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This dissertation addresses the complexities involved with scheduling in the presence of con-

ditional branches. This is a particularly important problem for processors that execute multiple

operations per cycle and are not fully utilized by local scheduling techniques. Since conditional

branches introduce multiple execution paths, it is di�cult for a global scheduler to keep track

of the various paths and to select the appropriate operations to schedule. A new approach to

global instruction scheduling is presented that uses Isomorphic Control Transformations (ICTs).

If-conversion is used to convert an acyclic control 
ow graph into a large basic block or hyper-

block. Local scheduling techniques which are well-known and widely supported can then be

applied to schedule operations. After scheduling, the control 
ow graph is regenerated using

Reverse If-Conversion.

One well-known local scheduling based technique is Modulo Scheduling. Modulo Schedul-

ing is a software pipelining technique that e�ectively schedules loops for high-performance

processors. This dissertation highlights the bene�ts of Modulo Scheduling over other software

pipelining techniques based on global scheduling. The ICTs are applied to Modulo Scheduling

to schedule loops with conditional branches. Experimental results show that this approach

allows more 
exible scheduling and thus better performance than Modulo Scheduling with

Hierarchical Reduction. Modulo Scheduling with ICTs targets processors with no or limited

support for conditional execution such as superscalar processors. However, in processors that

do not require instruction set compatibility, support for Predicated Execution can be used. This

dissertation shows that Modulo Scheduling with Predicated Execution has better performance

iii



and lower code expansion than Modulo Scheduling with ICTs on processors without special

hardware support.
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CHAPTER 1

INTRODUCTION

Compilers for high-performance processors must expose su�cient amounts of instruction-

level parallelism (ILP) to e�ciently utilize the processor resources. This becomes increasingly

important as the pipelines in processors become deeper and the number of concurrently exe-

cuting instructions increases. Traditionally, the scheduling scope has been limited to one basic

block. For high-performance processors, there is typically insu�cient ILP within a basic block

to fully utilize the processor resources [1], [2]. Thus, compilers for high-performance processors

must look beyond basic block boundaries to schedule instructions.

There are two problems associated with scheduling in the presence of conditional branches.

First, to achieve a good schedule the compiler must take into account the resource and de-

pendence constraints along multiple execution paths. Second, the compiler must identify the

frequently executed portions of the code to ensure that the compiler's e�orts yield improved

program performance.

Scheduling beyond basic block boundaries is commonly referred to as global scheduling [3],

[4]. There are two phases to global scheduling: 1) moving instructions between basic blocks, and

2) local scheduling. The proper ordering of these phases is di�cult to determine, particularly

in the presence of resource constraints. A di�erent approach is to reduce the task of global

scheduling to one of local scheduling. Local scheduling is the basic scheduling technique used

in most existing compilers, and, thus is well-de�ned and supported.
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Frequency-based scheduling techniques reduce the task of global scheduling to one of local

scheduling by determining the most frequently executed path and scheduling the operations

along that path [5], [6], [7]. In some cases there is more than one frequently executed path in a

program region. To apply local scheduling techniques, these multiple execution paths must be

merged into one by applying transformations to remove conditional branches. After merging,

the constraints along all paths can be considered simultaneously.

Previously, there have been two techniques proposed to merge multiple execution paths.

If-conversion has been used for processors that have special hardware support for conditional

execution [8], [9], [10]. For example, this technique has been used in the Cydrome compiler

for processors with hardware support for Predicated Execution [11], [12]. Since full predicated

execution support requires a modi�cation to the instruction set, this approach cannot be used

in superscalar processors that want to maintain instruction set compatibility. Hierarchical

Reduction is a technique that can be used to merge multiple execution paths in processors

without special hardware support [13], [14], [15]. We have implemented both of these techniques

in the IMPACT-C compiler and found that If-conversion allows more scheduling freedom and

thus has the potential for achieving a tighter schedule. Based on this knowledge, we have

developed a technique, Reverse If-conversion, that allows us to use If-conversion for processors

without special hardware support.

The Isomorphic Control Transformation (ICT) approach presented in this dissertation con-

sists of two transformations. If-conversion is used to transform the control 
ow graph into a

predicated intermediate representation. Reverse If-conversion is used to regenerate the con-

trol 
ow graph after scheduling. The transformations are isomorphic since the condition for

execution of the operation is preserved. As a result, local scheduling actions applied to the pred-
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icated intermediate representation correspond to global code motions in the resulting control


ow graph.

The second problem with scheduling beyond basic block boundaries is to identify the fre-

quently executed portions of a program to maximize the e�orts of the compiler in improving

the performance of the program. Otherwise, the compiler's scheduling e�orts may improve

the performance of infrequently executed code while actually degrading the performance of

frequently executed code and thus, degrading the overall performance. Loops are ideal since

they often execute a large number of times, and hence, the successor of the loop back branch

is predictable. Software pipelining is an instruction scheduling technique that exposes large

amounts of ILP by systematically overlapping di�erent iterations of the loop.

Modulo Scheduling is a software pipelining technique [16], [14], [12] based on local schedul-

ing. This dissertation demonstrates how ICTs can be applied to Modulo Scheduling and com-

pares the performance against Hierarchical Reduction and If-conversion [8], [9] with Predicated

Execution (PE) [11].

1.1 Contributions

The four major contributions in this dissertation are discussed below.

� The Isomorphic Control Transformation (ICT) approach proposed in this dissertation

can reduce the task of global scheduling to one of local scheduling. There are two major

bene�ts of ICTs over similar control transformations. First, they do not require special

hardware support and, thus, can be used in existing processors and their future superscalar

implementations. Second, unlike Hierarchical Reduction [15], no scheduling is performed

during the control transformations. Since scheduling during the transformation phase will
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create more complicated resource usage requirements, avoiding scheduling reduces the

potential for resource con
ict. Ultimately, it is often possible to �nd a tighter schedule

with ICTs than with Hierarchical Reduction [15]. To illustrate the use and bene�ts of

ICTs, we present an application of ICTs to Modulo Scheduling, a software pipelining

technique based on local scheduling.

� In this dissertation, we attempt to de�ne the fundamental di�erences between Modulo

Scheduling and the software pipelining techniques based on global scheduling. The pri-

mary bene�t of a local scheduling based technique such as Modulo Scheduling, is that

the processor resource constraints can be accounted for during scheduling. Thus, when

an instruction is scheduled, the resources required are reserved. The global scheduling

based techniques that have been previously proposed, only partially consider the resource

constraints [17], [18], [19]. To illustrate the hazards of ignoring resource constraints, we

compare the performance Modulo Scheduling against one global scheduling based ap-

proach, GURPR* [18].

� Predicated Execution (PE) is a form of hardware support that has been proposed for

conditionally executing operations [11]. In this dissertation, we show that PE signi�cantly

reduces the code expansion due to overlapping conditional constructs and eliminates the

bounds on performance due to the one branch per cycle constraint of most conventional

processors. We also propose a pro�le-based Modulo Scheduling technique that uses PE

support to allow the program execution to leave and re-enter the software pipeline code

with ease.
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� The techniques analyzed in this dissertation have been implemented in a prototype com-

piler. Algorithms and implementation details are provided for new techniques, includ-

ing: modi�ed RK If-conversion [10], [20], Reverse If-conversion, and Enhanced Modulo

Scheduling.

1.2 Overview

The fundamental contribution of this dissertation is combining If-conversion and Reverse

If-conversion to form an Isomorphic Control Transform (ICT) pair for reducing the task of

global scheduling to one of local scheduling. The ICT approach is outlined in Chapter 2 with

emphasis given to the new Reverse If-conversion technique.

Chapter 3 presents an overview of software pipelining and provides a comparison of the

two basic approaches, one based on global scheduling and the other based on local scheduling.

Chapter 4 provides a more in-depth description of the local scheduling based technique, Modulo

Scheduling, and addresses how ICTs are incorporated.

Chapter 5 presents the experimental results which �rst motivate the use of Modulo Schedul-

ing by comparing Modulo Scheduling against a global scheduling based technique, GURPR*.

In addition, the bene�t of Induction Variable Reversal, a proposed optimization for software

pipelining, is shown. Finally, the performance bene�ts and scheduling characteristics of Modulo

Scheduling with ICTs are presented and compared against Modulo Scheduling with Hierarchical

Reduction.

Neither ICTs nor Hierarchical Reduction requires hardware support. In Chapter 6 the bene-

�ts of Predicated Execution hardware support for Modulo Scheduling are shown. Furthermore,

a technique for using pro�ling information assuming PE support is presented.
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Chapter 7 discusses conclusions and future work with respect to ICTs in general and with

regards to their application to Modulo Scheduling.

A recurring theme in this dissertation is that Modulo Scheduling is a powerful technique

since it is a technique based on local scheduling in which the exact resource constraints can be

accounted for during scheduling. For this reason, Modulo Scheduling is an e�ective software

pipelining technique for scheduling processors with unconventional resource usage patterns such

as the manual pipeline of the Intel i860 [21]. A technique for applying Modulo Scheduling for

manual pipelines is presented in Appendix A.

1.3 Processor Terminology

The scheduling techniques presented in this dissertation can be applied to any high-performance

processors, RISC, CISC, superpipelined, superscalar, or VLIW. For clarity, the VLIW proces-

sor model will be used to illustrate examples and VLIW terminology will be used throughout.

Thus, before scheduling, a program consists of operations that are equivalent to RISC instruc-

tions. After scheduling, an instruction refers to a set of operations that are scheduled in the

same cycle.
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CHAPTER 2

ISOMORPHIC CONTROL TRANSFORMATIONS

The goal of the compiler is to �nd a su�cient number of independent operations to �ll

each instruction for every cycle in the program. While this goal is seldom reached due to

resource constraints and program dependences, it is also hindered by conditional branches

which introduce multiple execution paths for the scheduler to consider. In the past, compilers

have limited their scheduling scope to basic blocks, blocks of code without conditional branches.

Since basic blocks tend to have only a few operations, global scheduling techniques have been

proposed to schedule operations across basic block boundaries. Global scheduling consists of two

phases, inter-block code motion and local (basic block) scheduling. The engineering problem

of global scheduling is to determine how to properly order these phases to generate the best

schedule.

In this chapter we present a set of isomorphic control transformations (ICTs) that simplify

the task of global scheduling to one that looks like local scheduling [22]. This is achieved by

de�ning a predicate intermediate representation (predicate IR) that embodies the code motion

properties and thus, eliminates the need for an explicit code motion phase during scheduling.

The ICTs convert from the control 
ow graph representation to the predicate IR and vice-

versa. If-conversion, a well-known technique [9], [12], is used to convert an acyclic control


ow graph into an enlarged basic block of predicated operations called a hyperblock [23], [20].

After scheduling, a new technique, Reverse If-conversion (RIC), is used to convert from the
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predicate IR

(hyperblock)

 If-Conversion

acyclic
control
  flow
 graph

    Local
Scheduling

scheduled
   acyclic
   control
     flow
    graph

     Reverse
 If-Conversion

Figure 2.1 Overview of the Isomorphic Control Transformation (ICT) approach for global
scheduling.

scheduled hyperblock to the scheduled control 
ow graph. Figure 2.1 shows an overview of the

ICT approach to global scheduling.

If-conversion is considered an isomorphic control transformation because an operation in the

original acyclic control 
ow graph will have the same condition for execution in the hyperblock.

Likewise, RIC is isomorphic because an operation in the scheduled hyperblock will have the

same condition for execution in the regenerated acyclic control 
ow graph. Furthermore, we

assume that no operations are inserted during RIC. If an operation is inserted during RIC, then

it may violate the schedule. This assumption is particularly important for VLIW processors

that rely on precise timing relationships.

This chapter is organized as follows. In Section 2.1, we derive the predicate IR. If-conversion,

the scheduling issues, and Reverse If-conversion are presented in Sections 2.2 through 2.4. In

Section 2.5 and 2.6 we prove the correctness of the ICTs and present the complexity, respectively.

Section 2.7 discusses how ICTs build upon previous work and how it di�ers from alternate

approaches which simplify the task of global scheduling.
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2.1 Intermediate Representation

The primary program representation is the control 
ow graph (CFG). The nodes of the

CFG are basic blocks. Basic blocks correspond to a sequence of operations. The edges in the

CFG represent the control 
ow between basic blocks, where control 
ow only enters the top of

the basic block and only exits from the bottom. A basic block whose operation sequence ends

with a conditional branch has two successors. A basic block with two successors is referred to

as a split node. A split node has a true (false) successor which corresponds to the condition

of the branch being true (false). The false successor is placed adjacent to the split node in the

code layout. Thus, the false successor is on the fall-through path of the conditional branch.

For the CFGs shown in this dissertation, the destination of the left (right) edge of a split node

corresponds to the false (true) successor.

A basic block that has multiple predecessors is referred to as a merge node. Note that it is

possible for a basic block to be both a merge and a split node. All but one of the predecessors of a

merge node must end with a conditional branch or jump operation. The remaining predecessor

is placed adjacent to the merge node in the code layout. Thus, the merge node is on the

fall-through path of the remaining predecessor.

The problem addressed in this section is to de�ne an intermediate representation for acyclic

subgraphs of the CFG that allows the compiler to generate a globally-scheduled CFG by apply-

ing local scheduling techniques. Other researchers have noted the inadequacies of the CFG for

applying compiler transformations and have proposed more powerful intermediate representa-

tions such as the Program Dependence Graph (PDG) [24], [25], [26], [3], [4]. Our intermediate

representation builds on PDG concepts but is designed speci�cally to assist global instruction-

level scheduling.
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Before presenting the intermediate representation, we want to analyze the di�culty of

scheduling an acyclic CFG.

De�nition 1: An acyclic CFG is a directed acyclic graph G with a unique entry node START

and a set of exit (EXIT) nodes such that each node in the graph has at most two successors.

For any node N in G there exists a directed path from START to N and a directed path from

N to one of the EXIT nodes. START has in-degree 0; each EXIT node has out-degree 0.

Applying global scheduling to an acyclic CFG involves two phases: code motion between

basic blocks, and scheduling within basic blocks. Figure 2.2 illustrates the rules of code motion

for global scheduling [5], [6]. These rules can also be viewed as the basic steps needed for

moving operations in the CFG. For example, an operation in basic block F can be moved into

basic blocks C, D, and E by applying rule 5. The operations can then be scheduled in these

basic blocks. Identical operations in D and E can be merged into B by applying rule 1. Again,

the operations can be scheduled in these basic blocks, or the identical operations in B and C

can be merged into A. This simple example illustrates the phase ordering problem between the

code motion and scheduling phases in global scheduling. It is di�cult to determine when to

stop code motion and when to schedule the operations to generate the best schedule.

In some code motion cases, it is necessary to create a basic block into which an operation

may be copied. Consider the CFG in Figure 2.3(a). It is not possible to simply apply rule 2 to

copy an operation from B into D and E. Because E has multiple predecessors, the operation

from B cannot be placed in basic block E. Instead, a basic block (D1) must be created for

the copy of the operation. Figure 2.3(b) shows an augmented CFG with all of the possible

basic blocks (D1, D2, and D3) that could be created as a result of applying the code motion

rules [5], [6].
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3)   operation moves up from B to A  (speculative)

1)   identical operations from B and C merged into 
      A  (hoisting)

2)   operation from A copied to both B and C 

4)   operation from A copied only to B  (destination 
      is not in live-in set of C)

5)   operation from F copied into C, D, and E

7)   operation from D copied into F  (predicated) 

6)   identical operations from C, D, and E merged
      into F

Rules of Code Motion

Figure 2.2 Rules of code motion for global scheduling.
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Figure 2.3 Bounds on code motion for example CFG. (a) Example CFG. (b) Augmented
CFG. (c) Code motion bounds and ranges assuming no speculative or predicated execution.
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By applying the code motion rules to operations from every basic block in the CFG, the range

of possible destination blocks can be determined for each operation. The table in Figure 2.3(c)

presents the range assuming no speculative or predicated code motion.1 For example, consider

an operation b in basic block B. Since we do not consider speculative execution, b cannot be

moved to A. Under rule 2, b can be copied into D and D1. Since we assume no predicated

execution, b cannot be copied fromD to F or fromD1 to E. Thus, the range of allowable basic

blocks for operation b is B, D, and D1. From this range, we can see that b is bounded from

above by the conditional branch in A and bounded from below by the merges at E and F.

During local scheduling, only the precedence relations between operations are considered.

Thus, if the bounds on code motion can be represented as precedence relations, then the task of

global scheduling can be simpli�ed to local scheduling. The upper bound on code motion de�nes

the bound for upward code motion and corresponds to control dependence [9]. An operation x

that is bounded by a conditional branch operation y is said to be control dependent on y. From

the scheduler's viewpoint, x cannot be scheduled until after y has been scheduled. Given the

following de�nition of postdominance, control dependence can be de�ned [9], [24].

De�nition 2: A node X is postdominated by a node Y in G if every directed path from X to

an EXIT node (not including X) contains Y.

De�nition 3: All the operations in node Y are control dependent upon the conditional branch

operation in node X if and only if (1) there exists a directed path P from X to Y such that every

node Z in P (excluding X and Y) is postdominated by Y and (2) Y does not postdominate X.

1We also assume that there are no identical operations along di�erent control 
ow paths in the original CFG

that can be hoisted or merged. Thus, we assume that rule 1 is applied only in conjunction with rule 5, and that

rule 6 is applied only in conjunction with rule 2.
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The lower bound on code motion de�nes the bound for downward code motion. There is no

existing precedence relation that can be used to de�ne the lower bound on code motion. One

problem in de�ning such a precedence relation is that precedence relations are between two

operations, and there is no explicit merge operation. We can de�ne an implicit merge operation

to be an implied operation which precedes the �rst explicit operation in every merge node.

Now, the lower bound on code motion can be represented by a control anti dependence relation.

From a scheduler's viewpoint, a merge operation y cannot be scheduled until every operation x

upon which it is control anti dependent has been scheduled. Using the following de�nition for

dominance [27], control anti dependence can be de�ned.

De�nition 4: A node X dominates a node Y in G if every directed path from START to Y

contains X.

Note that the immediate dominator of a node X is the last dominator of X along any path

from START to X. Lengauer and Tarjan present a fast algorithm for �nding dominators in a

CFG [28].

De�nition 5: The implied merge operation in node Y is control anti dependent upon all the

operations in node X if and only if (1) there exists a directed path P from X to Y such that X

dominates every intermediate node of P , and (2) X does not dominate Y.

The matrices in Figure 2.4 show the non redundant control dependences and control anti

dependences for the example CFG in Figure 2.3(b). A redundant control dependence corre-

sponds secondary control dependences that are preserved by a combination of primary control

dependences. For example, operations from D are control dependent upon the branch of A.

This dependence is not shown since it is preserved by the combination of the control depen-
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Figure 2.4 Control precedence relations for operations in the example CFG. (a) Control
dependence. (b) Control anti dependence.

dence between the branch of A and operations from B and the control dependence between the

branch of B and operations from D.

Given the control dependences and control anti dependences, we need to de�ne an IR that

preserves these dependences. Since our goal is to apply local scheduling techniques, an operation

is the basic unit of the IR. A predicate, which represents an operation's condition for execu-

tion, can be assigned to each operation. Every operation in the acyclic control 
ow subgraph

becomes a predicated operation. To preserve control dependences, conditional branches become

operations that de�ne the predicates. These operations are referred to as predicate de�ning

operations (pd). To preserve control anti dependences, implied merge operations become oper-

ations that merge (or kill) predicates, referred to as predicate merging operations (pm). As we

will de�ne later, the pm operation is used to indicate when a predicate can be removed from

the active set of predicates.
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Table 2.1 Predicate Intermediate Representation.

Operation Syntax

predicated operation < p > op

predicate de�ning < p > pd [cond] ffalsegftrueg

predicate merging pm fno jumpgfjumpg

It is su�cient to represent the control dependences and control anti dependences using one

set of predicates per pd operation and one set of predicates per pm operation. To regenerate the

CFG, the RIC algorithm must be able to determine which predicates were de�ned along the two

paths of the conditional branch. Thus, two sets of predicates are needed for the pd operations,

one for predicates de�ned along the true path and one for predicates de�ned along the false

path of the conditional branch. Likewise, there are two types of predicates paths entering a

merge node, those that have jump operations and those that do not. The pm operation has two

sets of predicates, those corresponding to paths being merged that require a jump, and those

that do not. Table 2.1 shows the syntax of the predicate IR. Note that since the implicit merge

operation is not an actual operation in the original CFG, the pm operation is not predicated.

The predicates in the jump and no jump sets indicate the condition for execution of the pm

operation.

Before discussing the If-conversion transformation, we return to the idea of augmenting the

CFG with empty basic blocks. As discussed above, during code motion, basic blocks may need

to be generated to hold copies of moved operations. Since local scheduling is applied to the

predicate IR, these basic blocks are generated during RIC. When a basic block is generated,

control operations need to be inserted to branch into and out of the new basic block. Since

inserting new operations after scheduling may lengthen the schedule, inserting operations during
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Algorithm DUM: Given a rooted directed graph G, (N, E, START), insert dummy nodes
where necessary.

Let 8 X 2 N
num succ(X) = the number of successors of X
num pred(X) = the number of predecessors of X

8[X,Y] 2 E
if (num succ(X) > 1) and (num pred(Y) > 1)

insert dummy node on edge [X,Y]
if(Y is not the fall-through path of X)

insert jump operation in dummy node

Figure 2.5 Algorithm DUM inserts dummy nodes into CFG to account for bookkeeping.

RIC is undesirable. To avoid inserting operations during RIC, the CFG is augmented with

dummy blocks before If-conversion. For every edge X ! Y in the CFG, if X has multiple

successors and Y has multiple predecessors, then a dummy node is inserted on X ! Y . If Y is

not on the fall-through path of X , then insert a jump operation in the dummy node. Algorithm

DUM in Figure 2.5 is used to insert dummy nodes.

2.2 If-conversion

The If-conversion algorithm presented in this dissertation is based on the RK algorithm [10].

The basic RK algorithm decomposes the control dependences using two functions R and K. The

function R(X) assigns a predicate to basic block X such that any basic block that is control

equivalent [4] to X is assigned the same predicate. Two nodes X and Y in the CFG are

control equivalent if X dominates Y and Y postdominates X. The function K(p) speci�es the

conditions under which a predicate p is de�ned. Predicate de�ning operations are placed into

nodes according to K. For example, when K(p) = �A, a pd operation that de�nes p under the

false condition of the branch of A is placed in node A. Note that in the following examples,
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Algorithm S: Given (1) a rooted directed graph G, (N, E, START), (2) an ordered set of
predicates, P, determined by R(X) 8 X 2 N, and (3) the mapping K(p) 8 p 2 P, compute S.
For any split node X, Strue(X) (Sfalse(X)) speci�es the set of predicates de�ned under the true
(false) condition of the branch of X referred to as condition(X).

8 p 2 P
8 X 2 K(p)

if condition(X) is TRUE
Strue(X) = Strue(X)[ p

else
Sfalse(X) = Sfalse(X)[ p

Figure 2.6 Algorithm S determines the predicates along true (false) paths of each conditional
branch.

we use the name (name) of the split node to indicate the true (false) conditions of the node's

conditional branch.

To generate the true and false predicate sets of the pd operation, we have added two

functions, Strue(X) and Sfalse(X), to combine all the predicates de�ned under the true and false

conditions of conditional branch of X. The S algorithm is presented in Figure 2.6.

Figure 2.7 shows the predicated example CFG and corresponding R, K, Strue, and Sfalse

functions. Note that basic blocks A and J are control equivalent; thus, they have the same

predicate p0. Since A and J always execute, K(p0) is the empty set since no conditions de�ne

their execution.

Consider the conditional branch in basic block A. From the control dependence matrix in

Figure 2.4(a), we know that basic blocks B, C, and F are control dependent on the branch

in A. Using the R function, the predicates of basic block B, C, and F are p1, p2, and p5,

respectively. The value of the K function is f�Ag for p1, f�A; �Cg for p5, and fAg for p2. Thus,

Sfalse(A) is fp1,p5g and Strue(A) is fp2g.
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Figure 2.7 Values of the functions R, K, S, and M for example CFG.

Another way of viewing control anti dependences is to say that an operation is reverse

control dependent on an implied merge operation.

De�nition 6: All the operations in node X are reverse control dependent upon the implied

merge operation in node Y if and only if (1) there exists a directed path P from X to Y such

that X dominates every intermediate node in P, and (2) X does not dominate Y.

Reverse control dependence can be calculated by modifying the algorithm for calculating

control dependence presented in [10]. The algorithm RCD in Figure 2.8 calculates the reverse

control dependences of each node in the directed graph. RCD(X) calculates the set of implied

merge operations which every operation in node X is reverse control dependent upon. The

algorithm M in Figure 2.9 uses RCD(X) to determine which predicates are being merged at

each pm operation. Once it has been determined which predicates to merge, the predicates

are divided into the no jump and jump sets for each pm operation. Given a merge node t in
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Algorithm RCD: Given a rooted directed graph G, (N, E, START), compute the reverse
control dependence. Assume that dominators of G have been calculated.

Let 8 X 2 N
dom(X) = fY 2 N: Y dominates Xg
idom(X) = the immediate dominator of X

8 [X,Y] 2 E such that X 62 dom(Y)
LUB = idom(Y)
t = X
while (t 6= LUB)

RCD(t) = RCD(t) [ Y
t = idom(t)

Figure 2.8 Algorithm RCD computes reverse control dependence.

RCD(X) and the predicate, p, of X, p is placed in the jump set of the the pm operation of t if

(1) t is an immediate successor of X, and (2) t is not on the fall-through path of X. Otherwise,

p is placed in the no jump set of the pm operation of t.

Figure 2.7 shows the merge functions Mjump and Mno jump of the implicit pm operations at

nodes E, F, and J. Consider the implied merge operation at node F. From the control anti

dependence matrix in Figure 2.4(b), we know that operations in basic blocks B, D, and E are

control anti dependent on the implied merge operation of F. Node E is an immediate predecessor

of F and is assumed to have a jump operation (e.g., F is not on the fall-through path) and

thus its predicate is in the jump predicate set. Thus, Mjump(F) is fp4g and Mno jump(F) is

fp1,p3g.

After If-conversion, each operation is predicated, conditional branch operations are replaced

by pd operations, implied merge operations are replaced by pm operations, and jump operations

are deleted.

Figure 2.10(a) shows the code after If-conversion has been applied to the example CFG.

Note that the R function de�nes the predicate of each operation; the Strue and Sfalse functions
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Algorithm M: Given a rooted directed graph G, (N, E, START) and RCD of G, compute
M. Mjump speci�es the set of predicates to be merged whose corresponding blocks require an
explicit jump to be inserted. Mno jump speci�es those that do not.

Let 8 X 2 N
P(X) = predicate that X is control dependent upon

8 X 2 N
8 t 2 RCD(X)

if t 6= ;

if (t fall-through path of X) or
(t not immediate successor of X)
Mno jump(t) = Mno jump(t)[ P(X)

else
Mjump(t) = Mjump(t) [ P(X)

Figure 2.9 Algorithm M computes the set of predicates for each merge point.

de�ne the true and false sets of the pd operations; and the Mno jump and Mjump functions de�ne

the no jump and jump sets of the pm operations. To illustrate the scheduling and regeneration

complexities, Figure 2.10(a) shows predicated operations for each basic block. In this example,

generic operations are used. The lower case letter is used to indicate which basic blocks the

operations were from in the original CFG. For example, op a1, ..., op a4 are the operations

from basic block A in the example CFG. Furthermore, the basic block identi�er is also used

to specify the condition of the pd operation. For example, <p0>pd[A]fp1,p5gfp2g is a pd

operation de�ned under predicate p0. The pd operation de�nes predicates p1 and p5 (p2)

under the false (true) condition of the conditional branch of A. Also, the pm operations indicate

from which basic block they originate. For example, pm F is the pm operation associated with

the implied merge operation of basic block F. Note that since dummy nodes, D1, D2, and D3

do not have any operations before scheduling, there are no predicated operations corresponding
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to these blocks. Note, however, that their predicates are placed in the appropriate sets of the

pd and pm operations.

2.3 Scheduling Issues

By using the set of isomorphic control transformations, local (basic block) scheduling tech-

niques can be used to perform global scheduling. The control dependences and control anti

dependences are used to preserve the control 
ow properties during scheduling. Control de-

pendence prevents operations from being scheduled before the corresponding pd operation. In

terms of the CFG, control dependences prevent the operations from being moved above a con-

ditional branch. Control dependences may be removed if the processor has hardware support

for speculative execution. In this case, the predicate of an operation can be promoted to or

replaced by the predicate of the pd operation and thus, the operation can be scheduled before

the pd operation [23]. Control anti dependence ensures that the pm operation is scheduled

after any operations that it is control anti dependent upon. Thus, with respect to the resultant

CFG, the control anti dependence prevents any operations from being incorrectly scheduled

after a merge point. Control anti dependences may be removed if the processor has hardware

support for predicated execution [11], [12].

The disadvantage of speculative and predicated execution is that the processor will fetch

the operation even when the result of the operation is not used. The hyperblock formation can

be used to ensure that operations are moved only along the most frequently executed paths. A

hyperblock is de�ned as follows.

De�nition 7: A hyperblock is an predicated region formed from an acyclic subgraph of the

CFG which has only one entry (START) block and one or more exit (EXIT) blocks.
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<p0>  op_a1

<p0>  op_a2

<p0>  op_j1

<p0>  pd [A] {p1,p5}{p2}

<p1>  op_b1

<p0>  op_j2

<p2>  op_c1

<p1>  pd [B] {p3}{p4,p6}

<p3>  op_d1

<p4>  op_e1

<p5>  op_f1

<p2>  op_c2

<p4>  op_e2

<p2>  op_c3

pm_E {p1,p2,p7}{p6}

<p3>  op_d3

<p5>  op_f2

<p4>  op_e3

pm_F {p1,p3}{p4}

<p0>  op_a3

<p0>  op_j3

<p5>  op_f3

pm_J  {p2,p5}{p8}

<p0>  op_a4

<p0>  op_j4

<p1>  op_b2

<p2>  pd [C] {p4,p5,p7}{p8}

<p3>  op_d2

<p1>  op_b3

(a) (b)

<p0>  op_a1I1:

<p0>  op_a2

<p0>  op_j1

<p0>  pd [A] {p1,p5}{p2}

<p1>  op_b1

I2:

I3:

I4:

I5:

I6: <p0>  op_j2

I7: <p2>  op_c1 /  <p1>  op_b2

I8: <p1>  pd [B] {p3}{p4,p6}

I9: <p3>  op_d1 /  <p2>  pd [C] {p4,p5,p7}{p8}

I10: <p4>  op_e1

I11: <p5>  op_f1

I12: <p2>  op_c2 /  <p3>  op_d2

I13: <p4>  op_e2

I14: <p1>  op_b3 /  <p2>  op_c3

I15: 

I16:

pm_E {p1,p2,p7}{p6}

I17:

<p3>  op_d3

I18: 

<p5>  op_f2

I19: 

<p4>  op_e3

I20:

I21:

pm_F {p1,p3}{p4}

I22:

<p0>  op_a3

I23:

<p0>  op_j3

I24:

<p5>  op_f3 / pm_J {p2,p5}{p8}

<p0>  op_a4

<p0>  op_j4

Figure 2.10 (a) Result of applying If-conversion to example CFG. (b) Example code after
scheduling but before RIC.
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Thus, if some basic blocks are known to be infrequently executed, then they can be excluded

from the hyperblock. This allows the compiler to more e�ectively optimize and schedule the

operations from the more frequently executed basic blocks that form the hyperblock. To exclude

basic blocks, a technique called tail duplication is used to remove additional entry points into the

hyperblock. The details of selecting basic blocks and using tail duplication to form hyperblocks

are provided in [23], [20].

In the scheduled hyperblock, operations with mutually exclusive predicates can be scheduled

to the same processor resource in the same cycle. This is allowed since operations with mutually

exclusive predicates will be placed in di�erent basic blocks in the scheduled CFG. In Figure 2.10,

a `/` is used to indicate that two operations are scheduled to the same resource. We use the

Predicate Hierarchy Graph (PHG) [23], [20] to determine whether two predicates are mutually

exclusive, or equivalently, do not have a control 
ow path between them. The PHG is an acyclic

graph with two types of nodes: predicate and condition. Figure 2.11(b) shows the PHG for the

example predicated CFG shown in Figure 2.11(a).

The levels of the graph alternate between predicate and condition nodes, where the root node

is the predicate p0, which is always de�ned. The Boolean expression that de�nes a predicate

can be determined by traversing the PHG from the predicate node to the root node. Each

conjunction in the graph corresponds to a Boolean AND, and each disjunction corresponds to a

Boolean OR. For example the Boolean expression of predicate p4 is (a bar � b) + (a � c bar).

With respect to the CFG, the Boolean expression translates into the following. Basic block E

will execute if the condition of the branch of basic block A is false and the condition of the

branch of basic block B is true, or if the condition of A is true and the condition of C is false.
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A

B C

D E

F

J

<p0>

<p1> <p2>

<p6>

<p3> <p4>

<p5>

<p0>

<p8>

<p7>

D1 D2

D3

c_bar
b_bar c

a_bar a

b

p0

aa_bar

p1 p2

bb_bar cc_bar

p3 p6 p5p7p4 p8

(a) (b)

Figure 2.11 (a) Example CFG with branch conditions. (b) Predicate Hierarchy Graph.
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Determining whether there is a control path between two predicates is equivalent to deter-

mining whether the two predicates can be ever both be true at the same time. Thus, there is

not a control 
ow path between two predicates if the AND of the two corresponding Boolean

expressions can be simpli�ed to 0.

The pm operation also has special scheduling characteristics. A pm operation is scheduled

as a jump operation under the jump set predicates and as a null operation under the no jump

set predicates. Since there may be multiple predicates in the jump set, multiple jump operations

can be scheduled per pm operation. All predicates in the jump set are mutually exclusive, and

thus, their operations can be scheduled to the same processor resource in the same cycle. A

null operation does not require any resources or cycles. To schedule a pm operation at a given

time to a given resource, only the predicates in the jump set must be mutually exclusive to the

predicates of other operations already scheduled to the resource.

Figure 2.10(b) shows the example hyperblock after scheduling. The schedule assumes a

single-issue processor without interlocking. We present the most restrictive processor model to

illustrate how no-op operations are inserted if needed. Note that the control dependences (con-

trol anti dependences) between pd (pm) operations and their respective predicated operations

are preserved. We assume that all other data dependences between operations are preserved.

Also note that the pm operation pm J is scheduled in instruction I22. It can be scheduled

in instruction I22 since all operations that are predicated on p2, p5, and p8 are scheduled

at or earlier than I22. Also, p8 and p5 are mutually exclusive; thus, both op f3 and pm J

can be scheduled in the same cycle. Note, that although a pm operation is scheduled as a

jump operation, it is not converted to a jump operation until RIC. Similarly, a pd operation is
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scheduled as a conditional branch but is not converted to a conditional branch operation until

RIC.

Before If-conversion was applied to the CFG, the CFG was augmented with dummy nodes.

The scheduler can determine whether a dummy node is needed. If a dummy node is not needed,

then the scheduler should apply the following jump optimization to remove unnecessary jump

operations when pm operations are scheduled. When a pm operation is scheduled, a jump is

required if any operations have been scheduled along the control path between the pd operation

that de�nes a predicate p and the pm operation that contains p in its jump set. The scheduler

can determine whether a jump is needed by checking all scheduled operations between pd and

the cycle in which pm is being scheduled. If any operations have a predicate that is not mutually

exclusive with the predicate p, then a jump is needed. For VLIW processors, a further condition

is needed. To remove a jump, the pm operation must be scheduled in the same cycle as the

pd operation . If a jump is not needed, then jump optimization is performed by deleting the

predicate p from the jump set and inserting it into the no jump set of the pm operation.

2.4 Reverse If-conversion

After scheduling, the hyperblock represents the merged schedule for all paths of the CFG.

The task of RIC is to generate the correct control 
ow paths and to place operations into

the appropriate basic blocks along each path. Whereas a basic block in the original CFG

was assigned one predicate, each basic block in the regenerated CFG has a set of predicates

associated with it. The allowable predicate set speci�es the predicates of the operations that

can possibly be placed in the corresponding basic block. Intuitively, the allowable predicate set

is the mechanism that accounts for the code motion phase of global scheduling.
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The RIC algorithm is presented in Figure 2.12. The RIC algorithm processes the operations

in the hyperblock in a sequential manner. As the CFG is generated, there is a continually

changing set of leaf nodes which at a given cycle contains one node from every possible execution

path. The algorithm maintains the leaf node set L to determine the basic blocks in which

operations can be placed. Initially, L consists of the root node of the regenerated CFG. Each

node X in L has an allowable predicate set �(X). When an operation op in the hyperblock is

processed, it is placed in every node X in L for which P (op) 2 �(X). For a VLIW processor,

it is necessary to insert no-op operations into empty slots. Since each operation slot may have

multiple operations with mutually exclusive predicates, no-op operations are not inserted until

after the entire instruction has been processed.

When a pd operation is encountered, it is inserted into every node X in L for which P (pd) 2

�(X). For each such X , two successor nodes Succt and Succf corresponding to the true and

false path of pd are created and inserted into L andX is deleted from L. The allowable predicate

sets of Succt and Succf are,

�(Succt) = �(X)[ true predicates of pd; and

�(Succf) = �(X)[ false predicates of pd:

When a pm operation is encountered, the following is done for each node X in L. If a

predicate in �(X) is in the jump or no jump sets, then the predicates speci�ed in the jump and

no jump sets are deleted from �(X) to create �new(X). If it is in the jump set, then a jump

operation is inserted into X . L is searched for a node Y with the same allowable set as �(X).

If one is found, then Y becomes the successor of X . Otherwise, a successor is created for X

with the allowable set �new(X).
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Algorithm RIC: Given hyperblock H, regenerate a correct CFG. For VLIW processors,
insert no-op �lls each empty operation slot in an instruction with a no-op operation.

Let 8 X 2 H
P(X) = predicate that X is control dependent upon

create root node
L = frootg
�(root) = fp0g
8 op 2 H in scheduled order

8 X 2 L
if op is predicate de�ning (pd) operation

if P(op) 2 �(X)
insert a conditional branch operation into X
create successor nodes Succt and Succf
�(Succt) = �(X)[ (true predicate set of op)
�(Succf) = �(X)[ (false predicate set of op)
L = (L�X) [ Succt [ Succf

else if op is predicate merging (pm) operation
�new(X) = �(X) - (no jump predicate set of op) - (jump predicate set of op)
if �new(X) 6= �(X)

if (jump predicate set of op) \ �(X) 6= ;
insert jump operation in X

8 Y 2 L
if �new(X) � �(Y)

successor of X = Y
if successor found

L = L� X
else

create successor node Succ
�(Succ) = �new(X)
L = (L�X) [ Succ

else if op is predicated operation
if P(op) 2 �(X)

insert op in X

if target processor is VLIW and last op of instruction
insert no-op

Figure 2.12 Algorithm RIC performs Reverse If-conversion.
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Figure 2.13 shows the CFG generated from the scheduled hyperblock in Figure 2.10(b). The

target machine in this example is a single-issue processor without interlocking. Thus, no-op

operations are required and are represented by a dash. The allowable predicate set is indicated

on top of each basic block.

2.5 Correctness of ICT approach

In this section we prove the correctness of the isomorphic control transform approach. First,

we show that DUM preserves the control dependences of the original CFG G.

Lemma 2.5.1 Given a directed graph G, the augmented CFG created by DUM preserves the

control dependence and reverse control dependence of G.

Proof: Let P be a directed path between node X and node Y in G. First consider control

dependence, where Y is control dependent on X. Assume that DUM inserts a node Z in P.

Since Z only has one successor and Z is in P, every path from Z to an EXIT node contains

Y. Thus, Z is postdominated by Y, and hence, Y remains control dependent on X. A similar

argument can be made for reverse control dependence. 2

Lemma 2.5.2 Assuming no speculative or predicated execution, an operation in the regenerated

CFG is executed if and only if it would be executed in the original CFG.

Proof: During If-conversion, every operation is assigned a condition for execution (predicate).

The control dependences and control anti dependences are preserved using pd and pm opera-

tions, respectively. We assume that the scheduler does not violate these dependences.

There are three cases in which an operation can execute in the original CFG but not in the

regenerated CFG: 1) the operation is moved from above to below a branch but only placed on
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op_a1

op_a2

op_j1

cbr_A

{p0}

op_b1

op_j2

op_b2

cbr_B

{p0,p1,p5}

-

op_j2

op_c1

-

op_d1 - cbr_C

{p0,p2}

op_e1op_e1- -

{p0,p1,
 p3,p5}

{p0,p1,p4,
 p5,p6}

{p0,p2,p4,
 p5,p7} {p0,p2,p8}

op_f1 op_f1 op_f1 -

op_d2 - op_c2 op_c2

- op_e2 op_e2 -

op_b3 op_b3 op_c3 op_c3

- jump -

{p0,p4,p5}

-

op_d3 - -

op_f2 op_f2 -

- op_e3 -

- jump -

{p0,p5}

op_j3

op_a3 op_a3

op_j3

op_f3 jump

{p0}

op_a4

op_j4

Instruction
Hyperblock

Being 
Processed

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

I17

I18

I19

I20

I21

I22

I23

I24

Figure 2.13 CFG of scheduled hyperblock after RIC.
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one path of the branch, 2) the operation is moved from below to above a merge but not along

every path, and 3) the operation is deleted from a path. Since the scheduler does not allow

these cases, all three cases can occur only if RIC places an operation on the wrong path or fails

to place an operation.

There are three cases in which an operation can execute in the regenerated CFG but not in

the original CFG: 1) the operation is moved above a branch it is control dependent upon, 2)

the operation is moved below a merge it is control anti dependent upon, and 3) the operation

is executed along a mutually exclusive path. The �rst two cases can occur only if RIC violates

the dependences. The last case can occur only if RIC places an operation on the wrong path.

The control dependences and control anti dependences are preserved by RIC in the following

manner. During RIC, a pd operation is converted into a conditional branch. The predicates

de�ned along one path of the branch are inserted into the allowable predicate set of that path.

An operation is inserted only along the path that has its predicate in the allowable predicate

set. Thus, an operation will not be placed before a branch upon which it is control dependent or

along the wrong path of the branch. The pm operation is scheduled after every operation upon

which it is control anti dependent. During RIC, paths are not merged until a pm operation is

encountered. Thus, an operation that the pm is control anti dependent upon will not be placed

after a merge. Since RIC preserves the control dependences and control anti dependences, the

predicate of an operation will be in the allowable predicate set of a block when the operation

is processed. Thus, an operation cannot be deleted during RIC. 2

Lemma 2.5.3 Given a VLIW processor, the timing relationship between any two operations

in a scheduled hyperblock is preserved in the regenerated CFG.
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Proof: During RIC, instructions are processed according to the schedule. Thus, instructions

are generated with the proper number of cycles between them unless operations are added or

deleted. Only jump operations would need to be added during RIC. Dummy node insertion

and the pm operation ensure that no jump operations need to be added during RIC. After all

VLIW instructions are processed, empty operation slots are �lled with no-op operations. Thus,

no operations will be inserted or deleted during RIC.2

Theorem 2.5.1 Given a correct schedule, the ICT approach generates a correct globally sched-

uled CFG.

Proof: This theorem follows from Lemmas 2.5.1, 2.5.2, and 2.5.3.

2.6 Complexity

The time complexity of the RIC algorithm is O(HpLmax +HdL
2
max + Hm2L

2
max), where Hp is

the number of operations in the hyperblock excluding pd and pm operations, Hd is the number

of pd operations, Hm is the number of pm operations, and Lmax is the maximum size of set

L. The �rst term arises from placing predicate operations in the appropriate leaves of L. The

second term arises from placing pd operations in the appropriate leaves of L and then updating

L accordingly. The time for one update to L is O(L). The third term arises from placing the

pm operations in the appropriate leaves and for each leaf, searching L for leaves with the same

allowable predicate set, and updating L.

Note that the operations performed on the allowable predicate set are ignored since the

number of predicates in a hyperblock is typically small enough that they can be represented

as bits and manipulated by O(1) logical operations. In Section 5.5.1, the maximum number of

predicates in the hyperblock of the software pipelined loops studied is 8.
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It is di�cult to determine the complexity of RIC without actually measuring the parameters

during RIC. An upper bound can be derived since Lmax is bounded by jNj, the number of nodes

in the resultant CFG. Thus, the time complexity of RIC in terms of jNj is O(HjNj2). Note

that jNj is a function of the scheduler and does not necessarily have any correlation with the

number of nodes in the original CFG. Since, Lmax is typically considerably smaller than the

number of nodes in the resultant graph, this is a very loose upper bound. Section 5.5.7 presents

the parameters used to calculate the time complexity of RIC for software pipelined loops.

2.7 Related Work

The phase ordering problem of global scheduling is inherent in Percolation Scheduling [29].

Actually, Percolation Scheduling is not truly a scheduling technique but a set of transformations

for global scheduling. The premise however, is to schedule each operation by repeatedly applying

these transformations.

Recently, researchers have noted that global scheduling should have the same basic strategy

as local scheduling: Namely, heuristics should be applied to identify which operation to schedule

and then the operation should be moved accordingly. This approach was proposed by Ebcio�glu

and Nicolau in their global resource constrained technique [30]. This technique calculates a

set of uni�able ops at each instruction boundary which identi�es the operations that can be

moved into the instruction from the successor instructions. Note that this approach assume that

an instruction can have multiple branch operations and thus an instruction can have multiple

successors. After code motion, the set of uni�able ops must be updated to re
ect the code

motion. Moon and Ebcio�glu made the following improvements to this technique: 1) the set of
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uni�able ops is associated with a basic block rather than a VLIW instruction, and 2) dynamic

renaming and combining are performed to increase the number of uni�able ops [31].

Global scheduling techniques have also been proposed using the ProgramDependence Graph

(PDG) [24]. The PDG represents control dependences as well as data dependences by assign-

ing predicates to regions. Thus, operations from control equivalent basic blocks are placed in

the same region. Simply applying local scheduling to the region is a form of global schedul-

ing [24] since the operations may have originally existed in di�erent basic blocks. There have

been several more aggressive global scheduling techniques proposed based on the PDG. Region

Scheduling, proposed by Gupta and So�a [3], applies transformations to the PDG until a re-

gion has a prede�ned level of parallelism. After all transformations have been applied, local

scheduling is applied to the regions. This approach also has a phase ordering problem in which

the two phases are 1) applying the transformations, and 2) calculating the parallelism measure.

Bernstein and Rodeh [4] also use the PDG, but they only calculate the ready operations and

apply code motions once for each operation. Their current implementation limits instruction

scheduling by disallowing code duplication, preventing any new basic blocks from being created

during instruction scheduling, and allowing an instruction to be speculatively executed above

only one branch. With these restrictions, the incremental update of data
ow information is

relatively simple.

The primary bene�ts of using ICT to simplify the task of global instruction scheduling are

1) the scheduler does not need to keep track of bookkeeping information; 2) local schedul-

ing techniques are well-de�ned and widely implemented; and 3) conditional branches can be

scheduled in the same manner as any other type of operation and thus, the code motion com-

plexity incurred by moving branch operations above other branch operations [6] is eliminated.
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Furthermore, at this point, no data 
ow information is incorporated and thus, the expensive in-

cremental updates to the data
ow information do not need to be performed during scheduling.

As more aggressive scheduling techniques requiring data 
ow information are applied using the

ICT technique, the complexity of the ICT approach will likely increase.

The concept of simplifying the task of global scheduling to one that looks like local schedul-

ing is not new. Frequency-based scheduling techniques such as Trace Scheduling [5],[6] and

Superblock Scheduling [32], [7] generate sequential portions of code to schedule by predicting

the most frequently executed paths. But, branches do not always have a dominant direction or

may not be predictable. In such cases, paths can be merged by using techniques such as the

ICTs.

Two previous methods merge multiple execution paths. The �rst method uses If-conversion [8],

[9] to convert control 
ow into data dependences and assumes hardware support for conditional

execution. For instance, this approach was used for vector processors with mask registers [9].

The Cydra 5 [11] is a VLIW machine with hardware support for Predicated Execution (PE).

Scheduling techniques such as Hyperblock Scheduling [23] and Modulo Scheduling [12] can then

be applied to processors with PE support. Chapter 6 discusses the bene�ts of PE support for

Modulo Scheduling.

The ICT approach presented in this chapter extends the concepts of the predicate IR to

processors without special hardware support. Previously, Hierarchical Reduction [13], [14], [15]

has been used to merge execution paths for processors without hardware support for conditional

execution. To understand the di�erences between the ICT approach and the Hierarchical

Reduction approach, the later is discussed in some detail in the following section.
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2.7.1 Hierarchical Reduction

Hierarchical Reduction is a technique that converts code with conditional constructs into

straight-line code by collapsing each conditional construct into a reduct op [13], [14], [15]. It is

a hierarchical technique since nested conditional constructs are reduced by collapsing from the

innermost to the outermost. After Hierarchical Reduction, reduct op's can be scheduled with

other operations in the loop. Hierarchical Reduction assumes no special hardware support.

Thus, the conditional constructs are regenerated after modulo scheduling, and all operations

that have been scheduled with a reduct op are duplicated to both paths of the conditional

construct.

A reduct op is formed by �rst list scheduling both paths of the conditional construct. The

resource usage of the reduct op is determined by the union of the resource usages of both paths

after list scheduling. The dependences between operations within the conditional construct and

those outside are replaced by dependences between the reduct op and the outside operations.

A dependence between two operations is characterized by the type (
ow, anti, and output),

distance, and latency. The distance is the number of loop iterations the dependence spans. The

latency is the minimum number of cycles between the operations to guarantee the dependence

is met. While the type and distance of the dependence do not change, the latency for a given

dependence is modi�ed to take into account when the original operation is scheduled with

respect to the reduct op. Consider two operations opi and opj , where opj is an operation

from the conditional construct that has been list scheduled at time tj . A dependence arc with

latency d, source opi, and destination opj , is replaced by a dependence arc between opi and the
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for (i = 0; i < MAX; i++) {

if (i == 0) {

A[ i ] = (A[ i ] + c1) * c2 + c3;

} else {

A[ i ] = (A[ i ] + c4);
}

}

(a) (b)

L1:

L2:

L3:

op8:    r5 <- r4 + c1
op9:    r6 <- r5 * c2
op10:  r7 <- r6 + c3

op12:  r1 <- r1 + 8

op4:    r4 <- r2 (r1)
op5:    beq  r1, 0, L2
op6:    r7 <- r4 + c4
op7:    jump  L3

op11:  r2 (r1) <- r7

op13:  bne  r1, r3, L1

op1:    r1 <- 0

op3:    r3 <- MAX * 8
op2:    r2 <- label_A

Figure 2.14 Example C loop segment with corresponding assembly code.

reduct op, opr, with latency d0 = d� tj .2 If instead, opj is the source and opi is the destination,

the latency for the dependence between opr and opj is d+ tj .

Figure 2.14 shows a C code segment of a loop and the corresponding assembly code. Note

that each element of array A is assumed to occupy 8 bytes; thus, the loop is incremented by 8

every iteration to simplify the array address calculations within the body of the loop. The loop

has a simple if-then-else construct.3 The machine being scheduled in this example is a VLIW

with two uniform function units with the exception that only one branch can be scheduled per

cycle. The multiply operation has a two cycle latency. All other operations have a one cycle

latency. Figure 2.15 shows the dependence graph for the loop body. The dependence arcs are

marked with the type, distance and latency. The types are abbreviated as follows: 
ow (f) and

anti (a).

2It is possible to have a dependence with a negative latency. After opi is scheduled, opr can be scheduled d0

cycles earlier if there are no resource con
icts and all other dependences are satis�ed.
3Whereas, ICTs can be applied to unstructured CFGs that have arbitrary control 
ow generated by goto

statements, Hierarchical Reduction is limited to structured CFGs.
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<f,0,1>

<f,0,2>

<f,0,1>

<f,0,1>

<a,0,0>

<f,0,1>
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Figure 2.15 Dependence graph of example code segment.
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L1:

L2:

L3:

op8:       r5 <- r4 + c1
op9:       r6 <- r5 * c2
op10:     r7 <- r6 + c3

op12:  r1 <- r1 + 8

op4:    r4 <- r2(r1)

op5:    beq  r1, 0, L2

op6:       r7 <- r4 + c4
op7:       jump  L3

op11:  label_A (r1) <- r7

op13:  bne  r1, MAX, L1

Figure 2.16 Loop CFG with paths to list schedule highlighted.

Figures 2.16 and 2.17 show how the Hierarchical Reduction technique reduces the control

construct in this code segment. Figure 2.16 illustrates that the reduction operation is formed by

list scheduling the two paths f op5, op8, op9, op10g and f op5, op6, op7 g. Figure 2.17(a)

shows the list schedule of each side of the control construct. Note that op 7 must be scheduled

in the last cycle of the reduct op such that operations that are scheduled with the reduct op

can be copied appropriately to both paths after regeneration. The resultant resource usage of

the reduct op op50 formed by taking the union of the resource constraints along both paths.

Figure 2.17(b) shows the resultant loop assembly code segment after Hierarchical Reduction.

Since conditional branches have been removed, local scheduling techniques can be applied.

Figure 2.17(c) shows the modi�ed loop dependence graph. Note that the latency for the 
ow

dependence between operations op4 and op6 (and also between op4 and op8) is originally one.

These dependences are replaced by a 
ow dependence between op4 and op50 with zero latency

since op6 and op8 are scheduled one cycle later than op50. After scheduling, the reduct op's

39



op5

op8

op9
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op5

op6
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op5
op8/
op6
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(a)

(c)

op4

op5’

op11

op12

op13

<f,0,1>

<f,0,0>

<f,0,5>

<a,0,0>

<f.1.1>

(b)

L1:

op12:  r1 <- r1 + 8

op4:    r4 <- r2 (r1)
op5’:   reduct_op
op11:  r2 (r1) <- r7

op13:  bne  r1, MAX, L1

Figure 2.17 Applying Hierarchical Reduction to example code segment. (a) Reduct op gen-
eration. (b) Assembly language segment after Hierarchical Reduction. (c) Data dependence
graph after Hierarchical Reduction.

must be expanded. Any operations scheduled within a reduct op must be copied to both paths

of the regenerated conditional construct.

While Hierarchical Reduction allows a code region with conditional constructs to be locally

scheduled, it places some arti�cial scheduling constraints on the loop by �rst list scheduling

the operations of the conditional construct. The list schedule causes the reduct op to have a

complex resource usage which may con
ict with already scheduled operations and hence result

in a longer schedule.
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CHAPTER 3

SOFTWARE PIPELINING

Loops are an ideal source of instruction-level parallelism since operations from di�erent

iterations can be scheduled together. One approach is to unroll the loop a certain number of

times and then schedule the operations from the unrolled iterations together. The operations at

the end of the unrolled loop are scheduled without regard to the operations at the beginning of

the loop. Thus, at the end of each iteration of the unrolled loop, some delay may occur waiting

for operations to �nish executing. To avoid this delay, the loop can be software pipelined [33].

Figures 3.1 and 3.2 illustrate the concept of software pipelining. Figure 3.1(a) shows the C

code for a simple loop, Figure 3.1(b) shows the corresponding assembly code without the loop

control code, and Figure 3.1(c) shows the data dependence graph. The loop has four operations,

LD, ADD,MUL, and ST. Since there is a dependence chain involving every operation in the

loop, there is no instruction-level parallelism within the loop body. Assuming that it takes one

cycle to execute each operation, it would take 4 cycles to execute one iteration of the loop.

Since there are no cross-iteration dependences, a better schedule can be found by overlapping

the di�erent iterations.

Figure 3.2(a) illustrates the e�ect of systematically overlapping di�erent iterations of the

simple loop. In this example, the �rst iteration is initiated in cycle 1, the second in cycle 2, and

so on. By cycle 4 a steady state has been reached. The code executed in cycle 4 is the same

as that executed in cycle 5. This steady state is the new loop body of the software pipelined

41



for ( i = 0; i < MAX; i++) {

A[ i] = (A[i] + 1) * 5;

}

LD:      r2 <- mem(A)(r1)

ADD:   r3 <- r2 + 1

MUL:   r4 <- r3 * 5

ST:      mem(A)(r1) <- r4

; r1 is the loop induction var.

LD

ADD

MUL

ST

<f,0,1>

<f,0,1>

<f,0,1>

(a) (b) (c)

Figure 3.1 Simple example loop. (a) C code. (b) Assembly language without loop control.
(c) Data dependence graph.

code referred to as the kernel as shown in Figure 3.2(b).1 In the software pipeline, a new loop

body is initiated every II cycles, where II is the Initiation Interval. In this example, II = 1. In

the kernel, one iteration completes every II cycles. Note that it takes 3 cycles before the kernel

code is reached. This code corresponds to the prologue. Likewise, after the execution leaves the

kernel, an epilogue is needed to complete the execution of the remaining iterations.

As with its hardware counterpart, the software pipeline can be viewed as having stages,

where each stage is II cycles long. The throughput of the pipeline is the rate at which iterations

complete. Thus, the throughput is one iteration per II cycles.2 Given that the prologue has

N stages, the pipeline becomes full after N + 1 stages. The pipeline latency, the number of

cycles until the �rst iteration completes, is thus, II(N+1). After the last iteration is initiated,

1For simplicity, the explicit loop back branch operation is not shown here but the loop back edge is.

2It is possible to schedule more than one iteration per II cycles. In general, if n iterations are scheduled, then

the throughput is n iterations per II cycles.
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LD:     r1 <- mem(addr)

ADD:  r2 <- r1 + 1 

MUL:  r3 <- r2 * 5  

ST:     mem(addr) <- r3  

<flow>

<flow>

<flow>

(a)

LD1

ADD1

MUL1

ST1

LD2

ADD2

MUL2

ST2

LD3

ADD3

MUL3

ST3

LD4

ADD4

MUL4

ST4

cycles

1

2

3

4

5

6

7

(b)

8

LD5

ADD5

MUL5

ST5

LD1

ADD1

MUL1

STi-3

LD2

ADD2

MULi-2

LD3

ADDi-1 LDi

cycles

1

2

3

n+1

n+2

prologue

kernel

epilogue

n+3

ST3n-2 MULn-1

ST4n-1

ADDn

MULn

STn

{Initiation
Interval (II)

4 <= i <= n

.

.

(c)

i

Figure 3.2 Basic concept of software pipelining. (a) Example loop data dependence graph.
(b) Overlapping loop iterations. (c) Software pipeline of example loop.
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control exits the kernel and there are N stages in the epilogue to empty the pipeline. Note

that this is the most simplistic view of a software pipeline. As discussed later, it is possible to

not have any epilogue code if the prologue code is speculatively executed [34], [35]. Also, the

number of stages in the prologue and epilogue may depend on the register allocation scheme.

Furthermore, it is possible to have multiple epilogues [36], [37].

The bene�t of software pipelining can be understood by comparing the time to execute

100 iterations of the loop of Figure 3.1 before and after software pipelining. Without any

overlapping, the loop in Figure 3.1(b) takes 4 cycles to execute and thus 100 iterations would

take 400 cycles. After software pipelining, the loop takes 3 cycles to �ll the pipeline, executes

the kernel 97 times, and takes 3 cycles to empty the pipeline. In total, the loop takes 103

cycles to execute. Thus, a 3.88 speedup is achieved. The super-linear speedup illustrates that

software pipelining can be used to utilize parallel resources and hide long operation latencies.

Software pipelining is a powerful scheduling technique. It can be applied to loops with

cross-iteration dependences and with arbitrary control 
ow including loops with unknown loop

bounds (e.g., while loops). It is most often used to schedule inner loops, but can also be

hierarchically applied to outer loops [15], [31].

Software pipelining was originally used for hand coding microprogrammed pipelined ma-

chines [38] and was applied to multiprocessors in the form of doacross loops [39], [40], [41].

More recently, it has been applied to a wide set of architectures [42], [43], [44]. In this disser-

tation we focus on the approaches developed for high-performance RISC and CISC processors

such as superscalar and VLIW processors.
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3.1 Two Approaches

Two approaches to software pipelining are based on local and global scheduling techniques,

respectively.

3.1.1 Local scheduling approach

Originally, only loops without conditional constructs were considered for software pipelin-

ing [16], [45], [46]. These techniques take the same tack to software pipelining by �rst deter-

mining the minimum II based on the loop requirements and the machine constraints.

3.1.1.1 Modulo Scheduling

The most general approach, originally proposed by Rau and Glaeser [16], is Modulo Schedul-

ing [16], [47], [14], [48]. Modulo Scheduling determines a lower bound for II based on the

resource and recurrence constraints. After a lower bound is found, local scheduling techniques

can be used to schedule the loop.

The lower bound on II depends on the loop resource usage and recurrence constraints.

Patel has shown that an acyclic dependence graph can be scheduled to fully utilize at least one

resource [49]. Thus, if an iteration uses a resource r for cr cycles and there are nr copies of this

resource, then the minimum II due to resource constraints, RII , is

RII = max
r2R

�
cr

nr

�
;

where R is the set of all resources.

II is also bounded by the worst case recurrence circuit. A recurrence circuit exists if there

is a dependence between an operation and an instance of itself d iterations later. Call d the

distance of the dependence. If a dependence edge e in a recurrence circuit has latency le
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and connects operations that are de iterations apart, then the minimum II due to recurrence

circuits, CII , is

CII = max
c2C

2
666666

X
e2Ec

le

X
e2Ec

de

3
777777
;

where C is the set of all recurrence circuits and Ec is the set of edges in recurrence circuit c.

To calculate CII , Hu� [50] proposed an e�cient algorithm to �nd a circuit with the mini-

mum cost-to-time ratio, where a dependence arc is viewed as a cost of -l and a time of d. Given

that M is the minimum cost-to-time ratio, CII = d�Me.

Once RII and CII have been calculated, the initial II , IIinit, is determined,

IIinit = max(RII; CII):

After the initial value of II is found, the loop can be software pipelined by applying local

scheduling techniques and using a Modulo Resource Table (MRT). The MRT is used to indicate

that once a resource is scheduled in cycle t, it will use the same resource in cycles t+II , t+2II ,

t + 3II , etc. [47]. The MRT has II rows and N columns, where N is the number of resources

available to schedule each cycle. Figure 3.3 shows the MRT for the example loop shown in

Figure 3.1(b) assuming two uniform pipelined function units. Uniform is used to indicate that

they can execute any type of operation. Since there are no recurrences, II = RII = d4
2
e = 2.

Thus, there are two rows and two columns in the MRT.

If a schedule is not found for a given II , then II is incremented and the loop body is

rescheduled. This process repeats until an II is found that satis�es the resource and recurrence

constraints. If the loop does not have any recurrences, then a schedule can usually be found for

the minimum II [16]. In the presence of recurrences, heuristics were developed in the Cydra 5
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   II FU1 FU2

0

1
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2
_ = 2

Figure 3.3 Modulo Resource Table (MRT) for example loop.

compiler to generate near-optimal schedules. The basic principle is to schedule the recurrence

node �rst and then the nodes not constrained by recurrences [51], [52], [53].

After II is scheduled, the code for the software pipelined loop is generated. The software

pipeline consists of the prologue, kernel, and epilogue. The number of stages in the prologue

is S =
�l

latest issue time
II

m
� 1

�
. The number of stages in the kernel depends on the overlapping

register lifetimes. Since the loop body spans multiple II 's, a register lifetime may overlap

itself. If this happens, then the registers for each lifetime must be renamed. This can be

done in hardware using a rotating register �le as in the Cydra 5 [11]. With hardware support

for register renaming, the kernel has one stage. Without special hardware support, Modulo

Variable Expansion can be used to unroll the kernel and rename the registers [15]. The number

of times the kernel is unrolled, U , is determined by the maximum register lifetime modulo II.

The last part of the pipeline is the epilogue which consists of S stages needed to complete

executing the last S iterations of the loop. In total, the software pipeline has 2S + U stages.
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This is actually a very simplistic view of the issues involved in generating the software

pipeline. Rau, Schlansker, and Tirumalai provide a good overview of the possible code genera-

tion schemata for modulo scheduled loops [37].

To summarize, the essence of Modulo Scheduling is to use the resource and recurrence

constraints to de�ne an lower bound on the schedule length. Then local scheduling techniques

can be applied to try to achieve this lower bound. These techniques take both the resource and

dependence constraints into account during scheduling. The details of our Modulo Scheduling

implementation are provided in the next chapter.

3.1.2 Global scheduling approach

Three well-known software pipelining techniques are based on global scheduling. Aiken and

Nicolau's Perfect Pipelining technique compacts and unrolls the loop body until a pattern is

reached [17]. Su and Wang have developed a similar technique, GURPR*, that does not have the

computational complexity associated with determining a repeating pattern and that reduces the

code expansion overhead [18]. Ebcio�glu and Nakatani's Enhanced Pipeline scheduling technique

also compacts the code by moving operations upward until an instruction is �lled. Once an

instruction is �lled, it is moved across the loop backedge and is again available for scheduling.

In this fashion, software pipelining is achieved since operations from di�erent iterations are

scheduled together [19]. A brief description of these approaches is provided below.

3.1.2.1 Perfect Pipelining

The Perfect Pipelining algorithm proposed by Aiken and Nicolau [17], [29] performs software

pipelining in two phases. In the �rst phase, global code motion is applied to move operations

up as early as possible in the loop body. To avoid unnecessary race conditions during this
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phase, no resource constraints are applied. A race condition refers to the case when moving one

operation up blocks another operation. The second phase consists of unrolling the compacted

iterations and scheduling operations. This is an iterative process. An iteration of the loop is

peeled and then scheduled as early as possible using both resource and recurrence constraints.

Then the schedule is checked for a repeating pattern. Iterations are peeled and scheduled until

a pattern appears.

Bodin and Charot also present a similar unroll and schedule technique [54].

3.1.2.2 GURPR*

One problem with Perfect Pipelining is that identifying a pattern is a complex task [55].

The GURPR* algorithm avoids the need for pattern matching [18]. In this approach, the loop

is again compacted and then unrolled and scheduled. But, the loop is unrolled only until the

last operation of the �rst iteration is scheduled. Then II is determined by searching for the

smallest number of consecutive instructions that contain all the operations in the loop. Once

II is determined, the software pipeline schedule is generated.

Scheduling after unrolling is restricted to overlapping loop iterations and delaying instruc-

tions if necessary. If an instruction cannot be scheduled due to resource constraints, then it

is delayed one cycle. If it still cannot be scheduled, then a new cycle is inserted into the loop

schedule to hold the instruction. Notice that since the loop has already been compacted and

this ordering is preserved during scheduling, intra-iteration data dependences will be preserved.

Furthermore, the iterations are overlapped according the worst case recurrence circuit. Thus,

cross-iteration dependences are also preserved. Therefore, during scheduling, only the resource

constraints are considered. After scheduling, however, when an interval is selected, it may con-
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tain multiple copies of an operation. When these copies are deleted, they create gaps in the

schedule.

3.1.2.3 Enhanced Pipeline Scheduling

The previous two methods software pipeline by using the loop body as the scheduling unit.

Enhanced Pipeline Scheduling (EPS) achieves software pipelining by globally scheduling loop

operations [19]. To schedule, a fence instruction is placed at the beginning of the loop. Global

code compaction techniques such as Percolation Scheduling [56], [29], Selective Scheduling [31],

or Region Scheduling [35], [57] are used to move operations upward to �ll the fence instruction.

Resource restrictions are enforced only at the fence instruction, not within the loop during

compaction. Thus, it is possible to over schedule an instruction within the loop body.

Once a fence instruction is �lled, the instruction is moved across the loop back edge and

copied into the prologue. This activates software pipelining since the operations of the previous

fence instruction originate in iteration i and once moved across the loop back edge, can be

scheduled with operations of iteration i+1. The scheduling process continues until all operations

from the original iteration have been scheduled. Notice that a valid loop exists during every

phase of scheduling. Thus, no pipeline must be created after scheduling.

3.1.3 Discussion

There are advantages and disadvantages to every approach. The tradeo�s are analyzed

below.

Local versus global scheduling.

The fundamental di�erence between the approaches based on local scheduling and those

based on global scheduling is simply that they are based on di�erent scheduling techniques.
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Modulo Scheduling can use simple local scheduling techniques as list scheduling [51], [15] or more

complicated backtracking algorithms [53]. Both of these local scheduling techniques require

that the scheduler keep track of only data dependences and resource constraints. On the other

hand, global scheduling techniques must also take into account data 
ow information. Global

scheduling techniques such as Selective Scheduling [31] and Region Scheduling [4], [57] must

update the data 
ow information every time an operation is moved across basic block or region

boundaries.

Since the current Modulo Scheduling techniques do not use data 
ow information, operations

are not scheduled speculatively. Disallowing speculative execution does not a�ect the through-

put of the pipeline. As Rau and Glaeser showed, it is possible to achieve the lower bound on

II for loops with simple resources and acyclic dependences [16]. Furthermore, Jones and Allan

empirically showed that Modulo Scheduling can achieve a tighter II than EPS [55]. In fact, it

is possible that speculatively executing instructions may decrease the throughput (increase II)

since additional copy operations may be needed to ensure program correctness [35].

One bene�t of speculative execution is that it may decrease the pipeline latency. Also, in

EPS, all of the prologue operations can be viewed as speculative on the loop back branch. Thus,

software pipelines generated by the EPS technique do not have epilogues. The disadvantage of

speculative execution for conditional branches within the loop (i.e., not the loop back branch),

is that the throughput of the pipeline may decrease. This is because operations moved above

the branch will be executed along both paths of control. If an operation is moved into an

operation slot that would be empty otherwise, there is no penalty in executing the operation

speculatively. If however a slot is �lled by an operation from a less frequently executed path

when it could be �lled by an operation from a more frequently executed path, then executing
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the operation will penalize the frequently executed code and likely decrease the performance

of the loop. This is particularly a problem for �xed II techniques (described below) such as

GURPR* [58].

Register renaming.

Register renaming is needed to remove anti dependences to allow scheduling operations

from di�erent iterations that use the same register. Figure 3.4 illustrates how anti dependences

can prevent software pipelining. Figure 3.4(a) shows the simple loop assembly code and Fig-

ure 3.4(b) shows the data dependence graph. Note that for this example we assume that the

load takes 2 cycles. Also note that there are actually cross iteration anti dependences due to

register re-use. Figure 3.4(c) shows an example software pipeline. In the pipeline, the load of

the second iteration (LD2) is scheduled before the add of the �rst iteration (ADD1). Thus,

to preserve the result of the load from the �rst iteration (LD1), the destination of LD2 must

be renamed.

Two techniques have been proposed for renaming register lifetimes with Modulo Scheduling.

Lam proposed Modulo Variable Expansion (MVE) to rename overlapping register lifetimes after

the kernel is scheduled [14], [15]. MVE is similar to the scalar expansion technique proposed

for vector processors [59]. MVE requires that the kernel code be unrolled enough times to

rename the longest register lifetime. To avoid unrolling, the overlapping register lifetimes can

be dynamically renamed using hardware support such as the rotating register �le of the Cydra

5 supercomputer [11], [12].

The EPS technique uses \dynamic"3 renaming during scheduling to remove anti dependences

that prevent upward code motion [31], [35]. The disadvantage of dynamic renaming is that

3The authors use the term dynamic renaming since the apply the technique during scheduling rather than

after scheduling. Dynamic renaming typically refers to run-time renaming methods.
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LD:      r2 <- mem(A)(r1)

ADD:   r3 <- r2 + 1

MUL:   r4 <- r3 * 5

ST:      mem(A)(r1) <- r4

; r1 is the loop induction var.
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0 < x < infinity

value of r2 from iteration 1 
will be overwritten by LD2 
before read by ADD1

Figure 3.4 Register renaming for software pipelined loops. (a) Assembly language without
loop control. (b) Data dependence graph. (c) Example software pipeline highlighting need for
register renaming.

it involves inserting copy operations which can increase the resource requirements and thus

possibly increase RII .

Bounding II.

The II of the resulting software pipeline is bounded by the resource and recurrence con-

straints. Only Modulo Scheduling takes both constraints into account before scheduling. Ig-

noring these constraints to bound II during scheduling results in an overpipelined schedule.

Overpipelining means that more iterations are pipelined than necessary [35]. The result of

overpipelining is that the pipeline latency will increase and the code expansion will increase.

Most researchers acknowledge that CII should be calculated before scheduling and used as a

lower bound for scheduling. The GURPR* technique overlaps iterations according to CII [18].

Lee proposed an improvement to EPS which increases the fence region from one instruction

to CII instructions [35] to avoid overpipelining. Both GURPR* and EPS ignore RII . Bock-
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haus showed the bene�t of considering RII for GURPR* [58]. For the EPS technique, RII

is not a tight lower bound for EPS since dynamic renaming continually increases the resource

constraints and thus continually increases RII . Nevertheless, using the initial value of RII to

determine the fence region size is better than ignoring it altogether.

Integrating resource constraints.

RII is the lower bound on II calculated using the loop's resource usage and the machine's

resource constraints. Only Modulo Scheduling accounts for the exact resource constraints during

all phases of scheduling by using the Modulo Resource Table [47]. While Perfect Pipelining

compacts the loop body, it ignores the resource constraints to avoid race conditions. Here

a race condition refers to the case where moving one operation blocks other operations from

moving. The GURPR* technique also ignores resource constraints when compacting the loop

body. It does however, use the resource constraints when overlapping di�erent iterations.

Since the �nal II selected by the GURPR* technique may have redundant operations which

are deleted, II may be larger than RII . The EPS technique applies the resource constraints

only to the fence region. Thus, code motion through the loop body may cause instructions

to be overscheduled due to the insertion of bookkeeping operations. If this occurs, then the

overscheduled instructions must be broken up after the software pipeline is determined. This

may result in a pipeline with a lower throughput (larger II) than necessary. A more critical

problem is that since the resource constraints are applied only to the fence region, it is not clear

that the algorithm will work for machines with more complicated resource usage patterns. For

example, such patterns arise when scheduling the result bus.
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Fixed II versus variable II.

One drawback of Modulo Scheduling and GURPR* is that II remains constant for every

iteration [60]. Thus, a loop that has a conditional construct with an infrequently executed

path much longer than the frequently executed path will take longer to execute than techniques

which have a variable II such as EPS [34], [19].

Iterations per II.

Another consideration is how many iterations are software pipelined together. Perfect

Pipelining is able to schedule operations from multiple iterations within one II . Other tech-

niques can also schedule multiple iterations per II by unrolling the loop body before schedul-

ing [50]. This may be desirable to achieve a tighter schedule. For example, consider a loop with

RII = d3
2
e = 2. If the loop is unrolled once, then RII = d6

2
e = 3. Thus, the throughput is

increased from one iteration per 2 cycles to one iteration per 1.5 cycles.

Hardware support.

While no software pipelining techniques require special hardware support, several were de-

signed with special hardware support in mind. For example, EPS was originally proposed for

the IBM VLIW processor [34]. This architecture supports multi-way branching and conditional

execution via the tree instruction. Recently, EPS has also been shown to be e�ective for RISC

and superscalar processors [31]. Likewise, Perfect Pipelining uses a multi-way branching in-

struction. For Modulo Scheduling, Predicated Execution has been proposed for conditionally

executing operations. The bene�t of Predicated Execution over multi-way branching is that it

reduces the code expansion. As we will show in Chapter 6, all of these special architectures

prevent the branch unit from becoming a limiting resource.
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For superscalar processors which must remain object code compatible with their scalar

predecessors, these proposed features cannot be used since they require changing the instruction

set. For such architectures, techniques are needed that do not assume any special hardware

support.
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CHAPTER 4

ENHANCED MODULO SCHEDULING

This chapter presents the Enhanced Modulo Scheduling (EMS) technique [61]. As Figure 4.1

shows, EMS is Modulo Scheduling with ICTs. This approach to Modulo Scheduling is referred

to as \enhanced" for loops with conditional branches because, EMS

(1) allows operations to be scheduled independently,

(2) uses the most constrained resource along any path to form the lower bound on the schedule

length, and

(3) requires no special hardware support.

While the previous techniques using either Hierarchical Reduction or hardware support for

Predicated Execution have some of these bene�ts, neither has all.

Unlike Hierarchical Reduction, ICTs do not perform any prescheduling and thus, they do

not limit the scheduling freedom of operations within a conditional construct with operations

outside the construct. Whereas Predicated Execution requires that all operations be fetched,

by regenerating the control 
ow graph (CFG), the II for EMS is bounded by the most con-

strained resource along any path rather than the sum of all resource constraints along any path.

Finally, EMS does not require any special hardware support. Thus, it can be used with existing

architectures and any future ones that are limited due to object code compatibility. Note that

the use of ICTs does not preclude using hardware support to improve program performance.

57



Modulo
Scheduling

Loop
CFG

Software
Pipeline 
CFG

If-conversion Reverse
If-conversion

Hyperblock Loop

Figure 4.1 Enhanced Modulo Scheduling (EMS).

for (i = 0; i < MAX; i++) {

if (i == 0) {

A[ i ] = (A[ i ] + c1) * c2 + c3;

} else {

A[ i ] = (A[ i ] + c4);
}

}

(a) (b)

L1:

L2:

L3:

op8:    r5 <- r4 + c1
op9:    r6 <- r5 * c2
op10:  r7 <- r6 + c3

op12:  r1 <- r1 + 8

op4:    r4 <- r2 (r1)
op5:    beq  r1, 0, L2
op6:    r7 <- r4 + c4
op7:    jump  L3

op11:  r2 (r1) <- r7

op13:  bne  r1, r3, L1

op1:    r1 <- 0

op3:    r3 <- MAX * 8
op2:    r2 <- label_A

Figure 4.2 Example loop segment with conditional branches. (a) C code segment. (b)
Assembly language segment.

An outline of the EMS algorithm is presented in Figure 4.3. The remainder of this chapter

explains the steps of this algorithm. In addition to presenting the EMS algorithm, we will

provide some of the details of our implementation of the EMS algorithm in the IMPACT

prototype compiler.

To illustrate the EMS algorithm, the example loop in Figure 4.2 is used. Note that the code

in Figure 4.2(b) has been optimized by the classical optimizations induction variable strength

reduction and induction variable elimination [27]. Since each element of array A is assumed

to occupy 8 bytes, the loop is incremented by 8 every iteration to simplify the array address

calculations within the body of the loop.
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Algorithm EMS: Given a loop, apply Enhanced Modulo Scheduling to software pipeline the
loop.

Step 1: determine whether loop is appropriate for software pipelining
Step 2: build data dependence graph
Step 3: apply Induction Variable Reversal
Step 4: determine lower bound on II

Step 5: apply If-conversion
Step 6: rebuild data dependence graph
Step 7: while II < MAX II f

modulo schedule loop using MRT(II)
if success

break
else

increment II
g

if not success
done (no software pipeline schedule can be found)

Step 8: apply Modulo Variable Expansion
Step 9: generate software pipeline
Step 10: apply Reverse If-conversion

Figure 4.3 The EMS algorithm modulo schedules loops with conditional branches using ICTs.
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4.1 Step 1. Selecting Loops to Software Pipeline

One of the strengths of software pipelining as a loop scheduling technique is the fact that

it can be applied to a diverse set of loops. It can be applied to loops with arbitrary conditional

branches. It can be applied to loops with known upper bounds (e.g., for loops) and to loops

with unknown upper bounds (e.g., while loops, loops with exits, etc.) [52]. It can be applied to

loops with no cross-iteration dependences (e.g., doall loops) as well as to loops with recurrences

(e.g., doacross loops). It is usually applied to inner loops but can also be applied hierarchically

to outer loops [14], [31].

Acknowledging the versatility of the approach, we have restricted the loops that we consider

in our implementation to those meeting the following criteria:

� inner loop

� no function calls

� no multi-node recurrences

� normalized for loops

� no early exits

The reasons for these restrictions are practical rather than a limitation of the EMS approach.

We consider only inner loops since inner loops typically have a su�cient number of opera-

tions to fully utilize the machine resources. We do not allow functions calls. This is a standard

restriction. Note that loops with function calls can be software pipelined by �rst applying

function-inline expansion. We do not support multi-node recurrences, recurrence circuits in-

volving more than one operation, because we do not have detailed memory dependence analysis
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at the register transfer level of the IMPACT compiler.1 At present we consider only for loops

without early exits because we do not generate the multiple epilogues needed for loops with

early exits. This simpli�es the application of some optimizations. The experiments in this dis-

sertation are performed on numerical benchmarks which contain mostly for loops. To software

pipeline non numerical code, it will be important to allow loops with early exits.

4.2 Step 2. Build Data Dependence Graph

After the loop to be software pipelined has been selected, its data dependence graph is gen-

erated. Figure 4.4 shows the dependence graph of the example loop segment. To reiterate, the

following terminology is used. The arcs are labeled with the tuple < type; distance; latency >.

The type is either 
ow (f), anti (a), or output (o). The distance is the number of iterations

the dependence spans. The latency is the minimum number of cycles between the operations

to guarantee the dependence is met. Note that cross iteration anti dependences are not shown

since they will be removed by Modulo Variable Expansion as described in Step 8.

A recurrence circuit is a cycle in the data dependence graph. A recurrence circuit will only

exist if the loop has cross-iteration dependences. These are dependences with distances greater

than zero. A multi-node recurrence is a recurrence circuit containing more than one operation.

Most recurrences are multi-node recurrences. Those that are not multi-node are referred to

as self-recurrences. A self-recurrence involves one operation. An induction variable, i = i+ 1,

causes a self-recurrence in the dependence graph since it has a 
ow dependence of distance one

to itself.

1At this time, memory analysis has been implemented at the front-end of the IMPACT compiler. Techniques

are being explored to migrate the memory dependence information down to the register transfer level.
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op4

op5

op6

op7

op8

op9

op10

op12

op11

op13

<f,0,1>

<f,0,1>

<f,0,2>

<f,0,1>

<f,0,1>

<a,0,0>

<f,0,1>

<f,1,1>
<f,1,1>

Figure 4.4 Dependence graph of example code segment.
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4.3 Step 3. Apply Induction Variable Reversal

In the presence of recurrences, Dehnert et al, discuss the importance of compiler opti-

mizations such as Back-Substitution and Load-Store Removal to reduce CII [12]. Another

important optimization is needed to reduce multi-node recurrences involving induction vari-

ables to self-recurrences. Most compilers generate post increment induction variables such that

the induction variable is incremented at the end of the loop body. Thus, within one iteration

an operation that has the induction variable as a source operand is not 
ow dependent upon

the induction variable. There is however, a 
ow dependence from the induction variable in-

crement operation to the operation that uses the induction variable in the next iteration. For

schedulers that schedule one iteration of the loop, post increment induction variables reduce the

critical path length of paths containing the induction variable. When software pipelining, post

incremented induction variables cause multi-node recurrences as shown in Figure 4.4. The loop

increment r1 of the assembly code segment in Figure 4.2(b) is a post increment loop induction

variable since op12 is placed at the end of the loop.

If this loop is software pipelined, the CII for this loop is determined by the worst case

recurrence circuit fop4, op8, op9, op10, op11, op12g. Thus, CII = d5
1
e = 5, since the sum

of the latencies is 5 and the dependence distance is one. It is possible to convert the multi-node

recurrence into a self-recurrence by applying Induction Variable Reversal.

Induction Variable Reversal converts post increment induction variables into pre increment

induction variables. Thus, all operations within one iteration will be 
ow dependent upon the

loop induction variable. These 
ow dependent operations do not need to be scheduled within

one II and thus will not bound II .
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Algorithm Induction Variable Reversal: Given a loop, convert post increment induction
variables into pre increment induction variables.

8 op 2 loop f
/* check if induction variable */
if((add operation) and (destination is a register) and (destination equal to source)
and (unique de�nition in loop)) f

/* check if post increment */
if((no output 
ow dependences) or (only output 
ow dependences to loop back branch) f

/* check if loop increment */
if(output 
ow dependence to loop back branch) f

decrement loop bound in preheader by loop increment
g

decrement loop induction variable in preheader by loop increment
move operation to beginning of loop

g
g

g

Figure 4.5 Algorithm Induction Variable Reversal converts multi-node induction variable
recurrences into self-recurrences.

To perform this optimization, the operation that increments the induction variable is moved

to the beginning of the loop, and the initial value of the induction variable is decremented by the

increment value. When the induction variable spans more than one II , overlapping lifetimes

are renamed using Modulo Variable Expansion. Notice that Induction Variable Expansion

combined with Modulo Variable Expansion will result in a transformation similar to Induction

Variable Expansion, which is done for unrolled loops [62].

The algorithm for Induction Variable Reversal is presented in Figure 4.5. Note that the loop

increment is a special case for Induction Variable Reversal since the loop increment is not a

true post increment operation. Rather, there is a 
ow dependence between the loop increment

and the loop back branch. Thus, to convert the loop increment to a pre increment induction

variable, the loop increment must be subtracted from the loop bound in the loop preheader.
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(a)

L1:

L2:

L3:

op8:    r5 <- r4 + c1
op9:    r6 <- r5 * c2
op10:  r7 <- r6 + c3

op12:  r1 <- r1 + 8
op4:    r4 <- r2 (r1)
op5:    beq  r1, 0, L2
op6:    r7 <- r4 + c4
op7:    jump  L3

op11:  r2 (r1) <- r7
op13:  bne  r1, r3, L1

op1:    r1 <- -8

op3:    r3 <- MAX * 8
op2:    r2 <- label_A

op4

op5

op6

op7

op8

op9

op10

op12

op11

op13

<f,0,1>

<f,0,1>

<f,0,2>

<f,0,1>

<f,0,1>

<f,0,1>

<f,1,1>

(b)

3

2

op14:  r3 <- r3 - 8
1

Figure 4.6 Applying Induction Variable Reversal to example loop. (a) Assembly language
segment. (b) Loop data dependence graph.
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Figure 4.6(a) shows the application of Induction Variable Reversal to the example code

segment. First, op14 is inserted to decrement the loop bound by the loop increment. Second,

the loop increment, 8, is subtracted from the induction variable , r1, in the loop preheader. This

ensures that the loop induction variable contains the proper initial value after op12. Third,

op12 is moved to the beginning of the loop. Notice that there are no longer any multi-node

recurrences in the dependence graph shown in Figure 4.6(b).

4.4 Step 4. Determine Lower Bound on II

The lower bound on II is determined by the most constrained resource along any path and

by the most constrained recurrence circuit. Since the CFG will be regenerated after modulo

scheduling, the schedule will be constrained by the worst case resource constraint along any

path. Thus, the lower bound on II due to resource constraints, RII is

RII = max
p2P

�
max
r2R

�
cpr

nr

��
;

where P is the set of all execution paths and R is the set of all resources.

The value of RII can be determined after applying If-conversion by using the Predicate

Hierarchy Graph (PHG) [23], [20] to distinguish di�erent control 
ow paths.

Note that since the modulo scheduling algorithm in Step 7 does not speculatively schedule

operations, this will be a tight lower bound. When an operation is speculatively executed it

increases the resource usage along some paths. For example, consider the example partial CFG

in Figure 4.7(a). If the load operation is speculatively scheduled (moved from BB2 to BB1),

then two actions must be taken due to the fact that the value of r1 is used in BB3. First,

the destination of the load is changed to r10 and a copy operation is inserted into BB2 to
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Path A Path B

r1 <- ld(_A) r3 <- r1 * r2

Path A Path Br1’ <- ld(_A)

r3 <- r1 * r2r1 <- r1’

(a)
(b)

BB1

BB2 BB3

BB1

BB2 BB3

Figure 4.7 E�ect of speculative scheduling on RII . (a) Partial CFG. (b) Partial CFG with
speculatively scheduled load.

restore the value in r1. Note that the copy operation increases the resource usage along Path

A and the speculative load operation increases the resource usage along Path B. Thus, while

the action of scheduling by delaying operations, as done in modulo scheduling, may increase

the pipeline latency, it is a deterministic scheduling algorithm since RII is predictable.

As discussed in Section 3.1.1.1, II is also bounded by the worst case recurrence. For loops

without cross-iteration memory dependences, CII is determined by the recurrence circuits

containing loop induction variables. If Induction Variable Reversal is applied, most induction

variables become self-recurrences. The only possible exception is recurrences involving the

loop increment and the loop back branch. If the loop increment and loop back branch is one

operation, then the loop increment can always be converted into a self-recurrence. If this is

not the case, then there is multi-node recurrence circuit containing the loop increment and the

loop back branch. In this case, there are two possible scenarios, one for single epilogue software

pipelines and the other for multiple epilogue software pipelines.

For loops with only one epilogue, it is assumed that the loop executes at least S +U times

where S is the number of stages in the prologue and U is the number of stages in the kernel.
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Furthermore, once the steady state is reached, the loop executes a multiple of U times. This

can be guaranteed by inserting a preconditioning loop to execute the remaining iterations.

Preconditioning is discussed in Step 9. If there is only one epilogue, then there is only one loop

back branch and it is scheduled in the last stage of the kernel. Thus, the loop increment, which

must be scheduled before the loop back branch, can be scheduled in any stage of the prologue

or kernel. Note, that if it is scheduled in the kth stage, where 0 � k < S + U , then the loop

bound must be decremented by k in the preheader. Since the loop increment and loop back

branch do not have to be scheduled in the same stage, the loop increment can be considered to

be a self-recurrence and CII is equal to the latency of the loop increment operation.

A software pipelined loop with multiple epilogues has an epilogue for every stage of the

prologue and kernel. Thus, there must be a loop back branch at every stage of the prologue

and kernel. In this case, both the loop increment and loop back branch must be scheduled

within II cycles. Thus, for software pipelined loops with multiple epilogues, the lower bound

on II due to the recurrence circuit containing the loop increment is the sum of the latencies of

the loop increment operation and the loop back branch operation.

After RII and CII are determined, the initial value of II , IIinit, is set to the maximum of

these two values.

4.5 Step 5. Apply If-Conversion

After the loop has been selected and Induction Variable Reversal is applied, the loop body

is converted into a hyperblock by applying If-conversion. We use the modi�ed RK If-conversion

algorithm presented in Section 2.2. Figure 4.8(b) shows the loop hyperblock after If-conversion.

Note that p0 is the default predicate that is always de�ned. The conditional branch operation
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L1:

L2:

L3:

op8:       r5 <- r4 + c1
op9:       r6 <- r5 * c2
op10:     r7 <- r6 + c3

op12:  r1 <- r1 + 8
op4:    r4 <- r2 (r1)
op5:    beq  r1, 0, L2

op6:       r7 <- r4 + c4
op7:       jump  L3

op11:  r2 (r1) <- r7
op13:  bne  r1, r3, L1

<p0>

<p1> <p2>

<p0>

op12: <p0>  r1 <- r1 + 8
op4:   <p0>  r4 <- r2 (r1)
op5’:  <p0>  pd (r1==0){p1}{p2}
op6:   <p1>  r7 <- r4 + c4
op8:   <p2>  r5 <- r4 + c1
op9:   <p2>  r6 <- r5 * c2
op10: <p2>  r7 <- r6 + c3

op11: <p0>  r2 (r1) <- r7
op13: <p0>  bne r1, r3, L1

L1:

op7’:   pm {p2}{p1}

(a) (b)

Figure 4.8 Example loop after If-conversion. (a) CFG with predicates assigned to basic
blocks. (b) Loop hyperblock.

is converted into a predicate de�ning (pd) operation that de�nes predicate p1 if the condition

(r1 == 0) is false or de�nes predicate p2 if the condition is true. The predicate merging

(pm) operation merges predicates p1 and p2 where p1 is placed in the jump set since the path

corresponding to predicate p1 originally had a jump operation.

4.6 Step 6. Rebuild Data Dependence Graph

Only operations which have a control path between them can be dependent on one another.

In the original loop body, operations along di�erent control paths are in di�erent basic blocks

with no path of control connecting them. After If-conversion, the loop body is reduced to one

hyperblock. Thus, predicates need to be used to determine whether there is a control path

between two operations in one iteration. There is always a control path between two operations

from di�erent iterations. The Predicate Hierarchy Graph (PHG) [23], [20] is used to determine

69



p0

L1:

L2:

L3:

op8:       r5 <- r4 + c1

op9:       r6 <- r5 * c2

op10:     r7 <- r6 + c3

op12:  r1 <- r1 + 8

op4:    r4 <- r2 (r1)

op5:    beq  r1, 0, L2

op6:       r7 <- r4 + c4

op7:       jump  L3

op11:  r2 (r1) <- r7

op13:  bne  r1, r3, L1

<p0>

<p1> <p2>

<p0>

(a)

c1_bar (r1==0)c1(r1!=0)

c1c1_bar

p1 p2

(b)

Figure 4.9 Predicate Hierarchy Graph of example loop. (a) Control 
ow graph of loop with
predicates assigned to basic blocks and conditions assigned to arcs. (b) Predicate Hierarchy
Graph.

whether there is a control 
ow path between predicates. The PHG of the example loop is shown

in Figure 4.9(b). Note that there is no control 
ow path between predicates p1 and p2 since

the Boolean expression c1 bar � c1 simpli�es to zero.

After the PHG is generated, the dependence graph is built. To calculate the dependences,

in addition to using the normal conditions for dependence, an additional condition is added

to determine whether there is a control path between the operations. Furthermore, there are

new operation types due to predication that must be considered when calculating dependences.

There is a 
ow dependence between the pd operation that de�nes a predicate pred and oper-

ations that are predicated with pred. There is an anti dependence between the pm operation

that merges a predicate pred and any operations predicated with pred.
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Figure 4.10(b) shows the resultant dependence graph for our example. Note that op6, op8,

op9, and op10 are all 
ow dependent on the pd operation op50. Likewise, the pm operation

op7
0 is anti dependent on these operations. Notice that there is no output dependence between

op6 and op10 since p1 and p2 are mutually exclusive and thus, there is no control 
ow path

between these operations.

4.7 Step 7. Modulo Schedule Loop

Once IIinit has been determined, the hyperblock formed, and the corresponding dependence

graph built, the loop can be modulo scheduled. If a schedule cannot be found for a given II ,

then II is incremented and the scheduling process is repeated. This iterative scheduling process

proceeds until II reaches a predetermined upper limit, at which time the loop is considered to

be un�t for software pipelining.

The loop is \modulo" scheduled by applying a local scheduling algorithm to the Modulo

Resource Table (MRT) [47]. The question is which local scheduling algorithm to use. The

answer depends on the scheduling objective, and on the type of loop. For example, the objective

can be to increase the throughput (e.g., minimize II), to decrease the pipeline latency, or both.

Hsu provides a thorough analysis of algorithms designed for minimizing II and the pipeline

latency. These are summarized below.

After the loop has been modulo scheduled, the pipeline latency can be calculated based on

the latest issue time of an operation from the �rst iteration. The pipeline latency L is

L = d
latest issue time+ 1

II
e;

assuming the schedule starts at cycle 0. Typically, a loop executes a large number of times and

thus the suboptimal performance while �lling the pipeline is amortized over the performance
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op12: <p0>  r1 <- r1 + 8
op4:   <p0>  r4 <- r2 (r1)
op5’:  <p0>  pd (r1==0){p1}{p2}
op6:   <p1>  r7 <- r4 + c4
op8:   <p2>  r5 <- r4 + c1
op9:   <p2>  r6 <- r5 * c2
op10: <p2>  r7 <- r6 + c3

op11: <p0>  r2 (r1) <- r7
op13: <p0>  bne r1, r3, L1

L1:

op7’:   pm {p2}{p1}

(a)

op12

op4

op5’

op6

op8

<f,0,1>

<f,1,1>

<f,0,1>

<f,0,1>

<f,0,1>

op9

op10

op11

op7’

op13

<f,0,2>

<f,0,1> <a,0,0>

<f,0,1>

(b)

Figure 4.10 (a) Loop hyperblock. (b) Hyperblock dependence graph.
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Figure 4.11 The e�ect of di�erent Modulo Scheduling algorithms for scheduling the example
loop. (a) Example data dependence graph. (b) Resultant MRT after applying technique that
schedules �rst available resource with respect to top of MRT. (c) Resultant MRT after applying
technique that schedules �rst available slot with respect to when an operation is ready.

of the entire loop execution. If minimizing L is critical, then Patel has presented an e�cient

branch-and-bound algorithm for �nding an optimal schedule with minimum L [49].

Nevertheless, L should be ignored. Rau presents a minimum complexity (O(V), where V

is the number of operations in the loop), optimal throughput scheduling algorithm [63]. This

algorithm uses equations to �ll the MRT from top to bottom. An alternative algorithm is to

search the MRT for the �rst available slot after the cycle the operation is ready. Figure 4.11

illustrates the tradeo�s of the two approaches using the simple loop shown in Figure 4.11(a).

Figure 4.11(b) shows the resultant example loop schedule when the operation is scheduled with

respect to the top of the MRT. The ADD operation is ready in cycle 1, but is not scheduled

until 2. Figure 4.11(c) shows that if the operations are scheduled in the �rst available slot with

respect to the time it is ready, then a lower L is achieved (2 versus 3).
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Algorithm List Schedule MRT: Given a hyperblock loop and II , schedule loop using an
Modulo Resource Table (MRT) with II rows.

clear MRT
8 op 2 hyperblock loop f

compute priority of op
add op to set of unscheduled operations

g
sort unscheduled set according to operation priority

issue time = 0
while (unscheduled set of operations is not empty) f

issue time = issue time + 1
active set = set of unscheduled operations that are ready
8 op 2 active set f

schedule op at earliest available resource
if(op cannot be scheduled within II cycles)

return schedule not found
mark required resources of op busy in MRT
delete op from set of unscheduled operations
issue time of op = issue time

g

Figure 4.12 Algorithm List Schedule MRT schedules loops without recurrences using Modulo
Resource Table.

Figure 4.12 presents the O(V*II) list scheduling algorithm that is used in this dissertation,

where V is the number of operations in the loop. The algorithm schedules operations in the �rst

available slot after they are ready. Before any operations are scheduled, the loop-back branch

is �xed in the last cycle of the schedule (assuming no branch delay slots). The list scheduling

algorithm topologically sorts the operations according to their dependences and then schedules

the ready operations whose dependences are resolved. The ready operations are sorted based on

a latest issue time priority. Thus, operations with a higher predicted issue time are scheduled

�rst. In this way, the schedule of an iteration is tighter which corresponds to a smaller pipeline

latency.
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There are three possible states for each slot in the MRT: empty, no-con
ict, and full. A

slot is empty if no operations have reserved that slot. A no-con
ict slot occurs when there

is no control path between the operation being scheduled and operations that have already

reserved the slot. For instance, operations from one iteration that are from di�erent paths of a

conditional branch can be scheduled in the same slot. A slot is full with respect to the operation

being scheduled, if there is a control path between the operation and the operations that have

already reserved the slot.

Two operations do not have a control path between them if they are from the same iteration,

and there is no control path between their predicates. With respect to one slot, two operations

can be from the same iteration only if they reserve the resource at the same cycle (not modulo

II). For fully pipelined functional units, an operation reserves a resource for one slot at its start

time. To determine the no-con
ict state, each slot in the MRT contains the predicates of the

operations that use the resource and the start time.

To �nd the tightest schedule, with respect to throughput, �rst determine whether there

are any no-con
ict slots in the modulo resource reservation table for this operation. If there

are, select the earliest available slot with respect to the earliest start time for that operation.

Otherwise, schedule the operations in the earliest available empty slot.

Figure 4.13 shows the steps taken to modulo schedule the example loop of Figure 4.10.

The target machine for this example is a VLIW with two function units. Function unit 1

(FU1) can execute any type of operation except a branch operation. Function unit 2 (FU2) can

execute any type of operation including branch operations. Given these resource constraints,

RII = max(d8
2
e; d3

1
e) = 4. This calculation determines which is more constrained, the general

purpose function unit or the branch function unit. Assuming general purpose function units,
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s=2

8:   {op10}

s=6

Figure 4.13 Modulo scheduling example loop with MRT.

the most constrained path has 8 operations. For the branch unit, the most constrained path

has 3 branch operations. Note that pd operations are considered branch operations. The pm

operations are considered branch operations for the predicates in the jump set.

Figure 4.13 shows the MRT at each step. The MRT has II = 4 rows and 2 columns. The

active set at each step is shown above the MRT. The �rst step is to place the loop back branch

op13 in the last slot of the MRT (assuming a single cycle branch with no delay slot). The
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rest of the operations are then list scheduled using the last completion time estimate as the

scheduling priority. The start time is marked next to the operation scheduled. Note that in

step 6, op8 is ready to schedule in cycle 2. Since the slot containing op6 is a no-con
ict slot

(since op6 is scheduled in cycle 2 and has a mutually exclusive predicate), op8 is scheduled in

the same slot as op6. Likewise, in step 9, op70 is scheduled in the same slot as op10 since the

predicate in the jump set of the pm operation, p1, is mutually exclusive with the predicate of

op10 and is issued at the same time as op10.

4.7.1 Scheduling loops with recurrences

Now lets consider loops with recurrences. There are two types of recurrences, self and multi-

node. A self-recurrence contains only one operation. For example, loop induction variables are

self-recurrences [27]. Since self-recurrences contain only one operation, the only constraint in

scheduling them is that II is greater than the latency of the operation. Given II is large

enough, the list scheduling algorithm used for loops without recurrences can be used for loops

with only self-recurrences.

A straightforward list scheduling algorithm cannot be used to schedule loops with multi-

node recurrences. Lam proposed a list scheduling method that �rst schedules all recurrence

circuits and reduces them to pseudo operations [14], [15]. She proposes the following guidelines

for scheduling recurrence circuits.

(1) Partial schedules constructed at each point in the scheduling process should not violate

any of the dependence constraints.

(2) Heuristics must be sensitive to the value of II .
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The �rst guideline is important since the scheduling process for a given II can be terminated

as soon as it is determined that a schedule cannot be found. The second guideline is important

for increases the likelihood of �nding a schedule for a given II .

Another approach for scheduling loops with recurrences is to use a backtracking algorithm.

The Cydrome compiler adopted such an approach [53]. It �rst attempts to schedule operations

in recurrences and then backtracks if a schedule cannot be found. Thus, unlike the list schedul-

ing approach, multiple attempts are made for each value of II . The Cydrome compiler uses

static heuristics to schedule the recurrences. Hu� proposes Slack Scheduling, a backtracking

algorithm with dynamic heuristics [50]. The dynamic heuristics allow the scheduler to adjust

priorities when operations are scheduled. Slack Scheduling also integrates recurrence constraints

with critical path considerations for register allocation.

4.8 Step 8. Apply Modulo Variable Expansion

At this point, the steady state, or kernel, of the software pipeline has been scheduled. It

consists of one II . Before generating the rest of the software pipeline, we have to determine

whether the kernel needs to be unrolled to avoid overlapping register lifetimes. Since one loop

iteration can span multiple stages, the lifetime of a register can overlap itself. To guarantee

that a value in a register is not overwritten, the loop body must be unrolled enough times to

satisfy the longest register lifetime and the overlapping register lifetimes are renamed. This

optimization is called Modulo Variable Expansion [14], [15]. Register renaming can be done

dynamically using hardware support such as the rotating register �les in the Cydra 5. [11]. We

assume no special hardware support. The lifetime of a predicate variable may also overlap itself.
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Although these variables do not map to physical registers, they are also renamed to regenerate

the code properly.

The number of times the loop must be unrolled is determined by the longest register lifetime.

The lifetime l of a register is determined by the earliest time the value in that register is de�ned,

and the latest time the value in that register is used before the value in that register is rede�ned.

Given a variable vi, qi =
l
li
II

m
is the minimum number of copies of vi needed to avoid register

con
icts. The minimum degree of unrolling, U , is max
i

qi. Once the degree of unrolling (i.e., the

number of copies of the kernel) is determined, ki is the number of copies of vi that are needed,

where ki is the minimum integer, such that ki � qi and U mod ki = 0. Note that a variable can

be either a predicate or a register.

After unrolling the kernel U times, register renaming can be performed for each stage s in

the kernel, where a stage has II cycles and 0 � s < U . For each variable in the original code

vi, reserve ki variables with base o�set bi.
2 At stage s, a destination variable is renamed as

variable bi + s mod ki. A variable can have multiple uses. Let vij be the jth use of variable

i. Source variable vij is renamed depending on its individual lifetime relative to II , �ij =

l
issue time(use(vij ))�issue time(define(vi))+1

II

m
. A source variable is renamed di�erently depending

on whether it is used before de�ned with respect to the beginning of the stage s. If it is used

before de�ned, then a source is renamed as variable bi + (s+ ki � �ij) mod ki. Otherwise, it is

renamed as variable bi + (s+ ki � �ij + 1) mod ki.

2Note that at this point, register allocation has not been performed. Therefore, renaming is performed on

virtual registers or predicates.
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4.9 Step 9. Generate Software Pipeline

After renaming has been performed, the kernel has U stages. Next, the stages of the

prologue and epilogue are generated. The number of stages in the prologue (and epilogue), S,

is
l
latest issue time

II

m
� 1, where the latest issue time is de�ned by the modulo schedule over all

operations in the loop.3

The prologue with S stages is created from Su copies of the kernel appended to copies of

the last Sr stages of the kernel, where Su =
j
S
U

k
and Sr = S mod U . This ordering ensures

that the registers are aligned properly. Likewise, the epilogue is created from a copy of the

�rst Sr stages of the kernel appended to Su copies of the kernel. For each instruction i in the

prologue, 0 � i < S � II , an operation is nulli�ed if its start time is greater than i. Conversely,

for instruction i in the epilogue, where 0 � i < S � II , an operation is nulli�ed if its start time

is less than or equal to i. Lastly, the loop-back branch is nulli�ed in all but the last stage of

the kernel.

Once the prologue has been formed, if any of the variables that are live at the beginning of

the loop have been renamed, then copies must be inserted in the loop preheader. Likewise, any

renamed variables that are live at the end of the loop must restore the initial value by inserting

the appropriate copy operations at the end of the epilogue.

The above assumes that there is only one exit from the loop, which is at the end of the kernel.

Allowing early exits from the loop requires special epilogues for each stage in the prologue and

kernel, which increases the code generation complexity and code expansion considerably. With

only one exit from the loop, the software pipelined loop must execute S + k � U times, where

k is an integer greater than or equal to one. A non software pipelined version of the loop

3The number of stages in the prologue and epilogue may depend on the register allocation scheme [36].
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is required to execute the remaining number of iterations. This loop is referred to as the

preconditioning loop. If the loop trip count is greater than S + U , the remaining number of

iterations is (trip count � S) mod U . If the trip count is less than S + U , then only the non

software pipelined loop is executed. If the trip count is known to be less than S+U at compile

time, then the software pipeline is not generated.

The disadvantage of using a preconditioning loop is that it executes relatively slow compared

to the pipelined code. Thus, the performance of the loop does not monotonically increase as

the loop bound increases. On the other hand, with multiple epilogues, the larger the value of

the loop bound, the more amortized the prologue code becomes. With preconditioning code,

the speedup is saw-toothed as the loop bound is increased. Rau, Schlansker, and Tirumalai

provide a thorough overview of the code generation schema for modulo scheduling [37].

Figure 4.14 shows the resulting software pipeline after unrolling the kernel, register renam-

ing, and generating the prologue and epilogue. Note that two register variables, r1 and r7, and

two predicate variables, p1 and p2, are renamed. Thus, the kernel is unrolled twice (i.e., there

are two stages in the kernel). Notice that r1 was originally live at the beginning of the loop

body. Thus, the value of r1 must be renamed to r8 in the preheader. Note that if r1 is live at

the beginning of the preheader, then a copy must be inserted instead.

4.10 Step 10. Apply Reverse If-Conversion

After the software pipeline is generated, RIC can be applied to generate the CFG. If

necessary, it is also applied to regenerate the CFG of the preconditioning loop. Since the

predicates have been renamed using MVE, the RIC algorithm presented in Chapter 2 can be
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0:  <p0>r8<-r6+8
1:  <p0>r4<-r2(r8)             <p0>pd(r8==0){p3}{p5}
2:  <p5>r5<-r4+c1 /
     <p3>r10<-r4+c4
3:  <p5>r6<-r5*c2
4:  <p0>r9<-r8+8
5:  <p0>r4<-r2(r6)             <p0>pd(r9==0){p4}{p6}
6:  <p6>r5<-r4+c1/            <p5>r5<-r3+r4/
     <p4>r11<-r4+c4             pm{p5}{p3}
7:  <p6>r6<-r5*c2
8:  <p0>r8<-r9+8               <p0>label_A(r8)<-r10
9:  <p0>r4<-r2(r8)             <p0>pd(r8==0){p3}{p5}

10:  <p5>r5<-r4+c1/            <p6>r11<-r5+c3/
       <p3>r10<-r4*c4              pm{p6}{p4}
11:  <p5>r6<-r5*c2
12:  <p0>r9<-r8+8               <p0>label_A(r9)<-r11
13:  <p0>r4<-label_A(r9)    <p0>pd(r9==0){p4}{p6}
14:  <p6>r5<-r4+c1/            <p5>r10<-r5+c3/
       <p4>r11<-r4+c4             pm{p5}{p3}
15:  <p6>r6<-r5*c3             <p0>bne r9,r3,L1
16:                                       <p0>r2(r8)<-r10
17:
18:                                       <p6>r11<-r5+c3/
                                              pm{p6}{p4}
19:
20:                                       <p0>r2(r9)<-r11

prologue

kernel
 u = 2

epilogue

Reg Renaming:
   r1 -> {r8, r9}  
   r7 -> {r7, r9}

Pred Renaming:  
  p1 -> {p3, p4}  
  p2 -> {p5, p6}

After MVE________

Figure 4.14 Software pipeline of example loop before RIC.
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applied with only minor modi�cations to ensure that the prologue, kernel, and epilogue are

properly connected.

Figure 4.15 shows the regenerated CFG of the software pipeline shown in Figure 4.14. The

allowable predicate sets are shown for each basic block. The control 
ow graph is regenerated

starting with the prologue. When the kernel is reached, the appropriate control 
ow is added

between the prologue and the kernel nodes in the leaf node set. Note that it is possible to

determine the kernel boundary based on the instruction number. Since there are 2 stages in the

prologue and each stage has 4 instructions, instruction 8 is the �rst instruction of the kernel.

At the kernel boundary, a new node is generated for every node in the leaf node set. This is

required since the loop back branch must jump back to the beginning of the kernel. Note that

these nodes will have the same allowable predicate set as their predecessors.

The same action is taken when the epilogue boundary is encountered. Since there are 2

stages in the kernel and 4 instructions per stage, the epilogue starts in instruction 16. A new

set of nodes is generated for every node in the leaf node set. Again, the nodes have the same

allowable predicate set as their predecessor. The epilogue boundary also corresponds to placing

the loop back branch. Thus, in addition to the epilogue, control 
ow is inserted to jump back

to the beginning of the kernel to the node with the same allowable predicate set.
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r8<-r9+8
r4<-r2(r8)    beq r8, 0, L1

r5<-r4+c1
r6<-r5*c2
r9<-r8+8
r4<-r2(r9)    beq r9,0,L3

r10<-r4+c4

r9<-r8+8
r4<-r2(r9)    beq r9,0,L2

L1:

0:
1:

2:
3:
4:
5:

r11<-r4+c4 r10<-r5+c3r11<-r4+c4  jump L4
L2: L3:

r6<-r5*c2

{p0}

{p0,p1} {p0,p2}

r5<-r4+c1   r10<-r5+c3

{p0,p1,p3} {p0,p1,p4}

r5<-r4+c1    jump L5

{p0,p2,p3} {p0,p2,p4}

{p0,p3} {p0,p4}

6:

7: L4: L5:

r8<-r9+8      r2(r8)<-r10
r4<-r2(r8)    beq r8,0,L9

r8<-r9+8      r2(r8)<-r10
r4<-r2(r8)    beq r8,0,L8

L6: L7:

r10<-r4+c4 r11<-r5+c3r5<-r4+c1    jump L11r10<-r4+c4   jump L10 r5<-r4+c1 r11<-r5+c3L8: L9:

8:

9:

10:

{p0,p3} {p0,p4}

{p0,p1,p3} {p0,p2,p3} {p0,p1,p4} {p0,p2,p4}

r6<-r5*c2
r9<-r8+8      r2(r9)<-r11
r4<-r2(r9)    bne r9,0,L13

r9<-r8+8      r2(r9)<-r11
r4<-r2(r9)    bne r9,0, L12

{p0,p1} {p0,p2}

11:
12:
13:

L10: L11:

r5<-r4+c1  r10<-r5+c3r11<-r4+c4 r10<-r5+c3r5<-r4+c1    jump L15r11<-r4+c4   jump L14 L13:L12:
14:

{p0,p1,p3} {p0,p1,p4} {p0,p2,p3} {p0,p2,p4}

                bne r9,r3,L6 r6<-r5*c2    bne r9,r3,L7L14: L15:
{p0,p3} {p0,p4}

                    r2(r8)<-r10

                    r11<-r5+c4

                r2(r8)<-r10

             jump L16

15:

16:
17:
18:

r2(r9)<-r11
19:
20:

{p0,p3} {p0,p4}

{p0}
L16:

Figure 4.15 Software pipeline of example loop after RIC.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter we chronicle the development of software pipelining in the IMPACT C com-

piler. This chapter focuses on techniques that do not require any special hardware support.

Chapter 6 presents the bene�ts of Predicated Execution hardware support for Modulo Schedul-

ing [11].

We �rst compare an existing Modulo Scheduling technique using Hierarchical Reduction [16],

[14], [15] with a global code compaction based technique, GURPR* [18]. After illustrating

the bene�ts of Modulo Scheduling, we compare the performance of Modulo Scheduling using

Hierarchical Reduction against Modulo Scheduling with Isomorphic Control Transformations.

The implementation of the ICTs was motivated by a comparison of Modulo Scheduling with

Hierarchical Reduction and Modulo Scheduling with If-conversion assuming hardware support

for Predicated Execution [64]. From this comparison we decided to investigate whether it would

be possible to remove the restrictions that Hierarchical Reduction places on scheduling without

requiring special hardware support. Based on our results we have chosen Modulo Scheduling

with Isomorphic Control Transformations as the software pipelining method in IMPACT for

processors without hardware support. As mentioned earlier, this technique is referred to as

Enhanced Modulo Scheduling (EMS). The second part of this chapter presents a deeper analysis

of EMS.
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5.1 Compiler Support

The software pipelining techniques analyzed in this chapter were implemented in the IM-

PACT C compiler. A 
ow diagram of the IMPACT compiler is shown in Figure 5.1. The

IMPACT compiler has four levels of intermediate representation (IR). The PCODE IR is a

parallel C code representation with loop constructs intact [65]. Thus, memory dependence

analysis and loop level transformations can be e�ectively applied at this level [66]. The next

level is the HCODE IR. HCODE is a 
attened C representation with simple if-then-else and

goto control 
ow constructs. The Hcode environment has support for statement level pro�ling,

which can be used to guide such optimizations as function in-line expansion [32]. The LCODE

IR is a machine independent register transfer representation. At the Lcode level both classical

and superscalar optimizations are performed [27], [32], [62]. Also, scope enlarging transforma-

tions such as superblock and hyperblock formation are performed at this level [32], [62], [20],

[23], [22]. Currently, processor simulation is performed at this level. Finally, MCODE is a

machine dependent register transfer representation. The Mcode module provides a standard

interface for code generators [67]. Note thatMCODE is structurally identical to LCODE and

thus techniques developed in the Lcode framework can be utilized in the Mcode framework with

possible machine speci�c extensions. Thus, at the Mcode level, machine speci�c optimizations,

scheduling, and register allocation are performed [68]. Currently, the IMPACT compiler can

generate code for the following processors: MIPS R2000, SPARC, HP-PA RISC, Intel i860,

AMD 29K, and Intel X86.

Originally, the software pipeline scheduler was implemented in the Intel i860 code generator,1

for two reasons. First, we can apply the software pipelining techniques to a more realistic

1The Intel i860 code generator and the MIPS R2000 code generator predate the Mcode implementation.
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Figure 5.1 The IMPACT C Compiler.
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instruction set architecture than the general Lcode architecture. LCODE is general not to

place unnecessary constraints during optimization. This powerful instruction set unrealistically

reduces the number of operations to schedule. The second motivation was the fact that I had

implemented the Intel i860 code generator for the IMPACT compiler.2 Thus, I was familiar with

the environment and intrigued by the possibilities of scheduling such as complex architecture

as discussed in Appendix A. Note, that while the Intel i860 instruction set and latencies were

used for this implementation, to keep the results general, the underlying architecture was not.

The machine model used is described in the next section.

In the second phase of the software pipeline scheduler development, the Modulo Scheduling

with ICTs implementation was migrated up to the Lcode level. By this point, the Mcode level

was developed. Since techniques developed for Lcode can be used in Mcode, the �rst motivation

listed above was no longer an issue. Furthermore, the software pipeline scheduler can now be

utilized to schedule a broader range of architectures.

Note that scheduling is performed after classical code optimizations are applied. For this

dissertation, the scope enlargement techniques are considered part of the scheduling algorithm.

Thus, the di�erent transformations are applied depending on the software pipeline technique

being analyzed. Software pipelining is performed before register allocation. There is ongoing

research exploring the possibility of merging software pipelining with register allocation.

In the experiments, the base scheduler is a basic block scheduler.

2The Intel i860 code generator was based upon the MIPS R2000 code generator for IMPACT [69].
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5.2 Machine Model

The basic processor used in this study is a RISC processor with in-order execution with

register interlocking and deterministic operation latencies. In the �rst phase of experiments,

the processor has an instruction set similar to the Intel i860 [21]. The only di�erence is that we

allow more types of branch operations and assume automatically advanced load and 
oating-

point pipelines. Table 5.1 shows the operation latencies for the i860. Note that the integer

multiply and divide and the 
oating-point conversion and divide are implemented using ap-

proximation algorithms [21]. In the second phase of the experiments, the IMPACT processor

has an instruction set similar to the MIPS R2000 [70]. Table 5.2 shows the operation latencies.

For the branch operation we assume that the compare and branch are performed in 1 cycle.

Thus, there are no branch delay slots. There are four basic kinds of compare and branch

operations: equal, not equal, greater than, and greater than or equal. For each kind there are

three types: integer, single-precision 
oating-point, and double-precision 
oating-point. There

are also signed and unsigned versions of the integer greater than and greater than or equal

operations. In total, there are 14 types of branch and compare operations.

The base processor for the both phases of the experiment has an in�nite register �le. This

allows us to measure the register requirements. We also assume an ideal cache.

The multiple instruction issue machine model for these experiments is a VLIW processor

with no interlocking. There are uniform resource constraints, with the exception that only one

branch can be issued per cycle. For Phase I, the experiments were performed using machines

with instruction widths or issue rates of 2, 4, and 8. For Phase II, issue rate 1 was also included

to show the bene�t of software pipelining for single issue processors.
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Table 5.1 Intel i860 operation latencies (* indicates that the operation is implemented using
an approximation algorithm).

Instruction Class Latency

integer ALU 1

integer multiply *

integer divide *

branch 1

memory load 2

FP load 3

memory store 1

FP/Double ALU 3

FP multiply 3

Double multiply 4

FP conversion *

FP/Double divide *

5.3 Benchmarks

The focus of this study is to analyze the relative performance of conditional branch handling

techniques. To run our experiments, we collected a set of 26 loops with conditional branches

from the Perfect benchmarks [71]. Only DOALL loops (loops without cross-iteration memory

dependencies) were included in the test suite. Table 5.3 provides the loop characteristics. The

FORTRAN line numbers of the loops are provided so that the results can be independently

veri�ed. The column labeled BBs gives the number of basic blocks in the loop. Note that all

conditional constructs within the loops are structured and non nested. The column labeled OPs

gives the number of machine operations assuming the Impact machine model.3 The column

labeled Branches gives the number of branch operations in the loop, including the loop back

branch.

3Note that the number of operations will di�er for the Phase I experiments which use the Intel i860 machine

model.
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Table 5.2 Impact operation latencies.

Instruction Class Latency

integer ALU 1

integer multiply 3

integer divide 10

branch 2

memory load 2

memory store 1

FP/Double ALU 3

FP conversion 3

FP multiply 3

FP divide 10

5.4 Phase I: Preliminary Studies

This section presents the experimental results that corroborate our design decisions for EMS.

For the results presented in this chapter, the speedup is the harmonic mean of the speedups for

the 26 loops. We assume that each loop executes an in�nite number of times. Thus, the e�ect

of the prologue and epilogue are not accounted for in the speedup results.

The code expansion is determined by the number of instructions in the software pipeline

divided by the number of instructions in the basic block schedule. Based on this calculation,

the code expansion is reported as a multiple of the number of instructions in the basic block

schedule. The code expansion is averaged across the 26 loops using the arithmetic mean. The

code expansion re
ects the prologue and epilogue code, where every technique supports one

epilogue. The code expansion due to the preconditioning loop (de�ned in Section 4.9) is not

reported. This overhead is the same for all techniques.

One �nal note, the code expansion reported is an upper bound on the expected code expan-

sion for two reasons. First, we assume that the size of the instruction for an issue n machine is
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Table 5.3 Loop characteristics.

Loop Perfect FORTRAN BBs OPs Branches

Benchmark Line No.

1 ADM 2191 4 38 3

2 ADM 2217 4 47 3

3 ADM 1508 4 61 3

4 ADM 3981 4 10 3

5 ADM 2253 4 79 3

6 ADM 2280 4 142 3

7 ADM 3080 7 26 5

8 ADM 2631 7 43 5

9 ADM 2662 7 48 5

10 ADM 2541 4 48 3

11 ADM 2515 4 37 3

12 ADM 1689 4 15 3

13 ARC2D 2630 4 32 3

14 ARC2D 2655 4 44 3

15 ARC2D 2558 4 31 3

16 ARC2D 2493 4 37 3

17 ARC2D 2516 10 39 7

18 ARC2D 2578 7 25 5

19 FLO52Q 1134 4 21 3

20 FLO52Q 1144 10 22 7

21 FLO52Q 1095 4 24 3

22 FLO52Q 1089 10 22 7

23 SPEC77 259 4 12 3

24 SPEC77 316 7 19 5

25 SPEC77 1201 4 14 3

26 SPEC77 1292 4 18 3
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n times greater than the size of an instruction for an issue 1 machine. Second, we assume that

there is no hardware support for interlocking.

5.4.1 Limited Hierarchical Reduction versus Hierarchical Reduction

The Hierarchical Reduction technique described in Section 2.7.1 was implemented in the

IMPACT compiler. We assume that Hierarchical Reduction is applied once to transform the

loop into straight-line code. Thus, no II sensitive heuristics are applied when forming the

reduct ops. We implemented two versions of Modulo Scheduling with Hierarchical Reduction.

The limited version does not allow a reduct op to overlap itself. The normal version does not

place any such limitation.

5.4.2 Induction Variable Reversal

We have applied Induction Variable Reversal to both the Limited and regular Hierarchi-

cal Reduction Modulo Scheduling techniques. Figure 5.2 shows the performance of Modulo

Scheduling with Hierarchical Reduction before and after Induction Variable Reversal (IVR).

We see that the optimization improves the performance of Hierarchical Reduction by as much

as 260% for an issue-8 machine. It also shows the di�erence between Limited and regular Hi-

erarchical Reduction. Before IVR, there is very little di�erence in the performance of Limited

and regular Hierarchical Reduction. The reason is that the multi-node recurrence formed by

the induction variable limits the achievable II and thus there is usually no opportunity for a

reduct op to overlap itself during scheduling. After IVR, the multi-node recurrence is converted

into a self-recurrence which no longer bounds II . Thus, preventing reduct op's from overlap-

ping themselves becomes the limiting factor as the issue rate increases. For an issue 8 machine,

regular Hierarchical Reduction performs on average 145% faster.
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Figure 5.2 Speedup before and after Induction Variable Reversal (IVR).

The bene�t of preventing a reduct op from overlapping itself is that there is potentially

lower code expansion. As Figure 5.3 shows, for an 8 issue machine, the code expansion is

approximately 37% smaller for Limited Hierarchical Reduction.

5.4.3 Modulo Scheduling with Hierarchical Reduction versus GURPR*

To review, in the GURPR* algorithm, the loop body is compacted and pipelined assuming

a lower bound on II determined by the inter-body dependence distance. From this intermediate

pipeline representation, II is determined as the shortest interval that contains all operations

in the loop. Once this interval is determined, it may contain multiple copies of an operation.

Any redundant operations are deleted so that exactly one iteration is completed within one II.

In our implementation of GURPR* no global code compaction is performed. We found that

techniques such as trace scheduling and code percolation tend to increase both the longest path
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Figure 5.3 Code expansion after Induction Variable Reversal.

and the resource con
icts, thereby increasing II. It is possible that some heuristics could be

applied to these code compaction techniques to improve the performance of GURPR* [58].

Figure 5.4 shows the performance of GURPR* versus Modulo Scheduling with Hierarchical

Reduction. Modulo Scheduling performs from 1.38 to 1.64 times better than GURPR*. The

relative performance of GURPR* degrades as the issue rate increases. The reason that GURPR*

does not perform as well as Modulo Scheduling is that it under schedules the resources since it

may schedule multiple copies of an operation into the �nal II . All but one copy will be deleted.

Figure 5.5 shows the code expansion of GURPR* and Modulo Scheduling with Hierarchical

Reduction. The code expansion of GURPR* is 107%, 73%, and 130% larger than for Modulo

Scheduling with Hierarchical Reduction. Even though GURPR* does not perform as well as

Modulo Scheduling, it has a larger code expansion. This is because the original II is equal to one

for loops with only self-recurrences. Thus, many iterations are overlapped during the pipelining
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Figure 5.4 Speedup of Modulo Scheduling with Hierarchical Reduction versus GURPR*.

phase before the �nal II is determined [58]. This increases the overlap of the conditional

constructs resulting in larger code expansion.

5.4.4 EMS versus Modulo Scheduling with Hierarchical Reduction

Given equivalent resource constraints, EMS should perform better than Hierarchical Re-

duction since Hierarchical Reduction has pseudo-operations with complicated resource usage

patterns. Figure 5.6 shows the speedup of EMS and Modulo Scheduling with Hierarchical Re-

duction. The EMS technique performs 18%, 17%, and 19% better than Modulo Scheduling

with Hierarchical Reduction for issue rates 2, 4, and 8, respectively.

The disadvantage of these techniques that require explicit conditional branches is that there

may be multiple copies of an operation, each on a di�erent control path. Furthermore, after

software pipelining, a conditional construct can overlap itself. If it overlaps itself n times, the
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Figure 5.7 Code Expansion of Enhanced Modulo Scheduling and Modulo Scheduling with
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code expansion can be roughly a factor of 2n. Figure 5.7 shows the arithmetic mean of the code

expansion of the two techniques.

As expected, the code expansion for EMS is larger than for Modulo Scheduling with Hierar-

chical Reduction since a tighter schedule is more likely to have a larger number of overlapping

register lifetimes and conditional constructs. The code expansion for EMS is 52%, 60%, and

105% larger than the code expansion for Modulo Scheduling with Hierarchical Reduction for

issue 2, 4, and 8, respectively. If the underlying architecture supported multiple branches per

cycle, then the code expansion for EMS would be even larger.

5.4.5 Final comparison

Figure 5.8 shows the arithmetic mean of RII and the achieved II for EMS, Modulo Schedul-

ing with Hierarchical Reduction, and GURPR*. Since loops without cross-iteration memory

98



____

10

20

30

40

Cycles

2 4 8
GURPR*

II

RII

Enhanced
Modulo

Scheduling

2 4 8

____24.0
24.0

____12.4
12.4

____6.9
6.9

40.8
24.0

____23.9
12.4

____15.0
6.9

____

  Modulo 
Scheduling 
   with
Hierarchical 
 Reduction

2 4 8

27.2

____13.7

12.4
____8.1
6.9

24.0

Figure 5.8 Average lower bound on II (RII) versus achieved II for EMS, Modulo Scheduling
with Hierarchical Reduction, and GURPR*.

dependences were used, the lower bound on II is always RII . Furthermore, each technique

assumes the same hardware support, and thus RII is the same for each approach. The graph

shows the number of cycles per II , and thus, the size of the bar is inversely proportional to

the performance of the technique. Figure 5.8 illustrates why EMS performs better than both

Hierarchical Reduction and GURPR*.

For EMS, RII is determined by the most heavily utilized resource along any execution

path. For our simple machine model, RII can always be achieved for loops without conditional

constructs. For loops with conditional constructs, however, RII may not be achieved. The

RII calculation assume that two operations from di�erent control paths can be scheduled to

the same resource. This is only possible when the two operations can be scheduled in the same

cycle. Since dependences may force an operation to be scheduled later, it may not be possible

to achieve RII for loops with conditional constructs. In the worst case, the scheduled II will

be the sum of the resource usages along both paths. Our results indicate that EMS almost
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always achieves its lower bound on II . Although the precision in Figure 5.8 does not show any

di�erence between the average RII and average II , there are some cases where II is larger

than RII . On average II is 0.1% and 0.3% percent larger than the the average RII for issue

rates 2 and 4, respectively.

Hierarchical Reduction often cannot achieve RII due to the complex resource usage patterns

of the pseudo-operations. There are several optimizations that could be applied to Modulo

Scheduling with Hierarchical Reduction that may improve its performance. For instance, if

a reduct op spans more than one II , then it may con
ict with itself and thus no schedule

for that II can be found. It is possible to schedule the reduct ops with a knowledge of II .

This requires that Hierarchical Reduction be applied for every value of II attempted. Also, a

backtracking algorithm such as those proposed for scheduling recurrences could be employed.

One of the bene�ts of the ICT approach is that it has a greater degree of scheduling freedom

since operations are scheduled only once. Thus, for more realistic machine con�gurations, we

would expect EMS to perform even better than Modulo Scheduling with Hierarchical Reduction.

While GURPR* does not use RII to determine the lower bound on II during the pipelining

stage, it does represent a lower bound for the achieved II. Due to the insertion of cycles when

a resource con
ict arises, GURPR* rarely achieves this lower bound on II.

One �nal note on the comparison of the di�erent techniques. To fully understand the

bene�ts of EMS over other methods, a more detailed simulation is required that accounts

for more constrained functional units, speci�c register �le con�gurations, and speci�c cache

con�gurations.
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5.5 Phase II: Analysis of Enhanced Modulo Scheduling

In Phase I we discovered that EMS is an e�ective technique for software pipelining. By

using the ICTs, the modulo scheduler has more freedom to schedule operations of a conditional

construct with operations outside the construct. Thus, it is possible to achieve a tighter sched-

ule. Since EMS has more scheduling freedom, it is interesting to analyze the e�ects of increasing

II versus 1) performance, 2) pipeline latency, 3) register pressure, and 4) code expansion. In

addition, we would like to analyze the experimental complexity of RIC for both the original

loop and the modulo scheduled loop.

Before getting into the detailed analysis, it is useful to understand the basic interactions

between the machine model, II , speedup, code expansion, and register pressure. As the issue

rate increases, we assume that the number of function units increases correspondingly. Thus,

as the issue rate increases, II will decrease, which results in fewer cycles in the steady state and

thus higher performance. Intuitively, if we have a �xed schedule for a loop (which is not the case

with Modulo Scheduling, but it illustrates the basic principle) and decrease II , then the loop

will span more stages and the pipeline latency increases. This has several rami�cations. First, it

will take more iterations to �ll the pipeline. Second, the likelihood of a register overlapping itself

increases and thus, the register pressure increases. Third, if the loop has conditional constructs,

then the likelihood that they overlap increases and thus, the code expansion increases.

5.5.1 Software pipeline characteristics for EMS

Tables 5.4 through 5.7 report the software pipeline characteristics for each loop for issue

rates 1 through 8, respectively. The LP column provides the loop number. II and RII are

shown for each loop. Note that II is not always equal to RII. II is greater than RII when we
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predict that we can schedule operations with mutually exclusive predicates to the same resource

but are not able to because the operations are scheduled more than one II apart. This will

occur more often in loops with 1) fewer operations and hence a smaller II, 2) a higher issue

rate and hence a smaller II, and 3) when the loop has a larger number of operations that use

a constrained resource such as the branch unit in our study.

The Lat column gives the latency of the software pipeline in cycles. That is, one iteration

completes in Lat cycles. The S column gives the number of stages in the prologue/epilogue.

S + 1 is the latency of the pipeline in terms of II. Lat is actually the latest issue time of an

operation in the �rst iteration of then loop. Thus, it is a more accurate latency than II(S + 1).

The U column gives the number of times the loop is unrolled for Modulo Variable Expansion

(MVE). Some numbers in the U column have a \+" appended that denotes that the loop was

unrolled one extra time to reduce the register usage. Given a loop with three variables where

two variables need to be renamed once (2 values) and the other twice (3 values), the loop needs

to be unrolled a minimum of 3 times. If the loop is unrolled 3 times, then to be able to rename

the variables correctly, 9 registers are needed since 2 does not divide 3 evenly. On the other

hand, if the loop is unrolled 4 times, then 8 registers are needed (2 + 2 + 4). It is debatable

whether register pressure or code expansion is more critical in terms of achieving a software

pipelined loop that can execute on the given machine resources (i.e., without using spill code

or incurring cache misses, respectively).

The R column gives the number of registers required after MVE, where LB is the lower

bound and UB is the upper bound. Rau, Lee, Tirumalai, and Schlansker report that a simple

and surprisingly tight lower bound can be obtained by calculating the total number of registers

live during each cycle of one II in the kernel and taking the maximum of these totals [36].
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Table 5.4 The software pipeline characteristics of EMS for issue rate 1.

LP II RII Lat S U R R P Ops Ops Ops

LB UB (1) (2) (3)

1 37 37 72 1 2 18 27 1 214 139 141

2 46 46 127 2 4+ 23 34 1 446 297 302

3 60 60 170 2 3 22 29 1 485 312 316

4 10 10 17 1 2 5 7 1 43 22 22

5 78 77 133 1 2 17 24 1 351 241 243

6 140 140 329 2 3 24 37 1 1080 734 738

7 26 26 47 1 2 11 15 2 116 69 71

8 42 42 83 1 2 17 24 2 243 154 158

9 47 47 126 2 4+ 24 34 2 466 307 312

10 47 47 126 2 4+ 23 34 1 412 293 298

11 36 36 97 2 3 19 28 1 337 226 230

12 14 14 26 1 2 8 11 1 62 41 43

13 31 31 83 2 4+ 22 34 1 278 197 202

14 43 43 84 1 2 16 21 1 241 167 169

15 30 30 87 2 4+ 19 27 1 312 224 224

16 36 36 106 2 4+ 20 29 1 342 246 246

17 36 36 71 1 2 13 18 3 200 133 135

18 23 23 40 1 2 11 15 2 116 79 79

19 18 18 44 2 3 9 13 1 216 140 140

20 19 19 37 1 2 9 10 3 142 84 84

21 23 23 61 2 4+ 14 20 1 304 194 200

22 19 19 37 1 2 9 10 3 142 84 84

23 12 12 18 1 2 5 6 1 69 44 44

24 19 19 45 2 3 8 11 2 171 75 75

25 14 14 37 2 3 8 11 1 158 94 94

26 18 18 48 2 3 11 16 3 360 205 205

AVG 35.54 35.50 82.73 1.54 2.81 14.81 20.96 1.50 281.00 184.65 186.73
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Table 5.5 The software pipeline characteristics of EMS for issue rate 2.

LP II RII Lat S U R R P Ops Ops Ops

LB UB (1) (2) (3)

1 19 19 75 3 4 30 51 1 646 500 415

2 23 23 113 4 6+ 38 65 1 1044 790 689

3 30 30 134 4 6+ 32 50 1 1340 1062 958

4 5 5 14 2 3 7 11 1 80 52 36

5 39 39 128 3 4 30 45 1 1018 780 684

6 70 70 240 3 4 41 59 1 1652 1278 1118

7 13 13 37 2 4+ 16 24 2 316 258 209

8 21 21 79 3 4 31 51 2 644 472 399

9 24 24 115 4 6+ 37 63 2 1092 856 694

10 24 24 95 3 4 33 55 1 536 392 347

11 18 18 81 4 6+ 33 55 1 564 422 369

12 7 7 13 1 2 8 13 1 62 38 34

13 16 16 74 4 6+ 34 58 1 528 426 353

14 22 22 65 2 4+ 24 37 1 508 404 347

15 15 15 71 4 6+ 29 49 1 480 344 304

16 18 18 88 4 6+ 29 49 1 864 646 571

17 18 18 63 3 4+ 21 34 3 550 414 335

18 12 12 41 3 4 18 30 2 376 256 194

19 9 9 51 5 6 19 33 3 942 588 541

20 10 10 34 3 4+ 11 15 4 662 564 400

21 12 12 45 3 4 20 32 1 408 296 236

22 10 10 34 3 4+ 11 15 4 662 564 400

23 6 6 16 2 3 7 11 1 144 114 82

24 10 10 34 3 4 8 12 2 298 238 164

25 7 7 26 3 4 13 21 1 224 172 132

26 9 9 32 3 4 14 24 4 586 334 282

AVG 17.96 17.96 69.15 3.12 4.46 22.85 37.00 1.69 624.08 471.54 395.89
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Table 5.6 The software pipeline characteristics of EMS for issue rate 4.

LP II RII Lat S U R R P Ops Ops Ops

LB UB (1) (2) (3)

1 10 10 57 5 6 47 85 2 1584 1348 955

2 12 12 91 7 8 62 110 2 2124 1900 1342

3 15 15 131 8 10+ 59 101 2 4040 3508 2969

4 4 3 11 2 3 6 11 1 132 88 36

5 20 20 105 5 6 46 79 1 1896 1620 1254

6 35 35 261 7 8 61 103 1 4280 3600 2974

7 7 7 34 4 6+ 26 45 2 1052 984 665

8 11 11 72 6 8+ 51 91 2 1764 1608 1030

9 12 12 92 7 8 60 108 2 2528 2212 1586

10 12 12 82 6 8+ 56 100 1 1128 992 718

11 9 9 53 5 6 42 76 1 840 732 541

12 4 4 14 3 4 15 25 1 188 96 78

13 8 8 61 7 8 53 95 1 884 740 511

14 11 11 54 4 6+ 38 67 1 736 676 469

15 8 8 69 8 10+ 48 87 2 1548 1348 936

16 10 9 68 6 8+ 45 80 1 1360 1092 781

17 10 9 45 4 4 30 51 3 960 728 403

18 7 6 33 4 6+ 24 42 2 1032 800 505

19 5 5 38 7 8 26 46 4 2200 1892 1119

20 7 6 31 4 6+ 15 25 4 2172 1744 693

21 6 6 35 5 6 29 50 2 984 792 557

22 7 6 31 4 6+ 15 25 4 2172 1744 693

23 4 3 14 3 4 10 16 1 272 228 114

24 6 5 28 4 5 11 17 2 620 408 208

25 4 4 18 4 6+ 15 26 1 384 332 177

26 5 5 34 6 8+ 25 45 8 4840 3164 2032

AVG 9.58 9.27 60.08 5.19 6.62 35.19 61.77 2.08 1604.62 1322.15 897.92
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Table 5.7 The software pipeline characteristics of EMS for issue rate 8.

LP II RII Lat S U R R P Ops Ops Ops

LB UB (1) (2) (3)

1 5 5 54 10 12+ 82 156 2 3880 3472 2273

2 6 6 77 12 14+ 98 189 2 5112 4760 3159

3 8 8 78 9 10 74 132 2 5376 5048 3533

4 3 2 11 3 4 9 15 1 296 336 81

5 10 10 95 9 10 77 142 2 4648 4504 3144

6 18 18 172 9 10 97 178 1 6768 6336 4717

7 5 4 25 4 6+ 26 47 2 880 1032 323

8 7 6 55 7 8 66 117 3 4128 4344 2056

9 7 6 80 11 12 94 179 2 5320 5408 2814

10 6 6 77 12 14+ 96 185 1 2656 2392 1602

11 5 5 49 9 10 69 129 1 1576 1336 813

12 3 2 14 4 6+ 19 33 1 496 520 159

13 5 4 40 7 8 57 109 1 1480 1344 704

14 6 6 47 7 8 61 113 1 1776 1704 1040

15 5 4 48 9 10 58 111 1 1880 1592 824

16 5 5 59 11 12+ 71 131 2 2640 2616 1400

17 8 6 36 4 4 30 52 3 1664 1232 367

18 5 4 28 5 6 27 52 2 1552 1296 436

19 4 3 35 8 10+ 29 54 5 4672 4536 1540

20 7 6 31 4 4 12 22 4 3416 3224 736

21 4 3 31 7 8 37 68 2 1648 1544 654

22 7 6 31 4 4 12 22 4 3416 3224 736

23 3 2 11 3 4 10 16 1 408 400 115

24 5 4 32 6 8+ 14 23 2 1760 1976 430

25 3 2 16 5 6+ 19 33 1 648 472 165

26 3 3 26 8 8 29 57 8 13816 9968 4509

AVG 5.89 5.23 48.39 7.19 8.31 48.96 90.96 2.19 3150.46 2869.85 1474.23
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The upper bound on the number of registers is sum of the maximum and minimum number of

registers that are live simultaneously [72].

The P column gives the number of predicates in the loop after applying MVE. Note that

the maximum number of predicates needed is 8. This justi�es the use of bit operations for the

allowable predicate set during RIC.

The OPs (1) column gives the number of operations in the resultant software pipelined loop

assuming a VLIW without interlocking. The OPs (2) column gives the number of operations

in the resultant software pipelined loop assuming a VLIW with interlocking. Thus, instructions

with all no-op operations are deleted from the resultant code. Finally, the OPs (3) column gives

the number of operations in the software pipelined loop assuming a VLIW with interlocking

and a mechanism to insert no-op's. Whether or not such an architecture is realistic, the results

provide insight into the code expansion for superscalar processors. Note that this is not the

code expansion for superscalar since a VLIW machine model was assumed during scheduling.

The AVG reported is the arithmetic mean over the 26 loops. It is provided as a quick

reference. The individual benchmark data is provided for a more detailed understanding.

5.5.2 II versus performance

It is interesting to study the e�ect of increasing II on the parameters of the software pipeline.

Figure 5.9 shows the speedup as II is increased. AII is the minimum achieved II. While a larger

II corresponds to decreased performance, it has some positive side e�ects which are explored in

the following sections.
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Figure 5.9 Speedup of EMS for increasing values of II . AII is the minimum achievable II .
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Figure 5.10 The pipeline latency (cycles) for EMS for increasing values of II . AII is the
minimum achievable II .

5.5.3 II versus pipeline latency

As II is increased, the pipeline latency decreases and thus the minimum number of iterations

for software pipelining decreases. Figure 5.10 and Figure 5.11 show the e�ect of increasing II

on the pipeline latency in terms of cycles and stages, respectively. Figure 5.10 shows the

average latest issue time across all loops and Figure 5.11 is the average number of stages in the

prologue/epilogue across all loops.

As II increases, the number of stages, S, in the prologue decreases. Since S + 1 corresponds

to the minimum number of iterations the loop must have to be software pipelined, for loops
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Figure 5.11 The stages in the prologue for EMS for increasing values of II . AII is the
minimum achievable II .
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with few iterations, it may be desirable to increase II until the number of iterations equals S +

1. On the other hand, simply unrolling the loop and scheduling may achieve a tighter schedule.

5.5.4 II versus register pressure

As the pipeline latency decreases, one iteration spans fewer stages and thus, the register

pressure will decrease. As discussed in Section 5.5.1 lower and upper bounds on the number of

registers can be calculated. In this section we divide the registers into three classes: integer,

single precision 
oating-point, and double precision 
oating-point. Figures 5.12 and 5.13 show

the average and maximum for the lower bound on integer registers. Figures 5.14 and 5.15 show

the average and maximum for the upper bound on integer registers. Figures 5.16 through 5.23

show the corresponding data for single precision and double precision 
oating-point register

classes.

Since Rau et al. have found that the lower bound is tight, we will focus our discussion on

these results. It is interesting to note that the register pressure is not excessive. A 32 entry

integer register �le is su�cient for machines with issue rates 1 and 2 and a 64 entry integer

register �le is su�cient for machines with issue rates 4 and 8. For single precision 
oating-point

registers, a 32 entry register �le is again su�cient for issue 1 and 2 machines and a 64 entry

register �le is su�cient for issue 4 and 8 machines. For double precision 
oating-point registers,

a 32 entry register �le is su�cient for machines with issue rates as large as 8.
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Figure 5.12 Average lower bound on number of integer registers for increasing values of II .
AII is the minimum achievable II .
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Figure 5.13 Maximum lower bound on number of integer registers for increasing values of
II . AII is the minimum achievable II .
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Figure 5.14 Average upper bound on number of integer registers for increasing values of II .
AII is the minimum achievable II .
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Figure 5.15 Maximum upper bound on number of integer registers for increasing values of
II . AII is the minimum achievable II .
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There are cases when the register usage will exceed the machine resources. In a software

pipelined loop it is important to avoid this situation. Otherwise, spill code is required to

load/store the value into a temporary register. Unless register allocation is integrated with

scheduling, adding spill code after the schedule is found will decrease the performance of the

software pipelined loop since it introduces extra cycles into the steady state. In addition, these

cycles do little useful work other than load/store the register value. Finally, the extra cycles

may violate the schedule for machines without interlocking.

One solution is to use the lower bound estimates during scheduling in order to increase

II if the requirements exceed the machine resources. Note that while in general the register

requirements decrease as II increases, this is not always true. Figure 5.19 shows that the

maximum number of registers required increases from II + 1 to II + 2 for an issue 8 machine.

5.5.5 II versus unrolling

As II increases, the register pressure decreases because the lifetime of a variable is likely

to span fewer IIs. Thus, the number of times the loop is unrolled due to register renaming

decreases. Figure 5.24 shows the number of times the kernel is unrolled as II is increased.

5.5.6 II versus code expansion

Since both the number of times the loop is unrolled and the number of stages in the pro-

logue/epilogue decrease as II increases, we expect that the code expansion will also decrease.

Figure 5.25 shows the code expansion assuming no interlocking as II is increased. Figure 5.26

shows the code expansion assuming interlocking as II is increased. Figure 5.27 shows the code

expansion assuming interlocking with no no-op operations as II is increased. As mentioned
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oating-point registers for
increasing values of II . AII is the minimum achievable II .
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Figure 5.17 Maximum lower bound on number of single precision 
oating-point registers for
increasing values of II . AII is the minimum achievable II .
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oating-point registers for
increasing values of II . AII is the minimum achievable II .
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Figure 5.19 Maximum upper bound on number of single precision 
oating-point registers for
increasing values of II . AII is the minimum achievable II .
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for increasing values of II . AII is the minimum achievable II .
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Figure 5.23 Maximum upper bound on number of double precision 
oating-point registers
for increasing values of II . AII is the minimum achievable II .
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Figure 5.25 Code expansion assuming no interlocking. AII is the minimum achievable II .

earlier, the results in Figure 5.27 can be used to estimate the code expansion for an equivalent

superscalar processor.

5.5.7 Experimental complexity

As stated in Section 2.6 the time complexity of the RIC algorithm is

O(HpLmax +HdL
2
max + 2HmL

2
max);

where Hp is the number of operations in the hyperblock (or equivalently software pipeline for

EMS) excluding pd operations and pm operations, Hd is the number of pd operations in the

hyperblock, and Hm is the number of pm operations. H = Hp + Hd +Hm. Lmax is the maximum
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Figure 5.26 Code expansion assuming interlocking. AII is the minimum achievable II .
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Figure 5.27 Code expansion assuming interlocking without no-op's. AII is the minimum
achievable II .

122



number of nodes in the leaf node set. The complexity of RIC can also be expressed in terms of

the number of nodes in the resultant control 
ow graph jNj: The complexity is thus O(HjNj2).

Table 5.8 shows the parameters of RIC for the original loop for issue rate 1. Tables 5.9

through 5.12 report the parameters of RIC for the software pipelined loop for the di�erent

issue rates. Also, the experimental complexity of RIC is calculated using Lmax. The table also

presents HjNj2 to illustrate that it is not a good bound on the complexity of RIC. The actual

experimental complexity is much more reasonable and is closer to H than HjNj2. Note that

the experimental complexity reported is actually high since it assumes Lmax which is somewhat

larger than the average L as illustrated by Lavg.
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Table 5.8 Complexity of RIC for original loop with issue rate 1.

LP Hp Hd Hm jNj Lavg Lmax HjNj2 HpLmax

+ HdL
2
max

+ 2HmL
2
max

1 36 1 1 4 1 2 608 84

2 45 1 1 4 1 2 752 102

3 59 1 1 4 1 2 976 130

4 8 1 1 4 1 2 160 28

5 77 1 1 4 1 2 1264 166

6 140 1 1 4 1 2 2272 292

7 22 2 2 7 1 2 1274 68

8 39 2 2 7 1 2 2107 102

9 44 2 2 7 1 2 2352 112

10 46 1 1 4 1 2 768 104

11 35 1 1 4 1 2 592 82

12 13 1 1 4 1 2 240 38

13 30 1 1 4 1 2 512 72

14 42 1 1 4 1 2 704 96

15 29 1 1 4 1 2 496 70

16 35 1 1 4 1 2 592 82

17 33 3 3 10 1 2 3900 102

18 21 2 2 7 1 2 1225 66

19 19 1 1 4 1 2 336 50

20 16 3 3 10 1 2 2200 68

21 22 1 1 4 1 2 384 56

22 16 3 3 10 1 2 2200 68

23 10 1 1 4 1 2 192 32

24 15 2 2 7 1 2 931 54

25 12 1 1 4 1 2 224 36

26 16 1 1 4 1 2 288 44

AVG 33.85 1.42 1.42 5.27 1.00 2.00 1059.58 84.77

124



Table 5.9 Complexity of RIC for software pipeline loop with issue rate 1.

LP Hp Hd Hm jNj Lavg Lmax HjNj2 HpLmax

+ HdL
2
max

+ 2HmL
2
max

1 106 3 3 13 1 2 18928 248

2 265 6 6 21 1 2 122157 602

3 291 5 5 18 1 2 97524 642

4 22 3 3 9 1 2 2268 80

5 229 3 3 12 1 2 33840 494

6 696 5 5 18 1 2 228744 1452

7 64 6 6 18 1 2 24624 200

8 115 6 6 21 1 2 56007 302

9 259 12 12 39 1 2 430443 662

10 271 6 6 21 1 2 124803 614

11 171 5 5 19 1 2 65341 402

12 37 3 3 12 1 2 6192 110

13 175 6 6 21 1 2 82467 422

14 124 3 3 12 1 2 18720 284

15 169 6 6 21 1 2 79821 410

16 205 6 6 21 1 2 95697 482

17 97 9 9 36 1 4 149040 820

18 61 6 6 21 1 2 32193 194

19 91 5 5 20 1 2 40400 242

20 46 9 9 40 1 4 102400 616

21 127 6 6 23 1 2 73531 326

22 46 9 9 40 1 4 102400 616

23 28 3 3 11 1 2 4114 92

24 71 10 10 31 1 4 87451 764

25 56 5 5 19 1 2 23826 172

26 76 5 5 33 2 4 93654 544

AVG 149.92 5.81 5.81 21.92 1.04 2.38 84484.04 453.54
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Table 5.10 Complexity of RIC for software pipeline loop with issue rate 2.

LP Hp Hd Hm jNj Lavg Lmax HjNj2 HpLmax

+ HdL
2
max

+ 2HmL
2
max

1 246 7 7 26 1 2 175760 576

2 441 10 10 35 1 2 564725 1002

3 581 10 10 35 1 2 736225 1282

4 36 5 5 13 1 2 7774 132

5 533 7 7 26 1 2 369772 1150

6 974 7 7 24 1 2 569088 2032

7 127 12 12 39 1 2 229671 398

8 267 14 14 46 1 2 624220 702

9 431 20 20 65 1 2 1989975 1102

10 316 7 7 24 1 2 190080 716

11 341 10 10 33 1 2 393129 802

12 37 3 3 9 1 2 3483 110

13 291 10 10 33 1 2 338679 702

14 247 6 6 22 1 2 125356 566

15 281 10 10 32 1 2 308224 682

16 341 10 10 35 1 2 442225 802

17 225 21 21 77 1 4 1583043 1908

18 141 14 14 60 1 4 608400 1236

19 199 11 11 90 3 8 1790100 3704

20 106 21 21 179 3 8 4742068 4880

21 148 7 7 26 1 2 109512 380

22 106 21 21 179 3 8 4742068 4880

23 46 5 5 19 1 2 20216 152

24 99 14 14 45 1 2 257175 366

25 78 7 7 25 1 2 57500 240

26 106 7 7 58 3 8 403680 2192

AVG 259.38 10.62 10.62 48.27 1.31 3.08 822390.31 1257.46
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Table 5.11 Complexity of RIC for software pipeline loop with issue rate 4.

LP Hp Hd Hm jNj Lavg Lmax HjNj2 HpLmax

+ HdL
2
max

+ 2HmL
2
max

1 386 11 11 72 2 4 2115072 2072

2 661 15 15 92 2 4 5848624 3364

3 1045 18 18 114 2 4 14048676 5044

4 36 5 5 13 1 2 7774 132

5 837 11 11 38 1 2 1240396 1806

6 2086 15 15 50 1 2 5290000 4352

7 211 20 20 95 2 4 2265275 1804

8 533 28 28 128 2 4 9650176 3476

9 646 30 30 141 2 4 14035986 4024

10 631 14 14 45 1 2 1334475 1430

11 375 11 11 38 1 2 573268 882

12 85 7 7 17 1 2 28611 254

13 436 15 15 48 1 2 1073664 1052

14 411 10 10 33 1 2 469359 942

15 505 18 18 108 1 4 6310224 2884

16 477 14 14 47 1 2 1115545 1122

17 257 24 24 125 1 8 4765625 6664

18 201 20 20 90 2 4 1952100 1764

19 271 15 15 182 4 8 9970324 5048

20 151 30 30 309 4 16 20146492 25456

21 232 11 11 67 2 4 1140206 1456

22 151 30 30 309 4 16 20146492 25456

23 64 7 7 24 1 2 44928 212

24 127 18 18 64 1 4 667648 1372

25 111 10 10 33 1 2 142659 342

26 211 14 14 394 12 32 37101404 49760

AVG 428.35 16.19 16.19 102.92 2.08 5.46 6210962.00 5852.69
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Table 5.12 Complexity of RIC for software pipeline loop with issue rate 8.

LP Hp Hd Hm jNj Lavg Lmax HjNj2 HpLmax

+ HdL
2
max

+ 2HmL
2
max

1 771 22 22 136 3 4 15074240 4140

2 1145 26 26 162 2 4 31414068 5828

3 1103 19 19 120 3 4 16430400 5324

4 50 7 7 23 1 2 33856 184

5 1445 19 19 116 2 4 19955248 6692

6 2642 19 19 62 1 2 10301920 5512

7 211 20 20 63 1 2 996219 662

8 571 30 30 254 3 8 40709596 10328

9 990 46 46 276 2 4 82422432 6168

10 1171 26 26 83 1 2 8425247 2654

11 647 19 19 61 1 2 2548885 1522

12 121 10 10 35 1 2 172725 362

13 436 15 15 49 1 2 1118866 1052

14 616 15 15 50 1 2 1615000 1412

15 533 19 19 61 1 2 2124691 1294

16 783 23 23 138 1 4 15787476 4236

17 257 24 24 123 1 8 4614345 6664

18 221 22 22 106 2 4 2977540 1940

19 325 18 18 218 5 8 17156164 6056

20 121 24 24 289 6 16 14115049 20368

21 316 15 15 91 2 4 2865226 1984

22 121 24 24 289 6 16 14115049 20368

23 64 7 7 25 1 2 48750 212

24 197 28 28 120 1 4 3643200 2132

25 122 11 11 35 1 2 176400 376

26 241 16 16 858 23 64 200972768 212032

AVG 585.38 20.15 20.15 147.81 2.81 6.85 19608282.00 12673.15
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CHAPTER 6

BENEFIT OF PREDICATED EXECUTION FOR MODULO

SCHEDULING

In the previous chapter we saw that software pipelining yields high code expansion. There

are three sources of code expansion: 1) code expansion due to unrolling for Modulo Variable

Expansion, 2) code expansion due to the prologue/epilogue, and 3) code expansion due to over-

lapping conditional constructs. Hardware support can be used to eliminate all code expansion.

The Cydra 5 architecture provides two forms of hardware support to eliminate code expan-

sion [11], [12]. The rotating register �le can dynamically rename registers and thus eliminate

the need to unroll the kernel [36]. Predicated Execution support can be used to conditionally

execute operations. If predicates are assigned to loop conditions, then prologue and epilogue

code can be eliminated [37]. Eliminating the prologue and epilogue prevents the compiler from

scheduling operations outside the loop with the prologue and epilogue code. Finally, predicated

execution can be used to avoid code duplication due to overlapping conditional constructs. This

last form of hardware support is explored in this chapter [64].

6.1 Architecture Support for Predicated Execution

The architecture support required for predicated execution consists of: 1) predicate de�ning

(pd) operations, 2) predicate invalidating (pi) operations, 3) a predicate register �le, and 4)

predicated operations. An example of an architecture similar to the Cydra 5 is shown in

Figure 6.1 [11], [12], [52]. We assume 14 types of pd operations: integer, single precision
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Figure 6.1 Architecture support for predicated execution.


oating-point; double precision 
oating-point versions of equal, not equal, greater than, and

greater than equal; and unsigned integer versions for greater than and greater than equal. These

operations compare two source operands and set the value of the destination predicate register

accordingly. A pi operation is used to invalidate the speci�ed predicate register.

The predicate register �le has R 1-bit registers. The register is cleared if the predicate is not

de�ned and set if it is de�ned. A pi operation clears the register. A pd operation sets the bit

if the condition is true, otherwise, it clears it. Each operation within the wide instruction word

has a predicate register speci�er of width log2R. The width can be reduced if the predicate

register �le is implemented as a rotating register �le as in the Cydra 5 [52].

All operations within the wide instruction are executed. After the predicate register �le

access delay, an operation in the execution pipeline that refers to a cleared predicate register

will be squashed.
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6.2 Experimental Results

The pd operations have a one cycle latency. We assume that the machine has the Intel

i860 instruction set and latencies used in Phase-I experiments of Chapter 5. To measure the

predicate register �le size requirements, we use an unlimited predicate register �le. The model

has an in�nite register �le and an ideal cache. The experiments were performed using machines

with instruction widths or, equivalently, issue rates of 2, 4, and 8.

With Predicated Execution, all operations in the loop are fetched, and those with their

predicates set complete execution. Thus, whereas EMS can schedule two operations from

di�erent control paths in the same slot, Predicated Execution allows only one operation per

slot. For this reason, the lower bound on II is the sum of the resources constraints along

all paths. Thus, compared with EMS, we would expect Modulo Scheduling with Predicated

Execution to have a larger RII .

Figure 6.2 shows the speedup for Modulo Scheduling with Predicated Execution and for

EMS. The speedup results presented are the harmonic mean of the speedup for each loop. We

assume that the loop executes an in�nite number of times. Thus, the e�ect of the prologue and

epilogue are not accounted for. Modulo Scheduling with Predicated Execution performs 2%,

6% and 27% better than EMS for issue rates 2, 4, and 8, respectively. The reason that Modulo

Scheduling performs better than EMS as the issue rate increases is that the machine model for

EMS assumes one branch per cycle and thus the branch unit becomes a limiting resource.

Figure 6.3 shows the arithmetic mean of RII and the achieved II for EMS and Modulo

Scheduling with Predicated Execution. Note thatRII for EMS is larger thanRII for Predicated

Execution. This supports the hypothesis that the one branch per cycle constraint often limits

the lower bound on II for EMS (especially for issue-8 machines). If the underlying architecture
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Figure 6.2 Speedup of Modulo Scheduling with and without support for Predicated Execu-
tion.

supports multiple branches per cycle, then EMS should perform as well as or better than

Predicated Execution since EMS almost always achieves its lower bound on II .

Multiple branches per cycle would, however, increase the code expansion of EMS. Figure 6.4

shows the code expansion for Modulo Scheduling with Predicated Execution and for EMS. Note

that the code expansion for Modulo Expansion with Predicated Execution is the minimum code

expansion given that the prologue and epilogue are generated and that there is no support for

dynamic register renaming. The code expansion for EMS is 75%, 103%, and 257% times larger

than for Predicated Execution for issue 2, 4, and 8, respectively. Note that these results are

slightly misleading since the code expansion due to the predicate register speci�ers has not been

included since it is implementation dependent.

Figure 6.5 gives the percentage of the loops that can �t into the speci�ed predicate register

�le size. As expected, the predicate register requirements increase as the issue rate increases
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Figure 6.3 Average lower bound on II (RII) versus achieved II for EMS and Modulo Schedul-
ing with Predicated Execution.

and more iterations are overlapped. A predicate register �le with R registers requires log2R

bits in the predicate register speci�er. To schedule all of the loops for an issue-8 machine would

require a 6-bit predicate register speci�er. The majority of the loops scheduled, however, have

only one conditional construct per loop. Thus, if a rotating register �le is used [12], then a 1-bit

predicate register speci�er would be adequate.

6.3 Using Control Flow Pro�ling

One drawback to some software pipelining techniques, including Modulo Scheduling, is that

the length of the steady-state schedule is �xed for all paths through the loop [60]. This can

particularly limit the performance if the most frequently executed path is much shorter than

other paths through the loop. Control-
ow pro�ling information can be used to determine

which paths to include in the software pipelined loop body. Figure 6.6(a) shows the weighted
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control 
ow graph of a simple loop. The loop body consists of four operations, where operation

A is a conditional branch.1 Since operation C is executed only 10% of the time, only the path

fA, B, Dg is software pipelined.

When control paths are excluded from the software pipeline, a mispredicted branch can

break the software pipeline. The simplest approach to handling this hazard is to empty the

software pipeline, execute the code along the taken path, and re�ll the pipeline. Figure 6.6(b)

shows the software pipelined loop using this hazard resolution technique. This is a software haz-

ard resolution technique since the compiler generates the necessary code to empty the pipeline

and to execute the code along the taken path. Note that this example is overly simpli�ed

to illustrate the order in which operations are executed when a branch misprediction hazard

occurs. Thus, explicit branch operations other than A are not shown, but, their corresponding

control 
ow arcs are shown.2

In this simple example, there are only two stages in the software pipeline until the steady-

state execution is reached. Typically, the number of stages is higher. For example, Section 5.5.3

reported that the average number of stages is approximately seven for an issue 8 machine. Thus,

it can be costly to recover from a mispredicted branch using a software resolution technique.

It would be ideal if the execution could jump out of the pipeline, execute the taken path

code, and jump back into the pipeline. In order to do so, the operations in the pipeline that

are along the not taken path of the branch need to be squashed. Squashing means that the

operations are fetched but not executed. Predicated hardware support can be used to squash

operations in the software pipeline [11], [12]. Figure 6.6c shows the software pipeline schedule

1To keep the example simple, the loop back branch is ignored.

2When the loop back branch is considered, code is also required to handle early exits from the software

pipeline [37].
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                                            branch taken

B’ :  predicate p set -> execute B

 condition of A false -> set predicate p and 
                                      branch not taken

 predicate p clear -> squash B
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Figure 6.6 Using control-
ow pro�le for software pipelining. a) Weighted control-
ow graph.
b) Software hazard resolution. c) Hardware hazard resolution.

assuming predicated hardware support. In this example, A0 is assumed to be a conditional

branch operation that also sets a predicate p. Operation B
0 executes B if predicate p is set,

otherwise B is squashed. When the condition of A is false, the predicate p is set and operation

B executes. When the condition of A is true, the predicate p is cleared and control branches

to execute operation C. After C executes, control branches back to the operation following the

mispredicted branch. Since the predicate p is cleared, operation B will not execute but other

operations scheduled with B0 will.

6.3.1 Modulo Scheduling with pro�ling and predication

Control-
ow pro�ling information is used to modulo schedule the most frequently executed

paths in the loop. After the most frequently executed paths have been selected, If-conversion is

applied to these paths. For conditional branches where both successor basic blocks are included
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Algorithm Modulo Schedule with Pro�le and Predication: Given a hyperblock loop
with infrequent or undesirable paths eliminated, apply Modulo Scheduling to software pipeline
the loop.

construct dependence graph
/� RII is the sum of the resource constraints �/
determine lower bound on II

while modulo schedule of hyperblock for given II is not found
increment II

/� use MVE to rename registers that span more than one II (U = number of times to unroll loop) �/
U = MVE(hyperblock)
create kernel given hyperblock and U
rename registers in kernel according to MVE
/� determine number of stages in prologue and epilogue �/
S = dlatest issue time=IIe � 1
create softpipe given kernel and S
8 I 2 softpipe f

if I has a branch and predicate de�ne (bpd) operation and not loop back branch f
schedule taken path code
branch back to instruction following I

g
g

generate remainder loop to execute the remainder of (loop bound - S)/U iterations
append softpipe to remainder loop

Figure 6.7 Algorithm Modulo Scheduling with Pro�le and Predication software pipelines
loops with some execution paths removed.

in the modulo schedule, the branch is converted to a pd operation and operations along both

paths are predicated. For conditional branches where only one successor is in the modulo

schedule, the branch is converted into a branch and predicate de�ne (bpd) operation and only

the not taken path (the path in the modulo schedule) is predicated.

Figures 6.7 and 6.8 present the algorithms used to modulo schedule pro�led loops without

recurrences. These algorithms are discussed at a fairly high level of abstraction. The detailed

information of Modulo Scheduling is provided in Chapter 4.
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Algorithm Copy Operation: Given an operation, copy and insert appropriate bookkeeping
code.

copy op
if (op is a bpd operation) f

copy taken path of op
change branch destination of op to point to copy of taken path

g

Figure 6.8 Algorithm Copy Operation for handling o� path code during scheduling.

The basic Modulo Scheduling algorithm with pro�ling is presented in Figure 6.7. The �rst

step in this algorithm is to �nd an II that can be scheduled. Only the operations along the

selected paths need to be considered. The list scheduling algorithm presented in Figure 4.12 is

used to modulo schedule the hyperblock.

The only di�erence between the Modulo Scheduling algorithms with and without pro�ling

is that the taken path of the branch must be copied every time the bpd operation is copied.

Figure 6.8 shows the copy operation algorithm. After the software pipeline has been constructed,

the taken paths of each bpd operation are scheduled taking into account the dependence and

resource constraints of the pipelined schedule. Once the taken path is scheduled, a branch

operation is inserted to branch to the instruction following the instruction containing the bpd

operation.

During scheduling, the constraints of the excluded paths are ignored. This is possible since

1) speculative execution is not allowed, and 2) control branches back to the instruction following

the bpd operation. Since speculative execution is not allowed, control dependent operations

will not be moved above the bpd operation. Disallowing speculative execution will not a�ect

the pipeline throughput, but may lengthen the pipeline latency. Since control branches back
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to the instruction following the bpd operation, operations moved from above to below the

branch during scheduling will always be executed. Furthermore, since the paths merge at the

instruction after the branch, the branch operation prevents operations from being moved above

the merge point. Operations below the merge point that are control dependent on the branch

will be predicated.

6.3.2 Results

To evaluate the e�ectiveness of using control-
ow pro�ling, we applied Modulo Scheduling

with Pro�le and Predication to VLIW processors with predicated hardware support. The

benchmarks used in this study are 25 loops selected from the Perfect Suite [71]. These loops

have no cross-iteration dependences and have at least one conditional construct. The pro�ling

optimization is applied for branches where one path is taken at least 80% of the time. The

loops are assumed to execute a large number of times and thus only the steady-state (kernel)

execution is calculated for the modulo scheduled loops.

The base processor used in this study is a RISC processor which has an instruction set

similar to the Intel i860 [21]. Again, Intel i860 instruction latencies are used. The processor

has an unlimited number of registers and an ideal cache.

The bene�t of control-
ow pro�ling for Modulo Scheduling with predicated hardware sup-

port is illustrated by comparing the speedup with and without pro�ling information for a VLIW

processor with issue rates 2, 4, and 8.3 No limitation is placed on the combination of operations

that can be issued in the same cycle. For each machine con�guration, the loop execution time

is reported as a speedup relative to the loop execution time for the base machine con�guration.

3Induction Variable Reversal was not applied to these loops.
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Figure 6.9 Performance improvement with pro�ling for Modulo Scheduling with predicated
hardware support.

The bene�t of using control-
ow pro�le information to improve the performance of modulo

scheduling with predicated hardware support is shown in Figure 6.9. The speedups are calcu-

lated using the harmonic mean. Overall, pro�ling improves the performance by approximately

12% for the issue-2 machine, 11% for the issue-4 machine, and 7% for the issue-8 machine.

It is interesting to note the e�ect of control-
ow pro�ling. By eliminating paths before

modulo scheduling, the scheduling constraints along excluded paths can be ignored and a tighter

II can be found. There are two types of scheduling constraints, recurrences and resources. With

predicated hardware support, reducing the resource constraints can be particularly important

since all operations along all control paths are fetched, and thus, the resource constraint is

determined by the most heavily used resource along all paths. By eliminating some of the less

frequently executed control 
ow paths, the lower bound on II may be reduced. As shown in

Figure 6.9, this particularly bene�ts the lower issue rates which incur more resource con
icts.
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One �nal point to note is that while this technique has been presented as a way to exclude

infrequently executed paths, it can also be used to exclude paths which contain software pipeline

preventing code. For instance, loops with subroutine calls are often not software pipelined. If

the subroutine is called only along some execution paths, then they can be excluded using

predicated hardware support and the remaining paths can be e�ciently scheduled.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

In this dissertation we have presented a new approach to scheduling in the presence of

conditional branches. The Isomorphic Control Transformations (ICTs) combine the well-known

If-conversion technique with a new Reverse If-conversion technique to simplify the task of global

scheduling to one that looks like local scheduling. Since the control 
ow graph is regenerated

after scheduling, this approach can be used for processors that do not have special hardware

support for conditional execution.

In this dissertation we have shown that Modulo Scheduling is a practical and robust software

pipelining technique based on local scheduling. To apply Modulo Scheduling to loops with

conditional branches, the global scheduling problem must be reduced to a local scheduling

problem. Enhanced Modulo Scheduling (EMS) is Modulo Scheduling with ICTs. The EMS

technique has been implemented in IMPACT compiler. In this dissertation, we have presented

the algorithms and implementation details of ICTs in general and EMS. Since ICTs do not

assume special hardware support, EMS can be applied to existing processors and their future

superscalar implementations. We have shown that EMS is a more 
exible scheduling algorithm

than Modulo Scheduling with Hierarchical Reduction, which is a technique that can also be

applied to existing processors. Since EMS is more 
exible, it can achieve a tighter schedule,

and thus EMS performs better than Modulo Scheduling with Hierarchical Reduction.
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We have also analyzed the bene�t of Predicated Execution for Modulo Scheduling. In

processors that support only one branch per cycle, the branch unit becomes a bottleneck as the

issue rate increases. Predicated Execution eliminates this bottleneck. Furthermore, it reduces

the code expansion considerably. Finally, we have shown how predicated hardware support

can be used to allow control 
ow to branch out of and back into the software pipeline to

support frequency-based scheduling or to handle loops with software pipeline inhibitors such as

subroutine calls.

7.2 Future Work

7.2.1 Isomorphic Control Transformations

In this dissertation we have presented an application of ICTs to Modulo Scheduling and

have shown the bene�ts of this approach for processors without hardware support for condi-

tional execution. When paths are combined before scheduling, it is important that no arti�cial

constraints are imposed. Thus, we have insured that the resource constraints do not have to

be summed by using the control path information from the Predicate Hierarchy Graph (PHG).

Similarly, we have to remove the sum of paths dependence constraints. When an operation is

moved above a merge point, it should be scheduled independently on each path. Currently, it is

scheduled as one operation and thus, it is scheduled based on the worst-case dependence along

both paths.

Another extension to the ICT approach is to improve the concept of a predicate merging

operation such that it retains the property that no jumps be inserted during RIC but eliminates

the dependence on the original control 
ow graph. Currently, paths are merged only when they

were merged in the original control 
ow graph. This may yield larger code expansion then
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necessary since paths may be able to be merged earlier or in a di�erent order than from the

original graph.

The use of ICTs for acyclic global scheduling has to be more fully explored, speci�cally, the

use of ICTs with general hyperblock scheduling. To do so, there must be a way to incorporate

data 
ow information into the predicate intermediate representation. This allows for speculative

execution and other aggressive scheduling techniques. For example, it is currently not possible

to move an operation from above to below a branch and schedule it on only one path of the

branch. This is allowed when the result of the operation is in the live-in set of only one successor

of the branch.

Finally, the ICTs can be extended to support partial predication support which is supported

by superscalar implementations.

7.2.2 Modulo Scheduling

The current implementation of EMS does not support loops with recurrences. This is not a

limitation of the technique but rather is due to the fact that memory dependence information

is not available at the IMPACT back-end. When such information is available, loops with

recurrences can be supported.

There is a limitation of the �xed-II techniques that variable-II techniques [19] do not en-

counter [60]. Fixed-II techniques create gaps in the schedule for execution paths not constrained

by the minimum II. One solution is to use pro�ling information to remove the infrequently ex-

ecuted paths. This approach is particularly suited for processors with Predicated Execution.

For processors without hardware support for conditional execution, it may be possible to use

ICTs to eliminate the �xed-II constraint.
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There are other optimizations that may improve the performance of EMS. First, the loop

can be unrolled before scheduling to achieve a closer �t to the processor resource constraints

(e.g., the remainder of resources requirements divided by machine constraints should be close

to zero). Furthermore, heuristics to control code expansion, register pressure, register �le port

accesses, and cache port accesses can be employed. Modulo Scheduling is particularly suited

for applying such heuristics since it is a local scheduling based technique.

Another important extension to EMS is to integrate register allocation and scheduling.

This is particularly important since register spilling may violate the resultant software pipeline

schedule. Techniques such as those developed by Rau et al. [36] and Hu� [50] can be employed.

Finally, EMS can be extended to processors with partial predication support and to proces-

sors which support multiple branches per cycle.

7.2.3 Task granularity adjustment

Software pipelining is an aggressive loop scheduling technique for general-purpose high-

performance processors. While extensive research has been performed developing techniques

to vectorize loops for vector processors, similar research has to be done for software pipelining

loops for general purpose processors. First, the scheduling characteristics have to be identi�ed,

and then loop transformations can be applied to adjust the loop structure accordingly. The

Pcode level of the IMPACT compiler is designed to support such transformations for back-end

optimization and scheduling techniques.
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Figure .1 Intel i860 processor block diagram.

This appendix shows how modulo scheduling can be applied to a processor with a manual

pipeline. A manual pipeline is one in which an operation advances to the next stage of the

pipeline when another operation is inserted into the pipeline. The destination of the operation

leaving the pipeline is speci�ed by the operation entering the pipeline. The Intel i860 processor

shown in Figure .1 has two modes for the 
oating-point add and 
oating-point multiply: non

pipelined or manual pipelined. Figure .2 illustrates the di�erence between these two modes.

In the non pipelined mode, a single precision multiply takes 3 cycles to execute and no other


oating-point multiply can be executing at the same time. In the manual pipelined mode, the

time to execute a pipelined instruction depends on when the other 
oating-point operations

enter the pipeline. Since Modulo Scheduling takes into account the exact resource constraints

during scheduling, it can be used to software pipeline loops utilizing the manual pipeline.
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3

pipelined

instr 4

instr 3

instr 2

instr 1

dest of instr 1
specified by instr 4

Figure .2 Manual pipeline.

Figure .3 illustrates how a loop can be software pipelined with an ordinary hardware pipeline

that automatically advances. Since the pipeline automatically advances, the latency is guaran-

teed to be 3 and thus ST1 can be scheduled in cycle 6. In a manual pipeline, however, operations

must be pushed through the hardware pipeline. Thus, in most schedulers, the manual pipeline

causes an indeterministic latency. But, with modulo scheduling, we know that every operation

in the loop body is executed every II cycles. Based on this observation, we can determine the

manual latency. The following theorem, stated without proof, de�nes the manual latency.1

Theorem: For a loop with an iteration interval II and NX type X instructions, where X is

a manual pipeline with SX stages, if the manual latency �X is used for all type X instructions

within the loop, then a correct software pipeline schedule can be found, where

� = d
SX

NX

e � II

For the i860, X can be

� Floating-Point Multiply

1Note that the chaining mechanism in the i860 allows a 
oating-point multiply (add) to push a 
oating-point

add (multiply) through the pipeline.
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Figure .3 Software pipelining regular pipelines.
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To modulo schedule a loop, the manual latency is calculated and the dependence graph

updated. Figure .4 shows the software pipelined loop for a manual pipeline. Note that by

simply changing the operation latency, the operation ST1 is not scheduled until the result of

FM1 has been pushed through the manual pipeline.

Preliminary results for the i860 show that for 10 frequently executed loops, Modulo Schedul-

ing can achieve a speedup of 1.9 using the non pipelined mode and 2.8 using the pipelined mode.
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