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The current design process for workstation systems is over-taxed due to the size and

diversity of realistic workload models. This thesis advocates a method to improve the

design process by synthesizing prototype architectures from workloads. Focus is placed

on the processor and memory systems, although the overall philosophy is applicable to

other workstation components as well. Prototyping of memory systems is performed using

methods to evaluate multiple designs with one pass over the address trace. Statistical

sampling of address traces is adapted from traditional cache simulation to improve the

performance and trace-size range of the techniques. These methods are extended to

account for performance penalties due to multiprogramming. Prototyping of superscalar

processors is performed using new statistical sampling techniques in conjunction with two

simulation algorithms. The resource usage in an unlimited-resource simulation is used

to select processor resource needs, but is only applicable to �xed operation latencies. A

more general solution based on simulated annealing is developed and demonstrated as a

prototyping method. The interaction between prototypes is investigated via simulation

of three common schemes for coupling the processor to the memory system: blocking on

a cache miss, limited-blocking, and non-blocking. It is concluded that su�cient design

options exist to justify the separate design of the processor and the memory.
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1

1. INTRODUCTION

It is di�cult to design successful workstation architectures since these systems are

general-purpose and used for a large number of very diverse tasks. Performance of a

workstation can be decomposed into that of its components, such as the network, graphics

hardware, I/O, processor and memory subsystems. Successful design of these components

requires careful consideration of the workload of workstation users. This workload is large

and diverse. Current methods for designing these components are iterative processes

that are not well-suited to large, diverse workloads. This thesis addresses this problem

by developing a systematic method to synthesize prototype architectures of workstation

components from large workloads. The thesis focuses on the processor and the memory

components, although the overall approach can be applied to the evaluation of other

workstation components as well. Special simulation techniques are developed for the

task that are fast yet can tackle the very large design space of potential prototypes. New

methods are developed to select prototypes from this design space based on cost and

performance criteria. The assumption that the processor and memory system components
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can be designed independently is checked empirically for three contemporary methods to

interface the processor and memory system components together.

1.1 The Current Architectural Design Process

Current engineering design methods rely heavily on an iterative approach that begins

with the selection of an initial architecture prototype. After the initial prototype is de-

cided upon, it is used as the starting point to a process that evaluates the performance of

the prototype and alters its design iteratively until an acceptable level of cost and perfor-

mance is reached [1]. After the architectural design process is completed, computer-aided

design tools are used to realize the architecture. The inputs to the architectural design

process are test workloads, often industry-standard benchmarks or end-user supplied

applications.

In an e�ort to better model the workloads of real users, the workloads used for

design have grown in size and sophistication, and a general trend toward even larger and

more-realistic workloads continues [2],[3]. At the same time, this increase in size places

new burdens on the architectural design process, lengthening the process considerably.

The simplistic solution to this problem is to limit the size of the workloads used, but

this defeats the purpose of using a large workload and results in a poor match between

architectural features and end-user needs.
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1.2 Systematic Computer Architecture Prototyping

It is clear that there are considerable problems with the current architectural design

process. What is needed is a systematic approach that can take workload elements such as

industry-standard benchmarks or end-user supplied applications and derive architecture

prototypes from them. The advantages of such a computer architecture prototyping

technique would be:

� The architectural design process would begin with a prototype that is already

in
uenced by diverse workloads,

� Since the architectural design process is iterative, improving the quality of the

initial guess also improves the rate of convergence of the overall design process,

reducing the number of iterations and enlarging the usable workload size.

This thesis presents a systematic approach to computer architecture prototyping with

emphasis on cache-based memory systems and superscalar processor components of work-

station systems.

1.2.1 The aims of computer architecture prototyping

The aims of computer architecture prototyping are:

� The selection of prototype designs from large workloads.

� The use of a large design space of possible designs.

� The ability to use realistic, large workloads.
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These aims are also the challenges of computer architecture prototyping. In order to

use a large design space, a general representation of workload behavior must be selected.

Since architecture de�nes the interface between the programmer and the hardware, it is

di�cult to measure this interaction independent of architectural features. The approach

taken in this thesis is to de�ne an interface that includes many viable architectures.

A large design space may require simulation of each point in the design space. Sim-

ulation time of each design point is proportional to the length of the workloads used as

inputs. Since improving the architectural design process involves reducing overall simu-

lation time, the goals of using a large design space and the ability to use realistic, large

workloads are at odds with each other. This thesis attacks the problem by proposing

new simulation algorithms that simulate large design spaces very e�ciently. To reduce

the simulation time further, system cost models are introduced in the case of processor

prototyping to reduce the design space to cost-e�ective designs.

1.2.2 The method of computer architecture prototyping

The method of computer architecture prototyping developed in this thesis begins

by decomposing the workload into workload elements or benchmarks. The behavior

of a benchmark is measured by executing the benchmark on an existing system and

recording a trace: a record of the requests made by the benchmark of memory locations

or instructions to execute. The trace is recorded with the aid of the compiler. (The

format of the trace is discussed in Chapter 2.) The traces of a benchmark are used to
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obtain performance of the memory system or the processor. This can be done while the

benchmark runs or by using a previously generated and recorded trace.

The trace is used as input to simulations of the memory system. Simulation tech-

niques are used that are capable of evaluating multiple cache memory designs with one

scan through the trace. These single-pass techniques were �rst proposed by Mattson et

al. [4]. The techniques are extended to include the e�ects of multiprogramming (context

switching). The result of a single-pass simulation is the performance of a large space

of possible cache memory designs. Examples are given of selecting prototypes from this

space based on cache performance criteria.

Two simulation techniques are proposed to design prototypes of the processor, each

with its own advantages and disadvantages. Two approaches to prototyping using the

simulations are also proposed. In the �rst approach, the benchmark is simulated with

an unlimited amount of resources. Criteria are developed to determine actual resource

needs based on the usage of resources in the unlimited-resource case. These criteria are

evaluated to determine their validity. In the second processor prototyping approach, the

problem is formulated as an optimization problem where the parameters are the number,

latency and cost of the function units. A design technique based on simulated annealing

is proposed and demonstrated as a method to �nd near-optimal prototypes.

In order to evaluate large design spaces, the speed of simulation is crucial. Many

benchmarks are too large to simulate in reasonable time. To address this problem, the

trace of a benchmark is �rst reduced in size by use of statistical sampling techniques.
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Sampling was �rst proposed by Laha et al. as a method to improve traditional cache

memory simulation [5]. This thesis proposes new sampling techniques for the processor

and singe-pass memory system simulation.

1.2.3 Further uses of computer architecture prototyping

Computer architecture prototyping can be used for two classes of problems that are

separate from its application to the architectural design process. One such use is to

characterize benchmarks and the other use is to aid in purchasing decisions.

Benchmarks are not only used to design new systems, they are also used to evaluate

the performance of existing systems. The trouble with relying on benchmarks to evaluate

existing systems is that the characteristics of the benchmarks themselves are unknown.

For example, consider two workstations that are identical in every respect except one

workstation has a high-performance memory system and the other has a low-performance

memory system. A benchmark that requires only a small amount of memory will not be

able to distinguish between these two systems. If the purchaser who is trying to interpret

the benchmark results has in-house applications that require large amounts of memory,

the purchaser should not use this particular benchmark to decide which system to buy.

Computer architecture prototyping can help the above situation by determining the

memory system needs for each benchmark and every in-house application. In these sit-

uations, the architecture prototypes are also guides to benchmark characteristics. Pur-

chasers should only trust benchmark results from those with characteristics that match
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the characteristics of the end users' in-house applications. The idea of using prototypes

for benchmark characterization was suggested by Conte and Hwu [6].

The characterization of in-house applications can be used for purchasing decisions

in another way. After characterizing in-house applications, the buyers can match the

characteristics to those of existing systems in the marketplace. The buyers can then be

assured that the purchased system will have an architecture that matches the needs of

their in-house applications.

This thesis emphasizes the challenges of generating prototypes and does not consider

benchmark characterization or purchasing in further detail. For further discussion, see [6].

1.3 Relation to Previous Work

Methods for hierarchical performance evaluation, �rst proposed by Kumar and David-

son in [7], are similar to computer architecture prototyping. The aims of hierarchical

performance evaluation is to use a hierarchy of performance models with a cost function

to select cost-e�ective designs. The top levels of the hierarchy are occupied by meth-

ods that are time-e�cient yet have low performance estimating accuracy. These are

used to narrow the design space. This narrower design space is then searched using less

time-e�cient, higher accuracy methods.

Where hierarchical methods seek to replace the design process, computer architecture

prototyping is a method to improve the �rst step. Each approach has its own advantages.
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The advantages of generating prototypes are the two additional uses for prototypes,

characterizing the benchmarks and aiding in purchasing decisions.

Linear performance models sum the e�ects of classes of operations to arrive at an

estimate of the total run time of a benchmark on a system [8],[9],[10]. For example,

the sum of the dynamic count of 
oating-point operations times the time for a 
oating-

point operation would produce the portion of a program's run time that was due to


oating-point multiplication. In general, the performance is recreated as a sum of the

benchmark's frequency of use of an operation times the system's latency for executing

the operation. The limitations of linear performance models are that they do not account

for non-linear e�ects due to parallelism or for saved state between operations (such as in

cache-based memory systems). Modern workstation designs exploit available parallelism

and preserve state between operations to achieve high performance. Because of this,

linear performance models are inappropriate for the prototyping of workstation designs.

Single-pass cache simulation is a method to evaluate multiple cache designs using

one pass over the address trace [4]. Single-pass techniques are ideally suited for the

purposes of prototyping and are a topic of this thesis. Statistical sampling has been

proposed as a method to speed up traditional cache simulation of very long address

traces [5],[11]. Statistical sampling is adapted in this thesis for both single-pass memory

system simulation and processor simulation.

The e�ects of multiprogramming on cache memory performance can invalidate design

decisions made using uniprocessor cache simulations [12]. Multiprogramming e�ects have
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been studied by many researchers [13] {[19]. However, no previous study has extended

single-pass techniques to model multiprogramming e�ects. This thesis presents new

single-pass techniques that take multiprogramming e�ects into account.

1.4 Organization of Thesis

This thesis is organized as follows. Chapter 2 presents a discussion of the workloads

used and the design and collection of traces of the behavior of these workloads. Chapter

3 discusses the prototyping of cache-based memory systems with emphasis on single-pass

simulation techniques. A new simulation technique that simulates multiprogramming

e�ects is presented in this chapter. The application of statistical sampling is investigated

as a method to improve the performance and trace-size range of memory simulation.

Chapter 4 discusses the architecture and prototyping of superscalar processors. This

chapter introduces two simulation techniques for superscalar processor designs. Statis-

tical sampling is applied to these techniques as in Chapter 3. These techniques are

combined with cost functions and near-optimal search methods to select superscalar pro-

cessor prototypes.

The interaction between the processor and the memory system is the topic of Chapter

5. The primary interaction is between the processor and the cache. When a cache

miss occurs, the processor can take one of three strategies: block completely, perform

limited blocking, or queue the miss requests using a non-blocking cache design. The three
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methods are discussed and evaluated along with their respective impacts on prototype

selection.

Conclusions and further discussions of this research and its contributions are presented

in the �nal chapter of the thesis, Chapter 6.
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2. BENCHMARKS AND INSTRUMENTATION METHODS

The workloads used to design computer architectures take many forms. They are typ-

ically composed of benchmarks, test workloads used to evaluate computer performance.

The benchmarks are believed to be either representative of the intended workload of the

system or capable of providing insight into the range of performance variation of the

system. Investigation of the usage of benchmarks used by papers presented at the In-

ternational Symposia on Computer Architecture, years 1984-1990, reveals seven common

categories of benchmarks:

Application benchmarks are runs of programs that are widely used to perform some

critical function for a user. Example application benchmarks are sessions from

database systems or runs of numerical packages performing functions such as matrix

multiply or Gaussian elimination.

Kernel benchmarks are code fragments extracted from real programs, where the code

fragment is believed to be responsible for most of the execution time of the program.
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Many of these benchmarks have the same advantages as the synthetic benchmarks

(see below): small code size and long execution time. Kernel benchmarks appear

to be heavily used in computer architecture studies [20].

Partial benchmarks are partial traces of programs. One drawback of their use is

that independent reproduction of results is di�cult since the the portion of the

benchmark traced is often unknown.

Recursive algorithm benchmarks are programs implementing recursive algorithms

such as the solutions to the Hanoi towers problem and the Nine-Queens problem.

These benchmarks are not applications, they do not perform often-used functions.

Synthetic benchmarks are small programs especially constructed for benchmarking

purposes. They do not perform any useful computation. The intent of synthetic

benchmarks is to use a small program to approximate the average characteristics

of real programs. At one time, the popularity of synthetic benchmarks was on the

rise; however, they have experienced declining use in recent years.

OS utility benchmarks are taken from commonly used utilities such as the Unix sort

or tar.

Unspeci�ed benchmarks is a catch-all category for unspeci�ed workload descriptions.

Some uniprocessor papers used traces collected from systems in which the use of

the system was either not reported in the paper or unknown.
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Table 2.1: Benchmark usage in International Symposium on Computer Architecture,

1984-1990.

Year
Category 1984 1985 1986 1987 1988 1989 1990 Percentage

Applications 2 2 2 5 4 3 5 16%

Kernel 3 2 6 4 5 3 4 19%

Local 1 1 4 0 2 3 7 13%

Partial 0 0 2 0 2 2 1 5%

Recursive 3 5 6 5 3 6 4 22%

Synthetic 1 0 3 5 1 0 0 7%
OS Utility 1 2 1 4 2 4 5 13%
Unspeci�ed 2 2 1 0 1 1 0 5%

Local benchmarks are programs that are site-speci�c or in-house applications that are

not widely available (in contrast to application benchmarks that are widely used

and available).

Use of unspeci�ed and partial benchmarks occurs relatively infrequently in the papers

that were surveyed. Table 2.1 presents the count of papers using benchmarks from

each category (note that in some instances one paper used benchmarks from several

categories). A complete list of the papers and their categorization are presented in [20].

In 1989, the System Performance Evaluation Cooperative released version 1 of a

benchmark suite designed to evaluate the performance of workstations [3]. This bench-

mark suite is now commonly referred to as SPEC89. Table 2.2 lists benchmarks that are

members of the SPEC89 suite (compiled with aid of [3]). The table also assigns one of

the above categories to each benchmark.
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Table 2.2: The SPEC89 benchmark suite.

Benchmark Categories Description

doduc application Monte Carlo simulation of the time

evolution of a thermohydraulical
modelization for a nuclear reactor.

eqntott application Generates truth table from logic
equations.

espresso application Performs PLA optimization.

fpppp application Simulates two electron integral
derivative (quantum chemistry).

gcc OS utility GNU C compiler, version 1.35.

matrix300 kernel Performs 300�300 matrix multiply.
nasa7 kernel, synthetic Seven kernels: a matrix multi-

ply, an FFT, a Cholesky decom-
position, a tradiagonal matrix so-
lution, a Gaussian elimination, a
boundary value problem, and a
three-matrix pentadiagonals inver-

sion (developed by NASA Ames).

spice2g6 application Performs analog circuit simulation

(with greycode digital circuit as
input).

tomcatv kernel Generation of �nite mesh.
xlisp application, recursive Lisp interpreter (the application)

executing the Nine-Queens problem

(the recursive benchmark).
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The SPEC89 benchmark suite covers six of the eight categories of benchmarks pre-

sented above (the remaining two categories, unspeci�ed and partial, have negative conno-

tations). The suite is used in this thesis as a workload to test the computer architecture

prototyping methods that are developed herein. Its use does not constitute a claim that

the suite is representative of the workloads of actual workstations. However, since the

benchmark suite is being used to evaluate the performance of existing workstations, it is

the logical choice for the design of future workstations [6]. Since SPEC89 has this role

in future designs, computer architecture prototypes derived from SPEC89 benchmarks

serve as important tests of the prototyping techniques.

The following sections discuss measurement of the behavior of benchmarks such as

members of the SPEC89 benchmark suite in some detail.

2.1 Collection of Traces of Benchmark Behavior

A benchmark as it executes makes requests of the system and alters its behavior

accordingly. The requests can be in the form of instructions to execute, references to

memory locations, requests to the kernel for system functions, etc. The term trace is

used here to refer to a log of these requests.

2.1.1 Address trace collection

Figure 2.1 shows a memory hierarchy with one cache indexed by virtual addresses,

one cache indexed by physical addresses, the physical memory and the virtual memory
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of the system. Only the address usage is shown in the �gure, the data path has been

omitted. An address trace can be taken at any point along this hierarchy. Address

page fault

cache

(virtual-addressed)

cache

(physically-addressed)

physical memory

virtual addresses (benchmark-generated)

physical address

virtual memory (disk)

miss

miss

translation buffer

Figure 2.1: A typical memory hierarchy showing address usage.

traces taken lower in the hierarchy are speci�c to the behavior of the combination of the

program and the hardware. For example, in the �gure the physical cache in the picture

receives only references that miss in the virtual cache and are translated to physical

addresses; therefore, its address trace is a function of the design of the virtual cache.

It is also a function of the multiprogramming level of the system, since the virtual-to-

physical page mapping depends on the ensemble of the address requests of all jobs running

in the system. However, pages are only mapped to physical locations at power-of-two

boundaries. If the trace is composed of the virtual addresses, the simulation of a �rst-

level virtual cache is valid, and the simulation of a �rst-level physical cache with size less



17

than the page size is also valid. For the remainder of the hierarchy, a prototype cache

for a given level can be used to �lter the trace for use in simulating the next-level cache.

For these reasons, the virtual address trace, a trace of the virtual addresses referenced

during the execution of the program, is used in this thesis.

The compiler can aid in tracing the virtual address trace by generating extra in-

structions surrounding all load/store operations. These added instructions record the

addresses of the load or store them in a trace bu�er. During program execution, the

trace bu�er is periodically 
ushed to a trace consumer (e.g, a simulator) or written to

a �le. This technique is an application of software instrumentation and has been used

by Larus for AE, Stunkel and Fuchs for TRAPEDS, and Golden for Spike, among oth-

ers [21]{[23]. This thesis uses Spike for software instrumentation of virtual address traces.

2.1.2 Instruction trace collection

Capturing traces of instructions poses a di�cult problem for a system created to

prototype hardware. Instruction encodings are idiosyncratic and vary widely from vendor

to vendor. In the case of some RISC architectures, the instruction set re
ects the latencies

of the underlying hardware (e.g., the number of branch and load delay slots) [24]. This

further complication causes the traces recorded using some instruction sets to be hardware

speci�c.

This thesis uses the GNU C retargetable, optimizing compiler (version 1.40) with opti-

mizations enabled to translate benchmark source into executables [25]. The intermediate
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code of a retargetable compiler is designed to be translated into many di�erent instruc-

tion sets. The instruction-set architecture of the processor in this thesis is assumed to be

this intermediate-code language. This approach has been used previously in [26]. The

processor simulation methods rely only on the type of each instruction and the identities

of the operands. For this reason, other instruction formats can be used with the trace

without modi�cation. The use of intermediate-code removes machine-speci�c operand

restrictions or instruction-format restrictions. Delay slots and other hardware-speci�c

features are not encoded. The resulting trace is free of anomalies that might complicate

the interpretation of the results.

The traces of the intermediate code are collected by creating templates of the interme-

diate instructions for each basic block at compile time. Also at compile time, additional

code is added to mark the entrance of each basic block and record its id in the trace

bu�er. At run time, the contents of the trace bu�er are interpreted and the ids of basic

blocks are used in conjunction with the database of intermediate-instruction templates

to generate a trace of the intermediate instructions. This instruction trace appears to

the trace consumer as though the benchmark had executed on a machine with the inter-

mediate code as its instruction set. Further discussions of this technique are presented

in [22] and [23].
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2.1.3 In-process trace generation

Traces are traditionally written to a secondary storage device and then used for

simulation. Two of the SPEC89 benchmarks, gcc and espresso, have data address traces

of slightly more than 33 million and 150 million references, respectively. Each of the

references is a 32-bit quantity, resulting in sizes of 132{600 megabytes of storage. The

gcc and espresso benchmarks have the two smallest data address traces of the benchmarks

in the SPEC89 benchmark set. This suggests that trace storage con
icts with the aim

of architecture prototyping to use large, diverse workloads. Statistical techniques can be

used to reduce the size of traces to manageable sizes [5]. This thesis further develops

these ideas. In order to validate the results of the statistical techniques, the simulation

results from full-trace simulations are still required.

This thesis uses a solution to the problem of large trace size termed in-process trace

generation. In this technique, the simulation is combined with the benchmark in the

same process. The simulator is compiled as an auxiliary function to the benchmark, and

the compiler inserts periodic calls to the simulator to 
ush the trace bu�er. The trace

need not be recorded since it is re-generated by running the benchmark. Section 3.2.2 of

Chapter 3 exploits this trace generation method to improve upon statistical techniques.
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2.1.4 Library code

The most common operating systems used for workstations are based on 4.3BSD

Unix [27]. Unix employs a set of user-code libraries to implement many functions. Ex-

clusion of library code from the trace would exclude frequently used functions. To cir-

cumvent this problem, software-instrumented versions of the libraries are compiled and

used along with the benchmarks. The speci�c libraries are taken from SunOS version

4.1.1, but generic versions of most library functions are used.

In addition to library functions, the operating system kernel interacts with the bench-

mark either at the request of the benchmark via system calls or periodically to implement

multiprogramming [27]. This thesis treats these system call interactions as special events

and records their occurrence. As an example of system call usage, Table 2.3 reports the

Table 2.3: Dynamic system call usage.

Benchmark System calls

gcc getrusage (6072), write (164), sbrk (66), read (15),

open (2), close (2), fstat (2), ioctl (2),

getpagesize (1)

espresso write (27), sbrk (18), read (4), ioctl (2),

fstat (2), open (1), getpagesize (1)

spice write (784), lseek (6), fstat (5), sbrk (3),

close (3), read (3), ioctl (3), getpagesize (1)

xlisp sbrk (7), ioctl (2), fstat (2), open (1),

getpagesize (1), read (1)

matrix300 lseek (12), fstat (5), close (5), stat (3),

sbrk (3), write (3), ioctl (2), open (2),

getdtablesize (1), getpagesize (1)
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system calls used by some members of the SPEC benchmark set and the number of dy-

namic occurrences of each system call (in parentheses). The getrusage system call that

is prominent for gcc is used by the times library call to report run times. The sbrk call

is used in the heap space allocator. Heap space is used signi�cantly in xlisp and espresso.

Since the malloc() function is included in the tracing process, heap management is in-

cluded in the virtual address trace. I/O intensive benchmarks reveal themselves here

by the use of the read, write, open, close, fstat, lseek, and ioctl calls. These

benchmarks are spice and gcc. The dynamic percentage of execution taken up by system

call events was not reported in Table 2.3 since it would be close to zero for all cases.

Kernel code is speci�c to each vendor and as such is di�cult to generalize to a system-

independent format. However, it is possible to view the kernel as simply another bench-

mark for the purposes of prototyping. The kernel appears to the hardware as just another

program that it must execute along with other programs (benchmarks) in the system.

Although this is an appealing approach to the treatment of prototyping using the kernel,

the kernel is not included in the benchmark set used in this thesis. System call inter-

actions between an executing benchmark and the kernel are captured, and interactions

such as interrupts due to expired quanta are modeled. These models are used to adjust

the prototypes of the memory system in Chapter 3.
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3. MEMORY SYSTEM PROTOTYPING

Multiple levels of caching and bu�ering have become the norm in memory system de-

sign. Memory hierarchies composed of cache memories are so crucial to high-performance

computer architecture design that performance evaluation of cache memories has received

phenomenal attention. In 1991, Smith catalogued 487 technical papers and reports that

dealt with some aspect of caching [28]. This chapter addresses the problem of deriving

prototypes of memory systems designed with caching. To do this requires measurement

of the performance of a large number of cache designs. This cache performance evalu-

ation process must be fast yet accurate. The importance of accuracy is self-evident. A

fast method is important so that memory address traces from long-running benchmarks

can be used to explore a large design space of potential prototypes.

Researchers have devised analytic models and novel simulation approaches to mea-

sure cache performance [4],[29],[30]. Analytic cache models achieve low accuracy and are

therefore inappropriate for prototyping memory systems. Of the simulation approaches,

the direct approach is to simulate the cache at the register-transfer level. This approach
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is called the traditional cache simulation approach throughout this chapter. Prototyp-

ing demands simulation of a large number of cache designs, limiting the usefulness of

traditional cache simulation. To eliminate the number of required simulations, single-

pass cache simulation is used. Such methods simulate multiple cache dimensions in a

single pass by exploiting the inclusion property of stacking replacement algorithms (least-

recently used is the most common member of this class of replacement algorithms [4]).

This method has been extended to include rigid placement/replacement algorithms used

in direct-mapped caches [31]. Single-pass cache simulation is ideally suited for prototyp-

ing.

This chapter focuses on using the recurrence/con
ict single-pass cache simulation

technique for prototyping memory systems. Two extensions to this single-pass technique

are discussed. The speed of the technique is improved while maintaining acceptable

accuracy by adapting statistical sampling techniques developed for traditional simulation

to work with single-pass simulation. The single-pass technique is also extended to capture

multiprogramming e�ects. Multiprogramming degrades memory system performance

since (process) context switching reduces the e�ectiveness of cache memories. For the

prototypes to be correct, multiprogramming e�ects must be taken into account.

3.1 Single-Pass Cache Simulation

A traditional cache simulator uses a data structure that is a replica of the tag store

of the cache being simulated. The simulation involves updating this data structure at
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each reference. When an address in the trace is not present in the tag store structure,

the corresponding cache miss is recorded. The advantages of such a technique are its

e�ciency and simplicity. A simple array can be used for the tag store of a direct-mapped

cache. The time complexity for such an algorithm is O(N) in N inputs. Since the tag

store does not change in size during simulation, the space complexity is O(1).

The disadvantage of the traditional cache simulator is its lack of generality. A sim-

ulation must be performed for each con�guration of cache under study. Hence the term

multiple-pass cache simulator can be used to describe the traditional simulator since it

requires multiple passes over the trace.

Single-pass cache simulation techniques rely on the inclusion property of stacking

replacement algorithms. Exploitation of this property allows this class of simulators to

�nd the miss ratios for an entire design space of cache dimensions with one pass over

the trace. The space complexity of these algorithms is directly proportional to the static

program size. Hence, it is O(1). The disadvantage of these approaches is their time

complexity, which is O(N � d), where d is the average stack depth [30]. The particular

single-pass simulation approach presented in this paper is based on the recurrence/con
ict

model of the miss ratio. The model is introduced below followed by a description of the

simulation method.
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3.1.1 Recurrences and con
icts

The metric used in many memory system studies is the miss ratio. This is the

ratio of the number of references that are not satis�ed (i.e., that miss) for a cache at

a level of the memory system hierarchy over the total number of references made at

that level. The miss ratio has served as a good metric for memory systems since it is

a characteristic of the workload (e.g., the memory trace) yet independent of the access

time of the memory elements. A given miss ratio can be used to decide whether a

potential memory element technology will meet the required access time for the memory

system [13]. The recurrence/con
ict model of the miss ratio is best illustrated with an

example. Consider the trace of Figure 3.1. The recurrences in the trace are accesses

e; f; g and h. In the ideal case of an in�nite cache, the miss ratio may be expressed as

� =
N �R

N
; (3.1)

where R is the total number of recurrences and N is the total number of references. Non-

ideal behavior occurs due to con
icts. A dimensional con
ict is de�ned as an event which

converts a recurrence into a miss due to limited cache capacity or mapping in
exibility.

For illustration, consider a direct mapped cache composed of two one-byte blocks shown

in Figure 3.2. (Note that in practice, such a small cache would be impractical to build.)

Reference a b c d e f g h

Address 0 1 2 3 1 2 1 0

Figure 3.1: An example trace of addresses.
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block 0:

block 1:

Address: 0 1 2 3

1 2 1

0

1

0 2

1 3

2

1

2 2

1 1

2

1

*

* Dimensional conflict

miss miss miss miss

miss

Reference:

0

0

miss

*

a b c d

e f g h

Figure 3.2: An example two-block direct-mapped cache behavior.

A miss occurs for the recurring reference e because reference d purges address 1 from the

cache due to insu�cient cache capacity. Similarly, a miss occurs for recurring reference h

due to reference c. References d and c represent a dimensional con
ict for the recurrences

e and h, respectively. The other misses, a; b; c and d, occur because these are the �rst

references to addresses 0; 1; 2 and 3, respectively. The following formula can be used for

deriving cache miss ratio, �, for a given trace, a given cache dimension:

� =
N � (R �D)

N
; (3.2)

where D the total number of dimensional con
icts. (For the example, � = (8� (4�2))=8

= 0:75.) This is a general model and can be extended to account for other e�ects,

such as con
icts due to multiprocessor cache coherence [32] and context switching (see

Section 3.3).
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3.1.2 Reference streams and cache dimensions

A formal abstraction of a benchmark's trace is termed a reference stream. This is a

sequence of references to addresses, w(k), of length N (0 � k < N). When required,

the addresses are represented by lower-case Greek letters, such as �; �; 
. The reference

stream is assumed to be generated by a single process in a multiprogramming system.

Note that a reference at w(k) occurs later than w(k + 1) in time, but the parameter k

does not represent parameterized time since it does not take into account the di�erence in

service times between cache hits and cache misses. For this reason, k is referred to as the

reference count. The trace also contains information about voluntary context switching.

A reference is called a voluntary context-switch event if the benchmark relinquished the

CPU after the reference (e.g., a system call was performed).

The dimension of a cache is expressed using the notation, (C;B; S), for a cache of

size 2C bytes, with block size 2B bytes, and 2S blocks contained in each associativity set.

The term set size is used to mean associativity level, or the number of blocks per set.

Cache size is the total number of bytes per cache. Block size has been called line size

elsewhere [17]. Note that C � B + S. The notation (C;B;1) is an abbreviation for the

dimension of a fully associative cache (S = C � B). For example, a cache of dimension

(10; 6; 0) is a 1KB direct-mapped cache with a block size of 64 bytes; and, a cache of

dimension (21; 10; 11) (alternately, (21; 10;1)) is of size 2MB with 1KB-length blocks

and it is fully associative. A dash is substituted for an entry in the triple to indicate all

caches of that dimension: (�; 5; 1) are all caches with block size of 32 bytes and having
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2-way associativity. Caches are assumed to use LRU replacement and map addresses into

sets using bit selection [30].

It is useful to partition the reference stream by setting the block o�set portion of all

addresses in the stream to zero. This produces a block reference stream, wB(k), which is

de�ned such that

wB(k) = 2B
$
w(k)

2B

%
:

In binary, this is equivalent to setting the least-signi�cant B bits to zero.

3.1.3 Least-recently used (LRU) stack operation

Least-recently used (LRU) stacks were �rst introduced by Mattson et al. in [4] as a

way to model the behavior of paging systems. An LRU stack operates as follows: when

an address, wB(k) = �, is encountered in the block reference stream, the LRU stack is

checked to see if � is present on the stack. If � is not present, it is pushed onto the stack.

However, if � is present (e.g, it is a recurring reference), it is removed from the stack,

0 1 2

21 1

3

0

0

0

0

0 0 0

1

1

1

1

1

1

1

2

2

2

2

2

3

3

3 3

3

0

0

1 2

Reference:

Reference:

Figure 3.3: An example of LRU stack operation.
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then repushed onto the stack. This is illustrated in Figure 3.3 for the example reference

stream at the beginning of this section (Figure 3.1).

A stack is represented as SB(k), maintained for a block size B at time k. The ith

ordered item of SB(k) is expressed as, SB(k)[i]. The stack may also be expressed as an

ordered list, such that SB(k) = fSB(k)[0]; SB(k)[1]; : : : ; SB(k)[m]g, where m is the depth

of the stack. The following operations are de�ned for a stack:

the push(�) function,

push(SB(k); �) =
n
�; SB(k)[0]; SB(k)[1]; : : : ; SB(k)[m]

o
;

the �(�) function,

�(SB(k); �) = i; if SB(k)[i] = �;

and, the repush(�) function,

repush(SB(k); �) =
n
�; SB(k)[0]; SB(k)[1]; : : : ; SB(k)[�(SB(k); �)� 1];

SB(k)[�(SB(k); �) + 1]; : : : ; SB(k)[m]
o
:

�(SB(k); �) and repush(SB(k); �) are unde�ned when � 62 SB(k). When SB(k) and

� are understood, it is convenient to use � = �(SB(k); �). Note that push(�) and

repush(�) are de�ned as side-e�ect-free functions rather than procedures. This is to

remove dependence on the time variable, k.

The least-recently used management policy for a stack is shown in Figure 3.4 for an

address � = wB(k). In Step 1.1, the references between the top of stack and the recurring
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reference have been referred to as the set � = f�i j �i = SB(k � 1)[i]; 0 � i � �g.

Figure 3.4 is applied to � = wB(k) for all k. The LRU policy is essentially a de�nition

1. if � 2 SB(k � 1) then

1.1 do recurrence(�;�)

1.2 SB(k) repush(SB(k � 1); �),

2. else SB(k) push(SB(k � 1); �)

3. N  N + 1

Figure 3.4: The least-recently used management policy for a stack, SB(k) (adapted from
Mattson et al.).

for calculating SB(k) from SB(k � 1) and �. In most situations, SB(k) is calculated in

order to obtain other statistics, such as the stack depth distribution.

The complexity of the algorithm of Figure 3.4 depends on the complexity of the

do recurrence() procedure. Assume for the moment that the complexity of this pro-

cedure is O(d) on average (the validity of this assumption is justi�ed below). The outer

algorithm's complexity is also dependent on the e�ciency of the set (stack) existence

operator in Step 1. In Mattson et al. [4], the set-existence operation was determined by

scanning the entire stack. This has an average complexity O(d) for the set existence,

where d is the average stack depth [30]. This results in a complexity of O(N � d) for

the entire algorithm. This approach to calculating set existence can be replaced by using

a hash table lookup, where each entry of the new table contains a pointer to the stack

frame. Hash table lookup also has complexity of O(d) on average [33]. However, there

is a practical advantage to using hash table lookup. For the hash table implementation,
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only the hash con
ict set for the block needs to be searched to determine whether the

reference is �rst-time. This is a constant-time improvement and does not change the

asymptotic behavior.

3.1.4 Recurrence/con
ict-based single-pass simulation

The single-pass cache simulation algorithm for limited associativities (S < C �B) is

created by expanding the do recurrence procedure of Figure 3.4 [30]. A single-pass algo-

rithm that uses the recurrence/con
ict model is presented in Figure 3.5. This algorithm

is similar to the original algorithm of Traiger and Slutz [31]. However, where Traiger

and Slutz recorded temporal localities, this algorithm records recurrences and con
icts.

Since temporal locality functions can occupy considerable space, using recurrences and

con
icts is an advantage. In this respect, the recurrence/con
ict approach is similar to

the algorithm of Hill and Smith [30].

Whenever a reference is found on the stack in Figure 3.5, its presence indicates that it

is a recurrence. The calculation of the number of recurrences (R[B]) is implemented by

recording the number of times this event occurs in Step 1 of Figure 3.5. The remainder

of the algorithm is devoted to calculating the dimensional con
icts (D[C;B; S]).

The for statement that iterates for all intervening references in Step 2 of Figure 3.5

calculates the raw information for determining two classes of cache organizations. The

maintenance of the number of unique references (u) in Step 2.1 is used to calculate the

largest-sized fully associative cache with a dimensional con
ict (c1). This calculation is
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do recurrence(�;�):

1 R[B] R[B] + 1

2 for �i 2 � do

2.1 u u+ 1
2.2 d j�i � �j
2.3 z  ctz(d)
2.4 p[z] p[z] + 1

2.5 zmax max(z; zmax)
3 c1  blg uc+B

4 D[c1; B;1] D[c1; B;1] + 1
5 z  zmax

6 Starget  1

7 nss 0
8 for s 0 to Smax

8.1 CMC  B

8.2 while z � 0 and nss < Starget
8.2.1 nss p[z]

8.2.2 z  z � 1
8.3 if nss � Starget then

8.3.1 CMC  z + s+ 1
8.4 D[CMC; B; s] D[CMC ; B; s] + 1

8.5 Starget  2� Starget

Figure 3.5: The recurrence/con
ict single-pass cache simulation algorithm.
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done in Steps 3 and 4 by �nding the lg (log base two) of this count. Unlike the algorithm

of Mattson et al., only cache sizes that are multiples of powers of 2 are considered [4]. The

remainder of Step 2 calculates a histogram, p[z], of a function of the current reference (�)

and each intervening reference (�i) (Step 2.4). This function is the lowest power of two

factor of the arithmetic di�erence between the two references (Steps 2.2 and 2.3). For

a range of direct-mapped caches, this function is equivalent to the largest cache size in

which a miss will still occur for � due to the intervening reference to �i. The remainder

of the procedure uses this information to calculate this cache size for all associativities

(Steps 5{8).

The histogram (p[z]) is processed for all associativities by scanning the histogram

from largest to smallest potential con
icting cache size. A set size can be thought of as

a con
ict tolerance. A con
ict between � and �i for a direct-mapped cache of dimension

(C;B; 0) is equivalent to � and �i occupying the same set in caches (C;B; S) for C�B �

S > 0. The larger the set size, S, the more numerous the allowed same-set mappings

between references to � before these mappings result in a miss.

In Steps 6 to 8, the set sizes are considered in increasing order to determine how many

same-set mappings are tolerable. For each set, the largest cache size in which a miss will

occur, CMC, (MC = maximum con
ict) is the product of the same cache size for a

direct-mapped cache times the set size (Step 8.3.1, note that addition of these exponents

of base 2 implies multiplication). If no same-set mappings remain in the histogram,
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the only con
icts accounted for are those that occur in caches containing a single block

(Step 8.1).

The complexity of the inner-mostwhile statement of Steps 8.2{8.2.2 is dependent on

Starget and z. The initial value of z is zmax, which is bounded by the word size of the trace

(e.g., 32 bits) since zmax is an indirect result of the ctz(d) function of Step 2.3. Therefore,

z has a constant upper bound. The other determiner of the while statement's execution

is Starget which is 2s due to Steps 6, and 8.5. Therefore, Starget also has a constant

upper bound of 2Smax. The while statement therefore has a worst-case execution time of

max(zmax; 2
Smax), which results in a complexity of O(1). The surrounding for statement

also has a complexity of O(1), resulting in a total complexity for Step 8 and all of its

substeps of O(1).

The complexity of the do recurrence() procedure is O(d) in the worst case due to

the scanning of the stack in Steps 2.1{2.5. An input that elicits worst-case behavior is a

cyclic referencing pattern of addresses, such as

�; �; 
; �; �; �; 
; �; �; : : : ;

where each cycle consists of �; �; 
; �. Consider a trace of such a pattern of length N

having K cycles. In such a trace, any recurrence must traverse d = N=K references in

Steps 2.1{2.5. Hence, the complexity of this is O(N=K), or simply O(d).
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3.2 Statistical Sampling of Address Traces

Cache simulation is concerned with summarizing the cache performance due to the

entire trace by reporting a small set of statistics. By and far the most common statistic

is the miss ratio; its decomposition into recurrences and con
icts was discussed above.

Since the miss ratio is an arithmetic average over time, it can be accurately predicted by

statistically sampling the trace [5]. Statistical sampling has been applied to traditional

cache simulation, but it has not yet been applied to single-pass techniques. Such an

extension is developed here.

3.2.1 De�nition of sampling

Consider a reference stream, wB(k). Statistical sampling takes NS samples of length

LS from this trace. Note that each sample is a contiguous block of LS references. Typical

values for NS are 40 samples and typical values for LS are in the range of 50,000{200,000

references [5],[34]. The removed references between two samples comprise a sample gap

that has length LG. Without loss of generality, it is assumed that LG is a constant and

that LS and LG are selected so that the trace is an integral multiple of LS + LG (i.e.,

N = NS(LS + LG)). These samples are applied to the cache simulator in the order they

are taken from the trace. The state of the cache is unknown between each sample. An

issue in sampling for cache systems is how to repair the state of the cache between the

application of each sample to achieve high accuracy. Several approaches to the repair of

the cache state are described below.



36

In the following discussion, the actual miss ratio is denoted � and the miss ratio

estimated by sampling is denoted �0. This convention is used for the components of the

miss ratio, R[B], D[C;B; S] and N . The sampled miss ratio is, therefore,

�0 =
N 0 � (R0[B]�D0[C;B; S])

N 0
: (3.3)

There are several ways of measuring the error between � and �0. The percentage

change, or relative error, can be calculated as RE(�) = j�� �0j=�. The problem with the

use of relative error with miss ratios is that it may in
ate di�erences between � and �0

that would not normally matter to a designer. Designers typically pick a target miss ratio

value and accept any design that satis�es that value [6]. In particular, a cache with a

miss ratio of � = 0:01% is as acceptable for a design as a cache with a sampled miss ratio

of �0 = 0:005%, since both values are very small. However, the relative error between

these values is RE = 50%. The lesson contained in this example is that although relative

error is appropriate for large values of the miss ratio, it is less signi�cant for smaller

values. This suggests that an error measure weighted by the actual miss ratio would

better characterize the impact of the di�erence. Such a measure is the absolute miss

ratio error, AE(�) = j� � �0j. This section uses absolute error measures for comparison

between sampling approaches.

3.2.2 State repair techniques

The cache state repair problem for statistical sampling of address traces is how to

accurately estimate the contents of the cache at the beginning of each sample. Several
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approaches have been proposed for traditional cache simulation [5],[11],[35],[34]. This

section adapts one of these approaches to single-pass techniques and then presents a new

approach. The two single-pass approaches to state repair are compared using empirical

simulation results. Because the SPEC89 benchmarks are long-running, only the shortest

of the benchmarks can be used for these comparisons, since the result from a full sim-

ulation is required to evaluate sampling. The shortest two benchmarks in the SPEC89

set are gcc and espresso. Even these two benchmarks have large traces: the full gcc

benchmark address trace is slightly more than 33 million references long, and the trace

for espresso is slightly more than 150 million references long. To increase the diversity of

this benchmark set, the �rst 100 million references from four additional SPEC89 bench-

marks are used to evaluate sampling. These truncated benchmarks are taken from doduc,

nasa7, spice and xlisp.

The �ll-
ush approaches to state repair entail removal of all unknown unique refer-

ences from the trace [35]. To apply this approach to single-pass simulation, the recur-

rence/con
ict single-pass method is extended to measure the number of references whose

states are unknown due to lost state between samples. It is traditional to term these

references �ll references [35]. Let F [B] be the count of �ll references for block size B. In

the adapted algorithm, the cache is 
ushed between each sample and F [B] is collected.

References with unknown state are removed from calculation of the miss ratio by using

Equation (3.4):

� =
N � (R[B]�D[C;B; S])

N � F [B]
: (3.4)
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Figure 3.6 shows the recurrence/con
ict single-pass algorithm modi�ed for this form of

sampling. Flushing of the LRU stack is represented as \SB  ;" (Step 1.1 of Figure 3.6).

Step 1.2.1 shows the sampled references being removed by indexed calculation of the

reference stream, wB. This need not be the case, instead the samples could be written

to disk or consumed in-process. Equation (3.4) can be re-arranged as follows:

� =
N � (R[B]�D[C;B; S]� �F [B])

N
; (3.5)

(see [35]). Equation (3.5) shows that removing the �ll references is equivalent to weighting

these references by the miss ratio of the remainder of the trace.

1. for i 0 to NS � 1
1.1 SB(0) ;

1.2 for j  0 to LS
1.2.1 � wB(i� (LS + LG) + j)
1.2.2 if � 2 SB(j � 1) then
1.2.2.1 do recurrence(�;�)
1.2.2.2 SB(j) repush(SB(j � 1); �),

1.2.3 else

1.2.3.1 SB(j) push(SB(j � 1); �)
1.2.3.2 F [B] F [B] + 1

1.2.4 N  N + 1

Figure 3.6: Extension of the recurrence/con
ict single-pass algorithm to sampling using

�ll-
ush state repair.

Typical values for absolute error are presented in Figures 3.7{3.12 for direct-mapped

and fully associative caches with sample sizes of LS = 50; 000, 100,000, and 200,000

references. The relatively large error for nasa7 is a consequence of �xed-interval sampling

(i.e., constant LG). Two trends can be observed in the �gures:
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Figure 3.7: Absolute error for �ll-
ush, direct-mapped caches, LS = 50; 000.
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Figure 3.8: Absolute error for �ll-
ush, fully associative caches, LS = 50; 000.
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Figure 3.9: Absolute error for �ll-
ush, direct-mapped caches, LS = 100; 000.
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Figure 3.10: Absolute error for �ll-
ush, fully associative caches, LS = 100; 000.



41

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30

a
b
s
o
l
u
t
e
 
e
r
r
o
r
 
(
p
e
r
c
e
n
t
)

cache size (LOG bytes)

doduc
espresso

gcc
nasa7
spice
xlisp

Figure 3.11: Absolute error for �ll-
ush, direct-mapped caches, LS = 200; 000.
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Figure 3.12: Absolute error for �ll-
ush, fully associative caches, LS = 200; 000.
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1. Absolute error decreases with sample size.

2. There is a constant absolute error (approximately 0.06%) for large cache sizes across

all sample sizes.

Observation 1 is due to increasing sample size which results in the simulation of larger

numbers of references from the original trace. Observation 2 is due to the fact that the �ll

references can potentially contain �rst-time references to locations. When C is increased

to the point where D[C;B; S] = 0, then,

�(C su�ciently large) = (N �R[B])=N: (3.6)

However,

R[B] = R0[B] + fr � F [B]; (3.7)

where fr is the fraction of �ll references that recur. The fraction fr can only be known by

measuring the entire trace since the status of �ll references is unknown due to state loss.

Assuming that all �ll references are recurrences e�ectively sets fr = 1, resulting in the

constant error observed in the �gures. An approach to removing this error is discussed

below.

The ratio of sample simulation time for the full-
ush approach to the non-sampled

approach (i.e., using the full trace) for the gcc and espresso benchmarks is presented

in Figure 3.13. This ratio can be thought of as the speedup of the sampling approach.

Small sample sizes obtain a higher speedup over large sample sizes in the �gure since
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Figure 3.13: Speedup of �ll-
ush approach over no sampling for benchmarks gcc and
espresso.

sampled traces with smaller sample sizes are shorter overall, resulting in less work for

the simulator.

There are several other approaches to state repair that can collectively be termed

cache warm-up approaches. In these approaches, calculations of performance metrics are

delayed for each sample until the cache contents are stable, or \warmed up." This warm-

up state is speci�ed by some criterion, where the criterion vary based on the approach.

One possible warm-up criterion is to use a fraction of the sample to prime the cache and

then record recurrences and con
icts for the second half of the sample. This approach

might work well for small caches using traditional simulation. It does not perform well
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for larger caches using traditional simulation and as such does not perform well for single-

pass methods. Several other warm-up criteria are

1. Delay calculation of performance metrics for each set in the cache until each set is

�lled with references [11],

2. Rede�ne the miss ratio in terms of the lifetime of references and measure expected

lifetime length [34].

Method 1 is not applicable to single-pass cache simulation since the state of every as-

sociativity set in every possible cache dimension is not kept. The state could be kept.

However, since the maintenance of this information is equivalent to the maintenance of

state information for traditional simulation, the algorithm would reduce to traditional

simulation. Method 2 also requires maintenance of additional state information, in this

case to maintain the lifetime of each reference in the LRU stack. Lifetime is speci�c to a

particular cache con�guration and 2 has similar problems to 1 with respect to large data

structures. Instead of using 2 to extend single-pass methods to achieve lower absolute

error than the �ll-
ush techniques, an approach that avoids altogether the problem of

state repair is possible.

In a situation in which in-process trace generation is occurring (see Section 2.1.3 of

Chapter 2), the entire trace is available even if sampling is occurring at the input to

the cache simulator. It is possible to make use of these excluded references. Consider

Figures 3.4 and 3.5 from the previous section. The shorter LRU stack maintenance

algorithm of Figure 3.4 could be applied to all the references in the trace, saving the
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the more complicated and costly application of do recurrence() of Figure 3.5 for the

references inside the sample. In this approach, statistical sampling is used for the con
ict

metrics only and R[B] and N are recorded for the whole trace. The miss ratio is then

calculated as follows,

� = 1 �
R[B]

N
�
D0[C;B; S]

NSLS
: (3.8)

The power of this approach is twofold. First, if the simpler algorithm exploits a hash

table for stack blocks, it can be made to run much faster than the more complicated

algorithm that performs the do recurrence() procedure. Second, since the stack is

maintained, it is know whether any reference recurs for all references inside the sample.

Hence, the state of all references is known. This approach is therefore termed a no-state-

loss sampling technique.

The modi�ed sampling algorithm is shown in Figure 3.14, where the predicate sampling

tests if reference � = wB(k) falls inside a sample. Using the notation for sample length

and sample gap, this predicate is de�ned as

sampling(k) : k mod (LS + LG) � LS: (3.9)

To demonstrate the accuracy of the approach, the absolute errors are presented in

Figures 3.15{3.20. Comparison of Figures 3.15{3.20 to Figures 3.7{3.12 reveals several

advantages of the no-state-loss approach over the �ll-
ush approach:
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1. if � 2 SB(k � 1) then

1.1 if sampling(k) then do recurrence(�;�)

1.2 SB(k) repush(SB(k � 1); �),

2. else SB(k) push(SB(k � 1); �)

3 if sampling(k) then N  N + 1

Figure 3.14: A no-state-loss approach to extending a single-pass cache simulation algo-
rithm for sampling.
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Figure 3.16: Absolute error for no-state-repair, fully associative caches, LS = 50; 000.
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Figure 3.17: Absolute error for no-state-repair, direct-mapped caches, LS = 100; 000.
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Figure 3.18: Absolute error for no-state-repair, fully associative caches, LS = 100; 000.
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Figure 3.19: Absolute error for no-state-repair, direct-mapped caches, LS = 200; 000.
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Figure 3.20: Absolute error for no-state-repair, fully associative caches, LS = 200; 000.
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1. In general, the error for no-state-loss is approximately half that of �ll-
ush.

2. The error is zero for large caches (C > 19, empirically) for no-state-loss compared

to the constant error observed for �ll-
ush.

Both advantages 1 and 2 can be attributed to the full-trace measurement of R[B]. In

particular, advantage 2 is a direct result of Equations (3.6) and (3.7) since fr is known

for no-state-loss.

A quali�cation must be made concerning this approach. It is not as fast as simple

sampling techniques such as the �ll-
ush approach. This is the case since some processing

must be done for all references. Figure 3.21 shows the speedup of no-state-loss over full-

trace simulation for the gcc and espresso benchmarks, with the scale adjusted to match

the scale of Figure 3.13. Comparison of Figure 3.21 to Figure 3.13 reveals that no-state-

loss sampling is approximately 2-3 times slower than �ll-
ush sampling. Hence, �ll-
ush

might be preferable when the benchmarks are extremely long-running and a factor of 2-3

is important. The higher error for medium-sized caches of the �ll-
ush approach suggests

that the �ll-
ush approach is not well-suited for prototyping of �rst-level cache designs.

The no-state-loss approach has higher accuracy than the �ll-
ush approach for all cache

sizes and is generally preferable because of this property.
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3.3 Susceptibility of Programs to Context Switching

Multiprogramming degrades memory system performance since (process) context

switching reduces the e�ectiveness of cache memories. This occurs when cache con-

tents that will be needed after the process returns from a context switch are purged by

the intervening processes. The cache contents that may fall victim to context switch-

ing are determined by the process' reference pattern (a program characteristic) and the

cache dimension (a system design parameter). The portion of such cache contents that

are actually purged by intervening processes is determined by the load of the system: the

number of ready processes and access patterns of these processes. The method presented

in this section accurately records, for all cache dimensions and all context switching in-

tensities in a single pass, the total amount of cache contents that will be needed after

the process returns. This information is de�ned as the susceptibility of the program to

the e�ect of context switching.

Several other approaches have been taken to measure the e�ects of context switch-

ing [13]{[19]. The earliest approaches 
ushed the cache being simulated at �xed intervals

in the trace [13],[14]. Shedler and Slutz [15] approached the problem by stochastically

merging several memory reference traces. Easton [16] used the average working set size

of the memory reference trace to estimate cold-start miss ratios. Haikala [18] simpli�ed

Easton's approach by estimated cold-start miss ratios using a Markov chain model. Cold-

start miss ratios can be used to approximate the multiprogramming e�ects. Switching

between multiple memory reference traces at a �xed interval was used by Smith [17]
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to measure multiprogramming e�ects. Also, hardware measurements of real multipro-

grammed workloads were performed by Clark [12] and Agarwal et al. [19]. Apart from

the approximations of Easton [16] and Haikala [18], no work has been done to extend

single-pass methods to exactly model the e�ects of context switching. Since multipro-

gramming e�ects can account for a 4% to 12% degradation in performance [12],[18],[19],

this omission in the literature has limited the usefulness of single-pass methods.

One obvious extension to single-pass methods to model context switching e�ects is to


ush the LRU stack periodically. The shortcoming of this approach is that one simulation

would have to be performed for each context switching intensity (e.g., time quantum and

I/O workload). A more desirable method is to record the context switching e�ects for all

intensities in one pass. This section introduces a single-pass method for measuring the

susceptibility of a program to the e�ects of context switching for all cache dimensions

and all intensities. It is demonstrated that the susceptibility measures can be combined

with system load parameters and context switching intensity to yield the performance

degradation in various multiprogramming environments without resimulation. Obtaining

memory system performance degradation under many di�erent system loads allows the

memory system to be designed with a degree of robustness. It further increases the

advantage of single-pass stack methods over multiple-pass methods. This is the �rst such

study to make the dichotomy between program susceptibility and multiprogramming

e�ects. The measured performance is compared to results from periodic and random


ushings of the LRU stack.



53

3.3.1 Types of context switching

Context switching occurs due to two distinct events: (1) a voluntary context switch,

where the benchmark relinquishes the processor, and (2) an involuntary context switch,

where the benchmark's execution is suspended due to external interrupts. Voluntary

context switches are a characteristic of the benchmark. They occur at the same place

in the execution between di�erent benchmark runs. On the other hand, involuntary

context switches are determined by the I/O system behavior (device interrupts), clock

frequency (timer interrupts), etc. They do not occur at the same place between runs of

the benchmark and are not characteristic of the benchmark. Page faults are treated as

involuntary context switches because page faults depend on the interaction of processes in

the system, whose interaction is assumed to be pseudo-random in nature. Furthermore,

the frequency of page faults can be reduced in prototypes by determining the correct size

of physical memory to achieve a very low paging rate [6].

Since involuntary context switches occur at random instances, it is assumed that in-

voluntary context switches can occur with equal probability for each reference in the

reference stream [18]. This probability is denoted, q, and termed the involuntary context

switching intensity. Separation of the system's characteristics from these characteristics

of the benchmark allows many di�erent systems to be considered without re-simulating

the benchmark's behavior. This is the main goal of single-pass techniques in general [31].

Although the occurrence of involuntary context switches is not a characteristic of the

benchmark, the benchmark's susceptibility to their occurrence is. This susceptibility
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can be measured as the expected number of multiprogramming con
icts due to random

involuntary context switching. A method to measure this susceptibility is presented in

Section 3.3.3 that records the benchmark's susceptibility to all context-switching inten-

sities in a single pass through the trace. The empirical results discussed in Section 3.4.1

demonstrate the validity of this single-pass approach.

The working set of a process (benchmark) may have been 
ushed from the cache

before it re-enters the run state after a context switch. Let fCS represent the fraction of

the cache's contents 
ushed between context switches. The number of processes executed

before a process returns from a context switch is a function of the system load and the

operating system scheduling policy. Furthermore, the particular cache blocks 
ushed due

to a context switch also depend on the reference patterns of the processes executing on the

system. This makes fCS highly dependent on several volatile variables and, therefore,

di�cult to measure. (Nevertheless, some empirical estimates of fCS are presented in

Section 3.4.5.) Some virtual memory system implementations force a cache 
ush to

eliminate problems with page sharing of writable pages [19]. Also, it has been shown that

for small cache sizes, a context switch e�ectively 
ushes the cache; therefore, fCS = 1 [17].

For larger caches, this provides an upper bound for the e�ects of context switching.

3.3.2 The components of multiprogramming con
icts

Multiprogramming con
icts are de�ned in terms of potential victims. A recurring

reference that is not removed from a speci�c cache by a dimensional con
ict, yet that
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may be removed by a context switch, is a potential victim of the context switch. Potential

victims are de�ned as XV [C;B; S] and �XI [C;B; S; q], for all voluntary and involuntary

context switches, respectively. XV [C;B; S] is the total number of potential victims due

to voluntary context switching for caches of dimension (C;B; S). �XI [C;B; S; q] is the

expected number of potential victims due to involuntary context switching of intensity

q. The multiprogramming con
icts are expressed in terms of victims as

M [C;B; S; q] � fCS
�
XV [C;B; S] + �XI [C;B; S; q]

�
: (3.10)

The equation for the miss ratio (Equation (3.2)) can be modi�ed to take into account

the new con
icts,

� =
N � (R �D �M)

N
: (3.11)

Determining the multiprogramming con
icts involves measuringXV and �XI from the ref-

erence stream. The measurement can be done by extending the recurrence/con
ict single-

pass technique. The miss ratio is then calculated by �rst calculating M [C;B; S; q] using

Equation (3.10) for a value of fCS , then using the result to complete Equation (3.11).

3.3.3 Multiprogramming extensions to LRU stack operation

The extensions required to the recurrence/con
ict single-pass technique that measure

XV and �XI are shown in Figure 3.23. The procedure for determining XV [C;B; S] is

illustrated in Figure 3.22. The procedure operates as follows: When � is processed, if it

is not a recurring reference (i.e., the test of Step 1 of Figure 3.23 fails), then it cannot

be a victim since it cannot produce a hit. However, if � is a voluntary context switch



56

event, it is marked as such when it is pushed on the stack in Step 2 (marked references

are shown using asterisks in Figure 3.22). If � is a recurring reference, XV [C;B; S] is
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Figure 3.22: An example for voluntary context switch of the modi�ed LRU stack opera-
tion.

conditionally incremented if a marked reference is encountered when the dimensional

con
icts are calculated. XV [C;B; S] is only incremented for all dimensions in which �

does not have a dimensional con
ict. If XV [C;B; S] were incremented for all dimensions,

a reference might be counted more than once as a con
ict, once as a multiprogramming

con
ict and once as a dimensional con
ict. Notice that the references immediately below

marked references inherit the marking in the �gure. This is done to insure that all

subsequent recurring references that cross the context switch event are subject to a

voluntary context switch. To maintain correct detection of voluntary context switches,

the reference immediately below � on the stack is marked on repush if � was marked

(Step 1.6 and its substeps of Figure 3.23).
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The procedure for determining �XI [C;B; S; q] using an LRU stack is somewhat more

complicated than that for determining XV [C;B; S]. Recall that an involuntary context

switch may occur between every reference. Let L, the context switch distance, be the

number of potential involuntary context switch events for the recurring reference � at

reference count k (i.e., � = wB(k � L) = wB(k)). Let pL be the probability that at least

one involuntary context switch occurs between times k � L and k. Then,

pL =
LX
j=1

 
L

j

!
qj(1 � q)L�j : (3.12)

De�ne nL[C;B; S] to be the number of recurrences not subject to dimensional con
icts

that have a context switch distance of L. Therefore,

�XI [C;B; S; q] = E
h
nL[C;B; S]

i
=
X
L

pLnL[C;B; S]: (3.13)

Equation (3.13) expresses the expected number of potential victims due to involuntary

context switching. The equation �ts naturally into a stack-based method. The new metric

nL[C;B; S] can be recorded by annotating the references on the stack. Figure 3.24 shows

an example of calculating �XI [C;B; S]. The �gure shows that a counter of the number of

context switch events a�ecting � is kept, de�ned as cI(�). Initially and after a recurring

reference is repushed, cI(�)  1 (Step 2.1 and 1.8 of Figure 3.23). In Step 1.3 and its

substeps and Step 1.4, L is computed from one plus the sum of the counters of entries

above � on the stack. (Notice that cI(�) is not part of the calculation of L; Figure 3.24

illustrates this). In Step 1.5 and its substeps, nL[C;B; S] is incremented for all caches in

which there are no dimensional con
icts. Let SB(k � 1)[�� 1] = �0, the address that is
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1. if � 2 SB(k � 1) then

1.1 vol cs  false

1.2 L 1
1.3 for i 0 to � do

1.3.1 �i SB(k � 1)[i]
1.3.2 if �i marked as a voluntary context switch event then

1.3.2.1 vol cs  true

1.3.3 L L+ cI(�i)
1.4 L L+ 1

1.5 for all (C;B; S) without a dimensional con
ict do

1.5.1 nL[C;B; S] nL[C;B; S] + 1
1.5.2 if vol cs then

1.5.2.1 XV [C;B; S] XV [C;B; S] + 1
1.6 if � marked as a voluntary context switch event then

1.6.1 mark ��+1
1.6.2 unmark �

1.7 cI(���1) cI(���1) + cI(�)
1.8 cI(�) 1
1.9 SB(k) repush(SB(k � 1); �),
2 else

2.1 cI(�) 1

2.2 SB(k) push(SB(k � 1); �)

Figure 3.23: An LRU stack method modi�ed for context switching.
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Figure 3.24: An example for involuntary context switching of the modi�ed LRU stack
operation.

directly above � in the stack SB(k� 1). As a bookkeeping step, cI(�0) is incremented by

cI(�) (Step 1.7). In this way, all of the references deeper in the stack than � in SB(k�1)

will arrive at the correct context switch distance.

The algorithm shows nL[C;B; S] being maintained for all values of L. Not all values

of L must be recorded using nL[C;B; S]. Rather, power-of-two sized categories can be

retained. The scheme used for the simulations that is presented below uses 14 categories.

The �rst category contains nL[C;B; S] for 1 � L < 4, following this, the ith category

contains nL[C;B; S] for 2
(i+2) � L < 2i+3. This quantization scheme is based on obser-

vations of the distribution of nL[C;B; S] vs. L. The scheme does, however, produce error

for small q, and this is commented on in the following section.

Notice that the calculation of nL[C;B; S] is independent of the context switching

intensity distribution assumptions. The function used to calculate pL in Equation (3.13)
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need not be Equation (3.12). It is possible to substitute other context switching intensity

distributions into Equation (3.13) without altering the presented single-pass method. The

impact of this observation is that the method is more general than the assumption of

uniformly distributed involuntary context switching of Equation (3.12).

The algorithm of Figure 3.23 is compatible with the no-state-loss sampling approach

since the stack annotations (i.e., marked stack entries and maintenance of the cI coun-

ters) may be included as part of the stack maintenance and need not be part of the

do recurrence() procedure. In this extension to sampling, the calculation of nL[C;B; S]

and XV [C;B; S] would only occur inside samples, as was the calculation of D0[C;B; S] for

the no-state-loss approach. However, the context switching algorithm is not compatible

with �ll-
ush or other traditional sampling approaches since the stack is not maintained

between samples. This is an additional reason for the use of the no-state-loss approach

instead of the �ll-
ush approach.

3.4 Empirical Results of Program Susceptibility

The validity of the single-pass method of the previous section is discussed below

by comparing the method's results with those results from other techniques that have

similar assumptions. The results from the model are presented and discussed for members

of the SPEC89 benchmark set. The dimensional con
icts that occur due to di�erent

cache sizes are discussed in Section 3.4.4 to compare their performance degradation with

that of context switching. Empirically observed values of the parameter fCS are also
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presented. It is found that fCS < 1 for moderate multiprogramming loads, con�rming

the observation that fCS = 1 produces overly pessimistic results.

3.4.1 The validity of the single-pass method

It is important to question whether the single-pass method extended to measure con-

text switching produces performance estimates that are consistent with the assumptions

made in Section 3.3.1. (Whether these assumptions are valid themselves is beyond the

scope of this study.) The approach used in testing the validity of the method is to

compare its predictions with methods used for traditional cache simulators.

One commonly used simulation technique to measure the e�ects of context switching

is to 
ush the state of the simulation at context switching events [13],[14],[17]. It is

clear that in this case, fCS = 1 is assumed. The decision of when to 
ush the stack for

voluntary context switch events is known since these are present in the trace. The decision

of when to 
ush the cache for involuntary context switch events is done by distributing

involuntary context switch events throughout the trace uniformly. This random-interval

simulation 
ushes the contents of the stack based on a uniformly distributed random

number with mean q. Note that the random-interval simulation requires a simulation for

each value of q. The single-pass method does not have this restriction since it measures

the e�ects of all q in one pass over the trace.
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The random-interval simulationmethod approximates the assumptions of Section 3.3.1,

except that the simulation produces results for one particular random distribution of con-

text switch events across the trace. The single-pass method measures the average e�ect

of all distributions. This discrepancy can be eased by averaging the results of several

random-interval simulations, which are performed iteratively until the results converged.

Figure 3.25 present the di�erence between the random-interval simulation and the

single-pass method for espresso, gcc and xlisp, expressed as the absolute error of the

miss ratio, for q = 0:01 and q = 0:001, respectively. Only the absolute errors for fully

associative caches are shown in the �gure for brevity. Smaller levels of associativity

were found to have lower error. The �gure demonstrates that the di�erence between
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Figure 3.25: Absolute error of the miss ratio for random-interval simulation vs. single-

pass method, q = 0:01 and q = 0:001.
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the simulation and the model is approximately 3% to 3.5% for q = 0:01 and less than

1% for q = 0:001. The increase in error for smaller q values is due to the quantization

of L discussed in the previous section. This error of 3% to 3.5% is large for q = 0:01;

however, empirical evidence suggests that q values are typically in the range of q = 0:001

to q = 0:0002 (calculated from [36] and [37] and assuming one references made every

�ve instructions). The single-pass technique using the power-of-two quantization of L

produces results within 1% of the random-interval simulation for practical q values. This

evidence suggests that the single-pass method produces results that are consistent with

its assumptions.

3.4.2 Involuntary context switching susceptibility

It is useful to de�ne �� =M [C;B; S; q]=N as a measure of benchmark susceptibility

to context switching. This is the di�erence between the uniprogramming and multipro-

gramming miss ratios. Figure 3.26 presents �� for gcc and xlisp for block size 16 bytes.

The results in the �gure are for the cache (31; 4;1). This large cache size is used to

eliminate the e�ects of dimensional con
icts. Section 3.4.4 discusses the e�ects of dimen-

sional con
icts. The �gure considers only involuntary context switching. The e�ects of

voluntary context switching are discussed in Section 3.4.3. Also, complete cache 
ushing

(fCS = 1) is used to emphasize the worst-case behavior (Section 3.4.5 discusses other

values of fCS). The �gure demonstrates that when the intensity of context switching, q,

is small, �� approaches zero such that context switching has little e�ect for q � 0:0001.
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This value of q corresponds to an average context switching interval of 10,000 references.

The gcc benchmark is slightly more susceptible to context switching than the xlisp bench-

mark for q = 0:1. This situation reverses itself and xlisp becomes more susceptible for

q > 0:01. This phenomenon can be explained with the cumulative distribution of nL

vs. L, which is plotted in Figure 3.27. The �gure has a logarithmic axis for the inde-

pendent variable, L. From the �gure it is apparent that xlisp has a higher number of

recurrences for L � 25: 85% for gcc vs. 87.4% for xlisp. This would imply that a context

switch frequency of greater than every 25 = 32 references would impact xlisp more than

gcc. This explains the behavior observed in Figure 3.26.
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Figure 3.26: �� (involuntary) of gcc and xlisp vs. q for block size 16 bytes.

Figures 3.28 and 3.29 present �� for gcc, espresso and xlisp for block sizes 32 bytes and

64 bytes, respectively. The data for all the benchmarks are presented in Table 3.1. The
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Table 3.1: Involuntary context switching susceptibility (��) for caches (31;�;1).

��

B = 4 B = 5 B = 6

Benchmark 10�2 10�3 10�4 10�2 10�3 10�4 10�2 10�3 10�4

doduc 37.8% 16.1% 5.34% 28.9% 10.9% 3.31% 23.9% 8.03% 2.22%
eqntott 5.98% 2.41% 1.27% 5.21% 1.98% 1.04% 4.60% 1.57% 0.79%
espresso 23.0% 11.2% 4.88% 17.5% 7.23% 2.94% 14.04% 4.71% 1.71%

gcc 26.6% 13.0% 5.91% 22.2% 9.52% 3.85% 19.1% 7.22% 2.59%

matrix300 7.78% 5.76% 3.54% 4.91% 3.01% 1.79% 3.46% 1.63% 0.91%
xlisp 25.8% 9.89% 4.56% 21.3% 7.21% 2.91% 18.0% 5.39% 1.89%

Average 21.2% 9.73% 4.35% 16.7% 6.64% 2.64% 13.9% 4.76% 1.69%

Std. dev. 12.2% 4.96% 1.66% 9.72% 3.52% 1.04% 8.24% 2.72% 0.71%
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corresponding cumulative distribution functions of nL vs. L are presented in Figures 3.30

and 3.31, respectively. Together, Figures 3.26{3.29 demonstrate that the susceptibility

to context switching decreases as block size increases. From Table 3.1, for q = 0:01,

the di�erence in the miss ratio is 21.2% for block size 16 bytes and 13.9% for block size

32 bytes, on average. One possible reason for this is that the block reference streams

for larger block sizes have smaller context switching distances. This occurs since more

references occupy the same cache block for larger block sizes than for smaller block sizes.

Comparison between the benchmarks reveals signi�cant variance in susceptibility.

The matrix300 and eqntott benchmarks have the lowest change in the miss ratio, whereas

benchmarks such as doduc and xlisp are quite sensitive to the value of q. For q = 0:01,

�� = 37:8% for doduc compared to 5.98% for xlisp. This con�rms that susceptibility is a

characteristic of the benchmark and that workload choice in
uences the observed e�ects

of context switching.

3.4.3 Voluntary context switching susceptibility

The susceptibility of the benchmarks to voluntary context switching e�ects is rela-

tively small compared to the involuntary e�ects. This can be seen in Table 3.2, which

presents the voluntary susceptibility (��) for fully associative caches of the largest dimen-

sion for gcc and espresso. The largest-dimensional fully associative caches were selected

so that �� would be at its maximum since no dimensional con
icts occur. Table 2.3

in Chapter 2 demonstrates that the occurrences of voluntary context switches are rare
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Figure 3.28: �� (involuntary) of gcc, espresso and xlisp vs. q for block size 32 bytes.
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Table 3.2: Voluntary context switching susceptibility vs. block size.

Block size (bytes)

Benchmark 16 32 64

doduc 0.07% 0.04% 0.03%

espresso 0.03% 0.02% 0.01%

eqntott 5.6�10�3% 3.8�10�3% 2.4�10�3%

gcc 3.1% 2.0% 1.4%

matrix300 1.9�10�3% 1.8�10�3% 1.7�10�3%

xlisp 6.0�10�4% 6.0�10�4% 6.0�10�4%

for these benchmarks as well as for other members of the SPEC89 set. This explains

the small susceptibility due to voluntary context switches. This may well be an artifact

of benchmark selection and should not be taken as a general statement that voluntary

context switches do not have much e�ect.

One of the benchmarks, gcc, is selected to serve as an example for the discussions

that follow to illustrate the behavior of the susceptibility model.

3.4.4 Dimensional con
ict e�ects

The dimensional con
icts have been excluded from consideration thus far by consider-

ing large, fully associative caches to isolate the e�ects of context switching. The relative

importance of dimensional con
icts to multiprogramming con
icts is interesting because

some cache designs may be more resilient to context switching than others due to the

in
uences of dimensional con
icts. Consider caches of size 1K bytes: it is selected as a

worst case since it should experience a high percentage of dimensional con
icts due to

its extremely small size. Figure 3.32 shows �� vs. q for gcc using caches of 1K-bytes and
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several associativities. Calculating the miss ratios for the uniprogrammed case for gcc
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Figure 3.32: �� (involuntary) of gcc for caches (10; 4;�).

reveals a variation of 18% for (10; 4; 0) to 15% for (10; 4;1) (these data are not shown

in the �gure). However, there is much less variation in �� apparent in Figure 3.32. This

same e�ect is apparent from the data collected for the other benchmarks.

The above data suggest that dimensional con
icts dominate over context switching

e�ects for small caches. To quantify this, the ratio of the multiprogramming con
icts

to the dimensional con
icts, M [C;B; S; q]=D[C;B; S], can be used as a measure of the

relative impact of multiprogramming con
icts to dimensional con
icts. This ratio is

plotted against q using caches of dimension (10; 4;�) and (13; 4;�) for gcc and the results

are shown in Figure 3.33. The �gure demonstrates that for small q, dimensional con
icts

dominate. The two kinds of con
icts have equal e�ect (i.e.,M=D = 1:0) for q � 0:02 with
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Figure 3.33: M=D vs. q for gcc, caches (10; 4;�) and (13; 4;�).

caches (10; 4;�) and for q � 0:00003 with caches (13; 4;�). As associativity increases,

the performance depends more on the multiprogramming con
icts than on dimensional

con
icts. Also, the importance of associativity increases with overall cache size. This

implies that when associativity is used, multiprogramming e�ects can decide the cache

size, which is similar to the observations of [19] concerning associativity.

To show that the e�ects observed are not an artifact of the test cache sizes of 1K

and 8K bytes, Figure 3.34 presents M=D ratios for various cache and block sizes. Any

value of q would have been su�cient to demonstrate the general relationship between

M=D and C. The data from Figure 3.33 were used to select q = 0:02 for Figure 3.34.

Since in this region the e�ects of associativity are relatively minor, the associativity is

�xed at two-way associative (e.g., all caches (�;�; 1)). (Note that here, unlike the earlier
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Figure 3.34: log(M=D) vs. cache size, for various block sizes (q = 0:02).

�gure, M=D is presented using a logarithmic scale.) From the �gure, it is immediately

apparent that the worst-case relative impact of multiprogramming (i.e.,M=D) increases

approximately linearly with cache size (both axes are logarithmic). Also, as a re�nement

of the observations made in Section 3.4.2, block size is inversely proportional to program

susceptibility for small caches (less than 2K bytes). However, block size appears to be

directly proportional to program susceptibility for moderately large cache sizes (4K bytes

up to 256K bytes), after which the trend reverses itself again.

3.4.5 Measurement of fraction of cache 
ush (fCS)

This section has assumed fCS = 1 in order to measure the worst-case susceptibility

of programs to context switching. This section presents some empirical estimates of
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the fCS parameter. The method used simulates a multiprogrammed system using a

trace composed of interleaved sections of traces taken from several benchmarks. At each

reference, the interleaver makes a decision whether to continue processing the current

trace or to switch to another waiting trace. This probability is assumed to be uniformly

distributed with mean q.

The values of fCS for each benchmark can be derived by comparing the number

of misses for a uniprogramming cache to the observed number of misses for the multi-

programming cache. Any additional misses in the multiprocessor case must be due to

context switching. Let Du[C;B; S] represent the dimensional misses from the unipro-

gramming trace and Dm[C;B; S] represent the dimensional misses measured from the

multiprogramming trace. Let M̂ represent the estimated multiprogramming con
icts.

Then,

M̂ [C;B; S; q] = Dm[C;B; S]�Du[C;B; S]: (3.14)

Note that it can always be assumed thatDm[C;B; S]> Du[C;B; S] since any dimensional

con
icts for a benchmark trace must come as a result of the interleaving of traced events.

Using Equation (3.10) and neglecting theXV term as justi�ed by the experimental results

of Section 3.4.3, then,

f̂CS =
Dm[C;B; S]�Du[C;B; S]

XI [C;B; S; q]
; (3.15)

where f̂CS is the experimental value for fCS . Equation (3.15) requires knowledge of XI ,

which would require use of the algorithm of Figure 3.24.
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The two experiments interleave espresso, gcc, and xlisp with q = 0:01 and q = 0:001.

A block size of 32 bytes was assumed for these experiments. Values of fCS across cache size

and associativities for the espresso benchmark are presented in Figures 3.35 (q = 0:01)

and 3.36 (q = 0:001) from the perspective of the espresso benchmark. It is clear from
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Figure 3.35: fCS vs. cache size for espresso, q = 0:01.

these two �gures that fCS is a function of cache size, as suggested by Equation (3.15).

For small caches, fCS � 13%{18%, whereas for large caches, fCS � 8%, when q = 0:01.

The e�ects of associativity on fCS are less pronounced than the e�ects of cache size for

q = 0:01 (Figure 3.35). For q = 0:001 (Figure 3.36), fCS � 0 large, fully associative

cache sizes. This is not true for smaller associativities, since dimensional con
icts occur

between the references of the three benchmarks regardless of cache size. The e�ects of

associativity also become less noticeable as cache size increases, possibly because fewer
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Figure 3.36: fCS vs. cache size for espresso, q = 0:001.

dimensional con
icts occur between the references from espresso and those of gcc and

xlisp.

These experiments show that fCS = 1 is a pessimistic assumption under moderate

load. When workloads are decomposed into workload elements or workload elements are

taken from standard benchmark sets such as SPEC89, it is not possible to predict the

di�erent combinations of benchmarks that may execute together in the �nal system. In

this situation, a conservative assumption such as fCS = 1 is appropriate. The results for

the susceptibility measures presented above for fCS = 1 suggest that the di�erence in the

miss ratio will not change considerably for values of q � 104. If designs are selected to

satisfy a required maximummiss ratio, this observation suggests that selecting prototypes



76

with fCS = 1 adds degree of tolerance to context switching to the designs with small

increase in cost. This cost is veri�ed in the following section.

3.5 Examples of Memory System Prototyping

This section presents several prototypes of the �rst-level data cache for a hypothetical

memory system. The memory system evaluation techniques of this chapter are used to

derive the miss ratios of a space of potential cache dimensions in the range of single-block

caches to 2 gigabytes with block sizes of 16, 32, 64 bytes. Associativities of one-way,

two-way, four-way and fully associative are explored. For each benchmark, this space

constitutes 324 possible cache designs (after removing invalid cache dimensions).

The tool used to collect the traces for these results is not capable of generating

traces of the instruction referencing patterns that are independent of instruction-set

encodings (the instructions themselves are, however, as described in Chapter 2). Rather

than present instruction cache designs that are speci�c to a particular architecture, this

section concentrates on data cache designs. The methods used to prototype the caches

are independent of the sources of the trace, so that the use of data address traces here

does not limit the applicability of the techniques of this chapter.

3.5.1 Data cache prototypes

Data caches are selected based on a performance criterion. This performance criterion

is expressed by placing an upper limit on the miss ratio, �, and examining the cache sizes
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for each set size and block size. A cache (C;B; S) is selected such that C is the largest

C that satis�es �(C;B; S) � �̂. The parameter, �̂, is the miss ratio selection criterion.

Tables 3.3, 3.4 and 3.5 present the prototype data cache designs for �̂ = 0:10, 0.05 and

0.01, respectively. In some situations the design criterion cannot be met by any cache

size since the miss ratio for an in�nitely sized cache for the benchmark exceeds the value

of �̂. These situations have been marked with an asterisk in the tables.

Several observations can be derived from these designs:

� For a criterion of �̂ = 0:10 (Table 3.3), the required size for direct-mapped caches

is often two to four times the size of the fully associative size. This generalization

is similarly evident for �̂ = 0:05 and �̂ = 0:01 (Tables 3.4 and 3.5).

� For �̂ = 0:10 and �̂ = 0:05, increased block size from 16 bytes to 32 bytes often

halves the required cache size.

� The maximum cache sizes required are 16KB for �̂ = 0:10 (Table 3.3), 32KB for

�̂ = 0:05 (Table 3.4) and 256MB for �̂ = 0:01 (Table 3.5).

� If the cost of a memory system is measured in overall size in bytes, the design

parameters of Table 3.4 (achieving close to 5% miss ratios) are much less expensive

than the design parameters of Table 3.5 (achieving close to 1% miss ratios).

� The most-demanding benchmarks in terms of cache size are gcc and matrix300.

(Note that this is for a simplistic layout of data for matrix300{ the required cache

size of matrix300 can be reduced using data partitioning techniques [38].)
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Table 3.3: Prototype data cache dimensions for criterion �̂ = 0:10.

Benchmark Prototype data cache dimensions

doduc (14, 4, 0) (12, 4, 1) (12, 4, 2) (12, 4, 1)
(13, 5, 0) (12, 5, 1) (12, 5, 2) (12, 5, 1)
(13, 6, 0) (12, 6, 1) (12, 6, 2) (12, 6, 1)

eqntott ( 8, 4, 0) ( 7, 4, 1) ( 7, 4, 2) ( 8, 4, 1)
( 9, 5, 0) ( 7, 5, 1) ( 8, 5, 2) ( 9, 5, 1)

( 9, 6, 0) ( 8, 6, 1) ( 9, 6, 2) (10, 6, 1)
espresso (12, 4, 0) (11, 4, 1) (11, 4, 2) (11, 4, 1)

(11, 5, 0) (10, 5, 1) (10, 5, 2) ( 9, 5, 1)
(11, 6, 0) (10, 6, 1) (10, 6, 2) (10, 6, 1)

gcc (13, 4, 0) (12, 4, 1) (12, 4, 2) (12, 4, 1)

(12, 5, 0) (12, 5, 1) (12, 5, 2) (11, 5, 1)
(13, 6, 0) (12, 6, 1) (12, 6, 2) (11, 6, 1)

matrix300 (14, 4, 0) (13, 4, 1) (13, 4, 2) (13, 4, 1)
( 9, 5, 0) ( 8, 5, 1) ( 8, 5, 2) ( 9, 5, 1)
( 9, 6, 0) ( 8, 6, 1) ( 9, 6, 2) (10, 6, 1)

xlisp (12, 4, 0) (11, 4, 1) (10, 4, 2) (10, 4, 1)

(11, 5, 0) (11, 5, 1) (10, 5, 2) (10, 5, 1)
(12, 6, 0) (11, 6, 1) (11, 6, 2) (11, 6, 1)
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Table 3.4: Prototype data cache dimensions for criterion �̂ = 0:05.

Benchmark Prototype data cache dimensions

doduc (15, 4, 0) (13, 4, 1) (13, 4, 2) (13, 4, 1)
(14, 5, 0) (13, 5, 1) (13, 5, 2) (13, 5, 1)
(14, 6, 0) (13, 6, 1) (13, 6, 2) (13, 6, 1)

eqntott (10, 4, 0) ( 9, 4, 1) ( 8, 4, 2) ( 8, 4, 1)
(10, 5, 0) ( 9, 5, 1) ( 9, 5, 2) ( 9, 5, 1)

(11, 6, 0) (10, 6, 1) ( 9, 6, 2) (10, 6, 1)
espresso (14, 4, 0) (14, 4, 1) (14, 4, 2) (14, 4, 1)

(14, 5, 0) (13, 5, 1) (12, 5, 2) (12, 5, 1)
(13, 6, 0) (12, 6, 1) (11, 6, 2) (11, 6, 1)

gcc (15, 4, 0) (14, 4, 1) (14, 4, 2) (14, 4, 1)

(14, 5, 0) (14, 5, 1) (13, 5, 2) (13, 5, 1)
(14, 6, 0) (13, 6, 1) (13, 6, 2) (13, 6, 1)

matrix300 ( *, 4, 0) ( *, 4, 1) ( *, 4, 2) ( *, 4, 1)
(14, 5, 0) (13, 5, 1) (13, 5, 2) (13, 5, 1)
(11, 6, 0) ( 9, 6, 1) ( 9, 6, 2) (10, 6, 1)

xlisp (13, 4, 0) (13, 4, 1) (13, 4, 2) (13, 4, 1)

(13, 5, 0) (12, 5, 1) (12, 5, 2) (11, 5, 1)
(13, 6, 0) (12, 6, 1) (12, 6, 2) (11, 6, 1)
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Table 3.5: Prototype data cache dimensions for criterion �̂ = 0:01.

Benchmark Prototype data cache dimensions

doduc (17, 4, 0) (16, 4, 1) (15, 4, 2) (15, 4, 1)
(17, 5, 0) (15, 5, 1) (15, 5, 2) (15, 5, 1)
(17, 6, 0) (15, 6, 1) (15, 6, 2) (15, 6, 1)

eqntott (16, 4, 0) (15, 4, 1) (15, 4, 2) (15, 4, 1)

(16, 5, 0) (15, 5, 1) (14, 5, 2) (14, 5, 1)
(15, 6, 0) (14, 6, 1) (13, 6, 2) (13, 6, 1)

espresso (16, 4, 0) (15, 4, 1) (15, 4, 2) (15, 4, 1)
(16, 5, 0) (15, 5, 1) (15, 5, 2) (15, 5, 1)
(16, 6, 0) (15, 6, 1) (15, 6, 2) (15, 6, 1)

gcc (18, 4, 0) (17, 4, 1) (17, 4, 2) (17, 4, 1)

(17, 5, 0) (17, 5, 1) (16, 5, 2) (16, 5, 1)
(17, 6, 0) (16, 6, 1) (16, 6, 2) (16, 6, 1)

matrix3 ( *, 4, 0) ( *, 4, 1) ( *, 4, 2) ( *, 4, 1)
( *, 5, 0) ( *, 5, 1) ( *, 5, 2) ( *, 5, 1)
( *, 6, 0) ( *, 6, 1) ( *, 6, 2) ( *, 6, 1)

xlisp (18, 4, 0) (18, 4, 1) (16, 4, 2) (16, 4, 1)
(17, 5, 0) (16, 5, 1) (15, 5, 2) (16, 5, 1)

(16, 6, 0) (15, 6, 1) (15, 6, 2) (15, 6, 1)

(* criterion could not be met)
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3.5.2 Prototypes for multiprogramming environments

Tables 3.6 and 3.7 present data cache prototypes for the memory system selected

using the criteria �̂ = 0:10 and �̂ = 0:05, respectively. Performance for these prototypes

is simulated using the context switching single-pass method of the previous section. The

parameters of the multiprogramming workload are a context switching intensity of q =

0:0001 and a 
ush percentage of fCS = 1:0. Several observations can be made from these

results:

� The following prototypes in Table 3.6 exceed sizes of the designs of Table 3.3:

{ (13, 4, 1) for doduc,

{ (13, 4, 0), (12, 4, 1), and (12,5,0) for espresso,

{ (12, 6, 1) for gcc, and,

{ (12, 5, 0) for xlisp.

all other prototypes are identical.

� Comparison of Table 3.7 and Table 3.4 produces the following observations:

{ 30 of the 72 multiprogramming designs exceed the requirements of Table 3.4.

{ Only the eqntott benchmark designs did not change from those of Table 3.4.

{ For three benchmarks, doduc, espresso, and matrix300, the criteria of �̂ = 0:05

cannot be met for block size B = 4 (16 bytes).
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Table 3.6: Prototype data cache dimensions for criterion �̂ = 0:10, multiprogramming

parameters: q = 0:0001 and fCS = 1:0.

Benchmark Prototype data cache dimensions

doduc (14, 4, 0) (13, 4, 1) (12, 4, 2) (12, 4, 1)
(13, 5, 0) (12, 5, 1) (12, 5, 2) (12, 5, 1)
(13, 6, 0) (12, 6, 1) (12, 6, 2) (12, 6, 1)

eqntott ( 8, 4, 0) ( 7, 4, 1) ( 7, 4, 2) ( 8, 4, 1)

( 9, 5, 0) ( 7, 5, 1) ( 8, 5, 2) ( 9, 5, 1)
( 9, 6, 0) ( 8, 6, 1) ( 9, 6, 2) (10, 6, 1)

espresso (13, 4, 0) (12, 4, 1) (11, 4, 2) (11, 4, 1)
(12, 5, 0) (10, 5, 1) (10, 5, 2) ( 9, 5, 1)
(11, 6, 0) (10, 6, 1) (10, 6, 2) (10, 6, 1)

gcc (13, 4, 0) (12, 4, 1) (12, 4, 2) (12, 4, 1)
(13, 5, 0) (12, 5, 1) (12, 5, 2) (11, 5, 1)
(13, 6, 0) (12, 6, 1) (12, 6, 2) (12, 6, 1)

matrix300 (14, 4, 0) (13, 4, 1) (13, 4, 2) (13, 4, 1)
( 9, 5, 0) ( 8, 5, 1) ( 8, 5, 2) ( 9, 5, 1)

( 9, 6, 0) ( 8, 6, 1) ( 9, 6, 2) (10, 6, 1)
xlisp (12, 4, 0) (11, 4, 1) (10, 4, 2) (10, 4, 1)

(12, 5, 0) (11, 5, 1) (10, 5, 2) (10, 5, 1)

(12, 6, 0) (11, 6, 1) (11, 6, 2) (11, 6, 1)
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Table 3.7: Prototype data cache dimensions for criterion �̂ = 0:05, multiprogramming

parameters: q = 0:0001 and fCS = 1:0.

Benchmark Prototype data cache dimensions

doduc ( *, 4, 0) ( *, 4, 1) ( *, 4, 2) ( *, 4, 1)
(15, 5, 0) (13, 5, 1) (13, 5, 2) (13, 5, 1)
(15, 6, 0) (13, 6, 1) (13, 6, 2) (13, 6, 1)

eqntott (10, 4, 0) ( 9, 4, 1) ( 8, 4, 2) ( 8, 4, 1)

(10, 5, 0) ( 9, 5, 1) ( 9, 5, 2) ( 9, 5, 1)
(11, 6, 0) (10, 6, 1) ( 9, 6, 2) (10, 6, 1)

espresso (18, 4, 0) (16, 4, 1) (15, 4, 2) (15, 4, 1)
(15, 5, 0) (13, 5, 1) (13, 5, 2) (13, 5, 1)
(13, 6, 0) (12, 6, 1) (11, 6, 2) (11, 6, 1)

gcc ( *, 4, 0) ( *, 4, 1) ( *, 4, 2) ( *, 4, 1)
(16, 5, 0) (14, 5, 1) (14, 5, 2) (14, 5, 1)
(15, 6, 0) (14, 6, 1) (13, 6, 2) (13, 6, 1)

matrix300 ( *, 4, 0) ( *, 4, 1) ( *, 4, 2) ( *, 4, 1)
(15, 5, 0) (13, 5, 1) (13, 5, 2) (13, 5, 1)

(11, 6, 0) ( 9, 6, 1) ( 9, 6, 2) (10, 6, 1)
xlisp (15, 4, 0) (14, 4, 1) (14, 4, 2) (13, 4, 1)

(13, 5, 0) (12, 5, 1) (12, 5, 2) (12, 5, 1)

(13, 6, 0) (12, 6, 1) (12, 6, 2) (11, 6, 1)

(* criterion could not be met)
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3.6 Summary of Memory System Prototyping

The purpose of this chapter has been to present techniques to prototype cache-based

memory system hierarchies. The recurrence/con
ict version of a single-pass cache sim-

ulation method was introduced and extended to satisfy the needs of prototyping. The

two major extensions are the adaptation of statistical sampling techniques from tradi-

tional cache simulation methods to single-pass methods, and an extension to measure

the susceptibility of a benchmark to context switching.

Two techniques were presented in this chapter for statistical sampling of address

traces using the single-pass methods. The �ll-
ush technique was adapted directly from

traditional cache simulation techniques and its accuracy and speed were presented. A

new technique, the no-state-loss technique, was developed. This technique exploits prop-

erties of the single-pass method to achieve very high accuracy. The tradeo� between the

no-state-loss technique and the �ll-
ush technique is between speed of evaluation and

accuracy. No-state-loss appears to be 2-3 times slower than �ll-
ush. However, no-state-

loss is approximately twice as accurate for smaller caches than the �ll-
ush approach

and has perfect accuracy for large caches. Another compelling reason to use no-state-loss

sampling for single-pass algorithms is that extensions (such as the multiprogramming

extension) are not compatible with �ll-
ush or other traditional sampling approaches

since the stack is not maintained between samples.
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A new model for involuntary context switching was developed based on distribution of

the interval between a reference to an address and its re-reference. Methods were devel-

oped to integrate this model and a corresponding metric for voluntary context switches

into the single-pass method. The new single-pass method was veri�ed empirically and

the behavior of the model was probed using the benchmarks.

The usefulness of the sampling-based, single-pass method extended to include mul-

tiprogramming e�ects was demonstrated by deriving prototypes for data cache systems

from a broad design space of 324 possible cache designs per benchmark.
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4. PROCESSOR PROTOTYPING

A processor design must execute instructions in a highly e�cient manner while sat-

isfying technology constraints such as pin count, clock frequency and overall transistor

count. A successful prototype procedure for the processor must include the hardware

resources that the instruction stream demands while not wasting VLSI real estate and

endangering the cycle time by over-designing. This chapter presents two methods for pro-

cessor prototyping. One method is based on the resource requirements of benchmarks.

This method supplies an unlimited amount of hardware resources to the instruction

stream while �xing technology parameters such as issue rate and function unit latency.

The measured amount of resource usage from this unlimited-supply simulation is used

to form a prototype processor design. Another method uses a cost-based exploration of

a large space of possible processor con�gurations. This second method is well-suited for

situations in which the function unit latencies are not �xed by technology. Empirical

results are presented to validate these methods.
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The processor prototyping techniques must be supported by e�cient and high-speed

simulation methods. A portion of this chapter is devoted to the discussion of simulation

methods for superscalar processors. In order to extend the speed and trace-size range

of the processor simulation algorithms, statistical sampling is adapted from a traditional

cache simulation for use in processor simulation.

4.1 Processor Design Considerations

Figure 4.1 shows two instruction sequences, (a) and (b). In the sequence (a), in-

(a) (b)

I1 : r1 IAlu(r2; r3) I4 : r1 IAlu(r2; r3)
I2 : r4 IAlu(r5; r6) I5 : r5 IAlu(r1; r4)
I3 : r7 IMul(r8; r9) I6 : r7 IMul(r5; r6)

Figure 4.1: Two example instruction sequences.

structions can be executed in parallel. In sequence (b), instructions I5 must wait for

instruction I4 to complete since I5 uses the value that I4 de�nes (i.e., r1). Similarly,

I6 must wait until I5 executes before it can use the value stored in r5. Sequence (a)

may run three times faster than (b) with a properly constructed processor that allows

independent instructions to execute in parallel. Sequence (a) is therefore said to possess

instruction-level parallelism [39].

The instruction stream input to the processor is a list of atomic instructions, Ij, of

the form:

Ij : dj  uj(sj0; sj1; : : :); (4.1)
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where dj is the destination for Ij, uj is the function unit used by Ij, and sjk are the

source operands used by Ij. The operator U(Ij) is de�ned such that

U(Ij) � uj; (4.2)

which is equivalent to the function type used by Ij. The set S(Ij) is de�ned such that

S(Ij) � sj0; sj1; : : :; (4.3)

Where S(Ij) is equivalent to the set of source operands to Ij. The number of source

operands of Ij is de�ned to be jS(Ij)j. Both dj and members of S may be registers

of the form rX, or memory addresses, represented using lower-case Greek letters, to be

consistent with the conventions of Chapter 3. There are no addressing modes other than

register, memory, and literal. All other address calculations are explicitly performed

by instructions. All side-e�ect register address calculations (e.g., autoincrement) are

excluded from the processor architecture and the equivalent semantics are performed by

explicit instructions. The class of processors described in this chapter has an unlimited

supply of both integer and 
oating-point registers. However, memory operations are still

performed as directed by the program, since all program variables reside in memory. A

special register, cc, is the condition code register. Its value determines the behavior

of conditional control transfer instructions. This instruction format is derived from the

intermediate code of the GNU C retargetable compiler, as discussed in Chapter 2.

The dependencies between I5 and I4 and between I6 and I5 of Figure 4.1 are called

pure or 
ow dependencies. A 
ow dependence occurs when the de�nition of a register's
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contents is followed by a use of that register. Such dependencies are caused by the struc-

ture of the computation that the instructions perform. It is not possible for the processor

to remove 
ow dependencies from an instruction stream and still produce the correct re-

sult. Using the traditional notation of dependence analysis, Ij�Ik, if the destination of

Ij is one of the sources of Ik, and j < k (i.e., dj 2 S(Ik)) [40] .

Consider sequences (c), and (d) shown in Figure 4.2. There are no 
ow dependencies

(c) (d)

I7 : r1 IAlu(r2; r3) I10 : r1 IAlu(r2; r3)
I8 : r2 IAlu(r5; r6) I11 : r5 IAlu(r1; r4)

I9 : r5 IMul(r8; r9) I12 : r1 IMul(r5; r6)

Figure 4.2: An example of anti- and output dependencies.

in sequence (c); however, I8 cannot execute until after I7 completes since I8 rede�nes r2.

Similarly, I9 must wait until I8 completes. This situation is called an anti-dependence [40].

Anti-dependencies are due to the reuse of storage locations, in this case, r2 and r5. An

anti-dependence occurs when the use of a register is followed by a rede�nition of the

register's contents. A similar problem exists in sequence (d), where both I10 and I11

must execute before I12. In this case, both I10 and I12 de�ne the same location, r1. This

situation is called an output dependence, which occurs when a de�nition of a register is

followed by a rede�nition of the register. Both anti- and output dependencies can be

removed by the processor. These dependencies are not an artifact of the computation

being performed, rather they are due to register reuse. Anti- and output-dependencies are

assumed to be removed via renaming hardware. Renaming hardware detects register reuse
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Table 4.1: Function types.

Function unit Description

IAlu Integer ALU

IMul Integer multiply

IDiv Integer divide, remainder

AddrC Address calculation

Move Register to register move

Shift Shift

Load Load

Store Store

FPAdd FP add
FPMul FP multiply
FPDiv FP divide, remainder
FPCvt FP convert
Branch Branch

Test Compare/test

and remaps the reused register names to unused registers. Renaming is not performed

for memory locations.

An assumption must be made about the decomposition of function types supported

by the instruction set. These types are implemented by one or more function units that

perform the functions in hardware. The types used in this thesis are presented in Ta-

ble 4.1. Function units of the IAlu type implement integer addition, subtraction, and

binary logical operations such as AND, OR, and XOR. The instructions that perform

address calculation for complicated addressing modes are executed by AddrC function

units. In some processors, an IAlu function unit might be used for AddrC operations.

This is also the case withMove function units that perform register-to-register move oper-

ations. Some processors implement register-to-register moves via an IAlu that performs
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a null calculation (e.g., add zero to rX). Shift function units perform binary bitwise

shift operations. These are often implemented using a barrel shifter. The Load and Store

function units access the �rst-level data cache. Floating-point operations are performed

by the function units FPAdd (
oating-point addition), FPMul (
oating-point multiply),

FPDiv (
oating-point divide), and FPCvt (conversion to- and from 
oating-point for-

mat). The Branch function unit performs a control transfer, and the Test function unit

sets the condition code register, cc, based on the value of its source operands.

In instruction sequence (a) of Figure 4.1, both I1 and I2 use an IAlu function unit.

If the processor has only one IAlu function unit, competition for this resource can limit

exploitable instruction-level parallelism. Such a situation is a type of resource con
ict.

Resource con
icts result in an arti�cial dependence between instructions. Formally, a

resource con
ict may exist between instructions Ij and Ik if uj = uk. Whether or not

resource con
icts occur depends on whether Ij and Ik begin execution together and

whether the function unit uj (= uk) is in short supply at the time (this is explained

in more detail below). This thesis presents methods to select a prototype in order to

minimize resource con
icts.

4.1.1 Classes of processors

This thesis focuses on a class of high-performance processors that exploit instruction-

level parallelism. This class of processors is depicted in Figure 4.3. Instructions 
ow

from left to right in the �gure. The action of bringing instructions into the processor
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is called instruction issue. Instruction issue is composed of two phases: instruction

fetch and instruction decode. The instruction fetch phase fetches instructions from the

memory system. It must decide which instructions to fetch. This is a non-trivial task due

to branch instructions. The instruction fetch unit often employs some form of branch

prediction, which is discussed below. The instruction decode phase determines what

operation the instruction performs. It is assumed in this chapter that all instructions

are encoded in the same �xed-length format. As instructions leave the instruction issue

stage they are said to be issued. Some processors allow more than one instruction to be

issued per clock cycle. The number of instructions issued per clock cycle is termed the

issue rate.

Instruction
Issue
Stage

Instruction
Scheduling
Stage

Instruction
Execution
Stage

State
Update
Stage

Instruction
Decode
Phase

Instruction
Fetch
Phase

issue fire complete retire

Figure 4.3: Class of processors considered in this thesis.

The stage that follows the instruction issue stage is the instruction scheduling stage.

This stage determines whether instructions are dependent on or have resource con
icts

with other instructions. Instructions that are independent and have no resource con
icts

are passed onto the next stage for execution. It is assumed that all instructions spend

at least one clock cycle in the instruction scheduling stage. The action of passing an

instruction to execution is termed instruction �ring.
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The instruction execution stage takes instructions and performs the required compu-

tation by executing the instructions on one of many function units. The operator NU (u)

is de�ned to be the number of function units of type u designed as parts of the execution

stage of the processor. The function units can accept one instruction per cycle. If the

operation that a function unit implements requires more than one cycle to execute, the

function unit is pipelined into multiple stages and the pipeline is advanced at the rate

of the system clock. The depth of the pipeline of a function unit determines the latency

between the �ring of the instruction and the completion of the instruction. This latency

is referred to as the function unit latency. Typical function unit latencies are shown in

Table 4.2. The latencies in this table are referred to as the canonical latency set for the

remainder of this chapter.

Table 4.2: Canonical latency set.

Function unit Typical latency

IAlu 1
IMul 3
IDiv 10

AddrC 1
Move 1

Shift 1
Load 2

Store 1
FPAdd 3

FPMul 3
FPDiv 10

FPCvt 3

Branch 1
Test 1
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The operator L(u) is de�ned to be the latency of a function unit of type u. For

many complex functions, function unit latency is di�cult to reduce past a practical

limit. However, it may be cost-e�ective to increase the latency of a function unit that

is little used. The topic of prototyping function unit latency is discussed in detail in

Section 4.3.2. In accordance with previous stages, the action of instructions leaving the

execution stage is termed instruction completion.

Figure 4.3 shows the instruction scheduling stage as a window that instructions enter

from the instruction decode phase. The �gure also shows a complicated crossbar inter-

connect between the instruction scheduling stage and the instruction execution stage. To

reduce the cost of this interconnect, the window is often partitioned and the partitions

are distributed to the function units. These distributed windows are typically called

reservation stations [41]. This thesis does not consider in detail the decomposition of the

scheduling window into reservation stations. The measurement of the required size of

the scheduling window is discussed in Section 4.2.

After instructions have completed, they are passed to the �nal stage of the proces-

sor, the state update stage. This stage has as its responsibility maintaining a coherent

sequential state in the register contents and for the memory system. This stage must

also determine the correct instruction to begin executing after an interrupt occurs. The

action of an instruction leaving this stage is termed instruction retirement.

The policy for instruction �ring and instruction completion determines the class of

a processor. A notation for these classes of processors can be constructed for these
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Table 4.3: Processor classi�cations.

Notation F iring policy Completion policy

FICI In-order In-order

FICO In-order Out-of-order

FOCI Out-of-order In-order

FOCO Out-of-order Out-of-order

possible processors in the style of Flynn notation for parallel systems [42]. This clas-

si�cation is presented in Table 4.3. Fire in-order, complete in-order (FICI) processors

are traditional pipelined processors. The FICO-class processors exploit some degree of

instruction-level parallelism. The �rst machine to have a FICO-class processor was the

Control Data 6600 [43]. (The CDC 6600 di�ered from the class of processors presented

here since the function units were not pipelined.) The most-general class of processors

is the FOCO; this class is the focus of this chapter. The �rst FOCO-class processor was

implemented in the 
oating-point unit of the IBM 360/91, which had an issue rate of

one instruction per cycle [41]. Using an FOCO-class execution model for all computation

instead of restricting it to 
oating-point computation has been termed superscalar [44].

However, the term superscalar has also been used to describe FICO designs, since the

CRAY-1 (a supercomputer) used a FICO policy [45]. Only FOCO-class designs are con-

sidered as superscalar processors in this thesis, and the term \FOCO-class processors,"

is used wherever possible in this chapter to reinforce this distinction.

The original implementation of FOCO-class processors allowed instructions to retire

in the same order as they completed [41]. This presents a problem when an interrupt or
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hardware exception occurs. Because instructions are allowed to �re and complete out-of-

order, it might be the case that it is impossible to restart execution after an interrupt.

This occurs when the registers and memory are left in a partial (i.e., non-sequentially

consistent) state. Although this problem exists for FICO-class processors, its solution

is simpler than what is required for FOCO-class processors [46],[47]. Techniques have

since been developed to provide precise interrupts and coherent state for FOCO designs,

including checkpoint-repair and history/reorder bu�er approaches [47],[48]. This thesis

assumes that instructions always retire in program order and that the processor uses

either checkpoint-repair or a history/reorder bu�er.

The �nal class of processors is the FOCI. The de�nition of this class implies that

instructions are �red out-of-order yet forced to complete in-order. Such a regimen is

impractical to build and o�ers no performance advantage over FICO- and FOCO-class

processors. No FOCI-class architectures have been built to date.

4.1.2 Branch handling

The handling of conditional branch instructions in the processor is a topic that has

received considerable attention. There are two separate issues in branch handing: (1)

how to supply a su�cient number of the instructions from the branch target address to

hide the latency of the non-sequential access in the instruction issue stage, and (2) how

to predict the behavior of conditional branch instructions. This thesis assumes that a
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mechanism exists to hide the non-sequential access, such as a branch-target bu�er or

forward slots, and does not discuss this mechanism in detail [49].

In the trace of the instruction stream, the behavior of all branch instructions is known.

Using this trace without modi�cation and assuming that branches are perfectly pre-

dictable are unrealistic. Consider the behavior of data-driven conditional branches that

depend on data input from a �le. Neither can hardware be constructed nor can any

software be written to predict the behavior of these branches in all situations. Therefore,

the issue of how to predict data-driven conditional branch behavior must be addressed

in order to make simulation of the processor realistic.

Conditional branch behavior prediction schemes can be divided into hardware and

software approaches. The majority of hardware schemes maintain information about

branch behavior in a history bu�er, which is a special-purpose cache [50],[51]. Software

schemes use pro�le information to predict branch behavior [49].

This thesis simulates a branch prediction scheme that has high performance. A history

bu�er is used that is assumed to have unlimited entries. The scheme performs branch

prediction as follows:

1. The �rst time that conditional branches are encountered, they are predicted to be

not-taken, as is consistent with the suggestions in [51].

2. Two counters are kept in the bu�er for each branch: nT and nB. The nT counter

is used to count the number of times a branch is taken. The nB counter counts
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the number of times a branch has been encountered up to the current point of

execution.

3. If a conditional branch has an entry in the bu�er and nT > nB=2, the branch is

predicted taken; otherwise, it is predicted not-taken.

This is one of many possible hardware branch prediction schemes. The scheme does have

acceptable performance. Table 4.4 displays the percentage of correct branch predictions

for the benchmarks using the unlimited-entry history bu�er (also shown is the geometric

mean of these percentages). The scheme achieves its highest performance for the numeric

members of the SPEC89 benchmark set (e.g., doduc, matrix300, nasa7 and tomcatv) and

its lowest performance for a very data-driven benchmark (e.g., xlisp).

Table 4.4: Percentage of correctly predicted branches for the benchmarks.

Benchmark Percentage

doduc 90.95%
eqntott 96.39%
espresso 85.08%

gcc 84.99%

matrix300 99.27%
nasa7 97.02%

tomcatv 95.23%

xlisp 71.21%

GMean 89.56%
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4.1.3 Performance metrics

In the discussions that follow, several metrics are used to measure aspects of a pro-

cessor's performance. One metric of performance is the total execution time for a bench-

mark, de�ned to be TTOT . It is di�cult to use TTOT to summarize performance across

several benchmarks since benchmark execution time varies widely. A better metric for

cross-benchmark performance comparisons is instructions per cycle (IPC), the expected

number of instructions in the execution stage during any cycle of execution. If there are

NI instructions executed in TTOT time units, IPC = NI=TTOT . The IPC metric has been

termed instruction-level parallelism elsewhere [44].

Metrics that measure the usage of function units and reservation stations are useful for

prototyping since these metrics can be used to determine resource needs. The maximum

amount of a resource in use at any clock cycle is one possible metric to use to determine

resource needs (e.g., maximum number of IAlu function units used). This maximum is

an upper bound, however, and the full distribution of the amount of the resource in use

at every clock cycle provides more detailed information (See Section 4.3.1). The resource

usage density function is de�ned as follows: let u be a resource from Table 4.1 (a function

unit) or a window entry. In the case of window entries, u � W . The simulation measures

the function Tu(n), the total amount of time that exactly n resources of type u are active.

The resource usage density function, fu(x), is de�ned such that

fu(x) �
Tu(x)

TTOT
(4.4)
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Equation (4.4) is an operational de�nition for fu(x). This de�nition also supplies an

interpretation of fu(x): the probability that x resources of type u are in use in any clock

cycle during the simulation. In some instances it is more appropriate to use cumulative

distribution functions instead of density functions. The cumulative distribution function

for fu(x), is de�ned such that

Fu(x) �
xX
x=0

fu(x): (4.5)

For each benchmark and each of the function unit types, the resource usage density

functions for the function units (fu(x)) and reservation stations (fRSu (x)) are measured.

Table 4.5 summarizes the entire set of processor performance metrics.

Table 4.5: Processor performance metrics.

Metric Description

TTOT Total execution time (in cycles)
NI Total number of instructions in the trace

IPC Instructions executed per cycle, IPC = NI=TTOT
fu(x) Resource usage density function for resource u, where u is a

function unit or W (the scheduling window)
Fu(x) Resource usage cumulative distribution function for resource u

4.2 Processor Simulation Algorithms

This section discusses two methods to simulate FOCO-class processor systems. Each

method has its advantages and disadvantages. The �rst method simulates the processor

using three queues, one each for the instruction issue, instruction scheduling and instruc-

tion execution stages. It is a very detailed simulation, but lacks su�cient speed to be
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useful in all cases. Statistical sampling is applied to this algorithm to improve its speed.

The second algorithm also simulates realistic con�gurations, but it uses large amounts of

memory during simulation. It is better suited for sampling applications. The purpose of

this section is to introduce the algorithms, discuss the relevant tradeo�s of each, and to

develop statistical sampling techniques for processor simulation.

4.2.1 Queue-based simulation algorithm

A queue-based FOCO-class processor simulation algorithm is shown in Figure 4.4.

The algorithm maintains three queues, issue, window, and exec, which represent the

instruction issue stage, instruction scheduling (window) stage, and instruction execution

stage, respectively, of Figure 4.3. Operations on these queues are de�ned in Table 4.6.

Table 4.6: Operations on queues.

Operation Description

add to queue(Q;x) Add element x to the end of queue Q
delete from queue(Q;x) Delete element x from queue Q
for x 2 Q do Iterate over contents of queue Q
head(Q) Return head of queue Q, leaving Q unchanged

For each instruction, the simulation maintains NDEP (Ij), the count of the number of

instructions Ik such that Ik�Ij. In other words, NDEP (Ij) is the number of instructions Ij

depends on. If NDEP (Ij) = 0, the instruction is independent and is free to move from the

window queue into the exec queue (Steps 6.4 and its substeps of Figure 4.4). NDEP (Ij) is

calculated when an instruction enters the window queue by checking the source set, S(Ij),

for any dependencies with instructions already in the window queue or the exec queue.
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queue based(Ij):

1 NDEP (Ij) 0

2 for r 2 S(Ij) do

2.1 Ik  scoreboard[r]

2.2 if Ik 6= ; then

2.2.1 LDENT (Ik) LDENT (Ik) [ fIjg

2.2.2 NDEP (Ij) NDEP (Ij) + 1

3 add to queue(issue, Ij)

4 scoreboard[dj] Ij
5 num in issue num in issue+ 1

6 if num in issue = issue rate then

6.1 for m 1 to issue rate do

6.1.1 Ik  head(issue)
6.1.2 delete from queue(issue, Ik)

6.1.3 add to queue(window, Ik)

6.2 TTOT  TTOT + 1

6.3 for u 2 function unit types do

6.3.1 num �red[u] 0
6.3.2 num exe [u] 0
6.3.3 for ` 0 to L(u) do stage busy [u; `] 0
6.4 for Ij 2 window do

6.4.1 if NDENT (Ij) = 0 and num �red[U(Ij)] < NU (U(Ij)) then

6.4.1.1 delete from queue(window, Ij)

6.4.1.2 add to queue(exec, Ij)

6.4.1.3 TEXE(Ij) L(U(Ij))
6.4.1.4 num �red [U(Ij)] num �red[U(Ij)] + 1
6.5 for Ij 2 exec do

6.5.1 stage busy[U(Ij); TEXE(Ij)] stage busy[U(Ij); TEXE(Ij)] + 1
6.5.2 num exe [U(Ij)] maxfnum exe ; stage busy[U(Ij); TEXE(Ij)]g

6.5.3 if TEXE(Ij) = 0 then
6.5.3.1 delete from queue(exec, Ij)

6.5.3.2 for Ik 2 LDENT (Ij) do NDEP (Ik) NDEP (Ik)� 1

6.5.3.3 if scoreboard[dj] = Ij then scoreboard[dj ] ;
6.5.4 TEXE(Ij) TEXE(Ij)� 1

6.6 for all u do Tu (num exe [u]) Tu (num exe [u]) + 1
7 num in issue 0
8 NI  NI + 1

Figure 4.4: Queue-based FOCO-class processor simulation algorithm.
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This is done by maintaining an array, scoreboard, that is used to reserve a destination

register by an incoming instruction (Step 4). This method of using scoreboard simulates

the action of renaming hardware since prior reservations for a register are overwritten in

Step 4. When a dependency, Ij�Ik, is found, NDEP (Ij) is incremented by one (Step 2.2.2).

So that this dependency can eventually be cleared, instructions also have associated with

them a list of dependent instructions, de�ned as LDENT . In this example, LDENT(Ik) will

have Ij added to it (Step 2.2.1). The counter, TEXE(Ij), represents the total number of

cycles that Ij must spend in the execution stage. This counter is set to the correct unit

latency when Ij is placed in the exec queue (Step 6.4.1.3).

For each simulated clock cycle, the exec queue is scanned after the window queue

(Steps 6.4 and its substeps). To count the number of function units in use at any one

time, an array, stage busy[u; `], is maintained. This array is indexed by function unit

type, u, and the value of TEXE for an instruction in the exec queue. The array is

initialized to 0 in Step 6.3.3. It is used to count the number of function units in each

stage of the pipelined function units of type u. The number of active function units of

type u, num exe [u], is determined by �nding the maximum number of stages occupied

(Step 6.5.2). This method is illustrated in Figure 4.5. The �gure shows two scenarios

for three instructions that use the same function unit type. In scenario A, the values of

TEXE for the three instructions are not the same (i.e., the three instructions were �red

in di�erent cycles of execution). The values of stage busy just after the execution of Step

6.5.1 are shown below each diagram. In scenario B, TEXE(I1) = TEXE(I2) (i.e., I1 and
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Figure 4.5: Two scenarios to explain the use of stage busy in the queue-based simulation

algorithm.

I2 were �red in the same cycle), forcing the need for two function units. The equivalent

function unit status is shown to the right of scenario B. The other permutation of this

status is also valid. The num exec[u] counters are used to update the Tu(x) metrics,

which in turn are used to calculate the fu(x) metrics using Equation (4.4).

Function unit latency is simulated in the algorithm by decrementing TEXE(Ik) for

instruction Ij (Step 6.5.4). When TEXE(Ij) = 0, Ij completes (Steps 6.5.3 and its sub-

steps). A completed instruction is removed from the execution queue (Step 6.5.3.1).

Upon completion of Ij, each entry of LDENT (Ij) has its NDEP counter decremented by

one (Steps 6.5.3.2 and 6.5.3.2.1). Instructions that have NDEP = 0 due to this decrement
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operation enter execution at the next simulated clock cycle. The reservation on for the

destination register of Ij is removed if Ij still owns the reservation (Step 6.5.3.3).

4.2.2 Event-driven simulation algorithm

The queue-based simulation algorithm provides a large amount of information, but

at the cost of requiring the simulation of each cycle of the benchmark's execution. This

section presents an algorithm that does not need to simulate each clock cycle but instead

derives the required information from the structure of the instruction trace.

For each instruction, it is possible to de�ne four event times:

tI : The issue time.

t�: The dependence time, the earliest an instruction can �re due to depen-

dencies with other instructions (t� � tI).

tRC: The resource con
ict time, the earliest an instruction can �re due to

resource con
icts with other instructions (tRC > t�).

FT(Ij): The actual �re time of Ij.

In the absence of other restrictions, FT(Ij) = tRC. The de�nitions are such that tI �

t� � tRC.

Figure 4.6 shows an algorithm for calculation of the four event times for some Ij.

As with the presentation of the queue-based simulation algorithm, the event-driven

algorithm is presented for one instruction from the trace. In practice, the procedure

event driven() is applied sequentially to every instruction in the trace.
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event driven(Ij):

1 NI  NI + 1
2 if (NI mod issue rate) = 0 then

2.1 tI  tI + 1
3 t�  tI
4 for r 2 S(Ij) do
4.1 Ik  scoreboard[r]
4.2 if Ik 6= ; then

4.2.1 t�  maxft�;FT(Ik) + L(U(Ik))g
5 scoreboard[dj] Ij
6 tRC  t� + 1
7 success false

8 while :success do

8.1 if num �red[U(Ij); tRC] < NU(U(Ij)) then
8.2.1 num �red [U(Ij); tRC] num �red[U(Ij); tRC] + 1
8.2.2 success true

8.4 else

8.4.1 tRC  tRC + 1
9 FT(Ij) tRC
10 TTOT  maxfTTOT ;FT(Ij) + L(U(Ij))g

Figure 4.6: The event-driven FOCO-class processor simulation algorithm.
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The issue time, tI , is calculated by maintaining an instruction counter and increment-

ing tI once an issue period (Steps 1{2.1 of Figure 4.6). Initially, the dependence time

is set to the issue time. The maximum of the (already calculated) �re time plus the

function unit latency (i.e., the completion time) of each member of fIkjIk�Ijg determine

the earliest time that Ij can �re due to a dependence. This time is calculated in Step 4

and its substeps in the �gure. The array scoreboard is used in the same manner as in the

queue-based algorithm to detect destination register reservations. Register renaming is

implemented in Step 5. Initially, the resource con
ict time, tRC, is set to one plus the

dependence time. The addition of one to the dependence time re
ects the assumption

mentioned in Section 4.1.1 that every instruction must spend at least one cycle in the

instruction scheduling stage.

Thewhile statement of Steps 8 and its substeps in Figure 4.6 are used to calculate the

resource con
icts for Ij. This is done by maintaining the array num �red [u; tRC], which

records the number of instructions �red to function unit u at time t. If num �red[u; tRC] <

NU (u), then there are su�cient function units remaining at time t to execute an instruc-

tion with potential resource con
ict time tRC. The while statement iteratively tries suc-

cessive potential resource con
ict times until this condition is met. When it is, success is

set to true and the loop exits. (It is possible to calculate Tu(x) from the num �red[u; t]

array; however, this calculation is not shown in the �gure.) When the last instruction is

processed by the algorithm, the value of TTOT calculated in Step 10 of the �gure is the

run time of the entire trace.
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It was mentioned above that the event-driven algorithm has some di�culties. These

di�culties center around the num �red [u; t] data structure, which can grow to the size

of the trace. In the queue-based algorithm, all data structures used to represent an

executing instruction can be purged after the instruction completed. This is not the case

with the event-driven algorithm. The following section discusses a method that can be

used in conjunction with the event-driven algorithm to overcome these problems.

4.2.3 Statistical sampling of instruction traces

A benchmark that runs for 90 seconds on an architecture that supports 20 million

instructions/second executes approximately 1.8 billion instructions. The time required to

simulate using this benchmark is too great to be tractable. To avoid this problem, studies

of instruction-level parallelism tradeo�s have frequently used the �rst four to 10 million

instructions of a benchmark [47],[52]. Such results are of questionable value since the �rst

few million instructions might only capture the initialization phase of the benchmark and

not the portion of the benchmark that performs actual work. A method of improving

the quality of the simulation results is to use statistical sampling. Chapter 3 discusses

the use of statistical sampling to improve the speed of single-pass algorithms. Statistical

sampling is also applicable to FOCO-class processor simulation. This section investigates

the application of sampling to the two simulation algorithms discussed above.

The same notation is used here as was used in Chapter 3. Statistical sampling takes

NS samples of length LS instructions from the trace. Each sample is a contiguous block
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of LS instructions. These samples are applied to the simulator in the order they are

taken from the trace. For this section, NS = 40. There are LG instructions between each

sample. LG is adjusted so that the majority of the benchmark's dynamic execution is

captured.

The measurement of the accuracy of the sampling approach is done by comparing IPC

of the sampled runs to the IPC from the whole trace. For the miss ratio, �, in Chapter 3

it was guaranteed that � < 1:0 for all benchmarks. Unlike �, IPC is not bounded above

by some value across all benchmarks. Relative error naturally normalizes the di�erences

so that RE(IPC) < 1:0 for all benchmarks. This allows for cross-benchmark comparisons

using one metric. Relative error is used here. It should be noted, however, that the errors

presented in this section are not of the same magnitude as the errors presented for the

cache simulation sampling scheme.

Three benchmarks are used for the study of sampling: doduc, espresso and gcc. The

queue-based processor simulation algorithm is used since it does not have restrictions on

the size of its internal data structures. The size of the window of the instruction schedul-

ing stage and the number of function units are left unbounded in order to achieve a large

amount of state in the simulation algorithm. An issue rate of eight instructions/cycle is

used since this high issue rate allows a large number of instructions to execute in parallel.

This produces a complicated state that is di�cult to recreate, placing a large strain on

the sampling process. The processor used has an unlimited supply of function units and

window entries. The latencies assumed are those of Figure 4.2.
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The sample size is di�cult to select since there is no published previous work on the

topic of sampling for instruction traces. Simulations must be performed to investigate

sample size. The shorter lifetime of instructions in a processor compared to the lifetine of

references in a cache system suggests that shorter sample sizes can be used for processor

simulation than for memory system simulation. Figure 4.7 presents the relative error of

the IPC versus sample size for gcc, espresso, and doduc with 2; 000 � LS � 20; 000. The

vertical scale of the �gure has been halved in order to show su�cient detail. The reader

is reminded that this is relative error, and, as such, an error of 10% is quite acceptable.

The sampling is performed such that sample runs with samples of size LS contain sample

runs of size less than LS as pre�xes to each sample. For example, the �fth sample taken

for LS = 4; 000 begins with the �fth sample taken for LS = 3; 000 and includes 1,000

additional instructions. This is done to guarantee that the di�erences between accuracies

are due to extending sample lengths and not a byproduct of sampling di�erent regions of

the trace. The drawback to this approach is that the accuracy of the sampling will not

be perfect if the largest sample size considered does not have perfect accuracy.

The curves presented in of Figure 4.7 appear to have asymptotic behavior. The knee

all three curves occurs for LS in the range of 10,000{20,000. The sampled IPC for gcc has

the best performance, displaying an optimal sample size of approximately LS = 6; 000.

Espresso appears to have constant error beyond approximately 10,000{15,000. Espresso

is also interesting because several very small sample sizes have low error. Increased

sample size must ultimately result in higher accuracy since the limiting case is to use the
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Figure 4.7: RE(IPC) versus sample size for gcc, doduc, and espresso, issue rate eight
instructions per cycle.

entire trace for simulation. It is fortunate that a wide range of sample sizes has been

considered for several benchmarks; otherwise, it would have been incorrectly concluded

that LS = 4; 000 is an ideal sample size for all benchmarks.

Table 4.7 presents the relative errors for gcc, doduc, and espresso for issue rates

of two, four and eight instructions per cycle, using sample sizes of LS = 10; 000 and

LS = 20; 000. The table con�rms that relative error increases with issue rate. Sample

sizes of LS = 20; 000 perform as well as or better than the smaller sample sizes of

LS = 10; 000, except for gcc. Figure 4.7 suggests that this is due to random 
uctuations

of sample error for gcc. The espresso benchmark remains the most-di�cult to capture

with sampling, with the relative error of 11.9%. This error is considered relatively minor,
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however, and the data suggest that sample sizes of LS = 10; 000 produce acceptable

error, with LS = 20; 000 providing some additional accuracy in certain situations.

Table 4.7: RE(IPC) for gcc, doduc, and espresso, for LS = 10; 000 and LS = 20; 000,

issue rates two, four and eight instructions per cycle.

issue rate = 2 issue rate = 4 issue rate = 8

Benchmark 10,000 20,000 10,000 20,000 10,000 20,000

doduc 0% 0% 0.96% 0.64% 3.30% 2.27%

espresso 4.32% 4.32% 8.19% 8.30% 8.14% 11.9%

gcc 2.01% 1.34% 2.88% 1.92% 0.41% 0%

An alternative to reducing the sampling error would be to increase the number of

samples taken from the trace [53]. This approach is consistent with the suggestions

of [5]. The rationale is that the instruction samples have many interdependencies and as

such are likely to not be normally distributed. This extension of processor sampling to

more than 40 samples is suggested as future work and not investigated here.

The resource usage density functions are also an important metric to capture using

sampling. The sampling process captures these quite well. Figure 4.8 presents the tab-

ulated results of the full-trace distribution and the sampled distribution for the case of

espresso with LS = 20; 000, issue rate of eight instructions per cycle (the case with the

largest IPC error). The rows with primed labels (e.g., IAlu0) are for the sampled density

functions and the unprimed rows are for the full-trace functions. In some situations in

the �gure, there are some di�erences of 2{3%, but the shapes of the distributions have

been preserved. This �gure provides evidence that the sampling process is recording the

resource usage of the whole trace accurately.
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Figure 4.8: Full-trace vs. sampled resource usage density functions for espresso, LS =

20; 000, issue rate eight instructions per cycle.

Number of units active

Type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 � 14

IAlu 57 24 10 3 2 0.7 0.3 * * * * * *

IAlu0 60 25 9 2 1 0.5 0.1 * * * * * * * *

IMul 99 * *
IMul0 99 0.1 *
IDiv 100
IDiv0 99 * * * *

AddrC 68 14 9 5 1 0.2 0.1 * * * * *

AddrC0 70 13 9 4 1 0.2 0.1 * * * * * * * *
Move 86 11 1 0.3 0.1 0.1 * *
Move0 87 9 1 0.4 0.1 0.1 * * * *
Shift 76 20 1 1 0.3 0.2 * * * *
Shift0 76 20 1 1 0.2 0.2 * * * * * * * *

Load 45 19 18 9 4 1 0.3 0.1 * * * * 0.1 0.2 0.3
Load0 48 20 16 7 4 1 0.3 0.2 0.2 * 0.1 * 0.1 0.1 0.2
Store 82 7 9 0.7 0.5 * * * *
Store0 87 5 6 0.5 0.4 * * * * * * * * * *

FPAdd 100
FPAdd0 100

FPMul 100
FPMul0 100

FPDiv 100

FPDiv0 99 *

FPCvt 100

FPCvt0 99 *

Branch 70 24 3 0.8 0.3 0.3 * * * *
Branch0 72 23 2 1.0 0.2 0.2 * * * * *

Test 91 7 0.6 * 0.1 *

Test0 91 8 0.6 * * * * * *
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The simulations reported in Figure 4.7 and Table 4.7 do not account for lost state

between samples, instead the processor state is 
ushed between each sample. Section 3.2.2

discussed methods for state repair of cache simulation. State repair is less of a problem

in processor simulation due to the shorter lifetime of instructions. Consequently, less

sophisticated state repair techniques are suggested for processor simulation. Speci�cally,

the state repair problem is addressed by using some fraction of the sample to prime the

processor state and delay recording of performance metrics until after this priming is

completed. The string of priming instructions has length h. This is the analogue of the

\cache warm-up" approaches of Section 3.2.2.
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Figure 4.9: E�ect of state repair on RE(IPC) for espresso, h = 0, 50, 500, and 2000.

Figure 4.9 demonstrates the value of using state repair for processor sampling. The

�gure shows the relative error of the IPC for the espresso benchmark using h = 0, 50,
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500, and 2000 with sample sizes in the range 10; 000 < LS � 40; 000. The vertical scale

in the �gure has been exaggerated to show details between the schemes. The �gure

demonstrates that large values of heatup, such as h = 2; 000, are detrimental to the

accuracy of the sampling process. Small values of heatup, such as h = 50 and h = 500,

have only marginal e�ect. The conclusion that can be drawn is that state repair of this

type is not e�ective in improving the performance of the sampling technique. The data

also suggest that state repair is not an issue for processor simulation.

These data can be viewed as a recommendation for how to sample instruction traces.

The sample size should be approximately 10,000 to 20,000 samples. Flushing the state of

the processor in-between samples is reasonable and the entire sample should be applied to

the simulation without attempting state repair. Although the queue-based algorithm was

used above, the event-driven algorithm should perform equally well with sampling, since

both algorithms simulate the same processor model. The experimental results presented

in the remainder of this chapter and those presented in the next chapter use this sampling

regimen.

4.3 A Prototyping Approach to FOCO-Class Processor Design

Due to their complexity, FOCO-class processors are di�cult and costly to design

and implement. The prototyping of memory systems that was presented in Chapter 3

focused on capturing the performance of a broad design space of memory systems. Once

that space of performance numbers was gathered, the prototyping process reduced to



116

deciding between prototypes based on this performance and an unspeci�ed cost function.

The same approach could be used for processors, but the design space for processors is

too large to allow such an exploration. Consider a processor that uses the function units

given in Table 4.1. Assume that the goal of prototyping is to determine the number

and latency of each function unit type. If the number of function units cannot exceed

NFU , the number the possible latency values are in the range [1::Lmax], and there are

M function unit types, then the number of designs to explore is

MLmax�NFU : (4.6)

For M = 16, Lmax = 10, and NFU = 2, the number of possibilities is approximately

1:2 � 1024. This space is too large to explore exhaustively. It must be shortened and

intelligently explored. The �rst half of this section develops such an exploration technique

for situations in which the latencies of the function units are �xed. A selection criterion

based on the distribution of resources from unlimited-resource simulation are evaluated.

Prototypes are derived using these criteria. Another method is developed that uses a cost-

based exploration of the design space. This second method is well-suited for situations

in which the function unit latencies are variable.

4.3.1 Resource requirements

The goal of prototyping is to specify the architectural resources that a benchmark

or set of benchmarks needs. One method of measuring resource needs is to supply an

unlimited amount of resources and observe resource use. This method will not work if
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the benchmark's needs are insatiable. The expected amount of instruction-level paral-

lelism has been found to be large, yet limited, for particular workloads [52]. Since the

issue rate is largely a technology parameter, it is �xed for each prototype. A �nite issue

rate ultimately limits the amount of parallelism that can be uncovered [54]. Because

the parallelism is limited, assuming unlimited resources should prove to be a valid ap-

proach to establishing prototype processors. This conjecture is substantiated below with

experimental results.

When an unlimited number of function units is supplied, the resource usage density

functions, fu(x), provide an indication of how much of the resource is required by the

benchmark. Examples of these density functions are presented in Table 4.8 for the doduc

benchmark and Table 4.9 for the gcc benchmark. These values were derived from a

queue-based simulation that assumed an issue rate of eight instructions per cycle with

function unit latencies taken from the canonical latency set.

The tables con�rm the prediction that actual function unit usage is large but bounded,

even at a high issue rate. The density functions have relatively long tails (e.g., consider

the density function for AddrC for either benchmark). The criterion for selecting the

maximum number of function units used would be very expensive in practice. The

criterion that is used is to select the smallest n such that Fu(n) � z, where z is some

chosen level. For example, setting z = 0:99 would select the smallest n such that 99% of

the execution time was occupied by cycles in which at most n units were in use. This is

also done for the window size using FW (u) to select the size of the scheduling window.
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Table 4.8: Function unit resource usage density functions (percentage) for doduc, issue

rate eight instructions per cycle, canonical latencies.

Resource usage distribution for function units (fFU (x), in percent)
Type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 � 14
IAlu 79 13 5 1 0.4 0.2 0.2 * * *
IMul 97 2 * *
IDiv 99 0.3

AddrC 50 20 15 9 3 0.7 * * * * * * * *
Move 69 21 6 2 0.8 0.2 * * * * 0.2
Shift 82 13 3 0.6 * *
Load 29 25 22 14 5 2 0.8 0.3 0.2 * * * * * *
Store 71 17 7 1 1 0.1 0.1 * * * * *

FPAdd 46 34 15 2 0.3 * * * * 0.6
FPMul 52 29 12 4 0.7 0.2 * * *
FPDiv 58 36 4 0.4 0.2
FPCvt 86 8 4 0.1
Branch 76 17 5 0.8 * * * 0.2

Test 91 7 0.9 * * *

(* less than 0.1%)

Table 4.9: Function unit resource usage density functions (percentage) for gcc, issue rate
eight instructions per cycle, canonical latencies.

Resource usage distribution for function units (fFU (x), in percent)
Type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 � 14
IAlu 66 17 6 7 2 0.1 * * *
IMul 98 1
IDiv 99 0.6 *

AddrC 82 10 4 1 0.2 * * * * * 0.1 * * *
Move 90 7 1 0.4 0.2 * * *
Shift 90 7 1 * * * *
Load 58 26 10 2 0.9 0.2 0.1 * * *
Store 80 15 2 0.5 0.7 0.2 0.3 * * * * * *

FPAdd 100
FPMul 100
FPDiv 100
FPCvt 100
Branch 66 28 4 0.6 0.1 * * *

Test 88 9 1 * *

(* less than 0.1%)
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Figure 4.10 presents the geometric mean of the IPC metric where the number of

function units was selected using the above criteria for values of z = 0:80; 0:95 and

0:99. Also presented for comparison in the �gure is the unlimited-resource IPC. The

�gure shows very little di�erence between the IPC for an in�nite supply of function units

and the IPC with z = 0:99. For the criterion of z = 0:80, the IPC values drop by

approximately 20% for issue rate eight instructions per cycle. This decrease is less acute

for lower issue rates. The change in performance is monotonic and proportional to the

selection criterion, z. If this had not been the case, a selection criterion based on resource

usage would be meaningless.

Additional results of the IPC for various selection criteria are presented in Table 4.10.

The table also demonstrates that the selection criteria are less critical for smaller issue

rates. In some cases, such as an issue rate of two for doduc and eqntott, the criterion

makes little di�erence.

The scheduling window size selected for the benchmarks is presented in Table 4.11.

The window size requirements are quite small for xlisp and matrix300. The requirements

for doduc are large, with 147 entries required for z = 0:99, issuing eight instructions per

cycle.

Tables 4.12 through 4.20 present the prototype function unit needs for issue rates of

two, four and eight instructions per cycle and criteria of z = 0:80; 0:95 and 0:99. Several

observations can be made from the tables:

� Hardware requirements increase with issue rate across all benchmarks.
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Table 4.10: IPC for function unit number selection criteria of z = 0:80; 0:95; 0:99 and

unlimited resources (z = 1:0).

issue rate = 2 issue rate = 4 issue rate = 8

Benchmark 0.80 0.95 0.99 1.0 0.80 0.95 0.99 1.0 0.80 0.95 0.99 1.0

doduc 1.65 1.79 1.80 1.80 2.68 3.04 3.10 3.14 3.64 4.38 4.64 4.90

eqntott 1.84 1.85 1.88 1.88 3.20 3.43 3.47 3.49 5.56 5.56 5.88 6.06

espresso 1.51 1.57 1.59 1.59 2.01 2.34 2.38 2.44 2.24 2.79 2.94 3.13

gcc 1.28 1.47 1.49 1.49 1.71 1.99 2.06 2.07 1.85 2.22 2.42 2.46
matrix300 1.88 1.99 1.99 1.99 3.71 3.85 3.92 3.96 7.11 7.27 7.49 7.81

nasa7 1.87 1.97 1.98 1.98 3.55 3.66 3.74 3.89 4.95 5.12 5.31 7.35
tomcatv 1.93 1.97 1.97 1.98 3.80 3.88 3.88 3.90 6.44 7.31 7.44 7.55

xlisp 1.02 1.07 1.08 1.09 1.17 1.24 1.28 1.29 1.23 1.35 1.38 1.41

GMean 1.59 1.68 1.69 1.70 2.54 2.75 2.81 2.84 3.52 3.92 4.10 4.40

Percent 94% 99% 99% { 89% 97% 99% { 80% 89% 93% {
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Figure 4.10: IPC for function unit number selection criteria of z = 0:80; 0:95 and 0:99

(geometric mean) for all issue rates, canonical latencies.
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� The 
oating-point benchmarks do not have equivalent requirements. For example,

doduc requires three FPAdd, four FPMul, two FPDiv and two FPCvt for issue rate

eight and z = 0:99, whereas matrix300 requires only one of each (Table 4.20).

� All of the tables clearly indicate that Load (cache) ports are very important. Note

that Load operations are not renamed like registers but some degree of parallelism

can be obtained by issuing Load operations in parallel. Even using the criterion

of z = 0:80 for an issue rate of two instructions per cycle suggests that two Load

operations can be �red per cycle (Table 4.12).

� Other important function units are IAlu and AddrC operations.

� The four integer benchmarks do have similar characteristics: little or no 
oating-

point hardware requirements, and similar IAlu, IMul, IDiv, AddrC, and Shift re-

quirements. Signi�cant di�erences do exist in the requirements for the memory

interface function units. For example, eqntott requires nine Load operations for

issue rate of eight instructions per cycle (Table 4.20).

� At most two to three Branch operations have to be executed in parallel across all

benchmarks (with the exception of nasa7).

� In general, the function unit needs are moderate to support very high performance.

At an issue rate of eight instructions/cycle, using the z = 0:80 designs (Table 4.18),

the largest required number of function units of any one type is four (IAlu for

eqntott). The geometric mean of the IPC for z = 0:80 is 3.52.
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Table 4.11: Scheduling window size for selection criteria of z = 0.80, 0.95, and 0.99.

issue rate = 2 issue rate = 4 issue rate = 8

Benchmark 0.80 0.95 0.99 0.80 0.95 0.99 0.80 0.95 0.99

doduc 22 55 84 47 90 112 74 112 147

eqntott 7 8 14 14 18 48 52 59 86

esp 10 15 24 21 63 100 38 87 112

gcc 5 11 21 20 58 93 48 68 110

matrix300 14 17 17 29 32 50 62 65 72
nasa7 15 21 26 53 57 65 73 71 84

tomcatv 17 31 42 44 68 82 79 97 116
xlisp 7 11 20 9 23 60 10 32 65

Table 4.12: Processor resource requirements, issue rate of two instructions/cycle,
z = 0:80.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 1 1 1 1 1 1 1
eqntott 1 1 1 1 1 1 1
espresso 1 1 1 1 1 1 1

gcc 1 1 1 1 1 1 1
matrix300 1 1 1 1 1 1 2

nasa7 1 1 1 1 1 1 1

tomcatv 1 1 1 1 1 1 2
xlisp 1 1 1 1 1 1 1

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 1 1 1 1 1 1 1

eqntott 1 1 1 1 1 1 1

espresso 1 1 1 1 1 1 1
gcc 1 1 1 1 1 1 1

matrix300 1 1 1 1 1 1 1
nasa7 1 1 1 1 1 1 1

tomcatv 1 1 1 1 1 1 1

xlisp 1 1 1 1 1 1 1
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Table 4.13: Processor resource requirements, issue rate of two instructions/cycle,

z = 0:95.
Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 1 1 1 1 1 1 2

eqntott 1 1 1 1 1 1 1

espresso 2 1 1 1 1 1 2

gcc 2 1 1 1 1 1 1

matrix300 2 1 1 1 1 1 2

nasa7 1 1 1 1 1 1 2

tomcatv 2 1 1 1 1 1 3

xlisp 1 1 1 1 1 1 2

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 1 1 1 1 1 1 1
eqntott 1 1 1 1 1 2 2

espresso 1 1 1 1 1 1 1
gcc 1 1 1 1 1 1 1

matrix300 1 1 1 1 1 1 1
nasa7 1 1 1 1 1 1 1

tomcatv 1 2 2 1 1 1 1

xlisp 1 1 1 1 1 1 1

Table 4.14: Processor resource requirements, issue rate of two instructions/cycle,
z = 0:99.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 2 1 1 2 2 1 3
eqntott 1 1 1 1 1 1 2
espresso 2 1 1 2 1 1 2

gcc 2 1 1 2 1 1 2

matrix300 2 1 1 1 1 1 2

nasa7 2 1 1 2 1 1 2

tomcatv 3 1 1 2 1 1 4
xlisp 1 1 1 2 1 1 3

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 2 2 2 1 1 2 1

eqntott 1 1 1 1 1 2 2

espresso 2 1 1 1 1 2 1

gcc 2 1 1 1 1 2 1
matrix300 1 1 1 1 1 1 1

nasa7 2 2 3 1 1 1 1

tomcatv 2 4 2 1 1 1 1

xlisp 2 1 1 1 1 2 1
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Table 4.15: Processor resource requirements, issue rate of four instructions/cycle,

z = 0:80.
Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 1 1 1 1 1 1 2

eqntott 2 1 1 1 1 1 2

espresso 1 1 1 1 1 1 2

gcc 1 1 1 1 1 1 1

matrix300 2 2 1 1 1 2 2

nasa7 1 1 1 2 1 1 2

tomcatv 2 1 1 1 1 1 2

xlisp 1 1 1 1 1 1 1

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 1 1 1 1 1 1 1
eqntott 1 1 1 1 1 1 1

espresso 1 1 1 1 1 1 1
gcc 1 1 1 1 1 1 1

matrix300 1 1 1 1 1 1 1
nasa7 1 1 1 1 1 1 1

tomcatv 1 2 2 1 1 1 1

xlisp 1 1 1 1 1 1 1

Table 4.16: Processor resource requirements, issue rate of four instructions/cycle,
z = 0:95.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 1 1 1 2 2 1 3
eqntott 3 1 1 2 1 1 3
espresso 2 1 1 2 1 1 2

gcc 3 1 1 1 1 1 2

matrix300 3 2 1 1 1 2 2

nasa7 1 1 1 1 1 1 2

tomcatv 3 1 1 2 1 1 4
xlisp 1 1 1 1 1 1 2

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 2 2 2 1 1 1 1

eqntott 1 1 1 1 1 1 1

espresso 2 1 1 1 1 1 1

gcc 1 1 1 1 1 1 1
matrix300 1 1 1 1 1 1 1

nasa7 1 1 1 1 1 1 1

tomcatv 2 4 4 1 1 1 1

xlisp 1 1 1 1 1 1 1
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Table 4.17: Processor resource requirements, issue rate of four instructions/cycle,

z = 0:99.
Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 2 1 1 2 3 2 4

eqntott 3 1 1 2 2 1 3

espresso 3 1 1 3 2 2 4

gcc 4 1 1 2 2 2 3

matrix300 3 2 1 1 1 2 2

nasa7 2 1 1 2 1 1 2

tomcatv 5 1 1 3 1 2 8

xlisp 2 1 1 3 2 1 3

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 2 3 3 2 2 2 1
eqntott 1 1 1 1 1 2 1

espresso 2 1 1 1 1 2 1
gcc 2 1 1 1 1 2 1

matrix300 1 1 1 1 1 1 1
nasa7 2 2 3 1 1 1 1

tomcatv 2 4 4 1 1 1 1

xlisp 2 1 1 1 1 2 1

Table 4.18: Processor resource requirements, issue rate of eight instructions/cycle,
z = 0:80.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 1 1 1 2 1 1 3
eqntott 3 1 1 2 1 1 3
espresso 1 1 1 1 1 1 2

gcc 1 1 1 1 1 1 1

matrix300 3 2 1 1 1 2 3

nasa7 1 1 1 1 1 1 1

tomcatv 4 1 1 1 1 1 5
xlisp 1 1 1 1 1 1 1

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 1 1 1 1 1 1 1

eqntott 1 1 1 1 1 2 2

espresso 1 1 1 1 1 1 1

gcc 1 1 1 1 1 1 1
matrix300 1 1 1 1 1 1 1

nasa7 1 1 1 1 1 1 1

tomcatv 1 3 3 1 1 1 1

xlisp 1 1 1 1 1 1 1
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Table 4.19: Processor resource requirements, issue rate of eight instructions/cycle,

z = 0:95.
Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 2 1 1 3 2 1 4

eqntott 3 1 1 2 1 1 3

espresso 3 1 1 3 1 1 3

gcc 3 1 1 2 1 1 2

matrix300 4 2 1 1 1 2 3

nasa7 1 1 1 1 1 1 2

tomcatv 6 1 1 2 1 2 7

xlisp 1 1 1 2 1 1 3

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 2 2 3 2 1 2 1
eqntott 1 1 1 1 1 2 2

espresso 2 1 1 1 1 1 1
gcc 1 1 1 1 1 1 1

matrix300 1 1 1 1 1 1 1
nasa7 1 1 1 1 1 1 1

tomcatv 2 5 4 1 1 1 1

xlisp 1 1 1 1 1 2 1

Table 4.20: Processor resource requirements, issue rate of eight instructions/cycle,
z = 0:99.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 3 1 1 4 4 2 6
eqntott 5 1 1 2 3 2 9
espresso 5 1 1 4 2 3 5

gcc 4 1 1 3 2 2 4

matrix300 4 2 1 1 1 2 3

nasa7 2 1 1 2 1 1 2

tomcatv 6 1 1 4 2 2 8
xlisp 1 1 1 3 3 1 3

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 4 3 4 2 2 3 1

eqntott 1 1 1 1 1 3 3

espresso 3 1 1 1 1 3 2

gcc 4 1 1 1 1 2 2
matrix300 1 1 1 1 1 2 1

nasa7 2 2 3 1 1 1 1

tomcatv 4 5 4 1 1 2 1

xlisp 2 1 1 1 1 2 1
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4.3.2 Near-optimal processor con�gurations

The above method for generating processor con�gurations from the usage of unlimited

resources is useful to construct prototypes when altering the function unit latencies is not

a design option. When function unit latency is also variable, the selection of prototypes

can be carried out by performing an unlimited-resource simulation for each possible

latency set. However, if the number of latency sets is too large for this approach to be

feasible, one alternative is to formulate an optimization problem.

Consider a processor design space composed of one or more of the function units

of Table 4.1, each having a latency ranging from 1 to Lmax. A processor, P , has nj

function units of type j and each of these function units has a latency of `j . A concise

representation of processor m is

P = h(`0; n0); (`1; n1); : : : ; (`k�1; nk�1)i; (4.7)

for k di�erent types of function units. Each design of P can be assigned a cost. The cost

of a function unit u is de�ned to be C(u). The cost of the processor is then the cost of

each of its function units times the number of each function unit, or,

CTOT =
X
u

kuN(u)C(u); (4.8)

where ku are constants of proportionality.

There are many factors that enter into the formulation of C(u), such as development

time and complexity. It is more di�cult to design an unpipelined function without also

stretching the cycle time of the processor. Therefore, for the purposes of this section,
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C(u) is de�ned to be one over the sum of the number of stages of function unit u. In

terms of latency, C(u) = L(u)�1. Equation (4.8) can be rewritten as,

CTOT =
X
u

N(u)

L(u)
; (4.9)

where the ku's have been set to unity. Equation (4.9) is the hardware cost model used

below. It is not claimed that this model accurately re
ects actual industrial design cost.

Other cost models could be used. Equation (4.9) does, however, include the reluctance

of designers to create numerous, low-latency function units.

The optimization problem is to minimize CTOT (P ) by changing the number and la-

tency of the function units of P . The problem is su�ciently di�cult so that a Monte

Carlo technique is required. Of the Monte Carlo techniques, Simulated Annealing is cho-

sen since it is well-suited to optimization problems [55],[56]. The version of the algorithm

that follows is adapted from a simulated annealing algorithm for the traveling salesman

problem, presented in [57].

The simulated annealing algorithm used here progresses from an initial processor

design, P0, to a �nal design, PF , based on a energy function, E [55]. Since a computer

is used to perform the optimization, the energy function can be quite complex. The

following requirements are used to formulate the energy function for processor selection:

1. CTOT(PF ) should be minimal, and

2. IPC(PF ) � 0:9� IPC(P0).
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These two requirements are used to derive the following equation:

E(Pi) =

8>>><
>>>:

�
IPC(P0)

IPC(Pi)

�
CTOT (Pi) if IPC(Pi) � 0:9� IPC(P0)

1 otherwise:

(4.10)

The 1 guarantees that designs with IPC < 0:9 � IPC(P0) are never accepted by the

algorithm.

Simulated annealing works by randomly altering Pi to create Pi+1, then evaluating

the di�erence in the energy,

dE = E(Pi+1)� E(Pi): (4.11)

The algorithm decides to accept Pi+1 if either:

� dE < 0, or

� rand num < e�dE=t.

The number, rand num, is a uniformly distributed random number in the range [0; 1).

The parameter, t, is the current temperature. Simulated annealing proceeds from an

initial temperature, t = t0, and reduces t by the fraction fSTEP at each step. At each

step, the algorithm creates and evaluates nmax prototype processors, Pi. A total of nSTEP

temperature steps are taken in total. For this thesis, these parameters are set as follows:

t0 = 0:05 � E(P0);

fSTEP = 0:1;

nmax = 96;

nSTEP = 25:
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At each step of the algorithm, the design Pi+1 is selected from Pi using a restricted

random selection procedure. The following procedure for determining the latencies of Pi

was found to produce acceptable results:

1. Select m latencies at random from Pi+1, where m is a random integer in the range

[1; 3].

2. For all 0 < k � m, add to latency `k a random integer, x, in the range [�4; 4]. If

`k + x < 0 or `k + x > LMAX , reject the change to `k.

The same procedure is used to alter the number of the function units, nk, for Pi.

The evolution of the energy function during the execution of the simulated annealing

algorithm for gcc is presented in Figure 4.11. The initial design for the processor was

taken from Table 4.20. The IPC for the initial design is 2.41. The hardware cost of

this design is CTOT (P0) = 48:07. The �nal design after simulated annealing is shown in

Table 4.21. This processor has a performance of IPC = 2.21. The cost of the annealed

result is CTOT (PF ) = 7:46, a 6.4 times reduction.

The algorithm is also used for the xlisp benchmark, and the results are presented

in Table 4.22. For xlisp, IPC(P0) = 1:37 with hardware cost CTOT(P0) = 16:03. After

annealing, IPC(PF ) = 1:32, with hardware cost CTOT (PF ) = 6:65, a 2.4 times reduction.

It is interesting to note the algorithm selected includes only one function unit of each

type for xlisp.
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Figure 4.11: Evolution of energy for gcc benchmark during execution of simulated an-
nealing algorithm.

Table 4.21: Final prototype for processor for gcc, issue rate eight instructions per cycle
(IPC = 2.21).

Function unit Number Latency

IAlu 2 1
IMul 1 10

IDiv 1 6

AddrC 1 1

Move 1 2
Shift 1 4

Load 2 1
Store 3 6

FPAdd 1 4
FPMul 2 10

FPDiv 2 9

FPCvt 1 10
Branch 1 1

Test 1 1



132

Table 4.22: Final prototype for processor for xlisp, issue rate eight instructions per cycle

(IPC = 1.32).

Function unit Number Latency

IAlu 1 2

IMul 1 8

IDiv 1 5

AddrC 1 1

Move 1 1

Shift 1 7

Load 1 1
Store 1 2

FPAdd 1 9
FPMul 1 8
FPDiv 1 8
FPCvt 1 5
Branch 1 1

Test 1 2

Consider the design decisions made by the algorithm for the gcc benchmark. In

particular, the algorithm:

1. reduced the number of IAlu from four to two,

2. increased the latency of IMul to 10,

3. decreased the latency of IDiv to six,

4. reduced the needed number of address calculation units to one,

5. decreased the latency of Move function units to two

6. reduced the number of Shift function units from two to one and increased their

latency to four,
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7. reduced the number of Load function units from four to two and decreased their

latency to one,

8. decreased the number of Store function units from four to three and increased their

latency from one to six,

9. increased the latency and number of the 
oating-point function units, adding an

additional FPAdd and FPMul , and

10. reduced the number of Branch and Test function units from two each to one each.

This list of modi�cations is extensive, suggesting that designing with �xed latencies is

not an ideal situation. In practice, however, function unit design is a complicated task

warranting design re-use between generations of processors. When the design space is

much smaller, either the techniques of the previous section can be used, or a cost function

expressing the limited design space can be incorporated into the annealing algorithm.

4.4 Summary of Processor Prototyping

The purpose of this chapter has been to present techniques to prototype FOCO-

class processors. Two simulation techniques, the queue-based and the event-driven, were

developed to explore possible processor designs. Statistical sampling was adapted from

traditional cache simulation and applied to processor simulation. Prototype selection

criteria based on the used resources from an unlimited-resource simulation were evaluated,

found to be useful, and used to derive prototypes for the benchmarks. The general
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optimization problem was evaluated using an adaptation of simulated annealing, and

sample annealing schedules were presented.
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5. PROCESSOR/MEMORY INTERACTION

Chapters 3 and 4 of this thesis have concentrated on the prototyping of the two

primary components of a workstation: the memory system and the processor. It has

been assumed that if both designs are high-performance, the interaction between the

subsystems will not signi�cantly change the designs of either. This assumption has to be

veri�ed. This chapter investigates the interaction between the processor and the memory

system prototypes. A discussion of the relevant techniques that modern designs use to

coordinate processor/memory interaction is presented. Empirical results are used to

evaluate the techniques and demonstrate that su�cient design options exist to continue

to justify separate designs for the processor and the memory system.

5.1 Processor and Memory System Interfaces

In Chapter 4, the Load and Store function units are described as the method for

program interaction between the data portion of the memory hierarchy and the processor.

It is assumed there that these operations have a �xed latency. The latencies presented,
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however, are only valid if the data that are loaded or stored are present in the �rst-level

data cache. When the data are not present, a resultant cache miss occurs and the correct

data must be fetched from the second level in the memory hierarchy. This fetching

operation is de�ned to take TMISS time units. Methods to design the processor/memory

interface to correctly handle cache misses is the primary topic discussed in this chapter.

There are several schemes to deal with data cache misses, this chapter discusses three

schemes:

Blocking: In this scheme, the processor is blocked by halting the processor clock while

the required data are fetched from the second level of the memory hierarchy. After

the cache contents are updated, the clock is again applied to the processor. From

the processor's point of view, the cache miss has the same latency as a cache hit.

From the system users' point of view, however, each cache miss adds TMISS cycles

of execution.

Limited blocking: In this scheme, when a miss occurs, any subsequent access to the cache

is frozen, as in the blocking scheme. The processor clock is not halted. Rather, the

processor is allowed to continue to execute other instructions that do not access

memory. If su�cient independent instructions are ready to execute, this scheme

can e�ectively hide the performance impact of the cache miss. Limited blocking

was suggested in [47].

Non-blocking: In this scheme, the cache is modi�ed to update its contents on a cache miss

while it continues to service requests for data that are present in the cache. Such
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a design is termed a non-blocking cache of degree n if it can service n outstanding

misses while continuing to service requests from the processor. When greater than

n misses are outstanding, this scheme reverts to the limited blocking scheme. Non-

blocking caches were introduced in [58].

Store instructions can be dealt with by writing the stored addresses to a store bu�er

that decouples the processor from the behavior of the stored operations [47]. When the

Store operations are ultimately performed, if they generate a miss, then one of the three

schemes above must be used. The processor is assumed to have a store bu�er.

5.1.1 Blocking and limited-blocking cache designs

The modi�cations to the processor that must be performed to support the blocking

scheme are minimal. The primary modi�cation is to supply a separate clock to the

processor from the clock that is used to advance the state of the cache. When a miss is

detected in the cache, the clock to the processor is held low until the miss is repaired.

If the processor contains states that involve dynamic memory elements, refresh signals

must be provided to retain memory state.

A limited-blocking cache design does not require separate clocking schemes. These

designs require 
ow control between the instruction scheduling stage of the processor and

the cache controller. When a miss occurs, the cache controller signals the processor to

halt cache accessing. This can be done by halting the advance of the Load and Store

function unit pipelines. If the scheduling window is implemented via reservation stations,
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once the Load/Store reservation stations are full, instruction issuing is halted and the

processor reverts to the blocking scheme. After the miss is repaired, the cache signals the

processor to resume. The Load and Store function unit pipelines then resume and begin

making requests of the cache. The �rst request is to retry the missing access, which now

�nds the block present in the cache and results in a hit. The advantage of the limited-

blocking scheme over the blocking scheme is that the processor can continue to execute

non-memory-accessing instructions while the cache is repairing the missing block.

5.1.2 Non-blocking cache designs

The most complicated of the three schemes is the non-blocking scheme. A schematic of

the design of a non-blocking cache is presented in Figure 5.1. The steps in the operation of

tag data

... ...

Pending miss queue

system bus memorymiss repair unit

... ... ...

valid pend

hit?

address

(1)

(2)

(3)

(4)

write
replacement
buffer

from
processor

to processor

from
processor

to processor

Figure 5.1: Schematic of the design of a non-blocking cache.
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the cache are labeled (1) through (4) to the left edge of the �gure. In Step (1), the address

is transmitted to the cache from the instruction scheduling stage. The corresponding

hit/miss signal is returned to the instruction scheduling stage in Step (2). Typically

this can be done within one cycle. In the case of a hit, the data are fetched from the

cache normally. In the case of a miss, the address is placed on the pending miss queue

(Step 3). This structure is an FIFO queue containing address entries to fetch from the

second level of the memory system. The write replacement bu�er is used to hold contents

of replaced dirty blocks in the cache. The miss repair unit performs the task of fetching

the data from the second-level memory and writing it into the cache. Requests in the

pending miss queue and the write replacement bu�er are correctly ordered by the miss

repair unit . This is done by use of a hardware timestamp generated by a recirculating

counter. The miss repair unit inspects the requests at the top of the pending miss queue

and the write replacement bu�er and performs the earlier of the two requests. When the

repair of the missing cache block is completed, the miss repair unit signals the instruction

scheduling stage of the processor (Step (4)).

It is possible to design complicated hardware to combine entries in the pending miss

queue with redundant entries in the write replacement bu�er. Such hardware complicates

the cache control logic of an already complicated cache design. The designs simulated in

this chapter do not employ such combining hardware. These simpli�cations do not deter

the performance of the non-blocking scheme, as is demonstrated in the experimental



140

results in Section 5.2. The state model for a pending miss in this design of a non-

blocking cache is shown in Figure 5.2. This diagram illustrates that the state transitions

of a pending miss are regular and uncomplicated.

miss

pending miss queue

repair

update
cache

signal
processor

set pend bit
clear
pend bit

Figure 5.2: State model for a pending miss request.

In addition to the address being fetched from the second-level memory, the pending

miss queue entries contain the name (e.g., Tomasulo-style tag) of the register being loaded

for Load operations [58]. The load operation has an additional data dependence added

to it. When the miss repair completes, this dependence is resolved and the load can �re.

For Store operations, no register name is reserved in the pending miss queue. Instead,

an index of an entry in the store bu�er is retained. When the miss repair completes for

the store, the store bu�er contents at the corresponding index are used to update the

status of the cache. (An alternative would be to implement a sectored cache with sector

size equal to word size.)

The replacement policy of the cache can be altered if missed blocks are not allocated

entries in the cache while they are being repaired. For example, least-recently used re-

placement can degenerate into random replacement. Instead of constructing complicated

hardware to enforce the correct replacement scheme, the missing data are allocated a
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cache block when the miss occurs. This is consistent with the philosophy stated previ-

ously of simplifying the cache control logic. To indicate that this block does not contain

data, the block is marked as pending by use of an additional valid bit called the pend bit.

5.1.3 Performance metrics

The performance metrics for the study of processor/memory interaction are taken

from the sets of performance metrics of the processor and of the memory system. The miss

ratio, �, is used as the memory system metric. The miss ratio for the processor/memory

combination is de�ned to be ��. It is assumed that � = �� since the three schemes

presented do not reorder memory accesses. The processor's performance is measured

using the instructions per cycle of the processor/memory combination, represented as

IPC�. The ratio of the the prototype processor IPC to IPC� is used to measure the

degree of performance degradation due to the processor/memory interaction.

5.2 Empirical Evidence of Processor/Memory Interaction

This section addresses both the issue of the interaction between the processor/memory

system prototypes and the relative performance of the three interface schemes. It is

possible to comment on the performance of the interface schemes by using an unlimited-

resource processor with a particular �rst-level cache prototype. The processor resource

usage is used to derive prototypes by application of the techniques of the previous chapter.

Comparison of this processor prototype to the those derived assuming no cache miss
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penalty serves as a method of evauating the e�ects of processor/memory interaction on

prototype selection.

This section uses members of the SPEC89 benchmark set as inputs to a combined

processor/data cache simulation. The blocking scheme does not require special simulation

at all (as is shown below). The other two schemes do, however, require special simulation.

The simulation algorithm used for these schemes is a variant of the queue-based algorithm

presented in Chapter 4. The modi�cations are not discussed in detail here. The changes

involve the addition of a traditional cache simulator to the window queue scan. This

simulator is invoked for every Load/Store instruction in the instruction trace. Instructions

that cause a miss are dealt with in accordance to the scheme being simulated.

Chapters 3 and 4 discuss methods for simulation based on statistical sampling. For

the uniprogramming case, sampling for traditional cache simulation is di�cult to apply

in a cycle-by-cycle simulation such as is used here. The di�culty is due to the state repair

problem. The hit/miss status of each reference to the cache must be known exactly. Since

the system is under a multiprogramming load, an average context switching interval is

assumed. It was suggested by Laha et al. [5]. that the sample size be set equal to the

average context switching interval. The cache is then assumed to be 
ushed between

each sample of instructions. This approach is used here. The multiprogramming caches

presented in Tables 3.6 and 3.7 of Chapter 3 are used to derive prototypes for the memory

system for each benchmark. The memory systems are selected using the criteria � � �̂,

for �̂ = 0:05 and �̂ = 0:10.
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5.2.1 Performance of blocking scheme

The performance of the blocking scheme can be re-created using a simple analytic

model without the need for additional simulation. Recall that TMISS was de�ned to be

the number of cycles needed to repair a cache miss. From Chapter 3, N is the total

number of addresses referenced. In Section 4.1.3, NI was de�ned to be the total number

of instructions executed. The additional cycles wasted due to blocking is � � (N TMISS).

Therefore, the instruction per cycle metric for blocking is

IPC� =
NI

TTOT + � � (N TMISS)
: (5.1)

It is clear that since � = ��, the data cache prototype need not change when using

the blocking scheme. As discussed in Section 5.1, since the clock is halted when a cache

miss occurs, a cache miss has the same latency as a cache hit from the perspective of the

processor. The resource usage of the processor and, therefore, the processor prototype,

is not changed from the ideal case for the blocking scheme.

The performance of the unlimited-resource processors with the �̂ = 0:05 and �̂ = 0:10

data cache prototypes demonstrates the problems with the blocking schemes. Tables 5.1

presents the IPC� for the benchmarks for issue rates of two, four and eight instructions

per cycle, data cache prototypes �̂ = 0:05 and 0:10, TMISS = 10. Table 5.2 presents

similar information for TMISS = 20. The geometric mean of IPC� across all benchmarks

is also presented in both tables. From the tables, the best mean performance is for

TMISS = 10, issue rate two, �̂ = 0:05, the least-demanding situation. Even in this case,

the blocking scheme's performance is 79% of that for the perfect case of no cache misses
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Table 5.1: IPC� (and percentage of perfect IPC) for blocking scheme, issue rates of two,

four and eight instructions per cycle, data cache prototypes �̂ = 0:05 and 0:10,

TMISS = 10.

Bench- issue rate = 2 issue rate = 4 issue rate = 8

mark �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10

doduc 1.43 79% 1.21 67% 2.16 69% 1.69 54% 2.85 59% 2.10 44%
eqntott 1.37 73% 1.25 66% 2.06 59% 1.80 52% 2.75 46% 2.30 38%
espresso 1.21 76% 1.14 72% 1.63 68% 1.50 62% 1.90 62% 1.73 57%

gcc 1.17 79% 1.11 74% 1.50 73% 1.39 67% 1.69 70% 1.55 64%
matrix300 * 1.43 72% * 2.22 56% * 3.06 40%

xlisp 0.86 79% 0.83 76% 0.98 77% 0.94 73% 1.04 75% 1.00 72%

GMean 1.19 77% 1.10 71% 1.61 69% 1.43 61% 1.92 62% 1.67 54%

(* data cache design criteria could not be met)

Table 5.2: IPC� (and percentage of perfect IPC) for blocking scheme, issue rates of two,
four and eight instructions per cycle, data cache prototypes �̂ = 0:05 and 0:10,
TMISS = 20.

Bench- issue rate = 2 issue rate = 4 issue rate = 8

mark �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10

doduc 1.19 66% 0.91 51% 1.65 53% 1.16 37% 2.02 42% 1.34 28%

eqntott 1.08 57% 0.94 50% 1.47 42% 1.21 35% 1.78 30% 1.42 24%
espresso 0.97 61% 0.88 55% 1.23 51% 1.09 45% 1.37 45% 1.20 39%

gcc 0.97 65% 0.88 59% 1.18 57% 1.05 51% 1.29 54% 1.14 47%

matrix300 * 1.12 56% * 1.55 39% * 1.92 25%
xlisp 0.71 65% 0.67 61% 0.79 62% 0.74 58% 0.83 60% 0.78 56%

GMean 0.97 63% 0.87 56% 1.23 53% 1.04 45% 1.39 45% 1.15 37%

(* data cache design criteria could not be met)
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for some benchmarks (doduc, gcc and xlisp) and 77% on average. The performance

degrades considerably at high issue rates: 38% for eqntott, issue rate eight, TMISS = 10

and 24% for the same benchmark and issue rate when TMISS = 20.

Clearly the blocking scheme has unacceptable performance. The impact of this ob-

servation is that although the blocking scheme has ideal processor/memory interaction,

a desirable quality for combining prototyped subsystems, its performance is marginally

acceptable for issue rates of two instructions per cycle and unacceptable for issue rates

of four and eight instructions per cycle.

5.2.2 Performance of limited-blocking scheme

The performance results for the limited-blocking scheme used with a processor having

unlimited resources, issue rates of two, four and eight instructions per cycle, data cache

prototypes �̂ = 0:05 and 0:10, and TMISS = 10 are presented in Table 5.3. Similar results

for TMISS = 20 are presented in Table 5.4. The limited-blocking scheme has acceptable

performances for issue rates of two and four instructions per cycle when TMISS = 10

(Table 5.3). For the �̂ = 0:05 data cache prototypes, the mean performance is 77% and

69% of the perfect case for issue rates two and four instructions per cycle, respectively.

The performance is poor for an issue rate of eight instructions per cycle when TMISS = 10.

The performance for TMISS = 20 is marginal for a low issue rate of two instructions per

cycle (Table 5.4).
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Table 5.3: IPC� (and percentage of perfect IPC) for limited-blocking scheme, issue rates

of two, four and eight instructions per cycle, data cache prototypes �̂ = 0:05

and 0:10, TMISS = 10.

Bench- issue rate = 2 issue rate = 4 issue rate = 8

mark �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10

doduc 1.67 93% 1.62 90% 2.58 83% 2.20 71% 3.37 70% 2.51 53%

eqntott 1.72 91% 1.59 85% 2.80 80% 2.35 68% 3.88 65% 3.02 50%
espresso 1.41 89% 1.36 86% 1.87 78% 1.76 73% 2.13 70% 1.95 64%

gcc 1.33 89% 1.29 87% 1.70 83% 1.61 78% 1.87 78% 1.74 72%
matrix300 * 1.94 97% * 3.49 89% * 4.05 53%

xlisp 0.93 85% 0.90 83% 1.02 80% 0.99 77% 1.08 78% 1.04 75%

GMean 1.38 90% 1.32 86% 1.88 81% 1.71 73% 2.24 72% 1.93 62%

(* data cache design criteria could not be met)

Table 5.4: IPC� (and percentage of perfect IPC) for limited-blocking scheme, issue rates
of two, four and eight instructions per cycle, data cache prototypes �̂ = 0:05

and 0:10, TMISS = 20.

Bench- issue rate = 2 issue rate = 4 issue rate = 8

mark �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10

doduc 1.44 80% 1.21 67% 1.95 63% 1.39 45% 2.31 48% 1.49 31%

eqntott 1.48 79% 1.23 65% 2.06 59% 1.58 45% 2.30 38% 1.73 29%

espresso 1.16 73% 1.07 67% 1.40 58% 1.24 51% 1.51 50% 1.32 43%
gcc 1.13 76% 1.05 70% 1.35 34% 1.21 31% 1.43 59% 1.27 53%

matrix300 * 1.76 88% * 2.05 52% * 2.05 27%
xlisp 0.76 70% 0.72 66% 0.82 64% 0.77 60% 0.85 61% 0.80 58%

GMean 1.16 75% 1.04 68% 1.44 62% 1.20 52% 1.58 51% 1.28 41%

(* data cache design criteria could not be met)
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In general, the performance of limited-blocking for TMISS = 10 is su�cient to warrant

its use for situations where TMISS = 10 and the issue rate is either two or four instructions

per cycle.

Unlike the blocking scheme, the limited-blocking scheme alters the processor resource

usage in the presence of cache misses. This e�ect can alter the assumptions used for

processor prototype selection. Let Pz be the processor prototype selected assuming per-

fect processor/memory interaction (i.e., perfect cache) for some criterion, z. Figures 5.3

(TMISS = 10) and 5.4 (TMISS = 20) present the geometric mean of the IPC metric for the

prototypes of Chapter 4, z = 0:99, 0.95, and 0.80, when the prototypes are interconnected

with memory using the limited-blocking scheme. Also present in the �gures are the IPC

values for the unlimited resource cases from Tables 5.3 and 5.4. The �gures demonstrate

that prototype performance continues to be a function of prototype selection criteria after

the processor prototype is connected to the memory system. Comparison of the �gures

to Figure 4.10 of Chapter 4 (page 120) reveals that the di�erence between prototype per-

formance for di�ering values of z is less dramatic in the presence of cache misses using

the limited-blocking scheme than it is in the case of perfect cache performance. Increasing

the value of z translates into increased performance, yet this additional performance is

now much less evident.

It is possible to use the processor resource usage of the simulations of the limited-

blocking scheme to select new processor prototypes. Table 5.5 presents the di�erence
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Figure 5.3: Geometric mean of IPC for prototypes z = 0:99, 0.95, and 0.80 compared to
unlimited-resource IPC for limited-blocking scheme, �̂ = 0:05, TMISS = 10.
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unlimited-resource IPC for limited-blocking scheme, �̂ = 0:05, TMISS = 20.
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between the prototype designs of the perfect cache and this limited-blocking scheme pro-

cessor prototype for z = 0:99, TMISS = 10, �̂ = 0:05, and an issue rate of two instructions

per cycle. Negative values in the table indicate that the limited-blocking scheme proto-

type requires less resources than the original (perfect cache) prototype. Negative values

are favorable, indicating that the original prototype has su�cient resources to satisfy

the benchmark requirements after the processor and memory system are interconnected.

Zero or negative values occur in Table 5.5 for all benchmarks except for xlisp that requires

one additional IAlu function unit when interconnected. This result is much stronger for

determining processor/memory interaction than the comparison of the performance of

Figures 5.3 and 5.4 to Figure 4.10 of Chapter 4. It indicates that the techniques of

Chapter 4 are valid for this particular set of parameters after the prototype is used in

the presence of real cache misses.

The interaction between processor and memory is su�cient to invalidate the proto-

types selected in Chapter 4 when the performance of the interconnection scheme is low.

Consider the case of an issue rate of four instructions per cycle, TMISS = 10, that has the

marginally acceptable performance shown in Table 5.3. Table 5.6 presents the di�erence

between the prototype designs of the perfect cache and the limited-blocking scheme pro-

cessor prototype for z = 0:99, TMISS = 10, �̂ = 0:05 for an issue rate of four instructions

per cycle. Positive values in this table indicate that the original processor prototype did

not supply su�cient resources. These occur for all benchmarks in the case of Load func-

tion units. The range of di�erences in the function unit number of the prototype designs
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is presented graphically for all three issue rates in Figure 5.5 for the same parameters as

Tables 5.5 and 5.6 (z = 0:99, TMISS = 10, and �̂ = 0:05). Notice that when the issue rate

is increased to eight instructions per cycle, the extra number of needed function units

can be as high as nine for some benchmarks. These results suggest that the prototype

methods are not universally valid when the limited-blocking scheme is used.

Table 5.5: Di�erence between prototype designs of perfect cache and limited-blocking

scheme, z = 0:99, TMISS = 10, �̂ = 0:05, issue rate of two instructions per
cycle.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc -1 0 0 -2 -1 -1 -1
eqntott -1 0 0 -1 0 -1 -2
espresso -3 0 0 -2 0 -2 0

gcc -2 0 0 -2 -1 -1 -1
xlisp 1 0 0 -1 0 0 0

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc -2 -1 -2 0 -1 -1 0
eqntott 0 0 0 0 0 -1 -1
espresso -1 0 0 0 0 -1 -1

gcc -2 0 0 0 0 0 -1

xlisp 0 0 0 0 0 0 0



151

Table 5.6: Di�erence between prototype designs of perfect cache and limited-blocking

scheme, z = 0:99, TMISS = 10, �̂ = 0:05, issue rate of four instructions

per cycle.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc -1 0 0 -2 -1 0 3

eqntott 3 0 0 0 0 -1 5

espresso -2 0 0 -2 0 -1 4

gcc 0 0 0 -1 0 -1 1

xlisp 1 0 0 -1 0 0 1
Store FPAdd FPMul FPDiv FPCvt Branch Test

doduc -1 0 0 0 0 -1 0
eqntott 0 0 0 0 0 2 2
espresso -1 0 0 0 0 -1 -1

gcc -2 0 0 0 0 0 -1
xlisp 0 0 0 0 0 0 0
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Figure 5.5: Range of di�erences between prototypes for limited-blocking scheme, z =

0:99, TMISS = 10, �̂ = 0:05, issue rates of two, four and eight instructions

per cycle.
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5.2.3 Performance of non-blocking

The non-blocking scheme for addressing processor/memory interaction is the most-

complicated of the three schemes. This complex hardware is justi�ed by the increased

performance that the non-blocking scheme provides. This performance is shown by simu-

lating unlimited processor resources for each benchmark with issue rates of two, four, and

eight instructions per cycle. The results are presented for TMISS = 10 and TMISS = 20

in Tables 5.7 and 5.8, respectively. The tables demonstrate that the non-blocking scheme

can achieve approximately 79%{93% of the no cache miss performance with unlimited

resources. The worst-case performance of 79% occurs in the most-demanding case of

�̂ = 0:10, an issue rate of eight instructions per cycle and a cache miss penalty of

TMISS = 20. These results suggest that this scheme is required for systems that issue

many instructions per cycle or have a high miss penalty.

The processor resource usage of the simulations of the non-blocking scheme is used

to select new processor prototypes. The number of entries in the pending miss queue

is also prototyped using the methods of Chapter 4. Figures 5.6 (TMISS = 10) and 5.7

(TMISS = 20) present the geometric mean of the IPC for the prototypes of Chapter 4 for

values of z = 0:99, 0.95, and 0.80. Also present in the �gures are the IPC values for the

unlimited resource case from Tables 5.7 and 5.8. These can be compared with Figure 4.10

of Chapter 4 to reveal similar relative di�erences between prototype performance across

values of z. Stronger results are presented in Tables 5.9{5.11 for values of z = 0:99,

TMISS = 10 and 20, and �̂ = 0:05 and 0.10. These four tables are for the most-demanding



153

Table 5.7: IPC� (and percentage of perfect IPC) for non-blocking scheme, issue rates of

two, four and eight instructions per cycle, data cache prototypes �̂ = 0:05 and

0:10, TMISS = 10.

Bench- issue rate = 2 issue rate = 4 issue rate = 8

mark �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10

doduc 1.77 98% 1.74 97% 3.02 97% 2.96 95% 4.59 95% 4.43 92%

eqntott 1.87 99% 1.86 99% 3.41 98% 3.39 97% 5.80 97% 5.74 96%
espresso 1.50 94% 1.46 92% 2.19 91% 2.12 88% 2.66 87% 2.55 84%

gcc 1.39 93% 1.36 91% 1.86 90% 1.81 88% 2.14 89% 2.07 86%
matrix300 * 1.98 99% * 3.89 99% * 7.47 98%

xlisp 0.95 87% 0.94 86% 1.09 85% 1.07 84% 1.17 84% 1.15 83%

GMean 1.46 95% 1.43 93% 2.15 92% 2.10 90% 2.82 90% 2.74 88%

(* data cache design criteria could not be met)

Table 5.8: IPC� (and percentage of perfect IPC) for non-blocking scheme, issue rates of
two, four and eight instructions per cycle, data cache prototypes �̂ = 0:05 and

0:10, TMISS = 20.

Bench- issue rate = 2 issue rate = 4 issue rate = 8

mark �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10 �̂ = 0:05 �̂ = 0:10

doduc 1.74 97% 1.70 94% 2.93 94% 2.82 90% 4.39 91% 4.13 86%

eqntott 1.85 98% 1.83 97% 3.35 96% 3.31 95% 5.62 94% 5.53 92%

espresso 1.41 89% 1.35 85% 1.99 83% 1.87 78% 2.37 78% 2.20 72%
gcc 1.30 87% 1.26 85% 1.71 83% 1.63 79% 1.94 80% 1.83 76%

matrix300 * 1.97 99% * 3.86 98% * 7.35 97%
xlisp 0.85 78% 0.83 76% 0.97 76% 0.94 73% 1.03 74% 1.00 72%

GMean 1.38 90% 1.34 87% 2.01 86% 1.93 83% 2.59 83% 2.47 79%

(* data cache design criteria could not be met)
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issue rate of eight instructions per cycle. The range of these results is also presented

graphically for z = 0:99 and �̂ = 0:05 in Figures 5.8 (TMISS = 10) and 5.9 (TMISS = 10).

The tables and �gures display little or no di�erences between the prototypes, with the

exception of the eqntott benchmark that requires two additional IAlu and AddrC function

units and �ve additional Load function units. With this exception, the results validate

that the non-blocking scheme has very low processor/memory interaction and very high

performance.
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Figure 5.6: Geometric mean of IPC for prototypes z = 0:99, 0.95, and 0.80 compared to

unlimited-resource IPC for non-blocking scheme, �̂ = 0:05, TMISS = 10.
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Figure 5.7: Geometric mean of IPC for prototypes z = 0:99, 0.95, and 0.80 compared to
unlimited-resource IPC for non-blocking scheme, �̂ = 0:05, TMISS = 20.

Table 5.9: Di�erence between prototype designs of perfect cache and non-blocking scheme,
z = 0:99, TMISS = 10, �̂ = 0:05, issue rate of eight instructions per cycle.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 0 0 0 0 0 0 1

eqntott 2 0 0 2 0 0 5
espresso -1 0 0 0 0 0 1

gcc 0 0 0 0 0 0 0

xlisp 1 0 0 0 0 0 0

Store FPAdd FPMul FPDiv FPCvt Branch Test

doduc 0 1 1 0 0 -1 0

eqntott 1 0 0 0 0 0 0
espresso 0 0 0 0 0 -1 0

gcc 0 0 0 0 0 0 0

xlisp 0 0 0 0 0 0 0
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Table 5.10: Di�erence between prototype designs of perfect cache and non-blocking

scheme, z = 0:99, TMISS = 20, �̂ = 0:05, issue rate of eight instructions

per cycle.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 0 0 0 0 0 0 1

eqntott 2 0 0 2 0 0 5

espresso -1 0 0 0 0 0 0

gcc 0 0 0 0 0 0 0

xlisp 0 0 0 0 0 0 0
Store FPAdd FPMul FPDiv FPCvt Branch Test

doduc 0 1 1 0 0 -1 0
eqntott 0 0 0 0 0 0 0
espresso 0 0 0 0 0 -1 -1

gcc -1 0 0 0 0 0 -1
xlisp 0 0 0 0 0 0 0

Table 5.11: Di�erence between prototype designs of perfect cache and non-blocking

scheme, z = 0:99, TMISS = 10, �̂ = 0:10, issue rate of eight instructions
per cycle.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 0 0 0 0 0 0 1
eqntott 2 0 0 2 0 0 5

espresso -1 0 0 0 0 0 1
gcc 0 0 0 0 0 0 0

xlisp 1 0 0 0 0 0 0

matrix300 0 1 0 0 0 0 0
Store FPAdd FPMul FPDiv FPCvt Branch Test

doduc 0 1 1 0 0 -1 0
eqntott 0 0 0 0 0 0 0
espresso 0 0 0 0 0 -1 0

gcc 0 0 0 0 0 0 0
xlisp 0 0 0 0 0 0 0

matrix300 0 0 0 0 0 -1 0



157

Table 5.12: Di�erence between prototype designs of perfect cache and non-blocking

scheme, z = 0:99, TMISS = 20, �̂ = 0:10, issue rate of eight instructions

per cycle.

Benchmark IAlu IMul IDiv AddrC Move Shift Load

doduc 0 0 0 0 0 0 1

eqntott 2 0 0 2 0 0 5

espresso -1 0 0 -1 0 -1 0

gcc 0 0 0 0 0 0 0

xlisp 0 0 0 0 0 0 0

matrix300 0 1 0 0 0 0 0

Store FPAdd FPMul FPDiv FPCvt Branch Test
doduc 0 1 1 0 0 -1 0
eqntott 0 0 0 0 0 0 0

espresso -1 0 0 0 0 -1 -1
gcc -1 0 0 0 0 0 -1

xlisp 0 0 0 0 0 0 0
matrix300 0 0 0 0 0 -1 0
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Figure 5.8: Range of di�erences between prototypes for non-blocking scheme, z = 0:99,
TMISS = 10, �̂ = 0:10, and issue rates of two, four and eight instructions per

cycle.
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Figure 5.9: Range of di�erences between prototypes for non-blocking scheme, z = 0:99,

TMISS = 20, �̂ = 0:10, issue rates of two, four and eight instructions per
cycle.
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5.3 Summary of Processor/Memory Interaction

Earlier chapters of this thesis assumed that the processor and memory components

could be designed independently and then combined without the need for re-design. This

chapter presented and evaluated three possible architectural schemes for interconnecting

the processor and the memory system: blocking, limited-blocking, and non-blocking. The

blocking scheme had perfect processor/memory interaction but low performance. Of the

other two schemes, when the schemes possessed high performance, the processor/memory

interaction did not alter the z = 0:99 processor prototypes.

The blocking scheme is appealing because the processor state is unchanged by a cache

miss. It was found that the scheme had the worst performance of the three schemes,

however. It is suggested that this scheme only be used in designs that have �̂ � 5%,

TMISS � 10 cycles and issue rates of two instructions per cycle.

The limited-blocking scheme was evaluated and found to have high performance in

some situations, speci�cally, when TMISS = 10 cycles and issue rates of two or four

instructions per cycle. The interaction for the low issue rate of two instructions per cycle

cases was not su�cient to warrant changes in processor prototype design. This was no

longer true for the issue rate of four instructions per cycle where the processor prototypes

of Chapter 4 became invalid.

The highest-performance scheme was found to be the non-blocking scheme, having

IPC close to the ideal (i.e., no cache-miss) performance. This scheme also hid proces-

sor/memory interaction well. The z = 0:99 processor prototypes performed nearly as
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well as the unlimited-resource case for all benchmarks. Additionally, the prototypes de-

rived from the non-blocking simulations were nearly identical to the original prototypes

derived assuming perfect cache performance.

The geometric means of IPC� across all benchmarks for the three schemes and the

perfect case (no cache miss penalty) are shown in Figures 5.10 (TMISS = 10) and 5.11

(TMISS = 20) for the �̂ = 0:10 data cache prototypes. These two graphs show the relative
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Figure 5.10: The geometric mean of IPC� and IPC for perfect case for issue rates two,
four and eight instructions per cycle, TMISS = 10.

ordering between the schemes from low to high performance as: blocking, limited-blocking,

and non-blocking. The data demonstrate that su�cient design options exist to justify

designing the processor and the memory separately and then combining them without

redesign.
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6. CONCLUSIONS

This thesis has addressed the problem of improving the design of modern computers

by improvement of the design process. The current design process is over-taxed due to

the size and diversity of realistic workload models. A method was suggested to improve

the design process by deriving prototype systems from workloads. This idea is similar in

philosophy to synthesis techniques from the �eld of computer-aided design. What makes

this thesis novel is that it has developed a set of techniques to perform synthesis at an

architectural level. This thesis has concentrated on the processor and memory compo-

nents of workstations, although the overall philosophy is applicable to other components

as well.

Techniques developed for prototyping cache-based memory hierarchies centered around

developing fast and accurate techniques to evaluate a large space of possible cache de-

signs. Single-pass cache simulation methods were suggested as the starting point for

these techniques and the recurrence/con
ict version of the single-pass method was de-

rived. The speed of this technique was improved via adaptation of statistical sampling
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from traditional cache simulation methods. Two such adaptations were suggested and

compared. The �ll-
ush technique was evaluated yet found to have low accuracy. To

correct this problem, a new technique that exploits the properties of single-pass meth-

ods was derived. This technique was found to produce results of higher accuracy at the

expense of some additional simulation time.

Multiprogramming e�ects on cache design selection were addressed by developing a

model of involuntary context switching e�ects that is independent of the intensity of

context switching. A single-pass method based on the model that also includes the

measurement of voluntary context switch events (i.e., system calls) was developed and

its behavior was shown to be consistent with the model.

The single-pass techniques were combined in a process used to select prototypes from

the resultant space of designs. This uni�ed approach was demonstrated with the explo-

ration of 324 potential data cache designs for the uniprogramming case and an additional

324 designs under the assumption of a multiprogramming workload.

The processor component of a workstation was discussed and decomposed using a

�ve-stage model. A classi�cation was suggested inspired by Flynn notation, and the

member of the classi�cation with the highest potential performance, FOCO-class proces-

sors, was discussed in detail. Two simulation algorithms were derived for the FOCO-class

processors. One method is based on three queues that correspond closely to the actual

hardware design. The second method is event driven and derives its results directly from

the instruction trace.
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Statistical sampling was further adapted from traditional cache simulation and applied

to the processor simulation algorithms. This technique was found to be highly accurate

with relative errors of approximately 10% for the IPC metric when using 40 samples of

10,000 instructions each.

Two methods were proposed to derive prototypes of the processor. One method keeps

constant parameters such as instruction issue rate and function unit latency but leaves

the number of function units unlimited during simulation. Prototype selection criteria

based on the cumulative resource usage distribution function were evaluated empirically.

It was found that these criteria produce prototypes having performance that is bounded

by the ideal performance, con�rming their usefulness for processor prototyping.

The case in which the function unit latencies are variable was investigated and formu-

lated as a general optimization problem. A version of simulated annealing was applied

to this problem and several example annealing schedules were shown to demonstrate the

technique.

The interaction between prototypes was investigated via simulation by studying three

schemes for coupling the processor and memory components together. One scheme,

blocking, has the desirable quality of not requiring alteration of the prototype designs.

However, the blocking scheme also had the lowest performance for FOCO-class proces-

sors. Two additional techniques were evaluated, limited-blocking and non-blocking. The

limited-blocking scheme was found to perform near the ideal for previously selected pro-

totypes for issue rates of two and four instructions per cycle and a miss penalty of 10
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cycles. Similar results were found for the non-blocking scheme, which also had the high-

est performance of the three schemes. In general, it was concluded that su�cient design

options existed to justify designing the processor and the memory separately and then

combining them without redesign.
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