© Copyright by John Christopher Gyllenhaal, 1997

AN EFFICIENT FRAMEWORK FOR PERFORMING
EXECUTION-CONSTRAINT-SENSITIVE TRANSFORMATIONS THAT
INCREASE INSTRUCTION-LEVEL PARALLELISM

BY
JOHN CHRISTOPHER GYLLENHAAL

B.S., University of Arizona, 1991
M.S., University of lllinois, 1994

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1997

Urbana, lllinois

AN EFFICIENT FRAMEWORK FOR PERFORMING
EXECUTION-CONSTRAINT-SENSITIVE TRANSFORMATIONS THAT
INCREASE INSTRUCTION-LEVEL PARALLELISM
John Christopher Gyllenhaal, Ph.D.
Department of Electrical and Computer Engineering
University of lllinois at Urbana-Champaign, 1997
Wen-mei W. Hwu, Advisor
The increasing amount of instruction-level parallelism required to fully utilize high

issue-rate processors forces the compiler to perform increasingly advanced
transformations, many of which require adding extra operations in order to remove those
dependences constraining performance. Although aggressive application of these
transformations is necessary in order to realize the full performance potential, overly-
aggressive application can negate their benefit or even degrade performance. This thesis
investigates a general framework for applying these transformations at schedule time,
which is typically the only time the processor's execution constraints are visible to the
compiler. Feedback from the instruction scheduler is then used to aggressively and
intelligently apply these transformations. This results in consistently better performance
than traditional application methods because the application of transformations can now be
more fully adapted to the processor's execution constraints. Techniques for optimizing the
processor's machine description for efficient use by the scheduler, and for incrementally

updating the dependence graph after performing each transformation, alloviizégount

of scheduler feedback with relatively small compile-time overhead.

DEDICATION

To: Liesl, Mom, and Dad.

ACKNOWLEDGMENTS

Without the support of many great people, this dissertation would not have been
written. | wish to thank my advisor, Professor Wen-mei Hwu, who provided valuable
guidance in many technical and nontechnical areas during my graduate studies; the
members of the IMPACT group, both past and present, who developed the fantastic
infrastructure that was used for this research; Dr. Rick Hank, Dr. Roger Bringmann, Dr.
Scott Mahlke, Dr. Dave Gallagher, Dr. Dan Lavery, Sabrina Hwu, Grant Haab, Brian
Deitrich, David August, and Teresa Johnson, who over the years, graciously acted as a
sounding board even when they were extremely busy with their own research; Dr. Bob
Rau, Dr. Mike Schlansker, Dr. Vinod Kathail, and the rest of the CAR group at HP Labs,
who provided valuable insight and discussion concerning countless machine description
issues; my parents, Malcolm and Joy Gyllenhaal, who always believed in me; my wife’s
parents, Donald and Dorothy Little, who made me a part of their family; and my wife,
Liesl, who, in addition to being the best thing that has ever happened to me, edited this

entire dissertation. | deeply appreciate the help | received from each of you.

TABLE OF CONTENTS

Page
1. INTRODUGCTION . ..ottt eeeeeeeseenbennennnnnnnns 1
1.0 OVEBIVIBW ...ttt ettt e e et ettt e e e e et ettt e e e e e e e ebb e e e e e ennaas 1
2. THE ILP TRANSFORMATIONS EVALUATED.......cctttiiiiiiiiiieeae e 8
2 R L1 (0T U Tod 1 o] o (U PP PP PP UPPPPPPPIN 8
2.2 RENAMING WITN COY.. . ettt et e e e e e eennes 8
2.3 Integer Expression Reformulation...............ooooveiiiiiiniiiiiiiii e 12
3. PROPOSED APPROACH FOR SCHEDULE-TIME TRANSFORMATIONS.....22
G0 11 0T [Fod 1o o [T PUOPPPPPPTN 22
3.2 The Schedule-Based Application Algorithm...............ooooviiiiiiiiiiiiii s 23
3.3 The Calculation of Transformation PrioritieS...........ccuuuiiriiiiiiiiiiiieeeeeeiieeeee 27
3.4 Application of the Two ILP Transformations Evaluated.................ccc.......... 42
TR R LT F= 1T VAV Lo o 47
4. PERFORMANCE BENEFITS OF SCHEDULE-TIME TRANSFORMATIONS..49
7 R [0 o o 1§ Tox 1[0 o ST UPPPPPPTR 49
4.2 Criteria for Control-Block Level CompariSons.oooevvvvvuiiieeieiiiiinneeeeeenns 50
4.3 The Processor ConfIQUIatiQIIS..........covvuuuuniieiieiiiin e et eeeeri e e 51
4.4 The Four Application Approaches Evaluated...............ccoevviiiiiiiiiiiiiiinneceenns 53
4.5 How the Results Were Generated...........ooouuuiiiiiiiiiiiiiiiiiiiiee e 56
4.6 Overview of the Rest of This Chapter...........oooovviiiiiiiiieii e 57
4.7 Control-Block Level Analysis of Renaming With Capy...........ccceuvviviieiiennnnnn. 58
4.7.1 The four-issue processor CoONfIgUIration...........ccuuuurreeeveeiiinneeeeeeeiiinnnn. 58
4.7.2 The two-issue processor CoNfiguration.............ceuuuvreeeeeeiiinnieeeeeeiinnnnn. 68
4.7.3 The one-issue processor configuratiQn.............cceveevveeviiiiineeeeiiiinnene. 72
4.7.4 The eight-issue processor CoNfiguration.............coeuvveenreereeriinnneeeeennns 76
4.8 Control-Block Level Analysis of Integer Expression Reformulation............ 84
4.8.1 The four-issue processor CoONfIgUIration...........ccuuuuvreeeeeeiiinneeeeeeeiiinnn. 85
4.9 Control-Block Level Analysis of Both Transformations...............ccccecvvvvneens 95
4.9.1 The four-issue processor CONfIGUIatioN...........ccuuvuvreeeeeiiiiineeeeeeeiiinnnn. 95
4.10 OVErall RESUIScciiiiii e 100
4.10.1 Overall results for the four-issue processor configuration............. 101
4.10.2 Overall results for the eight-issue processor configuration........... 109
4.10.3 Overall results for the two-issue processor configuration............. 111
4.10.4 Overall results for the one-issue processor configuration............. 114
5. INCREMENTAL DEPENDENCE GRAPH GENERATIONcccooiiiiiiiiiiiaeeaennn, 117
5.1 INETOTUCTION ...ttt e ettt e e e e e e e e bbb e e e e e eenes 117
5.2 The Register ACtON Table........cooouuiiiiiii e 118
5.2.1 Designed to efficiently answer four time-critical queries.................. 119

Vi

5.2.2 Handling of overlapping registers.. ..o 120
5.2.3 Control, memory, and synchronization pseudoregister operands.. 122

5.2.4 Precalculation of the results for the four time-critical queries......... 124
5.2.5 Incremental update of the register action table...............ccccccceeeeee 127
5.3 Building and Updating the Dependence Graph.............ccccvviiiiieiiiiiiinnnenn. 132
5.3.1 Drawing outgoing destination register dependences....................... 135
5.3.2 Drawing incoming destination register dependences...................... 139
5.3.3 Drawing outgoing source register dependences..........ccccvvueveeeeennns 140
5.3.4 Drawing incoming source register dependences...........ccccceeeveeeeenns 141
5.3.5 Drawing control, memory, and synchronization dependences........ 143
5.3.6 Drawing dependences for overlapping registers..........ccccccveeneeeeennns 145
5.3.7 Drawing dependences for predicated COde...........cccevvviiieeiiiiiiinnnnn. 147
5.3.8 Building the dependence graph for the entire control black............ 149
5.3.9 Incrementally updating the dependence graph.............cccccceeiiienenne 149
5.4 ReIATEA WOTK.....cviiiiii et e e 154
6. OPTIMIZATION OF MACHINE DESCRIPTIONS FOR EFFICIENT USE 156
6.1 INTFOTUCTION ...t e e e a e 156
6.2 Modeling Resource CONSIIAINIS.c.uuuuiiiiiiiiiiie et 160
6.3 A New Representation: AND/OR-TIEES..........uuuiiiieiiiiiiiiieeeeeeiiin e 165
6.4 Original MDES CharaCteriStCS.ccvvuuruiiieeeeiiiiiee et eeais 168
6.5 Eliminating Redundant or Unused MDES Information...............cccccoeeveee.. 173
6.6 Utilizing Bit-Vector Representations............oovvvieeeiiiinieeiiiiiiiin e 176
6.7 Optimizing for Bit-Vector Representations............cccoovvveviieviiiieeeeiiieeeeeinn, 178
6.8 Optimizing AND/OR-Trees for Resource Conflict Detection..................... 182
6.9 Aggregate Effect of All Transformations...........ccocvvveiveviiiiiiviiiie e, 184
6.10 ReEIAIEA WOTK......eeiiiiieeeeeiee e e 187
7. COMPILE-TIME IMPLICATIONS OF SCHEDULE-TIME
TRANSFORMATIONS ...ttt e e e e e e e e e e eeaeees 189
4% R L1 oo ¥ Tod 1 o] o BN PSP PP 189
7.2 Compile-Time Requirements of the HP C Compiler.........c.ccocovvveiivininnnnns 191
7.3 Time Requirements of DHASY List Scheduling............ccccvviiiiiiiiiiiiinnee. 193
7.4 Time Breakdown for Performing Schedule-Time Transformations........... 196
7.5 Projection of Future Time ReqUIr€MENLS..........ccuuuiiieeiiiiiiiiieeeeeeeiiin e 199
8. CONCLUSIONS AND FUTURE WORKuuiiiiiiiiieeeeieeceeeei e 202
APPENDIX A. PERFORMANCE RESULTS FOR ALL PROCESSOR
CONFIGURATIONS. ..ottt 205
REFERENCES. ...t e e e e e e e e e e e e e e e e eeeeeeeeeeesnennennnes 258
RV LI SRR 263.....

Vii

Table

4.1:
4.2:

6.1:

6.2:

6.3:

6.4:

6.5:

6.6:

6.7:

6.8:

6.9:

6.10:

6.11:

6.12:

6.13:

6.14:

6.15:

7.1:

7.2:
7.3:

LIST OF TABLES

The four processor configurations evaluated.............cccoeeeveeiiiiiiiineeeiineeeennnn. 51
(@ 01T = 1[0 g I Fo Y (=] g (o3 1o PR 52

Option breakdown and scheduling characteristics for the four-issue

ProCeSSOr CONIQUIATION.uuuuiieeieeitie ettt e e e e e eeees 163
Option breakdown and scheduling characteristics for the one-issue
ProCeSSOr CONIQUIATION.uuuuiieeieieiie ettt e e e e e e eeees 169
Option breakdown and scheduling characteristics for the two-issue
ProCeSSOr CONIQUIATION.uuuunieeieeitie ettt et e e e e e eenes 169
Option breakdown and scheduling characteristics for the eight-issue
ProCeSSOr CONFIQUIATION.uuuueieeiiiiiie ettt e et e e e e e e eenes 170
Original scheduling characteristics of the machine descriptions for the four
ProCeSSOr CONfIQUIATIONS.....ceeviieeee ettt e e eaa e 171
Original MDES memory requirements for the four processor

(ol0] 110 8] 7= 11T o S TSP 172
MDES memory requirements after eliminating redundant and unused
701 1.4 F= U1 0] o TR 174
The scheduling characteristics after removing unnecessary options for
MEIMOIY OPEIALIONS. .. .uu i ieieieiit e ettt e ettt e e e e e e e e e e ea it e e e e e enaaa e eeeees 176
MDES size characteristics before and after a bit-vector representation is
USEA (ONE CYCIE/MWOI)c ... 177
Scheduling characteristics before and after a bit-vector representation is
USEd (ONE CYCIEMWOIT).c ... 177
MDES memory requirements before and after transforming resource usage
times (0Ne CYCle PEr WOId).........ooiiiiiiiie e 181

Scheduling characteristics before and after transforming resource usage
times and sorting the resulting usages to check time zero first (one cycle

LT BT (o | PP PPPTTRRPSPPPPPRTN 181
Scheduling characteristics before and after optimizing AND/OR-trees for
resource CONfliCt deteCHION...........vevieei e 184
Aggregate effect of all transformations on MDES resource-constraint
TEPIESENTALION SIZE.....coiiiiiiie et e et e e e e nneaas 185
Aggregate effect of all transformations on MDES scheduling

(03 0= 1= Tod (T 153 1o 186

Compile time using the HP C Compiler on the SPEC CINT92 benchmarki91
Compile time using the HP C Compiler on the SPEC CINT95 benchmarki91
Time required to list-schedule all control blocks using the DHASY
SChEAUIING NEUFISTIC...... e 194

viii

7.4: A breakdown of the time required by the components of the schedule-time

transformation algorithm utilizing the optimized four-issue MDES.............. 196
7.5: Projection of time requirements for future schedule-time transformation
loads for the four-issue processor Configuration.............ccuuveeeeeiiiiiiiineeeeeenns 200

Figure

1.1:
1.2:

2.1:
2.2:
2.3:
2.4:
2.5:
2.6:
2.7:
2.8:
2.9:

3.1:
3.2

3.3:
3.4:
3.5:

3.6:
3.7:

4.1:

4.2:

4.3:

4.4:.

4.5:

LIST OF FIGURES

Page
Example of the renaming-with-copy transformation................cccccceeeiiiieiiinnnnnn. 2
Example of the integer-expression-reformulation transformation................... 4
Example of the lifetime renaming transformation...............ccccciiineeiiiiiinneeee, 9
An example of the renaming-with-copy transformation..................ccccccceeeenee. 10
Anexample of renaming with copy increasing dependence height.............. 11
Two examples of integer expression reformulation................ccccoevvvviviieennnnnn. 12
The effect of parallelizing expressions on code performance....................... 15
Example applications of integer expression reformulation............................ 16
Reformulation rules used for integer expression reformulation.................... 17
Example of making the reformulation rules assumptions.true...................... 20
Anexample of more accurate information being available at schedule.time21

Schedule-based application algorithim..............ooviiiiiiiii e 24
An example dependence graph indicating each operation’s (a) early time

AN (D) 1818 TIMES..... e 29
Algorithm for calculating the early time for each operation in a control

Algorithm for calculating transformation priorties.ccevviiineiiviiiinneenn. 34
(a) An example control block and (b) its dependence graph........................ 35
Algorithm used to transform each control black..............cccoooiiiiiiiinnnnn. 44

Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the
four-issue processor CONfIGUIALION.ieeeieiii et 59
Change in cycles for (a) heuristic-based, (b) dependence-based,

(c) estimate-based, and (d) schedule-based application of renaming with
copy for the four-issue processor configuration...............coeeeeeveieereinieerernnnennnns 62
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with
copy for the four-issue processor configuration..............cceveevveieereinieeeernnnennnns 64
Benefit in cycles of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of renaming with
copy for the four-issue processor configuration...............oeveeeveieereinieeeernnneennns 66
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the
tWO-iSSUE Processor CONTIGUIALION...........iiiiiiiiii e 69

4.6:

4.7:

4.8:

4.9:

4.10:

4.11:

4.12:

4.13:

4.14:

4.15:

4.16:

4.17:

4.18:

4.19:

4.20:

Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of renaming with
copy for the two-issue processor configuration.............ccoevvveiievviiieeeiiineeennnn. 71
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the

Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of renaming with

Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the
eight-issue processor CONfIQUIAtiON............uuuiirieiie e e e et e e e e eens 77
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with
copy for the eight-issue processor configuration............ccccovevvveeeevieineerernnennns 80
Change in cycles for (a) heuristic-based, (b) dependence-based,

(c) estimate-based, and (d) schedule-based application of renaming with
copy for the eight-issue processor configuration.............ccovevvvieeeeiiineerennneennns 82
Benefit in cycles of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of renaming with
copy for the eight-issue processor configuration.............ccoeevevieeeeiiineereinnennns 83
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of expression reformulation for

the four-issue processor CONfIGUIAtION.ovieiiiiiiiii e 86
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression
reformulation for the four-issue processor configuration...............ccccceeeeeeee.. 90
Change in cycles for (a) heuristic-based, (b) dependence-based,

(c) estimate-based, and (d) schedule-based application of expression
reformulation for the four-issue processor configuration...............cccccceeveeeee. 93
Benefit in cycles of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of expression
reformulation for the four-issue processor configuration...............cccccceeeeeee.. 94
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of both transformations for the
four-issue processor CONfIGUIALION.ieeeieiii et 96
Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the four-issue processor
CONTIGUIATION. ...ttt e ettt e e e et e e e e e e eab e e e e eenees 102
Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the eight-issue processor

(o0] 110 U] 7= 11 To] o FHNR TP UPPPPTTRR R PPPPPPTN 110
Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the two-issue processor

(o0] 110 8] 7= 1110 o FONN TP UPPPPTTRRPPPPPPTN 112

Xi

4.21: Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the one-issue processor

(o0] 110 8] 7= 1110 o FONN TP UUPPPPTTRR R UPPPPPPIN 115
5.1: An example code segment and its register action table............................. 119
5.2: Example of (a) overlapping registers, (b) the resulting dependences and

(0 I a1 L= Tt 1T I =T] [P 122
5.3: Algorithm for building enhanced linked liStS..............ccouiiiiiiiiiiiiiii e, 126
5.4: Algorithm for deleting action entry from register action table...................... 128
5.5: Algorithm for adding action entry to register action table........................... 130
5.6: Simplified algorithm for building outgoing destination register

(0= oT<T a0 [T o Tod L PP 136

5.7: (a) An example code segment and (b)the resulting action entries for
Register r1 with the outgoing dependences drawn for the definition of

Register r1in Operation B...........ooooiiiiiiiiii e 137
5.8: Simplified algorithm for building incoming destination register
JEPENAENCES. ...ttt ettt e e s 139

5.9: (a) An example code segment and (b)the resulting action entries for
Register r1 with the incoming dependences drawn for the definition of
Register r1in Operation F..........cooo oo 140

5.10: Simplified algorithm for builthg outgoing source register dependences..... 141

5.11: (a) An example code segment and (b) the resulting action entries for
Register r1 with the only outgoing dependence drawn for the use of
Register r1 in OPeration Du.............oiiiiiiiiiiie e 141

5.12: Simplified algorithm for building incoming source register dependences... 142

5.13: (a) An example code segment and (b) the resulting action entries for
Register r1 with the only incoming dependence drawn for the use of
Register r1 in OPeration Du.............oiiiiiiiiiiiie e 142

5.14: Simplified algorithm for building outgoing source memory dependences.. 144

5.15: (a) An example code segment and (b) the resulting memory action entries

with the only outgoing memory dependence drawn for Operation. B......... 144
5.16: Enhanced algorithm for building outgoing source register dependences that
SUPPOIS OVErapPINg FEQISELS......vu i e e e e e 145
5.17: (a) Example of overlapping register and (b) the register anti dependences
drawn for the use of r2f in Operation B............cooiiiiiiiiiiiii e 146
5.18: Enhanced algorithm for building outgoing source register dependences that
supports predicated EXECULION.iiiiieiiir e ieeiie e ee e e e e et e e eeer e e e e e e eeeene 148
5.19: Simplified algorithm for deleting a source register action entry and
incrementally updating the dependence graph............ccccoevieeiiiiiiiinieeeeennnnnn. 150
5.20: Simplified algorithm for adding a source register action entry and
incrementally updating the dependence graph............ccccoevveeiiiiiiiinieeieennnnnn. 150
5.21: Simplified algorithm for deleting a destination register action entry and
incrementally updating the dependence graph...........ccccceeeieeiiiiiiiinieeieennnnnn. 151

Xii

5.22: Dependences for Register rl (a) with the original actions, (b) after
Action C is deleted, and (c) after rebuilding dependences for adjacent

definitions (ACONS A @Nd E).....uuiiiiiiiiii e 152
5.23: Simplified algorithm for adding a destination register action entry and
incrementally updating the dependence graph.............ccceevveeiiiiiiiinneeeeennnnnn. 153

5.24: Dependences for Register rl (a) with the original actions, (b) after
Action C is added, and (c) after rebuilding dependences for adjacent

definitions (Actions AANd E).ouuiiiiiiiiiiii e 153
6.1: The twenty-four reservation tables that represent the resources used by the

four-issue processor configuration’s integer literal load operation............. 161
6.2: Distribution of options checked during each scheduling attempt using the

four-issue processor CONfIQUIATION. viiieiieii et 164

6.3: Two methods of modeling the resource constraints of the four-issue
processor configuration’s integer literal load operation. (a) The traditional
OR-Tree representation. (b) The proposed AND/OR-Tree representation........ 166

6.4: An example of how the AND/OR-tree representation can facilitate the
SNAING Of OR-IMEES...... i eeeenees 175

6.5: The OR-tree modeling the resource constraints for the four-issue processor
configuration’s integer literal load operation, after transforming the
resource usage times in order to better utilize the bit-vector representatid80

6.6: An example of optimizing the order of the OR-trees in an AND/OR-tree
for resource conflict detection. (a) Original order specified. (b) After
OPLIMIZING The OFAEI- .. .ee e 183

A.l: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the
ONe-iSSue Processor CONfIGUIALION..........oooiiiiiii e 206

A.2: Percent benefit of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of renaming with
copy for the one-issue processor configuration.............ccoeevveeieeveiiineereineennns 207

A.3: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of expression reformulation for
the one-issue processor CONfIGUIALION...........oveiieeiiiii et 208

A.4: Percent benefit of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of expression
reformulation for the one-issue processor configuration...............ccccceeeeeee. 209

A.5: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of both transformations for the
ONne-iSSue Processor CONfIGUIALION...........oviiiiiii e 210

A.6: Percent benefit of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of both
transformations for the one-issue processor configuration......................... 211

Xiii

A.7:

A.8:

A.9:

A.10:

A.l11:

A.12:

A.13:

A.14:

A.15:

A.16:

A.l7:

A.18:

A.19:

A.20:

A.21:

Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of renaming with
copy for the one-issue processor configuration.............ccoeevveeieeeveiineereineennns 212
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with
copy for the one-issue processor configuration.............cceeevveeieeeeeineereineennns 213
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of expression
reformulation for the one-issue processor configuration...............ccccceeeeeee. 214
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression
reformulation for the one-issue processor configuration..............cccccceeeeeee. 215
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of both
transformations for the one-issue processor configuration......................... 216
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of both
transformations for the one-issue processor configuration......................... 217
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the
twO-iSSUE Processor CONfIGUIALION...........oviiiiiiiiie et 218
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with
copy for the two-issue processor configuration.............ccoeeeveveviiiineeriineennns 219
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of expression reformulation for
the two-iSsue Processor CONFIQUIALION.. viiieiiii et 220
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression
reformulation for the two-issue processor configuration................ccceevvennn.. 221
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of both transformations for the
twO-iSSUe Processor CONfIGUIALION...........ouiiviiiiiie et 222
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of both
transformations for the two-issue processor configuration......................... 223
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of renaming with
copy for the two-issue processor configuration.............cc.ceeveieviiiinieriineennns 224
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with
copy for the two-issue processor configuration.............ccoeeeveievviiinieeiineennns 225
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of expression
reformulation for the two-issue processor configuration.................ccceeuvennn.. 226

Xiv

A.22:

A.23:

A.24:

A.25:

A.26:

A.27:

A.28:

A.29:

A.30:

A.31:

A.32:

A.33:

A.34:

A.35:

A.36:

Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression
reformulation for the two-issue processor configuration................ccceeuvenn... 227
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of both
transformations for the two-issue processor configuration......................... 228
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of both
transformations for the two-issue processor configuration......................... 229
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the

Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with
copy for the four-issue processor configuration................ooeevvveiineeeeeiiinnnnnn. 231
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of expression reformulation for
the four-issue processor CoNfigUIatiQn.............covvvuuuiiieiieiiiiie e 232
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression
reformulation for the four-issue processor configuration..................cccc.u..... 233
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of both transformations for the
four-issue processor CONfIGUIATION..........uieiieeiiiie et 234
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of both
transformations for the four-issue processor configuration......................... 235
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of renaming with
copy for the four-issue processor configuration.............ccoeevveeeveveeiiiereninnnnns 236
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with
copy for the four-issue processor configuration..............coeevvveieeveeiiieeeiinennns 237
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of expression
reformulation for the four-issue processor configuration..................cccc.ee.... 238
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression
reformulation for the four-issue processor configuration..................cccc.ue.... 239
Change in cycles for (a) heuristic-based, (b) dependence-based,
(c) estimate-based, and (d) schedule-based application of both
transformations for the four-issue processor configuration......................... 240
Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of both
transformations for the four-issue processor configuration......................... 241

XV

A.37:

A.38:

A.39:

A.40:

A.41:

A.42:

A.43:

A.44:

A.45:

A.46:

AA4T:

A.48:

A.49:

A.50:

A51:

Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the
eight-issue processor CONfIQUIatioN.............uviriiiiiieeee e e 242
Percent benefit of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of renaming with
copy for the eight-issue processor configuration.............cccoceeveeeereineerennnnnn. 243
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of expression reformulation for

Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression
reformulation for the eight-issue processor configuration..................c..c..... 245
Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of both transformations for the
eight-issue processor CONfIQUIatioN.............uviriiiiieeeee e e 246
Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of both
transformations for the eight-issue processor configuration....................... 247
Change in cycles for (a) heuristic-based, (b) dependence-based,

(c) estimate-based, and (d) schedule-based application of renaming with
copy for the eight-issue processor configuration.............cc.ceevveeeevivneerennnnnn. 248
Benefit in cycles of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of renaming with
copy for the eight-issue processor configuration.............cc.cceeveeeevevineerennnnnn. 249
Change in cycles for (a) heuristic-based, (b) dependence-based,

(c) estimate-based, and (d) schedule-based application of expression
reformulation for the eight-issue processor configuration..................c..c..... 250
Benefit in cycles of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of expression
reformulation for the eight-issue processor configuration.....................c..... 251
Change in cycles for (a) heuristic-based, (b) dependence-based,

(c) estimate-based, and (d) schedule-based application of both
transformations for the eight-issue processor configuration....................... 252
Benefit in cycles of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of both
transformations for the eight-issue processor configuration....................... 253
Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the one-issue processor

(o0] 110 8] 7= 1110 o FONR TP UUPPPPPTRRPPPPPPTN 254
Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the two-issue processor

(o0] 110 8] 7= 1110 o FONN TP UPPPPTTRRPPPPPPTN 255
Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the four-issue processor

(ol0] 110 U] 7= 11T] o FHNR TP UPPPPTTRRPPPPPPTN 256

A.52: Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the eight-issue processor
CONTIGUIATION. ...ttt e ettt e e e e ettt e e e e e e enb e e e e eenees

1. INTRODUCTION

1.1 Overview

To achieve the best performance from today's processors, compilers must
aggressively minimize the dynamic operation count of programs through both traditional
optimizations [1] and efficient use of the instruction set [2], [3]. The innate instruction-
level parallelism (ILP) of the code, coupled with the use of a few ILP-enhancing
transformations that minimally increase dynamic operation count, is usually sufficient to
allow effective use of the limited resources in these processors. However, to get the best
performance out of future resource-rich processors, aggressive ILP transformations are
needed [4]. These transformations attempt to break dependences that limit ILP, often
utilizing special hardware such as predicated execution or speculative exeappont,s
and have been shown to be quite effective for future processors [5], [6], [7]. The
drawback to these transformations is that they can dramatically increase dynamic
instruction count, sometimes by more than a factor of two [8], [9].

For processors with moderate resources, applying these aggressive ILP
transformations is currently difficult because of the large performance degradation that
can occur when processor resources become overutilized. To illustrate the issues
involved, a simple yet effective ILP transformation calletiaming with copy{10] is
applied to the code segment shown in Figure 1.1(a). This code segment is taken from a
loop in the SPECcint92 benchmark 085.gcc that searches an array for non-NULL pointers
in order to do some processing on them. The code segment is shown scheduled for a one-

issue processor (indicated by the single issue slot in the figure), where the cycle in which

Issue Slot 1 Issue Slot 1 Issue Slot 1

1| ri<- M[r2+0Q] 1| rl<- M[r2+0Q] 1] rl<- M[r2+0]
2 ol2| tl<- M[r2+4] 2| (unavailable)
% 3| bne rl, 0, exit E 3| bne rl, 0, exit o 3| bne rl, 0, exit
Ola] ri<- mpro+4] 2 1<n ola] t1<- mro+4]
5 5| bne ti1, 0, exit © 5
6| bne r1, 0, exit 6 ri<-tl
7| bne ti, 0, exit
(a) Original code (b) After renaming with copy (c) Resources overutilized

Figure 1.1: Example of the renaming-with-copy transformation.

each operation is scheduled is shown in the left column. Each load takes two cycles and,
as shown in Figure 1.1(a), the total scheduled code length for this segment is six cycles.
The highlighted load in Cycle 4 is prevented from executing in Cycle 2 because the
Register rl is used by the branch in Cycle 3 and is redefined by the load. The load’s
destination register cannot be simply renamed because the exit code expects the non-
NULL pointer to be in rl.

However, the load’s destination register can be renamed, say to t1, if a copy of t1
to rl is inserted after the load. If this renaming-with-copy transformation is done and the
renamed load can be moved into Cycle 2, then the total scheduled code length for this
segment can be reduced to five cycles, as shown in Figure 1.1(b). In this case, a 25%
increase in dynamic operation count has resulted in a 17% performance improvement for
this code segment. However, if after applying the transformation the renamed load could
not be moved into Cycle 2 because of a resource constraint, then performance would
instead be degraded by 17% as shown in Figure 1.1(c). In this second case, performance
is lost and resources are wasted by the addition of the extra copy operation. For resource-

rich processors, this second case rarely occurs and so the transformation is often applied

liberally. For moderate-resource processors, the second case occurs frequently enough
that care must be taken in its application to prevent overall performance loss.

Interest in this area has recently become intense because most next-generation
processors fall within this class of moderate-resource processors. Several performance
projections using code compiled with the traditional approach of minimizing dynamic
operations has shown poor processor utilization on these processors. For example, on a
recently announced four-issue SPARC64, this compilation model has been projected to
yield, ignoring cache effects, only an average of 1.52 instructions per cycle (IPC) on
SPECcint92 code [11]. Although several methods of estimating resource constraints have
been proposed that could be adapted to help guide application of ILP transformations [4],
[12], [13], it is intrinsically more desirable to be able to use exact resource and schedule
layout information. This thesis proposes a new machine-description-driven transformation
framework that makes such exact information available by allowing ILP transformations to
be efficiently performed and evaluated during instruction scheduling.

The primary mechanism used to evaluate each potential ILP transformation is the
effect the transformation has on the scheduled height of the code segment being
processed. Thecheduled heighis a common first-order execution-time estimate that
takes into account the processor’s resource constraints, the various data and control
dependences between operations, and the algorithm used for scheduling [14]. It can be
quickly calculated after instruction scheduling using profile information and the cycle in
which each operation was scheduled. Although it ignores second-order effects caused by

branch prediction and the memory hierarchy, it is one of the best static estimates of

Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2
1 ri<- r5r6 I ri<- r5r6 t1<-r7 +19
212 re<-r1+r7 4 r2<- rl+r7 r3<- ri+tl
5 3| bgtr2, r8, exit r3<- r2+r9 © bgt r2, r8, exit r4<- r3r10
41 r4<-r3r10

(a) Original code (b) After reformulation

Figure 1.2: Example of the integer-expression-reformulation transformation.

performance available and has been used extensively to show the benefit of ILP
transformations [5], [15]. This evaluation mechanism faciltates the use of search
algorithms to find the set of transformations that produces a heuristically minimum
estimated execution time for each code segment.

In order to evaluate the benefit of the proposed framework, two important ILP
transformations were implemented using this framework. Both of these transformations
were already being extensively used within the IMPACT compiler [16]. However,
despite extensive tuning of their application heuristics, they were found to cause
performance degradation in some code segments and miss important opportunities in
other code segments. The first ILP transformatienaming with copybreaks anti and
output dependences on destination registers as illustrated earlier in Figure 1.1. The
second ILP transformatiomteger expression reformulatipims a form of critical path
reduction [17] that reformulates integer arithmetic expressions in order to improve the
performance of a code segment. In Figure 1.2(a), the value in r3 is the result of a
summation of r1, r7, and r9 and is used by the calculation of r4 in Cycle 4. The value of
rl is not ready until Cycle 2, which delays the calculation of r3 in its current formulation.

However, if the calculation of r3 is changed so that rl is added last instead of first, the

code segment’s performance can be improved 25% as shown in Figure 1.2(b). Although

sometimes existing operations only need to be modified by this transformation, usually one

or more operations need to be created in order to perform this transformation. As with

renaming with copy, if these extra operations cause the processor resources to be
overutilized, degraded performance can result.

Using these ILP transformations, this thesis examines in detail the performance
benefits gained from using the proposed framework's exact schedule information
compared to what is currently done, and to what may be possible if approximations were
used instead. In order to make fair comparisons between using exact schedule
information, using approximations, and using the IMPACT compiler’'s existing heuristics
to guide the application of the ILP transformations, the proposed framework is used for all
of the experiments. For the experiments involving approximations, the accuracy of the
machine description used to guide the transformations is varied with respect to the
processor targeted. This allows existing approaches that utilize only dependence graph
information [5] or approximations based on simplified processor models [4] to be
evaluated. For the experiments involving the IMPACT compiler’s existing heuristics, the
transformations’ application heuristics were faithfully ported to the new framework from
IMPACT’s current ILP optimizer, which is typically invoked well before scheduling.
These experiments show that only by utilizing the proposed framework’s exact schedule
information can a compiler achieve consistent performance improvement from the
application of ILP transformations.

The first major contribution of this thesis is the proposed schedule-based
application framework that faciltates the aggressive and inteligent application of

execution-constraint-sensitive transformations. The proposed linear-time transformation

selection algorithm vyields both significantly and consistently better performance than
traditional application methods because the application of transformations can now be
more fully adapted to the processor's execution constraints.

A critical issue that this thesis examines in detail is the compile-time cost of using
the proposed scheduled-height-based search algorithm. For each combination of ILP
transformations considered, the transformed code segment must be rescheduled in order to
recalculate the scheduled height. This may result in a code segment being repeatedly
scheduled, with a different set of ILP transformations applied each time. If a conventional
scheduling framework is used, the compile-time cost may not be acceptable.

The second major contribution of this thesis is a set of novel techniques that
drastically reduce the time required to reschedule the code segment after a set of ILP
transformations has been performed. The proposed algorithm for incremental dependence
graph generation allows near-constant-time updates of the dependence graph after
performing each transformation. The proposed machine descriptiomizagbons
generate an efficient low-level representation of the processor's complex execution
constraints from a high-level machine description language. The compile-time benefits of
these techniques are extensively analyzed using a highly-tuned, state-of-the-art
implementation of the proposed framework.

Chapter 2 describes in detail the renaming-with-copy and integer-expression-
reformulation transformations, which will be used to evaluate the proposed approach for
applying transformations. Chapter 3 describes the algorithms proposed for applying
transformations at schedule time and Chapter 4 compares the benchmark performance

achieved using this approach to several other possible approaches. Chapter 5 describes

an algorithm for incremental dependence graph generation that significantly reduces the
time required to perform schedule-time transformations. Chapter 6 describes how

resource constraints are typically modeled and presents a set of novel techniques that
drastically reduce the time required to perform both scheduling and schedule-time

transformations. Chapter 7 evaluates the effectiveness of the above techniques in reducing
the compile time and estimates the compile-time cost if an extensive set of transformations
is applied at schedule-time. Chapter 8 summarizes the results of this research and

describes some interesting areas for future application.

2. THE ILP TRANSFORMATIONS EVALUATED

2.1 Introduction

This thesis examines the challenges involved in applying ILP transformations to
processors with moderate resources and proposes an new framework for applying these
transformations during instruction scheduling. The qualitative and quantitative benefits of
applying transformations during scheduling will be analyzed using the two ILP
transformations, integer expression reformulation and renaming with copy, that were
briefly introduced in Chapter 1. These two transformations were selected for several
reasons. The first is that the challenges involved in applying them is representative of a
wide array of ILP transformations, such as memory speculation, branch combining, and
promotion with copy. The second is that both of these transformations had been
previously implemented in the IMPACT compiler, allowing a direct comparison to an
existing application technology as well as to approaches based on approximate
information. Third, in addition to a more effective application of these transformations
directly improving performance, the application of these transformations also should

increase the benefit of many other ILP transformations.

2.2 Renaming With Copy

Register anti dependencescur between the redefinition of a register’s value and
the uses of the register’'s previous value. For example in Figure 2.1(a), a register anti
dependence exists between the use of Register rl in Cycle 3 and the redefinition of

Register rl in Cycle 3. This dependence prevents the reordering of these two operations

Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

1| r1 <- M[r9+0] o|1]| t4<-M[r9+0] | rl <- M[r8+0]
|2 512
% 3| r2<-r1+r7 | rl<- M[r8+0] 3] r2<-t4+r7 | r3<-rl+16
4
5| r3<-r1+1r6
(a) Original code (b) After renaming (no operations added)

Figure 2.1: Example of the lifetime renaming transformation.

in order to prevent the use of rl in Cycle 3 from receiving an incorrect vatiarfg,

register output dependencescur between the redefinition of a register’s value and the
definition of the register’s previous value. For example in Figure 2.1(a), a register output
dependence exists between the definition of Register rl in Cycle 1 and the redefinition of
Register rl in Cycle 3. This dependence prevents the reordering of these two definitions
in order to prevent the use of rl1 in Cycle 5 from receiving an incorrect value. Typically,
as in this example, anti dependences are more constraining than output dependences.
However both types of dependences can limit instruction-level parallelism by preventing
the overlap of computation.

Register renamingefers to a class of transformations that break register anti and
output dependences by renaming (changing) a virtual register used by a set of operations
[5]. A widely used approach, referred toliéstime renamingidentifies all of the disjoint
register lifetimes within a function and assigns each of these disjoint lifetimes a new
virtual register. Aregister lifetimeis a set of definitions and uses of a particular register
where the uses only consume the values produced by definitions in the set and no uses
outside the set consume the values produced by these definitions. A register lifetime can

be divided up into one or momisjoint register lifetimesvhere each nonoverlapping

Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

1| rl<- M[r2+0] 1| rl<- M[r2+0] t3<- M[r2+4]
|2 § 2
L% 3| bne r1,0,exit| ri<-M[r2+4]] O]3| bne rl, 0, exit rl<-t3
4 4| bne t3, 0, exit
5| bne rl, 0, exit
exit:| 1| r4<- M[r1+0] | | exit:| 1| r4<- M[r1+0] | |
(a) Original code (b) After renaming with copy

Figure 2.2: An example of the renaming-with-copy transformation.

lifetime is the minimal set of definitions and uses required to form a valid register lifetime.
An example of a disjoint register lifetime for Register rl in Figure 2.1(a) is the definition
of rl in Cycle 1 and the use of rl1 in Cycle 3. Assigning this disjoint register lifetime a new
virtual register (Register t4) breaks the register and output dependences with the
redefinition of rl1 in Cycle 3, allowing more computation to be overlapped and improving
performance 40% as shown in Figure 2.1(b). Because lifetime renaming always operates
on disjoint register lifetimes, no fixup code (extra operations) is needed in order to
perform the transformation. As one of the few ILP transformations that does not increase
the program’s dynamic operation count, this transformation is almost universally applied
in production and research compilers.

However, register anti and output dependences can also occur between operations
within the same lifetime. For example, in Figure 2.2(a), the definition of Register rl in
Cycle 1 and the definition of Register rl in Cycle 3 reside in the same register lifetime
because they both reach the same use of rl1 in code labeled ‘exit.” As a result, the register
anti dependence between the use of rl in Cycle 3 and the redefinition of rl in Cycle 3

cannot be removed with lifetime renaming and another register naming transformation

10

Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

loop:| 1 r2<-rl rl1<-Mrl + 8] | loop:| 1] t4 <- M[rl + 8] r2<-rl
% 2| beq r2, r3, exit % 2
5 3| bnerl, O, loop 5 3 rl <-t4 beq r2, r3, exit
4| bne t4, 0, loop
(a) Original code (b) After renaming with copy

Figure 2.3: An example of renaming with copy increasing dependence height.

must be used. Note that in all this thesis’ figures, branch operations (e.g., bne r1, 0, exit in
Figure 2.2(a)) are assumed to not have any delay slots and operations scheduled after the
branch operation (e.g., r1 <- M[r2+4]) only execute if the branch is not taken.

The renaming transformation utilized by the IMPACT compiler when lifetime
renaming is not sufficient ilenaming with copy5]. This transformation splits a lifetime
into two disjoint lifetimes, renames one of them and fixes up the other with a copy (move)
operation. Applying this transformation to Figure 2.2(a) vyields the code shown
Figure 2.2(b). The redefinition of Register rl in Cycle 3 and use of rl1 in Cycle 5 is first
renamed to a new virtual Register t3, and then an operation is added to copy the value of
t3 to rl so that the code at ‘exit’ always gets the proper value for rl. Applying this
transformation to this code segment allows more computation to be overlapped,
improving performance by 20%.

Unlike the lifetime renaming transformation, renaming with copy increases the
program’s dynamic operation count. As shown earlier in Figure 1.1(c), care must be
taken to prevent overutilization of processor resources. Moreover, the additional copy
operation can actually increase the dependence height of a code segment, degrading
performance even if enough resources are available as shown in Figure 2.3. In

Figure 2.3(a), the register anti dependence between the use of Register r1 and redefinition

11

Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

oll] t1<-15+16 Sl t1<-r5+16 [©2<-r8+r7
52 2 <-tl +r7 Sl2] m<w2+t1
3| r3<-t2+1r8
(a) Original code (version 1) (b) After reformulation (version 1)
Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

1| rl<-r5+7r6 t4<-r8+r7
21 r2<-rl1+r7 r3<-t4+rl

1] ri<-r5+7r6
r2<-rl+r7
3] r3<-r2+1r8

Cycle

Cycle
N

(c) Original code (version 2) (d) After reformulation (version 2)
Figure 2.4: Two examples of integer expression reformulation.

of rl in Cycle 1 can be removed by performing renaming with copy, allowing these

operations to reorder as shown in Figure 2.3(b). However, the copy operation inserted by
the transformation ends up delaying the first branch until Cycle 1 so that the proper value
of Register rl reaches that branch’s target. Upon close examination of several
benchmarks, this situation was found to occur primarily when this transformation was

applied to operations that both define and use the same register, as the definition of rl1
does in Figure 2.3(a). For this reason, the IMPACT compiler’s existing heuristics

prevents application in this case and thus would not apply renaming with copy to the code
in Figure 2.3(a). There are, however, situations where applying this transformation to this
case does increase performance, making a better mechanism for applying this

transformation important.

2.3 Integer Expression Reformulation

Register flow dependencescur between the definition of a register’s value and

the subsequent uses of that register’s value. For example, in Figure 2.4(a), a register flow

12

dependence exists between the definition of Registertl in Cycle 1 and the use of
Register t1 in Cycle 2. Flow dependences usually specify a nonzero delay that indicates
that minimum number of cycles that must separate the two operations in order to prevent
a hardware interlock. In all of this chapter's examples, each register flow dependence
delay will simply be the defining operation’s latency, where integer additions and
subtractions have a one-cycle latency, and integer load operations have a two-cycle
latency. The code segment in Figure 2.4(a) therefore has a dependence height of three
cycles. Even with infinite processor resources, this code segment as shown must be
scheduled over three cycles. Thus something must be done to reduce the dependence
height if better performance is to be achieved on wider-issue processors. It is important to
note that in current processors, address generation interlocks, incomplete bypass, fast
execution paths, etc., can make a register flow dependence’s delay different from the
defining operation’s latency [2], [18] and these situations can be modeled by the IMPACT
compiler’'s machine description language [19], [20].

The second ILP transformatiomteger expression reformulatioms a form of
critical path reduction [17] that reduces the dependence height along the critical path by
reformulating integer arithmetic expressions in acyclic code segments. An example of
integer expression reformulation has already been shown in Figure 1.2 and two more
examples are shown in Figure 2.4. In all this thesis’s figures, including Figure 1.2 and
Figure 2.4, the virtual register identifications that start with an ‘r’ indicate that the
register’s value is assumed to be used elsewhere, in another code segment not shown.
The virtual register identifications that start with a ‘t’ indicate that the virtual register is

used only in the code segment shown. This distinction is important when reformulating

13

the code shown in Figure 2.4(a), because it indicates that the values written into virtual
Registers t1 and t2 may be safely changed as long as the correct value is still written into
virtual Register r3. This allows the summation of Registers r5, r6, r7, and r8 to be

reformulated without requiring any extra operations to be added, as shown in

Figure 2.4(b). However, if all the virtual registers are used elsewhere, as shown in

Figure 2.4(c), the values in these virtual registers may not be changed. This reformulation
transformation still can be applied, but an additional operation is required, as shown in
Figure 2.4(d). As with any transformation that adds operations, care must be taken to
prevent overutilization of processor resources.

This integer-expression-reformulation transformation utilizes the communicative
and associative properties of arithmetic to reformulate integer expressions in order to
improve the code segment’s performance. Baer and Bovet proposed an earlier algorithm
that uses these same properties to generate the most parallel form possible of source-level
floating-point expressions [21]. Unfortunately, just parallelizing expressions is not the
best choice for critical path reduction and may even degrade performance of the code
segment. For example, Figure 2.5(a) shows the same expression as Figure 2.4(a) except
that the value of Register r5 is now being loaded from memory. Parallelizing the
expression yields the code segment shown in Figure 2.5(b), which is an improvement over
the formulation in Figure 2.5(a), but higher-performance formulations are possible. In
fact, if the code segment originally has the higher-performance formulation shown in
Figure 2.5(c), parallelizing the expression degrades performance, as shown in
Figure 2.5(d). Thus, the expression-reformulation algorithm must take into account when

each operand in the expression becomes available.

14

Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

1] 15 <- M[r9+0] 1| r5<- M[r9+0] t2 <-r7 +18
|2 § 2
53 t1 <- 15 + 16 O|3| t1<-r15+16
4| t2<-tl+1r7 4 r4d<-t1+1t2
5| rd<-t2+1r8
(a) Original code (version 1) (b) After parallelization (version 1)
Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

1| r5 <- M[r9+0] tl <-r8 + 16
2<-tl+r7
3] rd<-t2+1r5

r5 <- M[r9+0] tl <-r8 +r6

Cycle
N

Cycle

1
2
3| t2<-r7+15
41 r4<-t1 +1t2

(c) Original code (version 2) (d) After parallelization (version 2)
Figure 2.5: The effect of parallelizing expressions on code performance.

The integer-expression-reformulation algorithm proposed in this thesis is applied
to two operations at a time, where the first operation defines a register used by the second
operation. The algorithm attempts to reformulate the two selected operations so that both
operations can be executed earlier. For example, applying this algorithm to the two
highlighted operations in Figure 2.6(a) causes Registers r5 and r7 to be swapped, allowing
the first operation to execute two cycles earlier and the second operation to execute one
cycle earlier as shown in Figure 2.6(b). The code can then be further improved by
applying this algorithm to the two highlighted operations in Figure 2.6(b), causing
Registers r5 and r8 to be swapped as shown in Figure 2.6(c). Note that no extra
operations were required because the values of Registers t1 and t2, by definition, are not
used elsewhere.

One advantage of reformulating just two operations at a time is that the algorithm

is straightforward to implement and fully test because there are only a finite number of

15

Issue Slot 1 Issue Slot 2 Issue Slot 1 Issue Slot 2

1| r5<- M[r9+0] 1| r5 <- M[r9+0] tl <-r7 +1r16
v|2 % 2
© >
53 t1<-r§ir6 O3] t2<-tl+1r15§
4] t2<-tl+17 4] ra<-t2+r8
5] r4<-t2+1r8
(a) Before first application (b) Before second application
Issue Slot 1 Issue Slot 2
o|1f r5<-M[r9+0] tl <-r7 + 16
Sl2| t2<-t1+18
© 3| rd<-t2+7r15

(c) After both applications
Figure 2.6: Example applications of integer expression reformulation.

operand/operation type combinations possible (roughly 360 in this thesis’s

implementation). Another advantage of processing just two operations at a time is that it
allows much finer control of the transformation’s application. Because each reformulation
of two operations can require the addition of one or more extra operations, this fine
control allows more conservative application of expression reformulation when resources
are limited.

The rules used to reformulate operation pairs are shown in Figure 2.7, where
Register L1 is assumed to be available later than Operands E2 and E3 (registers and/or
integer constants). These reformulation rules specify how the two operations must be
changed in order to move use of Register L1 from the first operation to the second
operation. Moving Register L1 to the second operation should allow both operations to
execute earlier, assuming execution resources are available. For example, both
applications of this transformation shown in Figure 2.6 utilize the transformation rule

shown in Figure 2.7(a). The conditions under which this rule applies are summarized by

16

t4<- L1+E2

t4<- E3+E2

r5<- t4+E3

Ip<-t4+L1

t4<- L1+E2

t4<- E3-E2

(a) ADD -> ADD/ADDRESS case

r5<- E3-t4

S<-t4-L1

t4<- L1+E2

t4<- E2-E3

(b) ADD -> SUB/BRANCH case

r5<- t4-E3

IS<-t4+L1

t4<- L1+E2

t4 <- E3-E2

(c) ADD -> SUB (only) case

brt4 == E3, ...

brLl==t4, ..

t4<- E2-L1

t4 <- E2 + E3

(d) ADD -> BRANCH (only) case

r5<- t4+E3

L<-t4-L1

t4<- L1-E2

t4<- E3-E2

(e) SUB -> ADD (only) case

r5<- t4+E3

Ip<-t4+L1

t4<- L1-E2

t4<- E3+E2

(f) SUB -> ADD/ADDRESS case

r5<- t4-E3

r5<- L1-t4

t4<- E2-L1

t4 <- E2-E3

(9) SUB -> SUB/BRANCH case 1

r5<- t4-E3

h<-1t4 -1L1

t4<- L1-E2

t4<- E3+E2

(h) SUB -> SUB/BRANCH case 2

r5<- E3-t4

S<-t4-L1

t4<- E2-L1

t4 <- E2-E3

r5<- E3-t4

r5<- L1 -t4

(i) SUB -> SUB/BRANCH case 3 () SUB -> SUB/BRANCH case 4
Figure 2.7: Reformulation rules used for integer expression reformulation.

the label “ADD -> ADD/ADDRESS.” This label indicates that this rule handles the case
where an add operation produces a result that is used by another add operation or in an
address calculation for a load or store operation.

For the case discussed in the previous paragraph, only the operation’s operands
need to be swapped. However, for many of the rules shown in Figure 2.7, an operation
must be changed from an add to a subtract operation, or vice versa, in order to perform
this transformation. For example, the rule shown in Figure 2.7(b) changes the first
operation from an add operation to a subtract operation. This rule handles the case where

an add operation produces a result that is used by a subtract operation or to determine the

17

branch direction (which conceptually involves subtracting the two operands being
compared), where the branch is either a branch equals or a branch not equals operation.
(The conditions under which this rule applies are summarized by the
“ADD -> SUB/BRANCH label.”) In order to achieve the desired result of both L1 and

E2 being subtracted from E3, changing the first operation is necessary.

It also is sometimes necessary to change the sense of the second operation, which
can be done for subtract operations (Figure 2.7(c)), branch operations (Figure 2.7(d)), and
add operations (Figure 2.7e), but not for address calculations, because current processors
do not support base minus offset addressing. Note the sense of branch operations can be
changed only because the order of the branch operands does not affect the outcome for
branch equals and branch not equals operations. The rules that cover the remaining add
and subtract combinations are shown in Figure 2.7(f) - Figure 2.7(j). There are no rules
for reformulating integer multiplication and division combinations because the associative
and communicative properties do not hold for integer division operations. Although it is
possible to reformulate expressions involving only integer multiplication operations or
logic operations (AND, OR, etc.), in the SPECcint92 and SPECcint95 benchmarks there
appear to be very few expressions that would benefit from these types of reformulations.
As a result, these logic expressions were not reformulated.

Although the rules shown in Figure 2.7 don’'t show any operations being added,
reformulating the two operations may require the addition of up to two new operations.
The first assumption made by the rules shown in Figure 2.7 is that the register defined by
the first operation is only used by the second operation so that its value may be safely

changed. If this is not naturally the case, a copy of the first operation must be created

18

with a new destination register that is used only by the second operation before the
transformation can be performed. This was the reason an additional operation was
required in order to transform the code segments shown in Figure 1.2(a) and
Figure2.4(c).

The second assumption that the rules shown in Figure 2.7 make is that
Register L1 is not redefined before the second operation and that if Operand E3 is a
register, E3 is defined before the first operation. This second assumption allows these
operands to be swapped between the two operations without affecting their values. If
these assumptions do not initially hold, the operations in the code segment must be
reordered, dependences permitting, in order to make this assumption true. In a few
important cases, register anti and output dependences prevent an assumption-satisfying
ordering from being found and renaming with copy is used to break these dependences.
For example, the reformulation rules cannot be directly applied to the two highlighted
operations in Figure 2.8(a) because neither assumption holds. The destination of the first
operation, Register rl, is used elsewhere (in a code segment not shown) and the first
register source of the first operation, Register rl, is redefined before the second operation.
The first assumption can be made true by making a copy of the first operation
(highlighted) and giving it a new destination register as shown in Figure 2.8(b). Although
the second assumption can usually be made true by simply reordering the operations, in
Figure 2.8(b) register anti dependences prevent any reordering from occurring. However,
if renaming with copy is applied to the load operation defining Register r2, this load

operation can then be moved above the redefinition of Register rl, as shown in

19

Issue Slot 1 Issue Slot 2 Serial Order

1] rl<- M[r9+8] Ce
2 t3<-rl+r2
213| beqr1, 8, exit] r1<- r1+r2 rl<- rl+r2
Sl a] 12 <- M[r7+r1] 12 <- M[r7+t3]
5
6| bne r2, r6, exit4
(a) Neither assumption holds (b) First assumption made true
Serial Order Issue Slot 1 Issue Slot 2
e 1 r1<-M[r9+8] | t3<- 17 +1r2
t3<-r1+r2 ol2
t4 <- M[r7+t3] L% 3| beqri, r8, exit| t4 <- M[r1+t3]
rl<-rl+r2 41 ri<-rl1+r2 2 <- t4
r2 <-t4 5] bne t4, r6, exitZ
(c) Second assumption made true (d) Expression reformulated

Figure 2.8: Example of making the reformulation rules assumptions true.
Figure 2.8(c). Both assumptions now hold and the expression can be reformulated as

shown in Figure.8(d).

The situations where renaming with copy is needed to make the second assumption
true usually involve either a loop variable or a pointer that is incremented with each
iteration of the loop. In addition, in loops this situation only occurs for the few cases
where the IMPACT compiler’s loop optimizer cannot or chooses not to break all the
register anti and output dependences of loop variables with other transformations. This
case occurs, however, in a few important code segments in the SPEC benchmarks
026.compress, 023.eqntott, and 008.espresso.

One of the advantages of applying transformations such as integer expression
reformulation at schedule time is that exact scheduling information can be utilized instead

of relying on approximate schedule information (such as dependence height) when

20

Issue Slot 1 Issue Slot 1

1] r6 <- M[r8+0] 1] r5<- M[r9+0]
§ 2| 5 <- M[r9+0] o 2| 16 <- M[r8+0]
O3] tl<-r7+r6 5 3

4] r2<-t1+r5 41 t1<-r7+716

5] r2<-t1+15

(a) Transformed based ona (b) The actual schedule
schedule approximation

Figure 2.9: An example of more accurate information being available at schedule time.

performing the transformation. For example, if only approximate scheduling information

is available and this information indicates that the definition of r6 will occur before the
definition of r5, the calculation of r2 will be reformulated to use r5 later as shown in
Figure 2.9(a). However, if in the actual schedule the definition of r5 occurs first, as shown

in Figure 2.9(b), then this reformulation based on approximate scheduling information
would end up degrading performance even though no extra operations were added in
order to perform the reformulation. By applying transformations at schedule time
(utilizing the algorithms described in Chapter 3) the transformations can adapt to all of the
scheduling decisions made during code scheduling, even those that are less than optimal.
In addition, schedule-time transformations can also take advantage of opportunities
created by these scheduling decisions, such as actual ordering of two load operations that
could execute in parallel if there were enough processor resources. It is extremely difficult
to estimate schedule information accurately in such cases because the actual ordering often
depends on the fine details of the scheduling heuristic used and the processor resources
available. By applying transformations at schedule time, information that is much more

accurate becomes available.

21

3. PROPOSED APPROACH FOR SCHEDULE-TIME
TRANSFORMATIONS

3.1 Introduction

The overall goal of the proposed transformation framework is to improve
performance through the intelligent application of ILP transformations at schedule time.
One advantage of applying these transformations at schedule time is that an extremely
good first-order approximation of a control block’s execution time, the schedule height,
can be efficiently computed after the control block is scheduled.sdiedule heighof a
control block is defined to be the average number of cycles required to execute the control
block per entry as specified by the control block’s schedule and profile information. For
example, if profile information indicates the top control block shown in Figure 2.2(a) is
entered 100 times, and the branch scheduled in Cycle 3 exits the control block 10 times,
the schedule height of this control block would be ((10 * 3) + (90 * 5)) / 100 = 4.8 cycles.
After applying renaming with copy to the top control block shown in Figure 2.2(b), the
schedule height is reduced to ((10 * 3) + (90 * 4)) / 100 = 3.9 cycles. In addition to taking
into account the processor’'s execution constraints, the schedule height also reflects the
decisions made by the instruction scheduler. This allows extremely accurate predictions of
actual performance to be made. Note that if profile information indicates the control
block was not executed, then some reasonable assumption needs to be made (e.g., all
branches are equally likely) in order to use the schedule height calculation to guide the
application of transformations. This issue is not addressed in this thesis and therefore
transformations will only be applied to executed control blocks using the proposed

application approach.

22

3.2 The Schedule-Based Application Algorithm

The algorithm for the proposed schedule-based application approach is shown in
Figure 3.1. The parameters passed to this algorithm are the control block to be
transformed, the initial schedule height of the control block before transformation, and a
set of flags indicating what types of transformations to perform. The algorithm returns the
transformed control block (indirectly) and the schedule height of the control block after
the transformations have been applied. Note that the initial schedule height and the
transformed schedule height are used to prevent unnecessary schedule height calculations
(which in turn may require rescheduling the control block).

In order to avoid an exhaustive search, a linear-time greedy search algorithm [22]
is utilized. Each transformation is performed one at a time, in priority order, and the effect
of the individual transformation is then evaluated. If the control block’s schedule height is
improved, the transformation is kept. If the schedule height is degraded, the
transformation is undone and marked so that it will not be tried again. It is for those cases
where the schedule height is unchanged, however, that the interesting trade-offs must be
made.

Performing a transformation that does not change the schedule height may
consume processor resources that may be better utiized by performing another
transformation. If this transformation is undone, the transformation may turn out to be
beneficial after another transformation is performed. For the two transformations

implemented, benchmark performance is significantly increased if transformations are

23

schedule_based_application (control_block, initial_height, allowed_trans)

{
best_height = initial_height; /I Initialize best height to initial height

/[Perform an initial scan of the control block for transformation opportunities
trans_queue = find_potential_trans (control_block, allowed_trans);

/I Calculate the initial transformation priorities, will update after each transformation
calculate_trans_priorities (control_block, trans_queue);

/I Test each transformation opportunity in priority order, until all transformations
/I have been tested. Only examine transformations allowed by ‘allowed_trans’.
while ((trans = select_highest_priority_trans (trans_queue)) !'= NULL)

{

unschedule (control_block); /' Unschedule control block
perform_transformation (control_block, trans); /I Apply transformation
schedule (control_block); /I Reschedule control block

new_height = calc_schedule_height (control_block);// Measure the effect

/I Keep if transformation reduces schedule height or
1 if transformation doesn’t change the schedule height and the
I transformed operation is not scheduled later than before transformation.
if ((new_height < best_height) ||
((new_height == best_height) && (transformed op not scheduled later)))

{
best_height = new_height; /I Keep transformation, update best height
/[Performing trans may expose new opportunities and/or remove others
update_trans_queue (trans_queue, trans, allowed_trans);
/I Recalculate trans priorities based on new dependence graph
calculate_trans_priorities (control_block, trans_queue);
}
else
{
unschedule (control_block); // ' Unschedule control block
undo_transformation (control_block, trans); /I Return to previous state
}
}
return (best_height); /I Return the new schedule height of control block

}

Figure 3.1: Schedule-based application algorithm.

24

performed even when they don't change the schedule height. This is because a large
number of the control blocks require multiple transformations to be applied before the
schedule height is improved, independent of the order the transformations are applied.
Therefore, if transformations are being tested individually (as in Figure 3.1),
transformations should be kept as long as they do not directly degrade performance.

If the algorithm shown in Figure 3.1 simply keeps all transformations that do not
degrade the schedule height, almost all of the improved performance would be captured.
However, there are a few cases where the schedule height is not affected but the targeted
operation is delayed. Thargeted operations defined to be the operation that most
directly benefits from the performed transformation (i.e., the operation directly constrained
by the dependence being transformed). For these cases, if this targeted operation is
delayed by performing this transformation, it is unlikely to be beneficial and the algorithm
shown in Figure 3.1 causes the transformation to be undone. Otherwise, the
transformation could be beneficial and this algorithm therefore keeps the transformation.

It should be noted that the proposed algorithm for selecting transformations to
apply is clearly only one of several possible solutions. This researcher implemented and
tested a wide array of both linear and binary search algorithms, including several that
performed multiple transformations at a time, several that tried each transformation
multiple times, and one that exhaustively tried all combinations for up to the first 20
highest-priority transformation opportunities in a control block (1,048,576 combinations).
These experiments were performed in an early prototype implementation of the proposed
transformation framework and focused on the renaming-with-copy transformation and the

SPECcint92 benchmarks. These experiments found that the proposed linear-time search

25

algorithm presented in Figure 3.1 captured all the performance improvement of the
exhaustive search in all but a few of the control blocks. Until more transformations are
implemented in this schedule-time transformation framework, it is difficult to judge
whether or not the proposed linear-time search will continue to do as well or if a more
expensive algorithm will be needed. However, for both renaming with copy and integer
expression reformulation, the proposed search algorithm has produced near-optimal
results.

In addition, this researcher was unable to find a search algorithm that captured
almost all the possible performance improvement, and required less compile time, than the
proposed linear-time search algorithm. The primary difficulty is that it is nearly impossible
to separate the benefit of one transformation from the degradation caused by another
transformation if they are both performed at the same time. As a result, search algorithms
that evaluate the benefit of more than one transformation at a time can apply clearly
degrading transformations and may not apply clearly beneficial transformations, if an
unfortunate grouping of transformations occurs during this evaluation. This researcher
could not find an intuitive way to prevent such unfortunate groupings from occurring. As
a result, in order to capture almost all the possible performance, an algorithm that tests
each transformation individually at least once appears to be necessary.

Note that the algorithm presented in Figure 3.1 unschedules the control block
before each transformation is performed (or undone) and reschedules the control block
after performing the transformation so that the new schedule height can be calculated.
This unscheduling and rescheduling of the control block for each transformation

evaluated represents most of the compile-time cost of this algorithm. In Section 4.4 two

26

alternatives to rescheduling the control block and making decisions based on changes in
schedule height will be described. However, as the results in Chapter 4 will show, these
alternatives do not capture all the performance of the proposed approach, so the ability to
efficiently reschedule a control block is required. Chapters 5 and 6 will present novel
techniques to significantly reduce the compile time required to reschedule control blocks
and therefore to significantly reduce the time required to perform this proposed algorithm.
It should be noted that unscheduling a control block is a necessary first step in
rescheduling a control block, so its cost should be considered part of the overall
rescheduling cost. This unscheduling step is separated out in the proposed algorithm
because sometimes scheduling reorders operations in such a way as to prevent some useful
transformations from being performed. The actual implementation does allow the
transformation of partially scheduled or fully scheduled control blocks, but this ability is

not required and is not beneficial for the proposed schedule-time application algorithm.

3.3 The Calculation of Transformation Priorities

The benefit of the proposed schedule-time application algorithm shown in
Figure 3.1 is highly dependent on the transformation priority functions utilized. These
priority functions determine the order in which the transformations are evaluated (highest
priority first). Ideally, these priority functions would give the highest priorities to the
most beneficial transformations and the lowest priorities to the least beneficial or the
detrimental transformations. Unfortunately, this information is not easily obtained so

heuristics must be used to calculate these priorities. The priority functions utilized in this

27

thesis estimate the benefit of a transformation (and thus its priority) by analyzing its effect
on the control block’s dependence graph.

A control block’s dependence graplis a compiler representation of all the
dependences between operations in the control block. (Please see Sections 2.2 and 2.3 for
a description of register anti, register output, and register flow dependences.) In addition
to constraining the order of operations in a control block, each dependence also specifies a
delay. The dependencealslayspecifies the minimum number of cycles that must separate
the execution of the two operations connected by the dependence. An example
dependence graph for a control block is shown in Figure 3.2(a). In this figure, each circle
represents an operation, and the shaded Operations C and H are control block exits
(branches). The lines between operations represent a dependence and the number next to
the line represents the dependence’s delay. For example, the dependence between
Operation A and Operation B has a delay of one cycle, indicating that Operation B must
execute at least one cycle after Operation A. The first operation (i.e., Operation A) will
be referred to as the dependencsetirce operationand the second operation (i.e.,
Operation B) will be referred to as the dependenasstination operation If a
dependence has a zero delay (such as the dependence between Operation E and
Operation C), the operations may execute in the same cycle as long as the source
operation executes before the destination operation. In addition, it is also useful to refer
to thedependences intan operation. Operation C has two dependences into it, one from

Operation B and the other from Operation E.

28

(a) (b)

Figure 3.2: An example dependence graph indicating each operation’s (a) early time and
(b) late times.

One of the useful metrics that can be calculated from the dependence graph is the
early time of each operation. An operatioa&sly timeis the first cycle that the operation
could be scheduled in because of dependence constraints, assuming that there are no
resource constraints. The early time of each operation is shown in Figure 3.2(a) in
parentheses. For example, Operation C’'s early time is calculated to be cycle 3. The
algorithm for determining the early time of every operation in a control block is shown in
Figure 3.3. If an operation has no dependences into it (e.g., Operations A and D), its early
time defaults to cycle 1. Otherwise, an operation’s early time is calculated by taking the
maximum of the constraints imposed by the dependences into that operation. The
constraint from a dependence is then calculated by adding the early time of the
dependence’s source operation to the dependence’s delay. For example, the constraint

caused by dependence between Operations B and C in Figure 3.2(a) is calculated to be

29

calculate_early_times (control_block)

{

for (operation in control_block) // Process operations in serial order.

{

early time =1; /' If operation is not constrained, its early time is 1.

/I For each dependence constraining the operation, update early time.

for (dep_in in operation’s dependence_into list)

{
/I Given the early time of the dependence’s source operation and
/Il the delay of the dependence, calculate the constraint on the early time.
constraint = dep_in->source_operation->early _time + dep_in->delay;

if (early_time < constraint) /l Update early time if necessary.
early_time = constraint;

}

operation->early_time = early_time; // Update operation’s early time.

}
}

Figure 3.3: Algorithm for calculating the early time for each operation in a control block.

2 +1 =cycle 3. For Operation C, the maximum of constraints (3 and 2) then is used to
set the early time of this operation to cycle 3.

Another useful metric that can be calculated from a dependence graph is a set of
late times for each operation, one for each exit from the control block. (Branch
operations are commonly referred to as exits because they can transfer control out of the
control block.) An operation’sate timefor a particular exit is the latest cycle that
operation can be scheduled in without delaying the exit. Each late-time calculation is
based on dependence constraints only; resource constraints are not considered. The late
times for each operation are shown in square brackets in Figure 3.2(b). The first number
is the late time relative to Operation C (the first exit) and the second number is relative to

Operation H (the second exit). For example, the late time for Operation B relative to exit

30

Operation C is cycle 2 and relative to exit Operation H is cycle 3. The late time for an
operation is not defined for an exit if the operation does not need to execute before the
exit. For example, Operations F, G, and H do not have to execute before exit
Operation C, so a dash is shown for the late time.

The algorithm for calculating the late times for each operation is shown in
Figure 3.4. This algorithm assumes there is a single well-defined operation for each exit
(no fall-through path) and that each exit is assigned an array index starting from O.
Handling control blocks with a fall-through path is a simple extension of this algorithm
(not shown). (Essentially a zero-latency dummy operation can be added to the end of the
control block and its late time set to the maximum of all the operation’s early times.) For
each operation, an integer array is used to store the late time relative to each exit
operation. Undefined late times (represented as a dash in the example) are represented by
the number 2,000,000,000 in this algorithm. The late times relative to each exit operation,
specified by the index variable, are calculated independently.

First, the late times for all operations are initialized to undefined for this index.
The next step sets the exit operation’s late time to its early time (e.g., the late time for exit
Operation C, index 0, is set to cycle 3). The last step propagates the late time constraint
backward through the control block. This is done by scanning each dependence into each
operation that has a late time specified and updating the late time (if necessary) of the
dependence’s source operation. For example, the dependence into Operation C from
Operation B imposes a constraint that Operation B’s late time be at most cycle 2 (for
index 0). This constraint is calculated by taking Operation C’s late time (cycle 3) and

subtracting the dependence’s delay (1 cycle). Operation C also constrains the late time of

31

calculate_late_times (control_block)
{
/I Each exit from the control block is numbered. Calculate the late time relative
/Il to each exit individually (late_time is an array of late times)
for (index=0; index < number_of_exits; index++)
{
/[Initialize all late times for this index with the special value 2,000,000,000.
/I This value indicates that the late time is currently undefined.
for (operation in control_block)
operation->late_time[index] = 2,000,000,000;

/I Set the late time for the exit operation to the early time of the exit operation.
exit_operation[index]->late_time[index] = exit_operation[index]->early_time;

/I Propagate the late time constraints from this exit operation to all operation
/I before the exit operation in the control block (for this index only). These
I/l operations are processed in reverse serial order.
for (operation = exit_operation[index]; operation = NULL,;

operation = operation->previous_operation_in_control_block)
{

/'If this operation’s late time is 2,000,000,000, the exit operation can be
/I executed before this operation is executed so there are no constraints
/l to propagate.
if (operation->late_time[index] == 2,000,000,000)

continue; /I Goto previous operation in control block

/I For each dependence constraining the operation, update the late time
/I of the dep_in’s source operation (if necessary).
for (dep_in in operation’s dependence_into list)
{
/I To make this operation’s late time, the source operation’s late
/l time must be delay cycles earlier.
constraint = operation->late_time[index] - dep_in->delay;

/[Update the source operation’s late time, if necessary.
if (dep_in->source_operation->late_time[index] > constraint)
dep_in->source_operation->late_time[index] = constraint;
}
}
}

Figure 3.4: Algorithm for calculating the late times for each operation in a control block.

32

Operation E to cycle 3. After all the constraints from Operation C are propagated, the
algorithm then propagates the constraints of the previous operation in the control block.
This continues until the constraints of all the operations in the control block before the exit
operation have been propagated. Note that the late times for the same operation but for
different indexes (exits) can be quite different (they are different for every operation in this
example). This happens because operations often constrain the execution of one exit more
than another exit.

The algorithm used for calculating each transformation opportunity’s priority is
shown in Figure 3.5. This priority algorithm was experimentally found to yield the best
performance for the four-issue processor configuration described in Section 4.3, which
will be discussed in more detail after the algorithm is explained.

In order to facilitate this explanation, the renaming with copy example is revisited
in Figure 3.6(a). There is only one transformation opportunity in this control block, the
application of renaming with copy to Operation C. This priority algorithm’s parameters
are the control block being transformed (e.g., Figure 3.6(a)) and the transformation
opportunity “trans” that the priority should be calculated for (e.g., renaming with copy on
Operation C). This algorithm assumes that the early time and late times for each operation
in the control block have been previously calculated. The early and late times for this

example control block are shown in Fig3ré(b).

33

calculate_trans_priority (control_block, trans)

{
/I The targeted operation should benefit most directly from this transformation.
targeted_op = trans->targeted_operation;

/I Calculate the direct benefit of applying this transformation in terms of the
/I change in the targeted operation’s early time.
direct_benefit = calculate_change_in_early time (control_block, trans, targeted_op);

/I Initialize priority to zero, add in priority relative to each exit operation.
priority = 0.0;
for (index=0; index < number_of_exits; index++)
{
/I'If exit does not depend on targeted operation, do not increase priority.
if (targeted_op->late_time[index] == 2,000,000,000)
continue; /I Skip the rest of the computation for this index.

/I The dependence height before and after target_operation can be quickly
/I calculated using the target_operation’s early and late time.

before_height = targeted_op->early_time - 1;

after_height = (exit[index]->early_time - targeted_op->late_time[index]) + 1;

/I Each transformation uses a different priority calculation.
if (trans->type == renaming_with_copy)
exit_priority = 10000.0 * ((min(before_height, after_height) * 10000.0) +
((before_height + after_height) * 100.0) +
direct_benefit);

else if (trans->type == integer_expression_reformulation)
exit_priority = 1.0 * ((after_height * 10000.0) +
((before_height + after_height) * 100.0) +
direct_benefit);

/I Weight exit priority based on importance of exit (profile based)
exit_weight = exit_frequency[index] / control_block->entry_frequency;
if (exit_weight < 0.00001) exit_weight = 0.00001,
priority = priority + (exit_priority * exit_weight);

}

/I If transformation not expected to be beneficial, significantly reduce priority.
if (direct_benefit <= 0)
priority = priority * 0.001;

return (priority);

Figure 3.5: Algorithm for calculating transformation priorities.

34

Issue Slot 1 Issue Slot 2

1| A ric- M[r2+0] (1[L.1] Q

o 2 2

g 3 B: bne r1, 0, exit C: rl<- M[r2+4] (3)[3,3] @ 0 @ (3)[-,3]
4 1
5| D:bne r1,0, exit ©)-5] (D)

(@) (b)

Figure 3.6:(a) An example control block and (b) its dependence graph.

The algorithm first determines the operation targeted by the transformation (e.g.,
Operation C). The algorithm then calculates how much the early time for this targeted
operation will change after the transformation is performed. This can be efficiently
calculated by scanning the dependences into the targeted operation, ignoring the
dependence(s) that will be removed by the transformation. For this example, the early
time for Operation C will change from cycle 3 to cycle 1 after renaming with copy is
performed, yielding a two cycle change. This change is used to approximate the direct
benefit to the targeted operation from this transformation. This is an approximation
because resource constraints may prevent this benefit from being realized.

The priority algorithm then calculates the priority contribution from each exit to
this transformation’s priority. If the exit does not require the targeted operation to be
executed (the late time is 2,000,000,000), then that exit makes no contribution to the
transformation’s priority. Otherwise, the exit's contribution is calculated using the
following two statistics. First the position of the targeted operation in the longest
dependence chain that goes through both the targeted operation and the exit is calculated.

The targeted operation’s early time indicates how much of this dependence chain is

35

before the targeted operation (before_height). Note that one cycle is subtracted from this
early time to compensate for early times starting at cycle 1. The amount of dependence
chain after the targeted operation is calculated by subtracting the targeted operation’s late
time for this exit from the early time of the exit (after_height). Note that one extra cycle is
added to this difference in order to guarantee after_height will be greater than zero. The
priority calculations (described below) were found to give undesirable priorities when
after_height is zero. For the calculation of exit Operation D’s priority contribution, the
before_height of Operation C is calculated to be (3 - 1) = 2 cycles and the after_height is
calculated to be (5 - 3) + 1 = 3 cycles.

The priority calculation for the transformation then utilizes three ordering
heuristics and some scaling constants to determine the transformation’s priority. This
priority is in effect a sorting key that is used to determine the order transformations will be
evaluated in. As such, the magnitude of the priorities are unimportant as long as the
proper order of transformations occurs. This property allows several ordering heuristics
to be folded into one floating-point number for ease of use. In addition, scaling constants
have been chosen for each of these heuristics in order to create a clear hierarchy of
importance for determining the order of transformations. The rationale behind each of
these ordering heuristics and the choice of scaling constants will now be explained.

The first ordering heuristic, thdirect-benefit metricutilizes the direct benefit of
the transformation (direct_benefit) in terms of change in early time for the targeted
operation. When the direct-benefit metric is zero (or less), performing this transformation
is usually not beneficial. When the direct-benefit metric is greater than zero, performing

this transformation is significantly more likely to be beneficial. However, this metric

36

does not discriminate between transformations that target the critical path and those that
do not. Because in general targeting the critical path is more likely to yield overall benefit,
basing the priority on only this metric does not yield good results. However, when
combined with other heuristics (described below), it works well when all other
considerations are equal. In addition, this is the only metric that can be used to discern
between beneficial and unbeneficial transformations. After the transformation’s priority
using all the ordering heuristics is calculated, this metric is used to scale the priority so
transformations more likely to be beneficial are evaluated first. This is implemented by
multiplying the priority by 0.001 if direct_benefit is zero (or less); otherwise the priority is
not changed.

The second ordering heuristic, ttieain-height metricis the dependence height of
the targeted dependence chain. Tdrgeted dependence chag the longest chain of
dependences that goes through both the targeted operation and the exit operation
(before_height + after_height). The larger the dependence height of the targeted
dependence chain is, the more likely the targeted dependence chain is constraining
performance. Transformations that target these longer dependence chains are therefore
more likely to improve overall performance. However, this heuristic does not distinguish
between transformations that target the same dependence chain (which frequently occurs
in unrolled loops). For transformations like renaming with copy that can (best case) break
a dependence chain into two independence pieces, it more desirable to break the
dependence chain in the center (which maximizes benefit) than near one end of the
dependence chain. The direct_benefit heuristic does not cause this desirable ordering

either, so another ordering heuristic is needed.

37

The next ordering heuristic, thmosition metri¢ is based on the placement of the
targeted operation in the targeted dependence chain. For renaming with copy, the closer
the targeted operation is to the center of the targeted dependence chain, the more the
dependence chain’s height will be reduced if the chain is split into two independence
pieces. The distance from the closest edge of the dependence chain, which can be easily
calculated by taking the minimum of before_height and after_height, indicates how close
to the dependence chain’s center the targeted operation is. This minimum is therefore
used as the position metric for renaming with copy. For integer expression reformulation,
no matter where the targeted operation is, the benefit will be only one cycle (the latency of
an integer add or subtract). However, the farther the targeted operation is from the
bottom of the targeted dependence chain, the more operations there are below the
transformation that potentially could benefit from the reduced dependence height. The
distance from the bottom of the targeted dependence chain is simply the after_height
metric, which is used as the position metric for integer expression reformulation.

The final combination of ordering heuristics for each transformation was
experimentally derived from extensive evaluation of various combinations of the three
ordering heuristics described above. Because each of the ordering heuristics is unlikely to
have a value larger than 100, each heuristic was multiplied by powers of 100 (1, 100,
10,000) and combined into one floating-point number for easy sorting of transformations.
Combinations involving subsets of these three ordering heuristics were also evaluated. In
addition, because the transformations do not have the same cost-benefit ratios, various

scaling factors were evaluated on the overall priority values based on transformation type.

38

The aggregate priority value for each exit (exit_priority), as shown in the
algorithm, first orders the transformations by the position metric, then by the chain-height
metric, and finally by the direct-benefit metric. For renaming-with-copy transformations,
this aggregate priority value is then multiplied by 10000.0 so that renaming-with-copy
transformations will always have higher priority than integer-expression-reformulation
transformations, even if the renaming-with-copy transformation has no direct benefit.
(The rationale for this scaling will be explained in Section 3.4.) The final priority value for
the transformation (priority) is then a summation of the aggregate priority value for each
exit, weighted by the importance of the exit (exit_weight). The importance of an exit is
estimated by dividing the number of times the exit is taken by the number of times the
control block is executed, as specified by the profile information. To help break ties in a
way that helps exits that (according to the profile information) are not taken, exit_weight
is forced to have a minimum value of 0.00001. It should be noted that this approach for
combining priorities for each exit into one final priority value is identical to that used by
the DHASY scheduling heuristic [23]. It is an intuitively good way to combine multiple
priorities together.

Note that if there are two or more transformations with the same final priority, the
‘select_highest_priority_trans’ function (called in the transformation selection algorithm
shown in Figure 3.1) will pick the transformation that targeted the operation that appeared
earliest in the unscheduled control block. (If further tie-breaking is needed, the renaming-
with-copy transformation will be chosen first.) Also, whenever a transformation is
performed (and kept), the control block is examined for new transformation opportunities

that might have been created and the priorities for existing transformation opportunities

39

are recalculated based on the new dependence graph (as shown in Figure 3.1). This
ensures that new opportunities are not missed and that the transformation priorities always
reflect the current state of the control block. The metric ordering and scaling factors used
in the priority calculation shown in Figure 3.5 were chosen because they were found to
yield the best performance over the benchmarks at a control-block level (independent of
the importance of each control block).

The ranking of the position metric and chain-height metric did not significantly
affect the performance of control blocks limited by dependence constraints. Both metrics
tend to target the longest dependence chains first (which is desirable) and in these control
blocks that do not saturate processor resources, any extra transformations performed
usually can be absorbed. However, ranking the position metric first usually yielded
higher performance when resource constraints limited the performance of portions of a
control block. In order to improve performance in this situation, the transformations
applied must facilitate the moving of operations from the portions of the schedule with
resource contention into the portions of the schedule that have more processor resources
available. Transforming shorter dependence chains so that they can be moved out of the
way of the longer dependence chains is sometimes the only way to improve performance.
In addition, there tend to be fewer processor resources available, so the order of
evaluation tends to be much more important. With the position metric ranked first, well-
positioned (and hopefully more promising) transformations targeting shorter dependence
chains are evaluated before poorly positioned transformations targeting the longest
dependence chain. This was found experimentally to yield good performance for these

resource constrained control blocks. If the chain-height metric is ranked first, every

40

transformation targeting the longest dependence chain is evaluated before those targeting
even slightly shorter dependence chains. Because of the strategy of keeping
transformations as long as they don't hurt performance, this ranking often allows
ineffective transformations to the longest dependence chain to consume all the available
resources before the transformations targeting the shorter dependence chains are
evaluated. As a result, ranking the chain-height metric first often does not yield as high
performance as ranking the position metric first does.

It should be noted that the transformation’s priority is based solely on dependence
information. This researcher found that calculating priorities based on scheduling
information (e.g., when each operation was scheduled and which dependences were
constraining performance in the schedule) tended to generate less optimal priorities. One
difficulty with using scheduling information is that the delays caused by resource
constraints can mask the importance of some truly constraining dependences. In addition,
the priority heuristics must now second-guess the scheduling heuristics. It is difficult to
determine whether an operation was delayed because of dependence and resource
constraints or because the scheduling heuristics determined that the operation was
unimportant. It is also unclear whether an operation was scheduled early because the
scheduling heuristics determined the operation was critical or because there were extra
resources available so a noncritical operation might as well be scheduled. Although
dependence information does not typically specify all the constraints on performance, it is
significantly easier to interpret than schedule information. In addition, aggressive ILP

scheduling heuristics are typically based on dependence information and profile

41

information. Utilizing this same information allows the transformation algorithms to

target those operations the scheduler is likely to consider critical.

3.4 Application of the Two ILP Transformations Evaluated

Traditionally, compilers apply each type of transformation (i.e., renaming with
copy and integer expression reformulation) in separate passes over the code. Each of
these passes are commonly referred to as a phase. Because applying a transformation can
both expose and remove opportunities for future transformations, the order in which the
transformations are applied can significantly affect performance. Even with careful tuning
of the order, some beneficial transformation opportunities are occasionally missed, thereby
reducing performance, which is commonly referred to aspttese-ordering problem
The proposed schedule-based application approach (Figure 3.1) allows several different
types of transformations to be considered for application at the same time. This approach
has the potential to prevent many of the phase-ordering problems encountered with
traditional approaches because the application order of the transformations adapts to the
transformation opportunities present in the code via the priority functions.

In order to evaluate this potential benefit for the two implemented
transformations, each transformation’s priority was scaled to allow various degrees of
phase-ordering and different relative priorities to be evaluated. However, the experiments
clearly showed that for these two transformations, a strict phase-ordering should be used
where “free” integer-expression-reformulation transformations are applied first, then
renaming-with-copy transformations are applied, and then finally expression-

reformulation transformations that require the addition of extra operations are performed.

42

This is the best way to apply these transformations because the transformations have
significantly different cost-benefit ratios. Integer-expression-reformulation
transformations that add no extra operations are “free” and as such have a zero cost-
benefit ratio. Renaming with copy has a low cost-benefit ratio because a single
transformation can halve the height of a dependence chain and the extra operation added
can usually be scheduled late in the control block where processor resources are more
likely to be available. Integer expression reformulations that require the addition of extra
operations have a significantly higher cost-benefit ratio because a single transformation
can only reduce dependence height by one cycle, and if an extra operation must be added
to make the first reformulation assumption true (see discussion of Figure 2.8) this extra
operation must be scheduled early in the control block where processor resources are less
likely to be available.

This strict phase-ordering for these transformations was initially implemented by
scaling the priority values for the transformations. An artifact of this scaling can be seen
in the exit_priority calculations shown in Figure 3.5 where the exit_priority for renaming
with copy is scaled (multiplied) by a factor of 10,000.0, whereas the priority for integer
expression reformulation is scaled by a factor of 1.0. This particular scaling causes a total
phase-ordering where renaming-with-copy transformations are always evaluated first.
(Note that this initial scheme did not give “free” integer expression reformulations highest
priority.)

This initial priority-based approach then evolved into the approach shown in
Figure 3.7, which explicitly performs each of the transformations in individual phases.
Each phase utilized the proposed schedule-based application algorithm shown in

43

transform_control_block (control_block, initial_height, max_passes)

{

Il First, apply integer expression reformulations that do not add operations
best_height = schedule_based_application (control_block, initial _height,

INT_EXPR_REFORMULATION | ONLY_FREE_TRANS);

pass = 0;
while (pass < max_passes)

{

}

pass++;

Il Apply renaming-with-copy transformations and minimize the number

/I of transformations applied by also doing an undo pass, where unnecessary

/I transformations are backed out.

rename_height = schedule_based_application (control_block, best_height,
RENAMING_WITH_COPY | MINIMIZE_COUNT);

/I Apply integer expression reformulation transformations (both those that

/I require the addition of operations and those that do not).

expr_height = schedule_based_application (control_block, rename_height,
INT_EXPR_REFORMULATION);

/I Stop if schedule height has not changed this pass

if (expr_height == best_height)

{
best_height = expr_height; /l Update best height for return value
break; /l Break out of loop

}

/I Otherwise, update best height and perform another pass of transformations
best_height = expr_height;

return (best_height); /I Return the new schedule height of control block

}

Figure 3.7: Algorithm used to transform each control block.

Figure 3.1 and the priority functions shown in Figure 3.5. As shown in Figure 3.7, the

schedule-based application algorithm is first used to apply “free” integer expression

reformulations. Then, in order to maximize the performance of each control block,

multiple transformation passes are made until the control block’s performance remains

44

stable or max_passes is reached. For almost all of the control blocks, the first pass
captured all the performance improvement (if any) and the second pass ended up not
improving performance at al. However, in a few control blocks the second pass did
improve performance slightly. This indicates that the priorities for these two
transformations are well chosen and that only one pass is currently necessary to capture
practically all of the performance benefit. However, after more transformations are
implemented, multiple passes may be desirable. Therefore the capability to perform
multiple passes is retained in the algorithm.

In each of these passes, renaming with copy is performed first. In addition to
performing the schedule-based application algorithm shown in Figure 3.1, an extra pass
over the performed transformations is made in an attempt to minimize the number of
transformations performed. This extra pass undoes each transformation one at a time and
evaluates the effect of undoing the transformation. If undoing the transformation does
not harm the control block’s performance, the transformation remains undone; otherwise
the transformation is redone and truly kept. The algorithm for this extra pass is not
shown because it is a simple variation of the algorithm shown in Figure 3.1. The
transformations are undone in the same order in which they were performed. This extra
pass was found to significantly reduce the number of transformations performed, freeing
processor resources for future transformations. In a few cases, undoing unnecessary
transformations actually improved the control block’s performance. Note that for some
transformations, such as renaming with copy, only a minimal amount of state information
needs to be maintained in order to allow transformations to be easily undone in a separate

pass. However, for other transformations, such as integer expression reformulation, it is

45

difficult to undo arbitrary transformations after several transformations have been applied
using only state information because of the extent the code is modified by these
transformation. In order to undo transformations for the general case, an inverse
transformation is required that analyzes the code for “undo” opportunities and applies the
inverse transformation appropriately.

After renaming with copy is performed, integer-expression-reformulation
transformations are performed. Both “free” transformations and those that require extra
operations are performed in this pass. However, an extra pass to minimize the number of
transformations applied was not performed, because of the difficulty in undoing an earlier
expression reformulation after other reformulations have been performed. In order to
undo expression reformulations properly in this situation, a powerful common
subexpression elimination transformation is required that has the ability to rewrite
expressions to create common subexpressions which it then can eliminate. Such a
transformation is interesting in its own right because it adds dependence constraints while
reducing the amount of processor resources utilized. This transformation was not
implemented for this thesis but is an interesting area for future work. Note that initial
analysis indicates that the inability to minimize the number of expression reformulations
performed does not significantly affect performance when the schedule-time algorithm is
used. However, some of the other approaches evaluated in Chapter 4 may not perform as

well because the number of transformations is not minimized.

46

3.5 Related Work

Watts, Soffa, and Gupta [24] advocate using feedback from task scheduling to
guide parallelizing transformations, either interactively or automatically, in order to
improve program performance on a multiprocessor. By analyzing the task schedule, the
heuristically-desirable tasks to transform, namely large tasks scheduled at times when at
least one of the processors is idle, can be systematically determined. Using these
heuristics, loop transformations can then be applied until the task schedule indicates all the
processors are fully utilized or some acceptable amount of processor idle time has been
achieved. Three algorithms for applying these transformations are proposed. The first
approach reschedules the task graph after a heuristically-selected set of transformations is
applied. This process continues, applying more transformations with each iteration, until
the desired processor utilization is reached. The second approach performs
transformations during scheduling, whenever there are no tasks available to schedule on an
idle processor. The third approach is a hybrid that first applies the second approach and
then does one pass using the first approach. This last approach was advocated because it
yielded reasonably good processor utilization while requiring the task graph to be
scheduled only twice. The primary benefit of this approach is that fewer transformations
are applied. Because each transformation introduces some execution overhead, applying
fewer transformations can potentially improve performance. It was observed that blindly
applying all possible transformations tends to be time-consuming and often results in task
schedules with lower performance.

The fundamental problems involved with applying parallelizing transformations for

multiprocessors and for ILP processors as described in this chapter are quite similar.

47

However, the treatment of these problems in [24] is oversimplified, yielding an application
algorithm that ignores the run-time overhead introduced by each transformation and that
focuses on maximizing processor utilization, not overall program performance. As a
result, applying transformations with this application algorithm may degrade overall
program performance. In this chapter’s treatment of these problems, both the benefit and
the overhead caused by each transformations is evaluated in the context of a detailed
model of the processor’s execution constraints. As a result, the algorithms presented in
this chapter can intelligently apply the transformations in order to maximize the overall
program performance. The drawbacks of applying transformations without considering
the overhead introduced (as in [24]) will be discussed further in Chapter 4 with the

evaluation of the dependence-based approach described in Section 4.4.

48

4. PERFORMANCE BENEFITS OF SCHEDULE-TIME
TRANSFORMATIONS

4.1 Introduction

One advantage of applying transformations at schedule time is that the effect of
applying each individual transformation on the resulting code schedule can be accurately
evaluated. By utilizing the search algorithm described in Section 3.2 to determine which
set of transformations to apply, a near-optimal choice can be made that takes into account
the processor’s execution constraints, the various dependences between the operations,
and the resulting placement of each operation by the scheduler. When compared to the
current heuristic-based approach for applying ILP transformations, this schedule-based
approach can vyield strikingly better performance and more consistent results from ILP
transformations.

The proposed schedule-time-transformation framework has been integrated into
the IMPACT compiler and it schedules and transforms code one control block at a time.
A control blockis a code segment that has a single entry point and one or more exit
points. Control blocks with more than one exit point are caligebrblocks[25] and
those with only one exit point are calledsic blockg1]. A control block may represent
an entire loop, the most frequently executed path through an entire loop, or an acyclic
code segment which may or may not reside inside a loop. After scheduling the control
block, a good first-order estimate of the processor cycles spent executing the control
block can be calculated using profile information and the cycle each exit point is

scheduled in. Benchmark performance can then be estimated by adding up all the cycles

49

spent in each control block. Although this first-order estimate assumes no cache misses or
branch mispredictions, this estimate is highly indicative of the actual benchmark
performance. In addition, the net change in benchmark performance due to cache and
branch prediction effects is typically independent of the final code schedule produced.
However, there can be large local effects at the control block level that makes comparing
control blocks difficult. For this reason, all of the results shown in this section will ignore
these effects to allow fair comparisons.

For each SPECcint92 and SPECcint95 benchmark, the highest-performance
classical and ILP-optimized superblock code that the IMPACT compiler can currently
generate for the HP-PA architecture with extensions for general speculation [15] is used.
In the baseline code, the renaming with copy or integer-expression-reformulation
transformations are not performed. In addition, each control block is scheduled using an
acyclic list scheduler and a scheduling heuristic callggendence height and speculative
yield (DHASY) [23] that uses dependence and profile information in order to guide
compile-time control speculation. This combination of ILP optimized superblock code
and DHASY-based list scheduling allows the analysis of a stable and state-of-the-art
technology for compiling control-intensive applications for processors that issue four or
fewer operations per cycle, allowing a wide range of current and near-future processor

configurations to be studied.

4.2 Criteria for Control-Block Level Comparisons

This section’s experiments will first evaluate the benefit of applying

transformations at schedule time by performing a detailed comparison of this schedule-

50

Table 4.1: The four processor configurations evaluated.

Processor Configuration

Processor Resources One-issue| Two-issue Four-issye Eight-isgue
Decoders 1 y. 4 3
Branch Units 1 1 1 2
Integer ALUs 1 1 2 4
Floating-Point ALUs 1 1 1 2
Memory (Load/Store) Units I 1 2 3
Integer Register File Read Portp 2 3 6 12
Integer Register File Write Portg 2 2 3 6

based approach to the current heuristic-based approach at the control block level. The
control blocks for each comparison were selected using the following two criteria: the
control block was executed at least once and there was at least one opportunity to
perform the relevant transformation. In SPECcint92 and SPECcint95 code compiled as
described above, there are 6041 control blocks that meet these criteria for just the
renaming-with-copy transformation. For just the expression-reformulation transformation
these criteria is met in 4455 control blocks. For comparisons involving both
transformations, there are 8680 control blocks meeting these criteria where at least one of
the two transformations can be performed and in 1816 of these control blocks, both
transformations can be performed. The effect of each of these transformaltiorst te

analyzed separately and then the combined effect will be examined.

4.3 The Processor Configurations

In addition, the behavior of heuristic-based approach and the schedule-based
approach in the presence of varying levels of resource constraints will be examined using

the four processor configurations shown in Table 4.1. All the processors have the

51

Table 4.2: Operation latencies.

Operation Type Latency (in cycleg) Comments
Integer Addition/Shift/Logic 1
Integer Multiplication/Division 2 Rare after optimization
Integer/Float Load 3 High clock-rate assumed
Branch 1| No delay slots
Floating-Point Addition/Subtractior P Very rare in benchmarks
Floating-Point Multiplication 4 Very rare in benchmarks
Floating-Point Division 8/1% Very rare in benchmarks

* Function calls used. Only two cycles of computation are visible to the scheduler.

operation latencies shown in Table 4.2 to facilitate comparisons across configurations.
The analysis will center on the four-issue processor configuratecaulse this
configuration is well matched to the instruction-level parallelism present in the
benchmarks, and the heuristic-based approach was tuned to yield good performance for a
four-issue processor configuration. In this four-issue processor configuration,
performance is limited by the dependences between operations in some sections of code
and by resource constraints in other sections of code, occasionally in the same control
block. Although there is opportunity for ILP transformations to significantly improve
performance, when applying these transformations the processor’'s resource constraints
cannot be safely ignored.

There are also opportunities for improving performance in the one-issue and two-
issue processor configurations by applying ILP transformations, but sensitivity to
resource constraints is critical. These processor configurations show how the heuristic-
based and schedule-based approaches deal with serious resource constraints. The one-
issue processor configuration represents the extreme case where extra operations cannot

usually be absorbed at all. Some opportunities do exist, however, because of the three-

52

cycle load latency which can create holes in the schedule. The two-issue processor
configuration represents the case where the instruction-level parallelism is high compared
to the processor’s resources but often a few extra operations can be absorbed. As ILP
compilation technology advances, the issue-width at which this situation occurs will
continue to increase.

On the other end of the spectrum, the eight-issue processor configuration
represents the case where performance is determined almost entirely by the dependences
between operations, and the processor’s resources are typically underutilized. For this
configuration, breaking dependences between operations can lead to larger performance
wins than for the four-issue processor configuration because the resources are available to
take advantage of the increased instruction-level parallelism. In addition, performing
unnecessary transformations is significantly less likely to degrade performance because of
the extra resources available. As will be shown, the scheduler still makes some choices
that can affect the proper choice of transformations to perform even with abundant

resources available.

4.4 The Four Application Approaches Evaluated

In order to evaluate in more depth the various advantages the schedule-based
approach has over the heuristic-based approach, two additional variations to the proposed
schedule-based approach will also be analyzed. d€pendence-basadriation uses the
schedule-time framework to minimize dependence height (maximize instruction-level
parallelism) without regard to the processor’s resource constraints.esiiheate-based

variation uses the schedule-time framework to minimize schedule height based on an

53

approximate instead of an accurate model of the processor. These varidtioasised

to provide insight into the behavior of both the schedule-based and heuristic-based
approaches. Note that these variations are not intended as “lower-cost” alternatives to the
schedule-based approach. These variations require almost all the same compiler
framework features as the proposed schedule-based approach and, as will be shown, do
not perform as well as the proposed schedule-based approach.

In order to ensure fair comparisons between the heuristic-based, schedule-based,
dependence-based, and estimate-based approaches, each approach was implemented using
the schedule-time transformation framework proposed in this thesis. In addition, the same
code for detecting and performing the two transformations was used by all approaches.
The only aspect varied was the algorithm for deciding which of the detected
transformations to perform.

The application algorithm for the heuristic-based approach was faithfully ported
from IMPACT’s current ILP optimizer. This heuristic-based algorithm applies renaming
with copy whenever the transformation will break at least one anti or output register
dependence within the control block (a requirement of all four approaches) and when the
destination register to be renamed is not also used as a source in the same operation
(detailed in the discussion of Figure 2.3). Expression reformulation is applied whenever
the transformation may reduce the control block’s dependence height and no additional
operations need to be created. Although the original implementation of expression
reformulation, written by this researcher in 1992, has a significantly different structure
than the new schedule-time implementation, the essence of the algorithm remains the

same. However, to allow easier comparisons and to simplify porting, the search

54

algorithm and priority functions described in Chapter 3 are used instead of the original
version’s ad hoc approach. As a result, this port of the heuristic-based approach
consistently applies expression reformulation slightly better than the original version.
Note that in order to stay consistent with the original heuristic-based implementation, the
search algorithm attempts to minimize the control block’s dependence height, not its
schedule height.

The schedule-based approach uses the search algorithm and priority functions
described in Chapter 3 to select from the set of transformation opportunities which
transformations to apply. As described earlier, the set selected represents the minimum
schedule height found for the target processor by the search algorithm.

The dependence-based approach is nearly identical to the schedule-based
approach. The only difference is that for the dependence-based approach, a 128-issue
processor with uniform functional units is specified as the “target” processor while
selecting the set of transformations to perform. This effectively results in the minimization
of the control block’'s dependence height without regard to the processor’s resource
constraints. Note that the same set of transformations will be applieddorof the four
processor configurations shown in Table 4.1. It is also worth noting that the schedule-
time framework always attempts to minimize the number of renaming-with-copy
transformations applied even when nearly unlimited resources are available.

The estimate-based approach is also nearly identical to the schedule-based
approach. The only difference is that for the estimate-based approach, a processor
configuration with approximate execution constraints is specified as the ‘“target”

processor while selecting the set of transformations to perform. For the two-, four-, and

55

eight-issue processor configurations, these execution constraints are relaxed to include
only the issue and branch constraints of the actual processor configuration. Ultilizing these
constraints, the estimate-based approach will not apply transformations that will cause the
issue and branch units to become overutilized, but the integer ALU and integer register
ports may become inadvertently overutilized. For the one-issue processor configuration,
instead of relaxing the resource constraints, all the operation latencies are reduced to one
cycle. Utilizing these latencies, the estimate-based approach will tend not to apply
transformations that add any operations, because all the schedule holes caused by the load
latency have disappeared. This approach emulates the case where the transformations
effect on schedule height is approximated instead of being calculated exactly as in the
schedule-based approach. An estimate-based approach may be easier to implement in an
existing compiler framework and may reduce the compile-time requirements. This
estimate-based approach allows evaluation of the importance of using an accurate

performance and resource usage metric to guide optimizations.

45 How the Results Were Generated

The results presented in this section were generated by first measuring the schedule
height (as defined in Section 3.1) of each control block before performing the renaming-
with-copy and expression-reformulation transformations. The schedule height is then
measured after performing the set of transformations selected using each of the four
approaches described in Section 4.4. Note that the control block selection criteria
guarantees that all the control blocks analyzed will be entered at least once and therefore

have a well-defined schedule height.

56

The benefit of each approach can then be quantified by subtracting the resulting
schedule height from the original schedule height of the control block. In the example
used in Section 3.1 to illustrate the calculation of schedule height, applying renaming with
copy (using one of the approaches) yields a (4.8 - 3.9) = 0.9 cycle benefit. This metric is
informative because it indicates how much the schedule height changed, but unfortunately
it doesn’t indicate how important the change is. If the control block originally had a
schedule height of 100, a 0.9 cycle difference represents only a 0.9% change. However, if
the block originally had a schedule height of 4.8 cycles, this difference represents a
(0.9/4.8) = 18.8% change. This metric is very informative because it indicates how much
the change can effect overall program performance. Unfortunately, without additional
information it doesn't indicate how many cycles the schedule height changed. Therefore,
to present a complete picture of what is occurring when these transformations are applied,
both the percent benefit and the benefit in cycles metrics will be utilized. In addition,
performance distributions are used to summarize all this control-block data for ease of
comprehension. Where possible, related distributions willdeedlin the same figures to

facilitate comparisons.

4.6 Overview of the Rest of This Chapter

The remainder of this chapter will analygach of the four approaches described
above at the control block level in the context of the renaming-with-copy transformation
(Section 4.7), the expression-reformulation transformation (Section 4.8), and both
transformations together (Section 4.9). This analysis will focus on the four-issue

processor configuration and use the other configurations to show trends as the resource

57

constraints change. Because of the large number of variations, only a representative
subset of these control-block-level distributions will be presented to illustrate points made
and trends noted in this chapter. A complete set of these control-block-level distributions
is presented in Appendix A for the interested reader. The overall effect on benchmark

performance will then be presented and discussed in Section 4.10.

4.7 Control-Block Level Analysis of Renaming With Copy

4.7.1 The four-issue processor configuration

The four-issue processor configuration represents the case where the instruction-
level parallelism is well matched to the processor’s resource constraints. Although
performance is often limited by dependences between operations, resource constraints
cannot be safely ignored. The four approaches will be first compared to the
untransformed control blocks in Section 4.7.1.1. The schedule-based approach will then

be compared to the other three approaches in Section 4.7.1.2.

4.7.1.1 Relative to original control-block performance

Applying renaming with copy to each control blockiizihg the four approaches
described in Section 4.4, and scheduling each control block for the four-issue processor
configuration yields the four distributions shown in Figure 4.1. These distributions show
the percent change in schedule height caused by transforming each control block. The
distribution for the heuristic-based approach, shown in Figure 4.1(a), shows a
performance improvement in 8.3% of the control blocks and a performance degradation in

3.6% of the control blocks.

58

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

25 1

5322

(@)

Number of Control Blocks

=]
H
=]
=]
[

51+
50-46
45-41
40-36
35-31
25-21
20-16
15-11
10-6
51
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
51+

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

25 1

(b)

Number of Control Blocks

g

g

g
&

51+
50-46
45-41
40-36 | d
35-31
30-26
25-21
20-16] ©
15-11
0
1-5
6-10
11-15
16-20
26-30
46-50
51+

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

25

4985

(c)

Number of Control Blocks

51+
50-46
40-36 | d
30-26
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
51+

45-41
35-31
25-21
20-16
15-11
46-50

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

25 1

(d)

Number of Control Blocks

g
g
g
g
g
g
g
g
g

4 ¢
<3
b3
4

Percent Degradation —|— Percent Improvement

o v
-

o
N
[

51+
50-46
45-41
40-36 | o
35-31
30-26
25-21
20-16
11-15
16-20

Figure 4.1: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the four-issue
processor configuration.

59

The dependence-based approach reduces the percent of control blocks degraded to
1.9%, as shown in Figure 4.1(b), primarily because renaming with copy is not applied
unless it decreases the dependence height. This can significantly reduce the number of
extra operations added and often changes a performance degradation to a performance
improvement. The percent of control blocks improved also significantly increased to
25.6% from 8.3%. This increase is largely because the dependence-based approach (as
well as estimate-based and schedule-based approaches) can pick and choose among the
transformation opportunities the heuristic-based approach consider poor risks.

The distribution for the estimate-based approach is shown in Figure 4.1(c). By
modeling the issue and branch constraints, this approach prevents application of renaming
with copy in the cases where resource constraints are clearly limiting performance, further
reducing the percentage of control blocks degraded to 0.5%. However, this model of the
processor is not exact and often transformations that are not beneficial for this model turn
out to be beneficial for the actual processor model. This reduces the percentage of control
blocks improved to 16.9%. However, because of the increased resource awareness, more
control blocks are generated that show improvements of 26% or more.

The distribution for the schedule-based approach is shown in Figure 4.1(d). This
approach optimizes the control block with exact knowledge of the processor model, and
the resulting schedule produced for this model, so a performance degradation can never
occur (at least in terms of the first-order performance estimate utilized to generate these
results). In addition, the set of transformation opportunities to apply can now be fine-

tuned to be a near-perfect fit for the processor configuration and the scheduling algorithm

60

used. As a result, the percentage of control blocks improved surged to 31.9%. In
addition, the improvement for each control block was increased, as shown in the
distribution by a shift to the right.

As discussed in Section 4.5, it is also useful to examine these changes in schedule
height in terms of cycles as shown in Figure 4.2. This view shows that applying renaming
with copy often results in a multicycle change in schedule height. At one extreme, both
the heuristic-based (Figure 4.2(a)) and the dependence-based (Figure 4.2(b)) approaches
degraded performance in several control blocks by six cycles. Because the four-issue
processor configuration can execute two integer ALU operations per cycle, this indicates
renaming with copy was applied approximately twelve times more than could be absorbed
in these control blocks. At the other extreme, the dependence-based, the estimate-based
(Figure 4.2(c)), and the schedule-based (Figure 4.2(d)) approaches all improved the
performance of 14 control blocks by more than 26 cycles. Many of these are frequently
executed control blocks from 026.compress, resulting in a large performance
improvements for this benchmark.

Although the one or two cycle changes seem small in comparison to these two
extremes, it is through these changes that most of the overall performance is gained or
lost. Some of the most frequently executed control blocks are improved or degraded by
just one cycle. As described in Section 4.5, a small change in schedule height can translate
into a large percentage change in performance for a control block. A one or two cycle

change in a large number of moderately executed control blocks can also add up to

61

(@)

Number of Control Blocks

m g
26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

193

(b)

Number of Control Blocks
N
8
| S

43

e 3T 3H T ST TITVYT 0114
Alne e ol 2 020 0

25 12, 17]]
UO000000000000000000®T 7o
0 A==y L

26+ 24 22 20 18 16 14 12 10 8 6 4 2

[N
(=]
o

| —

o
N
I
o
o]

10 12 14 16 18 20 22 24 26+

200 188186

(c)

Number of Control Blocks

6
I 13124"143 T ST TITVYT 0114
Allng e a2 220 e R 20

25 10
00000000000 00000000008Y 3%
ey L |
— —+—+ t

0 +——+—t+—+—+—+—++ =y B L L

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

225 06
192

(d)

Number of Control Blocks
N
o
o

.14q” ST © T ST ITVYT 0114
Hlmegee’®a2®2 7 272% "0

250000000000000000000000000
0 A

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

Cycles Degradation —|— Cycles Improvement

Figure 4.2: Change in cycles for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the four-issue
processor configuration.

62

significant overall performance change. This is one reason the schedule-based approach
does better overall than the heuristic-based approach, because it improves the performance
of all blocks, not just the blocks it was tuned for.

Note that although Figure 4.2 displays the same schedule height changes as shown
in Figure 4.1, there are more control blocks in the “zero” cycle change bin than in the
“zero” percent change bin because the “zero” cycle bin is significantly larger than the
“zero” percent bin. This is because a 0.4 cycle change (which falls in the “zero” cycle
change bin) will be more than a 0.5% percent change (which falls into a 1% or higher
percent change bin) if the overall control block schedule height is less than 80 cycles (most

are).

4.7.1.2 Relative to the schedule-based performance

Figures 4.1 and 4.2 clearly show that, overall, the schedule-based approach
improves the performance of significantly more control blocks than the other approaches.
However, it is not clear from these figures how the schedule-based approach performed
compared to the other approaches at a control-block-by-control-block basis. Performing
this comparison in terms of percent change in schedule height yields the distributions
shown Figure 4.3. The schedule-based approach improved performance in 28.1% of the
control blocks when compared to the heuristic-based approach (Figure 4.3(a)), 9.4%
when compared to the dependence-based approach (Figure 4.3(b)), and 17.1% when

compared to the estimate-based approach (FiyG(e)).

63

400
375
o 350
§ 325
2 300
m 575
g 250
g 225
200
O
(a) o 175
© 150
e
T 125
-g 100
S 75
Z 50
170 —0 0 0 U 0 U 0 0 0T
0 + + + + + + + +
4¢3 8388 82 g7 ° %8 1284888%5%8 4
wn o n (=) n o n o n — © - «© - © L) © - © o
n < < (3] (3] N N - — — o N [s] () < <
400 5472
375
o 350
4
8 325
2 300
m 575
g 250
g 225
b § 200
o 175
© 150
e
T 125
-g 100
S 75
Z 50
259000 0 U U U U 0 0 U0 U O
0 + + + + + + + +
5 ¢$3 8385 82 ¢g3°%2 288889284
W oo w9 B 9 B o W 4 © 4 O 49 © 9 9 o © v
n < < (3] () N N - — — o N [s] (3] < <
3(7)?) 5005
424
© 350
8 325 314
2 300
m 575
g 250
g 225
200
O
(C) o 175 153
© 150
@ 125 59
-g 100
S 75
Z 50 7
2517 0 0 0 0 Y 0 0 0 [Y 0 0 0
0 + + + + + + + == 1 + + +
5 ¢$3 8385 %82 ¢g3°1%2 28888928 4
wn o n o 0 o n o n — © - «© - © L © - © o
n < < (3] (3] N N - — — o N [s] (3] < <
Percent Degradation —|— Percent Improvement

Figure 4.3: Percent benefit of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with copy for the
four-issue processor configuration.

In many of these control blocks, although the other approaches had applied
renaming with copy in a way that improved performance, the schedule-based approach
found a better way to apply this transformation, yielding even higher performance. Of
the 502 control blocks improved by the heuristic-based approach, 90 (17.9%) of these

control blocks were further improved by the schedule-based approach. Of the 1546

64

control blocks improved by the dependence-based approach, 88 (5.7%) were further
improved by the schedule-based approach. Of the 1023 control blocks improved by the
dependence-based approach, 98 (9.6%) were further improved by the schedule-based
approach. These improvements are all because the schedule-based approach can make
detailed trade-offs that the other approaches cannot accurately make, further improving
the effectiveness of a transformation.

In four of the control blocks, the estimate-based approach produce slightly smaller
(thus better) schedule heights. The other two approaches produced slightly smaller
schedule heights in two of the control blocks. For the other three processor
configurations (not shown), up to seven control blocks have results similar to this for
renaming with copy. Such cases are to be expected because the schedule-based approach
uses a greedy (thus nonoptimal) search algorithm to minimize the schedule height. The
fact that there are so few cases like this strongly indicates that heuristics used to guide the
greedy search algorithm for renaming with copy are well chosen.

The same comparisons shown in Figure 4.3 are now shown in Figure 4.4 in terms
of the number of cycles the schedule height is changed. In Figure 4.4(a), the distribution
shows 1333 control blocks where the schedule-based approach generates a schedule
height at least 0.5 cycles shorter (better) than the heuristic-based approach. For 1132 of
these control blocks, the schedule-based approach improved the control block’s
performance and the heuristic-based approach didn’t improve or degrade its performance.
For 59 of these control blocks, the schedule-based approach improved the control block’s
performance more than the heuristic-based approach improved it. For 14 of these control

blocks, the schedule-based approach improved the control block’'s performance

65

172
175 I mi54

(@)

Number of Control Blocks

L [[[|
E o
2

(b)

Number of Control Blocks
N
o
o

0

51000000000 000000000 0000000
I
+

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

(€)

Number of Control Blocks
N
o
o

[L [[[[[[[[[J§ [
i\s

51000000000 000000000 0000000 [I‘* TOO0O0O00I00000000000O00
I (=]

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

Cycles Degradation —|— Cycles Improvement

Figure 4.4: Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with copy for the
four-issue processor configuration.

and the heuristic-based approach degraded it. One extreme example of this comes from
126.gcc’s flow_analysis function where the original schedule height for the control block
was 21.9 cycles. The schedule-based approach reduced this to 15.4 cycles (a 29.7%

improvement) and the heuristic-based approach increased this to 23.8 cycles (an 8.7%

66

degradation). For the remaining 128 of these control blocks, the schedule-based approach
didn't improve or degrade the control block’s performance but the heuristic-based
approach degraded it. It is interesting to note that the schedule-based approach performs
almost as well when compared to the heuristic-based approach (Figure 4.4(a)) as when
compared to untransformed code (Figdir2(d)).

The advantage of the schedule-based approach over the dependence-based and
estimate-based approaches is usually just one cycle, as shown in Figures 4.4(b) and 4.4(c)
respectively. The dependence-based approach matches the performance of the schedule-
based approach more often than the estimate-based approach as shown by the larger
number control blocks in the “zero” cycle bin. However, the estimate-based approach has
fewer deviations of two or more cycles because it is less likely to dizeruthe
processor’s resource constraints. This conservative nature of the estimate-based approach
doesn't always prevent large deviations, as shown by the anomalous case where the
schedule-based approach reduced the schedule height twelve cycles more than the
estimate-based approach.

Most of the control blocks where the schedule-based approach did achieve lower
performance than the other approaches in Figure 4.3 (discussed above) were cases where
there was less than 0.5 cycles difference in schedule height. As a result, in Figure 4.4, only
two different control blocks show the other approaches yielding better results, one for the
dependence-based approach and one for the estimate-based approach. For all the other
processor configurations (not shown), there are only five other control blocks total where

the other approaches yielded schedule-heights at least 0.5 cycles better.

67

4.7.2 The two-issue processor configuration

The two-issue processor configuration represents the case where the compiler has
exposed more than enough instruction-level parallelism, in general, to keep the processor
busy. Although a few extra operations can be usually absorbed, sensitivity to the
processor’s resource constraints is critical. In order to show how the four approaches
perform with these higher resource constraints, the comparisons made in Section 4.7.1 will
now be made for the two-issue processor configuration in Sections 4.7.2.1 and 4.7.2.2.

The new insights that these comparisons reveal will then be briefly discussed.

4.7.2.1 Relative to original control-block performance

Figure 4.5 presents comparisons identical to those in Figure 4.1, except the two-
issue processor configuration is now the target. Figure 4.5(a) shows that the heuristic-
based approach now degrades 11.0% of the control blocks and only improves 5.2% of
them. Similarly, Figure 4.5(b) shows that the dependence-based approach now degrades
8.2% of the control blocks but still improves 16.0% of them. This significant increase in
the number of control blocks degraded and corresponding drop in those improved are due
to both of these approaches totally ignoring the processor’s resource constraints and
applying the exact same set of transformations to each control block.

Figure 4.5(c) shows that the estimate-based approach degrades only 1.5% of the
control blocks and improves 14.5% of them, still less than the dependence-based
approach. As expected, the schedule-based approach still does significantly better than the

other approaches and improves 20.7% of the control blocks as shown in Figure 4.5(d).

68

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

(@)

Number of Control Blocks

&
=]
H
[
[

51+
50-46
10-6
51
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
51+

45-41
40-36
35-31
25-21
20-16
15-11
46-50

(b)

Number of Control Blocks

51+
50-46
45-41
40-36
35-31
30-26
25-21
20-16
15-11
31-35
36-40
41-45
46-50

51+

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

25 1

(c)

Number of Control Blocks

=]
=]
(S|
g
=]
H

51+
50-46
40-36 | d
10-6
0
1-5
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
51+

45-41
35-31
30-26
25-21
20-16
46-50

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

25 1

(d)

Number of Control Blocks

=]
=]
S|
g
=]
=]
=]
=]
S|

4 ¢
<3
b3
4

Percent Degradation —|— Percent Improvement

51+
50-46
45-41
40-36 | d
35-31
30-26
25-21
20-16
31-35
36-40
41-45
46-50

51+

Figure 4.5: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the two-issue
processor configuration.

69

Unlike the heuristic-based and dependence-based approaches, the estimate-based and
schedule-based approaches adapt to the processor's resource constraints and apply
different sets of transformations to each control block.

As before, examining schedule height changes in terms of cycles allows the low-
level effects on the control blocks to be examined. Figure 4.6 presents comparisons
identical to those in Figure 4.2, except the two-issue processor configuration is now the
target. Comparing these two figures, it is interesting to note that even with processor
resources cut in half, many control blocks are still improved by the same or nearly the
same number of cycles. However, decreasing processor resources does reduce the
opportunities for improvement, reducing the total number of control blocks improved, and
can make the performance degradation due to poor application choices larger. This can be
seen in both the heuristic-based (Figure 4.6(a)) and dependence-based (Figure 4.6(b))
approaches which can now degrade control blocks by as many as fifteen cycles. Reducing
the processor resources does, however, make schedule estimates based on issue width and
branch resources more accurate. Although the estimate-based approach (Figure 4.6(c))
degrades more control blocks with the two-issue processor configuration, the additional
accuracy prevents control blocks from being degraded more than two cycles. The
schedule-based approach (Figure 4.6(d)) still improves significantly more control blocks
than the other approaches and yields a performance improvement distribution very similar

to the four-issue case (Figute2(d)).

70

(@)

(b)

(c)

(d)

Figure 4.6: Change in cycles for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the two-issue

Number of Control Blocks Number of Control Blocks Number of Control Blocks

Number of Control Blocks

5
3177
N
T e e e AL e e e ".‘.11—1? i
26+ 24 22 20 18 16 14 12 10 8 4 2 2 8 10 12 14 16 18 20 22 24 26+
4
323
]
166
Mlass
I
[l
80 Ilm
n I g
0000000000002 0300"° 301(117. III i 3 T3 7 T° T0 11
2 e am lmmn L L M A N e o 2 2 2 e e e
26+ 24 22 20 18 16 14 12 10 8 4 2 2 8 10 12 14 16 18 20 22 24 26+
5
188
141
|
|
I65
50 I.
[l 1
voovvooCcoooo oo oo oo o THMHN NN g 222222 22 R 0
26+ 24 22 20 18 16 14 12 10 8 4 2 2 8 10 12 14 16 18 20 22 24 26+
4
141
|
|
|| 70
f s,
00000000000000C00000C00CO00CO00 IIilzlol.Z. 3 T3 7 T° T0 11.
SO CHNNNNA T e 222222 2T A2 T2 T
26+ 24 22 20 18 16 14 12 10 8 4 2 2 8 10 12 14 16 18 20 22 24 26+
Cycles Degradation —|— Cycles Improvement

processor configuration.

71

4.7.2.2 Relative to the schedule-based performance

The comparison of the schedule-based approach to the other approaches yield
distributions very similar to those found for the four-issue processor configuration
(Figures 4.3 and 4.4). In addition, these comparisons for the two-issue processor
provided very little new information and therefore will not be discussed. The interested

reader is referred to Appendix A.

4.7.3 The one-issue processor configuration

The one-issue processor configuration represents the case where extra operations
cannot usually be absorbed at all, except where holes in the schedule are created because
of the three cycle load latency. Although transformations that increase the dynamic
number of operations are categorically almost never applied when targeting a resource-
limited processor configuration such as this, performing the same comparisons made in
Section 4.7.1, except for targeting this one-issue processor configuration, yields some

interesting results.

4.7.3.1 Relative to original control-block performance

Figure 4.7 compares each of the four approaches to the original control block
performance for the one-issue processor configuration. As was done in Figure 4.1, the
distributions are shown in terms of percent change in schedule height. As expected, the
heuristic-based approach now degrades 25.9% of the control blocks and improves only

1.4% of them, as shown in Figure 4.7(a). The dependence-based approach, shown in

72

P | +15 P | +15 %+T5 =
5| 05-97 L] 05-97 %05-9% L]
5| Sr-T L] Sr-T %Sy L]
L] ov-9g n ov-9g %07-9€ n
L] ge-1e ge-1e %GE-TE _
i 0g-92 0g-92 %0E-92 am
g _ Sz-12 Sz-12 %5212 3
i 02-9T 02-9T %02-9T g
ST-TT ST-TT %ST-TT 2
019 01-9 %0T-9 &
ST ST %G-T X
0 3 0 8 %0 ml,
15 N 15 o | %t-s P
90T S 9-0T L %9-0T d
T1-ST T1-5T 3 %TT-GT el
91-02 91-02 e | %9T-02 el
T2-6¢ T2-6¢ 3 %Te-GC el
92-08 92-08 3 %92-0¢ 3
16-GE 16-GE o | %TE-GE 3
9g-07 9g-07 o | %9E-0F 3
Tr-Gy Tr-Gy o | %Tv-G 5|
9v-05 9v-05 S| %97-0G L]
+1§ +1§ S| %+T5 L]
S)00|g |011U0D JO JaquInN S)00|g |011U0D JO JaquInN
< = < z

+1S

0S-9v

Sv-1v

0v-9¢

ge-1e

0g€-9¢

Se-1e

0¢-9T

ST-TT

01-9

Percent Improvement

—|—

Percent Degradation

based, (b) dependence-based, (c) estimate-

Figure 4.7: Percent change for (a) heuristic-

based, and (d) schedule-based application of renaming with copy for the one-issue

processor configuration.

73

Figure 4.7(b), degrades 23.2% of the control blocks but still manages to improve 7.1% of
them. Clearly, the performance of a significant number of control blocks is still limited by
dependences between operations. This is further illustrated by the results for schedule-
based approach shown in Figure 4.7(d) which improves 9.4% of the control blocks
without degrading the performance of any of them. In fact, the careful application of
renaming with copy by the schedule-based approach will result in small but significant
overall performance improvements for many of the benchmarks.

As described in Section 4.4, the estimate-based approach for the one-issue
processor configuration uses an estimate that strongly discourages the insertion of any
extra operations. The estimate accomplishes this by assuming that all operations have unit
latency, removing all holes in the schedule. As a result, adding an extra operation is
guaranteed to delay at least some operations, including the control block’s last exit, by one
cycle. However, renaming with copy will still be performed if it allows a frequently
executed side exit to be scheduled early enough to offset the performance penalty of
delaying later operations and exits. This situation does occur for a small number of
control blocks, as shown in Figure 4.7(c). Using this extremely conservative approach
improves 0.6% of the control blocks and degrades 0.1% of them.

These same schedule-height comparisons are now made in terms of change in
cycles in Figure 4.8. The heuristic-based (Figure 4.8(a)) and dependence-based
(Figure 4.8(b)) approaches now degrade control block performance by up to twenty three
cycles. The performance degradation caused by the estimate-based approach

(Figure 4.8(c)) is less than 0.5 cycles, and so does not appear on this distribution.

74

(@)

(b)

(c)

(d)

Number of Control Blocks Number of Control Blocks Number of Control Blocks

Number of Control Blocks

4756

h

fiN

80

2

0 =ttt t—t=———t=

(5]

0

26+ 24 22 20 18 16 14 12 10

8 6 4

10 12 14 16 18 20 22 24 26+

150

41

12

1015221

000I00O0TT
I

ITZ0T1TT T
0 +————+—t—t—t—t—t—t=t——t—t=t

0
pe

T #0 TOITO0OO0OO0O0O0O0Q
= I

26+ 24 22 20 18 16 14 12 10

.'
|
ALl
4

8 6

[R e — |

0000000000000 00000
0 +—+—+—+—+—+—+—t+—+—+—+t+—t+—+—+—++t

00000

00 T T0O0O0
b
+

00
—t

000000000 00000
I [TR M|
+ +

00
—t

26+ 24 22 20 18 16 14 12 10

8 6

=]
2 4 6

8

10 12 14 16 18 20 22 24 26+

00000000
0 +—+—+—+—+—+—+—++

00000000
P P
—t + +

000000000

26+ 24 22 20 18 16 14 12 10

Cycles Degradation

8 6 4

—|—

2

10 12 14 16 18 20 22 24 26+

Cycles Improvement

Figure 4.8: Change in cycles for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the one-issue
processor configuration.

75

Interestingly, both the schedule-based (Figure 4.8(d)) and dependence-based approaches
still manage to significantly reduce the schedule height of control blocks (up to twenty
cycles). This suggests that therdl awiways be opportunities to significantly improve
performance by breaking dependences, even when the available instruction-level
parallelism is extremely high when compared to processor resources. However, careful
application of these dependence-breaking transformations is critical in order to prevent
overutilization of resources. Only the schedule-based approach has the resource
constraint sensitivity and the feedback from the scheduling algorithm required to

consistently generate this performance improvement.

4.7.4 The eight-issue processor configuration

On the other end of the spectrum, the eight-issue processor configuration
represents the case where control block performance is almost entirely determined by
dependences between operations. The processor’s resources are typically underutilized,
providing more opportunities for dependence-breaking transformations to improve
performance than with the four-issue processor configuration. In addition, the extra
operations inserted by unnecessary transformations are less likely to significantly degrade
performance because of the extra resources available. Howevelt,b@ssivown, careful

application of transformations can still lead to higher performance.

4.7.4.1 Relative to original control-block performance
Figure 4.9 compares each of the four approaches to the original control block

performance for the eight-issue processor configuration. As in Figure 4.1, the

76

<
N—r

+TI§
05-9%
SY-Tp
or-9g
ge-Te
0g-92
Gz-12
0z-9T
ST-TT g
019 @ o

< wn

32 f=
ST k4 2

N N
O < o
15
9-0T 9-0T P | 90t P | 90t
15T v || TT-6T P | 1181 P | 1181
91-02 91-02 P | 91-02 P | 91-0¢2
T2-6¢ T2-6¢ P | Tz-se P | Tz-se
9z-0¢ 9z-0¢ P | 9z-0g P | 9z-0g
1658 1658 P | Te-6¢ P | Te-6¢
9g-0v 9g-0v P | og-or P | og-or
Tr-Sb Tr-Sb P | vy P | vy
or-05 or-05 P | 9v-05 P | ov-05
+TI§ +TI§ P | +18 P | +15
SRIVSRIASRILASLIL° SRIVSRIASRILASLILe SRIVSRIASRILASKLILe
STOMOOMONONNNNAAAA STOMOOMONONNNNAAAA STOOMOOMOMONNNNAAAA
$320|g |011U0D JO JIaquinN $320|g |0J1U0D JO JIaquinN $320|g |0J1U0D JO JIaquinN

(b)

~—~
(&)
N—’

(d)

Percent Improvement

—|—

Percent Degradation

Figure 4.9: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the eight-issue

processor configuration.
77

distributions are shown in terms of percent change in schedule height. The number of
control blocks with degraded performance is significantly reduced when compared to the
four-issue processor configuration shown in Figure 4.1. The heuristic-based approach
(Figure 4.9(a)) degrades just 1.0%, the dependence-based approach (Figure 4.9(b))
degrades only 0.2%, and the estimate-based approach (Figure 4.9(c)) degrades only
0.05% of the control blocks. With the extra processor resources, the effect of poor
application choices can almost always be absorbed without degrading performance. As
with all the other processor configurations, the schedule-based approach (Figure 4.9(d))
does not degrade the performance of any control blocks.

The number of control blocks with improved performance is also significantly
increased. The heuristic-based approach improves 10.2%, the dependence-based
approach improves 32.4%, the estimate-based approach improves 27.7%, and the
schedule-based approach improves 39.2% of the control blocks. The hand-tuned nature
of the heuristic-based approach prevents it from improving as many control blocks as the
other approaches. In order to prevent the degradation of a few frequently executed
control blocks, the heuristic-based approach also inadvertently prevents the improvement
of many less frequently executed control blocks. The heuristic-based approach also
inadvertently limits the improvement of some of the important control blocks in
026.compress, resulting in significantly less overall performance improvement when
compared to the other approaches. Important missed opportunities like those missed in
026.compress can almost always be solved with further tweaking of the application

heuristics, but such solutions only work for the benchmarks the heuristics are tuned for.

78

The dependence-based approach still improves more control blocks than the
estimate-based approach, as it did with all the other processor configurations. The
conservative nature of the estimate-based approach prevents the application of
transformations that appear not to improve performance based on the estimated processor
configuration. However, these transformations sometimes do in fact improve performance
for the actual processor configuration, resulting in a loss of opportunity. This illustrates
the importance of using an accurate performance metric when using a search algorithm to
select the transformations to apply. When the processor resources are underutilized, using
only dependence height to estimate performance can yield better results than the estimate-
based approach.

The schedule-based approach is compared directly to the other approaches in
Figure 4.10. The schedule-based approach improved performance in 1932 (32.0%)
control blocks when compared to the heuristic-based approach (Figure 4.10(a)), including
126 control blocks that were already improved by the heuristic-based approach.
Compared to the dependence-based approach (Figure 4.10(b)), the schedule-based
approach performs better on 517 (8.6%) control blocks, 96 of which were already
improved by the dependence-based approach. The schedule-based approach also
performs better for 840 (13.9%) control blocks compared to the estimate-based approach
(Figure4.10(c)), including 144 that the estimate-based approach had already improved.

Although dependences between operations is typically what limits overall control
block performance in the eight-issue processor configuration, usually there is still heavy

contention for processor resources when scheduling the first part of the control block.

79

400

375
0 350
§325
2 300
m 575
O 250
‘gzzs
200
(a) O s
© 150
o 125
-g 100
S 75
Z 50
5105 —0 0 0 U U 0 0 0 0 3
0 + + + + + + + + + +
4¢3 8388 82 g3 ° %2 1284888%5%8 4
W oo w9 B 9 B o W 4 © 4 O 49 © 4 9 o © v
n < < (3] (3] N N - — — o N [s] () < <
400
375
® 350
§325
2 300
m 575
O 250
‘gzzs
200
(b) Qs
© 150
o 125
-g 100
S 75
Z 50
2517 0 0 0 0 Y 0 0 0 0 0 Y 0 0 0
0 + + + + + + + + + + +
%387 83 %38 3°924588%88%9% 3
W oo w9 B 9 B o W 4 © 4 O 49 © 9 9 o © v
n < < (3] () N N - — — o N [s] (3] < <
400
375 il
0 350
§ 305 319
2 300
m 575
O 250
‘gzzs
200
(C) O s
© 150
o 125
-g 100
S 75
Z 50
2517 0 0 0 0 Y 0 0 0 0 0 Y 0 0 0
0 + + + + + + + + + + +
5 ¢$3 8385 82 ¢g3° %2 28888928 4
wn o n o 0 o n o n — © - «© - © L © - [{e] o
n < < (3] (3] N N - — — o N [s] (3] < <
Percent Degradation —|— Percent Improvement
Figure 4.10: Percent benefit of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of renaming with copy for the

eight-issue processor configuration.

For example, a control block with a dependence height of 50 cycles and 150 operations
(an average ILP of three) may have 20 or more independent operations that can be
scheduled in the first cycle. The cycle that these operations end up being scheduled in
can significantly affect which of the dependences are important to break later in the

schedule. Only the schedule-based approach, which utilizes exact schedule information,

80

can adapt to these scheduler decisions. This allows the schedule-based approach to make
fine-grain adjustments that further improve control block performance. In addition, these
scheduler decisions can also create opportunities for performance improvement that the
other approaches simply cannot detect. This is the primary reason the schedule-based
approach improves significantly more control blocks than the other approaches.

The same distributions shown in Figure 4.9 are shown in Figure 4.11, except that
the change in schedule height is presented in terms of cycles. As expected, only a few
control blocks show more than one cycle of degradation. However, the heuristic-based
approach (Figure 4.11(a)) still manages to degrade two control blocks by five cycles. The
dependence-based (Figure 4.11(b)), estimate-based (Figure 4.11(c)), and schedule-based
(Figure 4.11(d)) approaches all show significantly more control blocks with one or two
cycles of improvements when compared to the four-issue configuration (Figure 4.2). For
most of the control blocks with the higher improvements, dependences between
operations limited performance even for the two-issue processor configuration
(Figure4.6), so adding processor resources changes their behavior very little.

The schedule-based approach is directly compared with the other approaches in
terms of cycles in Figure 4.12. Figure 4.12(a) shows that in the three control blocks that
the heuristic-based approach found a slightly better set of transformations to apply than
the schedule-based approach (Figure 4.10(a)), the difference was less than 0.5 cycles. In
addition, as with the other processor configurations, the schedule-based approach
performs almost as well when compared to the heuristic-based approach (Figure 4.12(a))

as when compared to untransformed code (Figure 4.11(d)). In the control blocks where

81

245

(@)

Number of Control Blocks
N
o
o

50 37

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

(b)

Number of Control Blocks
N
o
o

14
25 0000000000000 000C00C00C000@?>~ II RS A I A A T 0T
0 +————————————————t—————————=m Am., i PSPPIt ~ TP TIaT - TR i

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

250 36

194

(c)

98

50

Number of Control Blocks
N
o
o

4

231719 14
S4F435g 64T TTO01I

METEN a2 2 a5

b I
25 0000000000000 000000000000 I
0 +—+—+—+—++—+—+++++++++++++ R

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

(d)

Number of Control Blocks
N
8

14
T3 ST 9% i 10T
e e g

5100 0000000000000 0000000000
P P
—t + +

0 +———+——F+—+—+—+ e ey R

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

Cycles Degradation —|— Cycles Improvement

Figure 4.11: Change in cycles for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of renaming with copy for the eight-issue
processor configuration.

82

IS
vl
o
3

963

(@)

Number of Control Blocks

-
-
(&)

L L [[[[[[[[[[

2
16
25 d :IV 109 14 S 6 o7 10114
0 +—+—+—+—+—+—+—+—+—++—+++t+—F+t+—t———— 1“1':'1”1”1 pm g o fmpmpmpmyme —y

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

o1
@

353

(b)

Number of Control Blocks

L L [[[[[[[[[
a\;

17
51000000000 0000000000000000 D”lOlOOO00000000000000000
T8 I S T T Y T S S S S M M M |
+

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

(c)

Number of Control Blocks

L L [[[[[[[[[
a\;

13
250000000000000000000000000 PT0I1IT00000000000000000T01(
0 A e

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

Cycles Degradation —|— Cycles Improvement

Figure 4.12: Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of renaming with copy for the
eight-issue processor configuration.

the schedule-based approach performs better than the dependence-based (Figure 4.12(b))
and estimate-based (Figure 4.12(c)) approaches, this improvement is typically around one
cycle. However, even with the eight-issue processor configuration, improvements of up

to seven cycles are still possible.

83

4.8 Control-Block Level Analysis of Integer Expression Reformulation

Integer expression reformulation exhibits significantly more complex behavior than
renaming with copy. Unlike the renaming-with-copy transformation, the maximum
possible benefit from a single application of integer expression reformulation is just one
cycle for the processor configurations studied. This benefit stems from reformulating an
integer expression in order to remove a one cycle integer add or subtract operation from
the critical path. In addition, the extra operations inserted while performing expression
reformulation can be more difficult to absorb into the schedule than those inserted by
renaming with copy. With renaming with copy, the “copy” operation is inserted after the
operation transformed and can be scheduled in later cycles where there usually is less
contention for processor resources. With expression reformulation, a newly created
definition (see Figure 2.8(b)) must be scheduled earlier in order to be effective, where
usually there is significantly more contention for processor resources. These two features
of expression reformulation make applying this transformation properly considerably more
difficult than applying renaming with copy.

Analyzing integer expression reformulation at the control-block level allows the
four approaches described in Section 4.4 to be more clearly differentiated. In addition,
this analysis will also provide insight into the behavior of this transformation. The rest of
this section will analyze the effect of integer expression reformulation of4&% control

blocks that meet the criteria presented in Section 4.2.

84

4.8.1 The four-issue processor configuration

4.8.1.1 Benefit in terms of percent change in schedule height

Figure 4.13 compares each of the four approaches for applying expression
reformulation to the original control block performance for the four-issue processor
configuration. The performance distributions are shown in terms of percent change in
schedule height. Both the heuristic-based (Figure 4.13(a)) and dependence-based
(Figure 4.13(b)) approaches utilize a dependence graph to determine which
transformations to apply. The only difference between the two approaches (with the
experimental setup discussed in Section 4.4) is that the heuristic-based approach prohibits
the addition of any extra operations. The heuristic-based approach’s strategy allows it to
improve 10.9% of the control blocks while degrading only 1.6% of them. The
dependence-based approach improves twice as many control blocks (20.8%) but also
degrades more than four times as many control blocks (7.5%).

If the additional degraded control blocks were rarely executed and the additional
improved control blocks were frequently executed, the dependence-based approach would
yield higher performance than the heuristic-based approach. However, for the SPEC
benchmarks, which is a subset of benchmarks for which the heuristic-based approach was
tuned, some of these degraded control blocks are more frequently executed than the
improved control blocks. As a result, the dependence-based approach significantly
degrades the overall performance of 023.egntott and 132.ijpeg while only moderately

improving 008.espresso and 026.compress. In addition, for some of the benchmarks

85

400

375

3898

350
325
300
275
250
225
200
175
150
125
100

75

50

(@)

Number of Control Blocks

(b)

Number of Control Blocks

(c)

Number of Control Blocks

400
375
350
325
300
275
250
225
200
175
150
125
100

75

50

25

(d)

Number of Control Blocks

=]

=]
(S|
g
=]
=]
=]
[
H
H
g
=]
=]

51+

50-46

45-41
40-36 | o
35-31
30-26
25-21
20-16
15-11
5-1
6-10
11-15
16-20
26-30
31-35 || 4
36-40
41-45
46-50
51+

51+

50-46

45-41
40-36
35-31
30-26
25-21
20-16
15-11
10-6
5-1
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
51+

3199

+ © - © Ll © b=l © - © — o wn o n o n o 0 (=] n (=] +
I < < @ @ N N — il O' u') - — — N N @ @ < < wn I
W o v o B o v o v 4 G 4 & 44 O d o o o Vv
n < < 5] (5] N N — — — N N ™ (3] < <
0 Y 0 0 0 0 0 0 0 0 0
8 ¥ 8 8 & § 8 2 & g S8 8 8 &8 8 8 ¥ 8 4
A N - - - & 4 ¢ g4 & 4 & o & b
n < < 5] (5] N N — — — N N ™ (3] < <
Percent Degradation —|— Percent Improvement

Figure 4.13: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of expression reformulation for the four-issue

processor configuration.

86

studied in 1992 (not shown), even more impressive slowdowns resulted from the
dependence-based approach. This is the reason that the heuristic-based approach adopted
by the IMPACT compiler prohibits the addition of extra operations.

Although the heuristic-based approach does not add any operations, it is still
possible for it to degrade performance as shown in Figure 4.13(a). Similar performance
degradation can also occur for the dependence-based and estimate-based approaches
when no additional operations are added and when additional operations are added but
there should have been enough resources to absorb them. This unexpected degradation is
due to the nonoptimal aspects of the DHASY list scheduling heuristic used for these
experiments. This heuristic has the unfortunate tendency to delay infrequently-taken side
exits unnecessarily when a control block contains a great deal of parallelism [26].
Performing expression reformulation typically increases instruction-level parallelism,
providing more opportunities for the DHASY heuristic to make less-than-optimal
decisions with regard to these infrequently-taken side exits. Fortunately, a promising
solution exists in the form of thepeculative hedgdist scheduling heuristic [26]
developed by Deitrich and Hwu. In preliminary experiments utilizing this prototype
implementation of the speculative hedge heuristic, rescheduling the degraded control
blocks using the speculative hedge heuristic appears to eliminate this problem. In fact,
both the original version and the transformed version of these degraded control blocks
often performed significantly better than before, further demonstrating the value of this
new heuristic. It is expected that after the speculative hedge heuristic is implemented in
the proposed transformation framework that it will always be used instead of the DHASY

heuristic. In general, the best scheduling heuristics available should always be used to

87

guide the application of transformations. However, no matter which scheduling heuristic
is used, nonoptimal schedules will occur. The advantage of the proposed schedule-based
approach is that it can adapt to the nonoptimal aspects of the scheduler by choosing a set
of transformations that works well with the scheduling heuristics used.

The estimate-based approach, as described earlier, models just the issue and branch
resources for the processor, and its performance distribution is shown in Figure 4.13(c).
Comparing the estimate-based approach to the dependence-based approach, the estimate-
based approach improves about the same number of control blocks (20.7%) but degrades
slightly fewer of them (7.5%). In addition, overall benchmark performance is significantly
better for several of the benchmarks because the estimate-based approach managed to
avoid most of the degradation the dependence-based approach caused to several of the
frequently-executed control blocks. The issue-width constraint was a good schedule
estimate for these control blocks because they contained a high level of instruction-level
parallelism.

Note that both the dependence-based and estimate-based approaches degrade
significantly more control blocks for expression reformulation as compared to renaming
with copy (Section 4.7.1.1). The major reason, as discussed in the introduction to this
section, is that expression reformulation is much more difficult to apply properly.
However, there is another, more subtle reason (discussed in Section 3.4). Expression
reformulation is also much more difficult to undo after other transformations have been
performed. With renaming with copy, after finding a set of transformations that yield the
best performance, the transformation framework performs a second search to determine

which transformations can be undone without hurting performance. This has the effect of

88

minimizing the operations added even when there are no explicit resource constraints.
With expression reformulation, the transformations selected on the first pass are kept,
even if they are not needed to improve performance. As a result, extra operations are
added even when they don’t improve the metric being optimized for, such as dependence-
height or the schedule estimate. In order to correctly undo expression reformulation, a
sophisticated version of common subexpression elimination is required. Although
potentially useful (at least for the dependence-based and estimate-based approaches), this
common subexpression transformation was not used (or implemented) in these
experiments. Note that keeping “unnecessary” expression reformulations has some
beneficial side effects also, which are discussed below.

The schedule-based approach, shown in Figure 4.13(d), improves 21.9% of the
control blocks while, as expected, degrading none of them. Unlike for renaming with
copy, the heuristic-based approach did not significantly increase the number of control
blocks improved over the dependence-based and estimate-based approaches. This
difference is primarily due to the fact that the implementation keeps the transformations
selected on the first search pass even if they are not needed to improve performance. In
general, breaking dependences will result in better schedules even if the overall
dependence height (or estimated schedule height) is not reduced. Therefore, by keeping
these “unnecessary” expression reformulations, many more control blocks are improved by
the dependence-based and estimate-based approaches. However, many more control
blocks are also degraded as discussed above. As before, the schedule-based approach

continues to generate consistently good results, unlike these other approaches.

89

400 3864
375
v 350
§ 325
2 300
m 575
O 250
‘g 225
200
(a) O s
© 150
T 125
-g 100
S 75
Z 50
2517 0 0 0 0 Y 0 0 [3 0 0 0 0
0 + + + + + + + =t
5 ¢$3 8385 %82 ¢g37°1%2 288889284
W oo w9 B 9 B o W 4 © 4 O 49 © 4 9 o © v
n < < (3] (3] N N — — — o N [s] () < <
400 3974
375
v 350
S 325
% 300
— 215 749
O 250
‘g 225
200
(b) Qs
© 150 136
T 125
-g 100
S 75 3
Z 50 18
50 —70v 0 0 U 0 U 0 O 12 5— 35—
0 — ‘ = | = = f—t
5 ¢$3 8385 82 ¢g3°%2 288889238 4
wn o n o 0 o n o n — © - «© - © - [{e] - [{e] o
n < < (3] () N oN — — — o N [s] (3] < <
400 4050
375 l
v 350
§ 325 =
2 300
m 575
O 250
‘g 225
200
(C) O s
© 150
T 125
-g 100
S 75
Z 50
2517 0 0 0 0 Y 0 U T 3 Y 0 0 0
0 + + + + + + + + +
5 ¢$3 8385 %82 ¢g3°1%2 28888928 4
W o w9 B 9 B o ¥ 4 © 4 O 494 © 4 o o © v
n < < (3] (3] N N — — — o N [s] (3] < <
Percent Degradation —|— Percent Improvement
Figure 4.14: Percent benefit of schedule-based application over (a) heuristic-based,

(b) dependence-based, and (c) estimate-based application of expression reformulation for

the four-issue processor configuration.

The schedule-based approach is compared to the other approaches in Figure 4.14.

The schedule-based approach improves performance in 13.1% of the control blocks when

compared to the heuristic-based approach (Figure 4.14(a)), 10.5% when compared to the

dependence-based approach (Figure 4.14(b)), and 9.0% when compared to the estimate-

based approach (Figure 4.14(c)). The benefit over the heuristic-based approach is

90

primarily from being able to perform transformations that add operations. For the other
two approaches, the benefit is primarily from preventing the degradation of any control

blocks. However, the schedule-based approach also improved 19 (0.4%) of the control
blocks improved by the heuristic-based approach, 33 (0.7%) of the control blocks

improved by the dependence-based approach, and 32 (0.7%) of the control blocks
improved by the estimate-based approach.

However, the schedule-based approach did not improve performance as much as
the heuristic-based approach in 8 (0.2%) of the control blocks, as the dependence-based
approach in 14 (0.3%) of the control blocks, and as the estimate-based approach in 6
(0.1%) of the control blocks. Because of the relatively large number of better solutions
found by the other approaches, there appeared to be an opportunity to improve the
priority function used by the search algorithm. However, further investigating revealed
that the priority function selected had nothing to do with it. Given the schedule-time
information available to the schedule-based approach, the transformations selected by the
other approaches were counterintuitive because they appeared to lengthen, not shorten,
the critical path. In fact, the only benefit of applying these transformations turned out to
be that they happened to cause the DHASY-based scheduler to make better decisions
about infrequently executed side exits, delaying them less (but stil more than was
necessary). Rescheduling these control blocks with the prototype speculative hedge
implementation turned out to make all the benefits of applying these counterintuitive
transformations disappear. This again indicates that the speculative hedge heuristic should

be used instead of the DHASY heuristic when it becomes available.

91

In Figure 4.15, each of the four approaches for applying expression reformulation
is compared again to the original control block performance for the four-issue processor
configuration, except the distributions are shown in terms of change in cycles. The
distribution for the heuristic-based approach, which cannot perform reformulations that
require adding operations, is shown in Figure 4.15(a). Even without being able to add
operations, the heuristic-based approach manages to reduce the schedule height of a
control block by 16 cycles, the largest reduction shown for any of the approaches. In
addition, many of the control blocks were reduced by more than two cycles. These large
benefits, without the need to add any extra operations, illustrates veley #xpression
reformulations are performed first before applying any other transformations as described
in Section 3.4.

Allowing expression reformulation to add extra operations allows the dependence-
based (Figure 4.15(b)), estimate-based (Figure 4.15(c)), and schedule-based
(Figure 4.15(d)) approaches to improve about twice as many control blocks as the
heuristic-based approach. In addition, the shape of the distribution of the improved
control blocks remains approximately the same. This indicates that there is little
correlation between requiring operations to be added and the importance of the
transformation to the control block’s performance. As seen before, adding operations
significantly increases the chances of degrading performance, as seen by the degradation of

up to four cycles caused by dependence-based and estimate-based approaches.

92

(@)

Number of Control Blocks

48

a
26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

222

(b)

Number of Control Blocks

STIO0O00000
0 +=t—t———+—+—++
26+ 24 22 20 18 16 14 12 10 8 6 4 2 O

00
Ly

00000000000
i ;-;l‘l‘

3 T00000I00C0000000
ey by
—+—t

4 6 8 10 12 14 16 18 20 22 24 26+

195!

(c)

Number of Control Blocks

2590 0000000000 00000000000 >
0 Attty L L
26+ 24 22 20 18 16 14 12 10 8 6 4

3 T0OO0O000IO0OO00000O0O0OD
]

4 6 8 10 12 14 16 18 20 22 24 26+

(d)

Number of Control Blocks
N
o
o

21

a
o
| S

250000000000000000000000000
0 A

26+ 24 22 20 18 16 14 12 10 8 6 4 2 O

Cycles Degradation —|— Cycles Improvement

456
‘ lepemin 22, -°-°2°° °2°°29°°2°8°°%
F———+—+ LB e

4 6 8 10 12 14 16 18 20 22 24 26+

Figure 4.15: Change in cycles for (a) heuristic-based, (b) dependence-based, (c) estimate-
based, and (d) schedule-based application of expression reformulation for the four-issue
processor configuration.

93

IS
10
o

350 368

(@)

Number of Control Blocks

-
-
(&)

[L [[[[[[[[[[y [

0

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

4108

(b)

Number of Control Blocks

L L L [[[[[[In
g1
i

5100000000000 0000000000000~
o

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

221

(c)

Number of Control Blocks

5100000000 000000000000 0000

26+ 24 22 20 18 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26+

Cycles Degradation —|— Cycles Improvement

Figure 4.16: Benefit in cycles of schedule-based application over (a) heuristic-based,
(b) dependence-based, and (c) estimate-based application of expression reformulation for
the four-issue processor configuration.

The schedule-based approach is again compared to the other approaches in

Figure4.16, except the differences in schedule height are now shown in cycles.

94

4.9 Control-Block Level Analysis of Both Transformations

There are 8680 control blocks where renaming with copy, expression
reformulation, or both transformations can be performed. In 4225 (48.7%) of these
control blocks, only renaming with copy can be performed. In 2639 (30.4%) of these
control blocks, only expression reformulation can be performed. Finally, in the remaining
1816 (20.9%) of these control blocks, both transformations can be performed. The
distributions presented in this section indicate how these two transformations perform

together.

4.9.1 The four-issue processor configuration

The control-block level performance for both transformations combined is shown
in Figure 4.17. These distributions show the percent change in schedule height caused by
the transformation of each control block. The heuristic-based approach, shown in
Figure 4.17(a), improves 11.1% of the control blocks and degrades 2.9% of them when
applying both transformations. The dependence-based approach, shown in Figure 4.17(b),
improves 26.3% of the control blocks and degrades 5.4% of them. The estimate-based
approach, shown in Figure 4.17(c), improves 21.0% of the control blocks and degrades
3.8% of them. Finally, the schedule-based approach improves 31.2% of them and
degrades none of them. For most of these control blocks where performance was
improved or degraded, the change in performance was caused by just one of the two
transformations. As a result, these distributions are essentially the sum of the individual
distributions presented earlier for each of the two transformations. Please see the earlier
discussions presented in Sections 4.7 and 4.8 for why each approach generates the above

distributions.

95

+1S

0S-9v

Sv-1v

0v-9¢

ge-1e

0g€-9¢

Se-1¢

0¢-9T

ST-TT

01-9

7464

5 5
90T 90T
TT-6T TT-6T
9T-02 9T-02
o | t2sz Te-5
¢ 1 oz-oc 92-0¢
o [rese Te-Ge
e 98-0v | se-or > | seor
- | s -Gy o | trsy > | trsv
S 9705 { ov-05 S
o [41 +1§ o[s o [41
TEFEI FEIT TETETE SESA5LEARLERERRRS BEENERERELELGRRR"
$00|g [03U0D JO JaqUINN $00|g [03U0D JO JaqUINN $Y00|d [03U0D JO JaqUINN
G S c S

Percent Improvement

96

—|—

processor configuration.

Percent Degradation
based, and (d) schedule-based application of both transformations for the four-issue

Figure 4.17: Percent change for (a) heuristic-based, (b) dependence-based, (c) estimate-

However, there are a few control blocks where earlier experiments indicate that
both transformations should affect performance. Examining these control blocks reveals
that the effect of these transformations does not always simply add up. We will first
focus on the results for the schedule-based approach because each transformation
individually always improves performance because of the design of the algorithm. The
schedule-based approach improved 2702 control blocks and in 204 (7.5%) of them,
earlier experiments indicated both transformations should improve performance. In 82 of
these control blocks, the benefit of both transformations individually simply add up when
both are performed. In another four of these control blocks, the combined benefit of the
transformations is higher (up to 56% more) than the sum of the individual benefits.
These superlinear benefits are expected to happen more often as more ILP
transformations are applied using the proposed schedule-time framework. Typically,
more than one dependence chain prevents a key computation or an exit from being
scheduled earlier. Reducing the height of each of these dependence chains is required in
order to improve the control block’s performance. In these experiments, only a few key
computations were constrained by both an anti dependence (renaming with copy) and a
flow dependence from an integer computation (expression reformulation). However,
after performing both of these transformations, many key computations were found to be
constrained by ambiguous memory disambiguation (addressed by data speculation [9],
[27]) and many exits were constrained by branch resources (addressed by branch
combining [4]). Performing expression reformulation and renaming with copy are
important enabling transformations for these two other transformations because they

allow memory addresses and branch directions to be calculated much earlier in the

97

control block. Implementing these two other transformations is part of this thesis’s future
work that will be performed in conjunction with other researchers in the IMPACT group.

In the remaining 118 control blocks, performing both transformations improves
performance less than the sum of the individual transformation benefits. In 13 of these
control blocks, performing both transformations yields higher performance than the
maximum of the individual transformation performances, but is less than the sum of the
two performances. For 94 of these control blocks, the combined benefit is the same as the
maximum of the two individual benefits. In fact, in 60 of these 94 control blocks, applying
either transformation individually or both transformations together generates the same
performance benefit. As mentioned above, key computations or exits are often
constrained by multiple dependence chains. For these control blocks, the transformations
reduce the height of one dependence chain until a different dependence chain is
constraining performance. No matter how much the height of that first dependence chain
is further reduced, the control block performance will not be further improved. However,
if other height-reducing transformations are applied, the additional benefit of applying both
transformations may become apparent.

In the last three of these 118 control blocks, performing both transformations
generates less benefit than the maximum of the two individual transformation benefits.
Intwo of these control blocks, applying renaming with copy consumed all of the
available resources and prevented the more beneficial expression reformulation from
being performed at all. In the other control block, expression reformulation was still able
to significantly improve performance but was slightly less beneficial because of the

resources consumed by renaming with copy. Recall from Section 3.4 that “free”

98

expression-reformulation transformations are applied first, then renaming-with-copy
transformations, and then finally expression-reformulation transformations that require the
addition of extra operations are performed. This phase ordering was found after extensive
testing to yield the highest performance and the fact that the performance of so few
control blocks are hurt by this further supports this as the proper choice.

For the heuristic-based, dependence-based, and estimate-based approaches,
applying renaming with copy or expression reformulation can degrade performance
instead of improving it. As with the schedule-based approach, the effect of performing
both transformations is not always simply a summation of the individual performance
effects. If both transformations individually degraded control block performance because
of overutilization of processor resources, performing both transformations is likely to
degrade performance even more than the sum of the two individual effects. When applied
individually, the extra operations inserted by each transformation can be partially absorbed
by the available processor resources. When both transformations are applied, the full
penalty of one transformation will be exposed.

If one transformation individually improves performance and the other one
individually degrades performance, applying both transformations is almost equally likely
to yield higher, equivalent, or lower performance than the sum of the individual effects.
The extra operations added by both transformations sometimes cause extra performance
degradation. However, the extra scheduling freedom caused by applying both
transformations sometimes allows more operations to be absorbed. There were several
control blocks where the effect of the two transformations simply canceled out. As a

result, no clear trends can be drawn from the experimental data for these cases.

99

4.10 Overall Results

This section presents the overall change in benchmark performance due to the
application of renaming with copy, expression reformulation, and both transformations
utilizing each of the four application approaches. The control-block level results
presented in the last three sections show the effect of the various approaches across all the
control blocks, independent of how frequently they are executed (see Section 4.2 for the
selection criteria). The overall results show the effect of the various approaches on overall
performance, which is typically determined by a few, frequently executed control blocks in
each benchmark. These frequently executed control blocks are typically unrolled loops
that have had aggressive loop ILP transformations applied by the IMPACT compiler such
as induction-variable expansion, accumulator-variable expansion, operation folding, and
global register renaming [4]. These loop ILP transformations break practically all of the
register anti and output dependences between different iterations of the unrolled loop
body. In addition, these transformations reformulate most of the expressions involving
induction variables and simple accumulation variables in order to break the register flow
dependences between different iterations of the unrolled loop body. As a result, most of
the large performance gains possible from breaking these types of dependences have
already been captured by IMPACT's loop ILP transformations.

The opportunities that remain are significantly smaller in terms of possible
performance improvement. Therefore, because of the construction of these experiments
(using a high-performance, state-of-the-art ILP transformed code base), the overall

performance improvements shown for the benchmarks for these two transformations will

100

be relatively small. However, as additional ILP transformations are implemented in this
schedule-time transformation framework, the benefit of the schedule-based approach will
continue to grow. Two additional ILP transformations, memory speculation [9], [27] and
branch combining [4], appear to be especially promising. After applying renaming with
copy and expression reformulation, memory addresses and branch directions can be
calculated much earlier in the control block than before which significantly increases the
benefit of these additional ILP transformations. Implementing these two additional ILP
transformations is part of the future work that will be done with other members of the
IMPACT team.

As with the control-block-level analysis, these comparisons are based on a first-
order estimate of benchmark performance using profile information and scheduled height
of each control block. This first-order approximation allows low-noise comparisons by
filtering out second-order effects due to cache misses, branch mispredictions, and register
allocation spill decisions. Although these second-order effects are important in other
contexts, all of the evaluated approaches are concerned solely with the reduction of
schedule height. Therefore, this first-order performance approximation which measures

the weighted reduction of schedule height is a more appropriate evaluation metric.

4.10.1 Overall results for the four-issue processor configuration

The overall percentage speedup (or slowdown) for the four-issue processor
configuration is shown in Figure 4.18. The results for renaming with copy and expression
reformulation individually are shown in Figure 4.18(a) and Figure 4.18(b) respectively.

The results for both transformations are shown in Figure 4.18(c). For each

101

25
) @ Heuristic-Based
20 k] W Dependence-Base
9 [Estimate-Based
O Schedule-Based
o
3
> 15
9]
Q
@ ‘o
S10
[
&
c
[a]
< L.
g s .
©
(=
O .
-5
25
[Heuristic-Based
20 W Dependence-Base
[Estimate-Based
O Schedule-Based
o
3
> 15
9]
o
(b) ‘o
S10
8 o~
c ~
o -~
§ s 3
ﬂ- N 2 o o
N > ~O
3 ogooo = ~ 22 NI2R e @ cor NNN® NooS oddd = 17 NN cooco N “’-r‘z
ol m 3333, 5 3 } O'?H_l} oo,_,_|°°} SogS | oos | 9988, _oqu} Soee, | O'o'o'o'} Seso | 2
I3, IS S S
' E
q ©
@ o
-5
25
~ [Heuristic-Based
20 S W Dependence-Base!
[Estimate-Based
O Schedule-Based
o
3
> 15
9]
o
n
C 8110
©
&
3
<) N s @
o 5 v: <
o < oW <<d 22
N Qai oy
3 N_gv.S
°1 1 ; ;
S} S}
Vo "
- = @ @ -
7} = 3 %3 3 8 o IS 8 17} — o = 3 g)
3 N 2 o g s © G S o p @ 5 8 3
= IN S S N ; o) X : S ™ = o £
S o ~ [T} > 0 © = < I3)
3 © @ g °© * S @ N S — o ™ = >
Q I o o [— =] ™ i} N~ <
® I < Q — <
o o © < [} —
o N N N
o — —
Benchmark

Figure 4.18: Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the four-issue processor configuration.

102

SPECcint92 and SPECcint95 benchmark, four speedup bars are shown. From left to
right, these bars specify the speedup measured for the heuristic-based, dependence-based,
estimate-based, and schedule based approaches for applying transformations. In addition,
for each of these four approaches, an unweighted arithmetic mean of the speedups across
all of benchmarks is shown at the far right.

As described earlier, the heuristic-based approach for applying renaming with copy
does not consider dependence or resource constraints in the application decision. The
drawback to ignoring these constraints is seen in the slowdown of 023.egntott and
134.perl in Figure 4.18(a). Renaming with copy was applied too many times to the
frequently executed control blocks of these benchmarks, resulting in overutilization of
processor resources. Overall, the heuristic-based approach improved performance an
average of 0.8%. Although the dependence-based approach does not consider resource
constraints, it does attempt to minimize the number of transformations performed by only
performing transformations that reduce the control block’s dependence height. This
results in much better performance overall (2.6%) including on 023.eqntott and 134.perl,
but the heuristic-based approach actually does better than the dependence-based approach
on 008.espresso and 129.compress. This abmtrates that dependence-height is not
the only factor to consider when applying a transformation.

The estimate-based approach adds an approximation of the processor’s resource
constraints into the application decision, resulting in slightly better overall performance
(2.7%). However, the estimate-based approach is sometimes too conservative (such as
023.eqntott and 134.perl), resulting in less speedup than the dependence-based approach.

For 129.compress, the estimate-based approach does not even do as well as the heuristic-

103

based approach. In general using an estimate of processor resources helps, but even a
fairly accurate estimate (as used here) does not always allow better decisions to be made.

The schedule-based approach uses exact schedule information to guide
transformation application. This results in a significantly better overall performance of
3.6%, more than four times the 0.8% average benefit from the heuristic-based approach.
For renaming with copy, the schedule-based approach always yields the best performance
for each benchmark. This is especially true of 026.compress, where the schedule-based
approach improves performance 19.9% versus the heuristic-based approach’'s 5.3%.
Although dependences are the primary factor limiting performanf26rcompress, the
schedule-based approach also performs better than the dependence-based (15.1%) and
estimate-based (17.9%) approaches. The reason the performance improvement is so much
larger for 026.compress is that IMPACT's ILP loop transformations were not able to
break cross-iteration register anti and output dependences in several important loops. If
IMPACT’s ILP loop transformations were not applied to the important loops of other
benchmarks, similar performance benefits would be seen for them as well.

The overall results for just expression reformulation for the four-issue processor
configuration is shown in Figure 4.18(b). The heuristic-based approach is very
conservative, only performing reformulations that do not add any operations. Even
without adding operations this approach speeded up 132.ijpeg 2.0%. However, it also
slowed down 008.espresso 0.5% because the reduced dependence heights caused the
scheduler to make poor decisions regarding side exits. As discussed before, the
speculative hedge scheduling heuristic should eliminate this slowdown. The overall

performance improvement is just 0.2%.

104

The dependence-based approach is much more aggressive, performing expression
reformulations whenever dependence-height is reduced. This results in a 4.4% speedup
for 026.compress but also a 3.8% slowdown for 132.ijjpeg and a 3.0% slowdown for
023.eqntott. Expression reformulation has a much higher cost to benefit ratio than
renaming with copy, making it much easier to overapply. In addition, unlike the
implementation for renaming with copy, the framework does not minimize the number of
transformations performed, which forces the dependence-based approach to pay for all of
the poor decisions made. On average, the dependence-based approach for expression
reformulation slows down the overall performance by 0.1%.

The estimate-based approach adds some restraint to the dependence-based
approach, preventing much of the dependence-based-approach’s overutilization of
resources. This restraint allows the estimate-based approach to improve 026.compress
more (4.9%) than the dependence-based approach and to actually improve 132.ijpeg 1.7%
instead of degrading it. In fact, for 072.sc, the estimate-based approach (1.5%) even
outperforms the schedule-based approach (1.2%). As mentioned in the control-block-
level analysis, the linear search algorithm sometimes finds lower-performance solutions
than is desired. Although this can happen whenever an exhaustive search is not
performed, in these experiments most of the problems are due to the less-than-ideal
handling of side exits by the DHASY scheduling heuristic.

However, even with this restraint the estimate-based approach still degrades
023.eqntott 1.3% because of the inaccuracy of the estimate. In addition, the conservative
nature of this approach reduces the speedup for 008.espresso and 129.compress. Overall,

the estimate-based approach speeds up the benchmarks by an average of 0.6%.

105

The schedule-based approach significantly improves the performance more than
the other approaches for 023.eqntott (2.8%), 008.espresso (2.7%), and 026.compress
(7.2%). On average, it speeds up the benchmarks by 1.3% compared to the 0.2% of the
heuristic-based approach. Although it would have been nice to see more overall
improvements, the control-block-level results have already shown that expression
reformulation can significantly improve performance. The ILP loop transformations
performed on the code prior to applying these transformations have just managed to
capture most of the big wins in the frequently executed loops. From examining the
frequently executed control blocks in these benchmarks, extensive expression
reformulation was still performed, allowing many addresses and branch directions to be
calculated significantly earlier. The transformations to take advantage of this (e.g.,
memory speculation and branch combining) just have not been implemented yet and other
bottlenecks are limiting performance. Once these other bottlenecks have been addressed,
the overall performance benefits will then become more tangible.

The overall results after performing both transformations are shown in
Figure 4.18(c). The sum of the effects of the two transformations individually
approximates the effect of both transformations together, with a notable exception for the
benchmark 026.compress. Two factors can prevent the effects for transformations
performed individually from adding up. The first factor is that after performing a
transformation, performance is often limited by resource constraints (such as branch
resources) or other dependences not targeted (such as memory dependences) so that
reducing dependence height further with the other transformations is not of much

immediate benefit (see discussion in Secicdhl).

106

The second factor is that expression reformulation often performs renaming with
copy during the reformulation, and some of this transformation’s benefit may be partially
from the renaming with copy portion of the transformation. The effect of the individual
portions of a transformation are difficult to quantify because the portions are dependent on
each other (performing one portion may not be beneficial or possible without the other
portions). In addition, from examining the important control blocks of all the benchmarks,
the expression reformulations were almost always solely responsible for the performance
improvement. The extra operation inserted by renaming with copy was usually part of the
cost, not the benefit, of performing this transformation. However, in the case of
026.compress, the renaming with copy was almost always required to be performed in
order to perform expression reformulation. In this particular benchmark, performing
renaming with copy almost always helps performance, so some portion of the expression
reformulations benefit is due to the application of renaming with copy. However, both
factors (other constraints and implicit application of renaming with copy) cause the
individual benefits of both transformations for 026.compress to not add up at all.

Overall, the schedule-based approach improved the benchmarks on average 4.2%,
compared with the 1.0% for the heuristic-based approach. The use of exact schedule
information allowed these two transformations to be performed more precisely, tailoring
the application of these transformations to the processor’s execution constraints. This
allows more than four times the amount of improvement from just these two ILP
transformations. As more ILP transformations are applied using the proposed schedule-

based approach, the benefit to overall performance will continue to grow.

107

The average overall improvement of 2.0% for the dependence-based approach
shows that part of the benefit of the schedule-based approach is from applying only those
transformations that actually reduce dependence height (or schedule height). This reduces
the number of transformations that are applied, which helps reduce resource
overutilization. However, the dependence-based approach is not sufficient, because
depending on the processor model, resources may still be overutilizedO@& eqntott
and 132.ijpeg).

The estimate-based approach approximately models the processor resources,
allowing the transformations to be scaled back as processor resources are reduced. For
the four-issue processor configuration, the estimate-based approach improved overall
performance an average of 2.8%. This shows that part of the benefit of the schedule-
based approach is its ability to prevent overutilization of resources. The estimate-based
approach performed better overall than the dependence-based approach because it
reduced the overutilization of resources in several benchmarks. However, this approach
did not capture the dependence-based approach’s performance in several benchmarks,
such as 134.perl and 008.espresso, because of its conservative nature.

The schedule-based approach applies transformations only when schedule height
improves, allowing fine-level trade-offs to be made between reducing dependence
constraints and adding extra operations. In addition, only the schedule-based approach is
able to take advantage of the opportunities created by scheduling decisions. This allows
the schedule-based approach to capture significantly more performance when the
program’s instruction-level parallelism is well matched to the processor's execution

constraints.

108

4.10.2 Overall results for the eight-issue processor configuration

As processor resources increase relative to the program’s instruction-level
parallelism, applying transformations whenever they can reduce dependence height
becomes more important than preventing resource overdutilization. The extra processor
resources can absorb many more poor application decisions, minimizing the damage. In
addition, the benefit for correct application decisions is significantly increased, because the
processor can take more advantage of the increased instruction-level parallelism.

The overall results for the eight-issue processor configuration, shown in
Figure 4.19, illustrates these points. Although the exact same set of transformations is
applied for the heuristic-based and dependence-based approaches (which do not use
processor configuration information), the average overall performance benefits for both
transformations (Figure 4.19(c)) are almost triple those shown for the four-issue processor
configuration (Figure 4.18(c)). For both renaming with copy (Figure 4.19(a)) and
expression reformulation (Figure 4.19(b)) individually, almost all the benchmarks are
improved by these approaches. The one exception is that renaming with copy, utilizing
the heuristic-based approach, still manages to dedradsgperl 0.3% by continuing to
overutilize resources.

The estimate-based approach loses most of its advantage over the dependence-
based approach because resource alieation is rarely a problem for this processor
configuration. In fact, the estimate-based approach’s conservative nature causes it to miss
several beneficial renaming with copy opportunities in many of the benchmarks. However,

for expression reformulation the estimate-based approach performed

109

30

M Heuristic-Based
W Dependence-Based

OEstimate-Based
OSchedule-Based

124.4

N
(&)

N
o

(@)

Percentage Speedup
&

10 o
<': o o
- e S S
<
L ©ow
5 .
O p
30
M Heuristic-Based
25 W Dependence-Based
OEstimate-Based
OSchedule-Based

N
o

(b)

S ooy

Percentage Speedup
5 &
e

5
NTT
PN
] mmm St vf;f;f;
1010 ~ .
0l gose, 8335, 8999 gose 3353 ST, 9338 j
30
S @ Heuristic-Based
25 LN W Dependence-Based
Q] OEstimate-Based
OSchedule-Based
(%
3
(1)20
o}
o
(%]
[}
c g
©
it}
c
[}
o
2
[0}
[a B
@ E a £ A =] x)
@ 2 o B o @ [9) >
o c s 2 5 =1 £ &
[} =3 © = Q o
2 ¢ £ Q g o sz
g Q < €] - S <
o o (‘g‘ g g;l —
© o — —
Benchmark

Figure 4.19: Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the eight-issue processor configuration.

110

significantly better than the dependence-based approach for 132.ijpeg. In several
important loops in 132.jjpeg, the instruction-level parallelism is high and preventing
resource overutilization is still important.

Overall for both transformations combined, the schedule-based approach improved
the benchmarks on average 6.5%, compared to the heuristic-based approach’s 3.0%. For
most of the benchmarks, the schedule-based approach captured about twice as much
performance improvement as the heuristic-based approach. The dependence-based (5.7%)
and estimated-based (5.9%) approaches performed almost as well on average as the
schedule-based approach for this eight-issue processor configuration. This is because,
with the low instruction-level parallelism compared to processor resources, poor
application choices do not affect performance as much. As compiler technology improves,
the amount of instruction-level parallelism relative to processor resources will increase,

causing the results to become more like the four-issue processor configuration.

4.10.3 Overall results for the two-issue processor configuration

As the instruction-level parallelism increases relative to processor resources,
preventing resource overutilization becomes the dominant factor for applying ILP
transformations. Because of scarce resources, the penalty of adding unnecessary
operations can become severe. In addition, the benefit of reducing dependence height is
reduced because there are fewer ilined resources to take advantage of the increased
parallelism.

The overall results for the two-issue processor configuration are shown in

Figure 4.20. As before, the set of transformations applied by the heuristic-based and

111

15

M Heuristic-Based
10 W Dependence-Based

OEstimate-Based
OSchedule-Based

(&)

(@)

Percentage Speedup
& o

-10

-15

15

M Heuristic-Based
10 W Dependence-Based

OEstimate-Based
OSchedule-Based

(&)

(b)

Percentage Speedup
& o

-10

-15

15

M Heuristic-Based
10 W Dependence-Based

OEstimate-Based
OSchedule-Based

o
~
Q.
3 “ﬂ
2 5
3 o
o
(/) I
© §°
5]
]
c
[}
5]
O -5
[
-10
-15
[=] 4)] [%)] —_
= =] o o o o = o x ©
@ - 5} @ @ o s £ o @ @ o) >
) N € = o [=)] Q Q [=)] = o o Q £ @
s S s 2 K w & ¥ o g I3 = 4 g o
& o @ € o © 3 © ~ € A N » > S
[} ™ [e] o [S — [e} ™ — N~ <L
foe) ol < g Q — <
o o («\J‘ § (c{:‘ —
s} g — -
Benchmark

Figure 4.20: Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the two-issue processor configuration.

112

dependence-based approaches are independent of the processor configuration. As a
result, both approaches degrade several benchmarks by overapplying renaming with copy
(Figure 4.20(a)). The heuristic-based approach does not perform expression
reformulations (Figure 4.20(b)) that add extra operations, so it still performs fairly well for
most benchmarks. However, the dependence-based approach does not have this restraint,
causing expression reformulation to degrade most of the benchmarks it is applied to.
Especially notable are the degradation of 132.ijpeg (8.5%) and 023.eqntott (8.4%). For
both transformations combined, the dependence-based approach slows down 072.sc
(6.2%) and 008.espresso (4.8%) more than the individual slowdowns added together.

The estimate-based and schedule-based approaches, on the other hand, select the
transformations to apply utilizing processor configuration information. As a result, both
approaches continue to perform well with the reduced resources. The results for both
transformations (Figure 4.20(c)) show that these two approaches significantly improve the
performance of 026.compress, 023.eqntott, and 008.espresso whereas the other two
approaches degrade performance. Overall, the schedule-based approach improves the
benchmarks an average of 1.9% compared to the heuristic-based approach’s slowdown of
0.8%. As with the four issue processor configuration, the estimate-based approach
captures about two-thirds the performance of the schedule-based approach with an
average improvement of 1.2%. Unlike the four-issue processor configuration, the
dependence-based approach slows down the benchmarks on average 2.3%. The schedule-
based approach still manages to yield significant performance from ILP transformations

even when processor resources are limited.

113

4.10.4 Overall results for the one-issue processor configuration

The one-issue processor configuration represents one extreme, where processor
resources are the limiting factor. ILP transformation that add operations such as renaming
with copy are typically not performed. However, breaking dependences can still increase
performance because there are often holes in the schedule that dkd bedause of
nonunit latency instructions such as loads. The overall performance results for the one-
issue processor configuration are shown in Figuzé.

The heuristic-based and dependence-based approaches overapply renaming with
copy (Figure 4.21(a)) so, primarily, slowdowns occur. The estimate-based approach has
been configured to discourage the addition of any extra operations. As a result, it almost
never applies renaming with copy, which is the better default decision when compared to
the first two approaches. The schedule-based approach, however, does find that applying
renaming with copy in a controlled manner can sometimes improve the benchmark’s
performance.

For expression reformulation (Figure 4.21(b)), the heuristic-based, estimate-based,
and schedule-based approaches all tend to apply only “free” expression reformulations,
which do not add any operations. However, the schedule-based approach does find that
adding a few operations in order to do expression reformulation can improve the
performance of 026.compress. The dependence-based approach, on the other hand,
applies expression reformulation aggressively, resulting in a slowdown for every

benchmark.

114

(@)

(b)

(c)

Percentage Speedup

M Heuristic-Based

-20 W Dependence-Based
OEstimate-Based

OSchedule-Based

)) P
: n wnwn

o 22 9999 © 95 9 99 9 of © 9F 9 99 o ot N AN 9 00 g§ g8 © 99 o oo o oY

=] S ©8, 5 oo, 8 S8, S S9, 5 oo S oo, o oo, © °O°

-11.

Percentage Speedup
5

M Heuristic-Based

-20 W Dependence-Based
OEstimate-Based

OSchedule-Based

Percentage Speedup

: M Heuristic-Based

-20 El W Dependence-Base
OEstimate-Based

OSchedule-Based

] =)) —
— [8] [6) Q =

) = IS 4 7] 3]) E o @ = g @ o) S
] q IS = N > > 2 o = 2 <% a £ &
S o =3 =3 ~ [ts) o 5o © =3 2 = < <} 5
)) € o © bt 0 ~ € N > > g
(] ™ 8 o c — 8 ™ - N~ z
o) N d — <

o o («\J‘ § g —

© o — —

Benchmark

Figure 4.21: Speedup due to the application of (a) renaming with copy, (b) expression
reformulation, and (c) both transformations for the one-issue processor configuration.

115

After applying both transformations, the schedule-based approach on average
improves overall performance 0.4%, compared to the heuristic-based approach’s
slowdown of 1.9%. The estimate-based approach also manages to improve performance
0.2%, primarily from “free” expression reformulations. The dependence-based approach,
however, slows down the benchmarks on average a massive 5.0%. For 023.eqntott, the

dependence-based approach managed to cause an 18.1% slowdown.

116

5. INCREMENTAL DEPENDENCE GRAPH GENERATION

5.1 Introduction

The proposed algorithm for applying transformations at schedule time requires the
targeted control block to be rescheduled after each transformation is applied. This
rescheduling of the control block after each transformation is responsible for almost all of
the compile-time cost of this algorithm. One of the most time-consuming steps of the
DHASY list-scheduling algorithm [23] (used for this thesis’s experiments) is building the
control block’s dependence graph [1], which represents all the control block’s
dependence constraints as described in Section 3.3. Because applying a transformation
usually affects a relatively small part of the dependence graph, incrementally updating the
dependence graph (instead of just rebuilding it) before rescheduling the control block can
significantly reduce the compile-time cost of the proposed schedule-time transformation
algorithm. However, most dependence graph generation algorithms do not support
incremental update because thiglitgbis not, in general, required during scheduling.
(Support for control speculation and global scheduling do involve $onbed update of
the dependence graph but typically this support does not allow operations to be added
after the dependence graph is built.) This chapter describes a new dependence graph
building algorithm that allows both the efficient building of the initial dependence graph
for a control block and efficient general-purpose incremental update of the dependence
graph after the application of a code transformation. The key features include the register
action table which allows uses and definitions of a particular register to be quickly

located (Section 5.2) and dependence-drawing algorithms that can be used for both

117

building and incrementally updating the dependence graph (Section 5.3). The compile-
time benefit of allowing incremental update of the dependence grdlbhbev

experimentally evaluated in Chapter 7.

5.2 The Register Action Table

After a transformation creates (or modifies) an operation, dependences may need
to be added between this operation’s register operands and any of the other operations’
register operands in the control block. Although a straightforward linear search over all
the operations’ operands in the control block to determine where to add register
dependences would work, it would also be inefficient because an unnecessarily large
number of operands would need to be examined. Instead, the proposed technique utilizes
a register action table to allow the definitions and uses of a particular register to be
efficiently located. This register action table will then be used by the dependence drawing
algorithms in Section 5.3 to efficiently draw the appropriate dependences.

The register action tablecontains araction entryfor every register definition or
use in the control block. An example code segment and the register action table
summarizing this code segment is shown in Figure 5.1. The notation “r1 <-” indicates an
explicit definition of Register rl and “<- r1” indicates an explicit use of Register rl by the
operation shown in the first column. The notation “(<- rl)” indicates an implicit use of
Register rl by the operation shown in the first column. (Implicit definitions are also
possible, primarily for function calls, but are not shown in the figure.) Note that almost all
of the Register actions in the register action table will be expkaalse the IMPACT

compiler’s internal representation explicitly represents all the registers defined and used

118

rl r2 Control Memory
Actions Actions Actions Actions

op 1: beq r2, 0, exitl (<-r1) <-r2 <-C
(<-r2) C<-
op 2: rl <- M[r2+8] r1<- <-r2 <-C <-M
op3:rl<-rl1-1 <-rl <-C
rl<-
opd:M[r2 + 8] <-rl1 <-rl <-r2 <-C M <-
op 5: beqrl, 0, exit2 <-rl (<-12) <-C
C<-
op 6:r2 <- M[r2+12] <-r2 <-C <-M
r2 <-
op 7: jsr func2 <-C M <-
C<-

Figure 5.1: An example code segment and its register action table.

by an operation, including those registers implicitly defined and used by the operation’s
opcode. Implicit register actions are used only to specify the registers whose values are
used along the taken path (liveout) of a conditional blanch and the registers that may be
used or modified by the target of a function call. For example, Registers rl and r2 are
liveout of op 1, so implicit uses of these registers are placed in the register action table as
shown in Figure 5.1. Op 1 also explicitly uses Register r2, so an explicit use of r2 is also

shown in the register action table.

5.2.1 Designed to efficiently answer four time-critical queries

In order to be able to determine where to add dependences for a new operation or
a new register operand in near-constant time, there are four queries about a particular

action entry that the register action table was designed to answer in constant time. The

119

first query, prev_def returns the action entry (if any) that represents the previous
definition of the same register; otherwise it returns NULL. For example, if given the
action entry representing the use of rl by op 5 (in Figure 5.1), the prev_def query will
return the action entry representing the definition of rl by op 3. The second query,
next_defis similar except it returns the next definition (if any). The next_def query will
return NULL if given the action entry representing the use of rl by op 5. In addition, if an
operation both uses and defines the same register, the use action entry is defined to occur
before the definition action entry. Therefore, if the next_def query is given the action
entry representing the use of rl by op 3, it will return the action entry representing the
definition of rl1 by op 3.

The third queryprev_actual returns the action entry (if any) that represents the
previous definition or use of the same register, otherwise it returns NULL. If the
prev_actual query is given the action representing the use of rl by op 5, the action
representing the use of rl by op 4 will be returned. The fourth query, next_actual, is

similar except it returns the next definition or use (if any).

5.2.2 Handling of overlapping registers

Usually dependences are only drawn between action entries for the same exact
register. For example, register anti dependences (see Section 2.2) are typically only drawn
between the uses of Register rl and the next definition of Register rl. However, it is
sometimes necessary to draw dependences between actions of two different registers, if
these two registers overlap in some way. For example, after register allocation two single

precision floating-point registers (named r1f and r2f, 32 bits each) might both overlap one

120

double precision floating-point register (named rld, 64 bits) as shown in Figure 5.2(a). If
an use of Register r2f (Operation B) is followed by a definition of rld (Operation C), a
register anti dependence must be drawn between the use of Register r2f and the definition
of Register rld to prevent them from reordering, as shown in Figure 5.2(b). In order to
handle overlapping registers efficiently, extnzerlapping action entrieare added to the
register action table, denoted with square brackets in Figure 5.2(c). For clarity, the
normal action entries (versus the overlapping action entries) are referredatiuab

action entries When an actual action entry is added to the register action table for a
particular register, an overlapping action entry is also created for each register it overlaps
as shown in Figure 5.2(c). (The actual action entry and all the overlapping action entries
created are enclosed by a dotted box in this figure.) These overlapping entries (called
conflicting entries in the IMPACT compiler’s terminology) and the original actual entry
itself is placed in aonflict list in the actual entry for use by the dependence drawing
algorithms. Section 5.3.6 will describe how this conflict list is utilized to draw the
appropriate dependences between overlapping registers.

Note that the prev_def, next_def, prev_actual, and next_actual queries will return
only actual action entries or NULL (if appropriate). (This is the rationale behind the
prev_actual and next_actual names). However, these queries may be made on an
overlapping action entry, in which case the actual action returned will be determined by
treating the overlapping action entry as if it was an actual action entry for the register it
overlaps. For example, if the “[<- r2f]” overlapping action entry in the Register rld

column in Figure 5.2(c) is given to next_def, the “rld <-” actual action entry will be

121

r2f rid

Code Sequence Actions Actions
A) r2f<-r10f+ 1.0 r2f <- [r2f <-]
P &
[raf [rof | B) mem[sp+12] <- r2f | <-rof [<-r2f] |
C) rld<- mem[sp+16] [rld <] rid <- |
D) r3d <-r3d + rid [<- r1d] <rid |
o ©) ©

Figure 5.2: Example of (a) overlapping registers, (b) the resulting dependences and
(c) their action entries.

returned. In addition, if the “<- r2f" actual action entry is given to next_def, NULL will

be returned because there are no actual action entries after it.

5.2.3 Control, memory, and synchronization pseudoregister operands

Up to this point, the focus has been on action entries that facilitate the drawing of
register-to-register dependences. Although the register action table was designed
primarily to facilitate the drawing of register dependences, it also provides a convenient
way of keeping track of those operations that might need control, memory, and
synchronization dependences drawn to them. This is done by creating control, memory,
and synchronization actions. These actions are handled seamlessly by the register action
table by creating three pseudoregister operands (one for each type). These three
pseudoregister operands are treated by the register action table as if they were three real
register operands. By definition, these three pseudoregister operands will not overlap with
any other register operand.

The register action table can be used to quickly locate branch operations by

modeling these operations in the action table as a “definition” of the control operand

122

(C <-). Allthe operations in the control block can then be modeled in the action table as a
“use” of the control operand (<- C). This provides a quick method for determining which
branches are above and below any operation through the use of the prev_def and next_def
gueries. Control dependences are drawn from branch operations to other operations that
should not be moved past the branch operation. These are typically other branch
operations (to maintain correct control flow), store operations (to maintain the proper
memory state), and operations that can throw exceptions such as load operations (invalid
addresses) and divide operations (divide by zero). However, control dependences are
sometimes drawn to all operations to prevent compile-time control speculation. To
support this option, all operations are always modeled as using the control operand. The
processors modeled in this thesis support nonexcepting versions of operations that can
throw exceptions and compile-time control speculation is allowed, so control dependences
are used primarily to prevent the reordering of branch and store operations. An example
of how these definition and use control action entries are added is shown in the fourth
column of Figures.1.

Memory dependences are used to keep load operations from reordering with store
operations that may modify the memory value that the load operation is accessing. To
allow the register action table to be used to quickly locate store operations, action entries
that define the “memory” operand (M <-) are added for store operations. For quick
location of load operations, action entries that use the memory operand (<- M) are added
for load operations. An example of how these memory action entries are added are shown
in the last column of Figure 5.1. Some sort of memory disambiguation [28] must be used

to determine which memory dependences need to be drawn.

123

Synchronization dependences are used when nothing should be moved past a
specific operation. These operations are typically operations that access the processor
control word or move the processor’s register window (on the Sparc architecture [3]).
The synchronization operand (not shown in the figure) is used in a way similar to the
control operand, except operations requiring synchronization dependences define the
“synchronization” operand. The experimental processor configurations used in this thesis

do not have any operations that require these synchronization dependences.

5.2.4 Precalculation of the results for the four time-critical queries

In order to be able to answer the four time-critical queries (prev_def, next_def,
prev_actual, next_actual) in constant time, the results for these queries are precalculated
as the register action table is built and stored in each action entry as pointers to the
appropriate action entry for immediasdecess. For each register (e.g., Register rl) in the
control block, there is gegister information entrghat manages all of the action entries
for that register in the form of one normal doubly-linked list and two enhanced doubly-
linked lists. The normal linked list is simply a doubly-linked list of all (both overlapping
and actual) action entries for that register in the order that they occurred in the
unscheduled control block. Each action entry has two figiley completeand
next_completethat are used to connect the action entry to this list. The register
information entry has two field$irst_completeandlast_completethat point to the head
and tail of this list.

The first enhanced doubly-linked list contains all the actual action entries for a
register in the order that they occurred in the unscheduled control block. Each action
entry has two fieldsprev_actualandnext_actual that are used to connect actual action

entries to this list. The register information entry has two fieldst_actual and

124

last_actua) that point to the head and tail of this list. This list is enhanced because
overlapping action entries also have their prev_actual and next_actual fields set as if they
were in the actual action linked list. The algorithm used to construct these enhanced lists
will be described below. This enhancement allows these two fields to be used to
efficiently answer the prev_actual and next_actual queries on any action entry.

The second enhanced double-linked list contains all of the actual definition action
entries for a register in the order that they occurred in the unscheduled control block.
Each action entry has two fieldgrev_defand next_def that are used to connect the
action entry to this list. The register information entry has two fididst, def and
last_def that point to the head and tail of this list. This list is enhanced because
overlapping and actual use action entries also have their prev_def and next_def fields set
as if they were in the actual definition action linked list. As with the actual action
enhanced linked list, this allows these two fields to be used to efficiently answer the
first_def and last_def queries on any action entry.

An algorithm that can be used for building these enhanced linked lists is shown in
Figure 5.3. A forward pass through the complete action linked list is made to calculate the
values of prev_actual and prev_def fields for each action entry and to calculate the values
of last_actual and last_def fields for the register information entry. Similarly, a backward
pass through the complete action linked list is made to calculate the values of the
next_actual, next_def, first_actual and first_def fields. As shown, the value of all these
fields can be calculated in linear time with respect to the number of action entries in the
complete list. Amortized over the complete list of action entries, precalculating these
fields’ values requires constant time. In order to answer the four time-critical queries

discussed earlier, only a constant-time loading of each field’s value is required.

125

build_enhanced_linked_lists (reg_info_entry)

{

prev_actual = NULL; /I No actual entries before first action entry.
prev_def = NULL; // No actual definitions before first action entry.

/l Make a forward pass through the complete action entry list for prev fields.
for (action_entry = reg_info_entry->first_complete; action_entry != NULL;
action_entry = action_entry->next_complete)

{
action_entry->prev_actual = prev_actual; // Set prev_actual field.
action_entry->prev_def = prev_def; /I Set prev_def field.
if (is_actual_entry (action_entry)) I/l Update prev_actual if actual action.
prev_actual = action_entry;
if (is_actual_def_entry (action_entry)) // Update prev_def if actual definition.
prev_def = action_entry;
}
reg_info_entry->last_actual = prev_actual; /Il Set last_actual field.
reg_info_entry->last_def = prev_def; /I Set last_def field.
next_actual = NULL; /I No actual entries after last action entry.
next_def = NULL; /I No actual definitions after last action entry.

/l Make a backward pass through the complete entry list for next fields.
for (action_entry = reg_info_entry->last_complete; action_entry != NULL;
action_entry = action_entry->prev_complete)

{
action_entry->next_actual = next_actual; // Set next_actual field.
action_entry->next_def = next_def; Il Set next_def field.
if (is_actual_entry (action_entry)) /I Update next_actual if actual action.
next_actual = action_entry;
if (is_actual_def_entry (action_entry)) // Update next_def if actual definition.
next_def = action_entry;
}
reg_info_entry->first_actual = next_actual; /I Set first_actual field.
reg_info_entry->first_def = next_def; /I Set first_def field.

Figure 5.3: Algorithm for building enhanced linked lists.

126

Although the algorithm described above can be done in linear time, the entire
process of building the register action table takes near-linear time because a hash table
lookup is required for each action entry to determine which register information entry to
add the action entry to. This hash table lookup could take worst-case linear time to
perform, but in practice takes near-constant time. (The register id distribution is very
well-behaved.) Therefore in practice building the register action table for a control block

takes near-linear time to build.

5.2.5 Incremental update of the register action table

When transformations are performed, the register action table must be updated.
The algorithm used to delete an action for the register action table is shown in Figure 5.4.
Before deleting an action entry from the complete action list, the prev_actual, next_actual,
prev_def, and next_def fields of surrounding action entries must be updated. If the action
entry to be deleted (action_to_delete) is an actual definition action entry, the surrounding
action entries’ prev_def and next_def fields must be updated. Fortunately, the values to
set these fields to can be determined by simply examining the fields of action_to_delete.
The action_to_delete’s prev_def field points to the previous action definition (if any), so
prev_def field of the entries below the action_to_delete should just be set to this value (as
shown). Once the another actual definition entry is encountered (and updated), this
update of the prev_def fields is stopped because the remaining entries should be correct.
If another actual definition entry is not encountered (action_entry == NULL), then this
was the last definition in the complete list and the register information entry’s last_def field

is updated. iilarly, the action_to delete’s next_def field points to

127

delete_action_entry (reg_info_entry, action_to_delete)

{

/I For actual def entries, need to update prev_def and next_def of adjacent entries.
if (is_actual_def_entry (action_to_delete))

{

/I Update prev_def until hit next actual definition entry (update actual def also).

for (action_entry = action_to_delete->next_complete; action_entry '= NULL,;
action_entry = action_entry->next_complete)

{

action_entry->prev_def = action_to_delete->prev_def;
if (is_actual_def_entry (action_entry)) break; // Stop after updating actual def.

}

/I If last definition entry, update reg_info_entry’s last_def.
if (action_entry == NULL)
reg_info_entry->last_def = action_to_delete->prev_def;

/I Update next_def until have updated previous actual definition entry.

for (action_entry = action_to_delete->prev_complete; action_entry != NULL;
action_entry = action_entry->prev_complete)

{

action_entry->next_def = action_to_delete->next_def;
if (is_actual_def_entry (action_entry)) break; // Stop after updating actual def.

}
/1 If first definition entry, update reg_info_entry’s first_def.
if (action_entry == NULL)

reg_info_entry->first_def = action_to_delete->next_def;

(Use same approach as above to update prev_actual and next_actual fields for
adjacent entries and last_actual and first_actual fields for reg_info_entry.)

/I Remove action_to_delete from reg_info_entry’s complete list and delete entry.
delete_from_complete_action_list (reg_info_entry, action_to_delete);

Figure 5.4: Algorithm for deleting action entry from register action table.

the next action definition (if any), so the next_def field of the entries above the

action_to_delete should be set to this value until another actual definition is encountered

and updated (as shown). If this is the first actual definition in the complete list, the

register information entry’'s first_def field is updated. The same approach for updating

128

the prev_actual, next_actual, last_actual, and first_actual fields can be used and it is
omitted from the figure because of spédinetations. After these fields angpdated, the

entry is deleted from the complete action linked list by the last function call. In the worst
case, two linear passes over the complete action entry list for that register information
entry may be required. However, in practice only a few entries to either side of the
deleted entry usually need to be updated.

The algorithm for adding an action entry to the register action table is shown in
Figure 5.5. The new action entry (action_to_add) is first added to the register information
entry’s complete action list. This new action entry is placed in this complete action list so
that the order of the action entries is the same as the order of the operation in the
unscheduled control block (including the new operation). Each operation (and therefore
their action entries) has serial numberthat is used to determine the relative order of
operations (and their action entries). A new operation is assigned (algorithm not shown)
the appropriate serial number based on its placement in the control block and, if necessary,
the adjacent serial numbers are adjusted. (Adjustments are rarely required because the
serial numbers are initially spaced 1024 numbers apart.) If the new operation both uses
and defines the same register, the action for the use wilabedgbefore the action for the
definition in the complete action list.

The algorithm shown in Figure 5.5 then calculates the next_def and prev_def fields
for the new action entry. Instead of searching for the adjacent actual definition entries, the
next_def and prev_def fields of adjacent action entries (if the adjacent entries exist) or the

first_ def and last _def fields of the register information entry are utilized to

129

add_action_entry (reg_info_entry, action_to_add)

{

/I Insert into the “proper” place in the complete doubly-linked list.
add_to_complete_action_list (reg_info_entry, action_to_add);

/I Set next_def and prev_def for action_to_add using adjacent entries’ fields,
I if adjacent entries exist. Otherwise, use the reg_info_entry’s fields.
if (action_to_add->prev_complete != NULL)

action_to_add->next_def = action_to_add->prev_complete->next_def;
else

action_to_add->next_def = reg_info_entry->first_def;

if (action_to_add->next_complete '= NULL)

action_to_add->prev_def = action_to_add->next_complete->prev_def;
else

action_to_add->prev_def = reg_info_entry->last_def;

/l'If adding an actual definition, update adjacent entries’ prev_def and next_def fields.
if (is_actual_def_entry (action_to_add))

/I Update prev_def until have updated next actual definition entry.
for (action_entry = action_to_add->next_complete; action_entry = NULL;
action_entry = action_entry->next_complete)

action_entry->prev_def = action_to_add;
if (is_actual_def_entry (action_entry)) break; // Stop after updating actual def.

/I If this is now the last actual definition entry, update reg_info_entry’s last_def.
if (action_entry == NULL)
reg_info_entry->last_def = action_to_add;

/I Update next_def until have updated previous actual definition entry.
for (action_entry = action_to_add->prev_complete; action_entry != NULL,;
action_entry = action_entry->prev_complete)

action_entry->next_def = action_to_add;
if (is_actual_def_entry (action_entry)) break; // Stop after updating actual def.

/'If this is now the first actual definition entry, update reg_info_entry’s first_def.
if (action_entry == NULL)
reg_info_entry->first_def = action_to_add;

(Use the same approach as above for updating prev_actual and next_actual for
action_to_add and adjacent entries and for updating reg_info_entry, if necessary.)

Figure 5.5: Algorithm for adding action entry to register action table.

130

efficiently determine the correct values. This allows these fields to be updated in constant
time. If the new action entry is an actual definition entry, then the next_def and prev_def
fields of adjacent entries are updated usingrélas approach to that used when deleting

an entry, described above. If necessary, the first_def and last_def fields of the register
information entry are also updated. In the worst case, all the action entries in the
complete action list will need to hepdated, yielding a linear-time update. In practice,
however, only a few adjacent entries typically need to be updated.

The update of the next_actual, prev_actual, first_actual, and last_actual fields for
the new entry and adjacent entries can be done using the same approach. The update of
these fields is omitted from the algorithm shown in Figure 5.5 because of space
constraints.

The implementation of the register action table utilized for this thesis's
experiments (and everything else described in this thesis) was built from the ground up to
efficiently support schedule-time transformations. Although this framework was
extensively tuned to minimize the compile time required to perform various required
functions, it was equally important that the framework be robust, easy to test, and easy to
maintain. As a result, the same code for incrementally updating a construct (such as the
register action table) was also utilized to both build and destroy these constructs
whenever feasible. After extensively testing the framework for correctness, the
framework was then analyzed for performance bottlenecks, including those created by
utilizing the routines for incrementalpdate to perform more mundane tasks. For
example, it was found that even after extensive tuning, most of the routines for destroying

these constructs were requiring an unreasonable amount of time given the net task being

131

performed (deleting everything) and specialized routines for performing these functions
were developed. However, after extensive tuning of the construction routines, the
performance to be gained by developing specialized construction routines was found to be
minimal. In addition, developing these specialized construction routines would require
extensive reimplementation of the core framework functionality, resulting in almost a
doubling of the amount of code base that must be maintained. As a result, the easier to
understand and more streamlined algorithm shown in Figure 5.3 is not used in the thesis’s
implementation. Instead, the algorithm for incrementally adding action entries to the
register action table shown in Figure 5.5 was also used to build the register action table.
This algorithm was extensively tuned and provides almost equivalent overall performance
when the register action table is built in a single forward pass through the operations in the
control block. A specialized routine is, however, used to delete the register action table.
The influence of this approach of utilizing incrementpdlate routines whenever possible

will also be apparent in the algorithms for building the dependence graph.

5.3 Building and Updating the Dependence Graph

All the algorithms for building and updating the dependence graph rely on the
register action table to provide quick and accurate answers for the prev_def, next_def,
prev_actual, and next_actual queries about a register action and to provide information
about overlapping registers in an easy to use form. In order to access the register action
entries and other information required for scheduling an operation efficientgmaop

(schedule manager operation) structure is created for each operation in the control block.

132

This sm_op structure contains an array of action entry pointers for each type of operand
(src, dest, pred, etc.) so that the register action for a particular operand can be easily
found. Implicit register actions (currently only created for branches) are kept in a separate
doubly-linked list to allow easy addition and removal of implicit action entries (to support
transformation and scheduling algorithms that move operations between control blocks).
In addition, this sm_op structure contains a doubly-linked list of all the action entries (both
explicit and implicit) for that operation, so that all the actions for an operation can be
efficiently processed. (Otherwise a search of the arrays and the implicit action list would
be required.) This design allows the action entries to be accessed in constant time in a
manner convenient for the various dependence graph algorithms, scheduling algorithms,
and code transformation algorithms implemented in this new framework.

One significant difference between the approach utilized for representing the
dependence graph and traditional approaches is that dependences are drawn between the
action entries causing the dependence instead of directly between two operations. This
approach allows all the dependences caused by a particular operand to be quickly found,
which is extremely useful when performing transformations and updating the dependence
graph. For example, in order to determine if renaming with copy should be performed on
an operation, the destination register action can be examined to see if 1) there are any
register anti or output dependences into that register action and 2) there is at least one
register flow dependence to an explicit register usage later in the control block. Unless

both these conditions are met, there is no possible benefit from performing renaming with

133

copy and there is no need to consider it further. If renaming with copy is applied, the
register flow dependences out of the old destination register action can then be used to
quickly find all of the register uses that should be changed to the new temporary register
(see Section 2.2). After each of these old register uses are changed to the new register,
the dependences for the old register will be deleted and dependences from the renamed
destination will be drawn to the new register. Although it is possible to do all of the above
with dependences drawn directly between operations, this approach is significantly more
efficient because only relevant dependences need to be examined.

In Sections 5.3.1-5.3.5, simplified algorithms for drawing the dependences into
and out of register, control, and memory actions will be presented. These algorithms are
simplified in the sense that they are sufficient only if registers do not overlap (see
Section 5.2.2) and predicated execution [4], [27] (conditionally executing each operation
based on the value of an extra predicate register source operand) is not supported by the
compiler. Although the actual implementation robustly handles both of these
complications, these details distract from the initial discussion of the dependence drawing
algorithms. After these simplified algorithms have been presented, an overview of the
extensions required to handle overlapping registers will be discussed in Section 5.3.6 and
an overview of the extensions required to handle predicated execution will be discussed in
Section 5.3.7. It is important to note that if a control block is also the body of a loop,
these algorithms will only draw intra-iteration (omega = 0) dependences. The framework
also supports drawing of cross-iteration (omega !'= 0) dependences but this feature is not
utilized by this thesis’'s experiments. (See Lavery's thesis [29] for more details about
cross-iteration dependences).

When building a dependence graph, simply drawing all the dependences out of

each action is sufficient because thit implicitly add all of the dependences going into

134

each of the actions also. However, when updating the dependences after deleting or
adding an action entry, the ability to draw both incoming and outgoing dependences for an

action entry is required.

5.3.1 Drawing outgoing destination register dependences

A simplified algorithm for drawing the dependences going out of a destination
register’s action entry (dest_action) is shown in Figure 5.6. To help illustrate how this
algorithm works step by step, the dependences going out of the definition of Register rl
by Operation B in Figure 5.7(a) will be drawn. (The action entry for this definition will be
passed to the algorithm, becoming dest_action.) The register action entries for Register rl
are shown Figure 5.7(b) and the soon-to-be-added outgoing dependences for the targeted
definition action entry are also shown. The algorithm for adding these outgoing
dependences starts with the first actual action entry after dest_action, and scans forward
through the actual action entry list using the variable action_after. The appropriate
dependence is then drawn based on the characteristics of action_after and dest_action, as
described below.

If action_after is a use entry and both action_after and dest_action are explicit
actions (see Section 5.2), a normal register flow dependence is drawn from the dest_action
to the action_after (as drawn to Operation D’s explicit use of Register rl in Figure 5.7(b)).
(See Section 2.3 for a description of register flow dependences.) This dependence is
added using the add_dep function call, which requires five arguments. The first argument
is the action entry the dependence is going out of and the second argument is the action
entry that the dependence is coming into. The third argument is a set of bit flags,

combined with a logical OR operation, that specifies the type of dependence to

135

simplified_build_outgoing_dest_register_deps (dest_action)
{

/I Scan forward through the actual action entries after dest_action.

for (action_after = dest_action->next_actual; action_after |= NULL;
action_after = action_after->next_actual)

{

/[If an actual use action entry, draw register flow dependence to action_after.
if (is_actual_use_entry (action_after))

/I If both actions are explicit, draw normal register flow dependence.
if (is_explicit (action_after) && is_explicit (dest_action))

/I The delay (latency) of the flow dependence is specified by the
/l machine description (MDES). The dependence’s omega is set to 0.
add_dep (dest_action, action_after,

} (REG | FLOW | MDES_BASED_DELAY), 0, 0);

/I'If one action is explicit and one is implicit (from branch), draw zero-cycle
I register flow dependence (to prevent reordering but no delay is necessary.)
else if (is_explicit (action_after) || is_explicit (dest_action))

/I The delay (latency) of the flow dependence is fixed at O cycles.
add_dep (dest_action, action_after, (REG | FLOW | FIXED_DELAY),
0, 0);

/l'If both are implicit actions (thus for branches), no dependence necessary.
/I This prevents excessive dependences between function calls (jsrs).

}

/l'If an actual definition action, draw register output dependence to action_after.
else

{

/I To conserve memory, only draw output deps to explicit actions.
if (is_explicit (action_after))

/I The delay (latency) of this output dependence is fixed at O cycles.
add_dep (dest_action, action_after, (REG | OUTPUT | FIXED_DELAY),
0, 0);

break; // After adding this output dependence, no more dependences needed.

}
}
}

Figure 5.6: Simplified algorithm for building outgoing destination register dependences.

136

Code Sequence rl Actions

A) r2<-rl1+13 <rl
B) rl<- mem[sp+12]
C) r3 <- mem[sp+16]
D) rd<-r4+rl

E) bgt r2, 100, exitl

F) rl<-r3+r4

G) mem[sp+20] <- rl <-rl

(@) (b)
Figure 5.7:(a) An example code segment and (b) the resulting action entries for
Register rl1 with the outgoing dependences drawn for the definition of Register rl in
Operation B.

draw. The flags REG and FLOW specify that the dependence is a register flow
dependence. The other flag, MDES_BASED_DELAY, specifies that the delay (latency)
of dependence is determined by a machine description (MDES) query. (In the example,
the query returns one cycle.) (See this researcher’s master’s thesis [19] for details of how
this query is answered by the machine description framework.) The fourth argument
specifies an offset to be added to the delay returned by the MDES query. With the
DHASY scheduling heuristic this offset is always zero (as shown). For other scheduling
algorithms (e.g., modulo schedule [29]) this offset may be nonzero. The fitth argument
specifies the omega of the dependence, where a zero omega value indicates that the
dependence is not a cross-iteration dependence.

If action_after is a use entry but either action_after or dest_action (but not both) is
an implicit action entry, a zero-cycle register flow dependence is drawn from the

dest_action to the action_after. This zero-cycle register flow dependence is used to

137

prevent an operation which defines a register’s value from moving below a conditional
branch when the value is liveout of the branch (as drawn to Operation E’s implicit use of
Register rl in Figure 5.7(b)). It is also used to prevent an operation that uses the return
value of a function call from moving above the function call (not shown). This zero-cycle
dependence is specified by using a FIXED_DELAY flag in the third argument of add_dep
call (which sets a base delay of zero instead of querying the MDES) and a zero offset so
the total delay is zero.

If action_after is a use, and both dest_action and action_after are implicit actions,
no dependence is added. This case currently occurs only between the registers implicitly
defined by two function calls (not shown in Figure 5.7). Because a control dependence
will be placed between the two function calls to prevent them from reordering, drawing
additional register flow dependences is both unnecessary and inefficient.

If action_after is a definition and an explicit action, a zero-cycle register output
dependence is drawn from the dest_action to the action_after (as drawn to Operation F’s
explicit definition of Register rl in Figure 5.7(b)). (See Section 2.2 for a description of
register output dependences.) If, instead, action_after is an implicit action, no dependence
is drawn because there should already be a zero-cycle register flow dependence to the use
version of the implicit action. (Function calls currently both implicitly use and define all
the registers they use and/or destroy.) Preventing this dependence from being added is, in
essence, an optimization to eliminate ecgssary dependences. After encountering an
action_after that is a definition (explicit or implicit), the algorithm terminates because

action_after redefines (kills) the register’s value defined by dest_action.

138

simplified_build_incoming_dest_register_deps (dest_action)
{
/I Scan backward through the actual entries before dest_action.
for (action_before = dest_action->prev_actual; action_before = NULL;
action_before = action_before->prev_actual)
{

/[If an actual use action entry, draw register anti dependence to dest_action.
if (is_actual_use_entry (action_before))

/I The delay (latency) of the anti dependence is fixed at O cycles.
add_dep (action_before, dest_action, (REG | ANTI | FIXED_DELAY), 0, 0);

/l'If an actual definition action, draw register output dependence to dest_action.
else

{

/I To conserve memory, only draw output dependences to explicit actions.
if (is_explicit (dest_action)

/I The delay (latency) of the output dependence is fixed at O cycles.
add_dep (action_before, dest_action,
(REG | OUTPUT | FIXED_DELAY), 0, 0);
}

break; //After adding this output dependence, no more dependences needed.

}
}
}

Figure 5.8: Simplified algorithm for building incoming destination register dependences.

5.3.2 Drawing incoming destination register dependences

The algorithm for drawing the incoming dependences into a destination register
action, shown in Figure 5.8, utilizes an approach similar to that used for drawing outgoing
dependences, described in Section 5.3.1. The primary differences are that actual actions
before the dest_action are examined (using the action_before variable) instead of those
actions after dest_action, and zero-cycle register anti dependences are drawn from use
actions to dest_action instead of drawing register flow dependences from dest_action to

the use actions. (See Section 2.2 for a description of register anti dependences.)

139

Code Sequence r1 Actions

A) 12<-r1+r3 <-r1l
B) rl<- mem[sp+12] rl<-
C) r3 <- mem[sp+16]

D) rd<-r4+rl (output) Of <-rl
E) bgt r2, 100, exitl (<-rl))0 (anti)
CO (ant
F) ri<-r3+r4 rl<-
G) mem[sp+20] <- r1 <-rl
(a) (b)

Figure 5.9:(a) An example code segment and (b) the resulting action entries for
Register r1 with the incoming dependences drawn for the definition of Register rl in
Operation F.

Applying this algorithm to the destination of Operation F in Figure 5.9(a) results in the

incoming dependences shown in Figbré(b).

5.3.3 Drawing outgoing source register dependences

A simplified algorithm for drawing dependences going out of a source register’s
action entry (src_action) is shown in Figure 5.10. This algorithm simply uses the register
action table to find the next definition of the register after src_action, and if this definition
exists, then the algorithm draws a zero-cycle register anti dependence to this definition.
Applying this algorithm to the use of Register r1 by Operation D in Figure 5.11(a) results

in the outgoing dependence shown in Fidudel (b).

140

simplified_build_outgoing_src_register_deps (src_action)

{
/I Get thenext actual definition entry after src_action.
def after = src_action->next_def;
I/l Draw register anti dependence from src_action to def_after, if def_after exists.
i{f (def_after != NULL)
/I The delay (latency) of the anti dependence is fixed at O cycles.
add_dep (src_action, def_after, (REG | ANTI | FIXED_DELAY), 0, 0);
} | L | |
Figure 5.10: Simplified algorithm for building outgoing source register dependences.
Code Sequence rl Actions
A) 12 < r1+13 <-r1l
B) rl <- mem[sp+12] rl<-
C) r3 <- mem[sp+16]
D) rA<-r4+rl <- r1:
E) bgt r2, 100, exitl (<- rlD 0 (anti)
F) rl<-r3+r4 r1 <-
G) mem[sp+12] <- rl <-rl
(a) (b)

Figure 5.111(a) An example code segment and (b) the resulting action entries for
Register rl with the only outgoing dependence drawn for the use of Register rl in
Operation D.

5.3.4 Drawing incoming source register dependences

A simplified algorithm for drawing the dependences coming out of a source
register’s action entry (src_action) is shown in Figure 5.12. This algorithm simply uses
the register action table to find the previous definition of the source register, and if this
definition exists, draw a register flow dependence from this definition to src_action. As
discussed in Section 5.3.1, there are three cases where register flow dependences can be
drawn, and in only two of these case are dependences actually drawn. Applying this
algorithm to the use of Register rl by Operation D in Figure 5.13(a) results in the

incoming dependence shown in Figbré3(b).

141

simplified_build_incoming_src_register_deps (src_action)
{
/I Get the actual definition entry before src_action.
def_before = src_action->prev_def;

/I Draw register flow dependence from def_before to src_action, if def_before exists.
if (def_before != NULL)
{

/'If both actions are explicit, draw normal register flow dependence.
if (is_explicit (src_action) && is_explicit (def_before))

/I The delay (latency) of the flow dependence is specified by the
/l machine description (MDES). The dependence’s omega is set to 0.
add_dep (def_before, src_action,

} (REG | FLOW| MDES_BASED_DELAY), 0, 0);

/l'If one action is explicit and one is implicit (from branch), draw zero-cycle
I register flow dependence (to prevent reordering but no delay is necessary.)
else if (is_explicit (src_action) || is_explicit (def_before))

/I The delay (latency) of the flow dependence is fixed at O cycles.
add_dep (def_before, src_action, (REG | FLOW | FIXED_DELAY),
0, 0);
}

/l'If both are implicit actions (thus for branches), no dependence necessary.
/I This prevents excessive dependences between jsrs.

}
}

Figure 5.12: Simplified algorithm for building incoming source register dependences.

Code Sequence rl Actions
A) 2 <-r1+r3 <rl

B) rl<- mem[sp+12] rl <-

C) r3 <- mem[sp+16] 1 (flow)
D) rd<-r4 +rl <-rl

E) bgt r2, 100, exitl (<- r1)

F) r1<-r3+r4 r1 <-

G) mem[sp+12] <- rl <-rl
(@) (b)

Figure 5.131a) An example code segment and (b) the resulting action entries for
Register r1 with the only incoming dependence drawn for the use of Register rl in
Operation D.

142

5.3.5 Drawing control, memory, and synchronization dependences

As discussed in Section 5.2.3, the register action table can be used to facilitate
drawing control, memory, and synchronization dependences. For each of these
dependence types, four algorithms for drawing dependences are required: incoming
destination, outgoing destination, incoming source, and outgoing source. These four
algorithms use an approach similar to that used in Sections 5.3.1-0 for drawing register
dependences. The primary differences are that a pseudoregister operand instead of an
actual register operand is passed to the algorithm and dependences are drawn from each
use to all of the definitions of this pseudoregister for control and memory dependences,
instead of only to adjacent definitions. Although drawing all the transitive control and
memory dependences (all uses to all definitions) causes more dependences to be drawn
than is strictly necessary, this approach is utilized because it simplifies the implementation
of several of the IMPACT compiler's more advanced scheduling and transformation
algorithms.

As an illustration of how these algorithms benefit from utilizing the register action
table, Figure 5.14 shows the algorithm for drawing outgoing source memory
dependences. This algorithm uses the register action table to efficiently find all of the
store operations after the load operation’s memory action. A memory anti dependence is
drawn to every store operation that is not provably writing to a different memory location
than the store is reading from. In this thesis’s experiments, this determination of
independence is done with a quick low-level analysis of the address operands of the two

memory operations. If a high-level memory dependence analysis had been performed on

143

simplified_build_outgoing_src_memory_deps (load_action)
{

/I Scan forward though the actual definition entries after load_action

for (store_after = load_action->next_def; store_after I= NULL;
store_after = store_after->next_def)

{

/[Unless the store is provably writing to a different memory location than the load
/'is reading (in this iteration of the loop, if any, specified by nonloop_carried),

/[add a zero-cycle memory anti dependence from the load to the store.

if (lindependent_memory_actions (store_after, load_action, nonloop_carried))

/I The delay (latency) of the memory anti dependence is fixed at O cycles.
add_dep (load_action, store_after, (MEM | ANTI | FIXED_DELAY), 0, 0);

}
}

Figure 5.14: Simplified algorithm for building outgoing source memory dependences.

Code Sequence Memory Actions
A) 2 <-r1+r3

B) rl<- mem[sp+12] <-M
C) r3 <- mem[sp+16] <-M
D) rA<-r4 +rl _
0 (anti)
E) bgt r2, 100, exitl
F) r1<-r3+r4
G) mem[sp+12] <- r1 M <-
(a) (b)

Figure 5.15: An (a) example code segment and (b) the resulting memory action entries
with the only outgoing memory dependence drawn for Operation B.

the code [28], this information would be utilized instead. (This high-level analysis and its
internal representation within the IMPACT compiler was undergoing extensive
enhancements at the time of this thesis’'s experiments and, in order to ensure consistent
results, was therefore not performed.) Applying this algorithm to Operation B (a load
operation) in Figure 5.15(a), draws the memory flow dependence to Operation G as

shown in Figureés.15(b).

144

overlap_enhanced_build_outgoing_src_register_deps (src_action)

{
/I Draw the appropriate dependences into src_action for all of the overlapping action
/I entries (including, by definition, the original src_action).
for (src_conflict = src_action->first_conflict; src_conflict I= NULL;
src_conflict = src_conflict ->next_conflict)
{
/I Get the next actual definition entry after src_conflict.
def_after = src_conflict->next_def;
I/l Draw register anti dependence from src_action to def_after, if def_after exists.
if (def_after != NULL)
{
/I The delay (latency) of the anti dependence is fixed at O cycles.
/I Dependences are only drawn to actual action entries!
add_dep (src_action, def_after, (REG | ANTI | FIXED_DELAY), 0, 0);
}
}

Figure 5.16: Enhanced algorithm for building outgoing source register dependences that
supports overlapping registers.

5.3.6 Drawing dependences for overlapping registers

As described in Section 5.2.2, a register may overlap several other registers in the
processor, in which case a special overlapping action entry will be createdcforof
these overlapping registers. Although the simplified algorithms described in Sections
5.3.1- 0 only draw the dependences for the actual action entry passed to the algorithm as a
parameter, by using the same algorithm on the overlapping action entries the appropriate
dependences are drawn for the overlapping registers.

To illustrate how this is done, the enhanced version of the algorithm to draw
incoming source register dependences is shown in Figure 5.16. The simplified version of
this algorithm is shown in Figure 5.10. Note that the same core algorithm is used, but a

loop is placed around it that scans though both the actual entry and all the overlapping

145

r2f rid

Actions Actions
A) | r2f<- [r2f <-]
B) Rer2fN [<-r2f]

_ “\0 (anti)
[rd<] Td<-

[rif | rof | (anti) 0

[<- rid] <rid |

. _r2f< [r2f <]
F) | <-rof [<-r2f]
(a) o

Figure 5.171(a) Example of overlapping registers and (b) the register anti dependences
drawn for the use of r2f in Operation B.

entries (using the src_conflict variable). The dependences, however, are always drawn
between the actual action entry (src_action) and another actual entry (def_after) which
may be for a different, overlapping, register.

For example, if the Registers rlf, r2f, and rld overlap as shown in Figure 5.17(a),
then the use of r2f in Operation B requires the two register anti dependences shown in
Figure 5.17(b) to be drawn. The register anti dependence to Operation E’s definition of
r2f is drawn when src_conflict points to actual action entry shown for Operation B
(<-r2f). The register anti dependence to Operation C is drawn when src_conflict points
to the overlapping action entry shown for Operation B ([<- r2f]). Note that the algorithm
presented will draw more dependences than is strietigssary. The techniques used to
reduce the number of dependences drawn for overlapping registers is beyond the scope of

this thesis. Overlapping registers were not used in this thesis’s experiments.

146

5.3.7 Drawing dependences for predicated code

The predicated execution support in the IMPACT compiler allows a predicate
register source operand to be added to any operation in the processor’s instruction set [4],
[27]. If at run-time the value of this predicate register is one, the operation executes
normally; otherwise the operation’s execution is suppressed. The use of predicates in the
compiler allows control dependences to be converted into data dependences, which may
be easier for the compiler to manipulate. For example, the IMPACT compiler uses
predication to combine multiple paths through the code into one control block, called a
hyperblock [30], [54], in order to facilitate aggressive optimization and scheduling. If the
processor does not fully support predicated execution, techniques can then be used to
totally [31] or partially [8] remove the predicates from the code.

Two additional queries are used to enhance the simplified dependence drawing
algorithms in order to properly draw dependences between predicated operations. The
first query,is_mutually exclusivereturns one if it is provably impossible for the two
passed actions to both execute in the same invocation of the control block. If one or both
of the actions are not predicated, this query will always return zero. If this query returns
one, no dependences should to be drawn between the actions to allow maximum
scheduling freedom. The second querecution_impliedreturns one if the execution of
the first passed action implies that the second passed action must also be executed. If the
second action is not predicated, this query will always return one. This query is used to
determine if an adjacent definition of the action actually starts/terminates the register’s

lifetime. If this query returns one, then no more dependences need to be drawn. If this

147

predicate_enhanced_build_outgoing_src_register_deps (src_action)
{

/I Scan forward through the actual definition action entries after src_action.
for (def_after = src_action->next_def; def_after I= NULL;

def_after = def_after->next_def)
{

/I Draw register anti dependence from src_action to def_after, if def_after exists.
if (def_after != NULL)
{

/I Do not draw dependences between mutually exclusive action entries.
if (lis_mutually_exclusive (src_action, def_after))

/I The delay (latency) of the anti dependence is fixed at O cycles.
add_dep (src_action, def_after, (REG | ANTI | FIXED_DELAY), 0, 0);

/Il No more dependences are need if src_action implies the
/I execution of def_after. Otherwise, continue to scan forward through defs.
if (execution_implied (src_action, def_after))

break;

} }
}
Figure 5.18: Enhanced algorithm for building outgoing source register dependences that
supports predicated execution.

qguery returns zero, then the scan through the register actions must continue. These
gueries are described in more detail in Lin’s thesis [32].

To illustrate how these queries are used, an enhanced version of the algorithm to
draw incoming source register dependences is shown in Figure 5.18. (The enhancements
required for overlapping registers are not shown.) Note that this algorithm degenerates to
the simplified algorithm shown in Figure 5.10 when the code is not predicated. It should
also be noted that this description is intended only to give a flavor for how predicted
execution can be supported. In the actual implementation, some additional techniques are
required to handle all the corner cases involved with supporting predicated execution.
The details of these techniques are beyond the scope of this thesis because predication

support was not utilized in this thesis’s experiments.

148

5.3.8 Building the dependence graph for the entire control block

When building the dependence graph for the entire control block, only half of the
algorithms discussed in Sections 5.3.1-5.3.5 are required. For example, drawing all the
dependences into and out of definition action entries will implicitly draw all of the
dependences into and out of use action entries. In fact, drawing all the dependences into
and out of each definition and use action entifyresult in each dependence being drawn
exactly twice. This feature was used extensively during regression testing, with
mismatches of the dependences drawn automatically reported. (This is essentially N-
version programming [33].) During timing runs in this thesis, only the dependences out of
each definition and use action entry are drawn. This results in a complete dependence

graph, efficiently drawn, with no duplicates.

5.3.9 Incrementally updating the dependence graph

After each code transformation, the dependence graph is incrementally updated
for each action entry added to or deleted from the register action table. Four simplified
algorithms for incrementally updating register dependencésbes described in this
section. Similar approaches can be used to incremenfadigte control, memory, and
synchronization dependences, so these algorithms will not be discussed. These
algorithms are simplified in the sense that they use the simplified dependence drawing
algorithms presented in Sections 5.3.1-5.3.5 and they assume predicated execution is not
supported by the compiler. The complications added by predicated execution were
discussed in Section 5.3.7. It should be noted that these algorithms are in essence

wrappers around the delete_action_entry and add_action_entry algorithms presented in

149

simplified_delete_src_register_action_entry_and_update_deps (src_action)
{

/I Delete all the dependences coming into and going out of this src_action
delete_all_incoming_dependences (src_action);
delete_all_outgoing_dependences (src_action);

I/l Delete the action entry, incrementally update register action table.
delete_action_entry (src_action->reg_info_entry, src_action);

Figure 5.19: Simplified algorithm for deleting a source register action entry and
incrementally updating the dependence graph.

simplified_add_src_register_action_entry_and_update_deps (reg_info_entry,

src_action)

{
/I Add to action entry, incrementally update register action table.
add_action_entry (reg_info_entry, src_action);
// Build all the dependences coming into and going out of src_action.
simplified_build_incoming_src_register_deps (src_action);
simplified_build_outgoing_src_register_deps (src_action);

}

Figure 5.20: Simplified algorithm for adding a source register action entry and
incrementally updating the dependence graph.

Section 5.2.5, that add the functionality required to incrementally update the dependence
graph.

The first simplified algorithm, shown in Figure 5.19, updates the dependence graph
when a source register action entry is deleted from the register action table. This
algorithm first deletes all of the incoming and outgoing dependences for src_action and
then deletes src_action from the register action table. The second simplified algorithm,
shown in Figure 5.20, updates the dependence graph when a source register action entry
is inserted into the register action table. This algorithm first adds the src_action to the
register action table and then builds all of the incoming and outgoing register
dependences for that new action. Both these algorithms are trivial because adding or

deleting a source (use) register action entry cannot make existing dependences for other

150

simplified_delete_dest_register_action_entry_and_update_deps (dest_action)

{

/I Delete all the dependences coming into and going out of this dest_action
delete_all_incoming_dependences (dest_action);
delete_all_outgoing_dependences (dest_action);

/I Get the adjacent definition entries before deleting dest_action
def_before = dest_action->prev_def;
def after = dest_action->next_def;

/I Delete the action entry, incrementally update register action table.
delete_action_entry (dest_action->reg_info_entry, dest_action);

// Rebuild dependences going out of previous definition, if it exists.
if (def_before != NULL)
{

delete_all_outgoing_dependences (def_before);
simplified_build_outgoing_dest_register_deps (def_before);

/l Rebuild dependences coming into next definition, if it exists.
if (def_after != NULL)
{

delete_all_incoming_dependences (def_after);
simplified_build_incoming_dest_register_deps (def_after);

}

Figure 5.21: Simplified algorithm for deleting a destination register action entry and
incrementally updating the dependence graph.

action entries invalid or require that new dependences be added to the action entries. This

is not the case when adding or deleting destination (definition) register action entries.

The third simplified algorithm, shown in Figure 5.21, updates the dependence

graph when a destination register action entry is deleted from the register action table.
This algorithm first deletes all the incoming and outgoing dependences for dest_action.
Then, the pointers for the adjacent definition entries are stored in def _before and
def_after before deleting dest_action from the register action table. After deleting

dest_action from the register action table, the dependences going out of the previous

definition action entry and those coming into the next definition action entry are rebuilt, if

151

Deps for Adjacent

Qriginal r1 Actions Action C Deleted Definitions Rebuilt
A) <- rl <-
1 (flow) 1 (flow)
B) (output) 0| <-rl <-rl
0 (anti)
C) <- (output)
1 (flow)
D) (output) O\ <-rl <-rl
lO (anti) lO (anti)
E) rl<- rl<-
(a) (b)

Figure 5.22: Dependences for Registe(ajlwith the original actions, (b) after Action C
is deleted, and (c) after rebuilding dependences for adjacent definitions (Actions A and E).

these adjacent definitions exist. This is required because the dependences drawn for these
adjacent definitions was determined, in part, by the placement dest_action. After deleting
dest_action, rebuilding the dependences for adjacent definitions ensures the dependence
graph always represents the current state of the control block.

For example, in Figure 5.22(a), if Action C and all of its incoming and outgoing
dependences are deleted, the dependence graph shown in Figure 5.22(b) would result.
Rebuilding the outgoing dependences for Action A and the incoming dependences for
Action E results in the now-correct dependence graph shown in EQRé).

The final simplified algorithm, shown in Figure 5.23, updates the dependence
graph when a destination register action entry is inserted into the register action table.
The dest_action is first inserted into the register action table and the incoming and
outgoing dependences for dest_action then are drawn. The outgoing dependences for the
previous definition action entry and the incoming dependences for the next definition

action entry are then rebuilt, if they exist.

152

simplified_add_dest_register_action_entry_and_update_deps (reg_info_entry,
dest_action)
{

/I Add to action entry, incrementally update register action table.
add_action_entry (reg_info_entry, dest_action);

// Build all the dependences coming into and going out of dest_action.
simplified_build_incoming_dest_register_deps (dest_action);
simplified_build_outgoing_dest_register_deps (dest_action);

// Rebuild dependences going out of previous definition, if it exists.

if (dest_action->prev_def '= NULL)

{

delete_all_outgoing_dependences (dest_action->prev_def);
simplified_build_outgoing_dest_register_deps (dest_action->prev_def);

// Rebuild dependences coming into next definition, if it exists.
if (dest_action->next_def = NULL)
{

delete_all_incoming_dependences (dest_action->next_def);
simplified_build_incoming_dest_register_deps (dest_action->next_def);

}
}
Figure 5.23: Simplified algorithm for adding a destination register action entry and
incrementally updating the dependence graph.
Deps for Adjacent
Original r1 Actions Action C Added Definitions Rebuilt
A) ri <- r] <- r] <-
11 (flow) 1 (flow) 1 (flow)
B) <-rl (oytput) G [<-rl (output) O <-rl
(flow) 1 (flow) 1 lo (anti) lo (anti)
C) (output) O (output) O <- <-
anti) O 1 (flow) 1 (flow)
D) <-rl (out <:rl (output) O <:r1
0 (anti) lo (anti) lO (anti)
E) rl<- rl<- rl<-
(a) (b) (©)

Figure 5.24: Dependences for Registe(ajlwith the original actions, (b) after Action C
is added, and (c) after rebuilding dependences for adjacent definitions (Actions A and E).

For example adding a definition of r1 (Action C) between Actions B and D in

Figure 5.24(a) must result in the same dependence graph shown in Figure 5.22(a). First

153

Action C is added to the register action table and the dependences for Action C are built
as shown in Figure 5.24(b). If the algorithm stopped here, all the extra invalid

dependences would remain, as shown. By rebuilding Action A’s outgoing dependences
and Action E’s incoming dependences and deleting redundant dependences, the
dependence graph is now both correct and identical to what would be drawn if the

dependence graph was rebuilt from scratch.

5.4 Related Work

Although there is no published work that deals directly with incremental
generation of register and control dependences for instruction scheduling, there are several
related works that address incremental update of memory dependence information after
performing transformations. Gallagher [28] recently developed and implemented within
the IMPACT compiler an approach for generating memory disambiguation information at
source-level for C programs. This information is then maintained and utilized throughout
the rest of the compilation process. As classical optimizations and advanced ILP
transformations are performed, this information is updated for the affected operations
using specialized routines developed for each transformation. This approach allows the
entire compilation process access to more accurate memory disambiguation information
than can be generated at the intermediate low-level representation. In addition, this
approach improves compiler performance because the memory disambiguation information
does not need to be repeatedly regenerated. This chapter’s incremental dependence graph
generation works in conjunction with the propagated memory dependence information,

using this information to determine which memory dependences are necessary.

154

Smith, Appelbe, and Stirewalt [34] proposed an approach for incremental memory
dependence analysis during interactive parallelization of parallel Fortran programs at the
source level. The motivation for this work is to reduce the response time of their
Parallelizing Assistant Tool to operator specified transformation directives. Using
specialized routines for each of the supported parallelization transformations, the
operations potentially affected are determined. Memory dependence analysis is then
performed again only for these operations. Praveen, Aggarval, and Ghosh [35] then
extended this technique to handle more general transformations and formalized the
algorithms for regenerating the appropriate memory dependence information. Although
some high-level concepts used to perform incremental dependence analysis are similar to
those used by the proposed approach for incremental dependence graph generation, the
fundamental problems addressed are significantly different. As a result, the final

algorithms and their performance characteristics share little resemblance to one another.

155

6. OPTIMIZATION OF MACHINE DESCRIPTIONS FOR
EFFICIENT USE

6.1 Introduction

Machine descriptions have been used to specify execution constraints for several
high-performance compilers [36], [37], including the IMPACT compiler [19] utilized in
this thesis's experiments. These machine descriptions are primarily used to drive the
instruction scheduler, which uses this information to avoid resource conflicts and data
dependence interlocks. Because each scheduling decision involves checking execution
constraints, the efficiency of such checks can significantly impact the compile time. As a
result, compiler writers have faced the choice between two undesirable alternatives. One
alternative is to sacrifice portability faccuracy. A compiler designed for a particular
processor often uses an accurate, very low-level representation of the machine's
description (commonly coded directly into the compiler), which must be tediously
modified in order to be effective for subsequent processors. This approach is not desirable
in the highly competitive microprocessor industry, where complex new processors are
being rapidly designed and brought to the market. Timely development of effective
compilers for these new processors is critical to the realization of their full performance
potential.

The other alternative is to sacrifice accuracy in favor of piityab Compilers
designed to support a wide range of processors, such as gcc, usually describe the machine
to their instruction schedulers with easy-to-modify metrics, such as the function unit mix

and operation latencies, but these metrics can only approximately model the complex

156

execution constraints in today's superscalar processors. Inaccurate modeling of execution
constraints during compilation makes it difficult for the compiler to properly address run-
time issues such as resource conflicts and data dependence interlocks. As a result,
unexpected execution cycles arise during run time. In processors that exploit high degrees
of instruction-level parallelism (ILP), these extra execution cycles can have a significant
effect on the overall performance. Accurate modeling of execution constraints is therefore
necessary in order to properly utilize these complex processors.

This chapter advocates a model which allows writers to develop a machine
description (MDES) in a high-level language, which is then translated into a low-level
representation for efficient use by the compiler. The high-level language should be
designed to allow the specification of detailed execution constraints in an easy-to-
understand, maintainable, and retargetable manner. The low-level representation should
be designed to allow the compiler to check execution constraints with high efficiency in
both space and time. The discrepancy between the requirements of the high-level
language and the low-level representation should then be reconciled with a collection of
transformations that derive efficient low-level representations from the easy-to-understand
high-level descriptions.

The two-tier model is analogous to using high-level programming languages now
that contemporary compiler technology has eliminated the benefits of using assembly
language for general purpose programs. The user of a high-level machine description
language is not required to be intimately familiar with compiler modules using the
machine description, and does not need to manually optimize the description for those

modules. In fact, a few of the transformations described in this chapter are adapted from

157

the classical compiler techniques that helped make high-level programming languages so
well accepted. There are, however, important transformations introduced in this chapter
that have no direct correspondence in the optimizing compiler domain. These
transformations take advantage of the unique characteristics of an MDES to increase the
efficiency of the resulting low-level representation.

In addition to describing and evaluating the transformations, a novel representation
of resource constraints for complex processors is presented. This representation exposes
critical information that can be profitably exploited by both these transformations and the
compiler modules. This approach to representing machine execution constraints is based
on the AND/OR-tree concept used in search algorithms [38].

This new representation for a processor’s resource constraints and these MDES
transformations have been shown to be highly effective in an earlier study by this
researcher [39] that used detailed and precise machine descriptions for the HP
PA7100 [40], Intel Pentium [2], Sun SuperSPARC [18], and the AMD-K5 [41]. This
chapter evaluates the effectiveness of these techniques utilizing the four experimental
processor configurations described in Section 4.3 and used for earlier experiments in this
thesis. These processor configurations allow a consistent code base to be utilized,
facilitating direct comparisons between varying levels of processor complexity.

The machine descriptions for the four processor configurations are constructed in
a high-level language that supports parameterization of all processor features such as
issue width, register read and write ports, and the function unit mix. The high-level

machine description is based directly on the HP PA7100’s machine description and has

158

been used for several of the IMPACT group’s experiments. The low-level representation
of these descriptions is then generated and used to schedule the code in order to produce
the base (untransformed) scheduled numbers presented in Chapter 4 for each processor
configuration. Using a scheduler for the concrete evaluation of these MDES
transformations allows the rationale behind and the effect of each transformation to be
clearly shown. The primary focus of this chapter will be on the number of resource checks
required to determine if an operation can be scheduled. The overall compile-time benefit
of using the new representation and the MDES transformations will then be evaluated in
Chapter 7.

A description and analysis of a common mechanism used to model resource
constraints, which is used by this chapter's machine descriptions, follows this section. A
new representation of these resource constraints is introduced in Section 6.3, and is shown
to be well-suited for describing today's complex processors. An analysis of each MDES,
before any transformations are performed, is presented in Section 6.4. In Section 6.5, the
importance of adapting common subexpression elimination, copy propagation, and dead-
code removal to clean up machine descriptions is shown, as well as how the new
representation facilitates these transformations. Section 6.6 provides a brief overview of
the implications of using bit-vectors in the low-level representation of resource constraints
in order to set the stage for the Section 6.7, which describes transformations that make the
bit-vector representations more effective. Section 6.8 describes and analyzes a set of
transformations which makes checking resource constraints more efficient. Section 6.9
summarizes the aggregate effect of all these transformations, with and without the new
representation. In Section 6.10, a brief summary of related work is presented and is

followed by some concluding remarks.

159

6.2 Modeling Resource Constraints

This chapter’'s machine descriptions model the processor’'s resource constraints
through the use of a set odservation tableg§42], an approach used by several high-
performance MDES-driven compilers [36], [37]. In particular, this chapter’s machine
descriptions are based on the approach used by the Cydra 5 [36]. Each reservation table
specifies a particular way an operation may use a processor’'s resources as that operation
executes. For example, the resources used by the execution of the four-issue processor
configuration’s one-cycle integer literal load operation (which moves a 21-bit literal into
an integer register) can be modeled with the twenty-four reservation tables (each called a
reservation table optignor simply anoption) that are shown in Figure 6.1. An integer
literal load must use one of the four decoders (Decoder), one of the two integer ALUs
(lalu), and one of the three integer write ports (Wr Pt). The literal to be loaded is part of
the instruction so none of the register read ports need to be used. All option lists are
prioritized (option 1 having highest priority), so for the order shown in this figure, the first
available (lowest numbered) decoder, lalu, and register write port will be used by the
integer literal load operation.

The “Cycle” column of these tables indicates tisage timgwhich indicates when
each of these resources is used, relative to some chosen time point in the processor’s
pipeline. For all the examples and machine descriptions used in this chapter, the point
chosen to be time “zero” is the first stage of the execution pipeline. Therefore resources
used during decoder stages have negative usage times, and resources used after execution
completes, such as result buses and register write ports, have usage times around the
operation’s latency. A resource used at a particular usage time will be referred to as a

resource usage

160

Cycle| Decod lalu | Wr Pt | |Cycle| Decod lalu
YO 025%™ |0 1 2| |V 0" 5% 5|01

Decoder | lalu
01 2

Cycle D?Lcode

Decoder
12

w
o
=

N

Cycle| Decoder
1101 2 12

Cycle| Decoder
01 2 12

w
o,
=

N~

w
o,
=

N

Cycle D?Lcode

Cycle| Decoder
1101 2 12

Cycle| Decoder
01 2 1 2

Cycle| Decoder
01 2 12

Figure 6.1: The twenty-four reservation tables that represent the resources used by the
four-issue processor configuration’s integer literal load operation.

It should be noted that the resources modeled often do not represent actual
processor resources, but are abstractions used to model the processor’s scheduling rules
This approach was used in the construction of the machine descriptions used in this

chapter and for the machine descriptions used by the IMPACT compiler in general.

161

These machine descriptions were designed to accurately and precisely model the
processor’s scheduling rules, and intuitive resource names were used solely to enhance the
clarity of the machine descriptions.

Many of this chapter's examples are drawn from the four-issue processor
configuration's MDES, which was briefly described in Section 4.3. The four-issue
processor configuration is an in-order superscalar processor that has four full decoders, six
integer register read ports (RP), three integer register write ports, two integer ALU
(IALU) units, two memory units, one branch unit, and support for one floating-point
operation per cycle. The floating-point function units are assumed to have dedicated
register ports which do not need to be modeled, but it is important to model the usage of
the integer register read and write ports. All of the common integer operations have a
one-cycle latency, and load operations have a three-cycle latency.

The number of reservation table options required to model an IALU, branch, or
memory operation depends on the number of register source operands that the operation

has. For example, an IALU operation with one register source may use any one of the
decoders, read ports, IALU units, and write ports, yield(fl’x)@(i)(f):l44 distinct
combinations of these resource usages. The same IALU operation with two register
sources, requiring two read ports, I'(%){i)(i)(f) =360 distinct combinations of resource

usages. Each of these distinct combinations of resource usages is modeled by a

reservation table option.

162

Table 6.1: Option breakdown and scheduling characteristics for the four-issue processor
configuration.

Number| % of
of Scheduling
Options| Attempts Operations Modeled
1 2.12% Jump ops
3 2.37% JSR (function call) ops
4 0.13% Floating-point ALU/multiply/divide/branch ops

6 4.23% Integer conditional branch/hashing jump ops that use 1 read port
15 3.299% Integer conditional branch ops that use 2 read ports
18 0.05% Hashing JSR (address in register)
24 0.229% Integer literal load ops
48 0.079%4 Floating-point load/store ops that use 1 read port
120 4.63% Integer store, Floating-point load/store ops that use 2 read jports

144 78.26% Integer ALU/load ops that use 1 read port
360 4.63% Integer ALU/load ops that use 2 read ports

A breakdown of the number of reservation table options used to model the various
operations in the four-issue processor configuration’s MDES is shown in Table 6.1. The
first column specifies the number of scheduling options. The second column indicates the
percentage of the scheduling attempts that the DHASY list scheduler, driven by this
MDES and scheduling SPEC CINT92 and CINT95 assembly code, made to try to
schedule an operation with that many options during prepass scheduling [14]. The last
column gives a brief summary of the types of operation that have that many options. Note
that for all the four processor configurations, no nonbranch operation may issue after a
branch operation in the same cycle. This model is consistent with the issue-logic rules of
current processors. In order to maximize scheduling freedom, branches are modeled as
always using the last decoder. (The last two decoders are for the eight-issue processor

configuration.)

163

10%
° 54.69%

©
X

o
R

21.51%

3
S

o
R

o
]

S
B3

Percentage of Scheduling Attempts

SR
> >
|

0% - ‘lL_L_I‘T—V__LL—m—“VI‘_LV_.—F Wty N

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 190 200 210 290 300 360
Options Checked During Scheduling Attempt

Figure 6.2: Distribution of options checked during each scheduling attempt using the four-
issue processor configuration.

Although all of the reservation table options must be tested in order to determine
that an operation cannot be scheduled, a variable number of the options need to be tested
in order to determine that the operation can be scheduled. Figure 6.2 shows the
distribution of options actually checked while scheduling for the four-issue processor
configuration. On average, 2.52 scheduling attempts were required per operation, so
roughly 60% of the time a scheduling attempt fails. The 54.69% peak at 144 options
checked is primarily due to the fact that 89.18%imguccessfudcheduling attempts were
on operations with 144 options. The 21.51% peak for one scheduling option checked is
due mainly to scheduling attempts that succeed with the first option attempted. For

successfulscheduling attempts, 54.17% succeed with the first option tested, 11.18%

164

tested between 2 and 9 options, 20.24% tested between 43 and 59 options, and 9.5%
tested more than 89 options.

In the following sections, transformations will be presented that make tesiihg
option nearly as efficient as possible. However, unless the number of options checked can
be reduced, modeling complex machines exactly will remain expensive in terms of compile
time. A new representation, presented in the next section, can dramatically reduce the

number of options checked in complex machine descriptions.

6.3 A New Representation: AND/OR-Trees

The primary reason so many options need to be checked for complex processor
descriptions is that the traditional representation for resource constraints hides useful
information from the compiler. By exposing this useful information with the new
representation presented below, the compiler can more efficiently check the resource
constraints. This representation can also inherently reduce the MDES size (Section 6.4),
facilitate size-reducing transformations (Section 6.5), and facilitate transformations to
further optimize for resource conflict detection (Section 6.8). Before describing this new
representation, a brief review of the traditional representation is in order.

The traditional representation can be viewed as an OR-Tree, as shown in
Figure 6.3(a). This figure shows the twenty-four reservation table options for the four-
issue processor configuration’s integer literal load operation (the same options that are
shown in Figure 6.1). The options are in priority order (with the highest priority first),
and if the resources for any of the options are available, the operation can be scheduled.

The advantage of this representation is that for OR-trees with a small number of options,

165

Cycle| Decoder | lalu erPt2 Cyclg| Decode

-1 ENNEE

If
il
i

\: 1 T T T T T T 1 Cyc|e OWE-PtZ
)i | e e e e e s < | 1 ||X| | |
1 L L X

(a) (b)
Figure 6.3: Two methods of modeling the resource constraints of the four-issue processor
configuration’s integer literal load operation. (a) The traditional OR-Tree representation.
(b) The proposed AND/OR-Tree representation.

the OR-tree’s resource constraints can be quickly and efficiently checked. For processors
which have execution constraints that can be modeled with just a few reservation table
options, it is difficult to improve upon the efficiency of this OR-tree representation.

The disadvantage of this OR-tree representation is that it does not allow an easy or
efficient way of using information about why an option was not available. For example, if
Option 1 (the top option) in Figure 6.3(a) is unavailable because lalu 0 is unavailable, then
11 other options are also guaranteed to be unavailable. Although an inference engine
could be programmed into the resource constraint check algorithm to eliminate these

options, the overhead would more than negate the benefit.

166

The solution proposed in this chapter is to use a new representation that is based
on the AND/OR-tree concept used in search algorithms [38]. This new representation is,
in essence, an AND-tree of OR-trees, allowing multiple OR-trees to be used together in
order to represent the resource constraints. An example of this new AND/OR-tree
representation is shown in Figure 6.3(b). The AND/OR-tree shown specifies the resource
requirements for the four-issue processor configuration’s integer literal load operation as
requiring one of the four decoders (Decoder), one of the two IALUs (lalu), and one of the
three write ports (Wr Pt). By utilizing the short-circuit properties of AND and OR, the
resource constraint check algorithm can quickly determine which of the required resources
are available (or if they are not available), without performing any unnecessary checks.

The algorithm overhead incurred by using this new representation is minimal,
because it is built upon the OR-tree representation and does not require any new
information from the OR-tree resource constraint checker (i.e., which option, if any, is
available). In Figure 6.3, each of the OR-trees, which are enclosed in dotted boxes, can
have the same internal representation and may have the same resource constraint checker
algorithm applied to them. The compiler used for this thesis’'s experiments does so and,
for implementation efficiency, adds an outer loop around the OR-tree’s algorithm that
processes the array of OR-trees associated with an AND/OR-tree. Although some
additional space is required to represent the AND-level of the tree, the use of AND/OR-
trees can significantly reduce the size of the resource constraint description in the MDES,

as shown in Section 6.4.

167

6.4 Original MDES Characteristics

In this chapter, the original machine descriptions for the four processor
configurations are analyzed to show the rationale behind the transformations presented in
the following sections and the advantages of using the AND/OR-tree representation. For
this analysis, each of these machine descriptions is used to drive a DHASY list scheduler,
which is then used to schedule SPEC CINT92 and CINT95 assembly code that has been
aggressively ILP optimized but in which renaming with copy and integer expression
reformulation have not been performed (see Section 4.3). (The same exact assembly code
is scheduled for each of the four processor configurations.) The four-issue processor
configuration was described in Section 6.2, and the reservation table option breakdown of
its machine description was shown in Table 6.1. A brief description of the other three
processor configurations modeled, and their reservation table option breakdowns, is in
order before analyzing the original characteristics of each MDES.

The one-issue processor configuration is an in-order scalar processor that has one
decoder, one branch unit, one IALU, one floating-point unit, one memory unit, two
integer read ports, and two integer write ports. (The two write ports allow a three-cycle
load operation and a one-cycle IALU operation to be scheduled to write to the register file
in the same cycle.) Each operation has one, two, or four reservation table options,
depending on its register port requirements, as shown in Table 6.2. The two-issue
processor configuration is an in-order superscalar processor that is the same as the one-
issue processor configuration except it has two decoders and three integer read ports.
Each operation has up to twelve reservation table options, as shown in Table 6.3.

Operations requiring either one or two integer register read ports have the same number

168

Table 6.2: Option breakdown and scheduling characteristics for the one-issue processor

configuration.
Number| % of
of Scheduling
Options| Attempts Operations Modeled
1 7.34% Operations that don’t require an integer write port
2 7.15% Operations requiring 0 or 2 integer read ports
4 85.51% Operations requiring 1 integer read port

Table 6.3: Option breakdown and scheduling characteristics for the two-issue processor

configuration.
Number| % of
of Scheduling
Options| Attempts Operations Modeled
1 1.20% Jump ops
2 1.49% JSR, floating-point ALU/multiply/divide/branch ops
3 4.30% Integer conditional branch ops
4 0.12% Integer literal load ops
6 4.34% Integer store, hashing JSR, floating-point load/store ops
12 88.55% Integer ALU/load ops

of options becauséf) = (i) =3. The eight-issue processor configuration is an in-order

superscalar processor that has eight decoders, two branch units, four integer ALUs, two
floating-point units, three memory units, twelve integer register read ports, and six integer
write ports. This mixture of resources causes up to 12672 table options to be required to
model an operation, as shown in Table 6.4. The most frequently scheduled operations
(59.28% of scheduling attempts) are the integer ALU operations that use one integer
register read ports and require 2304 table operations to model.

Although it is not necessary for the high-level MDES language to support

AND/OR-trees, AND/OR-trees provide a concise way of specifying complex resource

169

Table 6.4: Option breakdown and scheduling characteristics for the eight-issue processor
configuration.

Number| % of
of Scheduling

Options| Attempts Operations Modeled

2 2.86%q Jump ops

6 3.30% JSR (function call) ops

16 0.169% Floating-point ALU/multiply/divide/branch ops

24 5.91% Integer conditional branch/hashing jump ops that use 1 read port
72 0.07% Hashing JSR (address in register)
132 4.28% Integer conditional branch ops that use 2 read ports
192 0.34% Integer literal load ops
288 0.10% Floating-point load/store ops that use 1 read port
1584 5.92% Integer store, Floating-point load/store ops that use 2 read|ports

1728 12.37% Integer load ops that use 1 read port

2304 59.28% Integer ALU ops that use 1 read port

9504 2.48% Integer load ops that use 2 read ports
12672 2.93% Integer ALU ops that use 2 read ports

usages. The machine descriptions used in this chapter’'s experiments are written in a high-
level MDES language that supports the specification of both OR-trees and AND/OR-
trees. The parameterized MDES template utilized to generate the four processor
configurations’ machine descriptions uses AND/OR trees extensively. In order to
generate the OR-tree MDES representations for this chapter’'s experiments, each MDES
that uses AND/OR-trees was run through an MDES preprocessor that expanded out each
AND/OR-tree specification into the corresponding OR-tree specification.

The scheduling characteristics for these machine descriptions, before any
transformations are performed, are shown in Table 6.5. The second and third columns
indicate how many operations were scheduled, and how many scheduling attempts were
required, on average, before an operation was successfully scheduled. These two

numbers will remain constant throughout all of the transformations (with either

170

Table 6.5: Original scheduling characteristics of the machine descriptions for the four
processor configurations.

Avg. OR-Trees AND/OR-Trees

Total Sched. | Avg. Avg. Avg. Avg. Percent
Ops | Attempts| Options/| Checks/| Options/| Checks/| Checks
MDES | Sched. | Per Op | Attempt | Attempt | Attempt | Attempt | Reduced

l-issue | 1264249 7.09 3.55 4.7% 1.2)7 1.78 62.9%
2-issue | 1264249 4.43 9.95 18.49 3.74 4.67 74.1%
4-issue | 1264249 2.52 99.6¢ 198.3p 6.82 8.05 95.9%
8-issue | 126424P 1.62] 1162.89 2469.08 9.81 11653 99.p%

representation), and the exact same schedule is produced in each case, because all the
execution constraints described in the machine descriptions are being preserved. It should
be noted that the number of scheduling attempts required per operation can increase
significantly with the use of more advanced scheduling techniques such as iterative modulo
scheduling [12] and operation scheduling, and with the application of more ILP
optimizations to the assembly code.

The fourth and sixth columns of Table 6.5 show the average number of reservation
table options checked for each scheduling attempt, for the OR-tree and AND/OR-tree
representations, respectively. The fifth and seventh columns show the average number of
resource checks that were required for each scheduling attempt. The last column shows
that for complex machine descriptions, before any transformations are performed, the use
of the AND/OR-tree representation can reduce the number of resource checks per
reservation table option by up to 99.5%.

The memory required to internally represent the resource constraints in the
compiler used for this chapter’s evaluation is shown in Table 6.6. Although this internal

representation has been extensively tuned to maximize the performance of the resource

171

Table 6.6: Original MDES memory requirements for the four processor configurations.

OR-Trees AND/OR-Trees
Number| Table Size Table Size % Size
MDES | of Trees| Options| (bytes)| Options| (bytes) | Reduced
1-issue 3(79 44 a1 2160 51.9%
2-issue 3(259 15096 19 23R8 84.6%
4-issue 3(4979 3144%6 41 2664 99.2%
8-issue 30 146510 9695344 116 4776 99.9%

constraint checking algorithm, it also was designed to minimize memory requirements in
ways that incur no performance penalty. To this end, the internal representation allows
common information to be shared among AND/OR-trees and OR-trees, but in some cases
a small amount of header information per item is duplicated to prevent performance
degradation. Both the OR-tree and the AND/OR-tree internal representations have the
same number of trees. However, the table shows that the AND/OR-tree representation,
because it does not require the explicit enumeration of all the resource usage combinations
(OR-tree options), can significantly reduce the memory required (a 99.9% reduction for
the eight-issue processor configuration). Thus, before any MDES optimizations, the
AND/OR-tree significantly reduces both the internal representation size and the number of
checks required per attempt for complex resource constraint descriptions. This advantage
will remain definitive after both representations are fully optimized.

The sizes shown in this chapter for the AND/OR-tree representation reflect the
extra memory required to store the AND level of the tree. It should also be noted that the

common information to be shared is entirely specified by the external MDES

172

representation, in order to minimize the time required to load the MDES into memory.

The number of trees and reservation table options shown in the table reflects only what the
writer of the MDES specified as being shared. It is easy and natural to specify shared
information in the high-level MDES language used, so most of the common information is

shared in these machine descriptions. However, common information is often not shared
in order to make the machine description more readable or easier to modify. In fact, some
of the information in the MDES may not even be used. The transformations presented in

the Section 6.%ill deal with these issues.

6.5 Eliminating Redundant or Unused MDES Information

Machine descriptions tend to evolve as a processor’s execution constraints become
more thoroughly understood, as the compiler’'s vocabulary of operations increases, and as
these machine descriptions are ported to different or experimental processors in the family.
As the machine descriptions evolve, the amount of redundant and unused information in
the MDES tends to grow because, for an MDES writer, it is typically easier to just make a
local copy of the information to be changed than to do the careful analysis required to
safely modify or delete existing information. In fact, this was experienced both at
Cydrome Inc., with creation and maintenance of the Cydra 5 MDES [39], and by the
authors of machine descriptions used by the IMPACT compiler.

This redundant and unused information can be eliminated from the MDES by
adapting the classical compiler optimizations (common subexpression elimination, copy
propagation, and dead-code removal [1]) to the MDES domain. In this chapter’s

implementation, common subexpression elimination and copy propagation were

173

Table 6.7: MDES memory requirements after eliminating redundant and unused

information.

Number OR-Tree Representation AND/OR-Tree Representgtion

of Trees| Table Size % Size | Table Size % Size
MDES Options | (bytes) | Reduced Options| (bytes) | Reduced
1-issue 17 46 2928 34.8% 13 1120 48.1%0
2-issue 17 158 9536 36.8% 16 1224 47.4%
4-issue 17 32683 211618 32.7% 37 1840 30.9%0
8-issue 17 107148 7244960 25.3% 109 4040 15.4%

combined into one step that finds redundant MDES information and points all various
references to that information to only one particular copy, and an adaptation of dead-code
removal eliminates unreferenced information. These techniques greatly reduced the size
required to represent all of the aspects of the MDES, such as resource constraints,
operation latency, and operation format. Their effect on the resource-constraint
description size in particular is shown in Tabl@.

It is interesting to note that the AND/OR-tree representation for several of the
machine descriptions benefited more from eliminating redundant information than the OR-
tree representation. This is because the reservation table options in the AND/OR-tree
representation typically specify the resource usages at a finer granularity (fewer usages per
option) than the OR-tree options, allowing AND/OR-tree options to be shared more
aggressively. In addition, the OR-trees in an AND/OR-tree tend to be more general-
purpose, allowing entire OR-trees to be shared by several AND/OR-trees. An example of
this second case is shown in Figure 6.4, where the OR-trees for decoder and register write
port resource usages are shared by the four-issue processor configuration’s integer literal

load AND/OR-tree and the integer load (with two register sources) AND/OR-tree. In this

174

’CyCI(ﬂl 2Re??d4P0ét 6‘

d A XX][]

A XX []

Integer Literal Load Integer Load wi/2 reg src -1 ” I |><|><| I |

AND/OR-Tree AND/OR-Tree A T T XX]

Al [[[XX

— N EEEN

A X[X T]

X1 IX]

............ X T 1TIX

- A XX]

A X[X]

v 2 X T T IX

i b N s 2] T IX X

Lo XTI] \{olX]| : A T XTI

(o[X YollX 1 [X Al TT X YalllT XX
Figure 6.4: An example of how the AND/OR-tree representation can facilitate the sharing

of OR-trees.

way the AND/OR-tree representation facilitates further reduction of the MDES size. The
amount of reduction drops off as the issue-width increases, which is an artifact of how the
parameterized machine description template was written. This machine description
template was fairly carefully written and has very little natural redundancy. However,
when parameters are set to one (e.g., one branch per cycle) some of the OR-tree
specifications become redundant and can be combined with other OR-trees.

The transformations for removing redundant information can also be adapted to
more MDES-specific circumstances, such as removing options from an OR-tree that can
be determined to be impossible to satisfy. An option can be removed from an OR-tree if
its resource usages are identical to, or a superset of, the resource usages for a higher-
priority option, because the higher-priority optionll valways be selected if these
resources are available. This case can arise when the use of preprocessor directives
enumerates the various OR-tree options, and it can also arise as a machine description

evolves, which is the case for the parameterized machine description used in this chapter.

175

Table 6.8: The scheduling characteristics after removing unnecessary options for memory

operations.
Avg. OR-Tree AND/OR-Tree

Total Sched. | Avg. Avg. Average| Avg. Percent

Ops | Attempts| Options/| Checks/| Options/| Checks/| Checks
MDES | Sched. | Per Op.| Attempt | Attempt | Attempt | Attempt | Reduced
l-issue | 1264249 7.09 3.39 4.56¢ 1.2 1.712 62.3%
2-issue | 126424P 4.43 9.56 17.7¢ 3.59 4.49 74.1%
4-issue | 1264249 2.52 95.96 189.8B 6.63 7.82 95.9%
8-issue | 1264249 1.62] 1118.18 2334.31 9.53 1104 99.p%

The parameterized machine description template was derived from an HP PA7100 MDES
that was derived from the MDES for an earlier HP PA processor. During the retargeting
to the PA7100, two of the reservation table options for the PA7100’s memory operations
became identical, but the MDES author never realized this because correct output was still
generated. This artifact was unintentionally propagated to the parameterized machine
description (during its original port many years ago) and the effect this has on the four

processor configurations’ scheduling characteristics is shown in Gable

6.6 Utilizing Bit-Vector Representations

The results presented so far have not taken advantage of the fact that most
resource-constraint checking algorithms, including the one used in this chapter, use bit-
vectors [43], [44], [45] to keep track of the resources used each cycle in what is referred
to as aresource usage mafRU map). This design allows the RU map size to be
minimized and efficiently initialized, and allows multiple resource usages to be checked

(and reserved) with a single AND (OR) operation. In addition, using bits in the MDES to

represent multiple resource usages can significantly decrease the MDES size. Although it

176

Table 6.9: MDES size characteristics before and after a bit-vector representation is used
(one cycle/word).

Memory Requirements (in bytes)
MDES OR-Tree Representation AND/OR-Tree Representgtion
Before After Diff. Before After Diff.
1-issue 2928 2512 14.2% 112(1072 4.3%
2-issue 9536 7832 17.9% 1224 1200 2.0%0
4-issue 211648 167440 20.9% 184(1720 6.5%0
8-issue | 7244960 5666144 21.8% 404(351p 13.1%

Table 6.10: Scheduling characteristics before and after a bit-vector representation is used
(one cycle/word).

Average Checks Per Scheduling Attempt
MDES OR-Tree Representation AND/OR-Tree Representgtion
Before After Diff. Before After Diff.
1-issue 4.56 4.40 3.5% 1.7p 1.6 3.5%
2-issue 17.76 15.08 15.1% 4.49 4.48 1.3%
4-issue 189.88 156.94 17.6% 7.82 7.71 1.4%
8-issue | 2334.51 1888.68 19.1% 11.14 11.0D 1.3%

is possible to pack more than one cycle’s resource usages into a single memory word, it is

not necessary to do so for the machine descriptions in this chapter. The resource usage

time transformation presented in the next section will reduce the number of checks to

almost the minimum of one resource check per reservation table option.

The incremental effect of packing each cycle’s resource usages into one memory

word is shown in Tables 6.9 and 6.10. Before using bit-vectors, each resource usage was

represented as a cycle/resource pair (one resource usage per check).

After using bit-

vectors, the resource usages were represented as a cycle/resource-vector pair (multiple

resource usages per check possible, if the usages are in the same cycle). Although both

representations require two words to represent each pair, the bit-vector representation

177

typically requires fewer pairs per table. Although all the machine descriptions show some

benefit, the resource usages usually do not fall within the same cycle. The only resource
usages that naturally fall in the same cycle are the integer register read ports and the
instruction decoders. For example, the reservation table options shown in Figure 6.3(a)
do not benefit from packing a cycle’s resource usage into a single memory word, because
there is only one usage per cycle. However, the resource usage time transformation

presented in the next section will resolve this issue.

6.7 Optimizing for Bit-Vector Representations

The use of the actual resource usage times, as in Figure 6.3(a), can significantly
reduce the effectiveness of using a bit-vector representation that packs one cycle's worth
of resource usages into a single memory word. We address this problem by making use
of the theory of pipelined, multifunction unit design [42], [46]. For any ordered pair of
reservation table options (A, B), t is farbidden latency(i.e., an operation using
reservation table option B cannot be initiated t cycles after an operation that uses
reservation table option A) if and only if A and B have resource usages for some common
resource at times i and j, respectively, such that i is greater than or equal to j and i-j = t.
The set of all forbidden latencies between A and B is termeddihsion vectorfor the
ordered pair (A, B). A given schedule results in no resource conflicts if and only if, for
every pair of operations, the difference in their scheduled times never violates the
collision vector for the corresponding pair of reservation tables. Note that the actual
reservation table options A and B are not directly important; only the collision vector for

(A, B) is. Consequently, we could substitute any reservation table options A" and B' for

178

A and B, respectively, as long as the collision vector for (A', B") is the same as that for
(A, B). Further note that, in computing a forbidden latency, only the difference between
the resource usage times i and j matters, not their actual values. In particular, we could
add a common constant to both resource usage times without altering the forbidden
latency.

With this in mind, the optimization that we use, for each resource, is to subtract a
strategically selected constant from the originally specified resource usage times for that
resource in every reservation table option, with a view to concentrating resource usages
into as few time slots as possible. The constant may be different for each resource. This
optimization is related to the one used by Eichenberger and Davidson [47]. Although
minimization techniques can be used to find those constants that maximize the benefit, a
simple heuristic was found to be highly effective for the forward-scheduling list scheduler
and the processors considered in this chapter. The heuristic is, for each resource, to pick
the constant to be the earliest resource usage time for that resource (across all reservation
table options). The result of this heuristic is to concentrate a far larger number of resource
usages than before at time zero, thereby making the bit-vector approach more effective.
For a backward-scheduling list scheduler, the constants should be chosen to make the
latest usage time to be zero (or some constant). Applying this transformation to
Figure6.3(a) yields the OR-tree shown in Fig6i8.

In addition to making the bit-vector representation more effective, this
transformation also has a subtle effect on the characteristics of the resource usage checks
that can be taken advantage of. The resource usages that cause most of the resource

conflicts now tend to be concentrated at time zero. The resource usages with times

179

o JL[| IXI IXI [X |
o LI [DX X [X

Figure 6.5: The OR-tree modeling the resource constraints for the four-issue processor
configuration’s integer literal load operation, after transforming the resource usage times
in order to better utilize the bit-vector representation.

greater than zero are usually conflict-free and are primarily there to delay the execution of
later operations. For example, the nonzero-time divide-unit usages for a divide operation
rarely prevent the operation from being scheduled (if the divide unit is available at time
zero). However, while scheduling the next divide operation, the divide unit will not be
available at time zero until the previous divide completes. Thus for a forward-scheduling
list scheduler, the average number of checks before a conflict is detected is minimized by
sorting the resulting usage checks so that time zero is checked first. In this manner, the
same machine descriptions can be automatically tuned for other types of schedulers by
adjusting the heuristic for picking the resource usage time shift constants and for the

sorting of the resulting usage checks.

180

Table 6.11: MDES memory requirements before and after transforming resource usage
times (one cycle per word).

Memory Requirements (in bytes)

MDES OR-Tree Representation AND/OR Tree Representgtion
Before After Diff. Before After Diff.
1-issue 2512 1520 39.5% 1072 960 10.4%
2-issue 7832 4520 42.3% 120¢ 1168 2.7%
4-issue 167440 94712 43.4% 172(167P 2.8%0
8-issue | 5666144 4058000 28.4% 3512 3432 2.3%0

Table 6.12: Scheduling characteristics before and after transforming resource usage times
and sorting the resulting usages to check time zero first (one cycle per word).

OR-Tree Rep. AND/OR-Tree Rep.
MDES Avg. Checks/Attempt Checks/ Avg. Checks/Attempt Checks/

Before | After Diff Option | Before| After | Diff. | Option
1-issue 4.40 3.423 22.3% 1.0n 1.66 1.21 27.1% 100
2-issue 15.08 9.61] 36.3° 1.01 4.43 3.9 19.4q% 1]joo
4-issue | 156.54 96.70 38.2% 1.01 7.71 6.63 14.0po 1.p0
8-issue | 1888.68 1288.%2 31.8% 1.1§ 11.00 9.9 11.9% 1.p2

The MDES memory requirements after transforming the resource usage times are
shown in Table 6.11. The size of the OR-tree representation is reduced up to 43.4% by
using this transformation. There is less reduction for the AND/OR-tree representation
because this representation tends to have fewer resource usages per option. The
transformations presented in the next section do not change the MDES size, so these sizes
are the final MDES sizes after full optimization.

The MDES scheduling characteristics after transforming the resource usage times
and sorting the resulting usages to check time zero first are shown in Table 6.12. This
transformation reduced the average number of resource checks per option to between 1.00

and 1.15, which matches or is close to the ideal case of one check per option. In fact, the

181

integer load operations were the only operations that required more than one check per
option because of their use of the integer write port two cycles later than all of the other
integer operations. (This prevents their use from being shifting to time zero with all of the
other resource usages.) With these near-ideal checks per option, the average number of
options checked per attempt is what is truly dictating the number of checks required.
Although the AND/OR-tree already has a clear advantage, the number of options checked

is further reduced by the transformations in Section 6.8.

6.8 Optimizing AND/OR-Trees for Resource Conflict Detection

The structure of the AND/OR-tree representation allows additional
transformations to be performed that can increase the chance of detecting resource
conflicts early. The first transformation is to sort the sub OR-trees in the AND/OR-tree
so that the OR-tree most likely to have a resource conflict (heuristically determined) is
checked first. The following heuristic-based sort criteria were found to produce the most
consistent results. The OR-trees are first sorted by the earliest usage time in each tree,
because after the resource usage time transformation, most conflicts occur at usage time
zero. For OR-trees with the same earliest usage time, sort by the number of options in
each OR-tree, so that OR-tree with the fewest options is checked first. To break ties at
this point, preference is given to the OR-trees that are shared by the most number of
AND/OR-trees, because this gives an indication of which OR-trees have resources that are
heavily used. Finally the original order specified is used to break any remaining ties.

Figure 6.6(a) shows the OR-tree order originally specified in the MDES (and used for all

182

Csoi Pgeoger] v gy

[0 X T 1] [o]

[0 X 1] [0 [[IX

Lol [X]
[o LT TIX (o] [
[o L D]
[0 IXT] [o [T IX
e o9 Pegey]
[0 X [1]
[o X 1] [0 X T]
Lo [IX] [o LT X]
[o[TIX [0 [TTIX

(@) (b)
Figure 6.6: An example of optimizing the order of the OR-trees in an AND/OR-tree for
resource conflict detection. (a) Original order specified. (b) After optimizing the order.

previous analysis), and Figure 6.6(b) shows the order after sorting the OR-trees using the
above criteria. (Only the second criterion applies.)

A second transformation that can be applied is to remove resource usages that are
common to all of the OR-tree options and place them in an OR-tree with just one option
(creating one if necessary). This transformation works well when a resource common to
all options is likely to cause a resource conflict. By pulling it out, this resource conflict
can be detected earlier. This transformation can also be used to create some simple
AND/OR-trees from OR-tree descriptions. Application of this transformation can
actually increase the number of resource checks required, but the following application
heuristics were found to yield good results. First, if there is already a one-option OR-tree
that has a resource usage with the same usage time as the common usage, apply the

transformation. (With bit-vectors, this transformation cannot hurt performance.) Also,

183

Table 6.13: Scheduling characteristics before and after optimizing AND/OR-trees for
resource conflict detection.

AND/OR-Tree Representation

MDES Options Per Attempt Checks Per Attempt
Before After Diff. Before After Diff.
1-issue 1.21 1.21 0.0% 1.21 1.21 0.0
2-issue 3.59 1.76 51.0% 3.59 1.76 51.4%
4-issue 6.63 3.61 45.6% 6.63 3.61 45.4%
8-issue 9.53 6.09 36.1% 9.69 6.25 35.9%

apply the transformation if the common usage is the only usage in the OR-tree with that
usage time. (Each option in the OR-tree then has one less check, and in exchange only
one check is added.) Otherwise, the transformation should not be applied. In the machine
descriptions used in this chapter, all the applications of this transformation occurred
because of the first application rule. After the usage time transformation the second case
becomes rare or, for these descriptions, nonexistent.

The incremental effect of these transformations on the AND/OR-tree scheduling
characteristics is shown in Table 6.13. Most of the AND/OR-trees are reordered so that
availability of the function units are checked first (the most constraining resources), which
significantly reduces the average number of options checked before a resource conflict is

detected. The MDES sizes did not change because of these transformations.

6.9 Aggregate Effect of All Transformations

There are two important machine description aspects that are optimized by the
transformations presented in this chapter. The first one is the amount of memory needed
by the compiler to represent the processor’s resource constraints. Minimizing this size

allows more MDES information to fit within the first-level cache during compilation and

184

Table 6.14: Aggregate effect of all transformations on MDES resource-constraint
representation size.

Memory Requirements (in bytes)
Unoptimized Fully Optimized With Bit-Vector Representation
MDES OR- OR- AND/OR-
Trees Trees Reduction Trees Reduction

1-issue 4488 1520 66.1% 960 78.6%
2-issue 15096 4520 70.1% 1168 92.3%
4-issue 31445p 94712 69.9% 1672 99.5010
8-issue 96953441 4058000 58.1% 3432 99.9%

also reduces the overall memory requirements of the compiler. The aggregate effect on
required memory of all the transformations presented in this chapter is shown in
Table 6.14. When applied to an OR-tree representation, these transformations reduce
representations by as much as a factor of 3.3. When these transformations are further
combined with the AND/OR-trees, representations up to 2800 times smaller than the
unoptimized OR-tree representation are produced. As the execution constraints for
processors become more flexible, combining these transformations with the AND/OR-tree
representation becomes even more effective.

The second aspect of the machine descriptions to be optimized is the number of
resource checks per scheduling attempt. Minimizing this number reduces the time
required to check resource constraints, making room in the compiler’s time budget for
more advanced scheduling or optimization techniques. The aggregate effect of all the
transformations presented in this chapter on the average number of resource checks
required per scheduling attempt is shown in Table 6.15. As described in Section 6.4,

these check-per-attempt statistics were generated using an MDES-driven DHASY list

scheduler to schedule SPEC CINT92 and CINT95 assembly code well matched to the

185

Table 6.15: Aggregate effect of all transformations on MDES scheduling characteristics.

Average Checks Per Scheduling Attempt
Unoptimized Fully Optimized With Bit-Vector Representation

MDES OR- OR- AND/OR-

Trees Trees Reduction Trees Reduction
1-issue 4.75 3.42 28.0% 1.21 74.500
2-issue 18.49 9.61 48.09 1.76 90.5%6
4-issue 198.3p 96.70 51.2% 3.6] 98.29
8-issue 2469.0B 1288.%2 47.8% 6.25 99.70£

four-issue processor configuration. When compared to the checks-per-attempt of the
unoptimized OR-tree representation, these transformations reduced the number of checks
required by the OR-tree representation by up to a factor of 2.1. When these
transformations are combined with the AND/OR-trees, the number of checks were
reduced by as much as a factor of 395.1. As was seen with the MDES-size aspect,
combining these transformations with the AND/OR-tree representation is especially
effective at reducing the number of checks required as the execution constraints become
more flexible.

The trend that these tables show is that as the processors become more powerful
and flexible, the AND/OR-tree representation, combined with the described
transformations, becomes crucial for keeping under control both the MDES size and the
number of checks per scheduling attempt. These results are consistent with what was
found in the earlier study with the AMD-K5 K5 MDES and these results are expected to
be representative of the latest generation of microprocessors, such as the Intel Pentium

Pro and the HP PAS0OQO.

186

6.10 Related Work

Eichenberger and Davidson [47] recently proposed a minimization algorithm
which, for each reservation table option, generates an equivalent reservation table option
with a minimum number of resource usages. (This algorithm uses heuristics to avoid
exhaustive searches. Although true minimums may not always be found, the results are
near optimal.) The total number of resources used to model the processor is also
minimized, which facilitates packing multiple cycles of resource usages into a bit-vector.
This algorithm, combined with a bit-vector representation, was shown to minimize both
the memory required to represent each option and the number of resource checks per
option.

The transformations presented in this chapter reduce the number of resource
checks and memory required per option to an equivalent level to that obtained using the
Eichenberger and Davidson algorithm, although a different and more straightforward
approach is used. In addition, Eichenberger and Davidson do not address the problem of
reducing the number of option checks per scheduling attempt. This chapter’s
transformations, when combined with the proposed AND/OR-tree representation,
simultaneously optimize the number of options checks per scheduling attempt, the number
of resource checks per option, and the memory required to represent the processor’s
resource constraints.

Proebsting and Fraser [48], Muller [49], and Bala and Rubin [50] have proposed
approaches that use finite-state automata, instead of resource reservation tables, to
determine if an operation may be scheduled without a resource conflict. These

techniques, when compared with the use of unoptimized reservation tables and

187

representations, have shown significant reductions in the number of checks per scheduling
attempt and in representation size. However, the combination of the proposed MDES
optimizations and AND/OR-tree representation appear to mitigate these advantages, even
for complex resource constraints.

In addition, the nature of finite-state automata makes it more difficult, and
potentially more time-consuming, to apply some advanced scheduling techniques, such as
iterative modulo scheduling [12], which strategically unschedule operations in order to
remove the resource conflicts that are preventing an operation from being scheduled. This
requires the ability to identify and unschedule the operations that are causing the resource
conflicts. Modulo scheduling also uses a cyclic scheduling model that is difficult to
efficiently implement with finite state automata. Both these required features can be
efficiently implemented in a straightforward manner with reservation tables (implemented
in [12]). In addition, reservation tables cannot be totally eliminated even if finite-state
automata are used, because analysis of reservation tables in order to calculate scheduling
priorities is an integral part of iterative modulo scheduling. Utilizing reservation tables for
all scheduling algorithms therefore provides a more consistent and, for several scheduling

algorithms, more efficient method of specifying execution constraints.

188

7. COMPILE-TIME IMPLICATIONS OF SCHEDULE-TIME
TRANSFORMATIONS

7.1 Introduction

This chapter experimentally evaluates the compile-time implications of the
proposed schedule-time transformation framework (Chapter 3), incremental dependence
graph generation (Chapter 5), and machine description optimizations (Chapter 6). These
experiments were performed utilizing a complete and highly-tuned schedule-time
transformation framework that implements all the algorithms described in this thesis within
the IMPACT compiler. This framework was designed to be of production-compiler
quality in terms of speed, error checking, stability, and ease of use. In addition to
facilitating advanced compiler research with the IMPACT compiler, this design also allows
measurement of the true time requirements of the proposed approaches with a solid
implementation. However, it should be noted that this framework did not attempt to
reduce compile time by focusing only on relatively important control blocks. A
production compiler, by making appropriate trade-offs between code quality and compile
time, may be able to further reduce the time requirements for schedule-time
transformations.

All of the time measurements in this chapter were performed on an unloaded
180MHz HP PA8000 workstation running HP-UX B.10.20 in multiuser mode with
384 Mbytes of main memory. The schedule-time transformation framework was
compiled using the HP C Compiler 10.23.03 using the aggressive optimization settings

used to generate the SPEC base performance ratios (i.e., +Oall +P). This optimization

189

level requires profiing data to be collected. The framework was profiled optimizing
SPEC CINT92 with both the renaming-with-copy and integer-expression-reformulation
transformations. In order to measure the time required by various components of the
framework, a set of run-time parameters was added that allowed each component to be
enabled (invoked normally) and disabled (totally omitted). By carefully measuring the
execution time required as each successive component is enabled, an accurate estimate of
the time required to perform that portion of the computation can be made.

The time measurements were performed with the times() function that reports
both the user and system time used by a process with a resolution of 10 milliseconds.
The user and system time are added together for the reported numbers and represent
almost all of the wall-time measured. (Time spent waiting for disk I/O and in system
processes does not show up in the times() output.) Because of the nature of modern
processors and operating systems, small variations in time measurements are
unfortunately unavoidable. System processes can perturb instruction caches, data caches,
the branch prediction unit, etc., in unpredictable ways. To compensate, each
measurement was performed 25 times and results were sorted. The top and bottom five
measurements were discarded and the remaining 15 measurements were averaged. The
standard deviation among these remaining measurements was often zero and was always
less than 0.5%. However, because the difference between two measurements is being
used to estimate the execution time for each component, even a one-tenth-of-a-second
standard deviation makes it difficult to accurately estimate the time of any component

taking less than 1 second. Therefore, in order to increase the overall processing time

190

Table 7.1: Compile time using the HP C Compiler on the SPEC CINT92 benchmarks.

Compile Time (in minutes) Using the HP C Compilef
Benchmark -O +Qall +P (Spec Base)
008.espresso 0.91 3.94
022.li 0.19 0.83
023.eqgntott 0.1%2 0.5p
026.compress 0.0B 0.43
072.sc 0.37 2.6Y
085.gcc 2.39 35.06
Total 3.70 43.25

Table 7.2: Compile time using the HP C Compiler on the SPEC CINT95 benchmarks.

N

Compile Time (in minutes) Using the HP C Compilef
Benchmark -O +Qall +P (Spec Base)
099.g0 0.74 4.94
124.m88ksim 1.12 6.33
126.gcc 4.572 79.1
129.compress 0.08 0.1
130.1i 0.30 0.95
132.ijpeg 0.92 4.20
134.perl 1.24 44.6
147.vortex 2.11 14.8
Total 10.98 155.1¢

required by each component, the benchmarks are grouped into two large inputs, SPEC

CINT92 and SPEC CINT95.

7.2 Compile-Time Requirements of the HP C Compiler

In order to provide some context for the time requirements for various

components of the schedule-time transformation framework, the time required to compile

each of the SPEC CINT92 and SPEC CINT95 benchmarks with the HP C Compiler

Version 10.23.03 is presented in Tables 7.1 and 7.2. These measurements were taken

using the command-line time command (e.g., time cc -O *.c), which hasmili€€cond
resolution. The times shown are the sum of the user and system time reported by the
command-line time command. The first column indicates the benchmark being compiled.
The second column specifies the compile time, in minutes, for the benchmark using the
standard optimization level setting (-O) for the compiler. This setting enforces a strict
compile-time budget, which was reached when alimgp085.gcc, 126.gcc, and 134.perl.

For these benchmarks, compiler warning messages indicated that some optimizations were
skipped because “compiler resouticeits” were exeeded. This level of optization is
typically used as an application is being developed. An executable with reasonable
performance is generated in a reasonably short amount of time (3.70 minutes for SPEC
CINT92 and 10.98 minutes for SPEC CINT95).

The third column specifies the compile time, in minutes, for the benchmark using
the optimization settings used to generate the SPEC base performance numbers for SPEC
CINT95 (+Oall +P). These settings generate code that runs approximately 30% faster
than the standard setting but requires significantly more compile time (43.25 minutes for
SPEC CINT92 and 155.18 for SPEC CINT95). These settings also require each
benchmark to be profiled on a representative set of inputs first before the code is
optimized. (The time required to compile the instrumented executable or to generate the
profile information is not included in the compile times shown.) This setting is typically
used after development is complete to generate a high-performance executable. Although
reducing the compile-time requirements is always desirable, generating a high-
performance executable is the top priority at this level of optimization. Users willing to

spend more time tuning compiler flags and specifying additional assumptions that the

192

compiler may make about the application (e.g., what’s done for the SPEC peak settings),
may be able to generate an executable with even higher performance.

The IMPACT compiler aggressiveness is most closely related to the HP Compiler
using the SPEC base optimization settings. Aggressive function inlining, superblock
formation, loop unrolling, and ILP transformations are performed that significantly
improve executable performance. However, like SPEC base settings, benchmark specific
compiler flags are not used to tweak performance. These aggressive optimization
techniques also significantly increases static code size and therefore the time required by
later compiler modules (e.g., the schedule-time transformation framework) to process the

resulting code.

7.3 Time Requirements of DHASY List Scheduling

An efficient scheduler is one of the cornerstones of an efficient schedule-time
transformation framework. In Chapter 6, a set of machine description transformations and
a new AND/OR-tree representation were shown to significantly reduce the time required
to check processor resource constraints. The effect of these MDES optimization
techniques on the time required to list-schedule all the control blocks in the SPEC
CINT92 and SPEC CINT95 superblock code generated by the IMPACT compiler is
shown in Table 7.3. These times are only for the scheduling algorithm and do not include
the time required to perform dataflow analysis or build the dependence graph. The
compile-time costs of these additional components will be discussed later in this section.

The first column of Table 7.3 specifies the processor configuration modeled by the

MDES used for scheduling. The second (SPEC CINT92) and fitth (SPEC CINT95)

193

Table 7.3: Time required to list-schedule all control blocks using the DHASY scheduling

heuristic.
Time Required to Schedule All Control Block (in seconds)
SPEC CINT92 SPEC CINT95

Unoptimized| Optimized Unoptimized| Optimized

MDES OR- AND/OR- OR- AND/OR-
Trees Trees Reductior Trees Trees Reductior

1-issue 8.5 7.4 13% 70.5 69.8 19
2-issue 8.4 6.2 26% 59.2 50.1 15%
4-issue 18.6 5.5 709 99.4 3719 62po
8-issug 122.1 5.0 9696 565.8 33.3 949%

columns specify the time required, in seconds, to schedule all the control blocks utilizing
an unoptimized OR-Tree representation for the processor resource constraints. The third
and sixth columns specify the time required, in seconds, to schedule all the control blocks
utilizing a fully optimizing AND/OR-Tree representation for the processor resource
constraints that also takes advantage of bit-vectors. The reduction in schedule-time is
shown in the fourth and seventh columns.

Although the MDES optimization techniques presented in Chapter 6 reduced the
resource checks by up to a factor of 395, the overall scheduling time is only reduced by up
to a factor of 24. This is because, after MDESimipations, the time required for
checking resources is reduced to an average of only about 5% of the total scheduling time.
Therefore, after MDES optimizations, the compile-time cost of utilizing a detailed
machine description facility (versus hard-coding the processor execution constraints into
the compiler) is insignificant. However, without MDES optimizations, describing

complex execution constraints would be significantly less practical.

194

Note that the time required to schedule the code using the optimized MDES
increases as the processor issue width decreases. This occurs because the code is ILP
optimized for a four-issue processor. For the one-issue processor, the relative instruction-
level parallelism is extremely high and it takes an average of 7.09 scheduling attempts to
schedule an operation. For the four-issue processor, an average of only 2.52 scheduling
attempts is required. (S@&able6.5 for details.)

To add some perspective for these scheduling times, scheduling for the 4-issue
processor configuration (5.5 seconds for SPEC CINT92 and 37.9 seconds for SPEC
CINT95) takes approximately the same amount of time as building the IMPACT
compiler’s internal intermediate representation of the benchmark code from the external
intermediate representation (binary Icode which has been tuned for performance and size)
and significantly less time than most other compiler algorithms implemented in the
IMPACT compiler. For example, building the internal intermediate representation from
the external representation takes 7.2 seconds for SPEC CINT92 and 27.5 seconds for
SPEC CINT95. Performing dataflow analysis (live analysis) takes 19.1 seconds for SPEC
CINT92 and 375.4 seconds for SPEC CINT95 (due to some very large functions after
ILP optimization). (The time required to perform dataflow analysis will be significantly
reduced once region-based compilation [51] is fully integrated into the IMPACT
compiler.) Building the dependence graph using the approach described in Chapter 5

takes 12.4 seconds for SPEC CINT92 and 51.8 seconds for SPEC CINT95.

195

Table 7.4: A breakdown of the time required by the components of the schedule-time
transformation algorithm utilizing the optimized four-issue MDES.

Function Calls Utilized By the Schedule-Time Time Required (in seconds)
Transformation Algorithm SPEC CINT92 SPEC CINT9%
Calculate initial_height (fixed overhead) 8.5 37.9
find_potential_trans/calculate_trans_prioritie 1.0 2.0
perform_transformation / undo_transformatign 1.1 3.8
schedule / unschedule 9.2 127.2
Total 16.8 170.9

7.4 Time Breakdown for Performing Schedule-Time Transformations

Chapter 4 examined in detail the performance benefits of performing renaming
with copy and integer expression reformulation utilizing the schedule-time transformation
algorithm. Table 7.4 shows a breakdown of the time required to perform both
transformations using the schedule-time transformation algorithm shown in Figure 3.1.
For clarity, the time breakdown is shown beside the function calls used in Figure 3.1 and
the time requirements for the optimized four-issue processor MDES are used. The time
spent in functions not shown in Table 7.4 is negligible. The time required to initially
schedule each control block in order to calculate the control block’s initial schedule height
is shown in the first row of Table 7.4. This time is an fixed overhead for this algorithm
and will not increase as more transformations are performed.

As expected, most of the time is spent list scheduling (9.2 seconds for SPEC
CINT92 and 127.2 seconds for SPEC CINT95) the control block using the DHASY
scheduling heuristic after each transformation is performed. (These times also include the
time required to unschedule the control block, but this takes very little time compared to

scheduling the control block.) If the unoptimized OR-tree MDES representation is

196

utilized, the time required by the schedule/unschedule function calls increases to 32.1
seconds for SPEC CINT92 and 335.4 seconds for SPEC CINT95. Thisllagtaiates
the benefit of the techniques described in Chapter 6.

Compared to the time required for scheduling the control block, a relatively small
amount of time is spent performing and undoing the transformations (1.1 seconds for
SPEC CINT92 and 3.8 for SPEC CINT95). Note that these times are a worst-case
number where each transformation is rejected and must be undone. (This worst-case
assumption allows this component to be executed without having to reschedule the control
block, thus allowing time measurements.) This small amount of time required is entirely
because the techniques described in Chapter 5 wizeduto incrementally update the
dependence graph after each transformation was performed or undone. In fact, very little
time is spent in the incremental dependence graph update routines at all. However, if the
dependence graph was rebuilt from scratch after performing or undoing each
transformation, these times would increase to at least 34.0 seconds for SPEC CINT92 and
209.8 seconds for SPEC CINT95. (These times are for rebuilding the dependence graph
only; they assume performing and undoing the transformations take no time.) Thus,
incremental dependence graph generation reduces the time required to perform and undo
transformations by at least 97%.

The least amount of time is spent finding the best potential transformation
opportunity to evaluate next (1.0 seconds for SPEC CINT92 and 2.0 seconds for SPEC
CINT95). These times are also worst-case in order to allow the measurement to be taken
independently from the rescheduling algorithm. Although transformation priorities are

normally recalculated only after a transformation is kept (because the dependence graph

197

has changed), for this measurement the transformation priorities were recalculated after
every transformation was attempted (and rejected). About half the time measured was
spent recalculating priorities and the other half was spent performing the initial scan of the
operations of the control block for potential transformation opportunities. A negligible
amount of time is required to incrementally detect new transformation opportunities as
transformations are performed (the update_trans_queue function in Figure 3.1). (All of
the transformations were rejected, so this functionality was not exercised for this particular
measurement.) The priority recalculation can be performed relatively quickiylibygit
the early and late times already calculated during the scheduling of the control block.
Overall, performing both ILP transformations using the scheduling-time
transformation framework required 16.8 seconds (0.28 minutes) for SPEC CINT92 and
170.9 seconds (2.85 minutes) for SPEC CINT95 for the four-issue processor
configuration. If the techniques proposed for incremental dependence graph generation
(Chapter 5) and machine description optimizations (Chapter 6) were not utilized,
schedule-time transformations still could be performed. However, the time requirements
would increase to at least 85.7 seconds (1.43 minutes) for SPEC CINT92 and 646.6
seconds (10.78 minutes) for SPEC CINT95. Compared to time required by the HP
Compiler to aggressively optimize SPEC CINT92 (43.25 minutes) and SPEC CINT95
(155.18 minutes) all these time requirements are relatively small. Howellieinguthe
proposed techniques reduces the time requirements by up to 80% (for the four-issue
processor configuration), allowing significantly more ILP transformations to be performed

at schedule-time within the compiler’s time budget.

198

7.5 Projection of Future Time Requirements

As more execution-constraint-sensitive ILP transformation are implemented in the
schedule-time transformation framework, the time requirements will also increase. A
projection of these future time requirements can be made utilizing the time requirements
for the two ILP transformations implement in this thesis’'s experiments. For SPEC
CINT92, there were 311824 static operations in the intermediate representation, in which
7031 transformation opportunities were examined using the schedule-time transformation
framework. This yields 0.0225 transformation opportunities per static operation. For
SPEC CINT95, there were 952425 static operations with 14909 transformation
opportunities, yielding 0.0157 transformation opportunities per static operatidizingyt
the average time required per transformation, the projection of future time requirements as
more transformations are implement can be made.

One aspect of the projected future transformation load is the number of
transformation opportunities per operation examined. In the near term, after
implementing memory speculation, branch combining, and predicate promotion with
copy in the schedule-time transformation framework, the number of opportunities may
get as high as 0.1 opportunities per operation examined. In the long term, an upper bound
on the number of opportunities might be reasonably set around 1.0 opportunities per
operation. To reach this upper bound, a wide array of execution-constraint-sensitive
transformations would need to be developed and implemented. In addition, the
application code would have to be fortuitously constructed so that many of these

transformations could be applied. The actual compile-time requirements are likely to fall

199

Table 7.5: Projection of time requirements for future schedule-time transformation loads
for the four-issue processor configuration.

Projected Time
Requirement
(in minutes)
Potential Future Schedule-Time Transformation Loads CINT92 CINJro5

0.1 opportunities per frequently executed static ops (top 90po) 0.10 1.9
1.0 opportunities per frequently executed static ops (top 90po) 0.93 18
0.1 opportunities per static operation 0.93 15
1.0 opportunities per static operation 8.4 40

between 0.1 and 1.0 opportunities per operation examined and will be significantly closer
to 0.1 in the near term.

The other aspect of the projected future transformation load is the number of
operations examined for transformation opportunities. Because profile information is
available, the compiler may choose to restrict the operations examined in order to reduce
compile time. One approach may be to focus on the control blocks representing the top
90% of the executed operations. For SPEC CINT92, this would require only 11.09% of
the operations to be examined and for SPEC CINT95, only 12.57% of the operations
would need to be examined. The time requirement projections with this approach are
shown in the first two rows of Table 7.5. These projections utilize the average time per
transformation opportunity measured for the four-issue processor configuration. This
yields a time requirement range of 0.10 to 0.93 minutes for SPEC CINT92 and 1.9 to 18
minutes for SPEC CINT95. Time requirements anywhere within these ranges are still
relatively small when compared to aggressively optimizing these benchmarks with the HP
Compiler. This indicates that this thesis’s approach is viable when aggressively optimizing

key sections of each program.

200

On the other end of the spectrum, the transformation framework could be used to
transform every static operation. This approach requires significantly more compile time
but might be utilized in combination with static branch prediction to aggressively optimize
operations that the profiling did not exercise. This yields projected time requirements of
0.93 to 8.4 minutes for SPEC CINT92 and 15 to 140 minutes for SPEC CINT95. The
lower end of this range is still quite viable when compared to the HP Compiler’'s time
requirements (43.25 minutes for SPEC CINT92 and 155.18 minutes for SPEC CINT95).
However, for the upper end of the range for SPEC CINT95, trade-offs may need to be
made to reduce compile time. One possibility is to restrict the transformations considered
for control blocks deemed to be less critical.

Note that the projected time requirements in Table 7.5 are shown for one pass of
the proposed schedule-time application algorithm. For the two transformations
implemented, one pass of the schedule-time application algorithm over the potential
transformations captures practically all of the possible performance benefit. As more
transformations are implemented, multiple passes may be required to maximize the
performance benefit as discussed in Section 3.4. However, with properly chosen
priorities, one pass should continue to capture most of the possible performance.

Overall, the time required for future transformation loads are easily in line with the
time utilized by the HP production C compiler (when producing highly optimized code).
This is in large part due to the proposed techniques for incremental dependence graph
generation presented in Chapter 5 and the machine description optimizations presented in

Chapter 6.

201

8. CONCLUSIONS AND FUTURE WORK

This thesis proposes a new algorithm for applying execution-constraint-sensitive
transformations that increase instruction-level parallelism. This algorithm applies these
transformations at schedule time, so that the effect of each transformation on the
execution time of the code can be more accurately evaluated. Each transformation
opportunity is first prioritized, based on dependence height information, and then a greedy
search algorithm is utilized to select the set of transformation applications that minimize
the schedule-based execution time estimate.

Detailed experiments utilizing two execution-constraint-sensitive transformations,
renaming with copy and integer expression reformulation, showed that this approach
performs consistently better than the current heuristic-based application approach and
several other more advanced application approaches. In addition, unlike the other
approaches evaluated, the proposed approach performed well across all the processor
configurations, from single-issue to eight-issue processors. This makes the proposed
approach one of the first transformation application techniques that truly adapts to the
processor’s execution constraints. Combined with a machine description language that
describes the processor's execution constraints, this approach allows aggressive
transformations consistently achieve performance improvement over wide variety of
processor configurations and application inputs.

This thesis also proposes two significant techniques that facilitate the efficient
application of transformations at schedule time. The first is a technique for performing

incremental dependence graph generation, which allows the dependence graph to be

202

efficiently updated after each transformation is performed. This makes evaluating the
effect of the transformation significantly more efficient because the dependence graph does
not need to be rebuilt before rescheduling the code. The second technique consists of a
set of machine description optimizations and a new resource constraint representation.
This technique allows a compiler writer to develop easy-to-understand, maintainable
machine descriptions in a high-level language, which is then translated into an optimized
low-level representation for efficient use by the compiler. This significantly reduces both
the memory requirements for internal representation of the machine description in the
compiler and the time required to check resource constraints during scheduling.

Utilizing a complete and highly-tuned schedule-time transformation framework
that implemented all the proposed techniques, the time requirements for the proposed
schedule-time transformation algorithm were evaluated. In order to provide context, the
time required to aggressively optimize the benchmark set with the HP C compiler was also
evaluated. The time required to perform the two implemented transformations was shown
to be significantly smaller than that required by the HP C compiler. In addition, rough
estimates of future time requirements as more transformations are performed at schedule-
time were also found to be reasonable, although aggressively transforming only frequently
executed code may be desirable to reduce these future time requirements.

There are several near-term areas for future work. The proposed framework
greatly facilitates the application of a wide range of critical path reduction transformations
[17]. The first area of future work would be to implement more of these aggressive
dependence-breaking transformations within the framework. In addition to creating

significantly more instruction level parallelism in the code, these transformations will allow

203

the effectiveness of the search algorithm and transformation priorities utilized to be more
fully evaluated. In addition, the potential benefit of the proposed approach, in terms of
reducing phase-ordering issues, can also be evaluated.

Other longer-term areas of potential future work include utilizing the proposed
framework for more global transformations and scheduling algorithms [52] that move
code between control blocks. The framework should facilitat@t¢berate measurement
of the effect of adding instructions to one section of code and removing instructions from
another section, allowing accurate trade-offs to be madmilai®, this schedule-time
transformation framework may also be useful when performing even more global code
transformations such as loop unrolling [5], [53] and hyperblock formation [4], [30], [54].
Although different trade-offs are involved, these techniques are also sensitive to the
processor’'s resource constraints and may benefit from a more accurate estimate of the

effect of the transformations.

204

APPENDIX A. PERFORMANCE RESULTS FOR ALL PROCESSOR
CONFIGURATIONS

For the interested reader, this appendix presents the complete set of control-block-
level performance distributions for the four processor configurations analyzed in
Chapter 4. For the reader’s convenience, the overall benchmark performance distributions

for the four processor configurations are presented again at the end of this appendix.

(Please see phd-appendix-john-gyllenhaal.ps for contents of Appendix A.)

205

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

A. Aho, R. Sethi, and J. UllmarCompilers: Principles, Techniques, and Tools
Reading, MA: Addison-Wesley, 1986.

Intel, Pentium Processor Family Developer's Manuddt. Prospect, IL: Intel
Corporation, 1995.

D. Weaver, SPARC-V9 Architecture SpecificatioMenlo Park, CA: SPARC
International Inc., 1994.

S. A. Mahlke, “Exploiting Instruction Level Parallelism in the Presence of
Conditional Branches,” Ph.D. dissertation, Department of Electrical and Computer
Engineering, University of lllinois, Urbana, IL, 1996.

S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, W. W. Hwu, P. P. Chang, and T.
Kiyohara, “Compiler code transformations for superscalar-based high-performance
systems,” irProceedings of Supercomputing ,%0ovember 1992, pp. 808-817.

M. Schlansker, V. Kathail, and S. Anik, “Height reduction of control recurrences for
ILP processors,” inProceedings of the 37 International Symposium on
Microarchitecture December 1994, pp. 40-51.

W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery, G. E. Haab,
J. C. Gyllenhaal, and D. I. August, “Compiler Technology for Future
Microprocessors,”Proceedings of the IEEEvol. 83, no. 12, pp. 1625-1640,
December 1995.

S. A. Mahlke, R. E. Hank, J. McCormick, D. I. August, and W. W. Hwu, “A
comparison of full and partial predicated execution support for ILP processors,” in
Proceedings of the 22International Symposium on Computer Architectulene
1995, pp. 138-150.

D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu,
“Dynamic memory disambiguation using the memory conflict bufferPrioceedings

of 6" International Conference on Architectural Support for Programming
Languages and Operating Syste@stober 1994, pp. 183-193.

[10]S. A. Mahlke, “Design and implementation of a portable global code optimizer,”

M.S. thesis, Department of Electrical and Computer Engineering, University of
lllinois, Urbana, IL, 1991.

[11] N. Patkar, “Sparc64,” ifTutorial Program of the 28 International Symposium on

Microarchitecture December 1995, pp. 1-45.

258

[12] B. R. Rau, “lterative modulo scheduling: An algorithm for software pipelining
loops,” in Proceedings of the 27International Symposium on Microarchitectpre
December 1994, pp. 63-74.

[13] E. L. Boyd and E. S. Davidson, “Hierarchical performance modeling with MACS: A
case study of the convex c-240,” froceedings of the 20Annual International
Symposium on Computer Architectukéay 1993, pp. 203-212.

[14] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “The
Importance of Prepass Code Scheduling for Superscalar and Superpipelined
Processors,JEEE Transactions on Computengol. 44, no. 3, pp. 353-370, March
1995.

[15] P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Three
Architectural Models for Compiler-Controlled Speculative ExecutiolfFEE
Transactions on Computengol. 44, no. 4, pp. 481-494, April 1995.

[16] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, “IMPACT:
An architectural framework for multiple-instruction-issue processors,” in
Proceedings of the ¥8Annual International Symposium on Computer Architecture
June 1991, pp. 266-275.

[17] M. Schlansker and V. Kathalil, “Critical path reduction for scalar programs,” in
Proceedings of the #8International Symposium on Microarchitectpi@ecember
1995, pp. 57-69.

[18] G. Blanck and S. Krueger, “The SuperSPARC microprocessoRtaneedings of
COMPCON Spring 1992, pp. 136-141.

[19] J. C. Gyllenhaal, “A machine description language for compilation,” M.S. thesis,
Department of Electrical and Computer Engineering, University of lllinois, Urbana,
IL, 1994.

[20] J. C. Gyllenhaal, B. R. Rau, and W. W. Hwu, “Hmdes Version 2.0 Specification,”
The IMPACT Research Group, University of lllinois, Urbana, IL, Tech. Rep.
IMPACT-96-3, 1996 http://www.crhc.uiuc.edu/Impact/

[21] J. L. Baer and D. P. Bovet, “Compilation of Arithmetic Expressions for Parallel
Computations,” irProceedings of IFIP Congres$968, pp. 34-46.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to Algorithms
Cambridge, MA: The MIT Press, 1991.

[23] R. A. Bringmann, “Compiler-Controlled Speculation,” Ph.D. dissertation,
Department of Computer Science, University of lllinois, Urbana, IL, 1995.

259

[24] T. M. Watts, M. L. Soffa, and R. Gupta, “Techniques for Integrating Parallelizing
Transformations and Compiler Based Scheduling Methods,Prioceedings of
Supercomputing ‘92Minneapolis, MN, November 16-20, 1992, pp. 830-839.

[25] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation,” inInstruction-Level Parallelism: A Special IssueTdie Journal of
SupercomputingB. R. Rau and J.A. Fisher, Editors. Boston: Kluwer Academic
Publishers, 1993, pp. 229-248.

[26] B. L. Deitrich and W. W. Hwu, “Speculative Hedge: Regulating Compile-Time
Speculation Against Profile Variations,” iroceedings of the 29International
Symposium on MicroarchitectyrBecember 2-4, 1996, pp. 70-79.

[27] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL playdoh architecture
specification: Version 1.0,” Hewlett-Packard Laboratories, Palo Alto, CA 94303,
Tech. Rep. HPL-93-80, February 1994.

[28] D. Gallagher, “Memory Disambiguation to Facilitate Instruction-Level Parallelism
Compilation,” Ph.D. dissertation, Department of Electrical and Computer
Engineering, University of Illinois, Urbana, IL, August 1995.

[29] D. M. Lavery, “Modulo Scheduling for Control-Intensive General-Purpose
Programs,” Ph.D. dissertation, Department of Electrical and Computer Engineering,
University of lllinois, Urbana IL, May 1997.

[30] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective
Compiler Support for Predicated Execution Using the HyperblockPrateedings
of the 28’ International Symposium on Microarchitectuecember 1992, pp. 45-
54.

[31] N. Warter, “Modulo Scheduling with Isomorphic Control Transformations,” Ph.D.
dissertation, Department of Electrical and Computer Engineering, University of
lllinois, Urbana IL, September 1994.

[32] D. C. Lin, “Compiler Support For Predicated Execution in Superscalar Processors,”
M.S. thesis, Department of Computer Science, University of lllinois, Urbana IL,
1992.

[33] L. Chen and A. Avizienis, “N-Version Programming: A Fault-Tolerance Approach to

Reliability of Software Operation,” iDigest of Eighth International Fault-Tolerant
Computing SymposiyntEEE Computer Society, Toulouse, France, 1978, pp. 3-9.

260

[34] K. Smith, B. Appelbe, and K. Stirewalt, “Incremental Dependence Analysis for
Interactive Parallelization,International Conference on Supercomputingl. 18,
no. 3, pp. 330-341, September 1990.

[35] K. V. Praveen, S. K. Aggarval, and R. K. Ghosh, “Incremental Data Dependence
Analysis,” in Proceedings of Third International Conference on High Performance
Computing December 1996, pp. 195-200.

[36] J. C. Dehnert and R. A. Towle, “Compiling for the Cydra 5,Instruction-Level
Parallelism: A Special Issue d@he Journal of Supercomputing. R. Rau and J.A.
Fisher, Editors. Boston: Kluwer Academic Publishers, 1993, pp. 181-227.

[37] G. P. Lowney et al., “The Multiflow trace scheduling compiler,Tnstruction-Level
Parallelism: A Special Issue d@he Journal of Supercomputing. R. Rau and J.A.
Fisher, Editors. Boston: Kluwer Academic Publishers, 1993, pp. 51-142.

[38] P. H. WinstonArtificial Intelligence Reading, MA: Addison-Wesley, 1984.

[39] J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau, “Optimization of Machine Descriptions
for Efficient Use,” in Proceedings of the 29th International Symposium on
Microarchitecture December 1996, pp. 349-358.

[40] T. Asprey et al., “Performance features of the PA7100 microproces&tHE
Micro, pp. 22-35, June 1993.

[41] D. Christie, “Developing the AMD-K5 architecturd EEE Micro, pp. 16-26, April
1996.

[42] E. S. Davidson, L. E. Shar, A. T. Thomas, and J. H. Patel, “Effective control for
pipelined computers,” itspring COMPCON’75 digests of papefebruary 1975,
pp. 181-184.

[43] R. L. Kleir, “A representation for the analysis of microprogram operation,” in
Proceedings of the"7Annual Workshop on Microprogrammir§eptember 1974.

[44] D. J. DeWit, “A controllword model for detecting conflicts between
microprograms,” irProceedings of the"8Annual Workshop on Microprogramming
September 1975.

[45] J. A. Fisher, “The Optimization of Horizontal MicroCode Within and Beyond Basic

Blocks; An Application of Processor Scheduling with Resources,” Ph.D. dissertation,
New York University, 1979.

261

[46] P. M. Kogge,The Architecture of Pipelined ComputeMew York: McGraw-Hill,
1991.

[47] A. E. Eichenberger and E. S. Davidson, “A reduced multipipeline machine
description that preserves scheduling constraint?rateedings of the Conference
on Programming Language Design and Implementafiéay 1996, pp. 12-20.

[48] T. A. Proebsting and C. W. Fraser, “Detecting pipeline structural hazards quickly,”
in The 2f Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languagedanuary 1994, pp. 280-286.

[49] T. Mller, “Employing finite automata for resource scheduling,Phoceedings of
the 26" Annual International Symposium on Microarchitecfubecember 1993, pp.
12-20.

[50] V. Bala and N. Rubin, “Efficient instruction scheduling using finite state automata,”
in Proceedings of the #8Annual International Symposium on Microarchitecture
November 1995, pp. 46-56.

[51] R. E. Hank, “Region-Based Compilation,” Ph.D. dissertation, Electrical and
Computer Engineering Department, University of Illinois, Urbana, IL, May 1995.

[52] J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction,”
IEEE Transactions on Computesl. C-30, pp. 478-490, July 1981.

[53] D. M. Lavery and W. W. Hwu, “Unrolling-Based Optimizations for Modulo
Scheduling,” in Proceedings of the 28 Annual International Symposium on
Microarchitecture December 1995, pp. 327-337.

[54] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and
W. W. Hwu, “Characterizing the Impact of Predicated Execution on Branch
Prediction,” in Proceedings of the 27 International Symposium on
Microarchitecture December 1994, pp. 217-227.

262

VITA

John Christopher Gyllenhaal was born in Abington, Pennsylvania, in 1968. He
pursued his undergraduate studies at the University of Arizona in Tucson, Arizona, where
he received his B.S. degree in Electrical Engineering in 1991. He continued his studies in
Electrical Engineering at the University of lllinois at Urbana-Champaign. In the spring of
1992 he joined the Center for Reliable and High-Performance Computing as a member of
the IMPACT project directed by Professor Wen-mei Hwu. He completed his M.S. degree
in Electrical Engineering in 1994. After completing his Ph.D. work, Hlecantinue to
work on several IMPACT research projects as a Visiting Research Assistant Professor at

the University of lllinois.

263

