
c
Copyright by Roger Alexander Bringmann, 1995

ENHANCING INSTRUCTION LEVEL PARALLELISM
THROUGH

COMPILER-CONTROLLED SPECULATION

BY

ROGER ALEXANDER BRINGMANN

B.S., University of South Alabama, 1983
M.S., University of Illinois at Urbana-Champaign, 1992

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

ENHANCING INSTRUCTION LEVEL PARALLELISM
THROUGH

COMPILER-CONTROLLED SPECULATION

Roger Alexander Bringmann, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1995
Wen-mei W. Hwu, Advisor

The available instruction level parallelism (ILP) is extremely limited within basic blocks of

non-numeric programs [1] [2] [3]. An e�ective VLIW or superscalar processor must optimize

and schedule instructions across basic block boundaries to achieve higher performance. An

e�ective structure for ILP compilation is the superblock [4]. The formation and optimization

of superblocks increase ILP available to the scheduler along important execution paths by

systematically removing constraints due to the unimportant paths. Superblock scheduling is

then applied to extract the available ILP and map it to the processor resources.

The major technique employed to achieve compact superblock schedules is speculative execu-

tion. Speculative execution refers to executing an instruction before knowing that its execution

is required. Such an instruction will be referred to as a speculative instruction. In the general

sense, speculative execution may be engineered at run-time using dynamic scheduling or at

compile-time. Superblock techniques utilize compile-time engineered speculative execution, or

speculative code motion. A compiler may utilize speculative code motion to achieve higher

performance in three major ways. First, in regions of the program where insu�cient ILP exists

to fully utilize the processor resources, useful instructions may be executed. Second, instruc-

tions starting long dependence chains may be executed early to reduce the length of critical

paths. Finally, long latency instructions may be initiated early to overlap their execution with

useful computation. Speculative execution is generally employed by all aggressive scheduling

techniques. For example, Tirumalai et al. showed that modulo scheduling of while loops de-

iii

pends on speculative support to achieve high performance [5]. Without speculative support,

very little execution overlap between loop iterations is achieved.

This dissertation discusses the problems that must be addressed to perform compile-time

speculation for acyclic global scheduling, classi�es existing speculation models based upon how

they solve these problems and discusses two new compile-time or compiler-controlled speculation

models - write-back suppression speculation and safe speculation.

iv

DEDICATION

To my wife, Mary, and my children, Carrie and Johnathan.

Thank you for your love and your support!

v

ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge my advisor, Professor Wen-mei W. Hwu,

for his intellectual, �nancial, professional, and emotional support. I value his advise and look

forward to applying what I have learned from him as I continue my career in industry.

As a member of the IMPACT group, I was able to meet and work with a number of

amazing people in industry. I would like to thank Mike Johnson and David Witt from AMD,

David Ditzell and Steve Richardson from SUN MicroSystems, Jack Mills from Intel, and Mike

Schlansker and Vinod Kathail for technical conversations and insights over the years. I would

like to thank Dr. Bob Ramakrishna Rau for his valuable insights on instruction speculation

and scheduling.

The research would not have been possible without the support of the IMPACT research

group - past and present. I would like to acknowledge their support in the form of coding,

practice talks, research discussions, and friends. Many thanks to Sadun Anik, Dave August,

Pohua Chang, William Chen, Derek Cho, Tom Conte, Brian Dietrich, Dave Gallagher, John

Gyllenhaal, Grant Haab, Rick Hank, Andrew Hsieh, Liang Hsu, Sabrina Hwu, Tokuzo Kiyohara,

Dan Lavery, Scott Mahlke, Krishna Subramanian, and Yoji Yamada. I would also like to thank

Vicki McDaniel, the secretary for the IMPACT group, for her friendship and assistance.

Next, I would like to acknowledge friends who have made graduate school an enjoyable

experience. I would like to thank Neal Alewine for the friendship of a fellow southerner who

was also going back to graduate school after a prolonged period of time. I would like to thank

Scott Mahlke and Rick Hank for putting up with me as a room mate during my last year and

vi

a half. I would like to thank John Gyllenhaal and Liesl Little for the fun and pain provided by

workout partners. Finally, I would like to acknowledge Sharad Mehrotra, Bill Pottenger and

Krishna Subramanian for their friendship and support as we worked through the comprehensive

exam process.

I would like to thank my parents, Norma and Wolfgang, for their encouragement towards

excellence in school as well as their encouragement to pursue my doctoral dreams. I would also

like to thank them for the emotional support when things were di�cult. I would like to thank

my brother, Michael, for the natural brotherly rivalry that helped motivate me to return for

my doctorate after he completed his. I would also like to thank my in-laws, John and Elizabeth

Cooper, for their support during graduate school.

Most importantly, I must thank my wife, Mary, and my children, Carrie and Johnathan,

for their love. They stood behind me and believed in me when I decided to step away from

a successful industry career and pursue my doctorate. They were there to help me enjoy the

good times in my graduate studies and have provided the critical emotional support through

the di�cult times. The last year and a half have been very di�cult for all of us and I hope that

I can more than make up for this very soon!

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION : 1
1.1 Contributions : 2
1.2 Overview : 4

2 OVERVIEW OF THE IMPACT COMPILER : 6
2.1 The IMPACT Compiler : 6
2.2 Superblocks : 10

2.2.1 Superblock Formation : 10
2.2.2 Superblock Enlarging Optimizations : 12
2.2.3 Superblock Dependence-Removing Optimizations : : : : : : : : : : : : : : 13

3 COMPILER-CONTROLLED SPECULATION : 17
3.1 Accurate Reporting and Recovery from Exceptions : : : : : : : : : : : : : : : : : 18
3.2 Classi�cation of Compiler-Controlled Speculation Models : : : : : : : : : : : : : 19

3.2.1 Avoid Errors Models : 20
3.2.2 Ignore Errors Models : 20
3.2.3 Resolve Errors Models : 22

3.3 Existing Compiler-Controlled Speculation Techniques : : : : : : : : : : : : : : : : 22
3.3.1 Avoid Error Models : 22
3.3.2 Ignore Error Models : 23
3.3.3 Resolve Error Models : 23

3.4 Scheduling in the IMPACT Compiler : 26
3.4.1 Overview of the IMPACT Scheduler : 27
3.4.2 Superblock Scheduling : 31
3.4.3 Experimental Evaluation and Analysis : 38

4 WRITE-BACK SUPPRESSION : 43
4.1 Overview of Write-back Suppression : 43
4.2 Architectural Extensions : 47

4.2.1 Instruction Requirements : 47
4.2.2 Hardware Requirements : 47
4.2.3 Hardware Cost Estimates : 50

4.3 Compiler Support : 51
4.3.1 Superblock Scheduler Extensions : 51
4.3.2 Register Allocator Extensions : 52

4.4 Write-back Suppression and Context Switching : : : : : : : : : : : : : : : : : : : 53
4.5 Experimental Evaluation : 54

4.5.1 Methodology : 55
4.5.2 Results : 55

viii

4.6 Conclusion : 61

5 SAFE SPECULATION : 62
5.1 Overview : 62

5.1.1 Determining Safety through Operand Inspection : : : : : : : : : : : : : : 63
5.1.2 Determining Safety through Equivalent Instructions : : : : : : : : : : : : 64
5.1.3 Determining Safety through Graph Traversal : : : : : : : : : : : : : : : : 65
5.1.4 Ensuring Safety in the Presence of Optimizations : : : : : : : : : : : : : : 69
5.1.5 Related Work : 72

5.2 Compiler Support : 75
5.2.1 Generating Use-Def Graphs : 75
5.2.2 Evaluating Use-Def Graphs : 90
5.2.3 Generating Call-Graphs for C Programs : : : : : : : : : : : : : : : : : : : 104
5.2.4 Identifying Side-E�ect Free Subroutine Calls : : : : : : : : : : : : : : : : 105
5.2.5 Determining Safety of Instructions : 105

5.3 Experimental Evaluation : 119
5.3.1 Experimental Results from Call-Graph Generation : : : : : : : : : : : : : 121
5.3.2 Experimental Results of Safe Speculation : : : : : : : : : : : : : : : : : : 123

6 A STUDY OF THE EFFECTS OF COMPILER-CONTROLLED SPECULATION
ON INSTRUCTION AND DATA CACHES : 129
6.1 Expected Cache E�ects : 129
6.2 Experimental Evaluation : 136

6.2.1 Methodology : 136
6.2.2 Results : 137

6.3 Conclusions : 148

7 CONCLUSION : 150
7.1 Summary : 150
7.2 Future Work : 153

REFERENCES : 156

VITA : 160

ix

LIST OF TABLES

Table Page

3.1 Benchmarks. : 39
3.2 Instruction latencies. : 39

5.1 Library routines that were implemented to support the analysis process. : : : : : : : 103
5.2 Standard list of side-e�ect free subroutine calls found in the C libraries. : : : : : : : 108
5.3 Summary of speedup results for safe speculation and existing speculation models. : : 124

6.1 Instruction opcodes and descriptions. : 129
6.2 Branch taken frequencies. (Total corresponds to the total entrance frequency of the

loop.) : 132
6.3 Increase in execution frequency of speculated loads in the compress loop after schedul-

ing with the general speculation model. : 135
6.4 Cache con�gurations used in experiments. : 137
6.5 Icache access and miss rates at issue 1 (direct mapped cache). : : : : : : : : : : : : 141
6.6 Average icache access and miss rates at issue 8 (2-way set associative cache). : : : : 142
6.7 Icache misses for the no speculation and general speculation models of the cccp loop

example at Issue 8 (2-way set associative, 4K Icache). : : : : : : : : : : : : : : : : : 143
6.8 Dcache access and miss rates at issue 1 (direct mapped cache). : : : : : : : : : : : : 146
6.9 Average dcache accesses and miss rates at issue 8 (2-way set associative cache). : : 147
6.10 Dcache misses for the no speculation and general speculation models of the compress

loop example at Issue 8 (2-way set associative, 4K Dcache). : : : : : : : : : : : : : 148

x

LIST OF FIGURES

Figure Page

2.1 The IMPACT compiler. : 7
2.2 An example of superblock formation. : 11
2.3 An application of superblock ILP optimizations. : 15

3.1 Example code segment, (a) un-scheduled code, (b) one speculated instruction, (c)
two speculated instructions. : 18

3.2 Classi�cations of compiler-controlled speculation models. : : : : : : : : : : : : : : : 20
3.3 Original code segment. : 25
3.4 Code segment after sentinel scheduling, before register allocation. : : : : : : : : : : : 26
3.5 Code segment after sentinel scheduling and register allocation. : : : : : : : : : : : : 27
3.6 Organization of the IMPACT Instruction Scheduler. : : : : : : : : : : : : : : : : : : 28
3.7 An example superblock. : 33
3.8 Corresponding dependence graph for example superblock. : : : : : : : : : : : : : : 34
3.9 The Compute Static Priority algorithm determines the instruction priorities for each

instruction. : 35
3.10 Maximum path lengths from starting instruction to branch. : : : : : : : : : : : : : : 36
3.11 Instruction priorities and schedule assuming branch probabilities are 20% for B1,

20% for B2 and 60% for B3. : 37
3.12 Instruction priorities and schedule assuming branch probabilities are 20% for B1,

60% for B2 and 20% for B3. : 37
3.13 Instruction priorities and schedule assuming branch probabilities are 60% for B1,

20% for B2 and 20% for B3. : 38
3.14 Speedup results from the speculative yield scheduling heuristic. : : : : : : : : : : : : 40
3.15 Instructions per cycle results from the speculative yield heuristic. : : : : : : : : : : : 42

4.1 Code segment after write-back suppression scheduling, before register allocation. : : 44
4.2 Code segment after write-back suppression scheduling and register allocation. : : : : 46
4.3 Write-back suppression hardware. : 48
4.4 Write-back suppression state machine. : 49
4.5 Weighted speculation distances for PEIs. : 56
4.6 Performance comparison of write-back suppression scheduling (W) and restricted

speculation (R) with 32 integer and 32
oating-point registers. : : : : : : : : : : : : 57
4.7 Performance results of write-back suppression relative to general speculation using

an issue 1 processor. : 59
4.8 Performance results of write-back suppression relative to general speculation using

an issue 2 processor. : 59
4.9 Performance results of write-back suppression relative to general speculation using

an issue 4 processor. : 60

xi

4.10 Performance results of write-back suppression relative to general speculation using
an issue 8 processor. : 60

5.1 Example where potentially excepting instructions are always safe. : : : : : : : : : : : 66
5.2 Example where the number of loop iterations and inter-procedural analysis is re-

quired to determine safety. : 68
5.3 Examples where sentry instructions prevent run-time errors. : : : : : : : : : : : : : 70
5.4 Example indicating the need to control optimization to maintain safety. : : : : : : : 73
5.5 The Build Use Def Graph algorithm generates a levelized use-def graph with cycles

identi�ed. : 77
5.6 The Recursively Build Use Def Graph algorithm generates a use-def graph starting

at the initial start point. : 78
5.7 The Traverse Basic Block algorithm adds relevant instructions to the current node

in the use-def graph. : 81
5.8 The Identify Cycles algorithms is used to identify cycles in the graph to permit

correct graph levelization. : 82
5.9 The DFS Identify Cycles algorithm is used to identify cycles in the graph to permit

correct graph levelization. : 82
5.10 The Levelize Use Def Graph algorithm is used to push the level of all nodes to the

lowest levels in the graph that reach them. : 83
5.11 Main function for wc. : 85
5.12 Initial wc loop prior to use-def graph generation. : 86
5.13 Instructions for wc loop. : 87
5.14 Initial node of use-def graph containing instruction 42. : : : : : : : : : : : : : : : : 87
5.15 Final state of node after traversing all instructions in cb 9. : : : : : : : : : : : : : : 88
5.16 Initial state of use-def graph prior to traversing cb 8. : : : : : : : : : : : : : : : : : 88
5.17 Final state of use-def graph after traversing cb 8. : : : : : : : : : : : : : : : : : : : 89
5.18 State of use-def graph several recursive calls later. : : : : : : : : : : : : : : : : : : : 91
5.19 Final use-def graph after merging nodes, identifying cycles and leveling graph. : : : 92
5.20 The Evaluate Use Def Graph algorithm is generate all values that reach the source

operands of the instruction that terminates the graph. : : : : : : : : : : : : : : : : 95
5.21 Example of how function state is migrated through a use-def graph. : : : : : : : : : 96
5.22 The Update State algorithm is used to compute the register and memory state that

reaches the node. : 97
5.23 Examples of how inter-procedural analysis is performed. : : : : : : : : : : : : : : : 99
5.24 The Evaluate State algorithm is used to record the register and memory state

changes produced by a node in the use-def graph. : : : : : : : : : : : : : : : : : : : 101
5.25 The Evaluate Subroutine Call algorithm is used to record the register and memory

state changes that occur as a result of traversing into a subroutine call. : : : : : : : 103
5.26 The Build Call Graph algorithm is to generate a program call-graph. : : : : : : : : 106
5.27 The Identify Side E�ect Free algorithm is used to mark subroutine calls that are

to functions that do not modify global memory or memory that is passed in as a
parameter. : 107

5.28 The Identify Safe PEI algorithm is the main calling routine used to identify instruc-
tions that are safe for speculation with a program. : : : : : : : : : : : : : : : : : : : 109

xii

5.29 The Identify Trivially Safe algorithm identi�es instructions that can be identi�ed as
safe through explicit operand values. : 110

5.30 The Identify Equivalence Safe algorithm identi�es instructions that can be identi�ed
as safe because of equivalent instructions that dominate the potentially excepting
instruction. : 112

5.31 The Identify Non Loop and Invariant Safe algorithm identi�es all non-loop and in-
variant instructions that can be determined safe through use-def traversal. : : : : : 114

5.32 The Identify Variant Safe algorithm identi�es all variant instructions that can be
determined safe through use-def traversal. : 115

5.33 Memory reference size limitations for stack based loads. : : : : : : : : : : : : : : : : 116
5.34 Memory reference size limitations for load from global memory. : : : : : : : : : : : : 117
5.35 Memory reference size limitations for load from dynamically allocated memory. : : : 118
5.36 The Identify Variant Safe Load algorithm identi�es all variant load instructions that

can be determined safe through use-def traversal. : : : : : : : : : : : : : : : : : : : 120
5.37 Experimental results from call-graph generation. : 121
5.38 Experimental results comparing safe speculation with existing speculation models. : 124
5.39 C source code for the function cmppt. : 127

6.1 The most important loop in cccp scheduled using no speculation model. : : : : : : 130
6.2 The most important loop in cccp scheduled using general speculation model. : : : : 130
6.3 Icache layout for cccp loop after no speculation model (16 instruction block). : : : : 132
6.4 Icache layout for cccp loop after general speculation model (16 instruction block). : 133
6.5 The most important loop in compress scheduled using no speculation model. : : : : 134
6.6 The most important loop in compress scheduled using general speculation model. : : 135
6.7 Icache e�ects for no speculation and general speculation models. : : : : : : : : : : : 138
6.8 Icache e�ects for no speculation and general speculation models. : : : : : : : : : : : 139
6.9 Icache e�ects for all speculation models at issue 1 and issue 8. : : : : : : : : : : : : : 140
6.10 Dcache e�ects for no speculation and general speculation models. : : : : : : : : : : 144
6.11 Dcache e�ects for no speculation and general speculation models. : : : : : : : : : : 144
6.12 Dcache e�ects for all speculation models at issue 1 and issue 8. : : : : : : : : : : : 146

xiii

CHAPTER 1

INTRODUCTION

Instruction scheduling is the process used by the compiler to re-order instructions in an

e�ort to minimize program execution time. Since instruction scheduling is NP-Hard, heuristics

are used to approximate the best schedule. One common approach to scheduling is to perform

list scheduling using greedy heuristics to approximate a globally optimal schedule [6]. Regardless

of the scheduling heuristics, instructions are ordered based upon some priority mechanism. At

each cycle, the instructions with the highest priority that have resolved all dependences and

meet the issue requirements of the processor are scheduled.

The implementation of a scheduler is straightforward if list scheduling is applied within

basic blocks. Unfortunately, there is insu�cient instruction level parallelism available within

basic blocks of non-numeric benchmarks to fully utilize the functional units of wide issue super-

scalar and VLIW architectures [1, 2, 7]. Therefore global scheduling techniques such as trace

scheduling [8] and superblock scheduling [4] have been proposed to permit greater scheduling and

optimization freedom beyond basic block boundaries. Using these techniques, the program is di-

vided into a set of traces or superblocks that represent frequently executed paths. These traces

or superblocks contain multiple basic blocks and as a result can contain multiple conditional

branches. When building a dependence graph for a trace or superblock, control dependence

arcs are added from conditional branches to subsequent instructions. In order to gain addi-

tional scheduling freedom beyond the natural basic block boundaries found within these traces

or superblocks, the compiler must remove some of these control dependence arcs. This per-

1

mits speculation of instructions past conditional branches, thus the name compiler-controlled

speculation.

When an instruction is speculated above a branch, it is executed regardless of the direction

taken by the branch. To ensure correct program execution, the compiler must not alter the

program execution result with speculative instruction scheduling. One requirement is that

speculative instructions from one path of a conditional branch should not corrupt the source

operands of instructions on the other path of the branch. This can be achieved by renaming the

destination operands of the speculative instructions [4]. A more di�cult requirement is that if

the compiler speculates a potentially excepting instruction (PEI) from one path of a conditional

branch, its exception condition must not alter the program state if the branch chooses the other

path. In particular, the exception conditions from speculatively executed instructions must not

corrupt the processor state or terminate the execution of the program unless their execution is

con�rmed by the subsequent branches.

This research focuses on compiler-controlled speculation models that have been applied to

acyclic schedulers. The same speculation models provide the same bene�ts to cyclic scheduling

models as well. The research topics were implemented in the IMPACT-I compiler developed

at the University of Illinois [7]. The fundamental premise of the IMPACT project has been

to provide a complete compiler implementation that allows quanti�cation of the compiler and

architectural extensions on the performance of superscalar and VLIW processors by compiling

and executing large control-intensive programs.

1.1 Contributions

The four major contributions of this dissertation are discussed below.

2

� The problems that all compiler-controlled speculation models must solve are discussed.

One of the major problems associated with all of these models is what should be done if

an instruction that is bene�cial to speculate can introduce run-time errors. For example,

if a load is speculated above a branch that is preventing an illegal memory reference, the

program could terminate during execution. These speculation models must either prevent

speculation of these potentially excepting instructions, have some means of ignoring the

exception until the direction of the branch is known, or ignore the exception. A classi-

�cation for compiler-controlled speculation models is presented based upon the di�erent

approaches chosen to address this problem.

� Write-back suppression is an alternative to existing speculation models that require pro-

cessor assistance to resolve exceptions resulting from compile-time speculation. This

implementation takes advantage of in-order retire mechanisms present in many existing

processors to systematically suppress register �le updates for subsequent speculative in-

structions in the event of an error. This reduces the register pressure requirements which

permits more aggressive speculation. Additionally, the technique requires much less pro-

cessor support than existing techniques. Experimental results show that this technique

can achieve performance results close to the most aggressive speculation models that

ignore errors entirely.

� Safe speculation is presented as an alternative speculation model that permits aggressive

compile-time speculation without processor extensions. This model uses intra-procedural

and inter-procedural analysis to identify instructions that will not cause run-time errors

and are therefore always safe to speculate. Additionally, the analysis methods provide

information to later compilation phases to ensure that no transformations are performed

3

that would invalidate the safety analysis. This permits aggressive speculation of memory

references to dynamically allocated bu�ers within loops. This model can be used in

conjunction with other speculation models such as write-back suppression to reduce the

instruction overhead required to detect exceptions by identifying instructions that will

de�nitely not cause an exception.

� Previous work on compiler-controlled speculation has ignored the possible cache e�ects in-

troduced from speculation. Indeed, aggressive speculation can lead to signi�cantly higher

instruction and data cache misses. This work has shown that even though aggressive spec-

ulation does introduce higher cache miss rates, the overhead from these additional cache

misses does not negate the bene�ts of using aggressive speculation models even with very

small caches. A detailed study of the e�ectiveness of limited and aggressive speculation

models is performed to show these e�ects for both instruction and data caches. These

studies show the e�ects over a variety of processor issue rates and cache con�gurations.

1.2 Overview

This dissertation is composed of 7 chapters. Chapter 2 presents an overview of the organi-

zation and operation of the IMPACT Compiler. All compiler techniques discussed in this thesis

are implemented within the framework of the IMPACT compiler.

Chapter 3 introduces the concept of compiler-controlled speculation. It describes the re-

quirements that all compiler-controlled speculation models must address and classi�es existing

models based upon how they address these requirements. Examples speculation models are

presented which fall into each of the speculation classes. Finally, an overview of the IMPACT

scheduler is presented along with the global scheduling heuristics which take advantage of these

4

speculation models. Experimental results are presented to demonstrate the e�ectiveness of

these scheduling heuristics. Write-back suppression is presented in Chapter 4 to present an

alternative compiler-controlled speculation model that requires some processor assistance to

perform recovery.

Safe speculation is presented in Chapter 5 as an alternative speculation model that can

additionally be used the enhance the performance of existing speculation models. This model

takes advantage of intra-procedural and inter-procedural analysis to determine instructions that

meet the requirements discussed in Chapter 3. The algorithms presented have been implemented

and tested on a suite of C benchmarks. Additionally the e�ectiveness of these techniques are

compared against a number of existing speculation models.

Chapter 6 studies how limited and aggressive speculation models may a�ect instruction and

data caches. These studies are shown over a variety of block sizes, cache sizes and associativities.

The results are analyzed and conclusions on these e�ects are presented. Finally, Chapter 7

presents conclusions and directions for future research.

5

CHAPTER 2

OVERVIEW OF THE IMPACT COMPILER

2.1 The IMPACT Compiler

A block diagram of the IMPACT compiler is presented in Figure 2.1. The compiler is di-

vided into 3 distinct parts based on the level of intermediate representation (IR) used. The

highest level IR, Pcode, is a parallel C code representation with loop constructs intact. The

Pcode level is ideal memory dependence analysis [9], loop-level transformations [10], and mem-

ory system optimizations [11]. The middle IR is referred to as Hcode. Hcode is a
attened

C representation with simple if-then-else and goto control
ow constructs. In Hcode, state-

ment level pro�ling is performed. Additionally, pro�le-guided code layout and function in-line

expansion are performed at this level [12].

The �nal level of IR in the IMPACT compiler is referred to as Lcode. Lcode is a generalized

register transfer language similar in structure to most load/store processor assembly instruction

sets. Lcode is logically subdivided into 2 subcomponents, the machine independent IR, Lcode,

and the machine speci�c IR, Mcode. The data structures for both Lcode and Mcode are

identical. The di�erence is that Mcode is broken down such that there is a one to one mapping

between Mcode instructions to the target machines assembly language. Therefore, to convert

Lcode to Mcode, the code generator breaks up Lcode instructions into 1 or more instructions

which directly map to the target architecture. The annotation of Lcode instructions to Mcode

instructions is performed for a variety of reasons including limited addressing modes, translating

6

HCODE

Superblock
Formation

Hyperblock
Formation

ILP Code
Optimization

Classic Code
Optimization

C / Fortran
 Source

Peephole
Optimization

Code
Scheduling

PCODE

Dependence
Analysis

Loop
Transformations

Optimizations
Memory System

Parallelization

Function Inline
Expansion

Statement
Profiler

Code
Layout

MDES
LCODE

MCODE

Code
Emission

Register
Allocation

Software
Pipelining

Interprocedural
Safety Analysis

SPARC

Intel X86HP PLAYDOH

AMD 29K MIPS R3000 HP PA-RISC

IMPACT

Figure 2.1 The IMPACT compiler.

7

unsupported Lcode instructions into their equivalent supported Mcode instructions, and literal

size mismatch [13].

At the Lcode level, all machine independent classic optimizations are applied [14]. These

include constant propagation, forward copy propagation, backward copy propagation, common

subexpression elimination, redundant load elimination, strength reduction, constant folding,

constant combining, operation folding, operation cancellation, dead code elimination, jump

optimization, unreachable code elimination, loop invariant code removal, loop global variable

migration, loop induction variable strength reduction, loop induction variable elimination, and

loop induction variable re-association. Additionally at the Lcode level, the intra-procedural

and inter-procedural safety analysis discussed in this dissertation are performed. This includes

identifying safe instructions for speculation and function calls that do not modify memory

(side-e�ect free).

Superblock and hyperblock compilation techniques are all performed at the Lcode level [15].

Superblock support includes superblock formation using execution pro�le information, su-

perblock classical optimization, and superblock ILP optimization. When predicated execution

support is available in the target architecture, hyperblocks rather than superblocks are used as

the underlying compilation structure. All superblock optimization techniques have also been

extended to operate on hyperblocks. In addition, a set of hyperblock-speci�c optimizations to

further exploit predicated execution support are available.

All code generation in the IMPACT compiler is performed at the Lcode level. The two

largest components of code generation are the instruction scheduler and register allocator.

Scheduling is performed via either acyclic global scheduling [16, 17] or software pipelining

using modulo scheduling [18]. For the acyclic global scheduling, code scheduling is applied both

8

before register allocation (prepass scheduling) and after register allocation (postpass scheduling)

to generate an e�cient schedule. For software pipelining, loops targeted for pipelining are

identi�ed at the Pcode level and marked for pipelining. These loops are scheduled using software

pipelining and all other code is scheduled using the global scheduler. Graph coloring based

register allocation is utilized for all target architectures [19]. The register allocator employs

execution pro�le information if it is available to make more intelligent decisions. For each

target architecture, a set of specially tailored peephole optimizations are performed. These

peephole optimizations are designed to remove ine�ciencies during Lcode to Mcode conversion,

take advantage of specialized opcodes available in the architecture, and to remove ine�cient

code inserted by the register allocator [13].

A detailed machine description database, Mdes, for the target architecture is also available

to all Lcode compilation modules [20]. The Mdes contains a large set of information to assist

with optimization, scheduling, register allocation, and code generation. Information such as

the number and type of available function units, size and width of register �les, instruction

latencies, instruction input/output constraints, addressing modes, and pipeline constraints is

provided by the Mdes. The Mdes is queried by the optimization phases to make intelligent

decisions regarding the applicability of transformations. The scheduler and register allocator

rely more heavily on the Mdes to generate e�cient as well as correct code.

Seven architectures are actively supported by the IMPACT compiler. These include the

AMD 29K [13], MIPS R3000 [21], SPARC [22], HP PA-RISC, and Intel X86. The other two

supported architectures, IMPACT and HP Playdoh [23], are experimental ILP architectures.

These architectures provide a framework for compiler and architecture research. The IMPACT

architecture is parameterized superscalar processor with an extended version of the HP PA

9

instruction set. Varying levels of support for speculative execution and predicated execution

are available in the IMPACT architecture.

2.2 Superblocks

2.2.1 Superblock Formation

A superblock is a block of instructions in which control may only enter from the top but

may leave at one or more exit points. When execution reaches a superblock, it is likely that

all basic blocks in that superblock are executed. Superblocks allow the compiler to e�ectively

optimize and schedule across basic block boundaries by removing the constraints due to side

entrances within a sequence of basic blocks.

Superblocks are formed in two steps. Traces within a program (sets of basic blocks which

tend to execute in sequence [8]) are �rst identi�ed using execution pro�le information [24]. Tail

duplication is then performed to eliminate any side entrances to the trace [25]. The basic blocks

in a superblock need not be consecutive in the code. However, our implementation restructures

the code so that all blocks in a superblock appear in consecutive order to the optimizer and

scheduler.

Formation of superblocks is best illustrated with an example. Figure 2.2(a) shows a weighted

ow graph which represents a loop code segment. The nodes correspond to basic blocks and

arcs correspond to possible control transfers. The count of each basic block indicates the

execution frequency of that basic block. In Figure 2.2(a), the count of fA;B;C;D;E; Fg is

f100; 90; 10; 0; 90; 100g, respectively. The count of each control transfer indicates the frequency

of invoking these control transfers. In Figure 2.2(a), the count of fA! B;A! C;B ! D;B !

E;C ! F;D ! F;E ! F; F ! Ag is f90; 10; 0; 90; 10; 0; 90; 99g, respectively. Clearly, the most

10

C

D

0

10

99

10

A

B

E

F

1

90
10

100

90
0

90

1

90

90

100

0

1

C

D

0

10

10

A

B

E

F

90
10

100

90
0

90

90

900

F’

10

0.1

0.9

90

89.1

9.9

(a) (b)

Y

Z Z

Y

Figure 2.2 An example of superblock formation.

11

frequently executed path in this example is the basic block sequence < A;B;E; F >. There

are three traces: fA;B;E; Fg, fCg, and fDg. After trace selection, each trace is converted

into a superblock by duplicating the tail part of the trace, in order to ensure that the program

control can only enter at the top basic block. In Figure 2.2(a), we see that there are two

control paths that enter the fA;B;E; Fg trace at basic block F . Therefore, we duplicate the

tail part of the fA;B;E; Fg trace starting at basic block F . Each duplicated basic block

forms a new superblock that is appended to the end of the function. The result is shown in

Figure 2.2(b). Note that there are no longer side entrances into the most frequently traversed

trace, < A;B;E; F >; it has become a superblock.

2.2.2 Superblock Enlarging Optimizations

The �rst category of superblock ILP optimizations is superblock enlarging optimizations.

The purpose of these optimizations is to increase the size of the most frequently executed su-

perblocks so that the superblock scheduler can manipulate a larger number of instructions. It

is more likely the scheduler will �nd independent instructions to schedule at every cycle in a su-

perblock when there are more instructions to choose from. An important feature of superblock

enlarging optimizations is that only the most frequently executed parts of a program are en-

larged. This selective enlarging strategy keeps the overall code expansion under control [25].

Three superblock enlarging optimizations are described as follows.

Branch Target Expansion. Branch target expansion expands the target superblock of

a likely taken control transfer which ends a superblock. The target superblock is copied and

appended to the end of the original superblock.

12

Loop Peeling. Superblock loop peeling modi�es a superblock loop (a superblock which

ends with a likely control transfer to itself) which tends to iterate only a few times for each

loop execution. The loop body is replaced by straight-line code consisting of the �rst several

iterations of the loop.1 The original loop body is moved to the end of the function to handle

executions which require additional iterations. After loop peeling, the most frequently executed

preceding and succeeding superblocks can be expanded into the peeled loop body to create a

single large superblock.

Loop Unrolling. Superblock loop unrolling replicates the body of a superblock loop which

tends to iterate many times. To unroll a superblock loop N times, N�1 copies of the superblock

are appended to the original superblock. The control transfers in the �rst N � 1 loop bodies

are adjusted or removed if possible to account for the unrolling.

2.2.3 Superblock Dependence-Removing Optimizations

The second category of superblock ILP optimizations is superblock dependence removing

optimizations. These optimizations eliminate data dependences between instructions within

frequently executed superblocks, which increases the ILP available to the code scheduler. As a

side e�ect, some of these optimizations increase the number of executed instructions. However,

by applying these optimizations only to frequently executed superblocks, the code expansion

incurred is regulated. Five superblock dependence removing optimizations are described as

follows.

Register Renaming. Register renaming removes anti, output, and control dependences

between instruction pairs within a superblock [26].

1Using the pro�le information, the loop is peeled its expected number of iterations.

13

Operation Migration. Operation migration moves an instruction from a superblock where

its result is not used to a less frequently executed superblock. By migrating an instruction,

all of the data dependences associated with that instruction are eliminated from the original

superblock.

Induction Variable Expansion. Induction variable expansion eliminates rede�nitions of

induction variables within an unrolled superblock loop. Each de�nition of the induction variable

is given a new induction variable, thereby eliminating all anti, output, and
ow dependences

among the induction variable de�nitions. However an additional instruction is inserted into the

loop preheader to initialize each newly created induction variable. Patch code is inserted if the

variable is used outside the superblock.

Accumulator Variable Expansion. Accumulator variable expansion is similar to in-

duction variable expansion. Anti, output, and
ow dependences between instructions which

accumulate a total are eliminated by replacing each de�nition of accumulator variable with

a new accumulator variable. Unlike induction variable expansion, though, the increment or

decrement value is not required to be constant within the superblock loop. Again, initialization

instructions for these new accumulator variables must be inserted into the superblock preheader.

Also, the new accumulator variables are summed at all superblock exit points to recover the

value of the original accumulator variable.

Operation Combining. Operation combining eliminates the
ow dependence between a

pair of instructions each of which has a constant source operand [27]. The
ow dependence is

removed by modifying the
ow dependent instruction's constant source operand and replacing

the
ow dependent source operand with an appropriate variable.

14

Original Loop

Loop
Unroll

Dependence
Removal

L1 : if (A[i] == 1) C += B[i]
 i++
 if (i < N) goto L1
L2 :

L1 : r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
blt (r1 N’) L1

L2 :

r1 = r1 + 4
blt (r1 N’) L1
goto L2

L3 :

L1 : r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
bge (r1 N’) L2

r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
bge (r1 N’) L2

r2 = MEM(A + r1)
bne (r2 1) L3
r3 = MEM(B + r1)
r4 = r4 + r3
r1 = r1 + 4
blt (r1 N’) L1

L2 :

r1 = r1 + 4
blt (r1 N’) L1
goto L2

L3 :

pre : r11 = r1
r21 = r1 + 4
r31 = r1 + 8
r14 = r4
r24 = 0
r34 = 0

L1 : r12 = MEM(A + r11)
bne (r12 1) L13
r13 = MEM(B + r11)
r14 = r14 + r13
bge (r21 N’) L2

r22 = MEM(A + r21)
bne (r22 1) L23
r23 = MEM(B + r21)
r24 = r24 + r23
bge (r31 N’) L2

r32 = MEM(A + r31)
bne (r32 1) L33
r33 = MEM(B + r31)
r34 = r34 + r33
r11 = r11 + 12
r21 = r21 + 12
r31 = r31 + 12
blt (r11 N’) L1

L2 : r4 = r14 + r24
r4 = r4 + r34

L13 : r11 = r11 + 4
r21 = r21 + 4
r31 = r31 + 4
blt (r11 N’) L1
goto L2

L23 : r11 = r11 + 8
r21 = r21 + 8
r31 = r31 + 8
blt (r11 N’) L1
goto L2

L33 : r11 = r11 + 12
r21 = r21 + 12
r31 = r31 + 12
blt (r11 N’) L1
goto L2

Figure 2.3 An application of superblock ILP optimizations.

15

Example. An example to illustrate loop unrolling, register renaming, induction variable

expansion, and accumulator variable expansion is shown in Figure 2.3. This example assumes

that the condition of the if statement is more often true than false. Note that only the frequently

executed path is replicated during loop unrolling. Also, there are still dependences across repli-

cated loop bodies due to the increment of loop counter i (r1) and the accumulation into the

variable C (r4). Furthermore, the reuse of temporary registers r2 and r3 introduces anti and

output dependences across replicated loop bodies. The application of superblock dependence

removing optimizations eliminates all these dependences. After all superblock ILP optimiza-

tions are applied, the execution of the unrolled loop bodies may be completely overlapped by

the superblock scheduler.

16

CHAPTER 3

COMPILER-CONTROLLED SPECULATION

One of the critical requirements for all compiler transformations is not to introduce program

errors. Scheduling errors can occur as a result of illegal re-ordering of operations that change

the �nal result of the program. Obeying data dependences during scheduling will prevent illegal

re-ordering. However, global scheduling introduces the possibility of another potential program

error - premature program termination. This could occur as a result of speculating a divide above

a conditional branch. If the conditional branch was either explicitly or implicitly preventing

a zero divisor from reaching the divide, the program could terminate. All compiler-controlled

speculation models are required to prevent program termination. The models di�er in their

approaches to detect the exception, report the exception and in some cases actually recover from

the exception. The next section provides a detailed explanation of the requirements of compile-

time speculation models if they are to accurately report exceptions and recover from exceptions.

Section 3.2 classi�es existing speculation models by their approach to handling exceptions or

preventing these exceptions occurring. Section 3.3 introduces examples of speculation models

that fall into each category. Finally, Section 3.4 introduces the IMPACT global scheduler and

the heuristics used to permit e�cient speculation.

17

beq r5,0,L1
ld r7,mem(r5)
add r6,r6,r7

(a)

1
2
3

I Instruction
ld r7,mem(r5) (S)

(b)

2
beq r5,0,L11
add r6,r6,r73

I Instruction

beq r5,0,L1
add r6,r6,r7 (S)
ld r7,mem(r5) (S)

(c)

2
3
1

I Instruction

Figure 3.1 Example code segment, (a) un-scheduled code, (b) one speculated instruction, (c)
two speculated instructions.

3.1 Accurate Reporting and Recovery from Exceptions

Figure 3.1 illustrates the problems that compiler-controlled speculation models must address

to accurately report and recover exceptions. In Figure 3.1(a), instruction I1 guards against

an invalid memory access by I2. Under normal situations, the address for I2 is valid. Thus

the branch is usually not taken. Instruction I3 uses the contents of memory to perform a

computation. Assuming that the branch has a one cycle latency, the load has a 2 cycle latency

and the add has a 1 cycle latency, the shortest latency possible for these three instructions is

4 cycles. Assume that the compiler has renamed the destination registers of I2 and I3 so that

these instructions cannot corrupt the source operands of instructions on the taken path of the

branch instruction. Since the branch is usually not taken, it is feasible to speculate I2 above I1

producing the schedule shown in Figure 3.1(b) (an instruction denoted by (S) is speculated).

This new schedule has a 3 cycles latency and would be a more desirable schedule, if it were

legal.

For the schedule in Figure 3.1(b) to be legal, it must not alter the program behavior re-

gardless of the direction the branch takes at run time. If the contents of r5 in I2 is zero, the

load will cause an invalid memory access exception. If the exception is permitted to occur, an

error that I1 was designed to prevent will be falsely reported. One solution to this problem is

18

to delay reporting the exception until the direction of the branch is taken (delayed exception).

This requires that the knowledge of the exception must be maintained for later use.

A slightly di�erent problem occurs if the exception caused by I2 was not an invalid memory

access but instead was a page fault. If we delay the exception until after the branch direction

is known, we must be able to determine that I2 caused the exception. Once we know that the

branch is not taken, we must re-execute I2 and permit the exception to occur. This allows the

exception to be reported accurately.

The problem becomes even more complicated if the scheduler decided to also move I3 above

I1 as shown in Figure 3.1(c). If I3 is permitted to update r6, after an exception by I2, it will be

corrupted. If we re-execute I3 after the exception from I2 is resolved in hopes of correcting the

error, r6 will still be corrupted. Therefore, we have reached an unrecoverable state.

This example has shown the four problems that must be solved in order for the compiler

to accurately report and recover from exceptions resulting speculation of potentially excepting

instructions (SPEIs). They include detecting a delayed exception, determining the instruction

that caused the exception, protecting source operands until the exception is resolved and re-

covering from the exception. While the typical exception is viewed as one that caused program

termination, this does not need to be the case such as a page fault.

3.2 Classi�cation of Compiler-Controlled Speculation Models

In order to gain greater scheduling freedom, instructions must be allowed to speculate above

conditional branches found within a trace or superblock. In some cases, speculation of these

instructions can introduce a run-time errors that can cause unexpected program termination.

Compiler-controlled speculation models can be classi�ed by what the scheduler will do if the

19

(1) Avoid Errors - do not permit the instruction to speculate if it could cause a
run-time error [7].

(2) Ignore Errors - assumes that the likelihood of the instruction causing an
errors is small. Therefore, a non-excepting form of the instruction will be used
instead of the excepting form. As a result, if the speculated instruction does
cause an error, the error will be lost. This model requires non-excepting forms
of each potentially excepting instruction that is speculated [7].

(3) Resolve Errors - speculates instructions that could cause a run-time error
but uses a combination of compiler and processor extensions extensions to
permit corruption of the processor state until it is known whether the instruc-
tion should except. Each model also provides a mechanism for recovery in
the event that the speculated instruction does except and program execution
should resume.

Figure 3.2 Classi�cations of compiler-controlled speculation models.

an instruction that should be speculated could cause program termination. Figure 3.2, shows

three categories that speculation models fall into if this circumstance occurs.

3.2.1 Avoid Errors Models

This scheduling model assumes that incorrect program execution must always be detected.

Therefore, the compiler can only speculate instructions that it can guarantee will never cause

an exception. In most processors, this prevents speculation of all instructions that reference

memory due to potential illegal address references, as well as integer divide and remainder

instructions due to potential divide-by-zero errors. Additionally
oating point instructions typ-

ically are not speculated since they can cause numerous error conditions including under
ow and

over
ow. Using these constraints, this category can be very restrictive to scheduling freedom.

3.2.2 Ignore Errors Models

These models require a non-excepting form of every potentially excepting instruction that

can be speculated. Thus, if a potentially excepting instruction should be speculated, it will

20

be replaced by its non-excepting form. The objective of this category is to permit aggressive

speculation. The obvious disadvantage is that real program errors could go undetected or cause

subsequent errors later in the program. For example, if we speculate a divide above a branch,

this model will replace the divide by a non-trapping form of the divide. If the branch branch

was implicitly preventing a divide-by-zero, speculating above the branch increases the risk of

the divide-by-zero. If we would have always branched around the divide, then the divide-by-

zero would never have occurred and hiding the exception using the non-trapping divide causes

no harm. However, if there is a programming error, it is possible that the divide-by-zero could

happen and we are preventing this error from ever being reported. This could result in some

illegal value being propagated to instructions that subsequently were intended to use the result

of the divide. This could cause program termination at some later point that could make it

di�cult to isolate the real problem. The IEEE 754
oating-point standard actually supports

this model. The standard requires that
oating-point exceptions are sticky. However, while

the existence of a trap-handler for these exceptions is recommended, it is not required. The

following list provides some examples of architectures that fall into this category in limited

circumstances.

(1) Multi
ow - non-trapping
oating point instructions [28]

(2) Cydra 5 - non-trapping
oating point instructions, ability to disable exceptions for mem-
ory and arithmetic operations [29].

(3) HP Precision Architecture - non-trapping
oating point instructions, non-trapping deref-
erenced null pointer [30].

(4) Sun SPARC V8 and V9 - non-trapping
oating point instructions and non-trapping load
instructions [31].

21

3.2.3 Resolve Errors Models

Just like the prevent errors category, this category assumes that the scheduled program

should produce the exact same results as the unscheduled program. However, its ultimate

goal is to attain performance results comparable to the ignore errors category. To accomplish

this, the speculation model de�nes compiler and processor extensions that are used to delay

reporting an exception until it is determined that the exception should be reported, keep track

of the instruction that caused the exception, protect source operands until the exception is

resolved and permit recovery from the exception. Thus, potentially excepting instructions may

be speculated freely at compile-time as long as the requirements for the recovery mechanism

are followed.

3.3 Existing Compiler-Controlled Speculation Techniques

3.3.1 Avoid Error Models

Restricted speculation (formally called restricted code percolation) [7] assumes that correct

program execution is always required. Using this model, the compiler can only speculate instruc-

tions that will never cause an exception. As such, this model ignores even trivial cases where

the context in which the instruction is used, can sometimes indicate if the instruction will cause

an exception. Chapter 5 proposes a new speculation model that meets the requirements of this

category but uses information that can be gathered intra-procedurally and inter-procedurally

to identify potentially excepting instructions that will never cause exceptions.

22

3.3.2 Ignore Error Models

General speculation (formally called general code percolation) falls under this category. This

aggressive model assumes a non-excepting form for every potentially instruction. This model

is used as a measure of the maximum performance that speculation models can attain in the

absence of register constraints and cache constraints.

3.3.3 Resolve Error Models

This section introduces two speculation models that accurately report exceptions and permit

recovery. These speculation models also support aggressive compile-time speculation.

3.3.3.1 Instruction Boosting

Instruction boosting has been proposed for handling exceptions with compiler-controlled

speculative execution [32] [33]. The four problems associated with exception detection and re-

covery are handled with a combination of hardware support (shadow register �les) and compiler

generated recovery blocks. Detecting delayed exceptions is handled by recording an exception

condition raised by a speculative instruction in the appropriate shadow register �le. At the

excepting instruction's commit point, the contents of the shadow register �le are examined

to determine if an exception condition exists. The excepting instruction is identi�ed by se-

quentially re-executing all speculative instructions which are committed by the same branch

instruction. The exception condition is therefore regenerated in a sequential processor state.

Operands of speculative instructions are preserved by ensuring that speculative instructions do

not update the architectural register �le until they are committed. Therefore, a speculative

instruction may always be re-executed by retrieving its operands from the architectural regis-

23

ter �le. Finally, recovery is handled with traditional exception recovery techniques since the

exception is regenerated in a sequential processor state.

Although boosting provides good support for accurate detection and handling of exceptions

for SPEIs, it does so with excessive hardware overhead. The scheme requires multiple copies

of register �les to implement the shadow registers. The fact that exception recovery requires

recovery code blocks also increases code size by about two times, which adds signi�cantly to

the pressure on the memory system [33].

3.3.3.2 Sentinel Scheduling

An alternative scheme to enable exception detection and recovery with compiler-controlled

speculative execution is sentinel scheduling [34] [35]. Sentinel scheduling is a compiler based

technique that requires few changes to the processor architecture. The four problems associated

with exception detection and recovery are handled using exception tags added to each architec-

tural register and compiler scheduling and register allocation support. Delayed exceptions are

detected by marking exception conditions in the destination register of excepting speculative

instructions. The PC of the speculative instruction is also placed in the destination register.

Subsequent speculative instructions which use the result of an excepting speculative instruc-

tion propagate the PC and exception tag to their destination. A subsequent non-speculative

indirect use of the excepting speculative instruction's destination register signals any exception

conditions that are present. The excepting instruction is identi�ed by the PC contained in the

corresponding register whose exception tag is set.

Source operands for speculative instructions are preserved by ensuring the scheduler and

register allocator do not allow any instruction to overwrite a speculative instruction's source

24

add v3,v2,v4
Instruction Block

Current
Distance
Speculation

Block
Home

0 0 0
add v1,v2,4 0 0 0

0 0 0beq v1,0,L1

v5,mem(v1) 1 0 1
1 0 1
1 0 1
1
1

0
0

1
1

store
load

mem(v5),v2
div v6,v4,v7
add v8,v0,v6
bne v8,v2,L2

load v9,mem(v8) 2 0 2
2
2

0 2
0 2

add
store

v9,v9,4
mem(v9),v2

I
1
2
3

4
5
6
7
8

9
10
11

Figure 3.3 Original code segment.

operands before a non-speculative instruction checks the exception condition of the speculative

instruction. Finally, recovery is performed by setting the PC to the excepting instruction's PC

and re-executing all speculative instructions until the check instruction is reached.

An example code segment to illustrate speculative execution with sentinel scheduling is

shown in Figure 3.3. The example consists of three basic blocks in which the compiler expects

control
ow to be sequential through the blocks. Furthermore, load and div instructions are

assumed to be potentially excepting. The code segment after scheduling is shown in Figure 3.4.

Speculative instructions are denoted by (S). With sentinel scheduling, the scheduler ensures

that there is a non-speculative instruction to check the exception tag of each PEI in the PEI's

home block. For example, I8 checks if an exception occurred for I6.
1 In order to protect the

source operands, the lifetimes of all source operands for speculative instructions are extended

to the non-speculative checking instruction. For example, the lifetimes of v4 and v7 (source

operands of I6) are extended to I8. Also, the scheduler must not schedule any instructions

1An exception condition for I6 will mark an exception in v6. I7 will propagate the exception to its destination,

v8, since it is also a speculative instruction. Finally, the use of v8 by I8 will detect the exception condition.

25

Instruction Block
Current

Distance
Speculation

Block
Home

add v3,v2,v4 0 0 0

add v1,v2,4 0 0 0

0 0 0beq v1,0,L1

v5,mem(v1) 1load

1div

1add v8,v0,v6

load v9,mem(v8) 2

2add

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

v6,v4,v76
1
7
2
9
4
10
3

I

v10,v9,4

1 0 1store mem(v5),v2
1 0 1bne v8,v2,L2

5
8

02 2
2 0 2store11

mov v9,v1012
mem(v10),v2

Figure 3.4 Code segment after sentinel scheduling, before register allocation.

which overwrite a speculative instruction's source operands. Therefore, the destination of I10

must be renamed to v10 to prevent v9 from being overwritten. The code segment after register

allocation is shown in Figure 3.5. In this example, a total of 10 physical registers are required

to ensure exception detection and recovery are possible for all speculative instructions.

3.4 Scheduling in the IMPACT Compiler

The instruction scheduler used in the IMPACT compiler performs both local and global

instruction scheduling. Local scheduling is performed on basic blocks and permits some limited

reordering of instructions as well as �lling of branch delay slots [36]. While the bene�ts of

this level of scheduling may be adequate for single-issue microprocessors, it has been shown

to be inadequate when using non-numeric benchmarks for wide-issue processors [1, 2, 7]. This

occurs because there are typically few instructions in basic blocks and only a small number of

independent computation chains. In order to gain greater optimization and scheduling freedom,

26

Instruction Block
Current

Distance
Speculation

Block
Home

add 0 0 0

add 0 0 0

0 0 0beq

1load

1div

1add

load 2

2add

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

6
1
7
2
9
4
10
3

I
r9,r2,r6
r5,r4,r2
r7,r0,r9
r3,r4,4
r8,mem(r7)
r1,mem(r3)
r9,r8,4
r3,0,L1

1 0 1store
1 0 1bne

5
8

02 2
2 0 2store11

mov

mem(r1),r4
r7,r4,L2

mem(r9),r4
r8,r912

Figure 3.5 Code segment after sentinel scheduling and register allocation.

superblocks were developed to permit optimization and scheduling of multiple basic blocks with

similar execution paths together [4]. Section 3.4.2 will describe the scheduling heuristics used

in the impact scheduler. Section 3.4.3 will provide experimental results showing the bene�ts of

the IMPACT instruction scheduler.

3.4.1 Overview of the IMPACT Scheduler

Acyclic scheduling is accomplished by performing two passes over each basic block or su-

perblock. The �rst pass, pre-pass scheduling, is performed prior to register allocation. As such,

the scheduler has the greatest scheduling freedom since no arti�cial data dependences resulting

from processor register constraints have been created. The second pass, post-pass scheduling,

is performed after register allocation. This pass is used to resolve any scheduling changes that

may occur resulting from the insertion of spill code, as well as caller and callee save code re-

quired to allocate the virtual registers to the physical registers. This pass is also used to �ll

branch delay slots [36].

27

Dependence

Graph

Construction

List

Scheduling

Machine

Description

File

Resource

Management

Scheduled

Program

Estimated

Execution

Time

Program

Unscheduled/Scheduled

Profiled

Figure 3.6 Organization of the IMPACT Instruction Scheduler.

28

Figure 3.6 shows the organization of the IMPACT scheduler. The blocks inside the dotted

line belong to the scheduler. Each pass of the scheduler is provided the entire program. The

dependence graph is constructed from the natural data dependences visible within a function.

Memory dependences are added between instructions with true memory dependences as well

as from instructions with ambiguous memory addresses to all other memory instructions. The

IMPACT scheduling model does not permit re-ordering of branches or subroutine calls. Thus,

control dependences are added to prevent any such re-ordering. Control dependences are added

from instructions above a branch to the branch if their destination registers are in the live-out

of the branch. This prevents migration of this instructions to other scheduled basic blocks

or superblocks as well as incorrect program execution. Similarly, control dependences are

added from instructions below the branch to the branch if their destination registers are in

the live-out of the branch. This prevents corruption of the live registers that could lead to

incorrect program execution. Finally, the speculation model de�nes the conditions under which

potentially excepting instruction may be speculated above conditional branches. Based upon

the requirements of the speculation model, additional control dependences are added to prevent

illegal speculation.

Once the dependence graph is constructed, list scheduling is performed on a basic block

or superblock basis. The �rst step of the list scheduler is to prioritize the instructions. This

heuristic is discussed in Section 3.4.2. After the instructions are prioritized, they are placed

into one of two queues. Instructions that have no incoming dependences located within the

block are placed in the ready queue in sorted order from highest priority to lowest priority. All

other instructions are placed in the not ready queue.

29

Instructions are then removed from the ready queue starting with the highest priority in-

struction. The scheduler then queries the resource manager to determine if the instruction can

be scheduled in the current cycle. The resource manager maintains the scheduled state of the

block for each cycle. Legal assignments are dependent upon the resource constraints de�ned by

the machine description �le. The resource manager determines the location in the cycle that

an instruction may be scheduled and allocates the necessary resources. Thus, the priority of

an instruction can be over-ridden by the scheduling constraints. This prevents scheduling an

instruction that could lead to processor interlock [36]. An instruction that can not be scheduled

in a given cycle is moved to the can't schedule queue, which exposes the next instruction in the

ready queue.

Once an instruction is scheduled, the dependence constraints are removed from any depen-

dent instructions. Removing of these dependence constraints requires specifying the earliest

cycle that an instruction may be scheduled in order to maintain accuracy. Only the latest legal

scheduling time is maintained for an instruction to ensure that all dependences are maintained.

After each instruction is scheduled, instructions with no remaining dependences are moved into

either the pending ready queue where they will remain until the desired scheduling cycle, or into

the ready queue if the scheduling cycle has been reached.

As long as the ready queue contains instructions, the schedule time will advance by only one

cycle after all possible instructions are scheduled for a given cycle. At the start of each cycle,

instructions can be moved from the pending ready queue to the ready queue. If there are no

instructions in the ready queue, time will advance to the earliest cycle that an instruction can

be scheduled in the pending ready queue 2. After all instructions are scheduled, the issue time,

2In order to legally schedule for a VLIW processor, the cycles between the last scheduled instruction and the

next ready instruction will be padded with no-op instructions.

30

issue slot and completion time of each instruction is marked and the instructions are inserted,

following the scheduled order, back into the basic block or superblock.

The scheduler can also produce an estimated execution time for a function based upon

the pro�le information provide, the static branch probabilities and the instruction schedule.

Two execution estimates will be generated. The �rst, gives the best case execution time which

assumes that instructions whose completion time overlaps the beginning of subsequent blocks

will not cause any processor interlock conditions . The second estimate assumes that the worst

case scenario will occur and all instructions whose completion time overlaps the beginning of

subsequent blocks will cause interlock. Experimental analysis has shown that these results are

within 3 to 5 percent of simulation results when assuming perfect caches. These approximate

estimates provide a fast method to evaluate the bene�ts of various compiler transformations.

For this research, all �nal numbers are generated using simulation.

3.4.2 Superblock Scheduling

Superblock scheduling is complicated by speculation decisions that must be made. Spec-

ulating an instruction above a frequently taken branch may delay the branch and result in

poor performance. However, speculating an instruction above an infrequently taken branch

can permit the overlap of its execution with earlier instructions which can result in shorter

program execution times. Since each branch may have di�erent probabilities of being taken,

the advantages or disadvantages associated with speculating instructions above branches are

not equal.

Fisher proposed a heuristic called speculative yield that can be used to help assign in-

struction priorities in the presence of conditional branches [37]. This heuristic uses branch

31

probabilities to determine the bene�t of speculating an instruction from either path of a con-

ditional branch. Fisher's use of this heuristic assumes the scheduling is being performed as

the trace is being generated. In contrast, superblock formation and optimization is performed

earlier in the compilation process. This reduces the complexity of the scheduling decisions and

permits simpli�cation of the heuristic to a static heuristic as shown in equation 3.1.

Prio(Ij) =
nX

k=1

(Prob(pathk) � length(pathk)) (3.1)

By using pro�le information [25] or static branch prediction heuristics [38, 39] the prob-

abilities for the paths can be estimated3. The lengths of the paths are computed using the

dependence distances from an instruction to its last use. As this equation shows, each path

that an instruction reaches contributes to its priority.

Figure 3.7 shows an example superblock that will be a working example to demonstrate the

use of the speculative yield heuristic. For the remaining discussions on this example, assume

the latency on a load is one cycle and that all other instructions have single cycle latencies.

Using this information, the dependence graph in Figure 3.8 can be generated. This �gure shows

the
ow, control and anti dependences found in the superblock example. The horizontal dotted

lines indicate not only a dependence but a required ordering that must be maintained to ensure

correctness in the case of the store instruct I3 and to prevent instructions from be scheduled

outside the superblock. From the dependence graph, we can see that there are actually three

paths that may occur in parallel. Given a processor that can issue any combination of three or

more instructions per cycle, this example can be scheduled in 5 cycles. To make this example

3Fisher and Freudenberger showed that previous program runs provide highly accurate estimates for predicting

conditional branch direction [40].

32

I1: ld r2<-mem(104)

B1: beq r8,0,exit1

I2: add r4<-r2,r7

I3: st mem(112)<-r4

B2: beq r7,0,exit2

I4: ld r1<-mem(100)

I5: add r3<-r1,180

B3: jump exit3

I7: st mem(100)<-r5

I6: lsl r5<-r3,2

exit2

exit1

exit3

(r4 in live out)

Figure 3.7 An example superblock.

33

I2

I3 B2

I41 I1 B1

I6

I7 B3

control
dependence

flow
dependence

anti
dependence

Level

I5

2

3

4

5

Figure 3.8 Corresponding dependence graph for example superblock.

34

Algorithm Compute Static Priority: Given a superblock or basic block, compute static
priorities for instructions based upon the paths that the instructions reach.

levelize dependence graph for block

determine path length of exit arcs

compute maximum path lengths from each instruction to each of its exit arcs

compute static priorities using path lengths and branch probabilities

Figure 3.9 The Compute Static Priority algorithm determines the instruction priorities for
each instruction.

more interesting, we will assume for the remaining discussion that the target processor can

issue any combination of two instructions per cycle.

Figure 3.9 shows the algorithm that will be used to compute the static scheduling priorities

using the speculative yield heuristic. As the �gure shows, four steps are performed when

computing the static scheduling priorities for instructions. The �rst step is to levelize the

dependence graph as shown in Figure 3.8. This will show the earliest issue time for all instruction

given unlimited resources but obeying instruction latencies and dependences.

Step two determines the lengths that will be used for the exit arcs which are represented

by the taken path of each branch. This step is performed to ensure that the probability of a

branch being taken is of equal importance to the longest path through the block. Without this

step, a highly taken branch could be easily delayed by a long computation path through block.

For example if the �rst branch in a superblock is taken 99 percent of the time and there are

no instructions that need to be scheduled before the branch, it could be scheduled in the �rst

cycle ensuring the minimum path through the superblock 99 percent of the time. Now assume

an extreme case where an execution path through the same superblock is 200 cycles long. Since

these instructions only need to be executed .01 percent of the time, they should all be scheduled

35

Max Path Length

Instruction B1 B2 B3

I1 - 5 4

B1 5 2 1

I2 - 3 2

I3 - 2 1

B3 - 2 1

I4 - - 5

I5 - - 3

I6 - - 2

I7 - - 1

B3 - - 1

Figure 3.10 Maximum path lengths from starting instruction to branch.

after the branch. However, the instructions for the �rst 100 cycles will have priorities greater

than .99 based upon their dependence heights. As such, they would be scheduled before the

branch and increase the execution time of the most frequent path. The path length is computed

by taking the maximum level in the graph, in this case 5, and subtracting the level of the branch

and then adding 1. The addition of one ensures that zero priorities only occur for instructions

that follow branches that are always taken. By applying this step to the graph in Figure 3.8,

the initial path length of B1 is 5, the initial path length of B2 is 2 and the initial path length

of B3 is 1.

Step three is used to compute the maximum path lengths from each instruction to their

corresponding exit arcs. The maximum path lengths are computed by starting with the path

length at each exit arc and traversing the graph from leaf to root. The maximum path length

that reaches a node is maintained. Figure 3.10 shows the maximum path lengths that are

computed from the dependence graph using the initial path lengths shown in the left-most

column for each branch.

The fourth step is to compute the static priorities using the speculative yield formula shown

in Equation 3.1. In order to show the full e�ects of this, we are going to assume three groups

36

I3

I5

I2

I3

B2

I4

I1

B1

I6

I7

B3

Instr

I5

Priority

(0 * 0.2) + (5 * 0.2) + (4 * 0.6) = 3.4

(5 * 0.2) + (2 * 0.2) + (1 * 0.6) = 2.0

(0 * 0.2) + (3 * 0.2) + (2 * 0.6) = 1.8

(0 * 0.2) + (2 * 0.2) + (1 * 0.6) = 1.0

(0 * 0.2) + (2 * 0.2) + (1 * 0.6) = 1.0

(0 * 0.2) + (0 * 0.2) + (5 * 0.6) = 3.0

(0 * 0.2) + (0 * 0.2) + (3 * 0.6) = 1.8

(0 * 0.2) + (0 * 0.2) + (2 * 0.6) = 1.2

(0 * 0.2) + (0 * 0.2) + (1 * 0.6) = 0.6

(0 * 0.2) + (0 * 0.2) + (1 * 0.6) = 0.6

B1

I1

I2

B2

I4

I6

I7

B3

Schedule

0

1

2

3

4

5

B1 B2 B3

Figure 3.11 Instruction priorities and schedule assuming branch probabilities are 20% for
B1, 20% for B2 and 60% for B3.

I2

I3

B2

I4

I1

B1

I6

I7

B3

Instr

I5

Priority

(0 * 0.2) + (5 * 0.6) + (4 * 0.2) = 3.8

(5 * 0.2) + (2 * 0.6) + (1 * 0.2) = 2.4

(0 * 0.2) + (3 * 0.6) + (2 * 0.2) = 2.2

(0 * 0.2) + (2 * 0.6) + (1 * 0.2) = 1.4

(0 * 0.2) + (2 * 0.6) + (1 * 0.2) = 1.4

(0 * 0.2) + (0 * 0.6) + (5 * 0.2) = 1.0

(0 * 0.2) + (0 * 0.6) + (3 * 0.2) = 0.6

(0 * 0.2) + (0 * 0.6) + (2 * 0.2) = 0.4

(0 * 0.2) + (0 * 0.6) + (1 * 0.2) = 0.2

(0 * 0.2) + (0 * 0.6) + (1 * 0.2) = 0.2

B1I1

I2

I3 B2

I4

I5

I6

I7 B3

Schedule

0

1

2

3

4

5

B1 B2 B3

6

Figure 3.12 Instruction priorities and schedule assuming branch probabilities are 20% for
B1, 60% for B2 and 20% for B3.

37

I2

I3

B2

I4

I1

B1

I6

I7

B3

Instr

I5

Priority

(0 * 0.6) + (5 * 0.2) + (4 * 0.2) = 1.8

(5 * 0.6) + (2 * 0.2) + (1 * 0.2) = 3.6

(0 * 0.6) + (3 * 0.2) + (2 * 0.2) = 1.0

(0 * 0.6) + (2 * 0.2) + (1 * 0.2) = 0.6

(0 * 0.6) + (2 * 0.2) + (1 * 0.2) = 0.6

(0 * 0.6) + (0 * 0.2) + (5 * 0.2) = 1.0

(0 * 0.6) + (0 * 0.2) + (3 * 0.2) = 0.6

(0 * 0.6) + (0 * 0.2) + (2 * 0.2) = 0.4

(0 * 0.6) + (0 * 0.2) + (1 * 0.2) = 0.2

(0 * 0.6) + (0 * 0.2) + (1 * 0.2) = 0.2

B1 I1

I2

I3

B2

I4

I5

I6

I7 B3

Schedule

0

1

2

3

4

5

B1 B2 B3

Figure 3.13 Instruction priorities and schedule assuming branch probabilities are 60% for
B1, 20% for B2 and 20% for B3.

of priorities for the branches from the example. In each example, one branch is assumed to be

taken 60 percent of the time and the other two branches are taken 20 percent of the time each.

Figures 3.11 through 3.13 show the resultant priorities for each instruction and their schedules

using a two issue processor. The important point of each �gure is that in all cases, the most

frequently taken branch was issued in the earliest possible cycle given the resource constraints

of a two issue processor.

3.4.3 Experimental Evaluation and Analysis

This section will present experimental results that show the bene�ts of the IMPACT sched-

uler using the scheduling heuristic discussed in the previous section. The benchmarks used in

this study are the 15 non-numeric programs shown in Table 3.1. The benchmarks consist of the

6 non-numeric programs from the SPECint92 suite and 9 other commonly used non-numeric

programs. Each of the benchmarks were aggressively optimized and scheduled assuming the

38

Benchmark Benchmark Description

008.espresso truth table minimization

022.li lisp interpreter

023.eqntott boolean equation minimization

026.compress compress �les

072.sc spreadsheet

085.cc1 GNU C compiler

cccp GNU C preprocessor

cmp compare �les

eqn format math formulas for tro�

grep string search

lex lexical analyzer generator

qsort quick sort

tbl format tables for tro�

wc word count

yacc parser generator

Table 3.1 Benchmarks.

Function Latency Function Latency

Int ALU 1 FP ALU 2

memory load 2 FP multiply 2

memory store 1 FP divide(single-precision) 8

branch 1 / 1 slot FP divide(double-precision) 15

Table 3.2 Instruction latencies.

general speculation model. The speculative yield heuristic was used to assign static scheduling

priorities. The benchmarks were then scheduled for issue rates 1, 2, 4, 8 and in�nite issue

assuming an in-order issue superscalar processor with register interlocking. The processor is

assumed to have uniform functional units, 1 branch delay slot, and the instruction set of the

HP PA-RISC processor. The instruction latencies assumed are those of the HP PA-RISC 7100

(see Table 3.2). In order to show the full bene�ts or limitations of the scheduling heuristic, the

code was register allocated with the IMPACT register allocator using in�nite registers [19]. In

addition, the execution times were generated using perfect instruction and data caches. The

data cache e�ects will be discussed in Chapter 6.

Figure 3.14 presents the speedups of issue 1, 2, 4, 8 and in�nite issue scheduled using the

speculative yield heuristic with the general speculation model over the respective benchmarks

39

issue 1 issue 2 issue 4 issue 8 infinite issue

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00

Figure 3.14 Speedup results from the speculative yield scheduling heuristic.

at issue 1 with no speculation using code generated for the restricted speculation model. Since

in�nite issue will permit scheduling of all possible instructions each cycle, it is una�ected by

the scheduling heuristic. As such, these numbers will show the relative merits of the scheduling

heuristic. From the graph, all of the single issue results and a number of the higher issue rates

show super-linear speedup. While the no speculation and the general speculation code bases

were both aggressively optimized using traditional optimizations [41] as well as superblock

optimizations, general speculation has a clear advantage over no speculation since it is an

ignore errors model. In particular, the model is able to remove invariant operations from loops

that might potentially introduce run-time errors. Since the restricted model must make more

conservative assumptions during optimization, the number of instructions executed for general

speculation is actually smaller.

40

Additionally, the �gure shows, that the 8-issue results are comparable to the in�nite issue

results for most benchmarks. In these cases, the natural dependences found in the superblock

code was the limiting factor on potential performance not the speculative yield heuristic. How-

ever, cmp, grep, and lex show a noticeable increase over the 8-issue results 4. In each of these

cases, the superblock optimizations created signi�cantly more instruction level parallelism than

could be supported by an 8-issue superscalar processor. The degree of di�erence correlated

directly to the importance of highly parallel segments of the benchmarks. For example, the

performance of cmp is dominated by one superblock loop that accounts for 92 percent of the

execution time which accounts for the di�erence in the 8-issue and in�nite issue results. After

applying the superblock optimizations, the loop contained 66 instructions. The in�nite issue

processor was able to execute each iteration of this loop in four cycles. One of the cycles even

contained 37 independent branch instructions. Given the resource constraints of an 8-issue

processor the minimum number of cycles for this same loop is 9 cycles. The speculative yield

heuristic resulted in priorities that permitted the loop to be scheduled in the minimum number

of cycles.

Figure 3.15 shows the actual instructions per cycle that were attained as a result of the

global scheduling using the speculative yield priority heuristic using the general speculation

model. Two important points can be seen from this �gure. First, the speculative yield heuristic

is not also bene�cial for high issue rate processors, but also for low issue rates. In particular,

the results show that single and dual issue processor results are almost saturated for all of the

benchmarks. Secondly, by comparing the bars for issue 8 with in�nite issue, it can be noted

4For readability, the speedup results for cmp were clipped at 15. The actual speedup attained over single

issue no speculation was 21.54.

41

Gen 1 Gen 2 Gen 4 Gen 8 Gen Infinite

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00

Figure 3.15 Instructions per cycle results from the speculative yield heuristic.

that the IPC's for almost all of the benchmarks are very close. The only noticeable exceptions

are for cmp, grep and lex which were discussed previously.

42

CHAPTER 4

WRITE-BACK SUPPRESSION

This chapter introduces write-back suppression (WBS), an architectural support for compiler-

controlled speculative execution. WBS makes use of static program information and a set of

architectural features to accurately detect and report exceptions for compiler-scheduled spec-

ulative instructions. This technique is based on two main concepts: delay the exception for a

SPEI until its execution is con�rmed, and prevent corruption of the source operands of instruc-

tions by systematically suppressing updates to the register �le after retiring an excepting SPEI.

This implementation of WBS assumes superblocks are used as the means of exposing ILP [4].

4.1 Overview of Write-back Suppression

A few key terms can be de�ned using the examples in Figures 3.3 and 4.1. The home

block of an instruction is the basic block where the instruction was located prior to scheduling.

Since a superblock does not permit side-entrances, every home block can be assigned a unique

identi�er by numbering the �rst home block 0 and incrementing the home block number by

one for each fall through branch. In Figure 3.3, instructions I1 through I3 belong to home

block 0, I4 through I8 belong to home block 1 and I9 through I11 belong to home block 2.

The current block of an instruction is the basic block which the instruction is located in after

scheduling. In Figure 4.1, I6 has been speculated into current block 0. The speculation distance

43

Instruction Block
Current

Distance
Speculation

Block
Home

add v3,v2,v4 0 0 0

add v1,v2,4 0 0 0

0 0 0beq v1,0,L1

v5,mem(v1) 1load

1 0 1store mem(v5),v2

1div v6,v4,v7

1add v8,v0,v6

1 0 1bne v8,v2,L2

load v9,mem(v8) 2

2add v9,v9,4

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

I
6
1
7
2
9
4
10
3

5
8

2 0 2store mem(v9),v211

12 check

13 check

1 0 1

2 0 2

Figure 4.1 Code segment after write-back suppression scheduling, before register allocation.

of an instruction is the number of branches that an instruction was speculated beyond during

scheduling.1 In Figure 4.1, I6 has a speculation distance of 1.

The instruction schedule shown in Figure 4.1 contains only minor modi�cations from the

schedule in Figure 3.4 that was generated by sentinel scheduling. This example introduces a

new instruction called check which con�rms and reports the delayed exceptions from SPEIs. As

the �gure shows, only one check instruction needs to be placed in a home block even though

multiple PEIs were speculated from that block (I12 will report the exception for both I6 and

I4). No check instructions are required for a home block that has had no PEIs speculated from

it. If an exception occurs to either I6 or I4, it will be recorded at a location unique to I12 along

with the PC of the appropriate excepting instruction. Subsequently I12 will verify the existence

of an exception, report the exception for the excepting instruction, and initiate recovery.

1speculation distance = home block - current block.

44

As discussed in Section 3.1, in order for the delayed excepting instruction to accurately

recover to the correct processor state, its source operands must be protected until the exception

is con�rmed. In WBS, the home block of the excepting instruction is used to suppress register

�le updates for any subsequent instructions from the same or later home blocks. In Figure 4.1,

if I6 excepts, it will prevent I7, I9, I4 and I10 from updating the register �le. Instructions I1, I2

and I3 will be permitted to execute normally to produce the correct processor state if the branch

at I3 is taken. If the branch I3 is not taken, its check instruction (I12) will make sure that the

exception from I6 is reported and then re-execute I6, I7, I9, I4 and I10 as part of the recovery

phase. In addition to suppressing the updates to the register �le of speculated instructions,

exceptions will also be suppressed. Thus, if I9 or I4 were to also except after I6, their exceptions

would be suppressed until the recovery phase of I6.

If I9 and I4 both except when no other exceptions are pending, we have nested exceptions.

This occurs because I9 (from home block 2) can only suppress I10 (from home block 2) and will

not suppress I4 (from home block 1). Instruction I4 also suppresses I10 and will ultimately enter

its recovery phase via I12. However, one can no longer simply re-execute I4 and I10 to recover

from an exception for I4. Recall that there was a nested exception condition; re-executing I10

during I4's recovery phase will produce an undesirable program state since the exception for

I9 also wants to suppress the register �le update for I10. Correct suppression of updates can

be accomplished by re-executing only those instructions that belong to I4's suppression set

of instructions but do not belong to I9's suppression set of instructions. In this example, no

instructions will be re-executed during I4's recovery phase. When the check instruction I13 is

encountered, it will report the exception for I9. The recovery will be done by re-executing I9

and all the instructions in its suppression set, namely, I10.

45

Instruction Block
Current

Distance
Speculation

Block
Home

add 0 0 0

add 0 0 0

0 0 0beq

1load

1 0 1store

1div

1add

1 0 1bne

load 2

2add

2 0 2store

0 1

10

20
10
20

(S)

(S)

(S)
(S)
(S)

r5,r6,r2
r1,r2,r1

r1,r0,r1
r4,r6,4
r3,mem(r1)
r2,mem(r4)
r3,r3,4
r4,0,L1

mem(r2),r6
r1,r6,L2

mem(r3),r6

I
6
1
7
2
9
4
10
3

5
8

11

12 check 1 0 1

13 check 2 0 2

Figure 4.2 Code segment after write-back suppression scheduling and register allocation.

This example demonstrates the hierarchy of delayed exception handling in WBS. The in-

struction from the earliest home block will always be resolved �rst. Multiple exceptions from

the same home block will be handled based upon their static order in the scheduled program.

All exceptions are handled from earliest home block to latest home block.

Suppressing the updates to the register �le has several bene�ts. First, it eliminates the

need for special hardware to maintain the history of the state for the source operands. It also

provides the ability to re-use registers amongst speculated instructions. As Figure 4.2 shows,

I6 is able to use one of its own source operands as a destination and still recover correctly.

WBS ensures that if an exception occurs, the source operand will not be corrupted. This is

not possible with sentinel scheduling since it must maintain a history of the state of all source

operands until the sentinel instruction is reached. WBS is able to correctly execute the program

segment in Figure 4.2 using only 7 registers while sentinel scheduling requires 10 registers. As

this example shows, WBS can reduce the register pressure which will result in less spill code.

46

4.2 Architectural Extensions

WBS requires several extensions to the architecture. These extensions are broken down

into two groups: instruction extensions, and extensions to support suppression of register �le

updates and recovery. Each of these extensions will be discussed in light of how they support

the requirements of WBS as described in Section 4.1.

4.2.1 Instruction Requirements

Each instruction opcode will be augmented with a k-bit speculation distance �eld specifying

the number of branches that an instruction has been speculated above. A value of zero in

this �eld indicates that an instruction is not speculated. This �eld is used by the scheduler to

convey the static home block numbers of each instruction to the suppression circuit. A k-bit

speculation distance will permit an instruction to be speculated above K=2k-1 branches.

The check instruction is added to the instruction set as a means of reporting and initiating

recovery for an exception from a SPEI. This instruction uses its home block number to determine

if a SPEI has generated an exception.

4.2.2 Hardware Requirements

Figure 4.3 depicts the hardware extensions required to suppress register �le updates for

a processor architecture that supports in-order retire. First, a k-bit register specifying the

current block along with logic to support increment by one is added. If a branch instruction is

not taken, it causes the current block register to be incremented by one. Otherwise, it will reset

the suppression hardware to prevent an exception from propagating into another superblock.

47

current_block

adder

write enable
signal for
register file

HBPC

Push-down
Stack

control
retiring instruction

In-order

pc

spec distance

CHECK
SPECULATED

EXCEPTION

BRANCH

Suppression

Circuit

computed home block
counter

Figure 4.3 Write-back suppression hardware.

Second, a k-bit adder is provided to compute the instruction's home block based upon the

current block and the speculation distance of the retiring instruction.

Next, a k-entry push-down stack is implemented with shift registers to maintain the home

block and PC of excepting instructions. Finally, a suppression circuit is added that is controlled

by the CHECK and SPECULATED
ags of the retiring instruction. The CHECK
ag indicates

that the current instruction is a check instruction. The SPECULATED
ag indicates that the

current instruction has been speculated away from its home block. These
ags along with the

excepting home block numbers from the push-down stack are used by the suppression circuit

to determine when it is legal to write to the register �le.

The suppression circuit shown is composed of a k-bit comparator with some additional

combinatorial logic that implements the state machine shown in Figure 4.4. This circuit is

responsible for determining if the instruction currently being retired is allowed to update the

register �le. The CHECK, SPECULATED and EXCEPTION
ags along with the home block

numbers from the push-down stack control transition in the state machine between the normal

48

Suppression
State

Normal
State

Recovery
State

SPECULATIVE
& EXCEPTION matching CHECK

matching CHECKpush-down
stack EMPTY

SPECULATIVE & EXCEPTION

matching CHECK

matching CHECK

Figure 4.4 Write-back suppression state machine.

state, suppression state, and the recovery state. All instructions are permitted to update the

register �le during the normal state.

Starting in the normal state, an instruction whose SPECULATED and EXCEPTION
ags

are set will place the WBS state machine into the suppression state, and cause the computed

home block and its PC to be pushed onto the top of the push-down stack. Its update to the

register �le will be suppressed.

During the suppression state, the computed home block of the retiring instruction and

the excepting home block number on the top of the suppression stack will be provided to

the suppression circuit to determine if an instruction should update the register �le. The

suppression circuit will set the write enable line for the register �le if the computed home block

is less than the home block number on the top of the stack, otherwise the write will be disabled.

This protects the source operands as required by WBS.

As mentioned in Section 4.1, a nested exception occurs when an excepting SPEI retires

with a computed home block above the current excepting home block. This is maintained by

pushing the new higher priority exception onto the top of the suppression stack.

If the retiring instruction is a check and its computed home block is the same as the home

block number on the top of the push-down stack, a matching CHECK condition is generated.

49

The state machine will then transition into the recovery state. The PC from the push-down

stack will be provided to the fetch stage of the processor to begin recovery. The next time that

the instruction associated with the excepting PC is encountered, it will be permitted to except.

During the recovery state, all instructions whose computed home block is less than the ex-

cepting home block number on the top of the push-down stack will be prohibited from updating

the register �le ensuring that these instructions will not be re-executed. Any instructions whose

computed home block is greater than or equal to the home block number in the second entry of

the push-down stack will also be inhibited from updating the register �le to correctly address

the nested exception problem. These instructions will be executed once the check for the second

entry in the push-down stack is encountered. All other instructions will be permitted to update

the register �le. The use of excepting home block numbers found in the top two entries of the

push-down stack ensures that instructions will only be permitted to update the register �le

one time. Once the check instruction which initiated the recovery state is encountered again,

the top-most entry of the push-down stack will be popped and the WBS state machine will

transition back to the suppression state. If the suppression stack is empty, the state machine

will transition back to the normal state.

4.2.3 Hardware Cost Estimates

The push-down stack represents the greatest portion of the hardware costs associated with

WBS. Assuming that each excepting PC requires 32 bits and the maximum speculation distance,

K, is 7 branches (refer to Section 4.5.2.1) requiring 3-bits for storage, the push-down stack

hardware would require seven 35-bit shift registers to maintain the exception history. In addition

to the push-down stack, WBS requires a 3-bit register to maintain the current block along with

50

logic to implement an increment by one adder. Also required are the 3-bit adder used to

compute the current home block of an instruction and the circuitry to implement the WBS

suppression state machine and its associated 3-bit comparators that control the write-enable

line to the register �le.

4.3 Compiler Support

WBS support has been incorporated into the IMPACT-I compiler. The compiler support

consists of modi�cations to the superblock scheduler and the register allocator. The scheduler

is implemented in two phases: pre-pass scheduling (prior to register allocation) and post-pass

scheduling.

4.3.1 Superblock Scheduler Extensions

There are two major steps for superblock scheduling, dependence graph construction and

list scheduling. After the dependence graph is built, a check instruction is inserted into each

basic block of a superblock (excluding the �rst). Control dependences are added from the

branches surrounding the check instruction to prevent it from being moved outside of its home

block. Next, dependences are added between the check instruction and any PEIs that belong to

the same home block as the check. Finally, dependences are added from the check instruction

downward to any PEI exactly K home blocks after the home block of the check instruction,

where K is the maximal speculation distance de�ned in Section 4.2. This is to guarantee that no

instruction will be speculated more than K blocks away from its home block. These dependences

ensure that after scheduling any of these PEIs will be located after the check instruction.

51

The list scheduler will eliminate a check instruction if no PEIs are actually speculated out of

its home block. This is accomplished by removing the check's input dependences as its source

instructions are scheduled. If the none of the input dependences for a check have been removed

when the branch prior to the check instruction is scheduled, the check can be deleted.

Figure 4.1 shows that I12 was added by the scheduler to check for an exception caused by

I6 or I4. The check instructions are provided a slightly higher priority to push them earlier in

their home block to minimize the number of instructions re-executed during recovery.

4.3.2 Register Allocator Extensions

Register allocation in our compiler is done using a global graph coloring approach [19]. The

register allocator assumes that all allocatable operands reside within virtual registers. For each

of these virtual registers it constructs a live range which consists of the set of instructions where

the operand is live. Allocation then proceeds by coloring the interference graph constructed from

these live ranges. This basic register allocator has been modi�ed to ensure that the resulting

allocation will allow proper recovery in the event of an exception. The modi�cations prevent

the register allocator from destroying the source operands of an SPEI, which can occur if the

register allocator reuses a register allocated to a source operand of an SPEI for the destination

operand of an instruction from a home block above that of the SPEI.2

To ensure a legal allocation, the live range of a source operand of an SPEI must be extended

so that the constructed interference graph will prevent the above situation from occurring. The

live range is extended by using information provided by the scheduler. The scheduler annotates

2Note that speculative instruction I1 from a home block below that of an SPEI I2 can reuse the source register

of the SPEI. The write-back suppress hardware will automatically prohibit I2 from destroying the source register

of I1 in case I2 caused an exception. This is the major advantage of WBS over sentinel scheduling in terms of

register pressure.

52

each SPEI with the last instruction from a home block that is above the SPEI's home block.

The register allocator adds to the source operand live ranges, instructions that lie between

the SPEI and the instruction indicated by the scheduler and that originate from home block

above the SPEI. For example, consider the code sequence before register allocation shown

in Figure 4.1. Instruction I6 is an SPEI, from home block 1. Its source operands, v4 and

v7, must not be modi�ed by any instruction from home block < 1. The scheduler indicates

that the last instruction with a destination from a home block < 1 is instruction I2. Thus

the register allocator adds instructions I1 and I2 to the live range of each source operand of

instruction I6, since they both have home blocks < 1. Adding these two instructions to the live

range will prevent the destinations of instructions I1 and I2 from being allocated to the same

physical register as v4 and v7, while allowing the destination of instruction I6 or I7 to do so.

Figure 4.2 contains the same code sequence after register allocation. Note that the destinations

of instructions I6 and I7 were both allocated to physical register r1, while the destinations of

instructions I1 and I2 were allocated to di�erent registers. In the event of an exception, WBS

will ensure correct recovery.

4.4 Write-back Suppression and Context Switching

Unlike subroutine calls, the compiler is not able to insert code to save and restore the

processor state during a context switch. Thus, the operating system must save and restore

the processor state. Currently, all compiler controlled speculation techniques have additional

state to be saved to ensure correct recovery after a context switch. Only restricted speculation

that does not permit speculation of PEIs and general speculation that does not recover from

exceptions of PEIs do not have increased state. Instruction boosting requires the saving of

53

each additional shadow register �le to ensure correct recovery. Sentinel scheduling requires the

saving of the exception bits stored in the register �le upon a context switch. In addition, the

register pressure introduced by the sentinel scheduling to protect the source operands requires

an architecture with a larger register �le that must also be saved.

WBS adds additional information to the processor state including the current block register,

the current state in the WBS state machine and the valid entries in the push-down stack. All

of this information must be protected in the event of a context switch. However, WBS could

rebuild its state after a context switch since no registers have been corrupted. By maintaining

only the oldest excepting PC, the processor could enter a special REBUILD state after returning

from a context switch. During this state, the PC would be set to the oldest excepting PC and

no updates to the register �le would be permitted. Then each instruction could be re-executed

until the PC of the instruction where the context switch occurred is reached. At this point,

the WBS state machine, the current block register and the push-down stack would be valid

and processing could begin. Since the number of re-executed instructions is not �xed, it would

be more e�cient to save the the additional state information. However, this option poses an

interesting approach to solving the binary compatibility problem.

4.5 Experimental Evaluation

In this section, the e�ectiveness of WBS is analyzed for a set of non-numeric benchmarks.

The performance of WBS is compared with restricted speculation and general speculation.

54

4.5.1 Methodology

Compiler support for WBS has been implemented in the IMPACT-I C compiler. The

IMPACT-I compiler is a prototype optimizing compiler designed to generate e�cient code for

VLIW and superscalar processors [7]. The benchmarks used in this study are the 14 non-

numeric programs shown in Table 3.1. The benchmarks consist of 5 non-numeric programs

from the SPECint92 suite and 9 other commonly used non-numeric programs.

The processor model used in this study is a in-order issue superscalar processor with register

interlocking. The processor is assumed to have uniform functional units, 1 branch delay slot,

and the instruction set of the HP PA-RISC processor. The instruction latencies assumed are

those of the HP PA-RISC 7100 (see Table 3.2). The processor is assumed to trap on exceptions

for memory load, memory store, and all
oating point instructions.

For each machine con�guration, the program execution time, assuming 100% cache hit rate

is derived using execution-driven simulation. For the experiments the issue rate of the processor

is varied from 1 to 8 and the number of integer and
oating point registers from 32 to 64.

4.5.2 Results

4.5.2.1 Selection of the Maximum Speculation Distance

The general speculation model was used to schedule all of the benchmarks for a 4-issue

and 8-issue processor using a register �le size of 64 integer registers, and 64
oating point

registers. Each instruction was then tagged with the number of branches that it was speculated

above. The benchmarks were traced to get actual execution frequencies for all instructions.

The weighted execution frequency of each SPEI was then used to build the graph in Figure 4.5.

Considering that a speculation limit of 2k-1 branches is possible given the addition of k bits to

55

Branches

P
er

ce
nt

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 issue

8 issue

Figure 4.5 Weighted speculation distances for PEIs.

the instruction opcode, viable speculation distances are 3, 7, 15 and 31. A speculation limit

of 7 branches was chosen for subsequent experiments since it permitted speculation of 97.7

percent of the PEIs with a 4-issue architecture and 96.4 percent of the PEIs with an 8-issue

architecture. The addition of one more bit in the opcode would only increase the percentage of

speculated instructions by 2 percent for the 4-issue architecture and 3 percent for the 8-issue

architecture but would double the push-down stack size requirements.

4.5.2.2 Comparison of Write-back Suppression and Restricted Speculation

The performance of the WBS scheduling model and the restricted speculation model is

compared in Figure 4.6. The base con�guration for speedup calculations in this graph is a single

issue processor with restricted speculation code scheduling. In general, this �gure shows that

there are many opportunities for increased ILP using compiler controlled speculative execution

techniques.

56

S
p

e
e

d
u

p

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

R W R W R W R W R W R W R W R W R W R W R W R W R W R W

Issue 8

Issue 4

Issue 2

espresso l i sc c m p eqn grep lex qsort tbl w c yacccompress cccpeqntott

Figure 4.6 Performance comparison of write-back suppression scheduling (W) and restricted
speculation (R) with 32 integer and 32
oating-point registers.

There are several observations that one can make on Figure 4.6. First, the additional check

instructions required to ensure correct recovery for WBS scheduling for 2-issue result in lower

speedups with compress, sc, cccp and tbl than was accomplished by restricted speculation.

Second, WBS scheduling provides large performance improvements over restricted speculation

for 4-issue and 8-issue processors. The largest speedups are achieved with cmp, grep, lex, and

qsort. Finally, qsort is actually slower for WBS scheduling than restricted speculation for an

8-issue processor due to increased register pressure caused by speculation.

4.5.2.3 Comparison of Write-back Suppression and General Speculation

The performance results of the WBS scheduling model and general speculation model are

shown in Figures 4.7 through 4.10. All numbers are shown as a percentage of the the per-

formance, de�ned as one over cycle count, of general speculation. The �gures show a general

57

improvement in performance from the single issue to the eight issue architectures. This is ex-

pected because the check instructions inserted for WBS have fewer free slots available with lower

issue rates and can be better hidden by unused resources for higher issue rates. In Figure 4.10,

one exception to the trend is grep which is the most parallel benchmark in the experiments.

Even for high issue processors, the additional check instructions can increase the number of

issue slots required and therefore increases the cycle count.

The second trend to note is that WBS shows about the same (within 2 percent) or slightly

higher performance with 64 registers than with 32 registers. This indicates that register pressure

introduced by WBS is small and does not require a larger register �le to attain comparable per-

formance to general speculation. This di�ers from sentinel scheduling which experiments show

requires a larger register �le size to achieve comparable performance to WBS scheduling [35].

One notable exception to the trend discussed in the previous paragraph is compress shown

in Figure 4.9 which shows a decrease in the performance from 32 to 64 registers. The schedule

generated for compress using general speculation su�ers from a great deal of register pressure

with only 32 integer registers.

Overall, WBS achieves between 86 and 100 percent of the performance of general specu-

lation. These numbers were demonstrated for processor issue rates varying from 1 to 8 with

register �le sizes of 32 and 64. The experiments show that the exception handling required for

WBS introduces little performance overhead while ensuring accurate exception recovery with

compiler controlled speculative execution.

58

B
e

n
ch

m
a

rk

Percent

80 82 84 86 88 90 92 94 96 98

100

espresso

li

eqntott

compress

sc

cccp

c m p

eqn

grep

lex

qsort

tbl

w c

yacc

32 R
egisters

64 R
egisters

F
ig
u
r
e
4
.7

P
erform

an
ce

resu
lts

of
w
rite-b

ack
su
p
p
ression

relative
to

gen
eral

sp
ecu

lation
u
sin

g
an

issu
e
1
p
ro
cessor.

B
e

n
ch

m
a

rk

Percent

80 82 84 86 88 90 92 94 96 98

100

espresso

li

eqntott

compress

sc

cccp

c m p

eqn

grep

lex

qsort

tbl

w c

yacc

32 R
egisters

64 R
egisters

F
ig
u
r
e
4
.8

P
erform

an
ce

resu
lts

of
w
rite-b

ack
su
p
p
ression

relative
to

gen
eral

sp
ecu

lation
u
sin

g
an

issu
e
2
p
ro
cessor.

59

B
e

n
ch

m
a

rk

Percent

80 82 84 86 88 90 92 94 96 98

100

espresso

li

eqntott

compress

sc

cccp

c m p

eqn

grep

lex

qsort

tbl

w c

yacc

32 R
egisters

64 R
egisters

F
ig
u
r
e
4
.9

P
erform

an
ce

resu
lts

of
w
rite-b

ack
su
p
p
ression

relative
to

gen
eral

sp
ecu

lation
u
sin

g
an

issu
e
4
p
ro
cessor.

B
e

n
ch

m
a

rk

Percent

80 82 84 86 88 90 92 94 96 98

100

espresso

li

eqntott

compress

sc

cccp

c m p

eqn

grep

lex

qsort

tbl

w c

yacc

32 R
egisters

64 R
egisters

F
ig
u
r
e
4
.1
0

P
erform

an
ce

resu
lts

of
w
rite-b

ack
su
p
p
ression

relative
to

gen
eral

sp
ecu

lation
u
sin

g
an

issu
e
8
p
ro
cessor.

60

4.6 Conclusion

This chapter has introduced a new architectural scheme referred to as write-back suppres-

sion. This scheme systematically suppresses register �le updates for subsequent speculative

instructions. We have shown that with a modest amount of hardware, WBS supports accurate

reporting and handling of exceptions for compiler-controlled speculative execution with minimal

additional register pressure.

Experiments using a prototype compiler implementation and hardware simulation indicate

that ensuring accurate handling of exceptions with WBS incurs very little run-time performance

overhead. In particular, experimental results from a series of non-numeric benchmarks indicate

that WBS can achieve from 86 to 100 percent of the performance gains of general speculation

scheduling and still ensure correct exception handling in all conditions.

61

CHAPTER 5

SAFE SPECULATION

5.1 Overview

This section introduces intra-procedural and inter-procedural analysis techniques that are

utilized to identify potentially excepting instructions that will not introduce run-time errors

and are thus safe to speculate. As such, this analysis is used to extend the scheduling freedom

available for restricted speculation in the avoid errors category. The analysis algorithms dis-

cussed in this chapter are also used to identify instructions that prevent operands from reaching

potentially excepting instructions that will cause them to except. From this point on, usage of

these analysis techniques will be applied to a speculation model called safe speculation.

There are three bene�ts that result from identifying potentially excepting instructions that

are always safe. The obvious bene�t is that it allows speculation of an instruction to hide long

instruction latencies. The second bene�t becomes visible after applying transformations such

as loop unrolling to increase the available ILP for wide issue processors. Unsafe instructions in

the middle of these loops can limit or prevent overlap of the unrolled loop iterations, thus losing

most of the bene�ts of unrolling. By proving that these instructions are safe, the scheduler will

be able to overlap of these iterations.

The third bene�t comes from identifying potentially excepting instructions that are not

executed on all paths of the program. Kennedy's work on safety of code motion uses knowledge

of safety to permit loop invariant code removal of conditionally executed potentially excepting

62

instructions [42]. If this instructions are not identi�ed as safe, then this optimization could

introduce a run-time error.

The safety analysis discussed in Sections 5.1.1 through 5.1.3 are performed prior to loop

optimizations, superblock formation and superblock optimizations. This permits the analysis

information to be used when performing these optimizations. Additionally, it is possible that

some optimizations may invalidate the analysis. As such, constraints can be imposed to prevent

this invalidation.

5.1.1 Determining Safety through Operand Inspection

It is possible to determine that some potentially excepting instructions are safe by trivial

inspection of the explicit operands. One simple example is a divide or remainder whose denomi-

nator is a non-zero constant. In this case, the divide and remainder are always safe to speculate.

While these cases are obviously safe, the bene�ts from them are dependent upon the execution

time of the divide due to the strength reduction optimization [43]. Strength reduction is used

to convert a divide by constant integer into a series of shifts and subtracts. Thus, the divide

can be replaced by a series of instructions that are always safe.

The other class of instructions that can be determined safe by operand inspection are loads.

These references can be broken up into two groups. The �rst group includes loads that are

based upon a label plus an immediate o�set. By querying the symbol table, it is possible to

determine whether the o�set is within the bounds of the variable and thus ensure safety of the

load.

The second group are loads are inserted by the compiler while generating the intermediate

representation for a function and as a result of register allocation. These loads can be proven to

63

be safe by ensuring that their constant o�sets will be within the bounds of the function stack.

Examples of loads that meet this criteria are:

(1) Loads used to pass parameters between function calls.

(2) Loads used for spill code.

(3) Loads used to transfer data between integer and
oating point register �les [30, 31, 44].

(4) Loads used to load constants into
oating point registers [30].

5.1.2 Determining Safety through Equivalent Instructions

Kennedy proposed an algorithm that can ensure that the insertion of an expression is safe

before a conditional branch if all paths that reach the expression in question are reached by

an identical expression [42]. This rule ignores the values of operands and requires reaching

expression tests [41]. The advantage of this test is it permits speculation of not only load in-

structions but also divide, remainder and
oating point instructions. The bene�ts of this test

are somewhat limited since global optimization techniques will typically eliminate redundant

computations. However, global optimizations are not able to perform redundant load elimina-

tion if an ambiguous store is available on a path that reaches the load [41]. Thus, there are

some potential advantages of this safety analysis in the case of load instructions.

If all paths that reach an integer divide or remainder pass through another divide or re-

mainder with the same denominator, the earlier divides or remainders will except if there is a

potential for an error. Thus, the subsequent divide or remainder are safe to speculate as long as

they are not speculated above the earlier instructions. These earlier instructions will be called

sentry instructions.

64

5.1.3 Determining Safety through Graph Traversal

Going back to the basic de�nition of safe speculation requires that all possible values that

reach the operands for a potentially excepting instruction must not cause an exception. If

the values for an operand along any path can not be determined, then it is possible that the

potentially excepting instruction could cause an exception. For example, the operand values

that reach the denominator of a divide instruction must be non-zero from all paths. If this is

not possible, then the divide is unsafe. Figure 5.1 contains a divide instruction in block D with

the divisor (register r14). There are four paths which reach the divisor. The �rst two paths are

from blocks A and B where the divisor is initialized to 7 and 23 respectively. The third path

traverses CEFCD where there are no de�nitions of the divisor. Also, the fourth path, CDFCD,

does not rede�ne the divisor. Thus, the denominator of the divide is reached by non-zero values

along all paths which ensures that the divide is safe to speculate. In this particular case, not

only is the divide safe to speculate, but it is also invariant which permits loop invariant code

removal.

Figure 5.1 can be used to show the required steps to determine that an invariant load in a

loop is safe or a load that is not in a loop is safe. In this case, the base address of the load found

in block F is not visible within the scope of the loop. However, the base operand, register r2, is

de�ned in blocks A and B. Using the two labels that reach this load, it is possible to determine

from the symbol table whether an o�set of 4 is legal for both structures. If it is, then the load

is always safe to speculate into block C.

Large portions of program execution time is spent in loops. As such, it is not only necessary

determine that invariant references are safe but also determine that variant references are safe.

If a loop can be characterized as a for-loop that it is possible to determine the number of

65

movr2<-label1
mov r14<-23

A B

C

ED

F

jump C

beq r9,r12,E

jump F

ld r1<-(r2,4)

div r16<-r15,r14

r2<-label2mov

bge r23,0,C

mov r14<-7

Figure 5.1 Example where potentially excepting instructions are always safe.

66

iterations that a loop will span. Additionally, if a load can be determined to be an array-type

load, knowledge of the loop span and the array reference pattern, can be used to determine that

these load accesses are safe. Figure 5.2 shows a case where the load from block D in the loop is

variant. For variant loads, it is not only necessary to determine the base address of the load, but

it is also necessary to determine the worst case trip count for the loop in order to determine the

load reference pattern. Thus, it is necessary to ensure that the load is safe on all iterations of

the loop. This loop is complicated by the jsr in block C because some iterations, will produce a

new base address for the load. Therefore, to determine that this load is safe, it is also necessary

to perform inter-procedural analysis to determine the return value from the function and then

verify that the loop bounds will stay within the bounds of that variable as well as the variable

provided from block A. This particular problem occurs in HP and SUN implementations of the

C function getc which is typically implemented as a macro call. The resultant C code will test

to see if the bu�er is empty. If the bu�er is empty, a call to �lbuf is performed to re�ll the

bu�er. Therefore, this example also motivates the need for inter-procedural analysis.

These examples have shown the requirements that must be followed to ensure that a poten-

tially excepting load is safe along all paths. If all of the relevant steps are not possible, then

the load must be considered unsafe for speculation.

(1) Identify all possible variable addresses that reach the load.

(2) Identify all possible initial o�sets that reach the load.

(3) If the load is variant within a loop, identify the iteration space for the loop including
start value, step and end value. This information is used to determine the possible span
of addresses that the load may reference inside the loop.

(4) Verify with the symbol table that all possible load references are legal.

67

B

C

D
ld r3<-(r2,0)

mov r2<-ret_reg

st (r5,0)<-r3

add r2<-r2,1

add r5<-r5,1

A

jsr func

mov

mov

r2<-inbuf

r5<-outbuf

beq r2,inbuf+100,C

Figure 5.2 Example where the number of loop iterations and inter-procedural analysis is
required to determine safety.

68

5.1.4 Ensuring Safety in the Presence of Optimizations

Conditional branches can be used in the graph traversal processes to prevent unsafe operands

from reaching a potentially excepting instruction. While the absence of this information can be

used to ensure that a potentially excepting instruction is safe, the missing information about the

branch could result in illegal scheduling later after superblock formation. Figure 5.3 can be used

to illustrate this possibility. The divisor (register 14) in block D is safe along the path through

block A. Additionally, the conditional branch at the end of block B prevents a zero from reaching

the divisor. Thus, the load is safe along all paths. Since the divide is also invariant, than loop

invariant code removal could move the divide to the loop pre-header. Superblock formation

could then merge the preheader into the same superblock as block B. Without maintaining the

knowledge that the divide was conditionally safe along the path leading to the branch, later

speculation could schedule the divide above the branch which could result in run-time errors.

Thus, it is necessary to maintain dependence information about the branch to prevent this

error.

A memory reference to the safe address also functions as a sentry instruction. However,

natural memory dependences are su�cient to prevent re-ordering of references which could lead

to run-time errors. It is important to note that the current implementation of safety analysis is

performed after redundant load elimination [41]. Therefore, an earlier memory reference may

only be a store to the same address or load that is separated from the potentially excepting

load by a store to an unknown address. In either of these cases, re-ordering the load can not be

speculated above the reference to the same address. For the rest of the dissertation, conditional

branches and memory references that are used to ensure safety will be called sentry instructions.

69

A B

C

ED

F

bne r14,0,C

beq r9,r12,E

jump Fdiv r16<-r15,r14

bge r23,0,C

mov r14<-7

ld r1<-(r2,0)

ld r5<-(r2,4) jsr func1

mov r2<-ret_regld r6<-(r3,0)

mov r3<-label3

mov r3<-label3

add r3<-r3,4

Figure 5.3 Examples where sentry instructions prevent run-time errors.

70

One �nal requirement of the safety analysis is to maintain safety in the presence of subse-

quent optimization passes. Since the analysis that determined the span of load references was

based upon the original loop, the safety of load references is constrained to the original patterns

determined by the original worst-case trip count. Unfortunately, if the loop contains very little

ILP, this analysis may provide insu�cient opportunities for speculation. Thus, the analysis has

provided very little bene�t. In order to permit greater ILP in the presence of these optimiza-

tions, it is necessary for the analysis to not only identify safety within the current loop iteration

but across loop iterations. Unfortunately, this opens the opportunity for ILP optimizations to

violate the safety constraints. Figure 5.4a illustrates a simple loop prior to unrolling and ILP

optimizations. Using pro�le information, the loop unrolling optimization decides to unroll the

loop 3 times. Figure 5.4b illustrates the loop after unrolling, induction variable expansion and

accumulator variable expansion.

The potential problem arises because loop unrolling was based upon pro�le information to

determine the average number of loop iterations. To provide the maximum overlap of loop

iterations, it is desirable to provide unlimited speculation of the loads from each of the unrolled

iterations. As such, it is possible to execute 2 additional memory accesses beyond the bounds

of the bu�er starting at label. Assuming that label is a pointer to a static array containing

256 entries, this would result in 258 references. Since, the analysis process determined that

the original loop was going to access only entries within the original 256 entry array, these

additional references are caused by the speculation only and not by a programming error. As

long as there are at least two words of data located after the array, the additional references

will not cause a run-time error.

71

However, consider the case where the bu�er is not a statically allocated array but a dy-

namically allocated array of 256 entries. In this case, there is no method for the compiler

to guarantee at compile-time that the references will not cause an access violation. As such,

it is necessary for the analysis process to constrain unrolling to a multiple of the size of the

array. This will ensure that the memory reference pattern stays within the legal bounds of the

dynamically allocated array. Unfortunately, this could restrict the optimization phases, which

could result in poorer performance.

5.1.5 Related Work

Kennedy proposed an algorithm that assumes de�nition free paths reaching a subsequent in-

struction [42]. The focus of this work was to identify conditionally executed instructions within

loops that will not cause exceptions. This information is critical when performing invariant

code removal to prevent program termination. The opportunities that this safety condition can

be applied to are limited after optimization phases due to optimizations such as redundant load

elimination.

Bernstein and Rodeh, proposed an algorithm that determines the safety of load instruc-

tions [45]. Two classes of safety are discussed. The �rst class requires that there is a memory

reference to the exact same address of a load that is bene�cial to speculate. If this condition is

met, then these earlier memory references act as sentry instructions for the load. This technique

is similar to the technique proposed by Kennedy. The second class of safety does not require

a reference to the exact same address. Starting with a memory reference at some base address

with a constant o�set, it analyzes the address computations between the base memory reference

to a subsequent load whose address is based on the original address. If the di�erence between

72

a) Original loop

ble B,r2,1024

ld r3<-(r1,r2)

add r2,r2,4

add r4,r4,r3

A mov r1<-label

mov r2<-0

mov r4<-0

B

C

b) Unrolled loop after ILP Optimizations

A mov r1<-label

mov r20<-0

mov r42<-0

bgt C,r21,1024

ld r30<-(r1,r20)

add r20,r20,12

add r40,r40,r30

add r21,r21,12

bgt C,r22,1024

ld r31<-(r1,r21)

add r41,r41,r31

ble B,r20,1024

add r22,r22,12

ld r32<-(r1,r22)

add r42,r42,r32

mov r21<-4

mov r22<-8

mov r41<-0

mov r40<-0

B

C
add r4,r40,r41

add r4,r4,r42

Iteration 1

Iteration 2

Iteration 3

Figure 5.4 Example indicating the need to control optimization to maintain safety.

73

the original memory reference and the �nal memory reference can be shown to be a �xed size

k which is the size of a page in the memory system, the load can be made safe. The end of the

data segment will then be padded by an additional page of memory to ensure that the load will

not reference outside the legal data segment and su�er the risk of an access violation. Instead of

proving that a reference is safe, this approach ensures that the load will not cause an exception

by padding the end of the data segment. This algorithm is limited by the presence of loops that

may iterate over large arrays as commonly found in scienti�c applications. It can only allow

speculation of loads across iterations up to the point that the di�erence between the original

base address and the subsequent load addresses are within the bounds of one page of memory.

This technique can be extended to increase the padding distance, but this could require padding

comparable to the largest data structure referenced within a loop. Additionally, this approach

does not work for dynamically allocated data structures.

Mahadevan and Ramakrishnan present a region scheduling paper that utilizes some of the

techniques similar to Bernstein's work to prevent exceptions from occurring [46]. Additionally,

they discuss techniques that can be used to prevent array referenced loads from excepting in the

presence of loop optimizations. Their rules for safe loads are similar to those proposed in this

research. However, their analysis techniques are performed over a region which is composed

of a set of basic blocks comparable to a superblock or a trace. Thus, their analysis focuses on

intra-procedural analysis. Their techniques are dependent upon data structure size information,

to determine the safety of a load. The loop information is used to make decisions on padding

arrays to prevent access violations. Since global optimizations tend to move instructions from

frequently executed paths to less frequently executed paths, it is possible for the base address

to be unavailable within the region being scheduled and thus force the load to be considered

74

unsafe. The intra-procedural and inter-procedural analysis proposed in this dissertation has

a greater scope of visibility and thus can resolve this problem. Additionally, safety analysis

presented in this dissertation is performed earlier in the compilation phase to bene�t not only

scheduling but also optimization phases.

5.2 Compiler Support

This section describes the algorithms used to perform intra-procedural and inter-procedural

analysis to identify potentially excepting instructions that are safe for optimization and schedul-

ing phases. Additionally, it describes the algorithms used to build C program call-graphs re-

quired to perform the inter-procedural analysis. Sections 5.2.1 and 5.2.2 describe the algorithms

used to evaluate all possible values that reach an operand in an instruction. These algorithms

form the basis for identifying safe potentially excepting instructions, evaluating loop itera-

tion space, and identifying function call-sites to build the program call-graph. Section 5.2.3

describes the algorithms used to build the program call-graph. Section 5.2.4 describes the al-

gorithms that are used identify side-e�ect free subroutine calls. Finally, Section 5.2.5 describes

the algorithms that are used to identify safe potentially excepting instructions for each of the

categories described in Sections 5.1.1 through 5.1.3.

5.2.1 Generating Use-Def Graphs

A use-def graph is a cyclic or acyclic graph G composed of nodes V and edges E. Each node

represents a basic block in a function that is reached with a register �le and memory state.

Each edge represents a path in a function that is reachable between two nodes. A basic block

may be represented by multiple nodes indicating that it is reached along multiple edges in the

75

graph with di�erent states. Each node contains 0 or more instructions from the basic block

that contribute to the state de�nition along a speci�c path. In the worst case, the graph will

enumerate all paths through a function. The objective of these algorithms is to build a use-def

graph containing the minimum number of nodes and instructions within each nodes as well as

edges that still accurately represents the program state required to de�ne the source operands

of a speci�ed instruction. In the acyclic case the instruction represents the single root in the

graph. The graph then has the appearance of an inverted tree with the leaves functioning as

the start points in the graph.

Figure 5.5 contains the main algorithm used to build use-def graphs. The algorithm is

provided an instruction in a function that will be the initial search point for the graph. Ad-

ditionally, the algorithm is provide a set of initial search criteria that can be in the form of

instruction source operands or memory addresses. The algorithm begins by creating a new use-

def graph, creating the initial node in the graph with the starting instruction and initializing

the search sets. There are two search sets in the algorithm. The �rst search set contains all

source operands that are unknown along a given path. The second search set contains all load

addresses of the form (base + o�set) that need to be resolved during the traversal process. The

algorithm Recursively Build Use Def Graph is used to generate the use-def graph. The

last two steps of use-def graph generation are required to make the use-def graph evaluation

phase more e�cient.

Figure 5.6 presents the recursive depth �rst traversal algorithm used to build the use-def

graph. First, the current basic block is searched for instructions that produce results that are in

either of the search sets. This will be discussed in more detail later. If there are any registers or

memory addresses in the current search sets, then Traverse Basic Block was unable to resolve

76

Algorithm Build Use Def Graph: Given a start point in a function, and operands required
for search, build the use-def graph that produces the source operands for the starting instruction.

initialize new use-def graph

create the initial node in the graph containing the starting instruction

initialize search sets based upon start instruction

Recursively_Build_Use_Def_Graph starting at the start point with the initial

search sets

Identify_Cycles in the use-def graph

for each start_node in use-def graph

{

start_node->level = 0

Levelize_Use_Def_Graph (start_node, 1)

}

Figure 5.5 The Build Use Def Graph algorithm generates a levelized use-def graph with
cycles identi�ed.

all unknown source operands, thus it is necessary to continue the traversal process with the

source control blocks.

Next, the algorithm determines if a node in the graph exists for the current source basic

block. If not, it creates a node and sets the initial search sets for the node to the current search

sets. Next it will recursively call the Recursively Build Use Def Graph to continue the graph

building process. If one or more nodes in the graph do exist for the current basic block, then

each of the nodes initial search sets is compared with the current search set. If an exact match is

found, then an arc is added to the existing node in the graph and the search process terminates.

Thus, the graph traversal process will terminate when their is no bene�t in traversing a path

that already exists in the graph. In this heuristic, bene�t in traversing a path is based upon

whether a path has been traversed with the same set of search criteria before. If the path has

not been searched with the same set of search criteria, it is possible that new instructions will

77

Algorithm Recursively Build Use Def Graph: Given a start point in a function, recur-
sively build the use-def graph starting at the start instruction until there are no remaining
search constraints. The use-def graph is grown from the start point upwards through the each
basic block to the source basic blocks.

current search sets = Traverse_Basic_Block (current node, search sets)

if (current search sets are not empty)

{

for each source arc to current basic block

{

if (the source block does not exist in the use-def graph)

{

create a new node for source block using the current

search sets

Recursively_Build_Use_Def_Graph based upon the current search

sets.

}

else if (the source node not been reached with the state of the

current search set)

{

Recursively_Build_Use_Def_Graph based upon the current search

sets.

}

add an arc from the current node to the source node in the graph

}

}

Figure 5.6 The Recursively Build Use Def Graph algorithm generates a use-def graph start-
ing at the initial start point.

be added to an existing node. This processes is repeated for each source arc to the current

block until a steady state is reached.

Figure 5.7 presents the algorithm used to traverse a basic block in order to add instructions

to the use-def graph and update the memory and register search sets. The objective is to add

the minimum number of instructions from a basic block but still gather su�cient information as

to ensure accurate operand evaluation. In all cases, conservative assumptions will be made when

there is any question about whether the instruction should be added. Each instruction in the

78

basic block will be evaluated for addition to the instructions in the current node. Instructions are

broken up into �ve categories based upon the requirements for addition to a node's instruction

list as well as the actions performed on the current register and memory search sets based upon

adding the instruction.

If the destination register of a load instruction is in the current register search set, then

the load is added to the current node's instruction list. The destination register is removed

from the current search set and it's source operand registers are added to list. Additionally, the

address for the load will be added to the current memory search set since the contents of at that

address are what de�ne the destination of the load. Store instructions may be added to the list

for two reasons. If the address of the store is in the current memory search set, the the store

is added to the list. Also, the store will be added if it's address is ambiguous with any of the

addresses in the current memory search set. Thus, any load whose source address is not explicit

will cause the addition of all stores reach through the traversal process. Additionally, any store

whose target address is not explicit will be added to the list. As with load instructions, the

source operands for the store are added to the current register search set.

Subroutine call instructions are added under two conditions. First, if the return parameters

of the subroutine are currently in the current register search set, then the subroutine produces

a result that is required for the use-def graph evaluation phase. The second condition will

conservatively add the instruction to the node list if the subroutine call is not side-e�ect free

and the current memory search set is not empty. Since no inter-procedural analysis is performed

during the graph building phase, it is not possible to know whether the subroutine may change

the memory state that ultimately a�ects the value reaching a load. More sophisticated memory

disambiguation could be used to reduce this conservative assumption.

79

Arithmetic instructions are added to the list of instructions for a node if the destination

register is in the current register search set. The destination register will then be removed

from the set and all register source operands will be added to the list. Finally, all conditional

branches are added to the current node's instruction list and their source operands are added

to the current register search set. This ensures that all potential branch conditions that may

guard against exceptions are visible to the graph evaluation phase.

At any point, if the search sets become empty, then traversal through the block will termi-

nate. For this to occur, an instruction must de�ne a result in the current search set but not

introduce new search conditions. Thus, with optimized code, search conditions only terminate

upon encountering move instructions with label or constant source operands. The presence of

ambiguous load conditions will prevent the memory search set from ever becoming empty.

The use-def graph evaluation only makes two passes down the use-def graph to determine

the values that can reach each instruction. The �rst pass only covers acyclic edges in the graph

while the second pass propagates values around cycle edges as well as acyclic edges. Figures 5.8

and 5.9 are used to mark cycles in the graph to support the evaluation phase. These algorithms

are based upon the algorithms DFS and DFS Visit found in [6].

To ensure accurate evaluation of the graph, it is necessary to delay evaluation of a node until

all source nodes have been evaluated. This can simply be done after cycles have been evaluated

by not traversing cyclic edges. Figure 5.10 increments a nodes level to the one greater than

the lowest level node reaching it. Thus, the node is pushed down the graph. The results of

this algorithm produce a result comparable to a topological sort [6]. As a result of the leveling

processes all start nodes in the graph will be at level 0.

80

Algorithm Traverse Basic Block: Given a start block in the basic block and the current
search sets, add instructions to the use-def graph for the current node that produce results that
a�ect the current search sets.

for each instruction in the current basic block

{

if ((subroutine call instruction) && ((subroutine produces a result) &&

(the result is in the current search set)) ||

((the subroutine is not side-effect free) &&

(there are any memory references in the current search set)))

{

add the instruction to the current node in the use-def graph

add the source operands to the current search set

add the parameter registers to the current search set

}

else if (conditional branch instruction)

{

add the instruction to the current node in the use-def graph

add the source operands to the current search set

}

else if ((load instruction) && (destination in current search set))

{

add the instruction to the current node in the use-def graph

add the source operands to the current search set

add the load address to the current search set

}

else if ((store instruction) &&

((store address is in current memory search set) ||

(store address is ambiguous with any memory address

in current search set)))

{

add the instruction to the current node in the use-def graph

if (there is an exact match of the store's address in the

current memory search set)

remove the store from the current search set

}

else if ((instruction produces a result) &&

(destination in current search set))

{

add the source operands to the current search set

add the instruction to the current node in the use-def graph

}

if (current search sets are empty) exit loop

}

Figure 5.7 The Traverse Basic Block algorithm adds relevant instructions to the current node
in the use-def graph.

81

Algorithm Identify Cycles: Given a use-def graph with multiple start nodes, identify all
cycles. This algorithm is based upon the algorithm DFS from [6].

for each node in the use-def graph

node->color = WHITE

for each start_node in the use-def graph

{

if (node->color == WHITE)

DFS_Identify_Cycles(start_node)

}

Figure 5.8 The Identify Cycles algorithms is used to identify cycles in the graph to permit
correct graph levelization.

Algorithm DFS Identify Cycles: Given a node in the use-def graph identify cycles in the
graph. This algorithm is based upon the algorithm DFS Visit from [6].

node->color = GRAY

for each destination_arc of this node

{

destination_node = destination_arc->destination_node

if (destination_node->color == white)

DFS_Identify_Cycles(destination_node)

else

destination_arc->type = CYCLIC

}

node->color = BLACK

Figure 5.9 The DFS Identify Cycles algorithm is used to identify cycles in the graph to
permit correct graph levelization.

82

Algorithm Levelize Use Def Graph: Given a node in the use-def graph and a current level
for the node, levelize the graph using a DFS traversal.

for each destination_arc of this node

{

if (destination_arc->type == CYCLIC)

continue;

destination_node = destination_arc->destination_node

if (level > destination_node->level)

{

destination_node->level = level

Levelize_Use_Def_Graph (destination_node, level + 1)

}

}

Figure 5.10 The Levelize Use Def Graph algorithm is used to push the level of all nodes to
the lowest levels in the graph that reach them.

In an e�ort to reduce the run-time overhead, two heuristics were added to this Recur-

sively Build Use Def Graph. The �rst heuristic prevents traversing too far down a given path.

This limit is currently set to 50 blocks for a given enumerated path. The second heuristic

prevents traversing through too many blocks in the function. This limit is currently set to

4000 blocks. Currently, only the limits of the �rst heuristic have resulted in termination of the

traversal process. While these heuristics can ultimately a�ect the amount of useful information

found during the graph evaluation process, it has not led to signi�cant performance impact for

three reasons. First, ambiguous stores will result in the addition of search criteria that are not

always bene�cial which can cause traversal beyond useful points. Second, due to loops, we will

iterate through the same sequence of paths until a steady state is reached. This traversal pro-

cess does not always result in additional useful instructions. The third reason actually points

out one of the limitations with the current loop analysis. Many of the paths that terminate due

83

to the path length heuristic are in loops that whose iteration spans are unknown. This includes

loops that iterate through linked lists and loops that function like state machines such as in

parsers.

Figures 5.11 through 5.19 provide an example of these algorithms using the inner-loop of wc.

Due to the size of the function shown in Figure 5.11, only the inner loop shown in Figure 5.12

will be used in this example 1. This �gure shows the control-
ow graph for the inner-loop with

the instructions numbers and opcodes in their respective basic blocks. The instructions with

their operands are provided in �gure 5.13 for reference. The instruction format assumes that

the destination of the instruction is located immediately after the opcode. In this example, we

will build the use-def graph required to determine if instruction 42 is safe.

The initialization process produces the graph and state information shown in Figure 5.14.

The initial register search state is set to contain register 21 which is the only unknown source

operand in op 42. The initial memory search state is empty. Even though op 42 is a load,

the only requirement for safety is to determine that the address of the load will not cause

an exception. Therefore, it is not necessary to know the contents of the load at this point.

Instruction 42 is placed into the instruction list for the node representing cb 9. Finally, the

current register and memory search states are initialized to the same state as the initial search

state of cb 9. Recursive Build Use Def Graph will then be called to process cb 9.

Figure 5.15 show the con�guration of the use-def graph after traversing through all instruc-

tions in cb 9. Instruction 38 is added to the instruction list of the current node since it de�nes

register 21 which is in the current register search set. Register 21 is removed from the current

search set and the only unknown operand, register 3 is added. The memory address, (r3 +

1In actuality, the graph building process traverses through the inner-loop, the outer-loop and upwards to the

�rst block in the function.

84

1

2

3

19

35

36

21 20

22

23

4

5

6

7 24

8

9 31

10

11 25

12 26 32

13 15 27

14 30 16 28

18 33

17 29

34

Figure 5.11 Main function for wc.

85

op 32 ld_i
op 33 add
op 34 st_i
op 37 blt

cb8

op 38 ld_i
op 40 add
op 41 st_i
op 42 ld_uc

cb9
op 145 mov
op 146 jsr
op 147 mov
op 149 jump

cb31

op 44 beq
cb10

op 45 ld_i
op 47 add
op 48 st_i
op 49 bge

cb11

op 50 bge
cb12

op 52 bne
cb13

op 53 ld_i
op 55 add
op 56 st_i
op 58 add

cb14

op 59 jump

op 60 beq
cb15

op 61 bne
cb16

op 64 beq
cb18

op 65 jump
op 64 beq
op 65 jump
op 64 beq
op 65 jump
op 64 beq
op 65 jump

op 64 beq
cb17

op 65 jump
op 64 beq
op 65 jump
op 64 beq
op 65 jump
op 62 mov
op 63 jump

op 140 ld_i
op 142 add
op 143 st_i

cb30

op 144 jump

Figure 5.12 Initial wc loop prior to use-def graph generation.

86

op 32 ld i r98,(r3 + 0) op 56 st i (wordct + 0),r26

op 33 add r18,r98,-1 op 58 add r2,r2,1

op 34 st i (r3 + 0),r18 op 59 jump cb8

op 37 blt r98,1,cb31 op 60 beq r4,10,cb30

op 38 ld i r21,(r3 + 4) op 61 bne r4,32,cb18

op 40 add r20,r21,1 op 62 mov r2,0

op 41 st i (r3 + 4),r20 op 63 jump cb8

op 42 ld uc r4,(r21 + 0) op 140 ld i r62,(linect + 0)

op 44 beq r4,-1,cb25 op 142 add r61,r62,1

op 45 ld i r24,(charct + 0) op 143 st i (linect + 0),r61

op 47 add r23,r24,1 op 144 jump cb17

op 48 st i (charct + 0),r23 op 64 beq r4,9,cb17

op 49 bge 32,r4,cb15 op 65 jump cb8

op 50 bge r4,127,cb15 op 145 mov param reg,r3

op 52 bne 0,r2,cb8 op 146 jsr �lbuf

op 53 ld i r27,(wordct + 0) op 147 mov r4,ret reg

op 55 add r26,r27,1 op 149 jump cb10

Figure 5.13 Instructions for wc loop.

op 42 ld_uc

cb9

Register Search Set (r21)

Memory Search Set ()

cb9 Initial Search State:

Register Search Set (r21)

Memory Search Set ()

Current Search State:

Figure 5.14 Initial node of use-def graph containing instruction 42.

87

op 42 ld_uc

cb9

Register Search Set (r21)

Memory Search Set ()

cb9 Initial Search State:

Register Search Set (r3)

Memory Search Set ((r3 + 4))

Current Search State:

op 38 ld_i

Figure 5.15 Final state of node after traversing all instructions in cb 9.

op 42 ld_uc

cb9

Register Search Set (r21)

Memory Search Set ()

cb9 Initial Search State:

Register Search Set (r3)

Memory Search Set ((r3 + 4))

Current Search State:

op 38 ld_i

cb8

Register Search Set (r3)

Memory Search Set ((r3 + 4))

cb8 Initial Search State:

Figure 5.16 Initial state of use-def graph prior to traversing cb 8.

4), is added to the memory search set since it ultimately determines what will be written to

register 21 as a result of the load.

The only source arc to cb 9 is from cb 8. Figure 5.16 shows the state of the use-def

graph prior to traversing into the cb. Since cb 8 does not exist in the use-def graph, a new

node is created. Its initial register and memory search sets will be set to the contents of the

current register and memory search sets. Next, the Recursive Build Use Def Graph will begin

processing cb 8.

88

op 42 ld_uc

cb9

Register Search Set (r21)

Memory Search Set ()

cb9 Initial Search State:

Register Search Set (r3)

Memory Search Set ((r3 + 4) (r3 + 0))

Current Search State:

op 38 ld_i

cb8

Register Search Set (r3)

Memory Search Set ((r3 + 4))

cb8 Initial Search State:

op 37 blt
op 34 st_i

op 32 ld_i
op 33 add

Figure 5.17 Final state of use-def graph after traversing cb 8.

Figure 5.17 shows the state of the use-def graph after traversing cb 8. The branch, op 37,

is added to the node list to keep track of all conditional paths. This results in the addition of

register 98 to the current register search set. The store, op 32, is added to the list since there

is an unknown pointer address in the memory search set 2. Register 18 is added to the current

register search set. Instructions 33 and 32 are added to the instruction list for the current node

since their destination registers are in the current register search set. The resulting search state

contains only register 3 and the memory addresses for (r3 + 0) and (r3 + 4).

Figure 5.18 shows that state of the graph several recursive calls later after traversing down

one of the paths of loop control structure. Since the graph currently contains a node for cb 9,

the �rst step is to determine if a new node is required. Since the current search state is not a

subset of the initial search state when cb 9 was entered, we know that no traversal has passed

along this path search for declarations of these operands. As such, a new node will be added

2The disambiguation model used is limited in the current implementation and does not di�erentiate between

pointer addresses at this point. To prove that these two addresses do not con
ict, the access patterns of the loads

would need to be proven to be disjoint. In this case, the base address is invariant in the loop which is su�cient

to show that these two instructions reference di�erent memory addresses.

89

to the graph for cb 9. This graphs initial search state will be set to the current search state

and traversal through cb 9 will begin again. If the current state had been a subset of the initial

state of the node, then an arc would have been added to the current node representing cb 9

and traversal would have terminated along this path.

The traversal process will iterate until all paths have been followed for all de�nitions that

are alive along these paths, thus reaching a steady state. Since there are only a �nite number of

instructions in the program, this will ultimately converge. Unfortunately, because of loops, this

could result in the generation of one node in the graph for each cb in the function. Additionally,

each cb could be represented once for each possible combination of memory references and

register operands. Therefore, it is necessary to combine nodes that represent the same cb and

merge the instruction lists into the original program order. An alternative approach to graph

merging would be to update the state of the existing node and insert new instructions into the

list as they are encountered 3. Finally, the cycles in the graph will be identi�ed and the graph

will be levelized for the graph evaluation process. Figure 5.19 shows the �nal form of the graph

after these steps have been performed. The edges marked with B are back-edges that form

cycles in the graph. The horizontal lines separate the levels within the graph.

5.2.2 Evaluating Use-Def Graphs

The objective of evaluating the use-def graph is to capture su�cient information to deter-

mine all initial values that reach instruction operands in question as well as variances in these

values that can be determined through one pass around the cyclic edges in the graph. This

3In the current implementation, the graph is not merged which results in a signi�cantly longer evaluation

process.

90

op 32 ld_i
op 33 add
op 34 st_i

cb8

op 38 ld_i

op 42 ld_uc

cb9

cb15

cb16

op 64 beq
cb17

op 65 jump
op 64 beq
op 65 jump

op 37 blt

op 45 ld_i
op 47 add
op 48 st_i

cb11

op 49 bge

op 60 beq

op 61 bne

cb10
op 44 beq

Register Search Set (r3, r4)

Memory Search Set ((r3 + 4) (r3 + 0) (_charct + 0))

Current Search State:

Register Search Set (r3, r4)

Memory Search Set ((r3 + 4) (r3 + 0))

cb11 Initial Search State:

Register Search Set (r21)

Memory Search Set ()

cb9 Initial Search State:

Register Search Set (r3)

Memory Search Set ((r3 + 4))

cb8 Initial Search State:

cb9

Figure 5.18 State of use-def graph several recursive calls later.

91

cb8

cb31

cb17

cb18

cb14

cb13

cb30cb16

cb15

cb12

op 53 ld_i
op 55 add
op 56 st_i

op 140 ld_i
op 142 add
op 143 st_i

op 32 ld_i
op 33 add
op 34 st_i

op 38 ld_i
op 40 add
op 41 st_i
op 42 ld_uc

cb9
op 145 mov
op 146 jsr

cb10

op 45 ld_i
op 47 add
op 48 st_i

cb11

op 64 beq
op 65 jump
op 64 beqop 64 beq

op 64 beq
op 65 jump
op 64 beq
op 65 jump
op 64 beq

B
B

B

B

Level 13

Level 14

Level 15

Level 16

Level 17

Level 18

Level 19

Level 20

Level 21

op 64 beq

op 60 beq

op 50 bge

op 52 bne

op 49 bge

op 58 add

op 44 beq

Figure 5.19 Final use-def graph after merging nodes, identifying cycles and leveling graph.

92

information will be used by later phases to determine loop constraints, as well as to determine

the safety of potentially excepting instructions.

Before discussing the algorithms used to evaluate the graph, the concept of state must be

introduced. The evaluation process contains two classes of state, program level and function

level. Program level state contains the global memory state that was generated as a result of

static initialization and one pass through all global variables in the program. Additionally, the

parameter register and return register states of functions will be generated if inter-procedural

analysis is being performed. These two categories of program state de�ne the only means that

information can be passed between functions in Lcode.

In addition to the program state, a function-level state is grown from an initial unde�ned

state each time a use-def graph is evaluated. The function state includes the register �le and

memory. The memory state is composed of global memory, local memory and pointer memory.

Global memory will contain the subsets of the program global memory state that are referenced

during the graph evaluation. The local memory state contains all stack-based references. The

pointer memory contains all pointer references that could not be resolved to local or global

memory, thus they represent ambiguous references.

As Figure 5.20 shows, there are two loops. The �rst loop makes a pass down the use-def

graph to produce values that can be generated along the acyclic edges in the graph. This

provides all initial values that reach each instruction. To accomplish this, the initial state for a

node is generated using the function Update State. Figure 5.21 shows a simple example of the

principal required to update the state. The state of a node will be the combined state of the

states generated by all nodes that reach it. Thus, the state for node 5 is the combined state

from nodes 2 and 3. Update State returns a
ag indicating if their it was determined if the

93

node should be traversed. Since the current use-def graph does not merge nodes, it is possible

for only one path to reach a given node and that path have the condition that would prevent

traversal. This condition will eliminate the need to call Evaluate Node. Next, the function

Evaluate Node will evaluate all instructions in a node, generate a �nal state for the node and

return any values that reached the instruction that started the search process. The second loop

performs the same steps as the �rst loop but includes state information that was generated

from the �rst step that can be propagated around cyclic edges in the graph. This provides the

variance information for the loop.

Figure 5.22 shows the algorithm for Update State. The algorithm looks through all source

arcs for those of the desired type, acyclic or cyclic, to produce the correct state. If the state,

produced from a particular source, contains only the value that would have prevented traversing

that edge, then the branch is noted and state is not propagated across that edge 4. If this is

not the case, then the current state of the node is merged with the state from the incoming

node.

Figure 5.24 contains the algorithm for Evaluate Node. This algorithm evaluates all instruc-

tion in a node list starting at the top of the list. Instructions use the current register and

memory state to produce a revised register and memory state. In order to maintain useful

information around cyclic edges in the graph, the old values in the register �le and memory

subsystem will be maintained through a block. However, register and memory locations that

are multiply de�ned within a single pass through the block will contain one new de�nition

which is the �nal de�nition. In all cases, only non-duplicate values are maintained through-out

the evaluation process. This correctly handles the situation where multiple paths can produce

4This permits identi�cation of conditional branches that prevent exceptions conditions from occurring. It also

eliminates the need to evaluate a node that will produce information that is not useful for the �nal solution set.

94

Algorithm Evaluate Use Def Graph: Given a levelized use-def graph, evaluate the nodes
in the graph to determine the values that reach the the terminal node in the graph. Each node
is evaluated only once in each loop. Due to inter-procedural analysis, the calling routine may
provide initial values for parameter registers.

initialize parameter register state

values = NULL

/*

* Make first pass down graph evaluating operands using values from

* acyclic arcs.

*/

for each level in graph

{

for each node at current level

{

traverse = Update_State (node, ACYCLIC edges)

if (traverse)

values = Evaluate_Node (node, values)

}

}

/*

* Make second pass down graph evaluating operands using values from

* cyclic and acyclic arcs. This ensures that values from back-edges

* are propagated through loop.

*/

for each level in graph

{

for each node at current level

{

traverse = Update_State (node, ACYCLIC and CYCLIC edges)

if (traverse)

values = Evaluate_Node (node, values)

}

}

Figure 5.20 The Evaluate Use Def Graph algorithm is generate all values that reach the
source operands of the instruction that terminates the graph.

95

Initial State S0

Node 1 Node 2 Node 3

Node 4 Node 5

Node 6

Final State S6

S1 S2 S3

S0 S0 S0

S1

S4

(S2 | S3)

S5

(S4 | S5)
Node State Contents:

Global memory state
Local memory state
Register file state

Figure 5.21 Example of how function state is migrated through a use-def graph.

96

Algorithm Update State: Given a node in a use-def graph and the types of edges that are
relevant to the graph search, generate the new state for the current node.

edge_traversed = 0

for each source_arc to current node

{

if (source_arc->type is not of the desired type)

continue

source_node = source_arc->node

if (source_arc would not be traversed as a result of its state)

{

remember the id of the branch that prevented traversal

}

else

{

node->register_state is updated by register state of source_node

node->local_mem_state is updated by local memory state of source_node

node->global_mem_state is updated by global memory state of source_node

node->pointer_mem_state is updated by pointer memory state of

source_node

edge_traversed = 1

}

}

return edge_traversed

Figure 5.22 The Update State algorithm is used to compute the register and memory state
that reaches the node.

97

multiple values but a single block can only produce one result per register for each path that

reaches it.

The �rst requirement of the evaluation loop is to determine if the current instruction in the

block is the terminal instruction. If it is, then the current values for the operands are recorded.

The state of the operands are recorded prior to evaluating the terminal instruction in the event

that it modi�es one of its own source operands such as the case of a post-increment load.

Next, the di�erent possible instruction types are evaluated using the current state. Based

upon the evaluation requirements, instructions are broken down into six groups: move, store,

load, arithmetic, subroutine calls and conditional branches. In the case of the move, values from

one register �le location are moved to another register �le location. Source registers that have no

de�ned values will result in adding an unde�ned value to the destination register. This ensures

that conservative estimates are used through-out. Querying the register �le can initiate the

inter-procedural process if the source operand is an incoming parameter and inter-procedural

analysis is being performed. As Figure 5.23 shows, a query for the incoming parameter in

Func D will initiate evaluation of the calling functions Func A, Func B and Func C starting at

the jsr call. If the inter-procedural processes results in any unde�ned results, then unde�ned

results will be written to the register �le. A more detailed discussion of this will be provided

later.

Load instructions will require computation of all possible source addresses for the memory

access. Memory accesses are divided into three groups: local, global and pointer. In the case

of local accesses, the local memory state is queried. This state will only contain values that

are de�ned within the scope of the function. Global access will initially go to the function-

level global memory. If the contents are unde�ned, then the program-level global memory will

98

<- incoming parmeter
Func_D

jsr Func_D

jsr Func_D

jsr Func_D

Func_A

Func_B

Func_C

jsr Func_E

Func_E

rts

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.23 Examples of how inter-procedural analysis is performed.

be accessed. If this is unde�ned, then inter-procedural analysis will be performed. Ultimately,

useful values or unde�ned values will be written to the function's global memory thus eliminating

the need to perform further inter-procedural analysis for this global memory location. In some

cases, it is not possible to determine that a load is to local or global memory. Therefore, a

pointer memory state is maintained as well.

Store instructions operate the same as the load for the memory addresses computations and

the same as move instructions for register �le accesses. The only di�erence is that memory

updates only go to the function-level memory state. They are not written through to global

memory. Evaluating arithmetic instructions require applying the arithmetic operation on the

values available from the source operands. If either of the values for source operands are

unde�ned, then an unde�ned result is written to the register �le. If either of the values would

cause an error such as a divide-by-zero, then an unde�ned result is written to the register �le.

99

Conditional branches provide a useful method of adding or eliminating values from the

current register �le contents. If the branch will be taken, then the condition that caused the

branch to be taken must exist. For example, if the branch is taken if the register contents are

equal to zero, then any values (including unde�ned values) that are present in the register can

be eliminated that are non-zero. If the zero-value was not present, then it can be added. Since

the current implementation of the use-def graph contains all enumerated paths, this required

only updating the current state. However, by merging the graph to reduce its size, as discussed

in Section 5.2.1, support for this will be more complicated. Since there are two states generated

by the branch, one for the taken case and one for the not-taken case, it is necessary to produce

two output memory states.

The algorithm shown in Figure 5.25 is provided as a more detailed example of the evalu-

ation performed. This algorithm also shows the fundamental approach used to perform inter-

procedural analysis when a subroutine call is encountered. In the event that inter-procedural

analysis is not being performed, then any values for the subroutine return register that were de-

�ned within the current block but from other subroutine calls will be deleted and an unde�ned

value is added to the register �le.

If inter-procedural analysis is being performed, then the parameter registers are read from

the current register �le and a parameter state is created containing the values for only those

parameter registers. The dotted line in Figure 5.23 represents the state being passed from

Func D to the entry point of Func E. Next, any values for the subroutine return register that

were de�ned within the current block but from other subroutine calls will be deleted to prevent

propagation of old data. Finally, each possible subroutine that can be called from the current

instruction is evaluated started at the rts in the target function. In an e�ort to reduce the

100

Algorithm Evaluate Node: Given a node in a use-def graph as well as the register �le
and memory state, generate the state upon evaluation of all instructions in the node. Upon
encountering the terminal instruction, the values of its source operands are recorded.

for each instruction in the current node

{

if (instruction is the terminal instruction)

{

record source operand values for terminal instruction

}

if (move instruction)

{

Evaluate_Move (node, instruction, state)

}

else if (load instruction)

{

Evaluate_Load (node, instruction, state)

}

else if (store instruction)

{

Evaluate_Store (node, instruction, state)

}

else if (arithmetic instruction)

{

Evaluate_Arithmetic (node, instruction, state)

}

else if (conditional branch instruction)

{

Evaluate_Conditional_Branch (node, instruction, state)

}

else if (subroutine call instruction)

{

Evaluate_Subroutine_Call (node, instruction, state)

}

}

return recorded values

Figure 5.24 The Evaluate State algorithm is used to record the register and memory state
changes produced by a node in the use-def graph.

101

execution time of the evaluation process, subroutine calls from a particular instruction to a

speci�c function are only performed one time for each set of parameter values. Any subsequent

calls with the same parameter values will be provided the previous return values from that

invocation.

In order to perform the inter-procedural analysis, the return instruction from the subroutine

call is identi�ed as the starting point in the called function. The Build Use Def Graph function

is called with the starting instruction and the return parameter register as the operand which

needs values. Then Evaluate Use Def Graph is called to evaluate the graph and produce the

return values from the function. Finally the current register state will be updated with these

values. One important observation is that calling Evaluate Use Def Graph results in an a

recursive cycle in the evaluation process which provides the inter-procedural bene�ts. Without

constraints, this iterative evaluation could result in traversals through the entire program. To

reduce the overhead of analysis, a maximum of 5 levels of evaluation are permitted inter-

procedurally from any given node in the call-graph.

Ultimately, the success of the inter-procedural analysis is dependent upon the availability

of the source code for the libraries. Source code was unavailable for a number of critical library

routines shown in Table 5.1. Therefore, the functionality of these routines were implemented

to support the evaluation processes. For example, a call to malloc will create dynamically

allocated bu�er of the size speci�ed. A call to fopen will return a pointer to a �le structure

that has its bu�er count initialized to zero and the pointer to the character bu�er initialized

to zero. A call to �lbuf will take the �le structure pointer and create a dynamically allocated

bu�er and initialized the bu�er count to the size of the bu�er.

102

Algorithm Evaluate Subroutine Call: Given a subroutine call, a node in a graph and the
current state, evaluate the subroutine call to evaluate its e�ects to the current state.

return_reg = Get_return_registers (instruction)

if (analysis_level != INTER_PROCEDURAL)

{

delete register values defined through this pass of the block for

return_reg

Add_undefined_value_to_register (current_state, return_reg)

return

}

parameter_registers = Get_parameter_registers (instruction)

parameter_state = Get_all_register_values (current_state, parameter_registers)

delete register values defined through this pass of the block for return_reg

for each callsite of the current subroutine call instruction

{

if (callsite has not been called with the current parameter state)

{

return_instruction = Get_return_instruction (callsite)

graph = Build_Use_Def_Graph (callsite, return_instruction,

parameter_registers)

values = Evaluate_Use_Def_Graph (graph, parameter_state)

update current_state with values returned from graph evaluation

}

else

{

update current_state with values returned from the previous

evaluation containing the same parameter state

}

}

Figure 5.25 The Evaluate Subroutine Call algorithm is used to record the register and mem-
ory state changes that occur as a result of traversing into a subroutine call.

fopen �lbuf malloc read fstat calloc

realloc stat fdopen freopen popen tmp�le

Table 5.1 Library routines that were implemented to support the analysis process.

103

5.2.3 Generating Call-Graphs for C Programs

An accurate call-graph is critical for inter-procedural analysis. Call-graphs that do not

contain all arcs to functions that are reached by each subroutine call can result in missing

information that could ultimately result in speculating potentially excepting instructions that

are not actually safe. On the other-hand, if the graph adds arcs to functions that are not

reachable in the original program, information may be provided that prevents identi�cation of

safe potentially excepting instructions that are actually safe. Thus, the graph needs to contain

accurate arcs and only add extra arcs for subroutine calls that can not be resolved.

Programs written in C may contain subroutine calls of two forms: explicit and implicit. The

target of an explicit subroutine calls is visible from the instruction. However, the target of an

implicit call may be provided from a variable in the program. This variable may be initialized

within the scope of the function or passed as a parameter to the function containing the implicit

subroutine call. Both of these cases are supported in FORTRAN [47]. Unlike in FORTRAN,

the variable may be a global variable [48]. This variable may even be de�ned as an array of

function pointers. Thus, to generate C call-graphs in the presence of implicit subroutine calls,

analysis of local function state, the parameter state and the global memory state are required.

Since this problem is dependent on the values that reach the implicit subroutine calls, it can

be solved using the infra-structure presented in sections 5.2.1 and 5.2.2.

Figure 5.26 presents the algorithm used to build C program call-graphs. The �rst loop in the

algorithm constructs nodes and arcs for explicit subroutine calls. It also adds arcs from implicit

subroutine calls to an unknown node for later evaluation. The second loop iterates through

the program to resolve implicit subroutine calls. The function Build Use Def Graph is passed

the subroutine call instruction and the unknown operand for the graph building process. Then

104

Evaluate Use Def Graph evaluates the use-def graph to determine the values that reach the

function. Since the evaluation processes can perform inter-procedural analysis, the call-graph

building processes can actually requires an accurate call-graph to completely resolve implicit

subroutine calls. Thus, the call-graph building process should iterate until no paths are created

that reach implicit subroutine calls. The current implementation will emit an error if such a

condition occurs.

5.2.4 Identifying Side-E�ect Free Subroutine Calls

In order to assure accuracy during the use-def graph generation phase, it is necessary to add

subroutine calls to the traversal list if the subroutine can change update memory and there are

any memory addresses in the memory search set. To reduce necessary subroutine traversal, it

is necessary to identify subroutines that do not write to memory and are thus side-e�ect free.

Figure 5.27 contains the algorithm used to identify side-e�ect free subroutine calls. This

algorithm begins by identifying C library subroutine calls that are side-e�ect free using the

list is given in Table 5.2 5. The objective of the second loop is to propagate state from leaf

side-e�ect free functions upward through the graph. Thus, every time a function is identi�ed as

side-e�ect free, it will force another iteration through the call-graph. In order for a function to

be side-e�ect free, it must only contain subroutine calls to side-e�ect free functions and must

not write to non-local memory.

5.2.5 Determining Safety of Instructions

Figure 5.28 shows the main algorithm for safety analysis used in this research. The �rst step

is building the program call-graph as discussed in Section 5.2.3. The second step is to identify

5This step was required since source code for the library routines was not available.

105

Algorithm Build Call Graph: Given a program, generate a program call-graph.

for each function in the program

{

current_node = Find_node (function)

for each instruction in the function

if (subroutine call)

{

target_node = Find_node (instruction)

if (explicit target_node)

add arc from current_node to target_node

else

add arc from current_node to unknown_node

}

}

for each function in the program

{

current_node = Find_node (function)

for each instruction in the program

{

if (subroutine call with unknown_callsite)

{

graph = Build_Use_Def_Graph (current_node, instruction,

instruction_operands)

values = Evaluate_Use_Def_Graph (graph, NULL)

if (values)

{

for each returned_value in values

{

target_node = Find_node (returned_value)

add arc from current_node to target_node

}

if (no unknown values returned)

{

remove arc to unknown_node

}

}

}

}

}

Figure 5.26 The Build Call Graph algorithm is to generate a program call-graph.

106

Algorithm Identify Side E�ect Free: Given a program call-graph, identify functions that
do not write to global memory, thus permitting greater optimization and scheduling freedom.

for each function in the call-graph

{

for each instruction in function

{

Mark any subroutine calls in the standard list as side-effect free

}

}

change = 1

while (change)

{

change = 0

for each function in the call-graph

{

for each instruction in the function

{

if ((store instruction) &&

(not local memory reference))

{

mark function as not side-effect free

skip to next function in call-graph

}

if ((subroutine call instruction) &&

(function being called is not side-effect free))

{

mark function as not side-effect free

skip to next function in call-graph

}

}

mark function as side-effect free

change = 1

}

}

Figure 5.27 The Identify Side E�ect Free algorithm is used to mark subroutine calls that are
to functions that do not modify global memory or memory that is passed in as a parameter.

107

strlen strcmp strncmp feof fclose perror

isalnum iscntrl isdigit isgraph islower isprint

ispunct isspace isupper isxdigit tolower touper

atoi atol strchr strrchr strstr strcasecmp

strncasecmp index rindex strpbrk strspn strcspn

clearerr ferror fgetpos ftell rand srand

memchr memcmp setjmp exit exp exp2

exp10 log log2 log10 pow sqrt

sin cos tan asin acos atan

atan2 sinh cosh tanh asinh acosh

atanh abs labs fabs cabs
oor

ceil

Table 5.2 Standard list of side-e�ect free subroutine calls found in the C libraries.

side-e�ect free subroutine calls as discussed in Section 5.2.4. Next, the global memory state for

the program is built. This entails evaluating every global store in the program to determine all

values that reach the store. This provides a conservative estimate of the contents of global mem-

ory to eliminate the need for inter-procedural analysis every time a global load is encountered.

The initialization process utilizes the same algorithms as discussed in Sections 5.2.1 and 5.2.2.

After the setup overhead is complete, safety analysis is performed. The analysis is broken

into four steps. The �rst step identi�es all safe instructions that can be identi�ed by operand

inspection. From this point on, these instructions will be classi�ed as trivially safe. The

second step is to identify instructions that are safe due to an equivalent arithmetic instruction

as proposed by Kennedy. The third step entails identifying non-loop instructions and loop

invariant instructions that are safe. Finally, loop variant safety analysis is performed. The

ordering given is followed to identify instructions as safe using the simplest analysis processes

to reduce the analysis overhead. Each of these steps will be discussed in greater detail with

their supporting algorithms.

Identi�cation of trivially safe instructions is the most straight forward process. Figure 5.29

shows the algorithm utilized to determine if these instructions are safe. The function traverses

108

Algorithm Identify Safe PEI: Given a program call-graph, identify all potentially excepting
instructions in the program that are safe for speculation.

Build_Call_Graph for the program

Identify_Side_Effect_Free functions

conservatively build global memory state

Identify_Trivially_Safe instructions

Identify_Equivalence_Safe instructions

Identify_Non_Loop_and_Invariant_Safe instructions

Identify_Variant_Safe_Instructions

Figure 5.28 The Identify Safe PEI algorithm is the main calling routine used to identify
instructions that are safe for speculation with a program.

through each function in the call-graph and through each instruction in each function. If

any instruction falls into the class of potentially excepting instructions, then its operands are

evaluated to determine the safety of the instruction. One observation that can be made is

that any of the instructions that fall into the category of trivially safe are instructions that are

automatically generated by the compiler. Thus, in the case of a load, verifying that a constant

o�set from a base address is legitimate is not required since the only way that it could be illegal

is if the compiler has a bug. However, the presented algorithm discusses the safety analysis in

order to provide a sense of security.

A load can be identi�ed as safe if the base address is an explicit global variable or a stack

address. As long as the o�set is a constant value, it is easy to determine the validity of the load

reference. In the case of the global reference, this is accomplished by querying the structure

maintaining the size information for global variables to determine the size. Thus, if the o�set

is less than the size, the global load is safe. In the case of a stack load, the only requirement is

109

Algorithm Identify Trivially Safe: Given a program call-graph, identify all instructions
that can be determine safe from their explicit operands.

for each function in the program call-graph

{

for each instruction in the function

{

if (instruction is potentially excepting)

{

if (load instruction)

{

if ((explicit global memory reference) &&

(explicit constant offset) &&

(constant offset is valid))

mark instruction as safe

else if ((explicit stack memory reference) &&

(explicit constant offset) &&

(constant offset is valid))

mark instruction as safe

}

else if ((integer divide) && (non-zero divisor))

mark instruction as safe

else if ((integer remainder) && (non-zero divisor))

mark instruction as safe

}

}

}

Figure 5.29 The Identify Trivially Safe algorithm identi�es instructions that can be identi�ed
as safe through explicit operand values.

that the o�set of the load is less than the function stack frame. A divide or a remainder can

be trivially identi�ed as safe if the divisor is non-zero.

Remember that safety analysis is performed prior to the phases of code generation that can

introduce machine speci�c instruction to transfer between integer and
oating point register

�les as well as before register allocation. Thus, these classes of trivially safe instructions are

not seen at this point of the analysis process. These instructions are marked safe when they

are inserted by the code generator and register allocator.

110

Figure 5.30 is used to determine if an equivalent instruction to a potentially excepting

instruction exists that will ensure that the potentially excepting instruction will not introduce

an exception. While the concept of equivalence can be extended to any instruction it has only

been implemented to handle the most common case load instructions. The algorithm iterates

over every function in the call-graph and every instruction within the function. It only looks for

an equivalent instruction within the same function. The requirements for safety are that both

instructions have the same base address and that their o�sets are both constants. Additionally,

to ensure that the operands are the same, there must be no rede�nitions between the �rst

equivalent instruction and the load in question. Finally, for this implementation, it is required

that the equivalent instruction dominates the load in question. This ensures that the base

address is guaranteed to be the same as the load. A less strict assumption could search for

equivalent instructions on all paths that reach the load. Since the base address for the equivalent

instruction and the load are the same, a constant o�set indicates that the loads are referencing

the same structure. To maintain safety, the equivalent instruction will be identi�ed as a sentry

instruction for the equivalent instruction. As discussed in the overview to this chapter, a sentry

instruction is an instruction that ensures that a subsequent potentially excepting instruction

will not introduce an error.

The next step required to identify safe instructions utilizes the use-def analysis discussed

in Sections 5.2.1 and 5.2.2. This class of safety analysis relies on the value contents that will

reach an instruction to ensure its safety. Figure 5.31 presents the algorithm used to determine

the safety of non-loop and loop invariant potentially excepting instructions. This algorithm

is iterated over all functions in the call-graph and all potentially excepting invariant or non-

loop instructions in the function. For each type of potentially excepting instruction, a use-def

111

Algorithm Identify Equivalence Safe: Given a program call-graph, identify all instructions
that can be found safe as a result of equivalent instructions. For simplicity, this function assumes
domination.

for each function in the program call-graph

{

for each pei_instruction in the function

{

if (pei_instruction is potentially excepting)

{

for each instr in the function

{

if ((load instruction) &&

(instr base address is as pei_instruction) &&

(instr offset and pei_instruction offset are constants) &&

(instr dominates pei_instruction) &&

(no redefinitions of base address exists between

instr and pei_instruction))

{

mark pei_instruction as safe

mark instr as sentry for pei_instruction

}

}

}

}

}

Figure 5.30 The Identify Equivalence Safe algorithm identi�es instructions that can be iden-
ti�ed as safe because of equivalent instructions that dominate the potentially excepting instruc-
tion.

112

graph is built to determine the content of unknown source operands. Then evaluation of the

graph is performed to determine all possible values that reach the respective source operands.

Additionally, for each type of potentially excepting instruction, it is critical that all returned

values are known. In other words, no unde�ned values may reach the operands if the instruction

is to be determined to be safe. To verify that a load is safe, the base and o�set of the load must

be computed. To ensure safety for each potential base and o�set reference, the load with this

combination of operands is passed to the Identify Trivially Safe algorithm. If each combination

of base and o�set is safe, then the load is marked as safe. In the case of integer divide and

remainder, the only requirement is to verify that all values for the denominator are non-zero.

The �nal aspect of the safety analysis entails identifying loop variant potentially excepting

instructions that are safe. The current implementation only addresses variant load instructions.

As with the other analysis methods, the algorithm iterates over all functions in the call-graph.

However, it only looks at variant instructions in the loops. The �rst step is to determine the loop

bounds for the loop. The analysis process utilizes the same use-def generation and evaluation

tools discussed so far. The standard impact libraries are used to identify loop branches and

induction variables. This information is then used to determine loop initial values, �nal values

and increments. When this information is identi�ed, it is trivial to identify that the number

of times that a loop will iterate. However, there are cases, such as the inner loop of wc, where

the loop iteration bounds can not be determined. Additional loop analysis supports one special

case that is used to determine the iteration space of the loop. If the exit branch is looking at

the contents of a bu�er or array for an exit value such as a such as a NULL or EOF marker as

occurs when traversing through character bu�ers, it is possible to determine the iteration space

of the loop.

113

Algorithm Identify Non Loop and Invariant Safe: Given a program call-graph, identify
all non-loop and loop invariant instructions that can be classi�ed as safe from use-def graph
traversal.

for each function in the program call-graph

{

for each instruction in the function

{

if ((instruction is potentially excepting) &&

((instruction is not in a loop) ||

(instruction is loop invariant)))

{

if (load instruction)

{

graph = Build_Use_Def_Graph (current_node, instruction,

instruction_operands)

values = Evaluate_Use_Def_Graph (graph, NULL)

if ((each returned value is known) &&

(each returned value ensures a safe load))

mark instruction as safe

}

else if ((integer divide) ||

(integer remainder))

{

graph = Build_Use_Def_Graph (current_node, instruction,

divisor_operand)

values = Evaluate_Use_Def_Graph (graph, NULL)

if ((each returned value is known) &&

(each returned value is non-zero))

mark instruction as safe

}

}

}

}

Figure 5.31 The Identify Non Loop and Invariant Safe algorithm identi�es all non-loop and
invariant instructions that can be determined safe through use-def traversal.

114

Algorithm Identify Variant Safe: Given a program call-graph, identify all variant load
instructions that can be classi�ed as safe from use-def graph traversal.

for each function in the program call-graph

{

for each loop in the function

{

generate loop information use use-def traversal

if ((loop bounds can not be determined) ||

(loop bounds can be different values))

continue

for each instruction in a loop in the function

{

if ((instruction is potentially excepting) &&

(instruction is variant))

{

if (load instruction)

{

Identify_Variant_Safe_Loads (current_node, instruction,

loop_information)

}

}

}

}

}

Figure 5.32 The Identify Variant Safe algorithm identi�es all variant instructions that can
be determined safe through use-def traversal.

As long as the loop worst-case trip count can be determined, the invariant safety analysis will

be performed. The presence of multiple worst-case trip counts will be discussed in Chapter 7.

A complication of the current analysis is the presence of loops whose iteration space is based

upon linked list traversals or whose iteration space is determined by state transitions as present

in parsers. These types of loops do not convey iteration space and as yet have not been studied

to identify safety of variant loads.

Figure 5.36 shows the algorithm used to determine the safety of a load instructions whose

address varies within the loop. First, a use-def graph is built for the potentially excepting load.

115

Function

Stack

Frame

Program Stack

Base Address

Max Reference

Span

Figure 5.33 Memory reference size limitations for stack based loads.

Then the graph is evaluated to determine all values that reach the load. The value information

is used to determine not only the base addresses of the loads but also the variance in the base

address over one iteration of the loop. As long as all base addresses and o�sets that reach

the load are known, then safety analysis can proceed. For each base address and o�set pair, a

memory reference span for the loop is computed 6.

As Figure 5.33 shows, to determine that a stack based invariant load is safe, it is necessary

to determine that the maximum span address is within the bounds of the stack frame. If

this is possible, the load is marked safe. To maintain the safety of variant loads, optimizations

constraints are required. In the case of stack loads, the load can vary through-out the function's

stack frame without introducing an exception. The loop header is marked with the maximum

6In the current implementation, it is assumed that the load o�set is incremented by the maximum o�set value

each iteration. More aggressive evaluation can identify the induction variable for the load to address cases where

load o�set is incremented on a di�erent counter.

116

Program Data Segment

Base Address

Array Size

Max Reference
Span

Figure 5.34 Memory reference size limitations for load from global memory.

number of references that are possible starting at the initial o�set for the load to the end

of the stack frame. This information will be used later to constrain optimizations such as

loop-unrolling to ensure that the load remains safe.

As Figure 5.34 shows, a load from global memory requires the same analysis as a stack

based load, however there are less restrictions for the reference pattern than stack based loads.

The load reference may span through-out the entire global data segment without causing an

exception. Thus, the loads reference pattern can not go beyond the end of the data segment

7. One might questions that this assumption and the comparable assumption used for stack

based loads fall into the category of general speculation. However, it can be countered that the

only way that the load could have caused an exception in the �rst place is if its bu�er were

7For this assumption to be valid, the data segment layout is assumed to be constant. Any type of data layout

optimizations could negate the safety of this condition. Thus, the safety constraint would be to ensure that the

memory reference pattern will stay within the bounds of the array being referenced.

117

Program Heap

Base Address

Max Reference
Span

Buffer End (location in heap ?)

Figure 5.35 Memory reference size limitations for load from dynamically allocated memory.

located at the end of the data segment and the load reference pattern were to span outside

the data segment causing an access violation. Thus, speculating the load will not hide an

error or introduce an error as long as the reference pattern is still within the bounds of the

data segment. As with the stack based load, the loop header is annotated with the maximum

number of references that are possible from the base of the load to the end of the data segment

in order to maintain safety.

Finally, as Figure 5.35 shows, a load from a dynamically allocated bu�er utilizes the same

analysis as the other two classes. However, while there are simplifying assumptions that can

be used to reduce the access limitations for global or stack memory references, this is not

the case for dynamically allocated memory. This is because the dynamically allocated bu�ers

118

may be located anywhere in the heap and there is no way to determine statically where the

bu�er will be located within the heap. Thus, it is necessary that all memory references for

dynamically allocated bu�ers fall within the bounds of the bu�er. Additionally, the maximum

reference pattern for the bu�er load is limited to the size of the dynamically allocated bu�er.

This information is also marked in the loop header. Unlike the stack and global accesses, these

references patterns limit optimizations such as unrolling to an factor of the bu�er size. This

problem is discussed in greater detail in Section 5.1.4.

Once all possible load references have been determined to be safe, the load will be marked

as safe. In some cases, branch conditions exist that prevented invalid values from reaching the

load. These branch conditions must be marked as sentry instructions to prevent the load from

speculating above the branch. Finally, all of the maximum access patterns and the exact access

patterns are evaluated to place constraints on the optimization phase to ensure that the load

instructions will stay safe.

5.3 Experimental Evaluation

This section will quantify the bene�ts of the safety analysis used to identify potentially

excepting instructions that are safe. The safety analysis techniques were implemented and then

applied using intra-procedural and inter-procedural analysis to determine the merits of the

analysis. These results were compared with no speculation, restricted speculation and general

speculation to show the bene�ts and limitations. The results will be analyzed, de�ciencies

will be discussed and potential improvements will be proposed. Before presenting the results,

however, the next section will show the the results from call-graph generation using the infra-

structure presented in this chapter.

119

Algorithm Identify Variant Safe Loads: Given a variant load instruction, and loop infor-
mation, determine the conditions under which the load will be safe for speculation.

graph = Build_Use_Def_Graph (current_node, instruction, instruction_operands)

values = Evaluate_Use_Def_Graph (graph, NULL)

if (all base addresses and offsets are known)

{

for each base address and offset pair

{

compute span of offsets that can be referenced in loop.

if (base address is stack)

{

if (all of these offsets are within the function stack frame)

{

annotate loop header with MAXIMUM number of elements that can

to remain within the functions stack frame.

}

else

instruction is unsafe, return

}

else if (base address is to global memory)

{

if (all of these offsets are within the bounds of the data segment)

{

annotate loop header with MAXIMUM number of elements that can

to remain within data segment.

}

else

instruction is unsafe, return

}

else if (base address is to dynamically allocated memory)

{

if (all of these offsets will be within the bounds of the

dynamically allocated buffer)

annotate loop header with EXACT number of elements that can be

accessed

else

instruction is unsafe, return

}

}

mark instruction as safe

if (any branch conditions are preventing errors)

mark branch condition as sentry for load

use all EXACT and MAXIMUM access patterns to constrain optimization to

maintain safety.

}

Figure 5.36 The Identify Variant Safe Load algorithm identi�es all variant load instructions
that can be determined safe through use-def traversal.

120

resolved trivially

resolved intra-proceduraly

resolved inter-procedurally

unresolved

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Figure 5.37 Experimental results from call-graph generation.

5.3.1 Experimental Results from Call-Graph Generation

The purpose of this set of experiments was to determine the di�culties in generating call-

graphs. Figure 5.37 show the results of the experiments for the benchmarks shown in Table 3.1.

The graph provides four results per benchmark. These results indicate the percentage of un-

resolved targets for subroutine calls based upon trivial operand inspection, intra-procedural

analysis and inter-procedural analysis. The �nal piece of information indicates the percent-

age of subroutine calls that could not be resolved. These results are based upon the dynamic

execution frequency of each subroutine call to provide the importance of the unresolved arcs.

The �rst observation is that with the exception of cccp, all of the non-SPEC benchmarks

could be completely resolved through operand inspection. In the case of cccp, there were two

121

unresolved subroutine calls in two separate functions which accounted for 5.14 percent of the

dynamic subroutine calls in the benchmark. The targets of these subroutine calls were resolved

intra-procedurally through a statically de�ned global array. To ensure accuracy, all function

addresses from the array were added as arcs in the call-graph.

In contrast, only 026.compress in the SPEC integer benchmarks could be resolved completely

by means of operand inspection. All of the remaining benchmarks required varying degrees of

inter-procedural analysis to resolve the unknown subroutine calls. The benchmark 023.eqntott

stands out from the rest of the benchmarks since 87 percent of the dynamic subroutine calls

could not be resolved without inter-procedural analysis. The majority of this resulted from 11

of the 359 static subroutine call instructions in the program. The importance of this is that

optimizations such as inlining would be limited in their potential bene�ts for this benchmark if

detailed analysis were not performed to generate the call-graph. The front-end of the IMPACT

compiler that performs inlining only uses operand inspection to build C call-graphs.

The only benchmark that the analysis was not able to fully resolve was 022.li. Approximately

3 percent of the dynamic subroutine calls could not be resolved. The dynamic percentages were

contributed by 4 static subroutine calls out of the 1258 in the program. After analyzing the

program, it was determined that the limiting factor was information provided by the input �le.

The subroutine called is dependent upon the expression read from the input �le. Since the

analysis process is value dependent, it was impossible to determine the subroutine for these

callsites since there was no input �le.

122

5.3.2 Experimental Results of Safe Speculation

The experimental results presented in Figure 5.38 present the relative speedup results of

each of the speculation models simulated using an 8-issue superscalar processor over the same

benchmark with no speculation using a single issue superscalar processor. The processor model

used in this study is an in-order issue superscalar processor with register interlocking and 64

integer registers. The processor has uniform functional units, one branch delay slot and the

instruction of the HP PA-RISC processor. The instruction latencies assumed are those of the

HP PA-RISC 7100 presented in Table 3.2. The program executions were produced assuming

perfect instruction and data caches. The performance results considering cache e�ects are

presented in Chapter 6. In order to make the graph more readable, the speedup results for cmp

using safe speculation with inter-procedural analysis and general speculation were clipped at 8.

The actual speedup results for both benchmarks was 10.49 times faster than the single-issue no

speculation performance results.

A summary of the results are presented in Table 5.3. Overall, restricted speculation with

the addition of trivial safety analysis was 13 percent faster than no speculation at 8-issue.

Safe speculation with intra-procedural analysis was able to attain a 20 percent speedup over

restricted speculation. Safe speculation with inter-procedural analysis was able to attain a 55

percent speedup over restricted speculation and a 30 percent speedup over safe speculation with

intra-procedural analysis. General speculation was 19 percent faster than safe speculation with

inter-procedural analysis.

The results can be broken down further by separating the SPEC integer benchmarks from the

UNIX benchmarks. In general the potential performance results for the SPEC benchmarks were

lower than the UNIX benchmarks. Safe speculation with intra-procedural analysis was only 12

123

No Speculation

Restricted Speculation

Safe Speculation (intra)

Safe Speculation (inter)

General Speculation

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le

x

qs
or

t

tb
l

w
c

ya
cc

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Figure 5.38 Experimental results comparing safe speculation with existing speculation mod-
els.

Speculation Average of Average of Overall
Model SPEC Int Non SPEC Average

None 2.02 2.34 2.23
Restricted 2.20 2.69 2.51
Safe (intra) 2.46 3.32 3.01
Safe (inter) 2.63 4.60 3.90
General 3.24 5.58 4.64

Table 5.3 Summary of speedup results for safe speculation and existing speculation models.

124

percent faster the restricted speculation and safe speculation with inter-procedural analysis was

only 7 percent faster than with intra-procedural analysis. Most of the performance bene�ts were

contributed by 026.compress. In contrast, there were more signi�cant performance advantages

with the UNIX benchmarks which showed a 23 percent speedup for safe speculation with

intra-procedural analysis over restricted speculation while safe speculation with inter-procedural

analysis demonstrated an average speedup of 39 percent over intra-procedural analysis.

The benchmarks wc, cmp, grep and 026.compress show common traits that demonstrate

the advantages of the safety analysis proposed in this research. By exposing the operand values

that could be identi�ed statically, it was possible to identify the loop constraints for critical

loops. The general performance advantages of inter-procedural analysis versus intra-procedural

analysis demonstrate that there is a signi�cant amount of information not visible within the

scope of the function that provides critical information to determine the safety of potentially

excepting instructions.

One common trait of wc, cmp and grep was that it was not possible to completely overlap

the loop iterations of their critical loops after unrolling. This was because one or more loads

within the loops were reached by an unsafe value that was produced outside the loop. In each

case, there was a branch condition at the top of the loop to rectify the unsafe condition 8. An

optimization was performed to copy the branch condition and the correction code to the loop

preheader to ensure that the bu�er was always de�ned upon entering the loop. This permitted

complete overlap of critical loops in wc and cmp that resulted in 76 percent speedup in cmp

and 26 percent speedup of wc using inter-procedural analysis.

8One example was the �le pointer bu�er is NULL after a call to fopen. It will be initialized to a known state

by a call to getc.

125

A second signi�cant contribution in performance was permitted by taking advantage of re-

laxed memory reference constraints available when referencing global memory. By assuming

that cache optimizations could be performed and thus constraining the bu�er reference limita-

tions to those of a dynamically allocated bu�er, the performance 026.compress was reduced by

30 percent. Investigation showed that the stricter safety constraints limited the most critical

loop in compress to an unroll factor that is a power of 2. The best unroll for the loop was a

power of 3 which caused the performance loss. By removing this constraint, the loop was able

to be unrolled by the desirable amount.

While it is desirable to present good performance results, it is also bene�cial to understand

the limitations of an approach. The SPEC benchmark 023.eqntott provides examples of the

limitations of the current value-based solution to safety analysis. Figure 5.39 contains the source

code for cmppt, the most frequently executed function in 023.eqntott.

The �rst observation from cmppt is that the loop iteration frequency is constrained by the

variable ninputs. Unfortunately, the only value that reached this loop counter was unde�ned.

As a result, it was not possible to perform any safety analysis for variant loads. Through further

investigation, it was possible to determine that the variable could range anywhere from 1 to

127. Unfortunately, the range was dependent upon the contents of the input �le which were

unavailable. Given that the maximum trip count could vary over di�erent invocations of the

function, it would be unsafe to assume any �xed loop iteration count.

It is possible to overcome the lack of information about the iteration span of a loop by

producing multi-version loops. Safety analysis could mark loop headers that require multi-

version loops which would permit more aggressive safe scheduling. This solution not only

addresses loops where it is not possible to determine the iteration span but also loops where

126

int cmppt (a, b)

PTERM *a[], *b[];

{

register int i, aa, bb;

for (i = 0; i < ninputs; i++) {

aa = a[0]->ptand[i];

bb = b[0]->ptand[i];

if (aa == 2)

aa = 0;

if (bb == 2)

bb = 0;

if (aa != bb) {

if (aa < bb) {

return (-1);

}

else {

return (1);

}

}

}

return (0);

}

Figure 5.39 C source code for the function cmppt.

127

multiple worst-case trip counts occur. In many of these cases, the loop iteration frequencies

were controlled by the size of arrays or bu�ers, but the varying sizes caused the safety analysis

to be conservative and constrain unrolling to a common factor of all bu�er sizes. If these bu�er

sizes had no common factors such as in bu�ers of size 256 and 125, then no unrolling is possible.

In cases where these multiple sizes are constant, the information could be conveyed to the loop

optimizer to generate loops optimized for each of the size constraints. Test code could then be

inserted to ensure that the correct optimized loop is used.

The variables a and b are entries in the array pts. However, that is as much information that

could be determined through the analysis, because any other information about the contents

of these entries are dependent upon the input �le and therefore each entry is unde�ned. In

general, it is di�cult to determine safety of variant loads if their de�nition state is based upon

input �les.

The �nal limitation observed resulted from loops that are di�cult or impossible to determine

worst-case trip count. The current loop analysis assumes that a single constant loop frequency

can be determined to apply safety analysis to variant loads. However, parse loops such as

found in the function yyparse, do not exhibit this type of behavior. More detailed analysis

is required to determine that variant loads within these type loops are safe. Conceptually, it

should be possible to determine the safety of many of these loads since state machines tend

to be implemented in a table driven manner. The second complication to determining loop

bounds are due to linked-list traversals. In these cases, it is not possible to determine constant

loop bounds.

128

CHAPTER 6

A STUDY OF THE EFFECTS OF

COMPILER-CONTROLLED SPECULATION ON

INSTRUCTION AND DATA CACHES

6.1 Expected Cache E�ects

This section will provide a qualitative analysis of the expected instruction and data cache

e�ects resulting from compiler-controlled speculation. To accomplish this goal, scheduled code

examples from two benchmarks are presented. These code examples were chosen because they

show extreme cache e�ects due to speculation. The instruction opcodes and their descriptions

for the examples are given in Table 6.1. The examples were scheduled with the no speculation

and general speculation models using an eight-issue superscalar processor that has uniform

functional units and instruction latencies of the HP-PA 7100 (see Table 3.2). The Icache and

Dcache block sizes were 64 bytes each.

Icache E�ects

Opcode Description Opcode Description

add 32-bit integer add ld uc load unsigned 8-bit value

beq conditional branch on equal ld uc2 load unsigned 16-bit value

bgt conditional branch on greather than lsl 32-bit logical shift left

bne conditional branch on not equal mov move 32-bit value

jump unconditional branch st c store 8-bit value

ld c2 load signed 16-bit value sub 32-bit integer subtract

ld i load signed 32-bit value xor 32-bit exclusive or

Table 6.1 Instruction opcodes and descriptions.

129

Cycle Instruction - (instruction id, opcode)

1 45, ld uc 48, mov 49, add 50, add

2

3 46, st c 47, lsl 51, bgt 52, mov

4 53, bgt 54, add 57, mov

5 55, add 58, add

6 56, ld i

7

8 59, beq 60, mov

9 61, add

10 62, bne 66, ld uc 63, lsl

11 64, add

12 68, lsl 67, st c 65, mov 69, bgt 70, mov

13 71, bgt 72, add 75, mov

14 73, add 76, add

15 74, ld i

16

17 77, beq 78, mov

18 79, add

19 80, bne 81, lsl 83, add 84, add 85, add

20 82, add 86, jump

Figure 6.1 The most important loop in cccp scheduled using no speculation model.

Cycle Instruction - (instruction id, opcode[* = speculative])

1 45, ld uc 54, add* 57, mov* 60, mov* 52, mov* 72, add* 48, mov 49, add

2 55, add* 58, add* 61, add* 50, add 73, add* 63, lsl* 75, mov* 70, mov*

3 47, lsl 46, st c 66, ld uc* 51, bgt 53, bgt 64, add* 76, add* 78, mov*

4 56, ld i 79, add* 81, lsl*

5 68, lsl*

6 59, beq 62, bne 67, st c 74, ld i* 65, mov 69, bgt 71, bgt

7

8 77, beq 80, bne 82, add 83, add 84, add 85, add 86, jump

Figure 6.2 The most important loop in cccp scheduled using general speculation model.

130

Speculating instructions above branches moves them from less frequently executed paths

to more frequently executed paths. As such, the instruction working set is increased which

should result in more Icache requests and subsequently more Icache misses. The �rst example

benchmark, cccp, is used to show the expected Icache e�ects. To accomplish this, the most

frequently executed loop within cccp (found in the rescan function) was used. Based upon

pro�le information, the IMPACT superscalar optimizer decided to unroll this loop three times.

Tables 6.1 and 6.2 respectively show the scheduled code for the no speculation and general

speculation models. As these tables show, none of the branches from Table 6.1 have been

delayed in Table 6.2. In addition, the schedule was reduced from 20 cycles for the no speculation

model to 8 cycles for the general speculation model. It should also be noted that scheduling

with the no speculation model provide insu�cient freedom to schedule more than 5 instructions

in any cycle for the 8-issue processor.

While none of the branches in the general speculation schedule were issued later than in

the no speculation schedule, the location of the branches within the Icache blocks did change

as shown by Tables 6.3 and 6.4. The most notable di�erence is that branch instruction 59 is

located in block 2 of the no speculation Icache layout while it is located in block 3 of the general

speculation Icache layout. As a result, there is one additional Icache block before the branch. If

branch 59 is infrequently taken, this may not increase Icache misses since both no speculation

and general speculation loops are contained within only 4 Icache blocks. However, as Table 6.2

shows this branch is taken 6192 times. This means that there is an additional Icache block in

the working set of the taken path of branch 59 in the general speculation schedule than in the

no speculation schedule. The increased working set of this taken branch increases the chance

131

cccp loop compress loop

Branch Times Branch Times

Instruction ID Taken Instruction ID Taken

51 0 159 46234

53 20 164 11

59 6192 166 0

62 1753 179 39594

69 0 184 8

71 5 186 0

77 2272 199 25981

80 130 204 1

86 9182 210 26824

214 0

Total 19554 Total 138653

Table 6.2 Branch taken frequencies. (Total corresponds to the total entrance frequency of
the loop.)

Icache Instruction - (instruction id, opcode)

Block

1

45, ld c

2 48, mov 49, add 50, add 46, st c 47, lsl 51, bgt 52, mov 53, bgt

54, add 57, mov 55, add 58, add 56, ld i 59, beq 60, mov 61, add

3 62, bne 66, ld c 63, lsl 64, add 68, lsl 67, st c 65, mov 69, bgt

70, mov 71, bgt 72, add 75, mov 73, add 76, add 74, ld i 77, beq

4 78, mov 79, add 80, bne 81, lsl 83, add 84, add 85, add 82, add

86, jump

Figure 6.3 Icache layout for cccp loop after no speculation model (16 instruction block).

of mapping con
icts with other important Icache blocks. As such, the advantages of the more

aggressive schedule have resulted in greater risk of Icache misses.

Dcache E�ects

Speculating load instructions above branches moves them from less frequently executed

paths to more frequently executed paths. This will not only have e�ects on the Icache, but will

also increase the frequency that the load requests are made. As such, the data working set is

increased which should result in more Dcache requests and subsequently more Dcache misses.

The second benchmark, compress, is used to show the expected Dcache e�ects. To accomplish

132

Icache Instruction - (instruction id, opcode[* = speculative])

Block

1 45, ld uc

54, add* 57, mov* 60, mov* 52, mov* 72, add* 48, mov 49, add 55, add*

2 58, add* 61, add* 50, add 73, add* 63, lsl* 75, mov* 70, mov* 47, lsl

46, st c 66, ld uc* 51, bgt 53, bgt 64, add* 76, add* 78, mov* 56, ld i

3 79, add* 81, lsl* 68, lsl* 59, beq 62, bne 67, st c 74, ld i* 65, mov

69, bgt 71, bgt 77, beq 80, bne 82, add 83, add 84, add 85, add

4 86, jump

Figure 6.4 Icache layout for cccp loop after general speculation model (16 instruction block).

this, the most frequently executed loop within compress (found in the compress function) was

used. Based upon pro�le information, the IMPACT superscalar optimizer decided to unroll

this loop three times. Tables 6.5 and 6.6 respectively show the scheduled code for the no

speculation and general speculation models. As the tables show, the no speculation model used

37 cycles while the general speculation model required only 18 cycles. It should also be noted

that scheduling with the no speculation model provide insu�cient freedom to schedule more

than 6 instructions in any cycle for the 8-issue processor.

Table 6.3 shows the increased execution frequency of the six speculated loads from the

general speculation schedule of this loop. By speculating a load above a particular branch,

the memory reference patterns of the control
ow paths reached from that branch have been

altered. Depending upon the cache con�guration, this could introduce more Dcache con
icts.

For example, by speculating load instruction 163 above branch 159 in Table 6.6, the memory

reference pattern of the paths reached by the taken path of this branch have been altered. Based

upon the increased execution frequency of load number 163, and the resultant change in memory

reference patterns, Dcache miss rates caused by this load could increase. Due to speculation

of other loads and the change in their memory reference patterns, the total increase in Dcache

misses for instruction 163 could be greater than the increase in its execution frequency.

133

Cycle Instruction - (instruction id, opcode)

1 147, sub 151, sub 156, add

2 148, mov 157, add

3 149, lsl 152, mov

4 153, lsl 150, add

5 154, xor

6 155, lsl

7 158, ld i

8

9 159, bne 161, add 160, lsl

10 162, add

11 163, ld uc2 164, bgt 165, ld c2

12

13 166, beq 167, sub 171, sub 176, add

14 168, mov 177, add

15 169, lsl 172, mov

16 173, lsl 170, add

17 174, xor

18 175, lsl

19 178, ld i

20

21 179, bne 181, add 180, lsl

22 182, add

23 183, ld c2 184, bgt 185, ld c2

24

25 186, beq 187, sub 191, sub 196, add

26 188, mov 197, add

27 189, lsl 192, mov

28 193, lsl 190, add

29 194, xor

30 195, lsl

31 198, ld i

32

33 199, bne 201, add 200, lsl

34 202, add

35 203, ld c2 204, bgt 205, ld uc 209, add 208, add 207, add

36

37 206, mov 210, bne 211, mov 212, add 213, mov 214, jump

Figure 6.5 The most important loop in compress scheduled using no speculation model.

134

Cycle Instruction - (instruction id opcode[* = speculative])

1 147 sub 151 sub 161 add* 181 add* 165 ld uc* 167 sub* 171 sub* 156 add

2 148 mov 162 add* 182 add* 157 add 196 add* 176 add* 185 ld uc* 187 sub*

3 149 lsl 152 mov 197 add* 177 add* 201 add* 191 sub* 205 ld uc*

4 153 lsl 168 mov* 150 add 202 add*

5 154 xor 169 lsl* 172 mov*

6 160 lsl* 155 lsl 173 lsl* 188 mov*

7 163 ld uc2* 158 ld i 189 lsl* 192 mov*

8 193 lsl*

9 174 xor* 159 bne 170 add* 164 bgt 166 beq 206 mov*

10 175 lsl 180 lsl*

11 183 ld uc2* 178 ld i

12

13 194 xor* 179 bne 190 add* 184 bgt 186 beq

14 195 lsl 200 lsl*

15 198 ld i 203 ld uc2*

16

17 199 bne 204 bgt 207 add 209 add 208 add 210 bne

18 211 mov 212 add 213 mov 214 jump

Figure 6.6 The most important loop in compress scheduled using general speculation model.

Branches Change in

Load Speculated Execution

Instruction ID Above Frequency

163 159 46234

165 159, 164 46245

183 179 39594

185 159, 164, 166, 85847

179, 184

203 199 25981

205 159, 164, 166, 111829

179, 184, 186,

199, 204

Table 6.3 Increase in execution frequency of speculated loads in the compress loop after
scheduling with the general speculation model.

135

6.2 Experimental Evaluation

This section will quantify the e�ects that increasing levels of scheduling freedom can have

on instruction and data caches. The speculation models used in the experiments from least

aggressive to most aggressive are no speculation, restricted speculation, safe speculation and

general speculation. Section 6.2.1 discusses the experimental approach used to generate the

cache e�ects. Section 6.2.2 discusses the experimental results.

6.2.1 Methodology

Compiler support for each of the speculation models has been implemented in the IMPACT-

I C compiler. The IMPACT-I compiler is a prototype optimizing compiler designed to generate

e�cient code for VLIW and superscalar processors [7]. The benchmarks used in this study are

the 14 non-numeric programs shown in Table 3.1. The benchmarks consist of 5 non-numeric

programs from the SPECint92 suite and 9 other commonly used non-numeric programs. Each

of the benchmarks were aggressively optimized with superblock techniques [4] and scheduled

using the four speculation models varying the processor issue width from 1 to 8 instructions

per cycle.

The processor model used in this study is an in-order issue superscalar processor with register

interlocking. The processor is assumed to have uniform functional units, 1 branch delay slot,

and the instruction set of the HP PA-RISC processor. The instruction latencies assumed are

those of the HP PA-RISC 7100 (see Table 3.2). For each machine con�guration, the program

execution times are derived from execution driven simulations of the benchmarks in Table 3.1.

During the simulations, the issue widths were varied from 1 to 8 based upon the processor model

that the code was scheduled for. Dynamic branch prediction was assumed using a 1024 entry

136

Cache Sizes: 4K - 256K, perfect

Cache Associativity: direct-mapped, two-set associative

Cache Block Size: 64 bytes with 12 cycle miss latency

Dcache Type: blocking cache

Dcache Write Policy: write-through, no write-allocate

Table 6.4 Cache con�gurations used in experiments.

direct mapped BTB with a 2 bit counter and a 2 cycle misprediction penalty. A perfect Dcache

was used when measuring the Icache e�ects and a perfect Icache was used when measuring the

Dcache e�ects. The cache con�gurations used for the experiments are given in Table 6.4.

6.2.2 Results

The shear volumes of data produced from the simulations made it impossible to present the

individual benchmark results in this paper. In an e�ort to be more concise, the results presented

in the subsequent �gures are generated by computing the arithmetic mean of speedups for each

speculation model, cache size and issue rate. Speedup was computed by dividing the execution

time of the respective benchmark using the no speculation model at issue 1 with a 4K direct

mapped Icache and Dcache by the execution time of the same benchmark using the speci�ed

speculation model at the speci�ed cache size and issue rate.

6.2.2.1 Icache Performance Results

Figure 6.7 shows the performance results for direct mapped caches for the extreme spec-

ulation models - no speculation and general speculation. The �rst thing to observe from this

�gure is that the curves for the no speculation model show very little change regardless of the

issue rate. In particular, there was an increase of only .35 IPC (16.9%) at issue 8 from a 4K

137

Icache Results (1-way set assoc with 64 byte blocks and perfect Dcache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 6.7 Icache e�ects for no speculation and general speculation models.

to a 64K Icache. In contrast, the curves for the general speculation model showed a noticeable

increase from the lower issue rates to the higher issue rates. In particular, their is an increase of

.36 IPC (20.9%) at issue 2, .77 IPC (29.3%) at issue 4, and 1.05 IPC (31.5%) at issue 8. Thus,

the bene�ts from larger cache sizes are more pronounced as the issue rate increases. Finally,

the performance for all speculation models stabilized with a 64K Icache.

Figure 6.8 shows the performance results for 2-way set associative caches for no speculation

and general speculation models. By comparing this �gure to Figure 6.7, it is clear that there

is little advantage in higher associativities with Icaches larger than 8K regardless of the issue

rate or speculation model. Even at the lowest cache sizes, general speculation was only able

to show a 6 percent speedup at 8-issue using 2-way set associative Icaches over direct mapped

Icaches.

138

Icache Results (2-way set assoc with 64 byte blocks and perfect Dcache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 6.8 Icache e�ects for no speculation and general speculation models.

Figure 6.9 shows the comparative Icache results for all of the scheduling models at issue-1

and issue-8. As the �gure shows, there is no signi�cant performance advantage in using any of

the aggressive speculation models for a single issue processor. Since only one instruction can

be issued per cycle, the only potential slots that can be �lled in the schedules of the integer

benchmarks are branch and load delay slots. Therefore, there is very little opportunity to

improve the performance of the benchmarks through more aggressive speculation. As a result

of little speculation, only minor Icache e�ects are observed.

In contrast to the single issue performance, there is a clear advantage in using more aggres-

sive speculation models at 8-issue. The no speculation model shows a 13.1 percent improvement

between 4K and 64K Icaches. The restricted speculation model shows an 18.0 percent improve-

ment, the safe speculation model shows 21.4 percent improvement and the general speculation

model shows a 24.5 percent improvement over the same cache con�gurations. Thus, while the

139

Comparative Icache Results (2-way set assoc with 64 byte blocks and perfect Dcache)

Issue 1 No Spec

Issue 8 No Spec

Issue 1 Res

Issue 8 Res

Issue 1 Safe

Issue 8 Safe

Issue 1 Gen

Issue 8 Gen4k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 6.9 Icache e�ects for all speculation models at issue 1 and issue 8.

cache size was only a minor impediment to performance with lower issue rates, it is clearly

a larger impediment to performance with higher issue rates for more aggressive speculation

models. However, this set of benchmarks were not able to bene�t from Icaches larger than 64K.

One additional point should be noted from the 8-issue results shown in Figures 6.9. The

most aggressive speculation model's performance ranged from only 8.9 to 11.8 percent higher

than safe speculation. Thus, safe speculation has great potential since it requires no special

processor support that could potentially lead to slower clock rates. Also, it introduces none of

the risks that result from ignoring scheduling errors like general speculation.

6.2.2.2 Analysis of Icache Results

To more fully understand the performance results, the Icache behavior is broken down in

Tables 6.5 and 6.6. Table 6.5 contains the absolute number of read requests and read misses

as well as the miss rate for each of the benchmarks in the base case. The numbers from

140

Read Read Miss

Benchmark Requests Misses Rate

008.espresso 412641852 1501759 0.36

022.li 35649513 943031 2.64

023.eqntott 1027576863 761471 0.07

026.compress 78221684 1716563 2.19

072.sc 72122569 1132815 1.57

cccp 3094004 37823 1.22

cmp 2198695 35 0.01

eqn 32813682 1508122 4.60

grep 1580207 2078 0.13

lex 46035584 208868 0.45

qsort 70546739 4041 0.01

tbl 2603306 45092 1.73

wc 1630199 35 0.01

yacc 43309632 350120 0.83

Average 130716038 586561 1.13

Table 6.5 Icache access and miss rates at issue 1 (direct mapped cache).

Table 6.6 represent the read requests and read misses as a percentage of the totals presented

in the �nal row of Table 6.5. As Table 6.6 shows, the more aggressive speculation models

tend to reduce the number of Icache read requests. This can be justi�ed by understanding

how the simulator's fetch model works. The fetch model �lls bu�ers equivalent to twice the

issue rate of the processor in an e�ort to provide the processor with the issue-width number of

instructions at each cycle. Thus, each cycle, the fetch unit fetches a block of instructions to �ll

the fetch bu�er. Any instructions that cannot be placed into the fetch bu�er will be discarded

and potentially fetched again the next cycle. Since the more aggressive speculation models

have more independent instructions each cycle to choose from, the compiler is better able to

group independent instructions together and reduce interlock. As such, more instructions can

be issued each cycle, which reduces the need to re-fetch the same cache block repeatedly.

As Table 6.6 shows, even though the number of read requests decreased, the absolute miss

rates increased for both 4K and 64K from the least aggressive speculation models to the most

aggressive speculation models. In particular, there was a 1 percent increase in the miss rate

141

4K Caches 64K Caches

Read Read Read Read

Req Misses Req Misses

No Speculation 0.426 0.779 0.456 0.172

Restricted Percolation 0.379 0.848 0.401 0.176

Safe Percolation 0.286 0.841 0.300 0.173

General Percolation 0.255 1.068 0.265 0.176

Table 6.6 Average icache access and miss rates at issue 8 (2-way set associative cache).

from no speculation to general speculation. There was practically no change in the Icache miss

rates with 64K Icaches since the Icache was su�ciently large to hold the working set for all

speculation models. While the miss rates for general speculation at 8-issue with a 64K cache is

only 1.5 percent lower then the miss rate with a 4K cache, the performance was 24.5 percent

higher. Thus, even a small increase in the miss rate can signi�cantly impact the performance

for the more aggressive speculation models. The impact on performance would be even more

pronounced if the cache miss latency was greater than the simulated 12 cycles.

The cccp loop example shown in Tables 6.3 and 6.4 can be used to illustrate the reasons for

the increase in the miss rate with the 4K Icache. Table 6.7 shows the Icache misses caused by

the �rst instructions in each Icache blocks. The misses caused by the instruction at the start of

the loop are represented with Icache block 1. There was only a negligible di�erence in the miss

rates for the two speculation models in this block. Icache blocks 2 and 4 decreased their cache

misses from the no speculation model to the general speculation model. Icache block 3 showed

a signi�cant increase in Icaches misses. Most of these misses can be attributed to migration of

the misses from Icache blocks 2 and 4 to Icache block 3 due to the small 4K Icache. However,

even after considering the migration of misses, there was an overall increase in misses for the

loop by 16.34 percent which is attributable to the additional Icache block before the frequently

taken branch number 59 in the Icache layout for the general speculation model.

142

General General

Icache No Speculation Percolation Percolation - Percent

Block Misses Misses No Speculation Change

1 2003 1980 -23 -0.01

2 3408 2486 -922 -27.05

3 2323 6952 4629 199.27

4 3227 1334 -1893 -58.66

Total 10961 12752 1791 16.34

Table 6.7 Icache misses for the no speculation and general speculation models of the cccp
loop example at Issue 8 (2-way set associative, 4K Icache).

6.2.2.3 Dcache Performance Results

Figure 6.10 shows the performance results for direct mapped Dcaches for the extreme specu-

lation models. The �rst thing to observe from this �gure is that the curves for the no speculation

model show a much smaller increase in performance than general speculation at the same issue

rates. In particular, there was an increase of only .51 IPC (27.5%) at issue 8 from a 4K to a

64K Dcache while the general speculation model showed an increase of 1.32 IPC (45.4 %). In

contrast to the Icache results, the performance for general speculation model still demonstrates

a noticeable improvement with Dcache sizes larger than 64K.

Figure 6.11 shows the performance results for 2-way set associative Dcaches for no specu-

lation and general speculation models. By comparing this �gure to Figure 6.10, it is clear that

higher associativity signi�cantly bene�ts the smaller Dcaches. In particular, general specula-

tion showed a 19 percent improvement in performance at 8-issue for a 2-way set associative 4K

Dcache over a direct mapped 4K Dcache. The no speculation model showed a 14 percent im-

provement in performance at the same cache con�gurations. Both speculation models showed

some performance improvement with higher associativity when using Dcaches as large as 128K.

Thus, higher associativity can be better used to o�set the limitations of smaller Dcaches than

the smaller Icaches.

143

Dcache Results (1-way set assoc with 64 byte blocks and perfect Icache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 6.10 Dcache e�ects for no speculation and general speculation models.

Dcache Results (2-way set assoc with 64 byte blocks and perfect Icache)

No Spec Issue 1

Gen Issue 1

No Spec Issue 2

Gen Issue 2

No Spec Issue 4

Gen Issue 4

No Spec Issue 8

Gen Issue 84k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 6.11 Dcache e�ects for no speculation and general speculation models.

144

Figure 6.12 shows the comparative Dcache results for all of the scheduling models at issue 1

and issue 8. As the �gure shows, there is no signi�cant performance advantage in using any of

the aggressive speculation models for a single issue processor. However, at issue 8, there is a clear

advantage in using the more aggressive speculation models. An increase in the Dcache size from

4K to 64K using the no speculation model resulted in a performance improvement of 13.8 percent

while the restricted speculation model showed an increase of 16.3 percent. Safe speculation

increased performance by 20.6 percent and general speculation increased performance by 24.6

percent over the same region. While there was no performance advantage from increasing the

Icache beyond 64K, this was not the case with the Dcache. The no speculation model improved

its performance to 21.5 percent higher than 4K with perfect Dcaches. Restricted speculation

improved to 26.2 percent higher than 4K. Safe speculation improved to 30.1 percent higher and

general speculation improved to 35.9 percent higher. Thus, small Dcaches have been shown to

be a signi�cant impediment to the potential performance of more aggressive speculation models

at higher issue rates.

6.2.2.4 Analysis of Dcache Results

To more fully understand the performance results, the Dcache behavior is broken down

in Tables 6.8 and 6.9. Table 6.8 contains the absolute number of read requests and read

misses as well as the miss rate for each of the benchmarks in the base case. The numbers from

Table 6.9 represent the read requests and read misses as a percentage of the totals presented

in the �nal row of Table 6.8. Table 6.9 shows that the Dcache accesses increase with the more

aggressive speculation models. This is caused by an increase in the working set size resulting

from speculation of additional load instructions.

145

Comparative Dcache Results (2-way set assoc with 64 byte blocks and perfect Icache)

Issue 1 No Spec

Issue 8 No Spec

Issue 1 Res

Issue 8 Res

Issue 1 Safe

Issue 8 Safe

Issue 1 Gen

Issue 8 Gen4k 8k 16k 32k 64k 128k 256k Perfect

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Figure 6.12 Dcache e�ects for all speculation models at issue 1 and issue 8.

Read Read Miss

Benchmark Requests Misses Rate

008.espresso 81609167 8517176 10.44

022.li 8059907 732281 9.09

023.eqntott 193278137 14396275 7.45

026.compress 9626725 3520353 36.57

072.sc 14788900 2094508 14.16

cccp 422760 21996 5.20

cmp 436248 163749 37.54

eqn 4343317 769148 17.48

grep 239327 2885 1.21

lex 7862729 314967 4.01

qsort 12206746 734301 6.02

tbl 548733 33554 6.11

wc 141527 2635 1.86

yacc 7488032 677821 9.05

Average 24382304 2284404 11.87

Table 6.8 Dcache access and miss rates at issue 1 (direct mapped cache).

146

4K Caches 64K Caches

Read Read Read Read

Req Misses Req Misses

No Speculation 1.008 0.694 1.009 0.171

Restricted Percolation 1.017 0.712 1.019 0.181

Safe Percolation 1.143 0.725 1.145 0.173

General Percolation 1.313 0.776 1.315 0.193

Table 6.9 Average dcache accesses and miss rates at issue 8 (2-way set associative cache).

The decrease in the miss rate from the less aggressive to the more aggressive speculation

models is miss-leading since the read requests have signi�cantly increased. The Dcache misses

actually increase from the less aggressive to the more aggressive speculation models. In partic-

ular, there was an 11.8 percent increase in the Dcache misses from the no speculation model

to the general speculation model with a 4K Dcache and a 12.9 percent increase with a 64K

Dcache. The 4.16 percent lower miss rate for general speculation with a 64K Dcache versus a

4K Dcache corresponds to a performance increase of 24.6 percent. Thus, the Dcache size can

signi�cantly a�ect the potential performance of aggressive speculation models.

The compress loop example shown in Tables 6.5 and 6.6 can be used to illustrate the reasons

for the increases in Dcache misses. Table 6.10 shows the Dcache misses generated by the load

instructions in the no speculation and general speculation codes based upon a 4K Dcache. It

can be seen from this data that there were moderate to signi�cant increases in Dcache misses

from the no speculation case to the general speculation case. By comparing the increased

Dcache miss rates for load instructions 163, 183 and 203 with their respective increases in

execution frequency given in Table 6.3, it is apparent that the increase in miss rates for these

loads was not constrained by the their increase in execution frequency. Other speculative loads

actually caused further Dcache misses for these loads. In addition, the non-speculated load

147

General General

Load No Speculation Percolation Percolation - Percent

Instruction Misses Misses No Speculation Change

158 124951 133596 8645 6.92

163 82058 132654 50596 61.65

165 1641 2444 803 48.93

178 84617 92107 7490 8.85

183 47746 91250 43504 91.11

185 890 1685 795 89.33

198 47566 50379 2813 5.91

203 23380 49579 26199 112.06

205 501 2346 1845 368.26

Table 6.10 Dcache misses for the no speculation and general speculation models of the com-
press loop example at Issue 8 (2-way set associative, 4K Dcache).

instructions 158, 178 and 198 also showed an increase in Dcache misses that is attributable to

other speculated loads.

6.3 Conclusions

This chapter has presented experimental results for four compiler-controlled speculation

models over a variety of issue rates and cache con�gurations. The results indicate that the

more aggressive speculation models create larger instruction and data working sets. As such,

processor designers need to ensure that cache con�gurations can tolerate the increased working

set if they expect to attain the best performance from aggressive speculation models. These

experiments have shown that increasing the Icache and Dcache from 4K to 64K resulted in a

performance increase of approximately 26 percent for the general speculation model at issue

8. Additionally, the results indicate that 2-way set associativity bene�cially reduces misses for

Dcaches up to 128K. In contrast, 2-way set associativity was only bene�cial for Icaches up to

8K.

148

While small Icaches and Dcaches can signi�cantly limit the potential performance of more

aggressive speculation models, there is still an advantage in using the more aggressive specula-

tion models at higher issue rates even if the cache con�guration is held constant. Even though

some of the potential advantages of the more aggressive speculation models are negated by

the higher miss rates, it was not su�cient to o�set the performance advantages. In particular,

general speculation at issue 8 was 63.6 percent faster than no speculation with the same 4K

cache con�guration and issue rate. Safe speculation was 50.2 percent faster and restricted was

9.6 percent faster. When using a 64K cache, general speculation was 80 percent faster than no

speculation. Safe speculation was 61.1 percent faster and restricted speculation was 14.3 per-

cent faster. The improvements in performance were almost identical for the experiments that

used a perfect Icache and varied the Dcache as those that used a perfect Dcache and varied the

Icache. Thus, aggressive speculation e�ects the Icache and the Dcache in a similar fashion.

149

CHAPTER 7

CONCLUSION

7.1 Summary

Speculation of instructions above conditional branches changes the conditions under which

the instruction is executed. In some cases, changing these conditions can introduce program

exceptions that may result in program termination. This dissertation has presented a classi-

�cation of existing speculation models based upon the support provided within the compiler

and the processor to address the situation when an instruction that is desirable to speculate at

compile-time can introduce an exception. The avoid errors class is too limited in its ability to

speculate instructions since any potentially excepting instruction will not be speculated.

The ignore errors class assumes that any potentially excepting instructions will be replaced

by non-excepting forms if they are speculated. Thus, exceptions that would have occurred when

potentially excepting instructions were not speculated will not be detected if the instruction is

speculated. As such, it is possible for errors to go undetected which could result in erroneous

program results or even produce errors in unrelated parts of the program that will make it

di�cult to detect the original problem. While this model provides a great deal of scheduling

freedom, it is not necessarily appropriate for use in production applications.

The resolve errors class of speculation models are presented as one solution to address

the limitations of the avoid errors and ignore errors speculation models. These models utilize a

combination of compile-time and run-time support to detect exceptions produced by speculated

150

instructions and delay reporting the exception until it is known that the instruction would have

been executed in its original un-speculated location. Additionally, mechanisms are provided in

the processor that the compiler utilizes to protect the processor state.

This dissertation has presented a new speculation model that falls into the avoid errors

class. The model, write-back suppression, eliminates the extensive processor requirements pro-

posed by boosting as a means of protecting the processor state. Additionally, it eliminates the

requirements for larger register �les required by sentinel scheduling due to the requirement of

extending register life times to protect the processor state. Write-back suppression utilizes the

in-order retire mechanisms found in most processors to maintain the processor state. This

model was shown to have speculation freedom comparable to the most aggressive ignore errors

model - general speculation. Unfortunately, write-back suppression, along with all of the other

resolve error models, requires extensions to the processor instruction set which prevent their

practical usage in existing architectures.

This dissertation has presented an alternative solution to the limitations of the avoid errors

and ignore errors models. This solution extends the speculation freedom of the avoid errors class

by identifying potentially excepting instructions that will never cause an exception or will not

cause an exception that would not have occurred in the original un-speculated location. This

new speculation model, safe speculation, utilizes intra-procedural and inter-procedural analysis

to determine the safety of potentially excepting instructions by statically propagating values

information through the program. The safety analysis is performed prior to loop-level and

superscalar optimizations in the back-end of the IMPACT compiler. This permits these opti-

mizations to utilize the results of the safety analysis to perform more aggressive optimizations.

It was shown that some of the aggressive optimizations such as loop unrolling can invalidate

151

the safety analysis by changing the memory references patterns of potentially excepting load

instructions. As such, the safety analysis also adds constraints to the optimization process to

prevent invalidation of the results. The information produced by the safety analysis was also

within the instruction scheduler to determine when control dependences are required to ensure

safety of potentially excepting instructions.

Experimental results were performed to determine the bene�ts of this research using both

intra-procedural and inter-procedural analysis. The �nal experimental results showed that

in an 8-issue superscalar processor with perfect caches, safe speculation using intra-procedural

analysis was able to attain a 20 percent speedup over the existing avoid errors model - restricted

speculation. Safe speculation using inter-procedural analysis was able to attain a 55 percent

speedup over restricted speculation and a 30 percent over safe speculation with only intra-

procedural analysis. Finally, safe speculation using inter-procedural analysis was able to attain

performance results that averaged within 19 percent of general speculation.

While the performance results for safe speculation were positive, several problems were

identi�ed that motivate future research. First, the absence of input �les prevents bene�cial

analysis for some of the benchmarks such as 023.eqntott, lex and cccp. Second, in some cases it

was not possible to determine the iteration space of loops. The reasons included lack of input

�les, loops that iterate based upon traversing linked lists and loops whose iteration space can

not be determined since they are state driven. Finally, as required by the safety analysis, some

loops could not be as aggressively unrolled as with general speculation in order to maintain

safety of potentially excepting loads.

The �nal contribution to this dissertation was a study of the e�ects of compiler-controlled

speculation on instruction and data caches. This study compared no speculation, restricted

152

speculation, safe speculation using inter-procedural analysis and general speculation to deter-

mine if more aggressive speculation impacts performance results in the presence of caches. The

study showed that even though more aggressive speculation models introduce more Icache and

Dcache misses, the bene�ts from the greater ILP more than compensated for these misses.

Thus, even with small 4K caches, it was still advantageous to use the most aggressive specula-

tion models available.

7.2 Future Work

This dissertation has shown that safe speculation provides much more aggressive speculation

freedom than restricted speculation. In several cases, its speculation freedom was shown to

be the same as general speculation. However, several limitations of the current techniques

prevented performance results that would eliminate the need for general speculation. Since the

analysis process is dependent upon propagation of value information to potentially excepting

instruction in order to determine their safety, the absence of input �les can be a signi�cant

impediment to the analysis. In general, determining the safety of load instructions requires

identi�cation of all base addresses and o�sets that can be performed by the load. In many

cases, such as loading data from a bu�er for evaluation, the contents of the bu�er are not

necessary. However, when the contents of the bu�er are used to compute the location of a

subsequent load and the contents are provide or derived from an input �le, it is not possible to

determine the safety of the subsequent load. This motivates further research that will permit

safety analysis in the absence of input �les.

Common programming practice supports modular design. Functions written to perform

generic operations, such as sorts, are designed to be performed over a variety data sets. Since

153

safety analysis must ensure that potentially excepting instructions are safe regardless of the

conditions that reach these subroutines, it uses conservative analysis to maintain safety in the

presence of optimizations such as loop unrolling. Using the example of the sort, assume that

their are two data sets that reach the sort, one of size 256 elements and the other of size 100

elements. To ensure safety of variant loads in the sort loop given these two worst case loop

iteration frequencies, one determined to be a maximum of 256 and the other a maximum of 100,

unrolling would be limited to 4 times since this is the greatest common factor of both worst-case

loop iterations. This limitation could prevent the necessary unrolling required to expose ILP

for very wide superscalar and VLIW processors, thus preventing safe speculation from attaining

the same performance as general speculation. Assuming that there was the addition of a third

bu�er of size 125 entries, the loop unrolling would now be prevented. One solution to removing

this limitation is to implement multi-version loops. Thus, incoming loop conditions would be

used to determine which optimized loop should be executed.

Due to limitations imposed by loops that iterate through linked-lists, there will always be

cases that prevent safe speculation from attaining the same performance as the more danger-

ous general speculation model. Thus, the bene�ts of this model in conjunction with existing

speculation models that fall into the resolve errors class should be analyzed. By identifying

potentially excepting instructions that are safe, the resolve errors models are not burdened to

protect as many instructions, thus reducing the run-time overhead of these models.

Finally, the safety rules presented in this research have been targeted predominantly at

load instructions as well as integer divide and remainder. However, determining the safety of

oating point instructions has been, for the most part, ignored until this point. Floating point

instructions introduce more complications for safety analysis. In the simple case of integer

154

divide and remainder, it is only necessary to prove that a non-zero constant reaches the divisor.

However, to prove that a
oating point divide will not except, we must not only test for a

non-zero divisor but also ensure that under
ow and over
ow will not occur. If it is not possible

to determine the numerator of the divide, this is not possible. Until techniques are produced

that permit safe, aggressive speculation of
oating point instructions, there will always be a

need to use resolve error models such as write-back suppression or ignore error models such

as general speculation to achieve aggressive optimization and scheduling freedom for
oating

point intensive programs.

155

REFERENCES

[1] E. M. Riseman and C. C. Foster, \The inhibition of potential parallelism by conditional
jumps," IEEE Transactions on Computers, vol. c-21, pp. 1405{1411, December 1972.

[2] M. D. Smith, M. Johnson, and M. A. Horowitz, \Limits on multiple instruction issue," in
Proceedings of the 3rd International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 290{302, April 1989.

[3] N. P. Jouppi and D. W. Wall, \Available instruction-level parallelism for superscalar and
superpipelined machines," in Proceedings of the 3rd International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pp. 272{282, April
1989.

[4] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
\The Superblock: An e�ective technique for VLIW and superscalar compilation," Journal
of Supercomputing, vol. 7, pp. 229{248, January 1993.

[5] P. Tirumalai, M. Lee, and M. Schlansker, \Parallelization of loops with exits on pipelined
architectures," in Proceedings of Supercomputing '90, November 1990.

[6] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. New York, NY:
McGraw-Hill, 1991.

[7] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An
architectural framework for multiple-instruction-issue processors," in Proceedings of the

18th International Symposium on Computer Architecture, pp. 266{275, May 1991.

[8] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE

Transactions on Computers, vol. c-30, pp. 478{490, July 1981.

[9] G. E. Haab, \Design and implementation of a data dependence analyzer for fortran pro-
grams in the impact compiler," Master's thesis, Department of Electrical and Computer
Engineering, University of Illinois, Urbana, IL, 1994.

[10] K. Subramanian, \Loop transformations for parallel compilers," Master's thesis, Depart-
ment of Computer Science, University of Illinois, Urbana, IL, 1993.

[11] Y. Yamada, Data Relocation and Prefetching for Programs with Large Data Sets. PhD
thesis, Department of Computer Science, University of Illinois, Urbana, IL, 1994.

[12] P. Chang, Compiler Support for Multiple Instruction Issue Architectures. PhD thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1991.

156

[13] R. A. Bringmann, \A template for code generator development using the impact-i c com-
piler," Master's thesis, Department of Computer Science, University of Illinois, Urbana,
IL, 1992.

[14] S. A. Mahlke, \Design and implementation of a portable global code optimizer," Master's
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1991.

[15] S. A. Mahlke, Exploiting Instruction Level Parallelism in the Presence of Contitional

Branches. PhD thesis, Department of Electrical and Computer Engineering, University
of Illinois, Urbana, IL, 1994.

[16] P. P. Chang, D. M. Lavery, and W. W. Hwu, \The importance of prepass code schedul-
ing for superscalar and superpipelined processors," Tech. Rep. CRHC-91-18, Center for
Reliable and High-Performance Computing, University of Illinois, Urbana, IL, May 1991.

[17] R. A. Bringmann, Enhancing Instruction Level Parallelism Through Compiler-Controlled

Speculation. PhD thesis, Department of Computer Science, University of Illinois, Urbana,
IL, 1994.

[18] N. J. Warter, Modulo Scheduling with Isomorphic Control Transformations. PhD thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1993.

[19] R. E. Hank, \Machine independent register allocation for the IMPACT-I C compiler,"
Master's thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1993.

[20] J. C. Gyllenhaal, \A machine description language for compilation," Master's thesis, De-
partment of Electrical Engineering, University of Illinois, Urbana, IL, 1994.

[21] W. Y. Chen, \An optimizing compiler code generator: A platform for RISC performance
analysis," Master's thesis, Department of Electrical and Computer Engineering, University
of Illinois, Urbana, IL, 1991.

[22] R. G. Ouellette, \Compiler support for SPARC architecture processors," Master's thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1994.

[23] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL playdoh architecture speci�cation:
Version 1.0," Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto, CA 94303,
February 1994.

[24] P. P. Chang and W. W. Hwu, \Trace selection for compiling large C application programs
to microcode," in Proceedings of the 21st International Workshop on Microprogramming

and Microarchitecture, pp. 188{198, November 1988.

[25] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist classic
code optimizations," Software Practice and Experience, vol. 21, pp. 1301{1321, December
1991.

157

[26] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, \Dependence graphs
and compiler optimizations," in Proceedings of the 8th ACM Symposium on Principles of

Programming Languages, pp. 207{218, January 1981.

[27] T. Nakatani and K. Ebcioglu, \Combining as a compilation technique for VLIW archi-
tectures," in Proceedings of the 22nd International Workshop on Microprogramming and

Microarchitecture, pp. 43{55, September 1989.

[28] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, \A
VLIW architecture for a trace scheduling compiler," in Proceedings of the 2nd Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 180{192, April 1987.

[29] J. C. Dehnert and R. A. Towle, \Compiling for the cydra 5," Journal of Supercomputing,
vol. 7, pp. 181{227, January 1993.

[30] H. Packard, PA-RISC 1.1 Architecture and Instruction Set Reference Manual. Cupertino,
CA, 1990.

[31] D. Weaver, SPARC-V9 Architecture Speci�cation. SPARC International Inc., 1992.

[32] M. D. Smith, M. S. Lam, and M. A. Horowitz, \Boosting beyond static scheduling in a
superscalar processor," in Proceedings of the 17th International Symposium on Computer

Architecture, pp. 344{354, May 1990.

[33] M. D. Smith, M. A. Horowitz, and M. S. Lam, \E�cient superscalar performance through
boosting," in Proceedings of the Fifth International Conference on Architecture Support

for Programming Languages and Operating Systems (ASPLOS-V), pp. 248{259, October
1992.

[34] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, \Sentinel
scheduling for superscalar and VLIW processors," in Proceedings of the 5th International

Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 238{247, October 1992.

[35] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau,
and M. S. Schlansker, \Sentinel scheduling: A model for compiler-controlled speculative
execution," Transactions on Computer Systems, vol. 11, November 1993.

[36] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach. San
Mateo, CA: Morgan-Kaufmann, 1990.

[37] J. A. Fisher, \Global code generation for instruction-level parallelism: Trache scheduling-
2," Tech. Rep. HPL-93-43, Hewlett Packard Computer Research Center, June 1993.

[38] T. Ball and J. R. Larus, \Branch prediction for free," in Proceedings of the ACM SIGPLAN

1993 Conference on Programming Language Design and Implementation, pp. 300{313,
June 1993.

[39] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and W. W. Hwu, \Su-
perblock formation using static program analysis," in Proceedings of the 26th Annual In-

ternational Symposium on Microarchitecture, December 1993.

158

[40] J. A. Fisher and S. M. Freudenberger, \Predicting conditional branch directions from previ-
ous runs of a program," in Proceedings of the 5rd International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 85{95, October 1992.

[41] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[42] K. Kennedy, \Safety of code motion," Journal of Computer Mathematics, vol. 3, pp. 117{
130, 1972.

[43] R. M. Stallman, Using and porting GNU CC. Free Software Foundation, Inc., 1989.

[44] G. Kane, MIPS R2000 RISC Architecture. Englewood Cli�s, NJ: Prentice-Hall, Inc., 1987.

[45] D. Bernstein and M. Rodeh, \Proving safety of speculative load instructions at compile
time," in Fourth European Symposium on Programming, 1992.

[46] U. Mahadevan and S. Ramakrishnan, \Instruction scheduling over regions: A framework
for scheduling across basic blocks," tech. rep., Californial Language Laboratory, Hewlett
Packard, Cupertino, CA, 1994.

[47] American National Standard: Programming Language FORTRAN. ANSI X3.9-1978, April
1978.

[48] B. Kernighan and D. Ritchie, The C Programming Language. Englewood Cli�s, NJ: Pretice
Hall, 1988.

159

VITA

Roger Alexander Bringmann was born in Tuscaloosa, Alabama in 1962. He pursued his

undergraduate studies at the University of South Alabama in Mobile, Alabama where he re-

ceived his B.S. degree in Computer Science in 1983. After receiving his B.S., he joined QMS,

Inc. in Research and Development where he advanced to the position of Senior Member of

Technical Sta�. In the fall of 1990, he began his graduate studies in Computer Science at the

University of Illinois in Urbana, Illinois. He completed his M.S. degree in Computer Science

in 1992. During his tenure at the University of Illinois, he has been a member the IMPACT

project directed by Professor Wen-mei W. Hwu. After completing his Ph.D., he will return to

QMS, Inc. to assume the position of Executive Director of Advanced Technology.

160

