simulation described in Section 2.4.

Table 4.1 outlines the architecture modeled for these experiments (the target architecture)

and Table 4.2 shows the instruction latencies used. The instruction latencies used were those

of the HP PA-RISCTM 7100. The IMPACT simulator models in detail the architecture's

prefetch and issue unit, instruction and data caches, branch target bu�er (BTB), and hardware

interlocks. This allows the simulator to accurately measure the number of cycles required to
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Table 4.1 Simulated Architecture.

Architectural Features

8-issue in-order execution superscalar processor
Extended version of HP PA-RISC instruction set

- Extensions for MCB
- Silent versions of all trapping instructions

64 integer, 64 
oating-point registers
Dcache: 64k, direct mapped, non-blocking, 64 byte blocks,

8 cycle miss penalty, write-thru, no write allocate
Icache: 64k, direct mapped, non-blocking, 64 byte blocks,

8 cycle miss penalty
BTB: 1k entries, direct mapped, 2-bit counter,

2 cycle misprediction penalty
MCB support

Table 4.2 Instruction Latencies.

Function Lat Function Lat

Int ALU 1 FP ALU 2
(pre)load 2 FP multiply 2
store 1 FP div(SGL) 8
branch (check) 1 FP div(DBL) 15

execute a program, as well as to provide detailed analysis such as cache hit rates, BTB prediction

accuracy, and total MCB true/false con
icts.

4.3.1 MCB emulation

To create an executable �le to drive the simulation, the functionality of the MCB must

be emulated to allow the code to execute on the host architecture, an HP PA-RISC 7100

workstation. Following code scheduling, the code contains preload and check instructions,

which are not executable by the host architecture. Thus, the code must be transformed to

accurately emulate the MCB code. To accomplish this, the MCB code is modi�ed with explicit
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address comparisons similar to that for Nicolau's run-time memory disambiguation. Figure 4.6

illustrates the code changes required to emulate the MCB. Figure 4.6(a) shows the target

architecture code which would be simulated, and Figure 4.6(b) shows the code after emulation

code has been added. In the emulation code, register R30 holds the address of the preload,

and R40 and R50 hold the addresses of the stores. Registers R45 and R55 are set by explicit

comparisons of the load address to the two store addresses. Because the preload instruction has

bypassed numerous store instructions, R35 is used to record whether any of the stores caused a

con
ict. Thus, R35 is initially zeroed and is subsequently ORed with the results of the address

comparisons. The check instruction is emulated with a conditional branch instruction, whose

direction is based upon the value of R35.

Correction: R4 = M(R5+R8)

R6 = R4 + 1

Jmp Back

Correction: R4 = M(R5+R8)

R6 = R4 + 1

Jmp Back

R6 = R4 + 1

R4 = M(R5+R8) 

R1 = R2 * R3

R35 = 0

R30 = R5 + R8

b) Emulation Code

Back:

Beq  (R35, 1), Correction

M(R3+R7) = R1

R40 = R9 + R10

M(R9+R10) = R11

R45 = (R30 eq R40)

R35 = R35 or R45

R50 = R3 + R7

R55 = (R30 eq R50)

R35 = R35 or R55

M(R3+R7) = R1

Check R4, Correction
Back:

a) Target Architecture Code

R6 = R4 + 1

R4 = M(R5+R8)   (preload)
R1 = R2 * R3

M(R9+R10) = R11

Figure 4.6 MCB Emulation Code.

58



Note the code growth required in this trivial example to correctly emulate the MCB scheme.

In real benchmark code where numerous loads have bypassed numerous stores, overall code

growth of 1000% was not uncommon. This clearly indicates the problems that schemes such as

run-time disambiguation will have in the presence of aggressive code scheduling and optimiza-

tion.

4.3.2 MCB size and associativity

The �rst MCB experiment was to measure MCB performance for various size MCB preload

arrays. For this experiment, set associativity and signature �eld size were held constant (8-way

set associativity and �ve signature bits) while the MCB size was varied from 16 to 128 entries,

i.e., 2 to 16 sets. Additionally, performance for the perfect MCB case (i.e., false con
icts never

occur) was measured to show asymptotic performance. Figure 4.7 shows the results from the

six benchmarks evaluated. These six benchmarks were selected for this experiment because

ambiguous memory dependences were shown to be major performance impediments for them

in Figure 3.1. Speedup is shown for the MCB 8-issue architecture, relative to a baseline 8-

issue architecture with no MCB. For several benchmarks, an MCB size of 32 or 64 entries was

su�cient to approach perfect performance. The performance for 056.ear dropped signi�cantly

for sizes below 64 entries, and the performance for 052.alvinn and cmp did not reach asymptotic

performance even for a size 128 MCB. This was the result of excessive load-load con
icts caused

by multiple variables hashing to the same MCB location.

The results of MCB associativity testing are somewhat compiler-speci�c and are not shown.

For most benchmarks, 8-way set associativity is required to achieve best MCB performance.

Two factors heavily in
uence this need: 1) the IMPACT compiler often unrolls loops up to 8
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Figure 4.7 MCB Size Evaluation. Speedup of an 8-issue architecture for various size MCBs
vs. an 8-issue architecture without MCB (8-way set associative, 5 signature bits).

times; and 2) because the 3 LSBs of the load address are not used during hashing, up to 8

sequential single-byte loads will hash to the same MCB location. Thus, 8-way set associativity

is necessary to reduce the number of false load-load con
icts. Even at this associativity, the

performance of cmp was impacted as a result of load-load con
icts caused by sequential loads

and by independent variables hashing to the same location.

4.3.3 Signature �eld size

To reduce the number of false load-store con
icts, the MCB contains a hashed signature

�eld. The required width of this signature �eld was evaluated, holding MCB size constant at

64 entries, 8-way set associative. Performance was measured for �eld sizes of 0, 3, 5, and 7

bits, and performance for a full 32-bit signature is shown for comparison. MCB 8-issue speedup

is again shown relative to the baseline architecture. Figure 4.8 shows the results; a signature

size of 5 bits approached asymptotic performance of the full signature for all benchmarks. The
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Figure 4.8 MCB Signature Size. Speedup of an 8-issue architecture with various size address
signature �elds vs. an 8-issue architecture without MCB (8-way set associative, 5 signature
bits).

performance for several benchmarks su�ered for signature sizes below 5 bits as a result of false

load-store con
icts.

4.3.4 MCB performance

In the previous two sections, MCB parameters were varied to determine the best physical

con�guration. Experiments in this section are measured using a 64 entry, 8-way set associative

MCB with 5 signature bits. Results are shown for the suite of 29 integer and 
oating-point

benchmarks.

Integer performance

Figures 4.9 and 4.10 show results for the integer benchmarks. These �gures re
ect the

performance for an 8-issue architecture without MCB (using the existing IMPACT low-level

static disambiguation) and for an 8-issue MCB architecture, both relative to a baseline single-
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Figure 4.9 Unix MCB 8-Issue Results. Speedup of code compiled with and without MCB
over a baseline single-issue architecture.

issue architecture. Figures 4.11 and 4.12 show the performance of the 8-issue MCB architecture

relative to the 8-issue architecture without MCB. The MCB architecture showed good ILP for

most benchmarks; note that although an 8-issue architecture is being modeled, only 4 integer

ALUs are available per cycle. Speedups of more than 2.5 times over the single-issue processor

are achieved for 8 of 9 Unix benchmarks and 4 of 6 SPEC-CINT92 benchmarks.

In comparison to the 8-issue architecture without MCB, the MCB architecture provides

modest speedup for many of the benchmarks. Note that not all benchmarks are limited in

performance by memory dependences, and thus not all bene�t from improved memory disam-

biguation. However, there is a direct correspondence between the benchmarks improved by

MCB and those from Figure 3.1; MCB achieved speedup for all benchmarks for which mem-

ory disambiguation was a signi�cant impediment to ILP. The benchmark cmp achieved the

most signi�cant speedup. This is the result of being able to overlap iterations of the unrolled

inner loop because of the dependences removed by the MCB approach. Benchmarks such as
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Figure 4.10 SPEC-CINT92 MCB 8-Issue Results. Speedup of code compiled with and with-
out MCB over a baseline single-issue architecture.

tbl, 022.li, 026.eqntott, and 072.sc essentially achieved no speedup because the important in-

ner loops contain no store operations. Other benchmarks, such as cccp and lex, achieved no

speedup over the baseline architecture because the existing low-level memory disambiguation

already provided good disambiguation. Note that cccp and lex showed good ILP in Figure 4.9

even for the non-MCB architecture. For several other benchmarks, including 026.compress and

008.espresso, MCB performance gains were somewhat masked by cache e�ects. MCB code

su�ers slightly more from cache e�ects because it experiences a greater overall number of cache

misses. This increase in cache misses results because MCB's greater scheduling freedom allows

more speculative execution of loads above branches; load misses from these speculative loads

would not be experienced in less aggressively scheduled code.
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Figure 4.11 Unix MCB 8-Issue Results. Speedup of code compiled with MCB over an 8-issue
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Figure 4.12 SPEC-CINT92 MCB 8-Issue Results. Speedup of code compiled with MCB over
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Floating-point performance

Figures 4.13 and 4.14 show results for the 
oating-point benchmarks. Figure 4.13 shows

the performance of 8-issue architectures with and without MCB compared to a single-issue

architecture. Figure 4.14 presents the speedup of the 8-issue MCB architecture over the 8-issue

architecture without MCB. There are several interesting points to note about these 
oating-

point results. First, the performance of the 8-issue architecture without MCB is in general poor.

This result is not surprising since 
oating-point benchmarks are usually dominated by array

accesses that are relatively di�cult to disambiguate using only information available within

the low-level code (i.e., without interprocedural analysis or source-level information). Second,

note that the performance with MCB is signi�cantly improved compared to that for the 8-issue

without MCB. The results indicate that memory disambiguation is a more severe impediment

to ILP for 
oating-point code, which tends to have larger basic blocks and highly predictable

branches. For most benchmarks, the MCB technique provides signi�cant speedup. Exceptions

are 015.doduc and 089.su2cor. The heavily executed blocks of 015.doduc are not signi�cantly

hindered by ambiguous memory dependences; either they do not contain store operations or

the existing stores do not signi�cantly limit ILP. The performance of 089.su2cor was severely

degraded due to false load-load con
icts.

A third item to note is that the overall ILP achieved for the MCB architecture is relatively

low, exceeding 2.5 times speedup over that for the single-issue architecture for only 4 of the 14

benchmarks. This is less speedup than was achieved for the integer benchmarks, even though

the 
oating point benchmarks would be expected to be more amenable to ILP transformations

due to their larger basic blocks and predictable branches. The con
ict statistics presented in the

next section demonstrate that this poor speedup is the result of excessive con
icts experienced
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Figure 4.13 SPEC-CFP92 MCB 8-Issue Results. Speedup of code compiled with and without
MCB over a baseline single-issue architecture.

Benchmark

S
p
e
e
d
u
p

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0
1
3
.s

p
ic

e
2
g

0
1
5
.d

o
d
u
c

0
3
4
.m

d
ljd

p
2

0
3
9
.w

a
ve

5

0
4
7
.t
o
m

ca
tv

0
4
8
.o

ra

0
5
2
.a

lv
in

n

0
5
6
.e

a
r

0
7
7
.m

d
ljs

p
2

0
7
8
.s

w
m

2
5
6

0
8
9
.s

u
2
co

r

0
9
0
.h

yd
ro

2
d

0
9
3
.n

a
sa

7

0
9
4
.f
p
p
p
p

Figure 4.14 SPEC-CFP92 MCB 8-Issue Results. Speedup of code compiled with MCB over
an 8-issue architecture without MCB.
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by the MCB. (A later section will address reducing these con
icts.) A �nal item to note is

the large slowdown experienced by 094.fpppp using MCB. This is also the result of con
icts

experienced by the MCB code.

MCB statistics

Table 4.3 shows the con
ict statistics for the 8-issue MCB architecture, using the MCB

con�guration from the previous section. The second column shows the total dynamic check

instructions executed, followed by the number of true con
icts, false load-load con
icts, and

false load-store con
icts. The �nal column shows the percentage of dynamic check instructions

which branched to correction code. For most integer benchmarks, the percentage of time the

correction code is executed is very low; the exceptions were cmp yacc, 008.espresso, and 085.cc1.

With the exception of cmp, performance degradation due to the execution of correction code was

only about 2%-3% for these benchmarks, compared to a perfect MCB without false con
icts.

Note that for all benchmarks except 008.espresso and 085.cc1, false con
icts were the primary

cause of taken checks. These false con
icts were primarily false load-load con
icts. False load-

store con
icts posed no signi�cant problem for the integer benchmarks, indicating that the 5-bit

signature �eld used was successful at limiting these con
icts.

The con
ict statistics for 
oating-point benchmarks were signi�cantly worse, with several of

the benchmarks experiencing over 10% taken check instructions. This high level of taken checks

corresponds to signi�cant performance degradation. For many of the benchmarks (013.spice2g6,

015.doduc, 034.mdljdp2, 039.wave5, 077.mdljsp2, and 093.nasa7) true con
icts were a primary

factor in the high number of taken checks. This points to the need for better static disambigua-

tion to detect store/load pairs which are likely to con
ict, so the compiler can avoid reordering
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Table 4.3 MCB Con
ict Statistics (8-issue architecture, 64 entries, 8-way set associative, 5
signature bits).

False False %
Total True Ld-Ld Ld-St Checks

Benchmark Checks Confs Confs Confs Taken

cccp 23.5K 0 0 42 0.18
cmp 1087K 0 55.1K 605 5.12
eqn 793K 0 0 667 0.08
grep 96.3K 0 0 395 0.41
lex 47.3K 0 0 16 0.03
qsort 785K 0 0 1586 0.20
tbl 7203 0 0 9 0.12
wc 306K 0 0 406 0.13
yacc 211K 56 15.8K 403 7.52

008.espresso 324K 5262 8779 735 4.56
022.li 224K 0 0 422 0.19

023.eqntott 32.1K 0 7 33 0.12
026.compress 160K 0 0 817 0.51

072.sc 216K 0 0 364 0.17
085.cc1 705K 24.4K 14.9K 4182 6.16

013.spice2g6 4312K 128K 187 24.3K 3.53
015.doduc 336K 8166 1182 10693 5.96
034.mdljdp2 3230K 74.6K 3218 43.6K 3.76
039.wave5 6178K 212K 167K 43.0K 6.14
047.tomcatv 639K 0 0 24.7K 3.87
048.ora 3534K 0 0 133K 3.76

052.alvinn 10.8M 0 178K 44.0K 2.05
056.ear 23.1M 0 119.8K 74.6K 0.84

077.mdljsp2 3080K 73.5K 5367 31.1K 3.57
078.swm256 39.8M 0 6210K 497K 16.85
089.su2cor 13.2M 0 2086K 187K 17.22
090.hydro2d 9334K 0 727K 209K 10.03
093.nasa7 21.3M 1130K 717K 629K 11.63
094.fpppp 4516K 1104 726K 18.5K 16.51
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them. Both load-load and load-store false con
icts also contributed signi�cantly to the high

number of total con
icts. This high number of false con
icts indicates the size of the MCB

preload array may have to be reconsidered for 
oating-point benchmarks; this will be explored

further in the next section.

Table 4.4 shows the e�ect of the MCB compiler techniques on the static and dynamic code

size, again using an 8-issue architecture with a 64-entry, 8-way set associative, 5 signature-bit

con�guration. The addition of MCB code increased the static code size an average of 8.6%

across the integer benchmarks. The integer benchmarks that showed the worst static code

expansion were the very small benchmarks (cmp and wc), in which the addition of a small

number of check instructions and correction code to the most-frequently executed blocks made

a signi�cant change in the static code size. For the 
oating-point benchmarks, average static

code growth was 12.7%. This indicates the MCB transformation was applied more frequently

to the 
oating-point benchmarks than to the integer benchmarks, due to larger superblocks and

the greater percentage of loads in 
oating-point code (integer code typically has more scalar

variables which reside in register and do not require load instructions).

Note that the MCB code transformations resulted in a signi�cant increase in the dynamic

number of instructions executed for most benchmarks, particularly the 
oating-point bench-

marks. This increase in dynamic instructions is primarily the result of greater speculation

freedom a�orded by the improved memory disambiguation and by the additional code which

must be executed when con
icts occur. However, the greater scheduling freedom allowed by

MCB was in general able to pack this increased number of instructions into a tighter schedule

and achieve speedup for many of the benchmarks.
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Table 4.4 MCB Static and Dynamic Code Size (8-issue architecture, 64 entries, 8-way set
associative, 5 signature bits).

% Static % Dynamic
Instruction Instruction

Benchmark Increase Increase

cccp 0.7 0.0
cmp 47.2 40.5
eqn 2.2 5.7
grep 4.3 9.9
lex 0.7 0.4
qsort 14.7 13.3
tbl 0.3 0.2
wc 23.5 21.5
yacc 5.3 2.3

008.espresso 3.8 8.3
022.li 1.3 3.6

023.eqntott 8.6 0.2
026.compress 13.1 11.3

072.sc 1.5 1.4
085.cc1 1.8 7.4

013.spice2g6 3.0 3.7
015.doduc 6.9 1.6
034.mdljdp2 11.1 20.1
039.wave5 10.4 21.5
047.tomcatv 5.8 8.5
048.ora 3.9 16.7

052.alvinn 22.0 30.5
056.ear 11.4 16.5

077.mdljsp2 9.5 18.8
078.swm256 21.2 35.9
089.su2cor 15.5 31.8
090.hydro2d 12.2 21.4
093.nasa7 22.3 34.6
094.fpppp 22.0 9.7
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4.3.5 Reducing MCB con
icts

In the previous section, con
ict statistics indicate the set associative MCB design results

in a relatively higher number of both false and true con
icts for 
oating-point code than for

integer code. This higher number of con
icts can result in signi�cant performance degradation.

To reduce the number of true con
icts, better static memory disambiguation is needed to detect

store/load pairs which are likely to con
ict. Another possible technique to reduce the number

of true con
icts is to use memory pro�ling to dynamically determine instructions which are

likely to con
ict.

The high number of false con
icts indicates the size of the MCB preload array chosen for

the earlier experiments, although good for integer code, may not have been optimal for 
oating-

point code. Although a 64-entry MCB appears to work well for integer code, a larger MCB may

be required to reduce false con
icts for 
oating-point code. 1 The MCB size experiment (shown

in Figure 4.7) was repeated using four of the 
oating-point benchmarks which experienced a

high number of false con
icts in the previous experiment. Figure 4.15 shows the results of

this experiment. For each benchmark, the di�erent bars on the graph re
ect the performance

improvement for various size MCB architectures over a baseline 8-issue architecture without

MCB.

For two of the benchmarks (047.tomcatv and 093.nasa7), varying the size of the MCB

resulted in only minor variations in performance. For these benchmarks, the 64-entry MCB

used for earlier experiments provides nearly the same performance as for the perfect MCB.

1Increasing the size of the preload array will reduce the frequency of both false load-load and load-store

con
icts. Although the number of false load-store con
icts is primarily a�ected by the size of the signature

�eld, increasing the size of the preload array also reduces these con
icts because fewer signature comparisons are

required.
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Figure 4.15 Floating-Point MCB Size Evaluation. Speedup of an 8-issue architecture for
various size MCBs vs. an 8-issue architecture without MCB (8-way set associative, 5 signature
bits).

However, for the other two benchmarks (078.swm256 and 089.su2cor), varying the size of the

MCB resulted in dramatic changes in performance. For both of these benchmarks, even a

256-entry MCB provided signi�cantly less performance than for the perfect MCB.

An experiment was performed to quantify the e�ect on performance of varying MCB size,

using all 14 
oating-point benchmarks. Figure 4.16 shows the results of this experiment. The

leftmost bar for each benchmark represents the results for the 64-entry set associative design

presented previously. The middle bar shows the results for a 256-entry set associative MCB

design. The rightmost bar represents a perfect MCB, which experiences no false con
icts.

For several benchmarks, the 256-entry MCB performed signi�cantly better than the 64-

entry MCB. Additionally, it provided comparable performance to that for the perfect MCB

for the majority of benchmarks. However, as seen in Figure 4.15, even a 256-entry MCB

was not large enough to provide performance comparable to that for the perfect MCB for
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Figure 4.16 8-Issue Results for Di�erent MCB Models.

benchmarks such as 078.swm256 and 089.su2cor. Rather than re
ecting a problem in the

set associative design, this performance degradation is the result of limitations in the current

compiler technology being used to support MCB. In particular, the list scheduling algorithm

being used is \greedy," and tends to overschedule the code. When the scheduler is used to

produce MCB code, no cost is assigned to moving a load above an ambiguous store; rather, the

dependence is simply removed and the scheduler is free to schedule the memory operations in

any order. Because the scheduler is greedy, load operations tend to move unnecessarily early in

the schedule and unnecessary preloads/checks are generated. Because 
oating-point code has

a high percentage of load operations, the number of preloads generated tends to overwhelm

MCB hardware resources, causing a high number of false con
icts. Scheduling techniques are

being investigated to reduce this overscheduling of load operations. It is believed that improved

scheduling with a 256-entry set associative MCB will provide comparable performance to the

perfect MCB.
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4.4 MCB Summary

In this chapter, a combined hardware and compiler approach for dynamic memory disam-

biguation has been evaluated. Using detailed simulation, MCB is shown to obtain substantial

speedup for many of the integer benchmarks evaluated. Results for the 
oating-point bench-

marks demonstrated signi�cantly greater performance bene�t, despite limitations in the current

compiler technology.

The MCB, or any other memory disambiguation approach, is not a panacea that will provide

speedup for all programs. For some programs, control transfer instructions remain the primary

bottleneck, and ambiguous dependences are not a signi�cant problem. However, test results

demonstrate that MCB provides substantial speedup for those programs whose ILP is limited

by ambiguous memory dependences.
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CHAPTER 5

STATIC MEMORY DISAMBIGUATION USING SYNC

ARCS

In the previous chapter, a dynamic memory disambiguation approach was investigated and

found to provide good performance improvement. In this chapter, a new technique to provide

improved static memory disambiguation for low-level optimization and scheduling is explored.

In most compilers, static memory disambiguation for low-level code uses only information

available within the low-level code (i.e., no source-level information), and is able to achieve lim-

ited success. Although it may be clear within the source code that two memory accesses cannot

access the same location, this information is often lost when the code is converted to low-level

form. Figure 5.1 shows an example of this problem, from the inner loop of the benchmark

wc. In Figure 5.1(a), the code to get a character from the �le bu�er and increment a global

variable is shown. Using typing information, it can be determined that the various memory

references are to di�erent �elds of the fp structure, and to a bu�er pointed to by the ptr �eld of

the structure. (The variables charct and c are scalar and will reside in register.) Each of these

memory references are clearly disambiguous with other references. However, the dependence

relationship between these references is less clear in the low-level code in Figure 5.1(b). In

particular, the pointer dereference in op69 (corresponding to (fp)!ptr) cannot easily be dis-

ambiguated from the stores in the block. As a result, important optimizations are prevented.

Thus, improved static memory disambiguation for low-level code is much easier to accomplish

with some visibility to source-level information.
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for ( ; ; )

  {

  }

    charct++;

        break;

    if ( c == -1)

    c = (--(fp)->cnt  <  0    ?  filbuf(fp)  :

            (int) *(fp)->__ptr++);

cb 12

  op59 ld_i  r101, r3 + 0

  op64  blt  r101, i,  cb48

  op65  ld_i  r103, r3 + 4

  op71  beq  r4, -1, cb24

  op74  add  r106, r105, 1

  op60  add  r102, r101, 1

  op61  st_i  r3 + 0, r102

  op68  st_i  r3 + 4, r104

  op67 add_u  r104, r103, 1

  op69  ld_uc  r4, r103 + 0

  op72 ld_i  r105, r74 + 0

  op75  st_i  r74 + 0, r106

(b)  Lcode segment(a)  Original source code segment

Figure 5.1 Di�culty of Memory Disambiguation for Low-Level Code.

In the next section, the relative merits of di�erent approaches for providing source-level

information to the low-level code are discussed. This is followed by a detailed explanation

of the proposed technique. Experimental results for the proposed technique are provided in

Chapter 7.

5.1 Providing Source Information to the Intermediate Code

In general, source-level information can be passed to the low-level code in two ways: (1)

maintain some source code information within the low-level IR, and perform dependence analy-

sis on the low-level code; or (2) perform dependence analysis at the source code level, and pass

explicit dependence information to the low-level code. Each of these approaches has advantages

and disadvantages.
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5.1.1 Performing static analysis on low-level code

Passing raw source information to the low-level code, either embedded within the low-level

code or through an external �le, would allow accurate dependence analysis to be performed

on the low-level code. The primary advantage of this approach is that dependence analysis

can be re-accomplished at any point during compilation. If code transformations invalidate the

dependence analysis, the availability of the source information allows the dependence analysis

to be re-performed after the transformations for use by later stages of compilation. If desired,

the results of dependence analysis can be discarded after use, and re-generated when needed

again.

However, this approach has several drawbacks. First, the magnitude of the raw source infor-

mation which must be maintained is unclear. To perform dependence analysis for scienti�c code

which relies heavily on arrays, perhaps simply maintaining source-level array index information

would be su�cient to provide good static disambiguation. It is likely, however, that accurate

dependence analysis for pointers would require much more source information. To allow an

in-depth interprocedural alias analysis would essentially require visibility to the entire source

code. Maintaining the complete source information within the low-level IR would be extremely

expensive in terms of memory requirements.

A second drawback of maintaining source information within the low-level form is the dif-

�culty of maintaining that information through code transformations. For example, if a loop

is unrolled to expose ILP, the source code for this loop would also have to be transformed to

maintain an accurate representation for performing dependence analysis.

A third argument against performing dependence analysis on the low-level code is the ex-

pense. Although having the source information within the low-level code makes re-analysis
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possible, the time required for this analysis probably makes repeated analyses impractical. Al-

though interprocedural techniques for pointer analysis are becoming more and more powerful,

they require an extremely high compile-time investment. Finally, performing the analysis on

the low-level IR does not remove the need to perform an incremental update of the dependence

information. Because it is impractical to re-perform dependence analysis after each transfor-

mation, the dependence information will have to be maintained through most transformations,

requiring at least the same level of e�ort as the alternate approach discussed in the next section.

5.1.2 Performing static analysis on source-level code

The second approach for providing source-level help to support low-level memory disam-

biguation is to perform an in-depth analysis once at the source level and then to maintain

this dependence information throughout subsequent compilation. The primary advantage of

this approach is that the analysis is performed when the required information is most avail-

able. The analysis must only be done once, and its results are available for use by later stages

of compilation. There is no requirement to maintain any source-level information within the

low-level IR.

This approach also has several potential di�culties. First, the amount of dependence in-

formation which must be maintained can be extremely large. Techniques would be needed to

limit the number of explicit dependence arcs being maintained. Second, because the analysis

cannot be re-accomplished, the dependence information must be maintained through all code

transformations. It has not previously been shown that this can be done without signi�cant

loss of accuracy. It is important to note, however, that although maintaining the dependence

information may prove quite di�cult, the approach described in Section 5.1.1 faces the same
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problem. Regardless of the approach used, some incremental analysis will have to be performed

due to the expense of dependence analysis.

5.2 Sync Arcs

After extensive discussions within the IMPACT research group and with industry, the second

approach described above was chosen for this thesis. The proposed approach is to perform

dependence analysis once at the source code level, to accurately maintain this information

throughout subsequent compilation, and then to use this information to facilitate low-level

optimization and scheduling. The explicit dependence information being passed down is called

synchronization arcs or sync arcs. Although currently only memory dependence information is

being propagated to the low-level code, sync arcs could also be used to represent any required

ordering or \synchronization" between operations. For the sync arc approach to be successfully

applied, the following issues must be addressed:

� The necessary dependence information must be identi�ed.

� The dependence information must be extracted from the source level and propagated to
the low-level code.

� The dependence information must be maintained through low-level code transformations.

� The amount of dependence data being maintained must be controlled

� A mechanism for using the dependence information within the low-level code must be
developed

These issues are discussed in subsequent sections.

5.2.1 Desired dependence information

Static memory disambiguation has most often been applied to source-level loop transfor-

mations. These transformations typically are inhibited by any type of memory dependence
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within the loop. Thus, very accurate dependence analysis is required; even a single ambiguous

dependence can prevent an important transformation. However, when applying static memory

dependence to low-level code optimization and scheduling, the uses of the disambiguation in-

formation are di�erent, and may require a di�erent degree of accuracy. It is enlightening to

understand how improved memory disambiguation would be used during the low-level stages

of ILP compilation.

Because the IMPACT compiler employs aggressive ILP compilation techniques, its use of

memory disambiguation for low-level code should be representative. In general, IMPACT em-

ploys memory disambiguation to support three areas of compilation: acyclic scheduling, cyclic

scheduling (software pipelining), and optimization.

During acyclic scheduling, the ability to reorder two memory operations is based upon

whether a dependence exists between the two operations during a single execution of the block

being scheduled. For example, if the superblock being scheduled consists of a single iteration of

a loop, then two memory operations can be reordered if they never reference the same memory

location during any single iteration of the loop. The array references

A[i] = x

y = A[i+1]

can be freely reordered because they never reference the same element of the array during any

single iteration. Thus, during acyclic scheduling, operations can be reordered unless a non-loop

carried or intra-iteration dependence exists between them.

For cyclic scheduling, more accurate dependence information is required. In addition to

knowing whether a non-loop carried dependence exists between memory operations, cyclic

scheduling has to know whether a loop carried or inter-iteration dependence exists. In the
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example above, the read of A[i+ 1] will reference the same location as the store to A[i] which

will occur during the next iteration (assuming i is the loop induction variable). Further, cyclic

scheduling has to know the dependence distance between two memory operations, which is the

number of iterations from when one memory operation references a particular location until

when the other operation references the same location. Therefore, in the above example, an

anti dependence of distance 1 exists from the load to the store. Non-loop carried dependences

are sometimes referred to as distance 0 dependences.

Thus, from looking at the requirements of acyclic and cyclic scheduling, it can be seen that

sync arcs should represent whether the dependence is non-loop carried and/or loop carried,

and what the dependence distance is. However, as discussed in Chapter 3, in some cases array

dependence analysis may fail to clearly establish the dependence relationship between memory

operations. When this occurs, the sync arc must be able to specify that the dependence distance

is unknown.

Memory disambiguation is also critical for supporting ILP optimizations. Perhaps the most

important optimizations requiring disambiguation are loop unrolling, loop invariant code re-

moval, and redundant load/store removal.

The loop unrolling optimization requires similar dependence information to cyclic schedul-

ing. Figure 5.2 illustrates the dependence information required for loop unrolling. The source

code and low-level code for a simple pair of array references are shown in Figures 5.2(a) and

(b). Assuming this code is in a loop whose induction variable is i, there is a distance 2 
ow

dependence from the store to the load. To allow unrolling, no special dependence information is

required. However, to accurately preserve the correct dependences (as shown in Figure 5.2(c))

the optimizer has to properly understand the dependence distance. Without understanding of
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(c)  Unrolled code(b) Low-level code

(a) Source code

A[i+2] = A[i] + K

Figure 5.2 Dependence Information to Support Loop Unrolling.

dependence distance, the optimizer would have to assume dependences between all load/store

pairs in the loop, severely restricting subsequent code scheduling.

Another characteristic of the dependence relationship between two memory operations which

must be understood is which loop carries the dependence. Figure 5.3 illustrates this charac-

teristic, as applied to the loop invariant code removal optimization. There is a distance 2 
ow

dependence from the store to the load; however, note that the inner loop induction variable is k

and that the array references are based upon the outer loop variable i. Thus, for all iterations

of both the j and k loops, the load and store operations reference invariant locations and can

legally be moved outside these loops as shown in Figure 5.3(b). However, this optimization can

only be performed if the dependence information contains information indicating which loop

carries the dependence.
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(b)  Loop nests after optimization(a)  Loop nests prior to optimization

Figure 5.3 Dependence Information to Support Loop Invariant Code Removal.

Two other characteristics of dependence that a static analysis might have to determine

are frequency and certainty. Figure 5.4 illustrates the need for these characteristics, using

the example of redundant load elimination. The redundant load elimination optimization will

attempt to delete the second load, if it is truly redundant. For the optimization to be valid, the

second load must always reference the same memory locations as the �rst load every time this

section of code is executed. Thus, the certainty of the dependence between the loads must be

de�nite (i.e., the static analysis did not conservatively add this dependence because it could not

ascertain the true dependence relationship) and the frequency must be always. Additionally, for

the optimization to be valid, there can be no intervening store operations which might possibly

reference the same address as the loads. Even a possible dependence between the store and

either load, which holds for even one execution, is su�cient to prevent the optimization. Sync

arcs, then, need some mechanism for recording how sure the dependence is, and how frequently

during execution it might occur. Another possible use of the dependence frequency information
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Figure 5.4 Dependence Information to Support Redundant Load Elimination.

would be the MCB technique examined in the previous chapter. Although it is a dynamic

technique, it relies on some basic level of static analysis to prevent reordering operations which

are frequently dependent. If the static analysis could determine that a possible dependence

occurs between two memory operations, but that this dependence occurs only infrequently, a

dynamic technique such as MCB might be able to exploit this to reorder instructions which are

infrequently dependent.

One other item to note from this redundant load elimination example is that the dependence

between the two loads is an input dependence. Although it is obvious that sync arcs would want

to carry dependence information for 
ow, anti, and output dependences, this demonstrates a

need to maintain input dependences as well.

A �nal type of dependence information which might be useful (although not exploited in

the current implementation) is the concept of how dependence varies from iteration to itera-

tion. In a previous example, the references A[i] and A[i + 1] were said to have a distance 1

dependence, which holds for all iterations of the loop. For other code, however, the dependence

distance may vary between di�erent loop iterations. For example, consider the code example in

Figure 5.5. The references A[i] and A[N � i] have a dependence distance which varies between

loop iterations. However, note that for this reference pair there will be a distance 0 (non-loop
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    A[i] = A[N - i];

}

for (i=o; i<N; i++)  {

Figure 5.5 Single Iteration Dependence Example.

for (i=o; i<SIZE; i++)  {

    if (flags[i]) {

        prime = i + i + 3;

        for (k=i +prime; k<=SIZE; k+=prime)

            flags[k] = FALSE;

        count++;

    }

}

Figure 5.6 Threshold Dependence Distance Example.

carried) dependence for at most one iteration of the loop. If this iteration can be identi�ed to

the low-level code, then potentially the low-level stages of the compiler could take advantage of

this knowledge to perform code transformations such as loop splitting to further expose ILP.

Another situation in which information on how the dependence varies might be useful is if

the dependence distance varies, but is always greater than some threshold. Figure 5.6 shows

an example of this from the siev benchmark. The references to flags[i] and flags[k] have a

de�nite dependence between them; during the �rst iteration of the outer loop the dependence

distance is 3, and then is greater than 3 for all subsequent iterations. The capability to indicate

a dependence threshold such as this within the sync arc structure would allow subsequent

optimizations such as unrolling to more accurately represent the true dependence.

Table 5.1 summarizes the dependence information which would be useful for the sync arc

data structure to maintain.
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Table 5.1 Desired Dependence Information.

Dependence type (
ow, anti, output, input)
Dependence distance (known/unknown)
Whether dependence is non-loop, inner loop, or outer loop carried
Certainty of dependence (de�nite, maybe)
Frequency of dependence (always, sometimes, rarely)
How dependence varies (constant, single iteration, threshold)

5.2.2 Extracting sync arcs

The IMPACT compiler performs its source-level analysis within the Pcode module. To

support the high-level analyses, transformations, and optimizations performed within the Pcode

intermediate representation, detailed data dependence analysis is done. Prior to the work in this

thesis, the data dependence analysis within Pcode was limited to analysis of Fortran programs

which have been translated from Fortran to C using the f2c tool. Because the programs being

analyzed were originally Fortran code, the data dependence analysis was able to make numerous

simplifying assumptions, particularly in regard to aliasing and the use of pointers. Extensions to

the existing dependence analysis allowing it to analyze C programs are presented in Chapter 6.

With the availability of accurate source-level dependence arcs, extracting sync arcs is a

relatively simple task. The dependence information must be associated with the corresponding

expression within the IR which will eventually be translated into a load or store operation.

When the Pcode module produces output code in the next IR representation (Hcode), it in-

corporates the dependence information into the output �le associated with the appropriate

expression. In the IMPACT compiler, the next lower IR is Hcode, which also represents ex-

pressions hierarchically. To pass the dependence information through Hcode, it is attached to

the expressions using expression pragmas, a comment-like structure employed by the IMPACT
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Pointer to dependent oper - 32 bits

Dependence distance - 16 bits

Dependence info - 16 bits

    - Certainty of dependence - 1 bit

    - Frequency of dependence - 2 bits

    - Flags - 13 bits

        -- Outer, inner, non-loop carried

        -- distance know/unknown

        -- threshold dependence

        -- single iteration dependence

Figure 5.7 Sync Arc Format.

compiler. When Hcode is translated into the low-level (Lcode) data structure, the expression

pragmas are converted into Lcode's sync arc representation.

Within Lcode, sync arcs are maintained as �elds within the internal structure of individual

instructions. Each instruction has pointers both to the sync arcs for which it is the source

(head) of the dependence and to the arcs for which it is the destination (tail). In the current

implementation, each sync arc requires two words of data. Figure 5.7 illustrates the internal

Lcode format for sync arcs. One word contains a pointer to the dependent instruction, i.e., the

instruction at the other end of the sync arc. The second word is divided into bit �elds storing

the dependence distance and various characteristics of the arc.

Note that the current implementation uses only three single-bit 
ags to indicate whether

the dependence is outer, inner, or non-loop carried. This simple representation can result in

some minor loss of accuracy when memory operations are moved into an outer loop nest. Using

the current implementation, when a memory operation whose dependence is outer loop carried

is moved into an outer loop nest, the dependence must conservatively be considered inner loop

carried. Loss of accuracy results because the dependence information does not record which

loop nest actually carries the dependence, but rather merely records whether it is an inner
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or outer loop. Although this loss of accuracy is considered minor because the two dependent

operations probably are now in di�erent blocks of the code (and thus an overly conservative

dependence between them is not likely to result in performance loss), this accuracy loss could

be avoided by maintaining information in the sync arc structure that records which loop carries

the dependence. This could be done by maintaining a distance vector such as is used in source-

level dependence analysis, or by simply recording the nesting level of the loop which actually

carries the dependence.

5.2.3 Maintaining sync arcs

Two concerns with passing explicit dependence arcs from the source level to the low-level

code are: 1) can the information be maintained as the code is transformed by optimizations;

and 2) can the amount of data being passed down to the low-level code be limited so that the

approach is feasible. In this section, the �rst issue is discussed; the second issue is presented in

the following section.

One limitation of the sync arc approach is that dependence analysis cannot be re-accomplished

if the dependence information is lost or becomes less accurate as the result of code transforma-

tions. For the approach to be viable, then, sync arcs must be able to be accurately maintained

through transformations. As part of this thesis, changes were made throughout the backend of

the IMPACT compiler to ensure that all ILP transformations properly maintain the sync arcs.

With the exception of inlining, discussed below, none of IMPACT's current suite of optimiza-

tions posed a signi�cant problem for maintaining the sync arcs, and the results published in

Chapter 7 re
ect compilation using all optimizations. In the remainder of this section, some of

the interesting issues in maintaining sync arcs are discussed.
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The �rst code optimization which poses di�culty for sync arcs is inlining, which is currently

performed on the Hcode IR. Because the Hcode stage of compilation is subsequent to Pcode,

sync arcs are already in the IR when inlining would normally be performed. Figure 5.8 illustrates

the problem presented by inlining. The pseudo-code on the left side of the �gure represents a

function which contains a call to Function A. The arcs between loads and stores represent the

memory dependence information. If we wish to inline Function A into this function, we are not

able to determine the dependence relationship between memory operations from the original

function and operations from Function A. The sync arcs accurately represent the dependences

within each of the individual functions, but do not provide information between operations that

were originally in di�erent functions.

One solution to this problem is to assume that all inlined memory operations are implicitly

dependent on all memory operations in the calling function. However, this solution to a great

degree defeats the purpose of the inlining. These conservative dependences would restrict much

of the ability to execute instructions from the inlined function in parallel with instructions from

the calling function. Another potential solution would be to perform some limited dependence

analysis as part of the inlining, to reduce the unnecessary dependences which must be added.

However, this is counter to the purpose of sync arcs, which was to make source-level analysis

available to low-level code; this solution would attempt analysis on critical sections of code

without the bene�t of the source information. The chosen solution was to alter the phase

ordering of IMPACT compilation, so that inlining is accomplished prior to Pcode dependence

analysis. This solution entails a complete re-implementation of IMPACT's inliner at the Pcode

level, and was beyond the scope of this thesis. Results reported in this thesis were obtained

without the bene�t of inlining.
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Figure 5.8 Inlining Code with Sync Arcs.

Another important issue regarding sync arcs is whether the dependences can be maintained

when the memory operations are moved around, either within the same loop nest or outside the

loop nest. Maintaining dependence information for code motion within a loop is trivial. If two

memory operations are legally reordered by a code transformation such as acyclic scheduling,

no characteristic of the dependence is altered. For example, if a loop-carried 
ow dependence

exists from a store operation to a subsequent load, and scheduling reorders the operations, the

dependence will still be a 
ow dependence with the same dependence distance.

Code motion across loop boundaries is a slightly more complicated transformation for sync

arcs. Figure 5.9 shows an example of code motion across loop boundaries as the result of the loop

invariant code removal optimization. In this example, the dependence from the load to Store2

is assumed to be carried by an outer loop, allowing the load to be moved outside of LoopC.

The sync arcs must then be updated based upon this code motion. The basic rule employed for

determining whether the sync arc must be updated is whether the nearest common enclosing

90



Carried

Loop B

???

Load (invariant)

Load (invariant)

Loop A:

Loop B:

Loop C:

Loop A:

Loop B:

Loop C:

Store1

Store2

Store1

Store2

(a)  Original code (b) Code after loop invariant code removal

Figure 5.9 Updating Sync Arcs for Code Motion.

loop for the two operations has changed. In the case of the dependence between the load and

Store1, the nearest common enclosing loop before and after the code motion is LoopB. Because

the enclosing loop has not changed, the characteristics of the dependence haven't changed, and

the sync arc requires no update. However, for the dependence between the load and Store2, the

nearest common enclosing loop has changed from LoopC to LoopB. In this case, a dependence

that was previously outer loop carried is now inner loop carried and the sync arc data structure

must be updated to re
ect this. Note that the loop which carries the dependence has not

changed, but this loop is now the inner loop rather than the outer loop with respect to the

dependence pair. The loop which carries the dependence is not changed by any IMPACT

low-level optimizations.

Perhaps the most interesting optimization requiring sync arcs to be updated is loop un-

rolling. As discussed above, one of the strengths of sync arcs is that the dependence distance

information allows loops to be unrolled so as to accurately maintain only necessary depen-

dences. If this can be done without loss of accuracy, it can signi�cantly increase available ILP.
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Figure 5.10 Updating Sync Arcs for Loop Unrolling.

A simple method of updating sync arcs for unrolling has been developed which provides full

accuracy. Figure 5.10 demonstrates this technique.

In Figure 5.10(a), a loop body is shown, with arcs which represent the memory dependences

and dependence distances between the operations. Figure 5.10(b) shows the same body and

a numeric representation of the sync arc information for this loop for the dependences. This

numeric representation re
ects the arcs which go from the operation; the destination operation

number and the distance are shown. For example, the �rst operation has a sync arc to operation

2, of distance 2, and a sync arc to operation 3 of distance 1.

To update sync arcs for unrolling, the two formulas shown in Figure 5.10(c) are used. To

calculate what operation should be the destination of the updated arc, we simply use modulo
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arithmetic based upon which copy of the loop contains the head of the arc and the original

dependence distance. The new distance is calculated using integer division on the same two

values.

Figure 5.10(d) shows the loop body after being unrolled. The updated dependence arcs

and sync arcs are also shown. To illustrate how the formulas are applied, consider the original

sync arcs for the �rst operation, which is now in Copy0 of the body. The original arc went to

Operation 2, with distance two. Applying the formulas results in

New_dist = ( 0 + 2 ) / 2 = 1

Dest_copy = ( 0 + 2 ) % 2 = 0.

Thus, the arc is now a distance 1 arc, going to the copy of Operation 2 located in Copy0 of the

loop. Likewise, applying the formulas to the arc from Operation 1 to Operation 3, of distance

1, results in a new arc to Copy1 of distance 0. Because the copy of Operation 3 located in

Copy1 is Operation 6, an arc is placed from Operation 1 to Operation 6 of distance 0. Using

the formulas to update all the arcs in the unrolled loop body results in an accurate update of

the sync arcs, adding only the required arcs.

5.2.4 Limiting the number of sync arcs

The second issue which a�ects sync arc viability is whether the number of explicit depen-

dences which must be represented by sync arcs restricts application of the technique. Certain

ILP optimizations such as superblock formation and loop unrolling, which create multiple ver-

sions of the same operation, exacerbate the potential problem. If the number of sync arcs is

a problem, what techniques can be developed to reduce the number of sync arcs down to a

\reasonable" level?
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A suite of 29 benchmarks was compiled using sync arcs, and subjected to IMPACT's most

aggressive ILP optimizations. Although the size of the �les which store the intermediate form

between compilation stages grew signi�cantly and the compilation was slowed to a limited extent

due to the presence of sync arcs, all benchmarks compiled without extreme di�culty. Results

indicate, however, that techniques to limit the number of explicit sync arcs being represented

would be desirable. In the remainder of this section, several techniques for limiting the number

of sync arcs are proposed.

The �rst technique for limiting sync arcs is to eliminate unnecessary dependences. The

current sync arc implementation is address based, such that two memory references will have

a dependence placed between them regardless of the 
ow of control. This approach requires

a simple dependence analysis to generate the sync arcs and produces sync arcs in a format to

easily interface to low-level dependence routines. However, it results in unnecessary transitive

dependences. The alternate approach is to perform a 
ow-based analysis, so that an arc is

only placed between two memory references if the value accessed in one could be the same

value accessed by the other. This approach increases the complexity of dependence analysis,

but reduces the number of arcs which must be maintained. Figure 5.11 illustrates the two

approaches. In Figure 5.11(a), the dependences for simple scalar variables are shown. The

address-based approach would require a transitive sync arc from the �rst store to the load

to be present in the code, while the 
ow-based approach would remove this arc. The 
ow-

based approach would also remove non-loop based dependences between memory references

on opposite paths of control, such as in an if-then-else statement. However, in the case of

array dependences, which are not inherently transitive, the 
ow-based approach may be no

more e�ective than the address-based approach. In Figure 5.11(b), the transitive arc cannot
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Figure 5.11 Address-Based Versus Flow-Based Analysis.

be removed without loss of accuracy. For non-scienti�c code not dominated by array variables,

the number of sync arcs could be signi�cantly reduced by eliminating the scalar transitive

dependences.

A second possibility for limiting the number of sync arcs is to mark certain references as

having implicit dependences. References for which the dependence analysis is unable to provide

any reasonable disambiguation could be marked sync all to indicate that implicit dependences

exist to all other memory operations in the function. However, it is unlikely that this approach

can be used widely without signi�cant loss of accuracy. Even very di�cult references to analyze

(e.g., pointers to dynamically allocated memory) can usually be disambiguated to some extent

(e.g., the pointer could be disambiguated from a statically declared variable). As a result, this

technique for limiting sync arcs may not be appropriate for general use, but may be useful in

conjunction with one of the following approaches.

Another approach to limiting the number of required sync arcs is to mark explicit regions

within the code, indicating a barrier across which all memory references are assumed to have

an implicit dependence. Most low-level code transformations which use memory dependence

information operate on some limited region of the code (e.g., a loop nest). While it is critical

to have accurate disambiguation between operations within the region being optimized, depen-
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dences across region boundaries may be of little importance. Thus, by inserting explicit barriers

around important regions and assuming implicit dependences across these barriers, many sync

arcs could be eliminated. During low-level code transformations, any code motion across a

barrier would require either additional barriers to be inserted to protect the moved operations

or the moved operations to be marked as sync all.

A �nal approach to limiting the number of arcs is to assume barriers across which all

dependences are implicit. Rather than inserting explicit barriers, the code structure would

imply the barriers. For example, loop nests could be assumed as an implicit dependence region.

Again, code motion across these implicit barriers would require the moved operations to be

marked as sync all.

For the IMPACT compiler, the most promising of these approaches is to specify explicit

dependence regions. A new region-based compilation paradigm is being explored [63], in which

strongly connected sections of the code (e.g., loops) are grouped into compilation regions. Each

region is then processed through various stages of compilation as a separate compilation unit.

Because code transformations are localized within each region, it is of low importance to have

accurate disambiguation for memory reference pairs which are located in separate regions.

Therefore, assuming implicit dependences across region boundaries would have little e�ect on

performance, but would signi�cantly reduce the number of sync arcs.

5.2.5 Using sync arcs

Because sync arcs represent memory dependences explicitly, applying them to optimization

and scheduling is straightforward. Lcode modules use sync arcs in one of two ways. The �rst way

to use sync arcs is to answer explicit queries regarding the dependence relationship between two
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operations. The query speci�es what type of dependence relationship is of interest to the caller

(i.e., non-loop carried, inner-loop carried, etc.). For example, the loop invariant code removal

optimization, which requires no inner-loop or non-loop carried dependences, provides a mask

�eld specifying these particular dependence characteristics as part of the dependence query.

The second way sync arcs are used is for building Lcode's internal dependence graph, which

is used primarily by code scheduling. The dependence graph maintains arcs corresponding

to register, control, and memory dependences. To obtain the memory dependences for this

graph, the sync arc data structures are queried, using a mask specifying only non-loop carried

dependences.

5.3 Sync Arc Summary

In this chapter, a method for providing improved static memory disambiguation to support

low-level code optimization and scheduling has been proposed. After an analysis of possible

methods for providing improved memory disambiguation, the sync arc approach was chosen.

This approach performs static dependence analysis on the source-level intermediate represen-

tation and then preserves the results of this analysis in the form of explicit dependence arcs

which are passed to the low-level code. The data requirements for sync arcs were discussed,

and two issues regarding the viability of sync arcs were explored. Successful implementation of

sync arcs demonstrates that sync arcs can indeed be accurately preserved through aggressive

code transformations. Several methods were proposed for limiting the number of sync arcs

which must be maintained. The sync arc approach was tested and shown to be viable across a

diverse benchmark suite. The results of this testing, provided in Chapter 7, demonstrate that
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the sync arc approach is successful in signi�cantly improving the existing low-level memory

disambiguation.
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CHAPTER 6

C DEPENDENCE ANALYSIS TO GENERATE SYNC ARCS

In the previous chapter, the sync arc approach was proposed for providing explicit depen-

dence information to support low-level optimization and scheduling. For Fortran programs,

strong source-level dependence analysis was available prior to the work in this thesis within

the IMPACT compiler to provide the dependence information required to support sync arcs.

However, dependence analysis for C programs was not supported.

The C language provides interesting dependence analysis challenges not present in Fortran.

The biggest challenge is posed by the availability of pointers within C, which exacerbate the

aliasing problem. Aliasing occurs as the result of pointer assignments, when the same memory

location can be accessed using di�erent access names. To provide reasonable accuracy for

aliasing, interprocedural alias and side e�ect analysis is required. In this chapter, the support

added to the IMPACT compiler to allow accurate source-level C dependence analysis to support

sync arcs is discussed. First, the changes to the existing dependence analysis required to support

C semantics are presented. This is followed by a description of the interprocedural analysis

proposed and implemented for this thesis.

6.1 Dependence Analysis for C Programs

Although the IMPACT compiler is primarily a C compiler, it is also able to handle programs

originally written in Fortran by using the f2c translation tool. Because most of the scienti�c
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benchmarks used for testing source-level transformations are written in Fortran, IMPACT's

source-level dependence analysis was developed to analyze only Fortran benchmarks. Although

the existing analysis understood most C syntax, it assumed that the code being compiled con-

tained only Fortran semantics. For example, the analysis did not consider the possibility of

aliases between global variables. In this section, the modi�cations to the existing analysis re-

quired to handle C semantics are described. An overview of the interesting semantic di�erences

between C and Fortran are presented, followed by a discussion of some of the implementation

details.

6.1.1 Semantic di�erences

Aliasing

The most obvious di�erence between Fortran and C semantics is the availability of pointers

in C. Pointers pose numerous challenges to static dependence analysis. Certainly the biggest

challenge is to accurately and e�ciently deal with the aliasing problem.

In C, the pointer assignment, ptr = &A, forms an alias between ptr and the variable A.

Additionally, dereferences of the two variables are also aliased. For example, if A is a structure,

the two references:

ptr->field = y;

A.field = z;

store to the same location. To ensure correctness, the dependence analysis must be able to

accurately handle these aliases.

In the case of global pointer variables, it is possible for an alias to be created in one function,

and to hold (i.e., remain valid) in another function. In the example above, if both ptr and A are
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global variables, the alias created by the assignment ptr = &A would hold in other functions

executed subsequent to the assignment. Thus, without interprocedural analysis, any global

pointer referenced in a function must be assumed to be aliased to all other global variables

within the function.

Another di�culty of pointers is that they facilitate the use of dynamically allocated data

structures, such as linked lists. Dependence analysis for statically allocated data structures,

sometimes referred to as named objects, is somewhat easier than for dynamically allocated

structures (unnamed objects), because when aliases to static objects are formed, the name of

the object is often visible. In contrast, dynamically allocated objects have no name, and are

only accessed through dereferences of a pointer. Researchers have found disambiguation of

recursively de�ned structures (e.g., linked lists and binary trees) particularly di�cult due to

the problem of determining whether these structures contain cycles [56], [57], [58]. For example,

in the following code segment:

while (ptr != NULL) {

ptr->count = ptr->next->count + 4;

ptr = ptr->next;

}

it is di�cult to disambiguate the references to ptr!count and ptr!next!count without knowl-

edge of whether the data structure being accessed contains cycles.

Pointer arithmetic

Another challenge resulting from pointers is dealing with pointer arithmetic, and its duality

with array accesses. In Fortran semantics, it is relatively straightforward to determine the

relationship of two array accesses such as
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A[i] = y;

A[i+1] = z; .

Because the location of the array is static, the dependence relationship of these two accesses is

�xed unless the array index i is changed between the accesses. However, using C pointers the

dependence relationship is also dependent upon the pointer not being modi�ed. Consider the

following C version of the above array accesses.

p = &A[0];

p[i] = y;

p[i+1] = z;

In this code, the functionality is the same as for the previous code segment, but the dependence

analysis is more complex. Not only must the analysis determine if the index variable i has

changed between the accesses, but it must also detect if the pointer itself has been modi�ed.

The dependence analysis must also be able to deal with the duality between pointer arithmetic

and array accesses. For example, the following three accesses refer to the same location in

memory.

*(p+i+1) = x;

p[i+1] = y;

++p[i] = z;

Function call semantics

In Fortran, function calls pass arguments by-reference. Rather than passing the value of a

variable to the called function, the address of the variable is passed. Thus, procedure binding
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creates aliases between the function call arguments and the called function formal parameters.

In contrast, C passes scalar variables by-value, and no aliases are formed for scalars. However,

for non-scalars such as arrays and structures, C passes by-reference, and binding creates aliases.

Dependence analysis for C must be able to distinguish between these cases and correctly create

procedure binding aliases.

Additionally, the semantics of standard Fortran do not allow aliases between function argu-

ments. Thus, the dependence analysis can make the assumption that no aliases exist between

the formal parameters to a function. For C, however, language semantics enforce no such re-

striction, and interprocedural analysis is required to determine the dependence relationship

between formal parameters.

Unions

Another source of aliasing within C is the union data structure. Unions allow di�erent

names and types to be assigned to the same memory location. Unlike structures, in which

di�erent �elds are independent, aliases exist between all �elds within a union. Unions can be

particularly problematic to low-level dependence analyses, which often assume that memory

references of di�erent types or sizes are independent.

6.1.2 Required modi�cations to existing dependence analysis

In the previous section, some of the important semantic di�erences between C and Fortran

which impact dependence analysis were discussed. In this section, the modi�cations to IM-

PACT's existing dependence analysis (which previously assumed Fortran semantics) required

for C dependence analysis are overviewed. The intent is to examine a few of the interesting
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issues involved in the modi�cations rather than to provide full implementation details. Those

interested in details of the implementation should refer to [3].

Access table structure

Pcode dependence analysis is performed intraprocedurally on each function. The �rst step

in the analysis is to build an access table, containing all of the variable references within the

function, indexed by the variable name. Within each entry in the table, a linked list of the

individual references based upon the variable name is maintained. For programs compiled from

Fortran, this approach worked well for two reasons. First, references based on a particular

variable in general referred to the same data structure. Whether an array was referenced as

the entire array (e.g., A) or as a particular element of the array (e.g., A[i]), the same data

structure is being referenced. Therefore, it was convenient to group both references under the

same access table entry. A second reason that indexing the access table by variable worked well

is that Fortran-semantic access expressions contain only a single access. Whether the expression

is A, A[i][j], or A:B:C, only one memory reference is involved.

In contrast, C dependence analysis requires analysis of arbitrarily complex access expres-

sions. For example, the following is a single access expression from the benchmark 085.gcc.

(((((insn)->fld[3].rtx))->fld[0].rtvec->elem[i].rtx))->fld[0].rtx

The expression contains numerous separate accesses (i.e., will generate numerous memory ref-

erences) to several di�erent data structures. To e�ciently represent complex expressions such

as this, the access table format required modi�cation.

Consider a simpler expression containing several accesses, such as **ptr. If ptr is assumed

to be a global variable (i.e., its value does not reside in a register), this expression contains
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three separate accesses: ptr, *ptr, and **ptr, each of which references a di�erent location.

Grouping these three accesses into the same entry in the access table is ine�cient, because

they reference totally separate structures. Instead, the Pcode access table was modi�ed so that

separate entries exist for expressions which access di�erent locations. Therefore, ptr, *ptr, and

**ptr are each placed in separate entries in the access table.

Entries in the access table are indexed by a unique name derived from the access expression.

In general, access expressions are connected by either the star (*), arrow (!), dot (.), or index

([ ]) operators. Because the pointer deference such as ptr!field is equivalent to (*ptr).field,

the arrow operator can be represented as a combined star and dot. Also, because of the duality

of pointer and array references, the index expression can also be represented with the star.

Table 6.1 shows a list of some C expressions and the corresponding access table entry name

by which the expression is indexed. Note that operators are placed in the entry name according

to the order in which the expression is evaluated, e.g., the expression **p requires p to be

accessed prior to dereferencing it. This also corresponds to the bottom-up order in which the

operators would appear in a parse-tree representation of the corresponding expression. This

ordering ensures expressions such as A[i].B and A.B[i], which reference di�erent structures, are

placed in separate access table entries. Note also that the access A[i][j] could receive di�erent

entry names, based upon how it was declared. If declared as a 2-dimensional array, then the

expression corresponds to a single dereference of the variable A (A*). However, if the variable

were declared as a pointer or array of pointers, the expression indicates two dereferences of A

(A**).

This naming convention is also useful for identifying aliases between entries in the access

table. Consider the statement
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Table 6.1 Access Table Names.

C Expressions Access Name

p p
*p p*
**p p**
p!�eld p*.�eld
A[i] A*
A[i][j] A* or A**
A.B A.B
A[i].B A*.B
A.B[i] A.B*

p = &A;

which forms an alias between p and A. An alias is also created for other expression pairs such

p!field and A.field. The access table naming makes the addition of these aliases straightfor-

ward. Additional aliases can be added by looking for names with common su�xes appended

to the originally aliased pair. Therefore, aliasing the access table names p* and A implies that

names p*.field and A.field also alias.

Duality of pointer and array references

As discussed above, elements of an array can accessed using array notation or pointer

arithmetic. To facilitate symbolic analysis of the access expressions, the two forms are treated

uniformly by dependence analysis. Each access in the access table maintains an index expression

�eld. The expression A[i] is maintained in the access table under the name A*, with the index

expression i. Likewise, the expression *(p+i) is stored under the name p* with index expression

i. A simple pointer expression *p is assumed to have an index expression of 0. This uniform

treatment of pointers and arrays allows existing array disambiguation techniques to be applied
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to C code. The Omega test used for Fortran dependence analysis can therefore also be applied

to C dependence analysis.

Identifying memory references

The complex access expression from 085.gcc presented earlier contains several accesses, and

will correspond to several load operations in the low-level IR. Dependence analysis has to

identify each of the individual accesses in the expression which will correspond to an actual

load or store operation in the low-level IR, and place this access in the access table. Once the

access table correctly re
ects all memory accesses in the program, existing tools from Fortran

dependence analysis (e.g., Omega test and scalar dependence analysis) can be used to determine

the dependence relationship between the individual accesses. Identifying individual accesses is

performed by evaluating the hierarchical (parse-tree) representation of the expression from

the bottom up, starting with the variable expression. A trivial example of this is shown in

Figure 6.1(a). The expression tree is evaluated, starting with the variable A. To decide if A

represents an access, both A and its parent expression (arrow) must be examined. Because the

parent expression represents a dereference, A is determined to be an access and is added to

the access table. Analysis continues by walking up the tree to the arrow expression. It too is

determined to be an access. Finally, the top-level arrow expression is evaluated. Because its

parent expression is not one of the access operators, it is also an access. Thus, the expression

A!B!C contains three accesses.

However, identifying the memory references is not always as straightforward as shown in the

previous example. Consider the expression A[i].B whose parse tree is shown in Figure 6.1(b).

Again, analysis starts with the variable expression A. Because its parent is an index expression
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Figure 6.1 Finding Memory References.

(and the data structure is declared as an array), no explicit load of the variable A is required

and it is therefore not an access. Analysis continues on the index expression; because its parent

is a dot expression, the index also does not generate an access. Finally, the dot expression is

determined to be an access. Thus, the entire expression only generates a single access in the

access table. Figure 6.1(c) illustrates why this occurs. The data structure implied by the access

expression, again assuming A was declared as an array, is an array of structures, laid out in

consecutive memory locations. To access a particular element of one of the arrays, in this case

A[i].B, the compiler will make the address calculation:
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address offset = i * sizeof(struct) + (offset of B in struct)

A single load will be generated for this expression, from the address of A plus the calculated

address o�set.

A complication in determining what expressions correspond to memory accesses is that how

the variables are declared determines whether the expression corresponds to an access. In the

previous example, it was assumed that the variable A was declared as an array. Instead, let's

assume the variable was declared as \int *A." In this case, the expression shown in Figure 6.1(b)

corresponds to the physical memory layout depicted in Figure 6.1(d). The variable A is now a

pointer, containing the address of the array of structures. To access a �eld in one element of

the array, �rst A must be loaded to get the address of the array. Then the calculated o�set is

added to this address to determine the address for the second access. Thus, the entire expression

requires two accesses instead of one because variable A was declared di�erently.

Another example of this complication is for the expression A[i][j], which can correspond to

either one, two, or three memory references depending on how the variable was declared. Fig-

ure 6.2(a) illustrates the physical data structure for the access expression, assumingA is declared

as a two-dimensional array. Simple arithmetic operations calculate the o�set of the required

element, and a single memory reference is required to fetch the desired value. Figure 6.2(b)

and (c) show the alternate data structures for di�erent variable declarations, requiring 2 or 3

memory references. Thus, identifying those expressions which correspond to accesses requires

knowledge of the variable declarations.

Another complication in determining those expressions which correspond to memory ac-

cesses is the address operator (&). This operator essentially acts to cancel out what would oth-

erwise be an access. Using the example from Figure 6.2, consider now the expression &A[i][j].
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A[3][3]

A[0][0]

(a)  Layout if declared "int A[3][3]

A
A[0]

(b)  Layout if declared "int *A[3]"

A

A[0]

(c)  Layout if declared "int **A"

A[0][0] A[0][0]

Figure 6.2 Di�erent Structures Based Upon Data Declaration.

Instead of corresponding to either 1, 2, or 3 accesses as before, now the expression only corre-

sponds to 0, 1, or 2 accesses. For example if the variable was declared as \int *A[3]" as shown

in Figure 6.2(b), the �rst access to A[i] would still be required, but from the value stored there

the address of A[i][j] can be calculated using arithmetic expressions and no further loads are

required. Thus, when determining whether an expression is an access, the operators above the

current operator in the expression tree must be checked for the address operator.

Table 6.2 summarizes the rules for determining whether an operator corresponds to an

access. For each operator in the left column, the entry in the table indicates whether the

combination of the operator and a particular parent operator will result in a memory reference.

The entries in the table with question marks indicate situations in which the variable declaration

determines whether the expression corresponds to a memory reference. One entry which perhaps

is non-intuitive is a star operator whose parent is an index operator. Normally, one would

expect this type of expression to always correspond to an access. However, it is possible to

declare a two-dimension array, and access it using an expression such as (*A)[j], which would

110



Table 6.2 Rules for Determining if an Operator Corresponds to an Access.

Parent Operator

Operator Addr Index Dot Arrow Star Other

Index N ? N Y ? Y
Dot N N N Y Y Y
Arrow N N N Y Y Y
Star N ? N Y ? Y
Var N ? N Y ? Y

be equivalent to A[0][j]. (Although legal code, one might question this type of coding style.)

In this case, the star operator would not generate an access.

Intraprocedural alias analysis

Whether or not interprocedural alias analysis is performed, C dependence analysis must

determine what aliases are formed within each function. Aliases created interprocedurally

within other functions or by procedure binding will be discussed in the next section. Here, two

types of aliases which are created strictly within the individual function are discussed: aliases

which are implicit to the data types of the accesses and aliases which are explicitly formed by

assignments within the function body.

Aliases are implicit in the data type for the case of structures and unions. Because accesses

to di�erent �elds of these types will be placed in di�erent entries in the access table, explicit

aliases are assigned between the entries to aid dependence analysis. In the case of structures, an

alias is created between references to the entire structure and to a single �eld, but not between

two �elds. In the code segment,

A = B;

B.x = x;
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B.y = y;

dependences are required between the �rst and second statements, and between the �rst and

third statements; no dependence is required between the second and third statements. In the

case of unions, aliases are assigned between references to the entire union and and its �elds,

and also between �eld references.

The other source of aliases with the function is explicit pointer assignments, which can occur

in two formats. The �rst format is the assignment x = y, in which the value of one pointer is

assigned to another pointer. In this case, the variables x and y are aliased. The second format

is the form z = &A, in which an alias is formed between �z and A.

After assignment aliases are formed between entries in the access table, other names in the

access table must be searched to perform a closure on the new alias. There are two general

types of closure required: common su�x closure and transitive closure. Both will be examined,

assuming a new alias between the names x� and y has just been formed.

Common su�x aliases are those which must hold, given the newly created alias holds. They

can be derived by symbolic manipulation of the access table names for the newly aliased accesses,

looking for pairs of access table entries with names which have a common su�x appended to

the original pair. For example, given the alias above, a common su�x alias would be added

between access table entries with the names x � � and y�, if they exist.

Simple transitive closure must also be performed after a new alias is formed. It looks for

other aliases of x� and y and forms the transitive alias. For example, if y were previously

aliased to z, a new alias between x� and z must be created. A more complex transitive closure

is required for the new alias if an alias between w and x existed when the new alias involving
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x� is created. In this case, an alias between the names w� and y must be added. Note that the

creation of new aliases through closure requires, in turn, closure analysis on these aliases.

6.2 Interprocedural Analysis for C Programs

The existence of pointers in C provides great 
exibility to the programmer, but results

in a greater challenge to the dependence analysis. Through the use of pointer assignment,

the programmer can reference a particular location in memory using di�erent names, thereby

creating an alias between the two names. The problem is exacerbated by the fact that an alias

formed between two global variables in one function may remain valid within other functions

executed after the alias is formed. When performing only intraprocedural dependence analysis,

it must be assumed that any global pointer variable could have been aliased to any other global

variable by a previously executed function. Additionally, if an alias is formed from a global

pointer to a local pointer within the function, the local pointer must also be assumed to alias

to all other global variables. These conservative assumptions required to ensure correctness are

likely to seriously inhibit the e�ectiveness of dependence analysis.

An additional aliasing problem is created by procedure binding. If a pointer or array

variable is passed as an argument to a function, C passes the variable by reference, and an

alias is created between the function's formal parameter and the incoming variable. When

doing strictly intraprocedural analysis within a function, the arguments which are used to

call the function are not visible to the function. Again, to ensure correctness, the dependence

analysis must assume that any global variable could be passed as an argument. Thus, all formal

parameters to the function must be conservatively assumed to be aliased to all global variables.

Likewise, it is possible that the calling function could pass the same pointer as arguments to
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two di�erent formal parameters. Without interprocedural analysis, it must be assumed that

any formal parameters used as pointers are aliased.

Though not unique to C, a �nal dependence analysis problem which occurs when inter-

procedural information is not available is the presence of function calls within the function

being analyzed. Without visibility to other functions, the dependence analysis is unable to

determine what global variables the called function may reference or modify. Therefore, the

dependence analysis must conservatively assume that all global variables are modi�ed by the

called function and must add appropriate dependences between the function call and these vari-

ables. Additionally, any arguments passed by reference to the other function could potentially

be modi�ed. These arguments, as well as any other variables aliased to the arguments, must

also be dependent upon the function call.

Each of these problems requires the intraprocedural dependence analysis to make very con-

servative assumptions. As a result, the dependence analysis is likely to generate numerous false

dependences between independent variables. When these false dependences are passed to the

low-level code, important optimization and scheduling opportunities may be missed. Thus, lim-

iting the dependence analysis to a single function at a time, with no visibility to other functions,

can result in signi�cantly degraded performance. Considerable compile-time overhead can also

result from the maintenance of these false dependence arcs.

Interprocedural analysis can be employed to overcome these problems. By providing visibil-

ity to surrounding functions during dependence analysis, overly conservative assumptions can

be avoided. To provide strong dependence analysis to support sync arcs, interprocedural analy-

sis was implemented in the Pcode environment as part of this thesis e�ort. This interprocedural
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analysis gathers alias and side e�ect information and identi�es targets of indirect function calls.

This information is merged back into the code to support later stages of compilation.

In the remainder of this section, the implementation of this interprocedural analysis is

presented. First, the required granularity of the analysis is discussed. This is followed by a

discussion of how the program call graph is built, a task complicated by indirect function calls.

Finally, some details of the implementation are examined.

6.2.1 Granularity of analysis

Early work in interprocedural analysis [51], [53], [64] employed a rather coarse-grain anal-

ysis. Most of the proposed methods examined each function individually, deriving summary

information from the function. The program call graph was then built, and a data-
ow analysis

was performed by iterating over the call graph. This approach produces fairly good results, but

is not fully accurate due to the granularity used. Figure 6.3(a) illustrates why accuracy is lost

using this approach. Within function main, an alias is formed between the variables x and y.

Note that this alias is not formed until after the call to func1 and does not hold within that

function. However, each function is treated as a single node by the interprocedural analysis,

the 
ow information within main is lost and the alias would have to be considered valid within

func1. As a result, a false dependence would be created between the references to *x and *y

in func1.

More recent work in interprocedural analysis of pointer aliasing [54], [65] performs the

analysis at a signi�cantly �ner granularity. Landi and Ryder perform interprocedural analysis

on a interprocedural control 
ow graph (ICFG), which is essentially the union of the program

call graph and the individual functions' control 
ow graphs, augmented by entry, exit, and
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main ( )

{

    int  *x, *y;

    
    *x = 4;

    func1();

    x = y;

    func2();

}

Entry: main

Exit: main

*x = 4;

Call func1

Ret func1

x = y;

Call func2

Ret func2

Entry: func1

*y = 5;

Exit: func1

Entry: func2

b = 0;

Exit: func2

a = *x

    a = *x;

    *y = 5;

}

func2 ( )

{

    int a;

{

func1 ( )

    int b;

}
    b = 0;

(a)  Sample program (b) Interprocedural control flow graph

Figure 6.3 Accuracy Loss of Low-Granularity Interprocedural Analysis.

return nodes. Figure 6.3(b) illustrates the ICFG for the program from Figure 6.3(a). Just

as traditional data-
ow analysis iterates over a function's control 
ow graph, interprocedural

analysis iterates over this ICFG. Due to this �ner granularity, the accuracy of the analysis is

increased.

Although the �ner-granularity approach provides an increase in the precision of the analysis,

it pays for this precision with added complexity. Note that with the ICFG, the entire program

must essentially be loaded into memory simultaneously. In contrast, the coarser granularity
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approach examines one function at a time, and must only process the summary information for

the entire program. Much of the research using this �ner granularity has dealt with relatively

small programs. It remains to be seen whether this approach is practical on large C programs

in terms of both the time required for analysis and the memory requirements.

In determining the granularity of analysis to be used for the interprocedural analysis to

support sync arcs, therefore, the tradeo�s between precision and complexity must be consid-

ered. The essential question is whether the added precision of the �ner-granularity approach

will make a signi�cant di�erence in the performance of low-level optimization and scheduling.

Traditionally, source-level dependence analysis has been applied to source-to-source transfor-

mations, requiring very precise analysis. For many loop transformations, a single ambiguous

dependence is su�cient to prevent the transformation. In contrast, low-level transformations

may be much less sensitive to slight imprecisions in the analysis. For example, if the majority

of the ambiguous dependences are resolved during code scheduling, a single unnecessary depen-

dence may not result in signi�cant performance degradation. Therefore, dependence analysis

to support low-level transformations, although requiring good precision, may be more tolerant

of slight imprecisions than dependence analysis for source-level transformations.

The interprocedural analysis chosen to support sync arcs for this thesis uses the coarser-

grain approach of iterating over the program call graph rather than the ICFG. It is believed

this analysis will provide su�cient precision to allow aggressive low-level code optimization and

scheduling. The results presented in Chapter 7 support this supposition.
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6.2.2 Building the program call graph

For languages which do not support indirect function calls, a single pass through each of

the functions is su�cient to resolve the program call graph. However, indirect function calls

(sometimes referred to as function or procedure variables) signi�cantly complicate the problem

of building the call graph. Because the actual function being called by an indirect function

call may be stored in a global variable or passed into the function via the formal parameters, a

simple intraprocedural analysis of the function may be insu�cient to determine the target, or

targets, of an indirect function call.

Figure 6.4 illustrates this problem, using code segments from the SPEC-CINT92 benchmark

023.eqntott. Portions of the two functions which perform quicksort are shown. The top-level

function, qsort, receives the function variable compar as a formal parameter. The function

assigns the variable to a global variable qcmp, and then calls the low-level routine qst, which

actually performs the recursive sort. The compare function pointer is passed to qst via the

global variable qcmp. Thus, the indirect function call within qst is performed using a value

which was �rst passed through a procedure binding, and then through a global variable. An

intraprocedural analysis of these functions would be unable to resolve the indirect function call

and the program call graph could not accurately be built.

One approach to this problem is to simply search the program for all function names which

are ever assigned to function variables. All indirect function calls could then be assumed

to potentially call all of these functions. A possible re�nement of this approach would be

to examine the function arguments of the indirect function call and to assume an indirect

function call only calls those functions which match its parameter list. Unfortunately, this

simple approach results in many incorrect edges in the call graph. For interprocedural data-
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    .
    .    .

qsort (base, n, size, compar)

    char *base;

    int n;

    int size;

    int (*compar)();

{

    qcmp= compar;

qst (base, max)

    char *base, *max;

{

}

    ((*qcmp)(jj=base,i) > 0)

}

    if ((*qcmp)(j, lo) > 0)

        j = lo;

    qst (base, max);

Figure 6.4 Interprocedural Function Pointers.


ow analysis, these extra edges will lengthen the analysis and reduce its precision. Additionally,

the imprecision may inhibit important transformations which rely upon the call graph (e.g.,

inlining).

An adequate solution to this problem requires interprocedural data-
ow analysis. As seen

in Figure 6.4, the possible values of the function variable must be propagated through several

functions from where they are de�ned to where they are used. Unfortunately, interprocedural

data-
ow analysis requires the presence of a program call graph. Thus, the program call graph

and the interprocedural analysis are mutually dependent. One solution is to do both simulta-
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signals ( )

{

    signal (SIGQUIT, quit);

    signal (SIGPIPE, quit);

    signal (SIGTERM, quit);

    signal (SIGALRM, time_out);

    signal (SIGFPE, quit);

    signal (SIGBUS, quit);

}

Figure 6.5 Indirect Function Calls Through Library Functions.

neously, iteratively building the call graph as data-
ow is being performed. Wiehl discusses an

approach similar to this [53]; however, actual details to his approach are sketchy.

The approach used for this thesis builds the control 
ow graph while performing data-
ow

analysis. The data-
ow analysis is performed iteratively, initially starting with only the function

main. As call targets are resolved during the iterative analysis, new functions are added to both

the 
ow analysis and to the call graph. Further details of the iterative analysis are provided in

the next section.

This approach has been tested across the �fteen C benchmarks from the benchmark suite,

of which six had indirect function calls. All function calls for all benchmarks were successfully

resolved and accurate call graphs were generated, with one exception. The technique has

di�culty with indirect calls made within library functions. In particular, this occurs with the

library function signal. Figure 6.5 illustrates this problem, using the signal handling routine

from the benchmark 072.sc. This routine de�nes user handlers (quit and time out) to be invoked

in the case of errors. These two routines are never directly called within the user code, but are

only provided as function pointers to the signal library. Because they are not called by user

code, they cannot accurately be attached to the call graph.
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6.2.3 Implementation

The �rst step in implementing interprocedural analysis is to understand the desired output.

To support dependence analysis, the output of the interprocedural analysis should produce

accurate alias and side e�ect information. For each function, the analysis should identify the

aliases between pairs of global variables, the aliases between global variables and the function's

formal parameters, and the aliases between the formal parameters. Aliases involving local

variables can then be resolved for each function using intraprocedural analysis. The side e�ect

information required for each function is simply a list of the global variables de�ned and used

by the function, or by any functions reachable through calls made by this function. Also, side

e�ect information regarding passed arguments is necessary and is used to accurately de�ne the

memory dependence between memory operations and subroutine calls.

To provide this desired information, interprocedural analysis is performed in three phases

(Figure 6.6). During the �rst phase, data required to support the interprocedural analysis are

extracted from each function in the program. The second phase of interprocedural analysis

then performs an iterative data-
ow analysis on this summary information from each function.

Finally, the results of the interprocedural analysis are used to perform accurate dependence

analysis for each function.

Extracting summary data

Rather than attempting to bring the entire program into the compiler at one time and

performing data-
ow over the entire program, this thesis employs an approach which makes a

pass over each function individually in the program. During this pass, summary information

for each function is extracted and stored in an interprocedural data �le. Thus, the interproce-
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Phase I

Phase II

Phase III

Perform iterative

data flow analysis

Merge interprocedural
data into functions

data from functions
Extract required

Figure 6.6 Phases of Interprocedural Analysis.

dural analysis must only perform data-
ow using the summary information rather than holding

the entire program in memory. During the �rst phase of interprocedural analysis, the sum-

mary information is extracted. The following data are included in each function's summary

information:

(1) list of formal parameters

(2) list of function calls, including parameters

(3) global variables de�ned

(4) global variables referenced

(5) aliases created

(6) formal parameters de�ned

(7) assignments of function names to pointers

(8) variables returned.
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The list of a function's formal parameters is included in the summary information to support

procedure binding. When the function is called with a global variable which is passed by

reference, an alias is formed between the global variable and the function's corresponding formal

parameter. To allow creation of this alias, the names of the formal parameters are included in

the summary information. Because aliases can only be created if the argument is passed by

reference, only the names of formal parameters which are used as pointers will be listed.

The summary information also maintains a list of the function calls made from within the

function. Information on function calls is used to build the call graph and to aid in procedure

binding during data-
ow analysis. For each function call, several pieces of information are

recorded in the summary information. First, the call mode, whether direct or indirect, is

speci�ed. For direct calls, the name of the called function is speci�ed. For indirect calls, the

function variable is speci�ed. Additionally, all variables which alias (intraprocedurally) with the

function variable are listed as variables which could contain the function name. The second type

of information maintained for each call is the call arguments. As with the function variables,

any aliases of the argument variables are also listed. The �nal information extracted for each

call is the return variable for the call. This is maintained to allow binding of the return variable,

which can also create aliases.

Because the aim of the interprocedural analysis is to provide accurate aliasing and side e�ect

information, this type of information must obviously be included in each function's summary

information. Therefore, the summary contains a list of the global variables de�ned and refer-

enced by the function. Through data-
ow analysis, this list of global variables can be updated

to re
ect the side e�ects of the function and any functions reachable through calls from this

function. Central to the interprocedural alias analysis is the list of intraprocedural aliases cre-
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ated by each function. The summary information stores only aliases created within the function

involving global variables or formal parameters. No aliases involving local variables are stored

here, because they do not contribute to the interprocedural data-
ow analysis. The only local

aliases which might a�ect the analysis are those which alias either formal parameters or call

arguments. These aliases have already been recorded in the call section of the summary, and are

not necessary here. Another item included in the summary information is a list of the formal

parameters which are de�ned within the function. This is provided to allow the interprocedural

analysis to determine whether the function causes side e�ects on its incoming arguments.

To support building the call graph in the presence of function pointers, the summary infor-

mation also contains assignment of function names to pointer variables within the function. For

function names which appear directly as a call argument, the name is stored in the call section.

The �nal piece of information recorded for each function is a list of the variables returned by

the function. During binding for a function return, these variables can be aliased to the variable

in the calling function which stores the return value.

Iterative analysis

The second phase of interprocedural analysis performs an iterative data 
ow analysis of the

summary information collected during the previous phase. This phase does not examine the

individual functions again; instead only the summary information is used as input. The output

of this phase of the analysis is a call graph of the program and updated summary information

for each of the functions. This updated summary information provides interprocedural side

e�ect and alias information and lists the actual targets of indirect function calls.

124



During this phase of the analysis, data-
ow analysis is performed on the program call graph,

with individual functions as the nodes in the graph. The e�ciency of the data-
ow algorithm

is dependent upon the order in which nodes in the graph are visited. For example, for an

acyclic graph in which information 
ows only from the parent function to the child function,

the data-
ow requires only a single pass over the graph if performed as a pre-order traversal

of the call graph. However, for programs whose call graph contains cycles, the analysis must

be performed iteratively until no further changes in the data occur. Therefore, the type and

direction of the data 
ow during the analysis need to be examined.

Building the call graph, which is performed iteratively using the function main as a seed, is

a top-down type of data-
ow. As new functions are added to the graph, they in turn add more

children below them in the graph. The direction of data 
ow for alias information is less clear.

Because of the granularity of the analysis, global aliases propagate both up and down through

the graph. Local aliases formed through procedure binding are passed downward in the graph;

however, the aliases formed by return binding tend to 
ow upward. Likewise, possible values

which can be assigned to function pointers can be propagated up and down through the graph

by calls and returns.

Side e�ect analysis is clearly a bottom-up type of analysis. For each function, the set of

global variables modi�ed is simply the union of the variables modi�ed by the function itself, and

the variables modi�ed by each of its children. Thus, the global side e�ect data is propagated

upward through the call graph from the leaves, and a bottom-up analysis is most e�ective.

Likewise, argument side e�ects are most e�ciently found through a bottom-up analysis. Because

a function's formal parameters may be passed as an argument, determining whether the formal

parameter is modi�ed is again a union of whether the function itself modi�es the variable and
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whether any function to which the variable is passed modi�es it. Therefore, side e�ect data for

formal parameters also 
ow upward through the graph.

For this implementation, the data-
ow was divided into two passes, each of which is per-

formed iteratively. First, a top-down data-
ow is performed, 
owing alias and function pointer

information through the graph. The call graph is fully resolved during this pass. Following

this pass, a bottom-up data-
ow is performed to obtain global variable side e�ect and function

argument side e�ect data. The top-down and bottom-up passes are detailed in the following

sections.

Top-down pass. The top-down data-
ow is initiated by adding the function main to the

call graph. When a new function is added to the call graph, several steps are performed. First,

the function is appended to the list of functions being analyzed. The function is then analyzed

for direct function calls; any functions called through direct function calls are recursively added

to the call graph. Because of the recursive nature of adding arcs to the call graph during

function initialization and because most function calls are direct, the majority of the call graph

is generally built during function initialization, before any data-
ow is actually performed.

Finally, the summary information within the function is examined and any information global

in scope, such as assignments to global function pointers made within the function, are added

to global data structures.

During top-down data-
ow analysis, each node is visited in the order it was initialized. This

in general equates to a depth-�rst search of the call graph. During each visit of a node, the

following tasks are performed:

(1) Bind incoming arguments.

(2) Bind return variables.
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(3) Bind incoming function pointer values.

(4) Bind return function pointer values.

(5) Update side e�ected function pointer arguments.

(6) Check global function pointer values.

The �rst two tasks update the alias information 
owing through the graph. To bind incoming

arguments, the function follows all incoming arcs (to parent nodes) and determines if the aliases

for any incoming arguments have changed. If any incoming argument is now aliased to a new

global variable, binding requires that the global variable be aliased to the corresponding formal

parameter within the function. The creation of this new alias between the global and formal,

in turn, may require other data structures within the function to be updated. For example, if

the formal is an argument (or alias of an argument) to a function call, then the global variable

must now be added to the possible argument list for that function call.

Binding of return variables is similar to binding incoming arguments. All outgoing arcs

in the call graph to child functions are followed to determine if the list of variables possibly

returned has changed. If so, the variable within the caller which receives the return value must

be aliased to the new return variable.

Figure 6.7 illustrates how aliases propagate due to binding of incoming arguments and

return variables. During a visit of func1, a search of its parent functions will �nd that the

global variable g is passed as an argument and will create an alias between g and f1. Because

f1 also appears as an argument in the call to func2, this alias is recorded at the call site. When

func2 is visited, its search of incoming arguments will �nd g as a possible alias to its incoming

parameter, and an alias of g and f2 is created within func2. Thus, the alias due to binding

has been propagated through multiple function calls. Note also that func2 returns a global

variable h. During the visit to func1, binding of return variables will form an alias of h to l.
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main ( )

{

    int a;

    a = 4;

    g = &a;

    func1(g);

}

func1 (int *f1)

{

    int *l;

    l = func2(f1);

}

func2 (int *f2)

{

    int *k;

    *h = *f2 + 1;

    return (h);

}

int *g, *h;

Figure 6.7 Aliases Created by Binding.

To facilitate building the call graph when indirect function calls are present, the other four

tasks in top-down data-
ow deal with updating possible values for function pointers. The �rst

two of these, binding incoming function pointer values and binding return function pointer

values, correspond directly to the binding steps discussed above. Rather than creating aliases

during the binding, function pointers are assigned possible values. In the same way that aliases


ow through the call graph, possible function pointer values also propagate. If a function

pointer which has been updated with a new possible value is used within the function in an

indirect function call, a new target of the call has been de�ned and the call graph is updated

with this new arc.
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{

func3 ( )

}

{

}

    func2(fptr);

func2 (int (*f2)() )

    f2 = func3;

}

func1 (int *f1)

int (fptr*)();

{

Figure 6.8 Side e�ects on Function Pointer Arguments.

Updating side e�ected function pointer arguments involved the 
ow of data from the child to

the parent function via the function arguments being modi�ed. This is illustrated in Figure 6.8.

The function func1 passes its local function pointer fptr to func2 as an argument. The variable

is modi�ed by func2, giving the pointer the address of func3 as its value. The data-
ow analysis

must handle value side e�ects to successfully propagate function pointer values and accurately

build the call graph. The �nal task done when visiting a node is to check for global function

pointers with new possible values. If the global function pointer is used in the function, the call

graph is updated appropriately.

Bottom-up pass. Following the top-down pass, a bottom-up data-
ow analysis is per-

formed to resolve side e�ects. This analysis is much simpler and tends to iterate less than the

top-down analysis. The work performed during this pass also more closely resembles a classic

data-
ow task. The bottom-up analysis is performed by iteratively visiting each function in the
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call graph, in the reverse order to which the functions were added to the graph. Two tasks are

performed each time a function node is visited.

The �rst task performed during the visit of a node is to propagate global de�nes and uses up

the call graph. The set of global variables de�ned or used by a function is simply the union of

the set of variables de�ned or used by all child nodes, plus the global variables actually de�ned

or used within the function. The second task is to propagate de�nitions of formal parameters

up the call graph. In Figure 6.9, to determine whether a side e�ect is caused on the variable g

by the call to func1 inside main, the side e�ect of the formal parameter f2 in func2 must be

propagated up to func1. In func1, this creates a side e�ect on f1, which is then propagated to

main to indicate a side e�ect on g. For this task, then, when a node is visited, all function calls

within the node are examined to determine whether they pass formal parameters as arguments

to the callee. If so, the callee is examined to determine whether it modi�es that particular

argument. If the parameter is modi�ed, then the formal parameter within the node being

visited is marked as having been modi�ed.

Merging interprocedural data

The �nal phase of interprocedural analysis entails merging the results back into the depen-

dence analysis for each function. Each function is re-examined individually, and dependence

analysis is performed. This time, however, the results of the interprocedural analysis are avail-

able to provide increased accuracy. The interprocedural information is used in various ways.

The interprocedural analysis determined the possible targets of all indirect function calls.

This list of possible targets is merged into the Pcode data structure as an expression pragma as-

sociated with the indirect function call. The information can then be used during dependence
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main ( )

{

    int a;

    a = 4;

    g = &a;

    func1(g);

}

func1 (int *f1)

{

    int *l;

    l = func2(f1);

}

int *g;

{

func2 (int *f2)

}

    *f2 = 1;

Figure 6.9 Propagation of Side e�ects on Formal Parameters.

analysis: knowing what functions are potentially called by an indirect function call allows

accurate dependences to be added between function calls and memory references, using inter-

procedural side e�ect information. During subsequent compilation down to low-level IR, this

list of targets is preserved and made available for use by other modules.

The interprocedural data also provide an updated list of aliases which hold within each

function. During dependence analysis of the individual functions, these aliases are simply

used to create additional aliases between entries in the access table, which will in turn create

dependences between appropriate memory references.
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The �nal information provided by interprocedural analysis is the global variable and for-

mal parameter side e�ect information, which is used to provide accurate memory dependences

between function calls and memory operations within the function being analyzed. To deter-

mine whether a read of a global variable is memory dependent on a function call, the set of

global variables de�ned by the target function is examined. (Although only the function being

compiled is visible to the compiler, the interprocedural summary information for all functions

is available.) Similarly, to determine whether a write of a global variable is dependent on a

function call, both the set of globals de�ned and the set of globals used must be examined,

and the appropriate dependence added. To determine whether a variable which appears as an

argument to a function call should be dependent upon the function call, the callee summary

information must be examined to determine if the callee modi�es the corresponding formal

parameter.

6.3 Dependence Analysis Summary

In this chapter, the C dependence analysis implemented within the IMPACT compiler to

support sync arcs has been presented. Prior to this thesis, IMPACT supported dependence

analysis only for programs originally compiled from Fortran. The required modi�cations to

this dependence analysis to support C semantics, including support for pointer aliasing, is

presented. The need for interprocedural dependence analysis, and its required granularity, is

also discussed. A coarse-grain interprocedural analysis, which iterates on the program call

graph rather than an interprocedural control 
ow graph, is proposed and implemented. The

di�culty of building the call graph in the presence of indirect function calls is also discussed and

a solution provided. The interprocedural analysis was tested on a suite of 15 benchmarks and
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shown e�ective at providing accurate dependence information to support sync arcs. Results of

this testing is presented in Chapter 7.
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CHAPTER 7

EXPERIMENTAL RESULTS

In previous chapters, the sync arc technique for improving static memory disambiguation for

low-level code was proposed, and the implementation of source-level interprocedural dependence

analysis to support sync arcs was described. In this chapter, the potential impact of sync

arcs on performance is quantitatively studied. A suite of 29 benchmarks, including 15 integer

and 14 
oating-point programs, is evaluated to better understand the ability of sync arcs to

provide improved memory disambiguation. Following the analysis of the sync arc technique, a

comparison of the static and dynamic techniques proposed in this thesis is performed.

7.1 Sync Arcs

To measure the performance of the sync arc technique, the suite of benchmarks was com-

piled, with sync arcs added during the Pcode phase. Each benchmark was compiled in several

di�erent ways, varying the modules which used the sync arc information to aid memory disam-

biguation. The di�erent versions of the low-level code were then simulated using the method-

ology described in Section 2.4. Simulations were performed for architectures with issue width

ranging from 4-issue to 12-issue, using the functional unit con�gurations shown in Table 7.1.

The results obtained for the 15 integer benchmarks are presented, followed by the results for

the 14 
oating-point benchmarks.
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Table 7.1 Number of Functional Units.

Functional 4 6 8 12
Units Issue Issue Issue Issue

Int ALU 2 3 4 6
FP ALU 2 3 4 6
Memory 2 2 4 6
Branch 2 2 4 4

7.1.1 Integer benchmarks

The 15 integer benchmarks were all originally written in C and are compiled using the C

interprocedural dependence analysis developed for this thesis. Programs written in C tend

to be very control-intensive, resulting in small basic blocks. Although techniques such as the

superblock reduce the impact of these branches on scheduling and optimization, processor

performance may be highly dependent upon the ability to predict and execute multiple branches

per cycle.

The integer benchmarks evaluated include nine common Unix benchmarks and the six

SPEC-CINT92 benchmarks. For each experiment, separate graphs showing Unix and SPEC-

CINT92 results are provided.

Speedup on 8-issue architecture

Figures 7.1 and 7.2 show the speedup of code compiled with and without sync arcs over a

baseline single-issue architecture. The bar on the left for each benchmark re
ects the speedup

of an 8-issue architecture for code compiled without using sync arcs, relative to the baseline

single-issue architecture. The right-hand bar shows the speedup for the same 8-issue architec-

ture using the identical compilation path, except that sync arcs are employed to aid memory
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Figure 7.1 Sync Arc 8-Issue Unix Results.

disambiguation. Figures 7.3 and 7.4 show similar information, except that here the ratio of

performance between the sync arc and non-sync arc cases is shown. For example, for the

benchmark grep in Figure 7.1, the non-sync arc code provided a 3.2 times speedup over the

base case and the sync arc code provided a 4.3 times speedup. This ratio of these two speedups

is re
ected as a 1.34 times speedup in Figure 7.3.

The data demonstrate that the sync arc technique is successful at removing ambiguous

memory dependences which the existing low-level memory disambiguation was unable to elim-

inate. Sync arcs resulted in more than 20% speedup over the same architecture without sync

arcs for six of the benchmarks, and signi�cantly greater speedup than this in a few cases. The

improved memory disambiguation signi�cantly impacted overall ILP; for most benchmarks,

the code compiled with sync arcs provided greater than 2.5 times speedup over the baseline

single-issue architecture.
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Figure 7.2 Sync Arc 8-Issue SPEC-CINT92 Results.
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Figure 7.3 Sync Arc 8-Issue Unix Ratios.
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Figure 7.4 Sync Arc 8-Issue SPEC-CINT92 Ratios.

At �rst glance, an overall speedup of 2.5 may appear somewhat low for an 8-issue processor.

However, the potential speedup available as the number of issue positions and functional units

is increased is limited by several factors (other than memory and control dependences). First,

although an 8-issue architecture is being modeled, only 4 ALUs were available per cycle. Second,

because inlining has not been implemented at the Pcode level, it was not performed for this

code, limiting the ILP which was exposed. Also, performance improvements are somewhat

hidden by the cache and branch prediction e�ects being simulated. For example, if 30% of the

execution cycles are lost in the single-issue architecture due to cache and branch prediction

misses, the 8-issue architecture would have to provide much greater than 2.5 times speedup

during e�ective cycles to achieve an overall 2.5 times speedup on the program. This e�ect is

especially evident in the benchmark 026.compress, whose cache hit rate during simulation was

only 77%. Although cycle estimates provided by the IMPACT scheduler indicated a potential
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24% speedup due to sync arcs, only about 12% speedup was obtained from simulation results

due to the cache e�ects.

One particularly interesting result was for the benchmark cmp, which obtained a 17.8 times

speedup over the single-issue processor and an 11.8 times speedup over the 8-issue processor

without sync arcs. This extreme e�ect results because cmp is a very small benchmark whose

execution is dominated by a single inner loop. Figure 7.5 shows source code for this inner

loop, pruned to show the main trace through the loop. Figure 7.6(a) shows the Lcode for one

iteration of the loop after optimization, without the bene�t of sync arcs. The loop contains

26 instructions, including several stores. Figure 7.6(b) shows the inner loop for the sync arc

code. The inner loop contains only 7 instructions, with no stores. Because of the improved

memory disambiguation, the remainder of the instructions was able to be removed from the

loop. As a result, the non-sync arc code executes more than 3 times the number of dynamic

instructions as the sync arc code. Additionally, the store instructions in the non-sync arc code

inhibit subsequent code scheduling; the sync arc code is able to obtain an overall instructions

per cycle (IPC) value of 4.82 for the program, compared with 1.21 IPC for the non-sync arc

code. The combination of these two factors results in an overall 11.8 times speedup for the sync

arc code.

Improved memory disambiguation is not able to increase performance for all benchmarks. A

notable case is the benchmark 023.eqntott, from SPEC-CINT92. This benchmark is dominated

by a single loop which accounts for over 80% of the execution time. This loop contains no

store operations, and memory disambiguation is not a factor in exposing ILP. Note that in Fig-

ure 7.2 the non-sync arc code for 023.eqntott already performs well, showing the best of speedup

compared to the single-issue architecture of any of the SPEC-CINT92 benchmarks. Another
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while(1) {

chr++;

c1 = (--(file1)->__cnt < 0 ? __filbuf(file1) : (int) *(file1)->__ptr++);

c2 = (--(file2)->__cnt < 0 ? __filbuf(file2) : (int) *(file2)->__ptr++);

if(c1 == c2) {

if (c1 == '\n') line++;

continue;

}

}

Figure 7.5 Source Code for Inner Loop of cmp.

benchmark which showed little bene�t from sync arcs was 022.li, because 022.li contains many

heavily executed functions which contain a single acyclic basic block. For this benchmark, in-

lining is required to expose available ILP, and better results for sync arc code are anticipated

after Pcode inlining is available.

Relative bene�t of optimization and scheduling

For the benchmark cmp, large performance bene�ts were obtained by both optimization,

which reduced the number of dynamic instructions, and scheduling, which exposed the available

parallelism to the hardware. An experiment was performed to measure the relative bene�t

of sync arcs to optimization and scheduling. Figures 7.7 and 7.8 show the results of this

experiment, which again assumed an 8-issue architecture. For each benchmark, three bars are

shown, each re
ecting speedup over code compiled without sync arcs. The leftmost bar re
ects

the speedup if sync arcs are used to aid classic and ILP optimizations, but not code scheduling.

The middle bar shows the speedup achieved when sync arcs are used to aid scheduling, but

not optimization. The right bar shows the overall speedup when sync arcs are applied to both

optimization and scheduling.
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(op 158 ld_i <LF> [(r 179 i)] [(r 157 i)(i 0)]

(op 160 add [(r 180 i)] [(r 179 i)(i 1)]

(op 161 st_i <LF> [] [(r 157 i)(i 0)(r 180 i)]

(op 162 ld_i <LF> [(r 181 i)] [(r 158 i)(i 0)]

(op 163 ld_i [(r 182 i)] [(r 181 i)(i 0)]

(op 164 add [(r 183 i)] [(r 182 i)(i -1)]

(op 165 st_i [] [(r 181 i)(i 0)(r 183 i)]

(op 168 blt [] [(r 182 i)(i 1)(cb 73)]

(op 169 ld_i <LF> [(r 184 i)] [(r 158 i)(i 0)]

(op 170 ld_i [(r 185 i)] [(r 184 i)(i 4)]

(op 172 add_u [(r 186 i)] [(r 185 i)(i 1)]

(op 173 st_i [] [(r 184 i)(i 4)(r 186 i)]

(op 174 ld_uc [(r 1 i)] [(r 185 i)(i 0)]

(op 176 ld_i <LF> [(r 187 i)] [(r 160 i)(i 0)]

(op 177 ld_i [(r 188 i)] [(r 187 i)(i 0)]

(op 178 add [(r 189 i)] [(r 188 i)(i -1)]

(op 179 st_i [] [(r 187 i)(i 0)(r 189 i)]

(op 182 blt [] [(r 188 i)(i 1)(cb 49)]

(op 183 ld_i <LF> [(r 190 i)] [(r 160 i)(i 0)]

(op 184 ld_i [(r 191 i)] [(r 190 i)(i 4)]

(op 186 add_u [(r 192 i)] [(r 191 i)(i 1)]

(op 187 st_i [] [(r 190 i)(i 4)(r 192 i)]

(op 188 ld_uc [(r 2 i)] [(r 191 i)(i 0)]

(op 190 bne [] [(r 1 i)(r 2 i)(cb 54)]

(op 191 beq [] [(r 1 i)(i 10)(cb 50)]

(op 192 beq [] [(r 1 i)(i -1)(cb 52)]

(a) Non-sync arc code

(op 168 blt [] [(r 219 i)(i -7)(cb 82)]

(op 174 ld_uc [(r 1 i)] [(r 210 i)(i -8)]

(op 182 blt [] [(r 201 i)(i -7)(cb 83)]

(op 188 ld_uc [(r 2 i)] [(r 192 i)(i -8)]

(op 190 bne [] [(r 1 i)(r 2 i)(cb 84)]

(op 191 beq [] [(r 1 i)(i 10)(cb 85)]

(op 192 beq [] [(r 1 i)(i -1)(cb 86)]

(b) Sync arc code

Figure 7.6 Lcode for Inner Loop of cmp.
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Figure 7.7 Sync Arc 8-Issue Unix Optimization Versus Scheduling.
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Figure 7.8 Sync Arc 8-Issue SPEC-CINT92 Optimization Versus Scheduling.
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Note that the combined e�ect of using sync arcs for both optimization and scheduling is

less than the product of the speedup when using sync arcs individually for either optimization

or scheduling, because there is overlap in how the speedup is achieved. For example, if a load

can be moved outside a loop during optimization, speedup is achieved because fewer operations

must be executed. If the load is not removed by optimization, scheduling may be able to hide

the cost of the load by scheduling it in an otherwise empty slot. However, if both optimization

and scheduling use sync arcs, the optimization will remove the load and the scheduler will be

less able to obtain speedup. Thus, the bene�t is achieved by either optimization or scheduling,

but not both. However, in some cases, there is a complementary e�ect, such as the cmp example

in Figure 7.6. In this example, optimization removed stores from the loop, which resulted in

added freedom to the scheduler.

Examining the data in Figures 7.7 and 7.8, no clear pattern emerges as to whether improved

disambiguation is more important to optimization or scheduling. Benchmarks such as cmp, lex,

and wc achieve most of their speedup due to improved optimization. Others, such as eqn and

grep, achieve speedup primarily as the result of scheduling. In general, results indicate that im-

proved memory disambiguation can signi�cantly enhance the capabilities of both optimization

and scheduling.

Varying the number of functional units

For narrow-issue architectures, it may be less critical for the compiler to expose instruction-

level parallelism. However, as architectures employ more functional units and issue multiple

instructions per cycle, the compiler must attempt to expose su�cient parallelism to make

e�ective use of available resources. An experiment was performed using architectures with
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Figure 7.9 Sync Arc Unix Results for Di�erent Issue Rates.

various amounts of resources to determine how e�ectively IMPACT compilation with sync arcs

makes use of increased or decreased resources. Figures 7.9 and 7.10 show the results of this

experiment for integer benchmarks. These �gures show the speedup which the 4, 6, 8, or 12

issue architecture would achieve using code compiled with sync arcs over the baseline single-issue

architecture.

The desired outcome is to see increasing speedup as more function units are made available.

For the majority of benchmarks tested, additional processor resources do provide a signi�cant

performance increase. This indicates that su�cient ILP is being exposed to the hardware in

many important sections of the code. However, for several of the benchmarks, only modest

improvements are achieved by the wider issue architectures. For example, although processor

resources are increased threefold (from 4- to 12-issue), the benchmarks tbl and 022.li achieve only

minor performance bene�t, indicating ILP is not being adequately exposed to the hardware.
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Figure 7.10 Sync Arc SPEC-CINT92 Results for Di�erent Issue Rates.

The lack of inlining during these experiments was a major factor in the inability to expose ILP,

particularly for these two benchmarks.

An interesting result seen particularly in the Unix benchmarks is the stairstep e�ect, in

which the results for 8- and 12-issue architectures are similar, but signi�cantly increased over

the 4- and 6-issue architectures. Notice in cmp, grep, lex, and wc in particular that the results for

4- and 6-issue architectures are nearly equivalent, yet signi�cantly less than the performance

for 8- or 12-issue. This stairstep e�ect is the result of the number of branches the di�erent

architectures can issue per cycle. The 4- and 6-issue architectures can execute only 2 branches

per cycle, while the 8- and 12-issue architectures can execute 4 branches per cycle. This indicates

that the performance for benchmarks which exhibit this stairstep is being directly limited by

the ability to execute branches. For example, the code for cmp in Figure 7.6(b) shows that the

inner loop has been reduced to 8 instructions, 6 of which are branches. Thus, the ability to

e�ectively execute multiple branches per cycle drives processor performance.
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E�ectiveness of coarse-grain interprocedural analysis

To provide interprocedural aliasing and side-e�ect information, the dependence analysis

implemented for this thesis employs a low-granularity interprocedural analysis. (For further

details on this analysis, which iterates on the program call graph, see Section 6.2.) To measure

the accuracy of this analysis, the performance of sync arc code generated by the interprocedural

analysis was compared to \ideal" sync arc code obtained without interprocedural analysis. This

sync arc code without interprocedural analysis makes the unsafe assumption that no aliases

hold in a function except those created within the function. Surprisingly, all �fteen Unix and

SPEC-CINT92 benchmarks successfully compiled and executed despite this unsafe assumption.

Because of this, the e�ectiveness of the interprocedural analysis at limiting unnecessary aliasing

can be measured against an \ideal" analysis which has no interprocedural aliasing.

Figures 7.11 and 7.12 show the results of this analysis. In these �gures, the performance

of the code using the implemented interprocedural analysis is shown relative to the perfor-

mance for the \ideal" analysis. A positive performance di�erence for a benchmark indicates

that the interprocedural code performed better, while a negative di�erence indicates the ideal

code compiled without interprocedural analysis performed better. A large negative number

(>10%) would indicate that the interprocedural analysis added aliases (possibly correct and

necessary) which slowed performance compared to the non-interprocedural code. Note that for

all 15 integer benchmarks, no signi�cant performance di�erence was seen between the inter-

procedural and non-interprocedural cases. This indicates that the coarse-grain interprocedural

analysis employed to support low-level code transformations provided su�cient accuracy. The

minor variations seen (�3%) can be attributed to the typical variations obtained from detailed
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Figure 7.11 E�ect of Interprocedural Analysis - Unix.

simulation (e.g., deleting an instruction changes the addresses of branches and may change the

e�ectiveness of the branch prediction scheme).

7.1.2 Floating-point benchmarks

The benchmarks from SPEC-CFP92 were also evaluated to measure sync arc performance.

Of the 14 
oating-point programs, 12 are Fortran programs which were translated to C using

the f2c tool. Floating-point programs generally display signi�cantly di�erent characteristics

than integer programs. Floating-point programs are usually much less control intensive: they

tend to have larger basic blocks than integer C programs. They also tend to have regular loop

structures, which perform more average iterations than integer code, and make frequent use

of array data structures. These factors would tend to make ILP compilation for 
oating-point

code an easier task, assuming good memory disambiguation is available for array references.
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Figure 7.12 E�ect of Interprocedural Analysis - SPEC-CINT92.

The following sections present the experimental results for 
oating-point benchmarks. The

methodology and graph format are identical to the results presented in the integer section.

Speedup on 8-issue architecture

Figure 7.13 presents the speedup results for 
oating-point code compiled with and without

sync arcs on an 8-issue processor, baselined to the single-issue processor. Because the existing

Lcode memory disambiguation has limited e�ectiveness for array references, the results for

the non-sync arc code are relatively poor. A speedup of less than 2 is achieved for most

programs, despite the ability to issue 8 instructions per cycle. With the bene�t of improved

memory disambiguation, the sync arc code provides substantially better performance for most

benchmarks. Figure 7.14, which shows the speedup of sync arc code relative to non-sync arc

code, indicates that the bene�t of improved memory disambiguation is more pronounced for


oating-point code than for integer code (Figures 7.3 and 7.4).
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Figure 7.13 Sync Arc 8-Issue SPEC-CFP92 Results.
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Figure 7.14 Sync Arc 8-Issue SPEC-CFP92 Ratios.
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for (j = 1; j <= i__1; ++j) {

i__2 = cons_1.m;

for (i = 1; i <= i__2; ++i) {

_BLNK__1.cu[i + 1 + j * 257 - 258] = (_BLNK__1.p[i + 1 + j * 257

- 258] + _BLNK__1.p[i + j * 257 - 258]) * (float).5 *

_BLNK__1.u[i + 1 + j * 257 - 258];

_BLNK__1.cv[i + (j + 1) * 257 - 258] = (_BLNK__1.p[i + (j + 1) *

257 - 258] + _BLNK__1.p[i + j * 257 - 258]) * (float).5 *

_BLNK__1.v[i + (j + 1) * 257 - 258];

_BLNK__1.z[i + 1 + (j + 1) * 257 - 258] = (fsdx * (_BLNK__1.v[i +

1 + (j + 1) * 257 - 258] - _BLNK__1.v[i + (j + 1) * 257 -

258]) - fsdy * (_BLNK__1.u[i + 1 + (j + 1) * 257 - 258] -

_BLNK__1.u[i + 1 + j * 257 - 258])) / (_BLNK__1.p[i + j *

257 - 258] + _BLNK__1.p[i + 1 + j * 257 - 258] +

_BLNK__1.p[i + 1 + (j + 1) * 257 - 258] + _BLNK__1.p[i + (

j + 1) * 257 - 258]);

_BLNK__1.h[i + j * 257 - 258] = _BLNK__1.p[i + j * 257 - 258] + (

_BLNK__1.u[i + 1 + j * 257 - 258] * _BLNK__1.u[i + 1 + j *

257 - 258] + _BLNK__1.u[i + j * 257 - 258] * _BLNK__1.u[

i + j * 257 - 258] + _BLNK__1.v[i + (j + 1) * 257 - 258] *

_BLNK__1.v[i + (j + 1) * 257 - 258] + _BLNK__1.v[i + j *

257 - 258] * _BLNK__1.v[i + j * 257 - 258]) * (float).25;

}

}

Figure 7.15 Source Code for Inner Loop Nest of 078.swm256.

The benchmark 078.swm256 obtained the most dramatic speedup of 4.6 times over code

compiled without sync arcs. Figure 7.15 shows the inner loop nest of this benchmark, respon-

sible for 99% of the execution time. The inner loop is a do all loop, with no cross-iteration

dependences. With the bene�t of sync arcs, the low-level scheduler is able to determine that

all load operations are independent of all stores. The scheduler is able to overlap operations

from di�erent iterations of the unrolled loop and, thus, obtain large speedup. Note that the

array-type structure �elds would be extremely di�cult for low-level memory disambiguation to

handle without the use of source-level information.

For most 
oating-point benchmarks, the sync arc code achieves greater than 2.5 times

speedup over the single-issue processor. Although this speedup is much better than that
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for (i=0;i<n;i++){

tempin = input[i];

output[i] = a0[i] * tempin + state1[i];

}

Figure 7.16 Source Code from 056.ear.

achieved by the non-sync arc code, one would expect more parallelism to be available. In fact,

the ILP achieved for the 
oating-point code was not signi�cantly di�erent than that achieved

for the control-intensive integer code. This is the result of several factors.

As discussed above, the e�ects of detailed simulation hide some of the ILP which has been

exposed. For the benchmark 093.nasa7, scheduler cycle estimates indicated a 5 times speedup

was achieved for the sync arc code, but due to a 77% cache hit rate, the actual speedup obtained

was only about 3.1.

Limitations in the current Pcode dependence analysis inhibits the ILP achieved for several

benchmarks. A good example of this is found in the C benchmark 056.ear. Figure 7.16 shows

source code which is representative of code found in several critical functions in 056.ear. The

arrays input, output, and state1 are all formal parameters to the function. Interprocedural

analysis correctly aliases the arrays input and output, because the same array is passed to

both variables. The third array, state1, is independent of the other two. The problem arises

is that Pcode dependence analysis currently does not have a concept of \exact aliasing," such

that an alias exists and the arrays begin at the same location. Without this concept, the

Pcode dependence analysis must assume loop carried dependences from the store of output to

loads of input in subsequent iterations. After loop unrolling, this dependence severely restricts

scheduling in a loop which actually has no loop carried dependences.

151



L150:

locij = nodplc[tabinf_1.jcpt + locij - 1];

if (nodplc[tabinf_1.jcolno + locij - 1] == j) {

goto L155;

}

goto L150;

L155:

Figure 7.17 Source Code from 013.spice2g6.

In some cases, parallelism cannot easily be exposed by current ILP techniques. For the

benchmark 013.spice2g6, there is little available parallelism within several of the important

inner loops. Figure 7.17 shows an example from its most important inner loop. The variable

locij is loaded each cycle, and then used in the subsequent iteration to compute the address

of its next load. This creates a dependence cycle of length four, which limits the initiation of

iterations in the unrolled loop to one every four cycles. Because the low-level code contains

only seven operations, initiating a new loop iteration every four cycles allows little overlap of

iterations. ILP is potentially available within the outer loop, but exposing it would require

extremely sophisticated compilation techniques.

Another factor impacting the ILP that IMPACT achieves for 
oating-point benchmarks is

that IMPACT ILP research in the past has emphasized optimizing C code, and techniques may

not be optimized for exposing ILP in 
oating-point programs. In several benchmarks, overly

aggressive scheduling of large superblocks resulted in long register lifetimes and performance was

lost due to register spill code. For other benchmarks, the superblock was not the ideal structure

for exposing parallelism because of heavy control 
ow in the inner loops. For architectures

which support predication, a technique such as the hyperblock may have been more successful

at exposing available ILP.
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Figure 7.18 Sync Arc 8-Issue SPEC-CFP92 Optimization Versus Scheduling.

Relative bene�t of optimization and scheduling

Figure 7.18 shows the relative impact of optimization and scheduling on 
oating-point code.

Similar to the results for integer code, both optimization and scheduling appear to bene�t

from improved memory disambiguation. For 
oating-point code, it appears that the bene�t of

sync arcs may be more important for scheduling than for optimization. Benchmarks such as

047.tomcatv, 052.alvinn, 056.ear, and 078.swm256 achieved the same speedup when sync arcs

were used only for scheduling as when they were used for optimization.

Varying the number of functional units

To measure the e�ectiveness of compilation at exposing ILP for 
oating-point benchmarks,

an experiment was performed using architectures with various amounts of resources. Figure 7.19

shows the result of this experiment. Again, the desired outcome is to see increasing speedup

as more function units are made available, as was observed for the benchmarks 039.wave5 and
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Figure 7.19 Sync Arc SPEC-CFP92 Results for Di�erent Issue Rates.

078.swm256. Unlike the integer benchmarks, however, additional resources had little impact on

many of the 
oating-point benchmarks. Programs such as 013.spice2g6, 048.ora, and 052.alvinn

showed little or no performance improvement as the number of resources was increased. This

indicates that the compiler, despite improved memory disambiguation, has been unsuccessful

at exposing ILP to the hardware.

7.2 Comparison of Static and Dynamic Approaches

Static and dynamic memory disambiguation approaches are best targeted for di�erent ap-

plications. Static memory disambiguation is useful for applications for which source code is

available, for which dependence analysis techniques have been developed, and which can af-

ford the extra compilation time. Dynamic memory disambiguation is useful for applications

for which source code is not available, but which allow modi�cations to the ISA. However, for

applications in which potentially both static and dynamic memory disambiguation could be
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applied, it is useful to understand the relative capabilities of the two approaches for improving

memory disambiguation. In this section, the MCB results presented in Chapter 4 are compared

with the results presented for sync arcs earlier in this chapter.

7.2.1 Performance comparison

To provide a \level playing ground" to compare the two approaches, two minor changes were

made to the experiments presented earlier. First, the sync arc results used for comparison here

were obtained using sync arc information only to aid code scheduling, and not optimization.

This is because the MCB technique has currently been applied only to scheduling and a fair

comparison requires comparison of the e�ect only on scheduling. The second change made for

this experiment is to increase the number of 
oating-point registers in the sync arc model to

128 single-precision and 64 double-precision registers. The MCB results from Chapter 4 were

obtained using this number of registers; thus, the sync arc architecture was modi�ed so that

both approaches used the same architecture.

Figures 7.20, 7.21, and 7.22 show the comparison between the sync arc approach and the

MCB approach for the Unix, SPEC-CINT92, and SPEC-CFP92 benchmarks, respectively. Re-

sults are shown for an 8-issue architecture, using the same functional unit mix as in previous

experiments. The speedups shown are all relative to a baseline single-issue architecture without

improved memory disambiguation. Three bars are presented for each benchmark. The leftmost

bar re
ects the speedup obtained using the sync arc approach. The center bar re
ects the

results obtained using the set associative MCB design developed in this thesis. As discussed in

Chapter 4, this approach su�ered from con
icts for 
oating-point code, and signi�cant perfor-
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Figure 7.20 Unix Comparison of Sync Arcs to MCB - 8-Issue.

mance was lost. To compare sync arcs with optimal MCB hardware, the rightmost bar re
ects

the perfect MCB case, in which false con
icts do not occur.

For the 15 integer benchmarks, the sync arc and MCB approaches provided almost identical

performance bene�t, with the sync arc approach fractionally better. The one exception was

cmp, which will be discussed later. The set associative and perfect MCB designs in general

provided nearly equivalent performance, indicating that con
icts were not a major problem for

the integer benchmarks. The signi�cance of sync arcs providing comparable performance to the

MCB approach is that this indicates the memory disambiguation provided by sync arcs is very

accurate. The perfect MCB case essentially has perfect disambiguation, because it was allowed

to reorder all load/store pairs for which a de�nite dependence could not be proved. For the

sync arcs to achieve comparable performance to this perfect disambiguation requires that the

sync arc information be very accurate.
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sender = &input_act[0];

end_sender= &input_act[NIU];

for (; sender <= end_sender; )

(*w_ch++) += (*delta) * (*sender++);

Figure 7.23 Source Code from 052.alvinn.

For the 
oating-point benchmarks, the sync arc code again compared well with the MCB

approach. In many cases, the sync arc code outperformed the ideal MCB by a signi�cant margin.

The primary exception to this is 052.alvinn. For this benchmark, the sync arc performance was

hindered by a limitation in the current Pcode C dependence analysis. Figure 7.23 illustrates

the reason for this result, showing a loop representative of the two most important inner loops

of 052.alvinn. These loops use a for-loop structure in which the loop induction variable and the

upper bound are not readily obvious. The loop bodies contain no cross-iteration dependences.

Pcode dependence analysis is currently unable to cast this loop into a format which can be

interfaced to the Omega Test and is, thus, unable to provide accurate dependences for the array

accesses in these loops. As a result, cross-iteration dependences are conservatively assumed,

and sync arc performance is degraded. Improved dependence analysis would be expected to

improve the relative sync arc performance for other benchmarks as well (e.g., 013.spice2g6 and

056.ear).

The primary reason the sync arc approach performs better for many benchmarks is that

the MCB approach is hindered by the instruction overhead of the additional check instructions.

Although in some cases the wide-issue architecture may be able to \hide" the e�ect of these extra

instructions, they often result in some loss of performance. In many cases, this performance

loss is minor. The one exception from the integer benchmark suite is cmp, which performed
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signi�cantly worse for the MCB code. This can be understood by referring to Figure 7.6(a),

which shows the non-optimized inner loop of cmp. The loop, which contains 26 instructions (11

of which are loads), is unrolled 8 times prior to scheduling. During scheduling, almost all loads

were speculated above stores, requiring the insertion of 83 check instructions, increasing the

instruction count of the unrolled loop from 206 instructions to 291. Not only was the overall

instruction count increased, but the number of branches was increased from 40 to 123 by the

checks. The code scheduler was limited by the available branch resources, and the length of

the schedule was increased over the sync arc case. For the 
oating-point code, the performance

loss due to the additional check instructions was much more pronounced. This result points to

the need for improved MCB heuristics which trade o� the relative cost and potential bene�t

for allowing loads to bypass ambiguous stores during MCB scheduling.

Another reason the sync arc approach performs better than the MCB approach is the

increased register pressure incurred by the MCB approach. This register pressure increase

is the result of the lengthening of register live ranges. The destination register of a preload

instruction cannot be used again by another preload until after the check instruction for the

�rst preload has been executed. This requirement essentially lengthens the live range of preload

instructions to include the associated check, increasing register pressure.

7.2.2 Synergy of the approaches

Although static and dynamic memory disambiguation are targeted for di�erent applications,

the approaches should not be viewed as mutually exclusive. Sync arcs provide a means of bet-

ter disambiguation with no instruction overhead, but may be ine�ective at providing accurate

disambiguation in some cases (e.g., sparse matrices and complex pointer accesses). Dynamic
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approaches such as MCB require instruction overhead and code growth, but provide perfect

disambiguation. A combination of the two approaches, which uses static disambiguation infor-

mation when it is accurate and applies a dynamic technique where the static is limited, might

provide an optimal approach. Because the dynamic technique would only be applied in limited

areas of the code, the instruction overhead and code growth would be greatly reduced.

To apply the combined approach, the static dependence analysis would have to specify

the accuracy of individual sync arcs. Dependences for which the static analysis is accurate

would have to be di�erentiated from those when the analysis failed and the arc was added

conservatively. Additionally, if the dependence analysis is able to determine how frequently the

dependence holds, this information should be made available within the sync arc. Within the

low-level code, sync arcs which re
ect low accuracy or infrequent dependence can be removed

by applying the dynamic technique.

Although this combined approach is viable, it is questionable how often the inaccurate or

infrequent dependences would occur in actual code. The sync arc results presented earlier in

this chapter indicate the dependence information is su�ciently accurate to allow aggressive

optimization and scheduling for the benchmarks tested.

7.3 Summary of Results

In this chapter, the potential bene�t of the sync arc approach to low-level optimization and

scheduling has been measured across a suite of 29 integer and 
oating-point benchmarks. The

sync arc technique is shown to signi�cantly improve the compiler's ability to enhance and exploit

ILP. Good performance improvements are seen for those benchmarks for which ambiguous

memory dependences were a signi�cant impediment. As expected, the sync arc technique
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provides little bene�t to programs such as 023.eqntott for which memory dependences are not

a problem. Evaluation of the importance of improved memory disambiguation to optimization

and scheduling individually indicated that both bene�t signi�cantly from sync arcs. Although

sync arcs increased ILP for many of the benchmarks tested, the compiler was still limited in

its ability to expose su�cient parallelism to the hardware to make e�cient use of available

resources. Techniques to further reduce the impact of control 
ow instructions on parallelism,

such as predicated execution, are required to further expose ILP.

Sync arcs are a viable technique for improving memory disambiguation and facilitating low-

level optimization and scheduling. In Chapter 4, the MCB technique was also shown to be an

e�ective dynamic approach. In this chapter, the two techniques were quantitatively compared

and found to provide nearly equivalent performance improvement for most benchmarks. The

advantage the sync arc technique had over MCB for several of the 
oating-point benchmarks

was the result of limitations in the MCB scheduling algorithm. Thus, both approaches provide

excellent disambiguation, and the most appropriate technique can be applied to a particular

application. Because the MCB technique requires special hardware support and incurs instruc-

tion overhead, the sync arc technique may be a good choice when both approaches are equally

viable. The two approaches could potentially be combined to provide even better memory

disambiguation for certain applications.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

Ambiguous memory dependences can signi�cantly impact the compiler's ability to expose

instruction-level parallelism by preventing important optimization and scheduling opportuni-

ties. This dissertation has explored two approaches for overcoming the problems posed by

ambiguous memory dependences: dynamic memory disambiguation and static memory disam-

biguation. Selected techniques from the two approaches were analyzed individually. To perform

these analyses, the techniques were fully implemented within the IMPACT compiler environ-

ment and detailed simulation was performed. Additionally, a quantitative comparison of the

relative merits of the two approaches has been provided.

This dissertation has explored a previously proposed dynamic technique, the memory con-


ict bu�er. The MCB technique employs a set of hardware features to perform explicit com-

parisons between load and store addresses. The compiler takes advantage of this hardware to

speculatively reorder load and store operations during code scheduling. In this dissertation,

a new hardware design is proposed and a detailed evaluation of the potential performance

bene�ts is performed. Results indicate that MCB is e�ective at removing ambiguous memory

dependences as an impediment to ILP.

This dissertation has proposed a technique for providing improved static memory disam-

biguation to support ILP compilation. The technique, sync arcs, uses detailed source-level
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dependence analysis to generate explicit dependence arcs, which are maintained through sub-

sequent compilation. The dependence information required to support ILP compilation is in-

vestigated, as well as the di�culty of maintaining sync arcs through code transformations.

Several methods of limiting the number of explicit sync arcs which must be maintained are also

proposed. The sync arc technique is evaluated using a suite of 29 integer and 
oating-point

benchmarks. Results indicate the approach is highly e�ective at increasing performance where

ambiguous memory dependences previously inhibited ILP.

In order to apply the sync arc technique to C programs, the existing IMPACT dependence

analysis has been modi�ed to handle C semantics. The challenges the C language poses to

dependence analysis and some of the interesting implementation details for supporting sync

arcs are discussed. Because the C language allows pointer aliasing, interprocedural analysis

is necessary to avoid overly conservative analysis. A coarse-grain interprocedural analysis is

proposed and shown to be e�ective for supporting ILP compilation. For the suite of 15 integer

benchmarks, it is shown that a coarse-grain analysis provides comparable performance to that

for an ideal analysis.

Finally, the tradeo�s between dynamic and static memory disambiguation approaches have

been examined. The simulation results from the MCB technique and the sync arc technique

revealed both techniques provided e�ective disambiguation. Interestingly, the static sync arc

technique provided results which were as good or better than the dynamic technique for most

benchmarks. For applications for which source-level information is available during compilation,

the sync arc technique may be a good choice for providing improved memory disambiguation to

low-level optimization and scheduling. However, dynamic techniques remain a viable alternative
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for applications which require extremely fast compilation or when source-level information is

unavailable.

8.2 Future Work

The results shown in this dissertation indicate that both static and dynamic approaches

warrant further study. The dynamic technique explored in this dissertation, the memory con
ict

bu�er, supports ILP compilation well: it performs well in the presence of aggressive code

reordering and allows a load's dependent operations to bypass store operations. However, the

current MCB design still su�ers from both true and false con
icts, limiting performance gains.

Memory dependence pro�ling could potentially overcome the problem of true con
icts. Further

work is needed to develop a hardware design which avoids false con
icts, yet is practical in size

and timing. A promising area of research is a fully associative design whose size is independent

of the number of architectural registers. The compiler would have to be responsible for limiting

the number of preloads which were simultaneously \live" to the size of the MCB array. An

additional limitation of the MCB technique as employed in this dissertation is that the technique

was only applied to low-level code scheduling. The potential bene�t of the MCB technique to

low-level optimization also needs to be quanti�ed.

The sync arc technique also shows great promise as a means of improving memory disam-

biguation for low-level code. This dissertation demonstrates sync arcs can be accurately main-

tained through aggressive code transformations and that the availability of sync arcs provides

signi�cant performance improvement. However, further work is needed to better understand

how to control the number of explicit dependence arcs which must be maintained. Several
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techniques are proposed, but the relative bene�ts of these techniques for reducing explicit arcs

have not been quanti�ed.

The importance of disambiguating memory dependences to ILP compilation increases as

the impact of control instructions is reduced. This dissertation studied ILP compilation in the

context of the superblock, which coalesces instructions from a single control 
ow path. For

architectures which support predicated execution, techniques are being studied for coalescing

multiple paths of control into a single compilation unit [23], e�ectively removing many control


ow instructions. This reduction in the number of control instructions should make memory

disambiguation even more critical. Further research is required to understand the importance

of both static and dynamic disambiguation approaches when compiling using predication.

The static memory disambiguation techniques employed in this dissertation rely on the use

of source-level information to aid dependence analysis. Although dependence analysis is some-

what easier when source-level information is available, it may be possible to perform relatively

accurate dependence analysis on the low-level code without help from the source level. If analy-

sis can be accurately performed on low-level code, then the same disambiguation technique used

during compilation of source code could also be applied to applications for which the source is

not available, such as binary translation. While it appears that some accuracy may be lost in

this type of analysis (as compared with using source-level information), it would be important

to better understand and quantify the impact of this accuracy loss for ILP compilation.
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