
ARCHITECTURAL AND SOFTWARE SUPPORT FOR EXECUTING NUMERICAL

APPLICATIONS ON HIGH PERFORMANCE COMPUTERS

BY

SADUN ANIK

B.S., Middle East Technical University, 1986

M.S., University of Illinois at Urbana-Champaign, 1990

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1993

Urbana, Illinois

iii

ABSTRACT

Numerical applications require large amounts of computing power. Although shared

memory multiprocessors provide a cost-e�ective platform for parallel execution of numer-

ical programs, parallel processing has not delivered the expected performance on these

machines. There are two crucial steps in parallel execution of numerical applications:

(1) e�ective parallelization of an application and (2) e�cient execution of the parallel

program on a multiprocessor. This thesis addresses the second step within the scope of

automatically parallelized FORTRAN programs.

In this thesis, the mismatch between the needs of parallelized FORTRAN programs

and the support for parallel execution in shared memorymultiprocessors is identi�ed as a

cause of poor performance. The thesis addresses this problem from two angles, architec-

tural and software support for parallel execution and compiler transformation to enhance

program characteristics. Architectural features and synchronization and scheduling al-

gorithms are studied to increase the e�ciency of support for parallel execution. It is

shown that architectures supporting atomic fetch&add primitives and synchronization

busses can execute parallel programs more e�ectively. New algorithms for lock access

and parallel task scheduling are proposed.

iv

The thesis also explores compiler transformations which can modify parallel program

characteristics to increase the parallel execution e�ciency of less sophisticated archi-

tectures. It is shown that by using blocking transformations on nested parallel loops,

program characteristics can be modi�ed to decrease the need for scheduling and synchro-

nization operations. This results in an increase in the e�ciency of parallel execution,

especially for multiprocessors with simplistic support for interprocessor synchronization.

v

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Wen-mei Hwu, for his time, guidance

and patience. I consider myself very lucky to have worked with him. My respect for him

goes beyond the teacher-student relationship. I will always remember him.

I would like to thank my parents for their love and support. Without them, graduate

school would have been an unbearable journey. They were always there when I needed

them and I will always feel their unconditional love.

I am grateful to all my friends for the good times. Tom Conte, has been a true friend

for all these years we spent together. I am thankful to Steve Turner. If it weren't for

him, I would not know the joy of skiing in the Rockies. I also thank Bob Janssens for

being a true friend, patient and understanding.

Finally I would like to thank Marianne Holma for being my friend through the �nal

years of graduate school. I would like to express my appreciation for everything she did

for me and everything she was to me.

vi

TABLE OF CONTENTS

Page

1. INTRODUCTION : 1
1.1 Shared Memory Multiprocessors and Parallel Processing : : : : : : : 3

1.2 Performance of Parallel Programs : 5
1.3 Synchronization Needs of Parallel FORTRAN Programs : : : : : : : : 8

1.3.1 Synchronization needs : 10
1.3.2 Locks and hardware synchronization primitives : : : : : : : : 17

1.4 Dynamic and Static Methods : 21

2. INSTRUMENTATION AND SIMULATION METHODS : : : : : : : : : : 23
2.1 Experimental Method : 24

2.2 Architectural Model : 27

3. SYNCHRONIZATION SUPPORT FOR PARALLEL LOOP EXECUTION 31
3.1 Analysis of Iteration Scheduling Overhead : : : : : : : : : : : : : : : 32

3.1.1 Granularity e�ects : 35

3.1.2 Scheduling overhead for �ne-grain loops : : : : : : : : : : : : 37

3.2 Synchronization Characteristics of Applications : : : : : : : : : : : : 38

3.2.1 Parallelism characteristics of application programs : : : : : : : 39

3.2.2 Locality of lock accesses in synchronization algorithms : : : : 41
3.3 Experimental Results : 43

3.4 Concluding Remarks : 49

4. AN EFFICIENT TASK SCHEDULING ALGORITHM : : : : : : : : : : : 51

4.1 Models for Nested Parallel Loop Execution and Synchronization Algo-
rithms : 54

4.2 Experimental Results : 62

4.3 Conclusions : 65

vii

5. COMPILER TRANSFORMATIONS FOR LOOP BLOCKING : : : : : : 67

5.1 Blocking Transformations : 70

5.1.1 Partitioning an iteration space : : : : : : : : : : : : : : : : : : 72

5.1.2 Legality of a blocking transformation : : : : : : : : : : : : : : 74

5.2 Loop Bounds Generation : 76

5.3 Experimental Results : 81

5.4 Concluding Remarks : 91

6. CONCLUSIONS : 93

REFERENCES : 98

VITA : 102

viii

LIST OF TABLES

Table Page

1.1: Granularity and parallelism in parallel benchmarks : : : : : : : : : : 21

2.1: Timing assumptions without contention : : : : : : : : : : : : : : : : : 29
2.2: Assumptions for memory tra�c : 30
3.1: The use of architectural support and lock algorithms in experiments : 47
4.1: Execution models for nested parallel loops : : : : : : : : : : : : : : : 56

ix

LIST OF FIGURES

Figure Page

1.1: A DOALL loop : 9

1.2: A DOACROSS loop : 10
1.3: Producer algorithm for task scheduling : : : : : : : : : : : : : : : : : 12
1.4: Consumer algorithm for task scheduling : : : : : : : : : : : : : : : : 12
1.5: Self-scheduling algorithm for loop iterations : : : : : : : : : : : : : : 14
1.6: Barrier synchronization algorithm : 15

1.7: Algorithm for Advance/Await operations : : : : : : : : : : : : : : : : 16
1.8: Queuing lock algorithm for lock accesses : : : : : : : : : : : : : : : : 19
1.9: Test&test&set algorithm for lock accesses : : : : : : : : : : : : : : : : 20
2.1: Multiprocessor trace example : 26
3.1: Execution time vs. granularity for test&set primitive : : : : : : : : : 36
3.2: Execution time vs. number of iterations for test&set primitive : : : : 37

3.3: Iteration scheduling overhead vs. number of processors : : : : : : : : 39
3.4: Speedup and scheduling overhead for BDNA with 16 processors : : : 44
3.5: Speedup and scheduling overhead for FLO52 with 16 processors : : : 45
3.6: Speedup and scheduling overhead for ADM with 16 processors : : : : 45

3.7: Speedup and scheduling overhead for DYFESM with 16 processors : : 46

4.1: Nonblocking queuing lock algorithm with fetch&add primitive : : : : 58
4.2: Operation of nonblocking queuing lock : : : : : : : : : : : : : : : : : 59

4.3: Snapshot in task distribution (a) : 60
4.4: Snapshot in task distribution (b) : 61

4.5: Speedup of FLO52 program for di�erent execution models : : : : : : 63

4.6: Speedup of DYFESM program for di�erent execution models : : : : : 64
4.7: Speedup of ADM program for di�erent execution models : : : : : : : 64

5.1: Iteration space and dependences of a loop-nest : : : : : : : : : : : : : 69
5.2: Same loop-nest after skewing and blocking : : : : : : : : : : : : : : : 69

5.3: Same loop-nest with nonrectangular blocking : : : : : : : : : : : : : : 70

5.4: The illustration of blocking vectors for the loop-nest in Figure 5.3 : : 72

x

5.5: A two-level nested DOALL loop : 82

5.6: Nested DOALL loop after blocking transformation : : : : : : : : : : : 82

5.7: Performance of FLO52 for 16 processors and test&set primitive : : : : 83

5.8: Performance of FLO52 for 16 processors and exchange-byte primitive 84

5.9: Performance of FLO52 for 16 processors and fetch&add primitive : : 84

5.10: Performance of FLO52 for 16 processors and synchronization bus : : 85

5.11: Performance of DYFESM for 16 processors and test&set primitive : : 87

5.12: Performance of DYFESM for 16 processors and exchange-byte primitive 87

5.13: Performance of DYFESM for 16 processors and fetch&add primitive : 88

5.14: Performance of DYFESM for 16 processors and synchronization bus : 88

5.15: Performance of ADM for 16 processors and test&set primitive : : : : 89

5.16: Performance of ADM for 16 processors and exchange-byte primitive : 89
5.17: Performance of ADM for 16 processors and fetch&add primitive : : : 90
5.18: Performance of ADM for 16 processors and synchronization bus : : : 90

1

1. INTRODUCTION

Bus-based shared memory multiprocessors have provided a cost-e�ective platform

for parallel processing for more than a decade. However, utilization of these platforms

for e�cient parallel processing has not been easy. Large scienti�c applications written

in FORTRAN have been the early candidates for parallel execution on shared memory

multiprocessors. Scienti�c programs have relatively simple control structures. The data

structures used in these programs have regular structure and predictable access pat-

terns. However, achieving signi�cant speedups with parallel execution of these programs

has been an elusive goal. Most of the performance improvements for these programs

resulted from tedious hand parallelization and tuning of the program. As this thesis

establishes, the ine�ciencies in parallel program execution result from a mismatch be-

tween the available compiler technology for parallelizing and restructuring programs, and

the architectural and run-time support for parallel program execution in shared memory

multiprocessors.

2

This thesis has two purposes. The �rst is to identify the performance bottlenecks in

compiling and running a parallel scienti�c application. The second is to develop run-time

and compile-time methods to increase the e�ciency in parallel program execution. The

organization of this thesis is follows. This chapter provides the background information

on the procedures for compilation and parallel execution of FORTRAN programs. The

issues in executing a parallel FORTRAN program on a shared memory multiprocessor

are discussed. The need for run-time support for parallel execution is treated in a sys-

tematic manner. Existing algorithms for the synchronization and scheduling problems

are presented at the level of architectural primitives, synchronization algorithms such as

lock/unlock operations, and scheduling algorithms.

Chapter 2 describes the simulation tools developed for studying the performance

issues in parallel program execution. A new technique is used to simulate the perfor-

mance of several architecture/algorithm combinations. The developed tool combines

trace-driven simulation of individual processors in a multiprocessor with the emulation

of interprocessor communication to obtain accurate timing information.

Chapter 3 presents a discussion of issues in parallel program execution and experi-

mental evaluation of the interaction between architectural support and algorithms used

by the run-time system. Two important program characteristics are identi�ed as having

direct in
uence on program performance. The task granularity of a program (the amount

of computation within a parallel task) a�ects the performance of the task scheduling algo-

rithm. For a program in which task granularity is small, the performance of the program

3

can be limited by the rate at which tasks are distributed to available processors. The loop

granularity of a parallel loop (the amount of computation within a sequential iteration

of a loop) a�ects the performance of the iteration scheduling algorithm.

Chapter 4 presents a new task scheduling algorithm to increase the e�ciency of

scheduling a parallel task. It is shown that the proposed algorithm can increase the

utilization of processors in a shared memory multiprocessor. A nonblocking queuing lock

algorithm is also introduced in this chapter which satis�es the functional requirements

of the proposed scheduling algorithm.

Chapter 5 addresses the issue of loop granularity and the use of compiler transfor-

mations to increase the size of sequential threads of execution. This chapter provides a

formal treatment of loop blocking transformations and describes a prototype implemen-

tation within the IMPACT compiler.

Finally, Chapter 6 includes the concluding remarks.

1.1 Shared Memory Multiprocessors and Parallel Processing

In executing a parallel program, scheduling computation to processors and synchro-

nizing the processors introduce an overhead. The way this overhead a�ects the per-

formance of a parallel program depends on both the program characteristics and the

run-time system/architecture combination. As the units of computation become larger,

the scheduling operations are needed less frequently, hence the e�ect of scheduling over-

head decreases. The application programs used as benchmarks are parallelized scienti�c

4

FORTRAN programs taken from the Perfect Club benchmark set [1]. In a previous study

of synchronization behavior of parallel programs, Davis and Hennessy used the combina-

tion of a shared memory architecture and large-grain parallel applications programmed

with message passing paradigm, and concluded that synchronization does not introduce

signi�cant overhead [2]. The characteristics of parallel FORTRAN programs are very

di�erent from those programs using message passing paradigm. In these programs the

basic form of parallelism is the parallel loop structure [3]. The parallel FORTRAN dialect

used in this work is Cedar FORTRAN (CF) which has two basic parallel loop structures,

DOALL and DOACROSS [4]. There is no dependence between iterations of a DOALL

loop; therefore, the iterations can be executed in arbitrary order. A DOACROSS loop

can have a dependence relation between iterations. The execution order of iterations of

a DOACROSS loop has to preserve the dependencies.

The run-time system performs four basic duties in the execution of parallel loops:

1. Task scheduling. When a processor executes a DOALL/DOACROSS statement in

a CF program , the parallel loop corresponding to that statement is ready to be

executed. Starting the execution of this loop in parallel requires the noti�cation of

all of the available processors in the system through a task scheduling algorithm.

2. Iteration scheduling. All of the iterations of a parallel loop are distributed to the

processors in a balanced way by an iteration scheduling algorithm.

3. Advance/Await operations. The data dependencies across iterations in a DOACROSS

loop are enforced by Advance/Await operations.

5

4. Barrier synchronization. When all of the iterations of a parallel loop are executed,

the processors participating in the execution synchronize at a barrier .

In the existing systems, the run-time system is integrated with the application by the

compiler in the form of libraries [5],[6],[7].

1.2 Performance of Parallel Programs

Automatically parallelized numerical programs represent an important class of parallel

applications in high performance multiprocessors. These programs are used to solve prob-

lems in many engineering and science disciplines such as Civil Engineering, Mechanical

Engineering, Electrical Engineering, Chemistry, Physics, and Life Sciences. As parallel

architectures became available, parallelizing FORTRAN compilers have been developed

for commercial and experimental multiprocessor systems to support these applications

[4],[5],[6],[7],[8]. However the sustained performance of parallel systems for real-world

applications fall short of the promise of these systems.

Synchronization overhead has been recognized as an important source of performance

degradation in the execution of parallel programs. Many hardware and software tech-

niques have been proposed to reduce the synchronization cost in multiprocessor systems

[9],[10],[11],[12],[13],[14],[15]. Instead of proposing new synchronization techniques, this

thesis addresses two simple questions: (1) How much does architecture support for syn-

chronization a�ect the performance of automatically parallelized numerical programs?

(2) What can be done to improve the performance of parallel programs?

6

To answer these questions, we start with analyzing the needs for synchronization in

parallelized FORTRAN programs. Due to the mechanical nature of parallelizing compil-

ers, parallelism is expressed in only a few structured forms. This parallel programming

style allows us to systematically cover all of the synchronization needs in automatically

parallelized programs. Synchronization issues arise in task scheduling, iteration schedul-

ing, barriers and data dependence handling. A set of algorithms is presented which

use lock()/unlock() and increment() operations. We then identify how several hardware

synchronization primitives can be used to implement these generic synchronization opera-

tions. The synchronization primitives considered are test&set, fetch&add, exchange-byte,

and lock/unlock operations. Since these primitives di�er in functionality, the algorithms

for synchronization in parallel programs are implemented with varying e�ciency.

Beckmann and Polychronopoulos studied the e�ects of the barrier synchronization

and iteration scheduling overhead on parallel loops in the presence of a synchronization

bus [16]. Polychronopoulos also demonstrated that run-time overhead can limit the

performance gain in executing parallel loops [17]. Arenstorf and Jordan modeled the

execution overhead for several barrier synchronization algorithms [18]. The developed

models provide an insight to the problem but to be able to choose the right combination

of algorithms and architectural support, quanti�cation of parameters is necessary.

The analysis of iteration scheduling overhead illustrates the need for quanti�cation.

Using the self-scheduling algorithm, iterations of a parallel loop are scheduled to the

processors one at a time. Furthermore, self-scheduling is a sequential algorithm in which

7

only one processor can schedule an iteration at a given time. Consider the execution of

a loop with N iterations on P processors. For simplicity, it is assumed that all iterations

of a loop are identical and each takes tit time to execute. Furthermore let tsch be the

time it takes to schedule an iteration. In the case in which

tit < (P � 1) � tsch;

the time it takes for a processor to execute a loop iteration is shorter than the the time

needed by the remaining P � 1 processors to schedule their iterations. In this situation,

the processor completing execution of an iteration has to wait for the other processors

to complete iteration scheduling operations in order to schedule a new iteration. When

iteration scheduling becomes the bottleneck, the execution time is

ttotal = N � tsch + tit:

For the case in which

tit > (P � 1) � tsch;

sequential iteration scheduling operations do not form the critical path of execution.

Then the execution time can be written as

ttotal = ((tsch + tit)� dN=P e):

The important di�erence between the two cases is that in the �rst case increasing the

number of processors does not decrease the execution time, and in the latter case the

execution time is inversely proportional to the number of processors. A more detailed

analysis of iteration scheduling overhead is presented in Section 3.1.

8

Of the two parameters, tit depends on the granularity of loops in the application and

tsch is determined by the underlying architecture and synchronization primitives. Two

variations of self-scheduling, chunk-scheduling and guided self-scheduling [19], increase

the e�ective granularity by scheduling multiple iterations at a time. Their e�ectiveness

relies on the assumption that N � P .

1.3 Synchronization Needs of Parallel FORTRAN Programs

The application programs used in this study are selected from the Perfect Club bench-

mark set [1]. The Perfect Club is a collection of numerical programs for benchmarking

supercomputers. The programs were written in FORTRAN. For the experimental work,

the programs were parallelized by the KAP/Cedar source-to-source parallelizer [20],[4]

which generates a parallel FORTRAN dialect, Cedar FORTRAN. This process exploits

parallelism at the loop level, which has been shown by Chen, Su, and Yew to capture

most of the available parallelism for Perfect Club benchmark set programs [3]. They mea-

sured the instruction-level parallelism by trace-based data
ow analysis and concluded

that parallel loop structures su�ciently exploit this parallelism. However this assumes

that all memory and control dependences can be resolved in the parallelization process.

In practice, compile-time analysis of dependences may not be successful due to indirect

array indexing requiring run-time dependence resolution. Also, limited interprocedural

data-
ow analysis can result in dependence equations with unknown variables resulting

in conservative dependence analysis.

9

DOALL 30 J=1,J1

X(II1+J) = X(II1+J) * SC1

Y(II1+J) = Y(II1+J) * SC1

Z(II1+J) = Z(II1+J) * SC1

30 CONTINUE

Figure 1.1: A DOALL loop

Cedar FORTRAN has two major constructs to express loop-level parallelism: DOALL

loops and DOACROSS loops. A DOALL loop is a parallel DO loop in which there is no

dependence between the iterations. The iterations can be executed in parallel in arbitrary

order. Figure 1.1 shows an example of a DOALL loop.

In a DOACROSS loop [21], there is a dependence relation across the iterations. A

DOACROSS loop has the restriction that iteration i can depend on iterations j only

where j < i. Because of this property, a simple iteration scheduling algorithm can guar-

antee deadlock free allocation of DOACROSS loop iterations to processors. In Cedar

FORTRAN, dependences between loop iterations are enforced by Advance/Await syn-

chronization statements [5]. An example of a DOACROSS loop is shown in Figure 1.2.

The �rst argument of Advance and Await statements is the identi�er for the synchro-

nization variable to be used. The second argument of an Await statement is the data

dependence distance in terms of iterations. In this example, when iteration i is executing

this Await statement, it is waiting for iteration i� 3 to execute its Advance statement.

The third argument of Await is used to enforce sequential consistency in Cedar architec-

ture [4]. The third argument implies that upon the completion of synchronization, the

10

value of X(I-3) should be read from shared memory. Similarly, the second argument

of Advance statement implies that writing the value X(I) to shared memory should be

completed before Advance statement is executed.

DOACROSS 40 I=4,IL
...

AWAIT(1, 3, X(I-3))

X(I) = Y(I) + X(I-3)

ADVANCE (1, X(I))
...

30 CONTINUE

Figure 1.2: A DOACROSS loop

1.3.1 Synchronization needs

In executing parallel FORTRAN programs, the need for synchronization arises in

four contexts: task scheduling, iteration scheduling, barrier synchronization, and Ad-

vance/Await. In this section, we discuss the nature of these synchronization needs.

Task scheduling is used to start the execution of a parallel loop on multiple processors.

All processors to participate in the execution of a parallel loop, or task, must be informed

that the loop is available for execution. In this study, all experiments assume a task

scheduling algorithm that uses a centralized task queue to assign tasks to processors. In

Chapter 4, alternatives to this approach are considered. The processor which executes

a DOALL or DOACROSS statement places the loop descriptor into the task queue. All

idle processors acquire the loop descriptor from the task queue and start executing the

11

loop iterations. The accesses to the task queue by the processors are mutually exclusive.

A lock is used to enforce mutual exclusion.

Use of a centralized task queue serializes the task scheduling. A number of distributed

task scheduling algorithms have been proposed in the past, Anderson, Lazowska, and

Levy [22] compared the performance of several distributed algorithms in the context of

thread managers. Most distributed task scheduling algorithms rely on a large supply of

parallel tasks to maintain load balance. Also, they usually assume that each task needs

to be executed by only one processor. These are valid assumptions for thread managers

because there are usually a large number of tasks (threads) in the applications considered

by this study and each task represents a piece of sequential code. These assumptions,

however, are not valid for the current generation of automatically parallelized FORTRAN

programs in which parallelism is typically exploited at only one or two loop nest levels.

Since all parallel iterations of a single loop nest level form a task, there is typically only

a very small number of tasks in the task queue. Also, multiple processors have to acquire

the same task so that they can work on di�erent iterations of the parallel loop. This

increases the complexity of the task scheduling algorithm considerably [23]. This lack of

task-level parallelism makes it di�cult to e�ectively use distributed task queues.

Figures 1.3 and 1.4 show the task scheduling algorithms for the processor which

executes a parallel DO statement and for the idle processors, respectively. The removal

of the loop descriptor from the task queue is performed by the �rst processor entering

the barrier associated with the loop.

12

put task() f

new loop->number of processors = 0 ;

new loop->number of iterations = number of iterations in loop;

new loop->barrier counter = 0 ;

new loop->iteration counter = 0 ;

lock(task queue) ;

insert task queue(new loop) ;

task queue status = NOT EMPTY ;

unlock(task queue) ;

g

Figure 1.3: Producer algorithm for task scheduling

read task() f

while(task queue status == EMPTY) ;

lock(task queue) ;

current loop = read task queue head() ;

/* Doesn't remove the loop from the queue */

increment(current loop->number of processors) ;

unlock(task queue) ;

g

Figure 1.4: Consumer algorithm for task scheduling

The implementation of the lock(), unlock(), and increment() functions with di�er-

ent primitives is presented in the next section. By de�nition, the lock() and unlock()

operations are atomic. Whenever underlined in an algorithm, the increment() oper-

ation is also assumed to be atomic and can be implemented with a sequence of lock,

read-increment-write, and unlock operations. However, it is shown in Chapter 3 that the

frequent use of atomic increment in parallel FORTRAN programs makes it necessary to

implement atomic increment with e�cient hardware support.

13

During the execution of a parallel loop, each iteration is assigned to a processor, which

is called iteration scheduling. The self-scheduling algorithm [24] is used to implement

iteration scheduling. In this method, the self-scheduling code is embedded within the

loop body. Each time a processor is ready to execute a loop iteration, it executes the

embedded scheduling code to acquire a unique iteration number. The self-scheduling

algorithm shown in Figure 1.5 is an example of the code executed at the beginning of

each loop iteration. The algorithm performs an atomic increment operation on a shared

counter. Unless the multiprocessor supports an atomic fetch&add operation, a lock is

required to enforce mutual exclusion in accessing the shared counter.

Two alternative dynamic iteration scheduling algorithms, chunk scheduling and guided

self-scheduling (GSS), have been proposed to avoid the potential bottleneck of schedul-

ing the iterations one at a time [19]. When the number of iterations in a parallel loop is

much larger than the number of processors, such algorithms reduce the iteration schedul-

ing overhead by assigning multiple iterations to each processor per iteration scheduling

operation. This increases the e�ective granularity of parallel loops. The issues of gran-

ularity and scheduling overhead are discussed in Section 3.1. Both of these algorithms

are proposed for DOALL loops. In the presence of dependences across iterations, i.e.

DOACROSS loops, scheduling more than one iteration at a time may sequentialize the

execution of a parallel loop. Therefore, algorithms such as chunk scheduling and GSS

are applicable only to DOALL loops.

14

schedule iteration() f

last iteration = increment(current loop->iteration counter) ;

if (last iteration >= current loop->number of iterations) f

barrier synchronization ;

g

else f

execute (last iteration + 1)th iteration of loop;

g

g

Figure 1.5: Self-scheduling algorithm for loop iterations

After all iterations of a loop have been executed, processors synchronize at a barrier.

A nonblocking linear barrier algorithm which is implemented with a shared counter (see

Figure 1.6) can be used for high performance barrier synchronization. After all iterations

of a parallel loop have been executed, each processor reads and increments the barrier

counter associated with the loop. The last processor to increment the counter com-

pletes the execution of the barrier. As in the case of iteration self-scheduling, unless the

multiprocessor system supports an atomic fetch&add operation, the mutually exclusive

accesses to the shared counter are enforced by a lock.

The barrier algorithm shown in Figure 1.6 speci�es that the �rst processor to enter

the barrier removes the completed loop from the task queue. Using this barrier syn-

chronization algorithm, the processors entering the barrier do not wait for the barrier

exit signal. Therefore, a processor entering the barrier can immediately start executing

another parallel loop whose descriptor is in the task queue. In contrast to the compile

time scheduling of \fuzzy barrier" [14], this algorithm allows dynamic scheduling of loops

15

barrier synchronization() f

if (current loop->barrier counter == 0) f

lock(task queue) ;

if (current loop == read task queue head()) f

delete task queue head() ;

if (task queue empty() == TRUE) task queue status = EMPTY ;

g

unlock(task queue) ;

g

if (increment(current loop->barrier counter) ==

current loop->number of processors - 1) f

resume executing program from the end of this loop ;

g

else read task() ;

g

Figure 1.6: Barrier synchronization algorithm

to the processors in a barrier. The linear barrier is a sequential algorithm, and for the

case in which this algorithm proves to be a sequential bottleneck, a parallel algorithm

(e.g., Butter
y barrier [15]) can be used. The experimental data presented in Chapter 3

illustrate that barrier synchronization execution is not a signi�cant source of overhead.

The last processor to enter the barrier executes the continuation of the parallel loop |

the code in the sequential FORTRAN program that is executed after all iterations of the

current loop are completed. By using a semaphore, the processor which executed the

corresponding DOALL/DOACROSS statement can be made to wait for the barrier exit

to execute the continuation of the loop.

The combination of task scheduling, iteration self-scheduling and nonblocking barrier

synchronization algorithms presented in this section allows deadlock-free execution of

16

initialization(synch pt) f

for (i = 1 ; i < number of iterations ; i++) V[synch pt][i] = 0 ;

g

advance(synch pt) f

V[synch pt][iteration number] = 1 ;

g

await(synch pt, dependence distance) f

if(iteration number <= dependence distance) return() ;

else while (V[synch pt][iteration number - dependence distance] == 0) ;

g

Figure 1.7: Algorithm for Advance/Await operations

nested parallel loops with the restriction that DOACROSS loops appear only at the

deepest nesting level [24].

The last type of synchronization, Advance/Await, can be implemented by using

a bit vector for each synchronization point. In executing a DOACROSS loop, iter-

ation i, waiting for iteration j to reach synchronization point synch pt, busy waits

on location V[synch pt][j]. Upon reaching point synch pt, iteration j sets location

V[synch pt][j]. This implementation, as shown in Figure 1.7, uses regular memory

read and write operations, thus does not require atomic synchronization primitives. This

implementation assumes a sequentially consistent memory system. In the case of weak

17

ordering memory systems, an Await statement can be executed only after the previ-

ous memory write operations complete execution. For a multiprocessor with software-

controlled cache coherency protocol, Cedar FORTRAN Advance/Await statements in-

clude the list of variables whose values should be written to/read from shared memory

before/after their execution. The implementation details of these statements under weak

ordering memory system models or software-controlled cache coherency protocols are

beyond the scope of this thesis.

In the HEP multiprocessor system, an alternative approach for enforcing data depen-

dences across iterations was taken [25]. The use of full/empty bits that are associated

with every data item provides a very e�cient data synchronization mechanism in the

execution of DOACROSS loops.

1.3.2 Locks and hardware synchronization primitives

In executing numeric parallel programs, locks are frequently used in synchronization

and scheduling operations. In the task scheduling algorithm (See Figures 1.3 and 1.4),

the use of a lock enforces mutual exclusion in accessing the task queue. Locks are also

used to ensure correct modi�cation of shared counters when there is no atomic fetch&add

primitive in the architecture. Such shared counters are used by both iteration scheduling

(See Figure 1.5) and barrier synchronization (See Figure 1.6).

There are several algorithms that implement locks in cache coherent multiprocessors

using hardware synchronization primitives [12],[13]. Virtually all existing multiprocessor

18

architectures provide some type of hardware support for atomic synchronization opera-

tions. In theory, any synchronization primitive can be used to satisfy the synchronization

needs of a parallel program. In practice, however, di�erent primitives may result in very

di�erent performance levels. For example, a queuing lock algorithm [12],[13] can be im-

plemented e�ciently with an exchange-byte or a fetch&add primitive, whereas a test&set

implementation may be less e�cient. This section outlines the lock algorithms that are

chosen for each hardware synchronization primitive considered in the experiments.

Exchange-byte. The exchange-byte version of the queuing lock algorithm is shown

in Figure 1.8. In this implementation, the exchange-byte primitive is used to construct

a logical queue of processors that contend for a lock. The variable my id is set at the

start of the program so that its value for the ith processor is 2� i, where processors are

numbered from 0 to P � 1. During the execution, the value of my id alternates between

2� i and 2� i+1. This eliminates the race condition between two processors competing

for a lock which has just been released by one of them. The variable queue tail holds

the ID of the last processor which tried to acquire this lock. A processor which tries to

acquire the lock receives the ID of its preceding processor via queue tail. It then writes

its own ID into the variable queue tail. This algorithm constructs a queue of processors

waiting for a lock where each processor waits speci�cally for its predecessor to release the

lock. By mapping the elements of synchronization vector flags[] to disjoint cache lines,

the memory accesses in the while loop of this algorithm can be con�ned to individual

19

initialization() f

flags[2P] = FREE ;

flags[0: : :2P-1] = BUSY ;

queue tail = 2P ;

g

lock() f

my id = my id XOR 1 ;

queue last = exchange-byte(my id, queue tail) ;

while(flags[queue last] == BUSY) ;

flags[queue last] = BUSY ;

g

unlock() f

flags[my id] = FREE ;

g

Figure 1.8: Queuing lock algorithm for lock accesses

caches of processors. When a processor releases the lock, only the cache line read by its

successor has to be invalidated.

Test&set. Because of its limited functionality, test&set cannot be used to construct

processor queues in a single atomic operation. Therefore, in this study, whenever the

architecture o�ers only test&set, a plain test&test&set algorithm (see Figure 1.9) is used

to implement all lock operations.1

Fetch&add. Due to the emphasis on atomic increment operations in iteration

scheduling and barrier synchronization, supporting a fetch&add primitive in hardware can

signi�cantly decrease the need for lock accesses in these algorithms. When the fetch&add

1However, it should be pointed out that in an environment where critical sections of algorithms involve
many instructions and memory accesses, a test&set implementation of a queuing lock may enhance
performance.

20

lock() f

while(lock == BUSY || test&set(lock) == BUSY) ;

g

unlock() f

lock = CLEAR ;

g

Figure 1.9: Test&test&set algorithm for lock accesses

primitive is supported by a system, a fetch&add implementation of the test&test&set al-

gorithm can be used to support the lock accesses in task scheduling as well as a queuing

lock algorithm. The performance implications of supporting the fetch&add primitive will

be presented in Sections 3.1 and 3.3.

Synchronization bus. In the Alliant FX/8 multiprocessor, a separate synchroniza-

tion bus and a Concurrency Control Unit are provided [5] which can improve parallel

program performance by reducing the latency of both fetch&add operations and lock

accesses. Such a bus provides the processors with a coherent set of shared counters and

lock variables that can be accessed and updated in a single cycle. In this study, the case

in which a synchronization bus is used to implement synchronization operations is also

considered.

The cost performance trade-o�s in synchronization support can be determined only

by evaluating the performance implications of di�erent schemes for real parallel applica-

tions. The needs for synchronization and scheduling support depend on the application

characteristics such as granularity of loop iterations and structure of parallelism in the

21

Table 1.1: Granularity and parallelism in parallel benchmarks

program average number average number of

name of iterations instructions per iteration

BDNA 450 515
FLO52 58 39

ADM 11 48

DYFESM 14 112

application. These issues are addressed by the experiments reported in Sections 3.2

and 3.3.

1.4 Dynamic and Static Methods

In general the performance improvements from parallel program execution change

with both the application program characteristics and with the system support for par-

allel execution. In automatically parallelized FORTRAN programs, the amount of par-

allelism and its granularity are limited by the parallelization technology of the compiler.

The existing technology limits the scope of parallelization to leaf functions and a few lev-

els of innermost loops. The most signi�cant e�ect of this is the granularity of parallelism.

Table 1.1 shows the available parallelism and granularity for the innermost parallel loops

in several automatically parallelized Perfect Club programs. In the presence of nested

parallel loops, it is observed that the number of iterations of outer parallel loops did not

di�er from that of the innermost parallel loops. Both the limited parallelism and the

rather small number of instructions in parallel loops suggest that a combination of both

22

architectural support and good synchronization and scheduling algorithms are needed for

e�cient execution of these programs.

23

2. INSTRUMENTATION AND SIMULATION METHODS

Simulation-based performance evaluation of parallel systems presents unique chal-

lenges. In this thesis the execution of a parallel program on a shared memory multipro-

cessor is simulated using a hybrid method. The execution of a program has two parts.

The �rst is the program execution local to a processor. For this part, the well-studied

techniques for single-processor systems such as trace-driven simulation can be used. The

second part comprises the sections of a program in which two or more processors in-

teract through resources such as shared memory, memory bus, and synchronization bus.

Such interaction can be both explicit, through the use of synchronization operations, and

implicit, cache misses, etc.

In this thesis an integrated simulation/emulationmodel is used to model the execution

of a parallel program on a shared memory multiprocessor. The behavior of the parallel

program that is local to a processor is not dependent on the number of processors in

the system. Therefore, this behavior can be captured into a trace collected from the

execution of the program on a single processor. On the other hand, the interaction

24

among multiple processors on a system is dependent on the number of processors in the

system and the particulars of the underlying architecture. It is not possible to reliably

capture the processor interaction through software instrumentation. Instrumentation of

a parallel program slows down the execution signi�cantly; hence, the generated timing

information is distorted. In general, processor interaction relies on asynchronous events,

and the execution time of algorithms is a nonlinear function of the number of processors

executing them and the existing system load. Therefore, it is not possible to compensate

for the distortion in the timing information in a collected trace by using postprocessing

techniques.

On the other hand, the timing information concerning interprocessor communication

can be captured by emulating the execution of the program segments which require

interprocessor interaction. Emulating interprocessor communication both increases the

accuracy of collected information and also makes it possible to evaluate new architectural

features to enhance interprocessor communication e�ciency.

2.1 Experimental Method

Trace-driven simulation is used in the experiments to evaluate the performance im-

plications of architecture support for synchronization. In the simulation model, a par-

allel FORTRAN program consists of a collection of sequential program segments called

task pieces. To execute task pieces in parallel, several types of events arise: execution

of DOALL and DOACROSS statements, execution of parallel loop iterations, barriers

25

synchronization, and execution of Advance/Await statements. Each trace used in the

simulations is a record of events that take place during the execution of a parallel program

and detailed information about instructions executed between pairs of events.

Figure 2.1 shows the trace for a DOALL loop with three iterations. The lines in the

trace starting with I denote the task pieces. Each line corresponds to the execution of a

sequential portion of the application and contain the number of lines of code executed,

and the number of read and write accesses to shared data. The line F indicates execution

of a DOALL statement and the line J the end of the DOALL loop. The B-E pairs identify

the beginning and end of iterations of the parallel loop respectively. The plain trace

in the �gure shows that after the execution of 10 sequential lines of the application, a

DOALL statement is executed. The loop has three iterations, each executing 24 lines.

After the execution of the parallel loop, 4 more lines are executed corresponding to the

last I line of the trace.

It can be seen from this example that whenever iterations of a parallel loop execute

the same number of instructions, there is redundancy in the trace concerning this loop.

The execution of the loop can be summarized by providing the execution characteristics

of a single iteration and providing the total number of iterations. The summarized trace

is shown in Figure 2.1 for which the F line is replaced by M and the number of iterations.

A parallel loop where the loop body does not contain any control
ow instructions can

be identi�ed at the time of instrumentation as a candidate for summarized tracing. The

26

Plain Summarized Descriptions

I 10 2 3 F : Start of parallel loop (Fork)

F J : End of parallel loop (Join)

B B : Beginning of an iteration

I 24 14 6 E : End of an iteration

E I 10 2 3 M p1 : Similar to F (summarized)

B M 3 p1 : Number of iterations

I 24 14 6 I 24 14 6 I p1p2p3 : Block of instructions

E J p1 : # of source code lines

B I 4 0 4 p2 : # of shared data reads
I 24 14 6 p2 : # of shared data reads
E
J
I 4 0 4

Figure 2.1: Multiprocessor trace example

compression of the trace from such loops results in the overall compression of the trace

in excess of 1:100, hence making o�-line storing of the execution trace possible.

In this study, traces are collected by instrumenting the source code of parallelized

applications. In a trace, each event is identi�ed by its type and arguments, e.g., the

synchronization point and the iteration number for an Await event. Each task piece is

annotated with the number of dynamic instructions executed in the task piece and the

dynamic count of shared memory accesses. These numbers are collected with the help of

pixie, an instruction-level instrumentation tool for the MIPS architecture [26]. Using a

RISC processor model similar to the MIPS R2000, in which instruction execution times

are de�ned by the architecture, the time to execute instructions in the CPU and local

cache can be calculated directly from the dynamic instruction count. On the other hand,

27

the time to service the cache misses and the atomic accesses to the shared memory de-

pends on the activities of other processors in the system. Therefore, a multiprocessor

simulator is used to calculate the program execution time of the task pieces and an archi-

tectural level emulator is used to dynamically calculate the execution time of events. To

assess the performance implications of synchronization primitives, a library of scheduling

and synchronization routines as described in Section 1.3 is included in the simulator.

2.2 Architectural Model

In the simulation model, the processor memory interconnect is a split transaction or

decoupled access bus, in which a memory access requested by a processor occupies the

bus only when its request and response are transmitted between the processor and the

memory modules. The bus is made available to other transactions while the memory

modules process an access. When the memory modules have long access latency, the

split transaction bus in addition to memory interleaving allows the multiple accesses to

be overlapped. In the experiments, we assume that shared memory is 8-way interleaved.

Two memorymodule cycle times are used: 3 and 20 processor cycles. The 3-cycle memory

module cycle time is chosen to represent the situation in which slow processors are used

in low-cost multiprocessor systems. The 20-cycle latency represents the case in which

fast processors are used in high performance multiprocessor systems.

In the experiments, the atomic operations test&set , exchange-byte and fetch&add are

performed in the memory modules rather than through the cache coherence protocol.

28

Whenever a memory location is accessed by one of these synchronization primitives, the

location is invalidated from the caches. The read-modify-write operation speci�ed by the

primitive is then carried out by the controller of the memory module that contains the

accessed location. Note that this memory location may be brought into cache later by

normal memory accesses made to that location due to spin waiting. This combination

of atomic operation implementation in memory modules, the cache coherence protocol,

and the split transaction bus is similar to that of the Encore Multimax 300 series multi-

processors [6]. Section 3.2 presents the characteristics of the application programs that

lead to the choice of performing the read-modify-write in memory modules rather than

through the cache coherence protocol.

Without any memory or bus contention, a synchronization primitive takes one cycle

to invalidate local cache, one cycle to transmit request via the memory bus, two memory

module cycles to perform the read-modify-write operation, and one cycle to transmit

response via the memory bus. This translates into 9 and 43 cycles for the two memory

module latencies, respectively. A memory access that misses from cache takes one cycle

to detect the miss, one cycle to transmit a cache re�ll request via the bus, one memory

module cycle time to access the �rst word in the missing block, and four clock cycles to

transmit the four words back to cache via the memory bus. This amounts to 9 and 26

cycles for the assumed memory module latencies. Note that the latency for executing

synchronization primitives and re�lling caches increases considerably in the presence of

29

Table 2.1: Timing assumptions without contention

primitive latency

test&set 3 + 2 �M

exchange-byte 3 + 2 �M
fetch&add 3 + 2 �M

cache miss 6 +M

lock/unlock (synchronization bus) 1
fetch&add (synchronization bus) 1

bus and memory contention. This e�ect is accounted for in the simulations on a cycle-

by-cycle basis.

To evaluate the e�ectiveness of a synchronization bus, a single-cycle access synchro-

nization bus model is used. The synchronization bus provides single-cycle lock/unlock

operations on shared lock variables and single cycle fetch&add operations on shared coun-

ters. In the presence of con
icts, i.e., multiple requests in the same cycle, requests are

served in round-robin fashion. A summary of the timing assumptions for synchronization

primitives is shown in Table 2.1.

In all the simulations, an invalidation-based write-back cache coherence scheme is

used. The shared memory tra�c contributed by the application is modeled based on

the measured instruction count and frequency of shared data accesses. Table 2.2 lists

the assumptions used to simulate the memory tra�c for the task pieces. It is assumed

that 20% of the instructions executed are memory references. In addition, it is measured

that 6-8% of all instructions (approximately 35% of all memory references) are to shared

data. It is assumed that references to shared data cause the majority of cache misses

30

Table 2.2: Assumptions for memory tra�c

parameter value

memory/instruction ratio 0.20

shared data cache miss rate 0.80
nonshared data cache miss rate 0.05

(80% shared data cache miss rate and 5% nonshared data cache miss rate). When the

experiments are repeated by lowering the shared cache miss rate to 40%, the speedup

�gures reported in Chapter 3 change by less than 2%.

31

3. SYNCHRONIZATION SUPPORT FOR PARALLEL LOOP EXECUTION

This chapter presents an analysis and experimental evaluation of synchronization

overhead on shared memorymultiprocessors. Section 3.1 provides the analysis of iteration

scheduling overhead and its e�ect on program execution time. This section also provides

experimental data on architecture speci�c parameters in the formulations. The presented

data provide a comparison of basic synchronization and scheduling operations across

architectures supporting di�erent synchronization mechanisms.

Section 3.2 describes the important characteristics of the benchmark programs used

in the experiments and the behavior of lock algorithms used for mutual exclusion in

scheduling algorithms.

Section 3.3 provides an experimental evaluation of the relation between architectural

support for synchronization and parallel program performance. The results presented

identify the contribution of iteration and task scheduling algorithms as well the available

32

parallelism to the overall program performance. The presented data explore two systems

with di�erent memory access latencies.

Finally Section 3.4 includes the concluding remarks for this section.

3.1 Analysis of Iteration Scheduling Overhead

In the execution of a parallel loop, the e�ect of iteration scheduling overhead on

performance depends on the number of processors, the total number of iterations, and

the size of each iteration. This section �rst presents the expressions for speedup in

executing parallel loops in which the loop iterations are large (coarse granularity) and

where the loops iterations are small (�ne granularity). These expressions provide insight

into how iteration scheduling overhead in
uences loop execution time and will be used to

analyze the simulation results later in this section. A more general treatment of program

granularity and run-time overhead can be found in [27].

Consider a DOALL loop with N iterations where each iteration takes tl time to

execute without parallel processing overhead. For a given synchronization primitive and

lock algorithm, let tsch be the time it takes for a processor to schedule an iteration. This

section will look at the impact of scheduling overhead for two cases. For the �rst case

it is assumed that when a processor is scheduling an iteration, it is the only processor

doing so.

For a given P and tsch, the necessary condition for this case is

tl > (P � 1) � tsch;

33

and the time to execute the loop with P processors can be written as

tP = ((tsch + tl)� dN=P e) + toh;

where toh is the total task scheduling and barrier synchronization overhead per proces-

sor. Since the task scheduling and barrier synchronization overhead depend only on the

number of processors, toh is constant for a given P .

The execution time of the sequential version of this loop, tseq, is tl � N . We de�ne

speedup for P processors as the ratio of tseq to tP . The speedup for a DOALL loop is

speedup =
tseq

tP

=
tlN

((tsch + tl)� dN=P e) + toh

�
P

tsch+tl
tl

+ P�toh
N�tl

;

for N � P ,

speedup � P �
tl

tsch + tl
;

using tl > (P � 1) � tsch,

speedup > P �
tl

tl
P�1

+ tl

> P �
P � 1

P

> P � 1:

Therefore, when tl > (P � 1) � tsch, the speedup increases linearly with the number

of processors; hence the execution time depends only on P and the total amount of work

in the loop, N � tl.

34

Now consider the case in which a processor completing the execution of an iteration

always has to wait to schedule the next iteration because at least one other processor is

scheduling an iteration at that time. The necessary condition for this case is

tl < (P � 1) � tsch;

and the iteration scheduling overhead forms the critical path in determining the loop

execution time. When iteration scheduling becomes the bottleneck, execution time is

tP = N � tsch + tl;

for N � P ,

tP � N � tsch:

When the iteration scheduling algorithm is implementedwith lock operations, schedul-

ing an iteration involves transferring the ownership of the lock from one processor to the

next, and reading and incrementing the shared counter. Hence,

tsch = tlock�transfer + tupdate:

The remainder of this section �rst look at how loop execution time varies with loop

granularity. Then the iteration scheduling overhead (tsch) is quaniti�ed for di�erent

hardware synchronization primitives by simulating execution of a parallel loop with very

�ne granularity.

35

3.1.1 Granularity e�ects

The analysis above shows the existence of two di�erent types of behavior of execution

time for a parallel loop. Given a multiprocessor system, the parameters P and tsch do not

change from one loop to another. Keeping these parameters constant, the granularity of a

loop, tl, determines whether or not scheduling overhead is signi�cant in overall execution

time.

The architectural support for synchronization primitives in
uences the execution time

of parallel loop in two ways. On the one hand, di�erent values of tsch for di�erent

primitives result in di�erent execution times when the loop iterations are small (i.e.,

�ne granularity loops). On the other hand, tsch determines whether a loop is of �ne

or coarse granularity. In this section the simulation results on the variation of loop

execution times across di�erent implementations of the iteration scheduling algorithm

are presented. Since tsch determines the execution time of �ne-granularity loops, it is

important to quantify how tsch changes with synchronization primitives and the number

of processors in the system.

Figure 3.1 shows the simulation results for execution time vs. the size of an iteration

in a DOALL loop with the test&set primitive implementing test&test&set algorithm for

lock accesses. Similar curves were obtained for other synchronization primitives and for

a synchronization bus supporting atomic lock operations. The loop sizes are in terms

of the number of instructions, and the execution time in terms of CPU cycles. In these

36

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000

Execution
time

Loop size (instructions per iteration)

4 procs �

��
�

�

8 procs 4

444

4
12 procs ?

??

?

16 procs

Figure 3.1: Execution time vs. granularity for test&set primitive

simulations, the total number of executed instructions in the loop is kept constant while

the number of instructions in an iteration is changed.

Figure 3.1 shows that for 16 processors and using test&set primitive, there is a sharp

increase in execution time when the iteration size is less than 550 instructions. The

memory module cycle time is assumed to be 3 processor cycles. Similar plots for other

primitives indicate that the critical iteration sizes are around 300 for exchange-byte and

200 for a synchronization bus. Using the fetch&add primitive, the critical iteration size

is around 100 instructions. As will be shown in Section 3.2, in the application programs

used in these experiments, the iteration sizes of the parallel loops vary from 10 to 1000

instructions. This shows that the choice of synchronization primitives will in
uence the

performance of some loops.

37

0

50000

100000

150000

200000

250000

300000

350000

0 5000 10000 15000 20000

Execution
time

Number of iterations

4 procs �

���
�

�

8 procs 4

444

4

4

12 procs ?

??

?

?

16 procs

Figure 3.2: Execution time vs. number of iterations for test&set primitive

3.1.2 Scheduling overhead for �ne-grain loops

For �ne-grain loops, the loop execution time TP is approximately N � tsch. The

change of execution time with respect to the granularity of a set of synthetic loops is

shown in Figure 3.2 for the test&set primitive implementing the test&test&set algorithm.

Each of the synthetic loops has a total of 220000 executed instructions. Therefore, the

region in which iteration size < 50 instructions corresponds to N > 4400 in these �gures.

The common observation from these �gures is that when loop iterations are su�ciently

small (N is su�ciently large), the execution time increases linearly with N . Also, when

extrapolated, TP vs. N lines go through the origin which validates the linear model

TP = N � tsch

for execution time.

38

Figure 3.3 shows how scheduling overhead per iteration, tsch, changes for the di�erent

synchronization primitives as the number of processors increases. Using the test&set

primitive, the scheduling overhead increases with the number of processors. For the

exchange-byte and fetch&add primitives and the synchronization bus, the scheduling

overhead scales well. Furthermore, tsch shows wide variation across primitives. For the

16-processor case, the average number of cycles to schedule a loop iteration is 98, 31,

17 and 7 for test&set , exchange-byte , synchronization bus, and fetch&add primitives,

respectively.

The synchronization bus model used in these simulations has single-cycle access time

for free locks and single-cycle lock transfer time. Therefore, the synchronization bus

data show the highest performance achievable by hardware support for lock accesses

alone. In Section 3.3, the performance �gures are given for a synchronization bus which

also supports single-cycle fetch&add operation. Such a synchronization bus is capable of

scheduling a loop iteration every clock cycle. Therefore, its overall performance can be

expected to be better than that of all of the primitives analyzed in this section.

3.2 Synchronization Characteristics of Applications

In this section some synchronization characteristics of the application programs used

in these experiments are reported. These characteristics help to focus the experiments

and to analyze the experimental results. Section 3.2.1 presents the granularity of the

39

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16

Cycles
per

iteration

Number of processors

test and set 2

2

2

2

2 2

exchange byte �

�
� � � �

fetch and add 4

4
4 4 4 4

synchronization bus

Figure 3.3: Iteration scheduling overhead vs. number of processors

parallel loops in these application programs. Section 3.2.2 discusses the lock access

locality in the applications.

3.2.1 Parallelism characteristics of application programs

Experimental investigation of parallel processing requires realistic parallel programs.

To support the experiments, a set of programs from the Perfect Club benchmark set

are parallelized. The program KAP [20] was used as the primary parallelization tool.

Using statement-level pro�ling (tcov), the frequently executed parts of the program were

identi�ed. If the parallelization of these parts was not satisfactory, the causes were

investigated. In some cases, the unsatisfactory parallelization results were simply due to

KAP's limitations in manipulating loop structures, e.g., too many instructions in loop

40

body or too many levels of nesting. In these cases, the important loops were parallelized

manually.

Among all of the programs thus parallelized, four show a relatively high degree of

parallelism, i.e., at least 60% of the computation was done in the parallel loops. These

four programs are ADM, BDNA, DYFESM, and FLO52. The program ADM is a three-

dimensional code which simulates pollutant concentration and deposition patterns in a

lakeshore environment by solving a complete system of hydrodynamic equations. The

BDNA code performs molecular dynamic simulations of biomolecules in water. The

DYFESM code is a two-dimensional, dynamic, �nite-element code for the analysis of

symmetric anisotropic structures. The FLO52 code analyses the transonic inviscid
ow

past an airfoil by solving unsteady Euler equations.

To perform experiments with these four programs, instrumentation code is inserted

in the programs and their traces are collected. An in-depth treatment of automatic

parallelization and the available parallelism in the Perfect Club programs can be found

in [28],[29].

Table 1.1 on page 22 shows the available parallelism and granularity for the innermost

parallel loops in the four automatically parallelized programs. In three of the four pro-

grams, FLO52, ADM, and DYFESM, the parallelism was exploited in the form of nested

DOALL loops. For the BDNA program, the parallel loops were not nested, and two-

thirds of the dynamic parallel loops were DOACROSS loops with dependence distances

of one iteration.

41

For nested parallel loops, the number of iterations of outer loops does not di�er from

that of innermost parallel loops. Therefore, the number of iterations of parallel loops

cannot be increased with techniques such as parallelizing outer loops or loop interchange.

The small number of loop iterations suggests that chunk scheduling and guided self-

scheduling cannot be used to improve performance signi�cantly beyond self-scheduling.

The small number of instructions in each iteration suggests that architectural support is

needed to execute these programs e�ciently.

3.2.2 Locality of lock accesses in synchronization algorithms

In these simulations, all four programs exhibited very low locality for lock accesses.

When a processor acquires a lock, it is considered a lock hit if the processor is also the

one that last released the lock. Otherwise, the lock acquisition results in a lock miss.

The measured lock hit rate for the four programs with four or more processors was less

than 0.2%. Such a low lock access locality can be explained by the dynamic behavior of

scheduling and synchronization algorithms.

For each parallel loop, every processor acquires the task queue lock and barrier lock

only once. This results in a round-robin style of accesses to these locks. For each parallel

loop, the loop counter lock used in the loop self-scheduling algorithm is accessed multiple

times by each processor. However, a lock hit can occur only when the processor which

most recently acquired an iteration �nishes the execution of that iteration before the

42

completion of all of the previously scheduled iterations. Due to low variation in the size

of iterations of a parallel loop, this scenario is unlikely.

In the experiments, because of the low lock hit rate, the atomic memory operations are

implemented in shared memory. An implementation of atomic operations via the cache

coherence protocol would result in excessive invalidation tra�c and would also increase

the latency of atomic operations. On the other hand, algorithms such as test&test&set re-

quire spinning on memory locations which are modi�ed by atomic operations. Therefore,

all memory locations are cached with an invalidation-based write-back cache coherence

scheme. This simple scheme e�ectively uses cache to eliminate excessive memory tra�c

due to spinning while it e�ciently executes atomic synchronization primitive in memory

modules. For example, while waiting for a busy lock, the test loop of a test&test&set

algorithm brings the data corresponding to the lock value into the cache. As long as the

processor owning the lock does not release it, the test loops of other processors are con-

�ned to their local caches. When the lock is released by its owner with a write operation

to the lock data structure, the copies of the lock data structure in the other processors

caches are invalidated. In the next test cycle of the test&test&set algorithm, the mem-

ory accesses to the lock location result in a cache miss for each waiting processor. After

fetching the new value of the freed lock location from memory, the test cycle terminates

and the test&set operation is executed. The caching of lock data structure reduces the

memory tra�c during the test cycle.

43

3.3 Experimental Results

In this section the performance implications of synchronization primitives on four

application programs are presented. The performance results are obtained by simulating

a 16-processor system assuming centralized task scheduling, iteration self-scheduling, and

linear nonblocking barrier synchronization. The system timing assumptions are the same

as those summarized in Section 2.1. To calculate the speedup, the execution time for the

sequential version of a program without any parallel processing overhead is used as the

basis.

Figures 3.4{3.7 present the speedup obtained in the execution of these program to-

gether with three categories of parallel processing overhead: iteration scheduling, task

scheduling, and idle time. Each �gure shows the results for one benchmark in two graphs,

one for 3-cycle memory modules and the other for 20-cycle memory modules. The hor-

izontal axis lists the combinations of architectural support and lock algorithms used in

the experiments; these combinations are described in Table 3.1. The combination of

exchange-byte primitive with test&test&set algorithm is not included because this case

has the same performance as the test&set with test&test&set combination.

The task scheduling overhead corresponds to the time the processors spent to acquire

tasks from the task queue. The iteration scheduling overhead refers to the time the

processors spent in the self-scheduling code to acquire iterations. The processor idle time

is de�ned as the time spent by processors waiting for a task to be put into the empty task

queue. According to this de�nition, a processor is idle only if the task queue is empty

44

10

20

30

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

speedup

exchange-byte
with

BDNA

with
test&test&set

test&test&set
with supporting

7.4 7.5 7.8 5.5 6.8 7.4

Memory cycle time = 20

10

20

30

task scheduling

idle time

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

exchange-byte
with

8.7 8.9 9.1 6.0 8.5 8.8

with
test&test&set

test&test&set
with

iteration scheduling

supporting

Memory cycle time = 3

:

Figure 3.4: Speedup and scheduling overhead for BDNA with 16 processors

when the processor completes its previously assigned task. This provides a measure of

available parallelism in the parallelized programs.

Note that the three overhead numbers in Figures 3.4{3.7 for each combination do not

add up to 100%. The major part of the di�erence is the time that is actually spent in

the execution of the application code. In addition, there are three more categories of

overhead that are measured but not shown because they are usually too small to report.

They are due to task queue insertion, barrier synchronization, and Advance/Await syn-

chronization. The time it takes for processors to insert tasks into the task queue is less

than 2% of the execution time for all experiments. For all four benchmarks, the barrier

synchronization overhead is also measured to be less than 2% of the execution time. Of

the four benchmarks, we encounter a signi�cant number of DOACROSS loops only in the

BDNA program. The overhead for Advance and Await synchronization is about 11% of

the execution time for 3-cycle memory modules and 18% for 20-cycle memory modules.

45

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

speedup

exchange-byte
with

FLO52

2.6 4.6 6.3 0.7 2.4 3.2

with
test&test&set

test&test&set
with

supporting

task scheduling

idle time

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

exchange-byte
withwith

test&test&set

test&test&set
with

iteration scheduling

supporting

2.4 2.8 5.5 0.9 1.5 2.5:

Memory cycle time = 3 Memory cycle time = 20

60

40

20

60

40

20

Figure 3.5: Speedup and scheduling overhead for FLO52 with 16 processors

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

speedup

ADM
0.8 1.5 1.8 0.5 1.1 1.5

exchange-byte
with

with

with
test&test&set

test&test&set

supporting

task scheduling

idle time

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

exchange-byte
with

with

with
test&test&set

test&test&set

iteration scheduling

supporting

0.7 1.0 1.5 0.5 0.7 1.0

Memory cycle time = 20Memory cycle time = 3

:

60

40

20

60

40

20

Figure 3.6: Speedup and scheduling overhead for ADM with 16 processors

46

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

speedup

exchange-byte
with

DYFESM

1.8 2.5 2.7 1.3 2.2 2.4

test&test&set

test&test&set

with

with

supporting

task scheduling

idle time

with
queuing lock

fetch & add

fetch & add synch. bus

fetch & add
test & set

synch. bus

queuing lock

pe
rc

en
ta

ng
e

of
 e

xe
cu

tio
n

tim
e

ov
er

he
ad

 a
s

exchange-byte
with

test&test&set

test&test&set

with

with

iteration scheduling

supporting

2.0 2.5 2.9 1.5 2.0 2.4

Memory cycle time = 20Memory Cycle time = 3

:

60

40

20

60

40

20

Figure 3.7: Speedup and scheduling overhead for DYFESM with 16 processors

In Figures 3.4-3.7, the three experiments on the left side of each graph correspond to

the cases in which some form of fetch&add primitive is supported in hardware. For all

four applications, when the fetch&add operation is not supported, the iteration schedul-

ing overhead increased signi�cantly. This increase in overhead has a direct impact on the

performance of the applications. Furthermore, the performance of the fetch&add primi-

tive with queuing lock algorithm (column 2) was at least as good as the performance of a

synchronization bus supporting single-cycle atomic lock accesses(column 6). This is true

even when the memory module cycle time is 20 processor cycles, which implies a minimal

latency of 43 cycles to execute fetch&add . Therefore, implementing the fetch&add prim-

itive in memory modules is as e�ective as providing a synchronization bus that supports

one cycle lock/unlock operations.

For the BDNA program, task scheduling overhead is not signi�cant for all experi-

ments. As shown in Table 1.1, loops in BDNA have a large number of iterations and

relatively large granularity, which results in infrequent invocation of the task scheduling

47

Table 3.1: The use of architectural support and lock algorithms in experiments

architectural support use in scheduling

and lock algorithm and synchronization

fetch&add with test&test&set Iteration scheduling and barrier synchronization

algorithms use fetch&add for shared counter in-

crements. Test&test&set algorithm based on

fetch&add is used to access the task queue lock.

fetch&add with queuing lock Iteration scheduling and barrier synchronization
algorithms use fetch&add for shared counter in-
crements. Queuing lock based on fetch&add is
used to access the task queue lock.

synch. bus supporting Iteration scheduling and barrier synchronization
fetch&add algorithms use single-cycle fetch&add on synchro-

nization bus for shared counter increments. Syn-
chronization bus provides single-cycle lock opera-
tions to access the task queue lock.

exchange-byte with queuing lock Queuing lock algorithm is used to access the
locks associated with shared counters in iteration
scheduling and barrier synchronization. It is also
used to access the task queue lock.

test&set with test&test&set Test&test&set algorithm is used to access the

locks associated with the shared counters in it-

eration scheduling and barrier synchronization al-
gorithms. It is also used to access the task queue

lock.

synch. bus Synchronization bus provides the single-cycle

lock/unlock operations to access the locks associ-
ated with the shared counters in iteration schedul-
ing and barrier synchronization algorithms. They

are also used to access the task queue lock.

48

algorithm. On the other hand, the remaining three programs have much less computation

per parallel loop, and this is re
ected in the signi�cant task scheduling overhead in their

performance. Even with a synchronization bus that implements single cycle lock/unlock

and single cycle fetch&add (column 3), the task scheduling overhead is still signi�cant

(see Figures 3.5{3.7). Note also that in FLO52, the relative percentage of time spent

in task scheduling is higher with fetch&add support. This increased importance of task

scheduling overhead is due to a reduction in time spent in the iteration scheduling rather

than an increase in time spent in task scheduling.

There are three di�erent implementations of lock accesses. They are the test&test&set

algorithm (columns 1 and 4), the queuing lock algorithm (columns 2 and 5), and a syn-

chronization bus implementation of lock operations (columns 3 and 6). The test&test&set

algorithm di�ers from the queuing lock algorithm in the amount of bus contention it

causes. On the other hand, the queuing lock algorithm is similar to a synchronization

bus implementation of lock operations, except for a much higher lock access latency.

A comparison of speedup �gures in columns 4 and 5 for the four programs show

that reducing the bus contention is important for the performance of all four application

programs. The bus contention introduced by the test&test&set algorithm can seriously

limit the speedup achieved by parallel processing. The same conclusion holds for the

fetch&add results shown in columns 1 and 2, even though lock operations are not used

for iteration scheduling here. A comparison of the speedup �gures for columns 5 and

49

6 shows that decreasing lock access latency can substantially increase the application

program performance.

As for ADM and DYFESM, the lack of parallelism is also an important factor for

the low speedup �gures. This can be observed from the idle time of processors in Fig-

ures 3.6 and 3.7. Finally, the results presented here demonstrate that the architectural

support for synchronization and the choice of lock algorithms signi�cantly in
uence the

performance of all four parallel application programs.

3.4 Concluding Remarks

This chapter analyzed the performance implications of synchronization support for

FORTRAN programs parallelized by a state-of-the-art compiler. In these programs, par-

allelism is exploited at the loop level that requires task scheduling, iteration scheduling,

barrier synchronization, and advance/await.

Using simulation, it is shown that the time to schedule an iteration varies signi�cantly

with the architectural synchronization support. The synchronization algorithms used

in executing these programs depend heavily on shared counters. In accessing shared

counters, lock algorithms which reduce bus contention do enhance performance. For the

applications studied, due to the importance of shared counters, a fetch&add primitive

implemented in memory modules can be as e�ective as a special synchronization bus

which supports single-cycle lock access.

50

Simulations with real programs show that for applications with �ne granularity loops

and limited parallelism, the execution times vary widely across synchronization primitives

and lock algorithms. This is caused by the di�erences in the e�ciency of iteration and

task scheduling algorithms. Note that moderate memory latency and a split transaction

bus are assumed in the simulations. For architectures with very long memory access

latency or those in which atomic operations consume more memory bus bandwidth by

requiring exclusive bus access during synchronization, the performance implications of

synchronization support are expected to be even stronger.

Chapter 4 addresses the task scheduling overhead in nested parallel loop execution.

Using a distributed parallel task scheduling algorithm, it is shown that task scheduling

overhead can be reduced. In Chapter 5, compiler-assisted loop restructuring techniques

are discussed to increase loop granularity of parallel loops. By grouping iterations of a

nested-loop structure together, it is shown that loop granularity can be increased without

sacri�cing parallelism.

51

4. AN EFFICIENT TASK SCHEDULING ALGORITHM

In scienti�c parallel applications, most of the computation involves the processing of

large, multidimensional data structures which results in a high degree of data parallelism.

This parallelism can be exploited in the form of nested parallel loops. In Chapter 3, task

scheduling, scheduling parallel loops to multiple processors, is identi�ed as a source of

overhead in parallel program execution. This chapter proposes an e�cient algorithm for

executing nested parallel loops and presents a simulation-based performance comparison

of di�erent techniques using real application traces.

For this study, several compiler-parallelized applications are chosen from the Perfect

Club Benchmark Suite [1] which show a high degree of parallelism in the form of nested

parallel loops. Experience with these applications shows that most programs use moder-

ately sized data structures, in the range of 400-10000 elements. When a two-dimensional

array of 900 elements (30�30) is processed in a doubly nested parallel loop, the parallelism

at each level is limited to 30. This demonstrates the need to exploit the parallelism of the

inner loops. There are two performance-related issues in executing �ne-to-medium-grain

52

parallel loops [17]. The �rst is the relatively high overhead in scheduling individual iter-

ations. This overhead can be reduced either by using dedicated architectural support for

synchronization, e.g., a synchronization bus or powerful synchronization primitives, or by

using blocking compiler transformations to increase loop granularity as will be discussed

in Chapter 5

Existing systems with dedicated synchronization buses or other similar hardware have

limited resources which are designed mostly for executing one parallel loop at a time.

These limitations arise either from the number of available synchronization registers or

the inability to repartition and manage the resources at run time in an e�cient way. On

the other hand, iteration scheduling algorithms which are more complicated than the

self-scheduling algorithm are e�cient only when the number of iterations in a parallel

loop is much larger than the number of processors.

The second source of overhead is due to starting the execution of a parallel loop on

multiple processors and synchronizing processors at the end of its execution | usually

with a barrier. This overhead becomes signi�cant when the total amount of computation

in a parallel loop is small. This is true in general for the innermost parallel loops due to

both the �ner granularity and the relatively small number of iterations.

The results presented in Chapter 3 show that most of the overhead in executing a par-

allel loop is due to time spent by processors waiting to acquire a lock or spinning (mostly

in cache) on a memory location which is used for signalling across processors. These

53

situations arise in all synchronization algorithms, task distribution, iteration scheduling,

and barrier synchronization.

Most existing high performance lock algorithms, e.g., tournament lock and queuing

lock, are blocking algorithms. That is, a processor which is trying to acquire a lock

is committed until the lock is acquired. This makes it impossible for a processor to

utilize the idle time spent waiting for a lock. In Section 4.1, a nonblocking version of

the queuing lock algorithm is presented and a task distribution algorithm which uses the

this nonblocking property is described.

When all the iterations of a parallel loop are scheduled, the processors completing

execution synchronize at a barrier. Traditionally, barrier synchronization has two phases.

In the �rst phase, processors enter the barrier and start waiting for other processors to

enter. In the second phase, when all processors have entered the barrier, the barrier

exit is signalled and the processors can proceed in executing the program. The time

between the barrier entry and exit is idle time for processors. In the fuzzy barrier [14],

the compiler schedules instructions to be executed in this otherwise idle period. In the

next section, a more relaxed barrier model in which only one processor is required to

wait for the barrier exit is described. In this model, all processors but one are allowed

to leave the barrier upon barrier entry. In executing nested parallel loops, this type of

barrier synchronization allows the dynamic overlapping of execution of one loop with the

barrier synchronization of another loop.

54

Nonblocking lock algorithms combined with nonblocking barrier synchronization al-

lows us to explore more
exible dynamic execution schemes for nested parallel loops and

compare their performances with the traditional style (one loop at a time) execution of

parallel loops. The modi�cations on the algorithms and the related changes in execution

model are discussed in the next section.

Section 4.2 presents the simulation results for di�erent techniques of nested parallel

loop execution, and concluding remarks for this chapter are presented in Section 4.3.

4.1 Models for Nested Parallel Loop Execution and Synchronization Algorithms

An application with nested parallel loops can be executed in several ways depending

on the available compiler, hardware and run-time system support. The simplest model

involves executing the outermost loop in parallel and the inner parallel loops sequentially.

This model is employed in the run-time system of existing shared memorymultiprocessors

[5]. It has the advantage of being simple but exploits only part of the available parallelism.

Another model for execution of nested parallel loops involves exploiting the parallelism

at a single level but using compiler transformations to collapse the nested loops into a

one-level loop. When successful, these transformations result in the exploitation of all of

the available parallelism within the single-level parallel loop execution paradigm. Such

compiler transformations are a current �eld of research, and the study of di�erent varieties

of transformations and their applicability to particular loop structures are beyond the

scope of this thesis. For the purpose of comparison, it will be assumed that a compiler

55

can successfully perform loop restructuring in which all of the parallelism of the inner

loops can be exploited in a single DOALL. Although such a transformation may not be

realistic, it does provide a good reference point in comparing the performance of di�erent

models. It is also assumed that all of the loop iterations are scheduled one at a time.

It should be pointed out that exploitation of high degree of parallelism in a single-level

DOALL loop may make it possible to e�ciently use di�erent types of loop iteration

scheduling algorithms other than self-scheduling [19].

The third model of execution is executing nested parallel loops by executing inner

loops one at a time. The parallelism of each inner loop is then exploited with multiple

processors. This model stays true to the parallelism structure in the application and can

be implemented easily with existing task scheduling, loop iteration scheduling and barrier

synchronization algorithms. One disadvantage of this model is the increased overhead in

distributing loops to the processors to begin their execution and synchronizing at barriers

at the end of execution for each inner loop.

A re�nement of this model involves loosening the de�nition of barrier synchronization

by allowing processors entering a barrier to leave it immediately and start execution of

other parallel loops | whenever there are some. The parallel FORTRAN semantics

require only the processor which is going to execute the code after the parallel loop to

wait for the barrier exit. This model has the advantage of reducing the barrier execution

overhead for most of the processors by allowing the execution of application code in the

time which would otherwise be spent waiting at a barrier. Such a barrier algorithm can

56

Table 4.1: Execution models for nested parallel loops

execution

model description

1 Inner loops are executed sequentially
2 Nested parallel loops collapsed into single parallel loops (ideal)

3 Nested parallel execution, blocking barriers

4 Nested parallel execution, nonblocking barriers
5 Nested parallel execution, multiple simultaneous access task queues

be easily implemented as a linear barrier in which all processors but one do not wait

for the barrier exit signal. An implementation of this model involves a task queue from

which the parallel loops, whose control dependencies are satis�ed, are distributed to the

processors. In parallel FORTRAN, execution of a DOALL or DOACROSS statement

implies that the control dependencies for corresponding parallel loops are satis�ed.

The �nal model is a further re�nement of the fourth model. In developing this model

the goal was to decrease the task scheduling overhead, speci�cally the waiting time to

acquire exclusive access to the task queue, which was observed to be signi�cant for the

innermost loops in preliminary simulations. Here, a number of task queues are used for

distributing tasks in which all processors have access to all task queues; therefore, the

throughput for task scheduling is increased. A summary of these �ve models is given in

Table 4.1

Multiple task queues to increase task scheduling throughput have been proposed be-

fore [22]. Unlike the previously proposed algorithms, the method proposed in this thesis

does not require any assignment of processors to task queues and does not introduce a

57

load-balancing problem. Furthermore, the proposed method allows scheduling of a paral-

lel loop to multiple processors. Previous work in task scheduling has focused exclusively

on sequential tasks.

In the proposed scheme, accesses to task queues are controlled by locks. Each proces-

sor tries to gain exclusive access to all of the queues. Using a nonblocking lock algorithm,

a processor can wait for multiple locks simultaneously. When a processor acquires the

lock of a task queue (gains the exclusive access), it stops trying to gain access to the

remaining task queue locks. This type of queue access is possible only if the underlying

locking algorithm allows a processor to abort the process of acquiring a lock. The low-

contention, high performance lock algorithms such as queuing lock or tournament lock

require the processors to commit themselves upon a lock() operation [12],[13]. In this

chapter a nonblocking queuing lock algorithm is presented which allows a processor to

abort a lock() operation with the option of retrying in the future.

The nonblocking queuing lock algorithm shown in Figure 4.1 uses the fetch&add

primitive for setting up a lock queue. The atomic fetch&add operation is used to obtain

a unique number to set up a queue. The array a[] is used for mapping these unique

numbers to the processors. The algorithm assumes that on a P-processor system, the

processors are numbered 0 to P-1, and the variable my id contains this number. A

processor entering the lock queue reads the number of the processor ahead of itself from

array a.

58

void initialize(lock id)

f for (i=0;i<P+1;i++) a[lock id][i] = EMPTY ;

a[lock id][P+1] = 2*P

for (i=0;i<2*P;i++) b[lock id][i] = BUSY ;

b[lock id][2*P] = FREE ;

lock counter = 0 ;

g

int lock(lock id)

f myturn = fetch&add(lock counter,1) % (P+2) ;

myturn minus one = myturn+P+1 % (P+2)

my id = me[lock id] ;

me[lock id] = (me[lock id] + P) % (2*P) ;

while(a[lock id][myturn minus one] == EMPTY) ;

ahead of me[lock id]=a[lock id][myturn minus one];

while(b[lock id][my id] != BUSY) ;

a[lock id][myturn] = my id ;

a[lock id][myturn minus one] = EMPTY ;

return(check lock(lock id)) ;

g

int check lock(lock id)

f lock status=b[lock id][ahead of me[lock id]] ;

if(lock status == BUSY) return(LOCK BUSY) ;

else if(lock status == FREE) f

b[lock id][ahead of me[lock id]] = BUSY ;

return(LOCK OWNED) ;

g else f

b[lock id][ahead of me[lock id]] = BUSY ;

ahead of me[lock id] = lock status ;

return(check lock(lock id) ;

g

g

void release lock(lock id)

f b[lock id][my id] = FREE ;

g

void leave lock(lock id)

f check lock(lock id) ;

b[lock id][my id] = ahead of me[lock id] ;

g

Figure 4.1: Nonblocking queuing lock algorithm with fetch&add primitive

59

initial state of the lock
4 processors

P2 acquires the lock
P1 and P4 enter the queue

P1 leaves the lock

a 8E E E E E

b B B B B B B B B F

a 8E E

b B B B B B B B B

2 1 4

B

a 8E E

b B B B B B B B

2 1 4

B2

a 8E E

b B B B B B B B

2 1 4

B

P4 checks the lock

B (P4 is waiting for P1)

Figure 4.2: Operation of nonblocking queuing lock

A processor set up in the lock queue waits for the processor in front of it to release

the lock. The array b is used for signalling between the processors. A processor leaving

the lock queue also uses array b to pass the ID of the processor ahead to the processor

behind for proper operation of the queue. While the lock is held by a processor, other

processors can enter and leave the lock queue many times. The algorithm includes several

checks to prevent race conditions and to ensure the proper use of arrays a and b. Use of

the algorithm is shown in Figure 4.2

60

P1 P2 P3 P4

task

queue

1

task

queue

2

P1P2P4
lock 1

P3 P2 P4
lock 2

Figure 4.3: Snapshot in task distribution (a)

The task scheduling algorithm used for model 5 to increase task distribution through-

put is a straightforward extension of centralized task scheduling. A �xed number of task

queues are used for distributing tasks. Each processor starts the task scheduling al-

gorithm by checking whether the queues are empty or not. A processor tries to gain

exclusive access to the queues which are not empty. Upon gaining access to a task queue,

it aborts the lock operations for other queues and schedules a parallel loop for execution.

Figures 4.3 and 4.4 demonstrate the simultaneous use of multiple task queues. In Fig-

ure 4.3, processors P1 and P3 own the locks for accessing the two task queues. Processors

P2 and P4 are waiting for both of the locks in the respective lock queues. In Figure 4.4,

P1 releases the lock of task queue 1 and the next processor in the queue of lock 1, P2,

acquires lock 1. After acquiring lock 1, P2 leaves the queue of lock 2. Therefore, P4

61

P1 P2 P3 P4

task

queue

1

task

queue

2

lock 1
P3

lock 2
P2P4 P4

executing loop

Figure 4.4: Snapshot in task distribution (b)

advances in both lock queues. If P2 were behind P4 in the queue of lock 2, it would

simply disappear from that queue.

Balancing the amount of computation scheduled from each queue is important only

for the throughput of task scheduling. Even in the case in which all loops are distributed

from one of the task queues, all processors will execute the loop iterations in parallel as in

model 4. To obtain a balance at least in the number of loops scheduled from task queues,

processors inserting tasks to the queues start from a random queue and visit queues in

round-robin fashion for each new parallel loop.

To evaluate the performance of several parallel processor architectures, the high-level

trace driven simulator described in Chapter 2 is used. The simulator implements the task

management and synchronization algorithms for di�erent models of nested parallel loop

62

execution described in Section 4.1. In the experiments, the atomic operation fetch&add

is implemented in shared memory. The processor memory interconnection is a decoupled

access bus whose cycle time is equal to the processor cycle time. It is assumed that

shared memory is 8-way interleaved where an access to a module takes 3 bus cycles. An

atomic fetch&add operation takes 6 bus cycles to execute in memory.

4.2 Experimental Results

In the comparison of the performance of di�erent execution models for nested parallel

loops, the traces used are from three parallelized Perfect Club applications. These pro-

grams are FLO52, DYFESM and ADM. Of the thirteen programs in the Perfect Club set,

four of them were parallelized to the extent that at least half of the computation is done

in parallel loops. Out of these four applications, the parallel loops in the BDNA program

are not nested. Therefore, the three applications listed above are used for this study. In

the parallelization process, a state-of-the-art source-level parallelizer with minimal user

interference in the process was used.

Among the three programs, FLO52 had the highest level of parallelization. Only 1%

of the instructions in the program trace were in sequential sections. The percentage of

sequential instructions in the trace were considerably higher for the other two programs

| around 25% for DYFESM and 32% for ADM. The programs have varying levels of

granularity and parallelism for the innermost parallel loops. Program FLO52 has an

average parallelism of 58 iterations per innermost parallel loop, and these loops have a

63

1

2

3

4

5

6

7

2 4 6 8 10 12 14 16

Speedup

Number of Processors

model 1 �

�

�

� � �

model 2 2

2

2

2 2

model 3 4

4

4

4 4 4

model 4 +

+

+

+ + +

model 5 ?

?

?

?
? ?

Figure 4.5: Speedup of FLO52 program for di�erent execution models

granularity of 39 instructions per iteration. Program DYFESM has an average parallelism

of 14 and granularity of 112 at innermost parallel loops, and these numbers for ADM are

11 and 48, respectively.

The speedup �gures for the three programs, FLO52, DYFESM, and ADM are shown

in Figures 4.5, 4.6, and 4.7, respectively. A quick comparison of these �gures shows that

multilevel parallel loop execution with nonblocking barriers and multiple task queues

(model 5) and perfect loop collapsing (model 2) perform consistently better than other

execution models when the number of processors is large. Furthermore, the two models

always resulted in very similar performances. This demonstrates that for the architecture

model used, performance gains of perfect loop collapsing by a compiler can be achieved

by executing nested parallel loops with proper run-time scheduling and synchronization

algorithms.

64

1

1.5

2

2.5

3

3.5

2 4 6 8 10 12 14 16

Speedup

Number of Processors

model 1 �

�
� � � �

model 2 2

2

2

2
2

model 3 4

4

4 4 4

model 4 +

+

+

+ + +
model 5 ?

?

?

?
? ?

Figure 4.6: Speedup of DYFESM program for di�erent execution models

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 4 6 8 10 12 14 16

Speedup

Number of Processors

model 1 �

�

�
� � �

model 2 2

2

2

2
2

2

model 3 4

4

4
4

4
4

model 4 +

+

+ +
+

+

model 5 ?
?

? ?
?

Figure 4.7: Speedup of ADM program for di�erent execution models

65

Executing the outermost loop in parallel and inner loops sequentially (model 1) re-

sulted in di�erent behavior among the three programs. In FLO52, where parallelization is

most successful, the outer loop parallelism proved to be su�cient for achieving speedup.

It actually performed slightly better than models 3 and 4, which were simpler models for

executing the innermost loop in parallel. The poor performance of these two models for

this program can be attributed to the low granularity of innermost loops | hence high

overhead for iteration scheduling. In DYFESM, model 1 resulted in the loss of almost all

available parallelism. This model was also the worst performer for program ADM though

the speedup was close to that obtained from models 3 and 4.

Finally, it is observed that the use of nonblocking barriers alone didn't contribute

signi�cantly to performance. The task distribution algorithm proved to be much more

signi�cant than the barrier synchronization algorithm.

4.3 Conclusions

This chapter addresses several practical aspects of nested parallel loop execution.

Five di�erent models are used for executing nested parallel loops. In the �rst model, only

the outermost loop of a nested loop structure is executed sequentially. It is concluded

that the performance of this model depends heavily on the application and can cause

serious performance degradation due to loss of parallelism. The second model used

single-level parallel loop execution with perfect loop collapsing (by a compiler). This

66

combination resulted in good performance, a combination of a simple execution model

and fully exploited parallelism.

Three variations of true nested parallel loop execution are explored. In the �rst one,

model 3, the innermost loops are executed one at a time and synchronization is done

with a conventional barrier. Then a nonblocking barrier version of this model was used,

model 4, in which processor idle time in a barrier is minimized. However, this does not

result in any signi�cant performance di�erence. As a re�nement to this model, in model 5,

a nonblocking queuing lock algorithm and a multiple-task queue-based task distribution

algorithm are used to decrease task scheduling overhead. The simulations show that this

model can give the performance of a perfect loop-collapsing transformation.

67

5. COMPILER TRANSFORMATIONS FOR LOOP BLOCKING

A blocking transformation partitions the iteration space of a loop-nest. Blocking

transformations have been demonstrated to be useful in improving the memory system

performance of programs [30],[31], and also used to restructure parallel programs to en-

hance data locality and reduce interprocessor communication [32],[30]. In compiling par-

allel programs for multiprocessor systems, blocking transformations can also decrease the

run-time synchronization overhead by increasing the granularity of the parallel threads

[3].

A blocking transformation that enhances the performance of a loop-nest is applied

in three steps. First, dependence analysis determines conditions for preserving the se-

mantics of the loop-nest. Second, a legal blocking transformation is selected to enhance

program performance. Finally, the transformation is applied to the program [33]. The

area of dependence analysis has been studied extensively in literature, and powerful tools

such as the Omega Test [34] can be used to perform the dependence analysis of most

programs. This chapter deals mainly with the �rst and third steps, that is, validity

68

of blocking transformations and restructuring of the application programs. Finally, the

impact of blocking transformations on nested parallel loop execution on shared memory

multiprocessors is evaluated for three Perfect Club benchmarks.

The class of blocking transformations investigated are multidimensional parallelo-

grams. In the case in which blocking transformations are limited to rectangular shapes,

it has been shown that the transformations can be applied when a loop-nest is fully per-

mutable [31]. In Section 5.1.2 it is shown that a weaker constraint exists for blocking

transformations in which blocks are multidimensional parallelograms. Therefore, uni-

modular transformations are not necessary to exploit fully permutable loop-nests before

a blocking transformation [35],[36]. Consider the loop-nest shown in Figure 5.1. When

blocking transformations are limited to rectangular shapes, it is necessary to �rst skew the

loop-nest before blocking the iterations in order to preserve the data dependences, (see

Figure 5.2). However, by using a parallelogram-shaped block, the loop can be blocked

without restructuring as shown in Figure 5.3.

The organization of this chapter is as follows. Section 5.1 provides the basic de�ni-

tions. In this section, the issues concerning legality of a blocking transformation are also

discussed. Section 5.2 presents the methods used in generating index expressions for a

blocked loop. In Section 5.3, the e�ect of blocking transformations on parallel program

execution is evaluated. Section 5.4 includes the concluding remarks.

69

for (j= 0 ; j<4 ; j++) f

for (i=0 ; i<8 ; i++) f

A(i+1) = 1 / (3 * (A[i] + A[i+1] + A[i+2])) ;

gg

i

j

Figure 5.1: Iteration space and dependences of a loop-nest

i

j

Figure 5.2: Same loop-nest after skewing and blocking

70

for (jj=0 ; j<4 ; jj = jj + 2) f

for (ii= 0 ; ii<10 ; ii = ii + 2) f

for (j=max(0,jj) ; j<min(4,jj+2) ; j = j + 1) f

for (i=max(0,ii+jj-j) ; i<min(8,ii+jj+2) ; i = i + 1) f

A(i+1) = 1 / (3 * (A[i] + A[i+1] + A[i+2])) ;

gggg

i

j

Figure 5.3: Same loop-nest with nonrectangular blocking

5.1 Blocking Transformations

This section presents the de�nitions and the properties of general blocking transfor-

mations. The term loop-nest is used to designate a loop structure in which there is one

and only one loop at every level of nesting. The loop structures for which this condition

does not hold can be transformed to a set of loop-nests by applying loop distribution

[37].

In this section, a blocking transformation is represented as a set of vectors in the it-

eration space. This restricts the geometry of blocks to multidimensional parallelograms,

which provides a regular tiling of an iteration space. A vector notation has many ad-

vantages over the more general and more complex representation using inequalities [33].

71

First, vector representation allows the use of linear algebra techniques both in the for-

mal treatment of the subject and in the implementation of transformations. Second, as

discussed in Section 5.2, the loop transformation techniques developed for partitioning

parallel loops can be readily adapted to calculate loop bounds for blocked loops [38]. Last,

vector notation allows one to treat dependence vectors and blocking transformations in

a uniform manner. The remainder of this section de�nes blocking transformations using

vector representation and discusses the conditions under which a blocking transformation

is legal.

De�nition 1 A vector ~x is lexically positive, denoted as ~x � ~0, if 9i 3 xi > 0 and 8j <

i; xj = 0:

De�nition 2 The vector representation of a blocking transformation on an n-level loop-

nest is B = [~b1; : : : ;~bn]
T , where ~bi, i = 1; : : : ; n, are n-dimensional, linearly independent

and lexically positive vectors.

Figure 5.4 illustrates the vector representation of a blocking transformation. Each block

is de�ned by two vectors ~b1 = [0; 2]T and ~b2 = [2;�2]T , where the �rst dimension is j and

the second dimension is i. In general, the outermost loop appears as the �rst dimension

of the vector representation. Note also that both vectors are lexically positive. For this

loop-nest, the blocking de�ned by the two vectors is

B =

2
6664
0 2

2 �2

3
7775

72

j

[0,2] [0,4] [0,6] [0,8]

[2,0] [2,2] [2,4] [2,6] [2,8]

[0,0]

b1b2

[3,3] [3,4]

[2,5]

i

Figure 5.4: The illustration of blocking vectors for the loop-nest in Figure 5.3

The vectors that represent a blocking transformation are referred to as blocking vectors.

Since blocking vectors are de�ned to be lexically positive, they have the same properties as

those of dependence vectors. As shown in Section 5.2, this allows the use of dependence-

vector-based loop partitioning techniques in applying a blocking transformations.

5.1.1 Partitioning an iteration space

A blocking transformation partitions the iteration space into a set of blocks in which

each block contains a disjoint subset of the iterations. For example, in Figure 5.4, itera-

tions [2,4], [2,5], [3,3], and [3,4] belong to the same block.

Assume that the vector ~b0 is the starting point of the iteration space of a loop-nest.

The starting point of any block can be written as ~b0 +B � ~� where ~� 2 N n. Any point

within the block for a given ~� can be expressed as ~b0+B � ~�+B � ~�, where ~� 2 [0; 1)n.

73

Therefore, given a blocking B, a point ~x = (x1; : : : ; xn) in the n-dimensional iteration

space can be represented as

~x = ~b0 +B � ~� +B � ~�

= ~b0 +B � (~� + ~�)

= ~b0 +B � ~a

where ~a 2 Rn. Because B is an invertible matrix, given a B, any iteration ~x can be

uniquely represented by a vector ~a. Furthermore, the vector ~a can be uniquely decom-

posed into its integral and fractional parts, ~� and ~�. This decomposition is best illustrated

with an example. In Figure 5.4, iteration [3,4] can be expressed as follows:

2
6664
3

4

3
7775 = B �

2
6664
3:5

1:5

3
7775 hence

2
6664
3

4

3
7775 = B �

2
6664
3

1

3
7775+B �

2
6664
0:5

0:5

3
7775

where ~� = [3; 1]T , ~� = [0:5; 0:5]T , and ~a = [3:5; 1:5]T .

When applied to an n-level loop-nest, a blocking transformation generates a new 2n-

level loop-nest. The outer n levels sequence the execution through blocks, whereas the

inner n levels cover the iterations within a block. Therefore, after a blocking transfor-

mation, the original n-dimensional iteration space becomes a 2n-dimensional space. The

following de�nition speci�es how each point is mapped from one space to the other.

De�nition 3 Let ~x be an iteration in an n-dimensional iteration space and B be a

blocking with the starting point ~b0. Furthermore, let ~x = ~b0 + B � ~� + B � ~� where

74

~� 2 N n and ~� 2 [0; 1)n. The blocking operator B : N n ! N 2n maps iteration ~x to an

iteration ~y 2 N 2n and is de�ned as follows:

B(~x) = f~y j ~y = [y1; : : : ; y2n] where [y1; : : : ; yn] = B � ~� and [yn+1; : : : ; y2n] = B � ~�g:

Consider iteration [3,4] in Figure 5.4; its coordinate can be decomposed as follows:

2
6664
3

4

3
7775 =

2
6664
2

4

3
7775+

2
6664
1

0

3
7775

where [2,4] is the starting coordinate of the block that contains [3,4] and [1,0] is the o�set

of [3,4] within the block. According to De�nition 3, the coordinate of this iteration after

blocking is [2,4,1,0].

5.1.2 Legality of a blocking transformation

By executing all iterations of a block before staring the next block, a blocking trans-

formation modi�es the order in which iterations are executed in the original loop-nest.

Within each block, the algorithm presented in Section 5.2 guarantees that the iterations

in a block are executed according to their original lexical ordering [33]. Furthermore, the

starting points of blocks are traversed in their lexical order [38]. However, the lexical

ordering between two points across blocks is not preserved in general. In the presence of

data dependences across iterations, such reordering must not violate the order required

by data dependences for correct execution.

De�nition 4 A blocking transformation is legal if the transformed dependence vectors

are lexically positive.

75

De�nition 4 is based on the fact that if all of the dependence vectors remain lexically

positive after the transformation, the source point of each dependence vector always

executes before its destination. The following theorem provides a practical test of whether

a blocking transformation is legal.

Theorem 1 Let D be the set of dependence vectors of a loop nest. A blocking trans-

formation B is legal if 8~d 2 D 9~da 3 ~d = B � ~da where ~da 2 Rn and dai � 0 for

i = 1; : : : ; n.

Sketch of proof: Let ~p and ~q be two points in the iteration space where ~q�~p = ~d, i.e.,

~q depends on ~p. Let ~p0 = B(~p) and ~q0 = B(~q). It has to be proven that ~q0 � ~p0 � ~0, i.e.,

after the blocking transformation, iteration ~p0 is executed before iteration ~q0.

In the case in which ~p0 and ~q0 are in the same block, ~q0 is executed after ~p0. In the

case that they are not in the same block let ~p = B � ~pa and ~q = B � ~qa where ~pa 2 R
n

and ~qa 2 R
n.

~d = ~q � ~p

B � ~da = B � ~qa �B � ~pa

B � ~da = B � (~qa � ~pa)

~da = (~qa � ~pa);

dai � 0 for i = 1; : : : ; n therefore qai � pai. From the de�nition of the B operator,

p0i = integer(pai) and q0i = integer(qai) 8 i = 1; : : : ; n. Therefore, q0i � p0i 8 i = 1; : : : ; n.

Since ~p0 and ~q0 are not within the same block there is at least one i, i = 1; : : : ; n, for

76

which q0i > p0i. Therefore
~q0 � ~p0 � ~0, i.e., iteration ~q0 is executed after ~p0 in the blocked

loop-nest.

Theorem 1 states a su�cient condition for a given blocking transformation to be

legal: all dependence vectors of the loop-nest should be a positive linear combination of

all blocking vectors. Geometrical interpretation of the theorem is that the dependence

vectors should lie in the solid angle de�ned by the blocking vectors.

Previous works on blocking transformations have focused mainly on rectangular blocks.

In the presence of data dependences, it has been necessary to perform unimodular trans-

formations to make all dependence vectors nonnegative in all dimensions, i.e., making

the loop-nests fully permutable. In this special case in which only rectangular blocks are

used, Theorem 1 can be simpli�ed into the following corollary:

Corollary 1 LetD be the set of dependence vectors of a loop-nest. A rectangular blocking

transformation B is valid if the loop-nest is fully permutable.

When a blocking transformation is not required to be rectangular, it is no longer

necessary to generate a fully permutable loop-nest in order to perform blocking.

5.2 Loop Bounds Generation

A compiler-based blocking transformation has to transform the original n-level loop-

nest to a 2n-level loop-nest with correct loop bounds. Determining the loop bounds

for the outermost n levels involves generating the starting indices for the blocks in the

original loop-nest order. Loop bounds for the innermost n levels of loops are selected such

77

that the indices for the iterations within a block are generated in the original loop-nest

order.

The index generation problem for the outermost n levels of loops is very similar

to the loop bound generation problem for parallel loop partitioning discussed in [38].

The Minimum Distance method [38] for generating loop indices for partitioned loops is

directly applicable to the index generation problem for the starting points of loop blocks

with a minor modi�cation. The Minimum Distance method generates indices for the

blocks whose indices are in the index space of the original loop-nest. However, a blocking

transformation can generate blocks which contain iterations of the original loop-nest

where the �rst iteration of the block lie outside the original loop-nest. Expanding the

iteration space in all dimensions to include all such blocks for the outermost n levels of

the transformed loop-nest corrects this problem. By extending the bounds of the original

loop-nest in direction j by �j, where �j = max(jbi;jj) for i = 1; : : : ; n, where bi;j is the

jth element of the ith blocking vector, the Minimum Distance method can be used to

generate indices for all blocks. For a complete discussion of the Minimum Distance and

computation of the actual loop bounds, the reader is directed to [38] and [39].

To generate the loop bounds for the innermost n levels of the transformed loop, the

hyperplane method is used. In [33], a discussion of this method for general polyhedra can

be found. When the geometry of the blocks is limited to n-dimensional parallelograms,

the hyperplane method gives satisfactory results for a small number (2-3) of dimensions.

78

The loop bound generation can be illustrated for the blocked loop shown in Figure 5.3.

The blocking vectors, for this loop are

~b1 =

2
6664
0

2

3
7775 ;
~b2 =

2
6664

2

�2

3
7775 ; therefore B =

2
6664
0 2

2 �2

3
7775

and with the Minimum Distance method, the shifting distances for the outermost two

levels of loops are given by 2
6664
2 2

0 2

3
7775

where the diagonal entries de�ne the increments of the two outermost loops [38]. The

shifting distance matrix is an upper diagonal normal form for the blocking description

B. It provides the set of parameters in the index expressions of the outermost n levels

of loops to generate the indices for blocks in the lexical order determined by the original

loop-nest [38]. Using this representation, the loop

for (j= 0 ; j<4 ; j++) f

for (i=0 ; i<8 ; i++) f

A(i+1) = 1 / (3 * (A[i] + A[i+1] + A[i+2])) ;

gg

is transformed into

for (jj=0 - �j ; j<4 + �j ; jj = jj + 2) f

for (ii= 0 - �i ; ii<8 + �i ; ii = ii + 2) f

for (j= LBj ; j<UBj ; j = j + 1) f

79

for (i=LBi ; i<UBi ; i = i + 1) f

A(i+1) = 1 / (3 * (A[i] + A[i+1] + A[i+2])) ;

gggg

From the blocking vectors, it can be determined that �j = 2 and �i = 2. This concludes

the bound calculation for the 2 outermost loops.

Using the hyperplane method, for a given block with coordinates jj and ii , the in-

equalities for the iteration points within this block can be written as

j � max(0,min(jj, jj + b1;1, jj + b2;1))

j < min(4,max(jj, jj + b1;1, jj + b2;1))

and by substituting the b1;1 and b2;1 values from the blocking vectors ~b1 and ~b2 in the

example loop, these inequalities can be reduced to

j � max(0,jj)

j < min(4,jj+2).

Similarly, the bounds for the innermost loop can be calculated as

i � ii + jj - j

i < ii + jj + b1;2.

After the generation of the loop bounds expressions for the innermost 2 loops, the

�nal form of the blocked loop can be generated as

80

for (jj=-2 ; j<6 ; jj = jj + 2) f

for (ii= -2 ; ii<10 ; ii = ii + 2) f

for (j=max(0,jj) ; j<min(4,jj+2) ; j = j + 1) f

for (i=max(0,ii+jj-j) ; i<min(8,ii+jj+2) ; i = i + 1) f

A(i+1) = 1 / (3 * (A[i] + A[i+1] + A[i+2])) ;

gggg

One disadvantage of the hyperplane method is that, when one or more blocking vectors

are aligned with the axis of the iteration space, e.g., a rectangular blocking, there can be

redundancy in the loop bound expressions. In the example above, the general expression

in two dimensions for the lower bound of the j loop

j � max(0,min(jj, jj + ~b1[1], jj + ~b2[1]))

can be simply reduced to

j � max(0,jj)

because vectors ~b1 and ~b2 are lexically positive, i.e., b1;1 � 0 and b2;1 � 0. In the imple-

mentation of the bounds calculation for the innermost n levels of the loop, a template-

based approach is used. For the cases in which n < 4, depending on the direction of the

blocking vectors, an optimized template for index expressions is selected.

81

5.3 Experimental Results

This section presents simulation results on the e�ectiveness of blocking transforma-

tions in reducing iteration scheduling overhead for nested parallel loops. The simulations

use the shared memory multiprocessor model described in Chapter 2. The three par-

allelized Perfect Club benchmarks which contain nested parallel loops, FLO52, ADM,

and DYFESM, are used for measurements. Blocking parallel loops of a program changes

three characteristics of a parallel application, namely, loop granularity, task granularity,

and parallelism. After blocking parallel loops, both loop granularity and task granularity

are increased at the expense of available parallelism.

Grouping several parallel iterations for sequential execution increases the loop granu-

larity of the application. Increasing granularity results in a less frequent need for iteration

scheduling, thus lowering iteration scheduling overhead. However, this performance in-

crease comes at the cost of parallelism. Since after the blocking transformation the

number of parallel iterations within a loop-nest decreases, this can result in lower utiliza-

tion of processors in the system. Figures 5.5 and 5.6 illustrate how loop granularity and

also task granularity increases as a result of the blocking transformation. The execution

of the two-level nested loop in Figure 5.5 results in 17 parallel loop executions, one outer

loop and 16 inner loops. This loop is transformed into the parallel loop in Figure 5.6.

The execution of the blocked loop results in executing �ve parallel loops, one outer loop

and four inner loops. After blocking, each inner parallel loop contains four times the

82

DOALL 10 I=1,16

DOALL 20 J=1,16

.

.

.

10 CONTINUE

20 CONTINUE

Figure 5.5: A two-level nested DOALL loop

DOALL 10 I=1,16,4

DOALL 20 J=1,16,4

DO 30 II=I,I+3

DO 30 JJ=J,J+3

.

.

.

30 CONTINUE

10 CONTINUE

20 CONTINUE

Figure 5.6: Nested DOALL loop after blocking transformation

computation of the original inner parallel loops. As the result of the transformation, the

iteration granularity is increased 16 times.

Figures 5.7-5.10 illustrate the e�ect of blocking transformations on the FLO52 pro-

gram. The x-axis is the blocking factor. A blocking factor of n results in blocking

single-level parallel loops by n, two-level parallel loops by n� n, etc. Formally, a block-

ing factor of n corresponds to a blocking B, as in De�nition 2, where B is diagonal and

all diagonal entries are n. For example, the blocked loop in Figure 5.6 has a blocking

factor of 4.

83

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

iter. sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.7: Performance of FLO52 for 16 processors and test&set primitive

For each blocking factor, the three bars show the percentage of program execution time

spent in scheduling iterations, scheduling parallel tasks, and the idle time for processors.

The numbers presented are obtained by averaging the respective times over all of the

processors within the multiprocessor. The axis for the bars are on the left-hand side of

the charts. The lines in the �gures show the speedup obtained from parallel execution of

the program. The base number for calculating the speedup is the execution time of the

sequential version of the program on a single-processor system. The axis for the speedup

�gures is shown on the right-hand side of the �gures.

Figures 5.7 and 5.8 show how the performance of FLO52 improves due to the decrease

in iteration scheduling overhead. The primitives used in these experiments, test&set and

exchange-byte, can not support iteration scheduling operations as fast as the fetch&add

primitive. The architectures supporting these primitives have the most to bene�t from

84

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.8: Performance of FLO52 for 16 processors and exchange-byte primitive

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.9: Performance of FLO52 for 16 processors and fetch&add primitive

85

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6

0

1

2

3

4

5

6

7

iter. sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.10: Performance of FLO52 for 16 processors and synchronization bus

loop blocking. With the aid of the blocking transformation, the speedup for FLO52 in-

creases 3.7 times from 0.7 to 2.6 for the test&set case. Similarly, a factor of 2 increase in

speedup is obtained for the exchange-byte case. However, for the exchange-byte primi-

tive, increasing the blocking factor beyond 3 results in a slight decrease in the obtained

speedup. This results from the loss of parallelism in the program for large blocking fac-

tors. This also explains the continuing increase in processor idle time for large blocking

factors as shown in Figure 5.8.

Figures 5.9 and 5.10 show the e�ect of the blocking transformation for architectures

which support the fetch&add primitive. In these cases, for the blocking factor of two,

there is a slight increase in performance which can be attributed to the reductions in

both iteration scheduling overhead and task scheduling overhead. However, for larger

blocking factors, the loss of parallelism has a negative e�ect on performance. Although

the task scheduling overhead continues to drop as the blocking factor increases, the idle

86

time of processors increases, negating the e�ect of this decrease and worsening the overall

performance.

The e�ect of the blocking transformation on the DYFESM program is shown in

Figures 5.11- 5.14. Blocking transformation improves the performance of the program

signi�cantly for the test&set primitive. The performance increase for this case is the re-

sult of a decrease in iteration scheduling overhead. For the exchange-byte primitve, small

blocking factors result in a slight increase in performance (see Figure 5.12). However, as

the blocking factor increases beyond 3, the loss of parallelism in the program results in

performance degradation. As shown in Figures 5.13 and 5.14, there is very little perfor-

mance improvement in the presence of e�cient architectural support for synchronization.

For these two cases, as the blocking factor increases, the speedup �gures go down.

Figures 5.15-5.18 present the simulation results for the ADM program. Of the three

benchmarks, ADM has the lowest level of parallelism and the lowest task granularity.

As shown in Figure 5.15, although blocking parallel loops improves the performance of

ADM when the test&set primitive is supported, the overall speedup remains below one.

A similar performance increase due to the increased loop granularity can be observed for

the exchange-byte case in Figure 5.16. For the two architectures in which fetch&add op-

eration is supported, there is either no performance improvement or a performance degra-

dation. As illustrated by the increasing idle time percentages in Figures 5.17 and 5.18,

this is caused by the decrease in parallelism of the application due to blocking.

87

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.11: Performance of DYFESM for 16 processors and test&set primitive

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

70

1 2 3 4 5 6

2.1

2.15

2.2

2.25

2.3

2.35

2.4

iter. sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.12: Performance of DYFESM for 16 processors and exchange-byte primitive

88

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

1 2 3 4 5 6

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.13: Performance of DYFESM for 16 processors and fetch&add primitive

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

iter. sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.14: Performance of DYFESM for 16 processors and synchronization bus

89

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.15: Performance of ADM for 16 processors and test&set primitive

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

70

1 2 3 4 5 6

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.16: Performance of ADM for 16 processors and exchange-byte primitive

90

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

1 2 3 4 5 6

0.785

0.79

0.795

0.8

0.805

0.81

0.815

0.82

0.825

0.83

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.17: Performance of ADM for 16 processors and fetch&add primitive

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

blocking factor

ov
er

he
ad

 a
s

pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

iter. sch.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

task sch.

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

idle

speedup

Figure 5.18: Performance of ADM for 16 processors and synchronization bus

91

5.4 Concluding Remarks

A blocking transformation can be used to improve the performance of both parallel

and sequential programs. This chapter presents a formal treatment of blocking transfor-

mations for nested loop structures. In the presence of loop-carried dependences within

a loop-nest, blocking transformations must preserve the dependences. In this chapter a

su�cient condition for the validity of the blocking transformations was presented. Fur-

thermore, issues concerning code transformation and loop bound calculation for applying

blocking transformations were discussed in detail.

It is shown that blocking transformations can be used to decrease the iteration

scheduling overhead in nested parallel loop execution. Blocking a parallel loop-nest

has mixed e�ects on program performance. Blocking a loop-nest reduces the available

parallelism within the loop-nest. In the cases in which a multiprocessor can e�ciently

exploit the parallelism, e.g., a multiprocessor with a synchronization bus, the overall pro-

gram performance can degrade after applying a blocking transformation. However, for

multiprocessors in which there is no support for an atomic fetch&add primitive, blocking

greatly reduces the iteration scheduling overhead resulting in signi�cant performance in-

crease. For these cases, since the parallelism in the application was not being exploited

e�ciently, the decrease in parallelism is not visible for small blocking factors.

Blocking transformations change three characteristics of a program: loop granular-

ity, task granularity and parallelism. Since most parallel FORTRAN programs exploit

parallelism in the data structures, the task granularity and the parallelism within these

92

applications increase with increasing input data sets. However, loop granularity is de-

termined by the loop structures and does not depend on data set size. Therefore, for

applications processing large input data sets, the blocking transformation can increase

overall program performance with minimal negative e�ects due to the associated decrease

in parallelism.

93

6. CONCLUSIONS

Numerical applications require large amounts of computing power. Although shared

memory multiprocessors provide a cost-e�ective platform for parallel execution of numer-

ical programs, parallel processing has not delivered the expected performance on these

machines. There are several reasons for this. Compiler technology for automatic par-

allelization of programs is still developing. A parallelizing compiler can fail to identify

the parallelism in a program. Furthermore, technologies required for parallelization, e.g.,

dependence analysis, focus on nested loop structures and individual functions resulting

in relatively small units of parallel computation. During parallel program execution,

the overhead introduced by processor synchronization and dynamic scheduling of com-

putation to processors is inversely related to the size of parallel computation units. As

parallel loops become smaller, both in the number of iterations and in the number of

instructions within an iteration, the scheduling and synchronization operations are used

more frequently to control the start and termination of computation. This thesis eval-

uates existing techniques and explores alternatives in the areas of architectural support

94

for parallel execution, synchronization and scheduling algorithms, and compiler transfor-

mations for modifying parallel application characteristics.

In Chapter 1 the structure of parallel FORTRAN programs is explained in detail.

This chapter provides a comprehensive explanation of which type of parallel constructs

require what kind of scheduling and synchronization support. The implementation details

of synchronization algorithms with di�erent architectural primitives are also presented.

Chapter 2 describes a trace-driven shared memory multiprocessor simulation platform.

The simulation tool emulates the execution of di�erent scheduling and synchronization

algorithms and supports the test&set , exchange-byte, fetch&add primitives together with

a synchronization bus.

The performance of four parallelized Perfect Club benchmarks, BDNA, FLO52, DYFESM,

and ADM, is evaluated by using the developed simulation tool. The execution behavior

of these programs is analyzed in Chapter 3. It is shown that both iteration scheduling and

parallel task scheduling can be a signi�cant source of overhead. For architectures in which

an atomic fetch&add instruction is not supported, the execution of both the iteration

scheduling algorithm and the task scheduling algorithm is a bottleneck and degrade the

program performance. When the fetch&add primitive is supported by the architecture,

the iteration scheduling overhead decreases but the task scheduling overhead remains

signi�cant. It is also shown that an architecture supporting the fetch&add primitive can

achieve the performance of an architecture supporting a simple synchronization bus in

executing these benchmarks.

95

Chapter 4 introduces a distributed task scheduling algorithm which is designed for

scheduling parallel tasks. The proposed algorithm allows processors to acquire tasks

from multiple queues and relies on nonblocking lock operations for correct operation.

To support this algorithm, a nonblocking queuing lock algorithm is presented. The

experimental results presented in this chapter show that the performance of programs

containing nested parallel loops can be improved up to 50% with the use of a distributed

task scheduling algorithm.

As stated in Chapter 3, the amount of overhead introduced by scheduling algorithms

is a function of both the architectural primitives and synchronization algorithms, and the

iteration and task granularity of applications. In Chapter 5, blocking transformations

are used to modify program characteristics at compile time. The blocking transformation

groups iterations of a parallel loop-nest together into a sequential thread resulting in an

increase in both loop granularity and task granularity. In this chapter, �rst a formal

representation for blocking transformations is introduced and conditions of validity for

a transformation are de�ned. It has been shown that the changes to the source code

required by a blocking transformation are identical to those of a parallel loop partitioning;

therefore, the code transformation techniques described in [21] can be used.

The experimentswhose results are presented in Chapter 3 show that blocking transfor-

mations can be very e�ectively used to enhance the granularity characteristics of parallel

programs. For architectures which do not support synchronization busses or fetch&add

primitives, even blocking a small number of iterations of a loop-nest together improves

96

performance signi�cantly. It is shown that the performance of a blocked program using

the exchange-byte primitive can match the performance of an architecture supporting the

fetch&add primitive. For architectures supporting a synchronization bus or the fetch&add

primitive, there is very little gain in performance as a result of blocking transformations.

For large block sizes, the loss of parallelism in the application due to blocking results in

less e�cient use of processors, hence performance degradation.

It is shown in this thesis that architectural support for parallel processing, run-time

algorithms for scheduling and synchronization and the application characteristics inter-

act in a complex pattern. A shared memorymultiprocessor supporting a synchronization

bus with the fetch&add primitive can execute automatically parallelized application ef-

�ciently. The performance of an application executing on such an architecture is limited

by the amount of parallelism in an application.

An architecture supporting fetch&add in shared memory can su�er from task schedul-

ing overhead in executing nested parallel loops. For this architecture, the performance of

parallel programs can be improved by using distributed task scheduling algorithms. For

the architectures supporting test&set or exchange-byte primitives, compiler restructuring

of loop-nests is necessary to achieve performance to justify parallel execution.

Blocking transformation is a powerful means of modifying program characteristics.

The restructuring of nested loop structures makes it possible to enhance the behavior of

an application. These uses can range from reducing interprocessor communication in mes-

sage passing parallel programs to increasing the utilization of caches or other components

97

of memory hierarchy in sequential programs. Such uses of blocking transformations are

a current area of research. Blocking transformations also result in well-structured inner

loops of a known number of iterations. This property allows the accurate prediction of

resource requirements of loop-nests which can be utilized by superscalar/VLIW compilers

for code optimizations.

98

REFERENCES

[1] M. Berry and et al., \The perfect club benchmarks: E�ective performance evaluation
of supercomputers," Tech. Rep. CSRD Rpt. no. 827, Center for Supercomputing
Research and Development, University of Illinois, 1989.

[2] H. Davis and J. Hennessy, \Characterizing the synchronization behavior of parallel
programs," Proceedings of PPEALS, pp. 198{211, 1988.

[3] D. Chen, H. Su, and P. Yew, \The impact of synchronization and granularity on par-
allel systems," Tech. Rep. CSRD Rpt. no. 942, Center for Supercomputing Research
and Development, University of Illinois, 1989.

[4] P. A. Emrath, D. A. Padua, and P. Yew, \Cedar architecture and its software,"
Proceedings of 22nd Hawaii International Conference on System Sciences, vol. 1,
pp. 306{315, 1989.

[5] Alliant Computer Systems Corp., Alliant FX/Series Architecture Manual, 1986.

[6] Encore Computer Corp., Multimax Technical Summary, January 1989.

[7] Sequent Corp., Balance(tm) 8000 Guide to Parallel Programming, July 1985.

[8] Cray Research Inc., CRAY XM-P Multitasking Programmer's Reference Manual,

publication sr-0222 ed., 1987.

[9] J. R. Goodman, M. K. Vernon, and P. J. Woest, \E�cient synchronization primitives

for large-scale cache-coherent multiprocessors," Proceedings of ASPLOS, pp. 64{75,
1989.

[10] C. Zhu and P. Yew, \A scheme to enforce data dependence on large multiprocessor

systems," Transactions on Software Engineering, vol. SE-13, no. 6, pp. 726{739,
June 1987.

[11] G. S. Sohi, J. E. Smith, and J. R. Goodman, \Restricted fetch&� operations for

parallel processing," Proceedings of the 16th International Symposium on Computer

Architecture, pp. 410{416, 1989.

99

[12] T. E. Anderson, \The performance of spin lock alternatives for shared-memory mul-

tiprocessors," Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 6{

16, 1990.

[13] G. Graunke and S. Thakkar, \Synchronization algorithms for shared-memory mul-

tiprocessors," Computer, pp. 60{69, June 1990.

[14] R. Gupta, \The fuzzy barrier: A mechanism for high speed synchronization of pro-

cessors," Proceedings of ASPLOS, pp. 54{63, 1989.

[15] E. D. B. III, \The butter
y barrier," International Journal of Parallel Programming,

vol. 15, no. 4, pp. 295{307, 1986.

[16] C. J. Beckmann and C. D. Polychronopoulos, \The e�ect of barrier synchronization
and scheduling overhead on parallel loops," Proceedings of the 1989 International

Conference on Parallel Processing, vol. 2, pp. 200{204.

[17] C. D. Polychronopoulos, \The impact of run-time overhead on usable parallelism,"

Proceedings of the 1988 International Conference on Parallel Processing, pp. 108{
112, August 1988.

[18] N. S. Arenstorf and H. F. Jordan, \Comparing barrier algorithms," Parallel Com-

puting, no. 12, pp. 157{170, 1989.

[19] C. D. Polychronopoulos, \Guided self-scheduling: A practical scheduling scheme for

parallel supercomputers," Transactions on Computers, vol. C-36, no. 12, pp. 1425{
1439, December 1987.

[20] Kuck & Associates, Inc., KAP User's Guide, version 6, 1988.

[21] R. Cytron, \Doacross: Beyond vectorization for multiprocessors," in Proceedings of

the International Conference on Parallel Processing, pp. 836{845, 1986.

[22] T. E. Anderson, E. D. Lazowska, and H. M. Levy, \The performance of thread

management alternatives for shared memory multiprocessors," Proceedings of SIG-
METRICS, pp. 49{60, 1989.

[23] C. D. Polychronopoulos, \Multiprocessing versus multiprogramming," Proceedings

of the 1989 International Conference on Parallel Processing, vol. 2, pp. 223{230,

1989.

[24] P.Tang and P. Yew, \Processor self-scheduling for multiple-nested parallel loops," in

Proceedings of International Conference on Parallel Processing, pp. 528{534, 1986.

[25] H. F. Jordan, \Hep architecture, programming and performance," in Parallel MIMD

Computation: HEP Supercomputer and Its Applications, J. S. Kowalik, Ed. Cam-

bridge: MIT Press, 1985, pp. 1{40.

100

[26] MIPS Computer Systems, Inc., RISCompiler and C Programmer's, 1989.

[27] H. F. Jordan, \Interpreting parallel processor performance measurements," SIAM

Journal of Scienti�c and Statatistical Computing, vol. 8, no. 2, pp. s220{s226, March

1987.

[28] G. Cybenko, J. Bruner, S. Ho, and S. Sharma, \Parallel computing and the perfect

benchmarks," Tech. Rep. CSRD Rpt. no. 1191, Center for Supercomputing Research

and Development, University of Illinois, 1991.

[29] R. Eigenmann, J. Hoe
inger, Z. Li, and D. Padua, \Experience in the automatic

parallelization of four perfect benchmark programs," Tech. Rep. CSRD Rpt. no. 827,

Center for Supercomputing Research and Development, University of Illinois, 1991.

[30] A. K. Porter�eld, \Software methods for improvement of cache performance on su-

percomputing applications," Ph.D. Dissertation, Department of Computer Science,
Rice University, May 1989.

[31] M. E. Wolf and M. S. Lam, \A data locality optimizing algorithm," Proceedings of

the ACM SIGPLAN '91 Conference on Programming Language Design and Imple-

mentation, pp. 30{44, June 1991.

[32] S. G. Abraham and D. E. Hudak, \Compile-time partitioning of iterative parallel
loops to reduce cache coherence tra�c," Journal of Parallel and Distributed Com-

puting, vol. 2, pp. 318{328, 1991.

[33] C. Ancourt and F. Irigoin, \Scanning polyhedra with DO loops," Proceedings of the
3rd ACM SIGPLAN Conference on Principles and Practice of Parallel Program-

ming, pp. 39{50, 1991.

[34] W. Pugh, \The Omega test: A fast and practical integer programming algorithm
for dependence analysis," Proceedings of Supercomputing '91, 1991.

[35] M. E. Wolf and M. S. Lam, \A loop transformation theory and an algorithm to
maximize parallelism," Transactions on Parallel and Distributed Systems, vol. 2, no.

4, pp. 452{471, October 1991.

[36] U. Banerjee, \Unimodular transformations of double loops," Proceedings of the

3rd Workshop on Programming Languages and Compilers for Parallel Computing,
pp. 192{219, California, 1990.

[37] D. A. Padua and M. J. Wolfe, \Advanced compiler optimizations for supercom-

puters," Communications of the ACM, vol. 29, no. 12, pp. 1184{1200, December
1986.

101

[38] J. Peir and R. Cytron, \Minimum distance: A method for partitioning recurrences

for multiprocessors," Proceedings of the 1987 International Conference on Parallel

Processing, pp. 217{225.

[39] C. King and L. M. Ni, \Grouping in nested loops for parallel execution on multicom-

puters," Proceedings of the 1989 International Conference on Parallel Processing,

pp. 31{38.

102

VITA

Sadun Anik received the B.S. degree in electrical and electronics engineering from the

Middle East Technical University, Ankara, in 1986, and the M.S. degree in electrical and

computer engineering from the University of Illinois at Urbana-Champaign in 1990. His

research interests are in parallel processing, computer architecture with emphasis an on

performance considerations in parallel program execution. He is joining Applied Vision

in San Mateo, California, in September 1993.

