
c
Copyright by William Yu-Wei Chen, Jr., 1993

DATA PRELOAD FOR SUPERSCALAR AND VLIW PROCESSORS

BY

WILLIAM YU-WEI CHEN, JR.

B.S., The Ohio State University, 1988
M.S., University of Illinois at Urbana-Champaign, 1991

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1993

Urbana, Illinois

DATA PRELOAD FOR SUPERSCALAR AND VLIW PROCESSORS

William Yu-Wei Chen, Jr., Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1993

Wen-mei W. Hwu, Advisor

Processor design techniques, such as pipelining, superscalar, and VLIW, have dramatically

decreased the average number of clock cycles per instruction. As a result, each execution cycle

has become more signi�cant to overall system performance. To maximize the e�ectiveness of

each cycle, one must expose instruction-level parallelism and employ memory latency tolerant

techniques. However, without special architecture support, a superscalar compiler cannot e�ec-

tively accomplish these two tasks in the presence of control and memory access dependences.

Preloading is a class of architectural support which allows memory reads to be performed

early in spite of potential violation of control and memory access dependences. With preload

support, a superscalar compiler can perform more aggressive code reordering to provide in-

creased tolerance of cache and memory access latencies and increasing instruction-level par-

allelism. This thesis discusses the architectural features and compiler support required to

e�ectively utilize preload instructions to increase the overall system performance.

The �rst hardware support is preload register update, a data preload support for load schedul-

ing to reduce �rst-level cache hit latency. Preload register update keeps the load destination

registers coherent when load instructions are moved past store instructions that reference the

same location. With this addition, superscalar processors can more e�ectively tolerate longer

data access latencies.

The second hardware support is memory con
ict bu�er. Memory con
ict bu�er extends

preload register update support by allowing uses of the load to move above ambiguous stores.

Correct program execution is maintained using the memory con
ict bu�er and repair code

iii

provided by the compiler. With this addition, substantial speedup over an aggressive code

scheduling model is achieved for a set of control intensive nonnumerical programs.

The last hardware support is preload bu�er. Large data sets and slow memory sub-systems

result in unacceptable performance for numerical programs. Preload bu�er allows performing

loads early while eliminating problems with cache pollution and extended register live ranges.

Adding the prestore bu�er allows loads to be scheduled in the presence of ambiguous stores.

Preload bu�er support in addition to cache prefetching support is shown to achieve better

performance than cache prefetching alone for a set of benchmarks. In all cases, preloading

decreases the bus tra�c and reduces the miss rate when compared with no prefetching or cache

prefetching.

iv

ACKNOWLEDGMENTS

Discussions with Professor Wen-mei Hwu have always given me insight into the problems

I am attempting to solve. He not only guided me through my research di�culties, but his

personal advice has also nurtured and helped me to grow as an individual. At various times,

Sabrina Hwu's laughter and great cooking helped tremendously. I thank them both for putting

up with me for �ve years.

Of my colleagues, Scott Mahlke, was most helpful in giving suggestions, most of which were

useful. Visitor and scholar rolled into one, Takuzo Kiyohara's two short years of stay advanced

my research greatly. Ex-colleague, now professor at the University of South Carolina, Tom

Conte, was alway willing to help out. I am grateful for his e�ort at setting up interviews for me

when I had no job. Roger Bringmann, Dave Gallagher, John Gyllenhaal, and Rich Hank were

very helpful in setting up the simulation environment for me. Sadun Anik, Grant Haab, and

Nancy Warter were invaluable throughout the years. I extend gratitude to Jaushin Lee and his

wife Belinda for helping me during times of personal need.

I wish to thank my friend Jackie Liu. For everything she did, I will always remember.

Lastly, but certainly not the least, I wish to extend my gratitude to my parents. They made

me wake up early every Monday to call home. Certainly, that has always made Monday the

longest and most fruitful working day.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION : 1
1.1 Motivation : 1
1.2 Thesis Highlights : 2
1.3 Organization of Thesis : 4

2 MEMORY DEPENDENCE AND INSTRUCTION SCHEDULING : : : : : : : : : : : 6
2.1 Current Scheduling Paradigm : 6

2.1.1 The di�culties encountered by instruction scheduling : : : : : : : : : : : 7
2.1.2 Memory dependence removal : 8

2.2 Scheduling with Data Preloading : 9
2.3 Previous Work : 10

2.3.1 Hardware-assisted alias resolution : 10
2.3.2 Dynamic memory disambiguation : 11
2.3.3 Dynamic scheduling : 11
2.3.4 Nonblocking cache : 11
2.3.5 Data cache prefetching : 12
2.3.6 Data prefetch bu�er : 13

3 INSTRUMENTATION AND SIMULATION METHODS : : : : : : : : : : : : : : : : 15
3.1 Trace Collection : 15

3.1.1 Merging trace with MCODE : 17
3.1.2 Merging trace with instruction templates : : : : : : : : : : : : : : : : : : 18

3.2 Estimating Execution Cycles with Branch Pro�le : : : : : : : : : : : : : : : : : : 19
3.3 Estimating Execution Cycles Using a Simulator : : : : : : : : : : : : : : : : : : : 21

4 PRELOAD REGISTER UPDATE : 24
4.1 Implementing Preload Register Update : 25

4.1.1 Overview of the full-scale design : 25
4.1.2 Implementation timing and pipeline stages : : : : : : : : : : : : : : : : : 28
4.1.3 Committing preload data : 30
4.1.4 An example of preload register update operation : : : : : : : : : : : : : : 32
4.1.5 Subset design of preload register update : : : : : : : : : : : : : : : : : : : 32

4.2 Compiler Support for Preload Register Update : : : : : : : : : : : : : : : : : : : 36
4.2.1 Preload scheduling : 36
4.2.2 Data register issues : 38

4.3 Experimental Evaluation of Preload Register Update : : : : : : : : : : : : : : : : 40
4.3.1 Evaluation methodology : 40
4.3.2 Base architecture performance : 41
4.3.3 Performance evaluation of preload register update : : : : : : : : : : : : : 42

vi

4.4 Summary of Preload Register Update : 47

5 MEMORY CONFLICT BUFFER : 49
5.1 Architectural Support : 50

5.1.1 Full-scale MCB design : 51
5.1.2 Set-associative MCB design : 53
5.1.3 Hash MCB design : 56
5.1.4 Handling variable data sizes : 58
5.1.5 Speculative execution : 60
5.1.6 A prototype implementation : 61

5.2 Compiler Aspects of Memory Con
ict Bu�er : 62
5.2.1 MCB instruction scheduling : 63
5.2.2 Con
ict correction code : 64
5.2.3 Register allocation : 65
5.2.4 Dependence pro�ling : 67
5.2.5 Veri�cation of transformed code : 68

5.3 Experimental Evaluation of Memory Con
ict Bu�er : : : : : : : : : : : : : : : : 70
5.3.1 Evaluation methodology : 70
5.3.2 Check instruction characteristics : 70
5.3.3 Full-scale MCB evaluation : 71
5.3.4 Hash MCB evaluation : 73
5.3.5 MCB entry width evaluation : 80

5.4 Summary of Memory Con
ict Bu�er : 81

6 PRELOAD BUFFER : 82
6.1 Cache Prefetching and Memory Latency : 82

6.1.1 Cache pollution : 83
6.1.2 Prefetch into the prefetch bu�er : 83
6.1.3 Prefetch into registers : 84
6.1.4 Prefetch for superscalar processors : 85
6.1.5 Prefetching architecture requirements : 85

6.2 A Brief Empirical Study of Cache Prefetching : 86
6.3 The Preload Bu�er : 90

6.3.1 Hardware organization : 91
6.3.2 Basic concept : 92
6.3.3 Memory dependences : 96
6.3.4 Dealing with conditionals : 99
6.3.5 Multiple preload bu�er accesses : 102
6.3.6 Context switch : 102

6.4 Algorithm : 103
6.5 Experimental Evaluation : 104

6.5.1 Simulation architecture : 105
6.5.2 Miss ratio and bus tra�c : 105
6.5.3 Detailed simulation : 107
6.5.4 E�ects of cache block size : 109

6.6 Summary of Preload Bu�er : 110

vii

7 CONCLUSIONS : 112
7.1 Summary : 112
7.2 Future Research : 113

REFERENCES : 115

VITA : 118

viii

LIST OF TABLES

Table Page

4.1 Explanation of register states. : 29
4.2 Input types to the preload register controller. : 30
4.3 Benchmarks. : 41
4.4 Instruction latencies. : 42

5.1 MCB components and transister count. : 62
5.2 Check statistics. : 71
5.3 Percentage of checks taken due to ld/ld or ld/st con
icts, issue 4 . : : : : : : : : : : 74
5.4 Percentage of checks taken due to ld/ld or ld/st con
icts, issue 8. : : : : : : : : : : 75

6.1 Miss ratio of benchmarks. : 87
6.2 Maximum number of preload bu�er entries used. : : : : : : : : : : : : : : : : : : : 106
6.3 Comparison of normalized miss ratios. : 106

ix

LIST OF FIGURES

Figure Page

2.1 Illustrative example for instruction scheduling. (a) Unscheduled code, (b) scheduling
for load delay, (c) scheduling for long load latency. : : : : : : : : : : : : : : : : : : : 7

3.1 The IMPACT-I compiler overview. : 16
3.2 (a) Original C source and (b) MCODE equivalent. : : : : : : : : : : : : : : : : : : : 17
3.3 Instrumented MCODE example: (a) Instrumentation for memory instruction and,

(b) Instrumentation for branch instruction. : 18
3.4 Example control block and scheduler directed issue time. : : : : : : : : : : : : : : : 20
3.5 Example for executed instructions and the instruction template. (a) Instruction

sequence to be executed on an existing machine, and (b) instruction template gen-
erated for the new architecture. : 23

4.1 Problem with data dependence. : 25
4.2 Overview of preload register update. : 26
4.3 Register states implementation detail. : 27
4.4 Example pipeline stage and instruction relation assuming load latency of 2. : : : : 29
4.5 State diagram of preload register controller. : 31
4.6 An example of preload register update. : 33
4.7 A subset design of preload register update. : 34
4.8 An example for preload in subset design. : 35
4.9 Code scheduling and execution cycles. : 38
4.10 An example dependence graph. : 39
4.11 Speedup with varying load latency, issue 2. : 43
4.12 Speedup with varying load latency, issue 4. : 43
4.13 Speedup with varying load latency, issue 8. : 44
4.14 Speedup for benchmarks, issue 2. : 45
4.15 Speedup for benchmarks, issue 4. : 46
4.16 Speedup for benchmarks, issue 8. : 46

5.1 E�ect of architectural support on compile-time code scheduling. : : : : : : : : : : : 50
5.2 Full-scale MCB design. : 51
5.3 A 4-way set-associative MCB design. : 54
5.4 Hashing MCB design. : 57
5.5 (a) MCB extension to di�erentiate between access sizes and (b) an illustrative ex-

ample. : 59
5.6 Example showing the problem of speculative execution. : : : : : : : : : : : : : : : : 61
5.7 Register assignment of an example code segment. : : : : : : : : : : : : : : : : : : : 67
5.8 Example interference graph. (a) Interference graph for address registers only, and

(b) interference graph for combined address and data registers. : : : : : : : : : : : 67

x

5.9 Emulation code to perform veri�cation. : 69
5.10 Best and worst cases, 4 issue. : 72
5.11 Best and worst cases, 8 issue. : 73
5.12 Hash MCB, cmp, 4 issue. : 76
5.13 Hash MCB, compress, 4 issue : 76
5.14 Hash MCB, eqn, 4 issue : 77
5.15 Hash MCB, espresso, 4 issue : 77
5.16 Hash MCB, grep, 4 issue : 77
5.17 Hash MCB, qsort, 4 issue : 77
5.18 Hash MCB, wc, 4 issue : 77
5.19 Hash MCB, xlisp, 4 issue : 77
5.20 Hash MCB, yacc, 4 issue : 78
5.21 Hash MCB, cmp, 8 issue : 78
5.22 Hash MCB, compress, 8 issue : 78
5.23 Hash MCB, eqn, 8 issue : 78
5.24 Hash MCB, espresso, 8 issue : 78
5.25 Hash MCB, grep, 8 issue : 78
5.26 Hash MCB, qsort, 8 issue : 79
5.27 Hash MCB, wc, 8 issue : 79
5.28 Hash MCB, xlisp, 8 issue. : 79
5.29 Hash MCB, yacc, 8 issue. : 79
5.30 Hash entry trade-o� for grep, 4 issue. : 80
5.31 Hash entry trade-o� for compress, 8 issue. : 81

6.1 Comparison of normalized miss ratios. : 88
6.2 Comparison of normalized bus tra�c. : 89
6.3 Hardware support for the preload bu�er. : 91
6.4 An ordering for the address and data counters. : 95
6.5 An example operation of the preload bu�er. : 95
6.6 Example coherence problem. : 96
6.7 Design of a prestore log to maintain coherence. : 97
6.8 Example coherence solution. : 98
6.9 Example
ow graph with conditionals. : 99
6.10 Example of preloading for conditionals. : 101
6.11 Comparison of normalized bus tra�c. : 107
6.12 Comparison of normalized execution time for 8K cache. : : : : : : : : : : : : : : : : 108
6.13 Comparison of normalized execution time for 16K cache. : : : : : : : : : : : : : : : 108
6.14 Comparison of normalized execution time for 8K cache with 8-byte blocks. : : : : : 109

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

High-performance processors are often designed to exploit instruction level-parallelism (ILP).

Superscalar and VLIW processors perform such a task by duplicating data paths and functional

units, allowing them to issue multiple instructions per clock cycle. To assist the hardware to

achieve its performance objectives, compilers for superscalar and VLIW processors use opti-

mization and code scheduling techniques to expose simultaneously executable instructions to

the hardware. To be e�ective, the scheduler must be able to freely reorder instructions within

the scheduling scope. Compiler techniques, such as loop unrolling, register renaming, and

critical path reduction, have been successful in removing register dependences within applica-

tions [1]. Aggressive branch handling techniques, such as branch target insertion, are utilized to

allow the execution of multiple branches per cycle [2]. The combination of these optimizations

gives the code scheduler more freedom to reorder instructions.

Unfortunately, the amount of static instruction reordering may be severely restricted due to

dependences between memory instructions. Because memory references often occur on program

critical paths, such loss of code reordering opportunities can limit the e�ectiveness of compile-

time code scheduling. Therefore, high-quality superscalar and VLIW compilers usually employ

sophisticated dependence analyzers to facilitate code reordering.

1

There are cases in which it is di�cult for the dependence analyzer to determine the true

relationship between reference pairs. For example, programming languages which allow data

types such as unions and pointers pose di�culties for dependence analysis [3], [4]. The di�culty

arises when several variables, or aliases, can access the same memory location. The possibility

of a memory store aliasing with a memory load prevents these two instructions from being

reordered. This limit to code reordering can in turn create two related problems. First, as

load latency increases, the lack of independent instructions creates bubbles in the pipeline and

decreases the throughput. Second, the execution critical path lengthened by the store to load

memory dependence limits the amount of parallelization the compiler can perform.

This thesis addresses the problem of instruction reordering in the presence of memory de-

pendences. A class of architecture support which we call data preloading is introduced to allow

memory loads to be scheduled early within the static instruction sequence in spite of potential

violation of memory access dependences. The thesis focuses on aspects of increasing ILP and

tolerating memory access latencies, although the data preload concept can be applied to other

optimizations as well. Compiler techniques are presented which take advantage of data preload.

Architecture trade-o�s are performed to evaluate the e�ectiveness of data preload.

1.2 Thesis Highlights

The following four topics are highlighted in this thesis.

First, memory dependence is identi�ed as a major bottleneck in instruction scheduling

for high-issue-rate processors. Historically, research in scheduling for ILP has been focussed

primarily on moving instructions beyond conditional branches. The problem of conditional

branches becomes less severe as the processor is able to provide higher issue bandwidth and

2

predicated execution [5]. As a result, the problem of extracting ILP increasingly involves the

task of overcoming memory dependences. Architecture extension with data preload allows static

instruction scheduling in the presence of memory dependence. Performance evaluations show

data preload hardware gives additional speedup for high-issue-rate processors.

Second, the de�nition of speculative execution has been extended for data preload. Origi-

nally, speculative execution has been used in the literature to refer to executing an instruction

before knowing that its execution is required. Data preload allows the execution of a memory

load before a dependent memory store. A load and its dependent instructions thus executed

may produce incorrect program states. The de�nition of speculative execution must include

the execution of an instruction before knowing that it can be executed correctly. This thesis

discusses and evaluates the implication of speculative instructions on execution correctness and

performance.

Third, the design trade-o�s for data preload are studied. The bene�ts of data preload are

classi�ed into three types: 1) reducing cache hit latency, 2) increasing ILP, and 3) reducing

long memory access latency. The three proposed data preload hardware approaches for ac-

complishing these are 1) preload register update, 2) memory con
ict bu�er, and 3) preload

bu�er. Each hardware mechanism can have several possible designs. Each design can a�ect

the implementation complexity and the range of bene�ts. The implication of several designs is

presented.

Finally, the thesis looks at the problem of cache pollution when data are loaded into the

cache too early. Early cache load is a product of cache prefetch, which is used to tolerate

long memory access latency. During the course of program execution, the data location within

the closest level of the memory hierarchy is di�cult to determine statically. Cache pollution

3

results from the di�culty of determining prefetch distance. A complementary solution to cache

prefetch, the preload bu�er, is discussed and evaluated.

1.3 Organization of Thesis

This thesis is composed of 7 chapters. Chapter 2 overviews instruction scheduling and data

preload instruction scheduling. An overview of previous work is also given. Chapter 3 presents

a discussion of the IMPACT compiler and the simulation environments.

Chapter 4 discusses preload register update, a data preload support for load scheduling to

reduce �rst-level cache hit latency. Preload register update allows the compiler to reorder load

and store instructions even in the presence of inconclusive memory dependence analysis results.

The new hardware support is described in terms of a detailed state diagram and comprehensive

examples. An instruction scheduling algorithm is given to take full advantage of the data

preload support.

Chapter 5 describes a hardware technique referred to as the memory con
ict bu�er. The

main objective of the memory con
ict bu�er is to increase the opportunity of code reordering.

This is achieved by removing the dependence between a store/load pair, allowing a memory

load and its dependent instructions to be moved above any number of memory stores. Several

alternative designs of the memory con
ict bu�er are discussed and evaluated.

Chapter 6 focuses primarily on data preload for simple loops in numerical benchmarks.

Large data sets and slow memory subsystems result in unacceptable performance for this class

of benchmark. The preload bu�er allows performing loads early while eliminating problems

4

with cache pollution and extended register live ranges. Similarly, prestore bu�er allows loads

to be scheduled in the presence of ambiguous stores.

Chapter 7 contains concluding remarks and directions for future research.

5

CHAPTER 2

MEMORY DEPENDENCE AND INSTRUCTION

SCHEDULING

2.1 Current Scheduling Paradigm

To understand the importance of data preload for high-issue-rate processors, one must �rst

understand the static scheduling paradigm of compilers for contemporary processors. Instruc-

tion scheduling for today's processors must enforce a strict set of dependence constraints, most

importantly register dependence and memory dependence. During scheduling, instructions are

placed in an order determined by the processor resources available and, of course, dependence

constraints. An instruction cannot be scheduled before the instruction it is dependent upon

according to the rule of dependence. Therefore, instruction scheduling freedom is restricted by

the number of dependences between instructions.

As the instruction issue rate of a processor increases, the number of independent instructions

must also increase. Often the scheduler must look down past several conditional branches to �nd

an independent instruction. Since memory load instructions often reside on program critical

paths, it is imperative to schedule independent memory loads early so that other dependent

instructions can be properly placed. However, a memory load cannot move above a memory

store upon which it is dependent. To take advantage of increased instruction issue rate, the

scheduler attempts to look further down the instruction stream for an independent instruction.

6

(a)
I1 st mem(r4) <- r5
I2 ld r1 <- mem(r2)
I3 add r3 <- r3, r1

(b)
I2 ld r1 <- mem(r2)
I1 st mem(r4) <- r5
I3 add r3 <- r3, r1

(c)
I2 ld r1 <- mem(r2)

.

I1 st mem(r4) <- r5
I3 add r3 <- r3, r1

Figure 2.1 Illustrative example for instruction scheduling. (a) Unscheduled code, (b) schedul-
ing for load delay, (c) scheduling for long load latency.

As the chance of memory dependence restricting code movement increases, the chance of �nding

independent instructions decreases.

2.1.1 The di�culties encountered by instruction scheduling

Figure 2.1(a) illustrates the basic problems involved in instruction scheduling. Assume that

the load has a two-cycle latency for accessing the �rst-level cache, and the add has a one-cycle

latency. If a dependence exists between I1 and I2, the shortest latency possible for these three

instructions is four cycles. However if I1 and I2 are independent, it is possible to move I2 before

I1, producing the schedule shown in Figure 2.1(b). The new schedule has a three-cycle latency

because the load delay slot has been �lled with an useful instruction. By moving I2 before I1,

the
ow dependent instruction I3 may now move along with instruction I2 also, thus creating

more instruction scheduling freedom.

Instruction I2 may not �nd its data in the �rst-level cache all the time. If I2 misses in the

cache fairly often, it is desirable to schedule the load early enough (Figure 2.1(c)) so that I3 do

not have to wait a long time before it can begin executing. The downside of scheduling a load

too early is that register pressure has to be monitored carefully.

7

2.1.2 Memory dependence removal

Memory dependence may not alway exist between a pair of memory references. To be

conservative initially, the compiler places dependences between a memory store and all other

memory references. Then, the compiler must make careful judgement on whether a memory

dependence can be removed. Such a decision is made by the memory dependence analyzer.

A memory dependence analyzer determines the relation between memory references. For

array references, many algorithms exist to perform data dependence analysis [6], [7], [8]. Three

possible conclusions can be reached regarding the relation between a pair of memory references:

1) they always access the same location; 2) they never access the same location; or 3) they

may access the same location. In the �rst case, in which the two references alway access the

same location, the compiler can choose to perform optimization to eliminate one of the memory

references, thus eliminating the memory dependence. In the second case, in which the two

references never access the same location, the compiler can remove the memory dependence

between the pair of references. As a result, the instruction pair can be reordered freely. The

third case occurs when either the dependence analyzer �nds the reference pair to sometimes

access the same location or it simply fails to prove that the two references are independent. In

this case, the reference pair will be referred to as an ambiguous reference pair. If a memory

store precedes a memory load and may access the same location as the load, the store will be

referred to as an ambiguous store of the load.

It is in the third case that the memory dependence analyzer cannot remove the dependence

between the reference pair. It is also clear that the conservative decisions made by the memory

dependence analyzer are necessary to preserve correct program semantics. However, it is exactly

this type of dependence that will prevent instruction reordering. During actual execution,

8

the compiler-marked dependent reference pair may only infrequently access the same memory

location. A natural question is whether the instruction scheduler can optimize for the frequent

instances in which the two references do not access the same location. This is the motivation

for data preloading.

2.2 Scheduling with Data Preloading

Clearly, scheduling under the constraint of memory dependence can result in a less desirable

instruction schedule for high-issue-rate processors. A way is needed to ignore certain memory

dependences during instruction scheduling if it is pro�table to do so. This thesis presents data

preload as an architectural extension to existing processor architectures. The intention of data

preload is to allow the compiler to ignore memory dependence during instruction scheduling,

thereby increasing ILP and reducing memory latency e�ects.

The limitations with memory dependence can be removed by a combination of architec-

ture and compiler support which we call data preloading. Data preloading allows the freedom

of upward movement of memory load instructions while ignoring memory dependences. The

instruction-set architecture is modi�ed to incorporate a preload instruction. The preload in-

struction is scheduled by the compiler, and it utilizes the hardware support to allow correct

program execution.

When a load is scheduled above an ambiguous store, the load becomes a preload. The

preload instruction is not constrained in scheduling scope by memory dependence conditions

discussed before. The hazard condition is detected by hardware support and corrected either by

a hardware mechanism or a recovery code provided by the compiler. The scheduling scope of the

instructions that use the preloaded data is di�erent according to the architecture and compiler

9

support. To schedule a preload slightly earlier than the data use would eliminate the �rst-level

cache hit latency. Scheduling the preload much earlier than the data use allows time for the

accessed datum to traverse the memory hierarchy and bring the data to the CPU. When the

instructions that use the data thus preloaded are scheduled with the preload above ambiguous

stores, more aggressive instruction reordering is performed to increase ILP. By eliminating the

need to observe memory dependence by the preload instruction, the instruction scheduler can

better utilize available processor resources and better schedule for memory latencies.

2.3 Previous Work

2.3.1 Hardware-assisted alias resolution

A combined hardware and compiler scheme to keep in register a value that can be accessed

via multiple aliases has been proposed by Dietz and Chi [9]. The register �le is partitioned

into several alias sets such that possibly aliased and simultaneously live references can reside

in registers of the same alias set. A change in the content of one register will re
ect in another

register within the same alias set when their addresses are the same. An extension to this

work has also been discussed in [10]. The purpose of this support is to enable the register

allocator to keep values in the registers instead of reloading the values after each ambiguous

store. There is no graceful way of controlling the coherence for instruction scheduling, and

the size of the alias sets provided in the hardware implementation limits the amount of code

reordering. Furthermore, there is no provision to allow code reordering of the instructions

which use the result of the load. This is because the execution e�ect of these
ow-dependent

instructions cannot be reversed if an ambiguous store writes to the memory location referenced

by the load.

10

2.3.2 Dynamic memory disambiguation

Nicolau describes dynamic memory disambiguation as a software solution to the problem

of parallelization in the presence of ambiguous stores [11]. By inserting explicit address com-

parison and conditional branch instructions, dynamic memory disambiguation allows general

code movement across ambiguous memory stores. However, the number of address comparison

and conditional branch instructions inserted can be very large as a result of aggressive code

reordering for control-intensive nonnumeric programs.

2.3.3 Dynamic scheduling

Out-of-order execution machines attempt to alleviate the problem by performing load by-

passing. During dynamic execution, a memory load can bypass a memory store if their re-

spective addresses are di�erent. It has been shown that load bypassing is a major reason why

dynamic code scheduling outperforms static code scheduling [12]. Using a hardware monitor

as proposed by Emma et al., loads can bypass stores even when the store addresses are un-

known [13]. The core of the monitor is similar to our proposed hardware scheme. However,

the performance of load bypassing is constrained by the dynamic lookahead window size. Also,

in the dynamic load bypassing model, the hardware support and the compiler support are

considered separate entities. Thus, the compiler cannot utilize the hardware support of load

bypassing to increase the opportunity for optimization and scheduling.

2.3.4 Nonblocking cache

For each cache miss, the CPU stalls a number of cycles required to access the memory

hierarchy for the data. A nonblocking cache attempts to overlap the cache miss handling

11

with the execution of subsequent instructions [14], [15]. However, as the speed gap between a

faster processor and a slower memory becomes more diverse, it is increasingly di�cult to �nd

independent instructions to perform useful computation.

2.3.5 Data cache prefetching

Data prefetching is an e�ective means of reducing the penalty of long memory access time

beyond the primary cache [16]-[26].

Data prefetching is typically performed for scienti�c applications, in which the performance

of caches is often inadequate. The idea of cache prefetching is to have the data available in the

cache when the actual memory access occurs. Several prefetch strategies have been presented

in the past. Some of these approaches use software support to issue prefetches, while others are

strictly hardware based.

Hardware-based prefetch methods have been proposed to issue prefetches dynamically [16], [25], [24].

It can be as simple as implicit prefetching through a long cache block or as complicated as uti-

lizing a separate data path for looking ahead in the instruction stream for potential prefetches.

Two advantages are that hardware-based methods do not add instruction overhead to issue

prefetches and are compiler independent. In predicting constant stride accesses, hardware-

based methods perform very well; however, prediction based methods do not work well with

nonconstant stride accesses. For hardware-based methods which depend on dynamic branch

prediction, the prefetch scope is limited to a small number of branches.

Conventional means of compiler-based data prefetching require the compiler to generate

a nonbinding memory load, prefetch, to a cache block [19]. This special prefetch instruction

12

informs the memory subsystem that a piece of data may be used in the near future. According

to this hint, the data are fetched into the cache if not already present.

By placing the prefetched data into the cache, an increase in the data cache requirement is

expected. Now, the cache holds not only the current working set, but also the future working

set simultaneously. The working set size that the cache is required to hold depends on the

prefetch strategy and the memory latency. If the working set requirement is larger than what

the cache size can handle, cache pollution will occur, thus degrading the cache performance.

In addition, as cache pollution increases, o�-chip memory tra�c also increases. The overall

system performance can be degraded by prefetching if it is not carefully managed.

2.3.6 Data prefetch bu�er

The problem of pollution is an important one and must be controlled for data prefetching to

be an e�ective means of increasing the overall system performance. The use of prefetch bu�er

has been proposed by previous researchers [16], [22].

In [22], a fully associative prefetch bu�er is used which can be thought of as a second cache.

The data cache holds the current working set, and the prefetch bu�er holds the possible future

working set. When the data in the prefetch bu�er are referenced, the associated cache line is

transferred from the bu�er into the data cache. The implementation of the prefetch bu�er is

complicated by the coherence protocol between the data cache and the prefetch bu�er. Extra

communication channels must exist between the cache and the prefetch bu�er for the cache to

inform the prefetch bu�er of any dirty data and to transfer data from the bu�er to the cache.

These extra channels complicate cache controller design, especially for superscalar processors.

A prefetch bu�er in which each entry holds a decoded instruction is proposed by Lee, Yew, and

13

Lawrie [16]. The prefetches are generated for the source operands of the decoded instructions.

Searching of the prefetch bu�er is still necessary when executing a store so as not to prefetch

a piece of stale data. When the store writes to the same location as a prefetch, the prefetch

obtains the data from the store through a data forwarding mechanism.

14

CHAPTER 3

INSTRUMENTATION AND SIMULATION METHODS

All results in this work are obtained from simulations. Simulation o�ers a way to obtain

the desirable design points for the actual hardware building. It is possible for a simulator to

emulate nonexisting hardware. Simulation can also evaluate and debug many hardware models

at a quick pace.

Two simulation methods are used within this thesis. The main di�erences between the two

methods are simulation speed and detail. For a quick estimate of the program execution time

on a standard pipelined processor with interlocking, the quicker �rst simulation method is used.

The �rst method uses pro�led branch statistics to estimate execution time without considering

caching e�ects and other system I/Os. For more detailed studies such as memory subsystems

and architecture variations, a program trace must be consumed by a simulator to gather the

results. This chapter discusses the trace collection process and the two simulation methods in

detail.

3.1 Trace Collection

This thesis uses the IMPACT-I C retargetable, optimizing compiler to perform translation of

benchmark source into instrumented executables [27]. The IMPACT compiler uses several levels

of intermediate representation, HCODE, LCODE, and MCODE. Each level of intermediate

15

HCODE

LCODE

MCODE

Code
Layout

Procedure
Inlining

Statement
Profiler

Scope
Enlargement

Classic
Code Optimizer

Superscalar
Code Optimizer

LCODE
Profiler

C Source

MIPS SPARC

AMD29000

HP-PA

i860 IMPACT

Prepass
Code Optimizer

Prepass
Code Scheduler

Register
Allocation

Postpass
Code Optimizer

Postpass
Code Scheduler

Figure 3.1 The IMPACT-I compiler overview.

representation is suited for a class of transformations. Figure 3.1 gives an overview of the

IMPACT compiler and the modules associated with each intermediate representation.

The instrumentation code is inserted within the intermediate representation, MCODE, of

the benchmark; MCODE is the closest intermediate instruction representation of the target

architecture. Each MCODE instruction is later converted into an equivalent machine instruction

for the target architecture. An example MCODE code for the C source in Figure 3.2(a) is shown

in Figure 3.2(b).

Depending upon the run-time information needed, the compiler can insert the appropriate

instrument code into MCODE to extract the information required to form a trace. Figure 3.3

16

(a)

int A[10];

main()

{

int i;

for (i=0; i<10; i++)

A[i] = 0;

exit(0);

}

(b)

(function _main 1.000000 ())

(cb 1 1.000000 ((flow 0 2 1.000000)))

(Mop 1 prologue () ())

(cb 2 1.000000 ((flow 0 3 1.000000)))

(Mop 2 mov ((r 1 i)) ((l _A)))

(Mop 3 add_u ((r 2 i)) ((i 40)(l _A)))

(cb 3 10.000000 ((flow 1 3 9.000000)(flow 0 4 1.000000)))

(Mop 4 st_i () ((i 0)(r 1 i)(mac gr0 i)))

(Mop 5 add_u ((r 1 i)) ((i 4)(r 1 i)))

(Mop 6 bne () ((r 1 i)(r 2 i)(cb 3)))

(cb 4 1.000000 ((flow 1 5 1.000000)))

(Mop 7 mov ((mac $P0 i)) ((mac gr0 i)))

(Mop 8 jsr () ((l _exit)))

(cb 5 1.000000 ())

(Mop 9 epilogue () ())

(Mop 10 rts () ())

(end _main)

Figure 3.2 (a) Original C source and (b) MCODE equivalent.

presents an example MCODE with the appropriate instrumentation code. Two Mop instruc-

tions, 4 (st i) and 6 (bne), are extracted from Figure 3.2. Branching direction and virtual

memory address are the two dynamic elements which are collected for the trace in this thesis.

Branching direction trace is used to 1) generate the execution frequency of each basic block

within each benchmark, and 2) combine with statically generated templates to generate a full

instruction trace. A virtual memory address trace is used to provide the dynamic instruction

sequence generated by the branch direction trace with the corresponding memory referencing

pattern. The collected information is stored into a trace bu�er. The trace bu�er is
ushed

periodically to a simulator during benchmark execution.

3.1.1 Merging trace with MCODE

Within the branch direction trace, all conditional and unconditional branch instructions are

monitored. By recording the branch frequency of these instructions, the execution frequency

17

(a)

(Mop 4 st_i () ((i 0)(r 1 i)(mac gr0 i))) # Store instruction

(Mop 11 mov ((mac $tr_temp i)) ((i 8))) # Store ID = 8

(Mop 12 st_i () ((i 0)(mac $tr_ptr i)(mac $tr_temp i))) # Save store ID

(Mop 13 mov ((mac $tr_temp i)) ((i 0))) # Calculate

(Mop 14 add_u ((mac $tr_temp i)) ((mac $tr_temp i)(r 1 i))) # store address

(Mop 15 st_i () ((i 4)(mac $tr_ptr i)(mac $tr_temp i))) # Save address

(Mop 16 add ((mac $tr_ptr i)) ((i 8)(mac $tr_ptr i))) # Update trace buffer

(b)

(Mop 6 bne () ((r 1 i)(r 2 i)(cb 3))) # Branch instruction

(Mop 17 mov ((mac $tr_temp i)) ((i 5))) # Branch ID = 5

(Mop 18 st_i () ((i 0)(mac $tr_ptr i)(mac $tr_temp i))) # Save branch ID

(Mop 19 add ((mac $tr_ptr i)) ((i 4)(mac $tr_ptr i))) # Update trace buffer

Figure 3.3 Instrumented MCODE example: (a) Instrumentation for memory instruction and,
(b) Instrumentation for branch instruction.

of all functions and basic blocks within each function can be calculated. For each branch

instruction, both the execution frequency and the branch-taken frequency are recorded. This

information is then used to reconstruct the pro�le data to be mapped back into the MCODE

data structure.

The MCODE data structure has a frequency counter for each function and each branch

instruction. After collecting the trace, the branch frequency can be mapped into the MCODE

data structure. For example, the �rst
oating-point number associated with function or cb in

Figure 3.2(b) shows the execution frequency, and the
ow associated with each cb shows the

frequency of control transfer out. This information is used to perform quick estimates of the

benchmark execution cycle; it will be discussed in detail in Section 3.2.

3.1.2 Merging trace with instruction templates

A dynamic instruction execution sequence can be constructed with the information gath-

ered in the branch direction trace. This is performed in three steps. First, a static instruction

18

sequence for the benchmark is captured into an instruction template. For each instruction, the

instruction template contains its opcode and its processor resources used. Second, the instru-

mented code is executed to gather the trace. Third, by using the branch direction information

within the trace, the branch is indexed into the instruction template for a list of instructions

within the basic block. Since entering a basic block implies that all the instructions within

the basic block are to be executed, these instructions obtained from the instruction template

represent the dynamically executed instructions. The instruction trace is now complete.

The virtual memory address trace is also merged into the instruction trace generated using

the same steps. When encountering a memory instruction in the dynamic instruction sequence,

the memory trace is consulted. Individual virtual addresses are taken from the memory trace in

the order in which they are generated. Each memory instruction within the dynamic instruction

trace now has its dynamic referencing virtual address.

3.2 Estimating Execution Cycles with Branch Pro�le

Based on the branch pro�le in the MCODE data structure, a quick estimate of the execution

cycles for a given benchmark on an architecture can be calculated. This is accomplished in

conjunction with an instruction scheduler. The instruction scheduler records static information

regarding the reordered instruction sequence during scheduling, and the simulator calculates

the benchmark execution time based on the recorded information.

This process is best illustrated with an example. Consider the control block (cb) shown in

Figure 3.4. In this example, the control block consists of two basic blocks. In this representation,

the control block can be entered only from the top but may leave at one or more exit points. The

control entrance point begins with Mop 1, and the exit points consists of Mop 3 and 6. Static

19

(cb 2 1000.0

((flow 1 3 10.000000)

(flow 1 2 970.000000)

(flow 0 3 20.000000)))

(Mop 1 add ((r 2 i)) ((r 2 i)(r 1 i)) (i_t 1))

(Mop 2 add ((r 1 i)) ((r 1 i)(i -1)) (i_t 2))

(Mop 3 beq () ((r 1 i)(i 0)(cb 3)) (i_t 3))

(Mop 4 add ((r 2 i)) ((r 2 i)(r 1 i)) (i_t 4))

(Mop 5 add ((r 1 i)) ((r 1 i)(i -1)) (i_t 5))

(Mop 6 bne_fs () ((r 1 i)(i 0)(cb 2)) (i_t 6))

Figure 3.4 Example control block and scheduler directed issue time.

branch prediction dictates that Mop 3 is likely to fall through and Mop 6 is likely taken. The

instruction scheduler inserts the i t directive for each Mop instruction. The number associated

with the directive indicates the time at which the instruction can be executed with respect to

the control entrance point, in this case Mop 1. Assuming that the add and branch instructions

take one cycle each to complete, it will take three cycles to complete Mops 1 to 3 and three

cycles to complete Mops 4 to 6.

To compute the total time to execute the control block, the branch pro�le is used. Looking

at the control block header, control block 2 is executed a total of a thousand times. Of the

thousand times, the control block is exited at Mop 3 ten times, and falls through to the next

control block at Mop 6 twenty times. Therefore, Mops 1 to 3 are executed a thousand times

while Mops 4 to 6 are executed 990 times. This amounts to 5970 cycles to execute this control

block using the branch pro�le. However, this execution time does not include the branch miss

prediction penalty. Since Mops 3 and 6 are mispredicted ten and twenty times, respectively, a

penalty of thirty cycles results for a single branch delay slot architecture. Adding the additional

30 cycles to the base 5970 cycles results in a grand total of 6000 cycles to execute control block

2.

20

Sometimes an instruction does not complete execution before the last instruction due to

long instruction latency. In this case, the execution time due to the long latency instruction

is also computed within the control block execution time. This is the worst-case estimate of

the control block completion time. By adding the completion time for all of the control blocks

within the benchmark, an estimate of the total benchmark execution time is obtained.

Estimating execution time with the branch pro�le can be quick since a trace is collected only

once. Since simulation is based on the branch pro�le, an execution time can be estimated even

when the instruction sequence and characteristics change. For example, a nonexisting multiply-

add instruction can be simulated by collecting the branch trace �rst using separate multiply and

add instructions, and then modifying the instruction pair into a single multiply-add instruction

during the cycle time estimate. The drawback with estimating an execution time with the

branch pro�le is that dynamically variable information such as cache misses cannot be easily

integrated. A more
exible trace simulator which can handle dynamically variable information

is the subject of the next section.

3.3 Estimating Execution Cycles Using a Simulator

A more detailed processor simulation environment has been developed within the IMPACT

project. The simulator is driven by instruction traces and can model in detail di�erent pipeline

stages, branch prediction strategies, and memory subsystems. The subject of this section,

however, is not the details of the simulator itself, but the process of simulating an architecture

with new features. Attention is focussed on the instruction template modi�cation and the

benchmark behavior estimation.

21

Instruction trace and memory trace generation have already been discussed in Section 3.1.2.

Two rules must be enforced during instruction template construction and trace collection:

1) the sequences of branches must remain in their original position, and 2) the sequences of

memory instructions must remain in their original position. This allows the traced branch to

�nd its basic block and the associated instructions, and the memory instruction to �nd its

dynamic address. As far as the other instructions are concerned, any addition or change to

the instruction template will re
ect only on the behavior of the simulator while leaving the

benchmark executable unchanged. Therefore, by altering the instruction template, di�erent

instruction sets and sequences can be simulated while using the existing machine's executable

module.

In this thesis, architecture enhancement requires adding new instructions into the instruc-

tion set and altering the processor behavior. Existing machines do not recognize the new

instructions; the new instructions are recognized only by the simulator. To generate traces for

the architecture with new instructions, the executable module must be composed of existing in-

structions while feeding the simulator with new instructions. This is accomplished by capturing

the new architecture's instruction sequence into the instruction template, while the compiler

generates the executable module on the existing machine using emulation code sequences. The

processor simulator recognizes the new instructions and acts accordingly. To simulate new

architecture features, the following steps are taken:

(1) Compile a benchmark for the new architecture using the existing machine's instruction

set. Emulate nonexisting features with existing instructions and prede�ned function calls.

Instructions which should not appear in the new architecture's trace are marked. The

compiler generates a probed executable module.

22

(a)

L1:

mov r1, array_A

mul r2, size, 4

add r2, r2, r1

L2:

st mem(r1),0

add r1, r1, 4

bne r1, r2, L2

(b)

L1:

init array_A, size

L2:

Figure 3.5 Example for executed instructions and the instruction template. (a) Instruction
sequence to be executed on an existing machine, and (b) instruction template generated for the
new architecture.

(2) The compiler replaces the emulating instructions with new architecture instructions. The

resulting instruction sequence is saved into the instruction template. Instructions which

should not appear in the new architecture's trace are marked.

(3) Execute the benchmark to collect the branch trace. Branch trace indexes into the instruc-

tion template to generate the instruction trace. Unwanted instructions are removed from

the trace for the new architecture. Finally, the trace is fed into the processor simulator.

Figure 3.5 provides a simple example. Assuming that the new architecture feature is the

init instruction which has the format init begin address, zeros to �ll. The code segment in

Figure 3.5(a) is generated for the benchmark to execute correctly on an existing architecture.

The array address and the size are moved into two registers. The loop is traversed until all

required elements are zeroed. During simulation, however, when the branch to L1 is taken,

the simulator will see only a single init instruction since the template for basic blocks L1 and

L2 contains only the init instruction (Figure 3.5). Note that in the instruction template, basic

block L2 contains no instructions. The executable may stay in the L2 loop and generate traces.

However, since no instruction is found within the template for L2, no instruction is fed into the

simulator.

23

CHAPTER 4

PRELOAD REGISTER UPDATE

By exploiting �ne-grained parallelism, superscalar and VLIW processors can potentially

increase the performance of future systems. However, these systems may have a long access

delay to their �rst-level memory which can severely restrict the performance of superscalar

processors. The performance of superscalar processors, however, is more sensitive to data load

latency than their single instruction issue predecessors. A superscalar processor can lose over

30% of its performance when the latency for a data load is increased from 1 to 2 cycles [28].1

The fact that the performance decreases as the load latency increases indicates that loads are

often on the program critical path. One important reason why loads appear on the critical path

is that their movement is constrained by stores when there is insu�cient memory dependence

information available at compile time.

Conventional movement of load instructions is limited by memory dependence analysis.

Consider the scheduled code segments in Figure 4.1 for a machine that can issue 2 instructions

per cycle with a load latency of 2 cycles. Inconclusive data dependence analysis results prohibit

the movement of loads above the stores in Figure 4.1(a). This leads to an empty cycle in the

schedule. However, if the loads are determined to be independent of the stores, a more e�cient

schedule is obtained as shown in Figure 4.1(b). This problem compounds as the processor issues

more instructions per cycle, since each cycle in which the processor has to wait for memory

references becomes more signi�cant to the overall execution time.

1Currently, many commercial processors have a load latency of 2 or more cycles.

24

(a) Inconclusive data dependence.

cycle 1 store store

cycle 2 load1 load2

cycle 3

cycle 4 use1 use2

(b) Conclusive data dependence.

cycle 1 load1 load2

cycle 2 store store

cycle 3 use1 use2

Figure 4.1 Problem with data dependence.

In this chapter, a hardware scheme which allows the compiler to perform aggressive schedul-

ing in the presence of inconclusive data dependence analysis results is discussed. This mecha-

nism is referred to as preload register update. In Section 4.1, a description of the full design is

presented followed by a subset design which incurs less hardware cost. A compiler which takes

advantage of preload register update is described in Section 4.2. In Section 4.3, the e�ectiveness

of preload register update is evaluated for a set of nonnumeric benchmarks. Section 4.4 gives

the concluding remarks for this chapter.

4.1 Implementing Preload Register Update

The main purpose of preload register update is to provide support for the compiler to boost

a memory load above a memory store when their dependence state is not certain. In this section,

we discuss the details of one possible implementation of preload register update. The design

details will undergo minor modi�cations as the compiler provides di�erent levels of support.

Our compiler support overview will be discussed in Section 4.2.

4.1.1 Overview of the full-scale design

When a load is moved above a store and their dependence relation is uncertain, the load

becomes a preload. A coherence mechanism must be used to update the preload destination

25

Address Data State
R1
R2

Rn

Comparator

Store
Data

Load
Address

Store
Address

Cached
Data

State
Controller

Enable
Datum

Figure 4.2 Overview of preload register update.

register if the preload and the store reference the same memory location. Figure 4.2 provides

an overview of the coherence mechanism. For each register data entry, an address register entry

is added. Thus, if we have n general purpose registers, n address registers are added. The

purpose of these new registers is to store the addresses of preloads. When a store instruction is

executed, the store address is compared against all preload addresses in the address registers.

When the addresses match, the stored value is forwarded to the corresponding data register

entry for an update. Since there are multiple address registers, a fully associative comparison

of the store address and the individual preload addresses must be made. A commit instruction

is inserted at the original position of the load (we will discuss the implementation alternatives

of this commit instruction in Section 4.1.3). The coherence mechanism will continue to operate

until a commit instruction is executed or the register entry is rede�ned by a normal instruction.

26

REGISTER STATE

(32) (32) (1) (1) (1) (1)

Load Address Preload TypeDatum P F R T

One Register Entry

(4)

Figure 4.3 Register states implementation detail.

To distinguish between a normal and a preloaded datum, several bits to represent the

state of each register are required. The state bits associated with each data register entry are

presented in Figure 4.3. The opcode type of the preload is encoded and saved in the preload

type �eld. This is used for data alignment and the masking of a forwarded datum when a store

type is di�erent from that of a preload (e.g., preloading a character versus storing an integer).

When a preload instruction is executed at run time, the associated preload bit (P) is set for

its destination register. The preload state is reset by the corresponding commit instruction,

which turns o� the coherence mechanism for the register. The ready bit (R), which is similar

to the ready bit required by an interlocking mechanism, is set to 0 while the register content

is being generated or accessed. If the preloaded address is an I/O port de�ned by the memory

management unit, the freeze bit (F) is set so that the load can be retried at the time of the use.

The preload to the I/O port is therefore aborted. We can delay the trap caused by a preload

by setting the trap bit (T). If the preloaded value is not used, the trap can be ignored. The

detection of exceptions for optimized and scheduled code is discussed in [29]. In this chapter,

we focus on the use of the preload register to improve the overall program performance.

27

4.1.2 Implementation timing and pipeline stages

The stages of the pipeline model are illustrated by an example in Figure 4.4. We wish to

demonstrate two issues with this example: updating register content and forwarding data if

a preload data is used immediately after a preload/store address match. If a preload address

matches the store address, the preload register content is corrected at the write back stage of the

store. The computation result writes back and the preload content update due to a matching

store address is prioritized according to the instruction execution sequentiality. When more than

one preload address matches the store address, the pipeline is frozen until all of the register

values are updated.2 To allow the preload register to be used right after the last bypassed store,

the datum for the preload register update is also forwarded to the execution unit that uses the

preload. 3 The register �le has a direct path from the write back port to the read port to allow

such forwarding.

We now concentrate on the P, F, and R bits of the register state. The register states

are explained in Table 4.1. The associated state diagram is presented in Figure 4.5 while the

possible inputs used in the state diagram are given in Table 4.2. All states with an input of

1 (instruction is a preload) or 9 (register is de�ned by an instruction other than a preload)

will go to states PFR and PFR, respectively. To make the hardware simple, all register data

update from rede�nitions can proceed only if the register is in its ready state (R=1). Thus,

the proposed method is compatible with a processor with a simple interlocking mechanism

similar to that used in CRAY-1 [31]. If the freeze state is immediately known at the time of the

2This allows us to avoid the complexity of register �le implementation for multiple corrections. This trade-o�

is reasonable because we expect the occurrence of this situation to be rare.

3Output and antidependences are handled by register renaming at the decode stage[30]. In this case, the

coherence mechanism operates on the physical registers.

28

Store

Preload
Use IF ID EX WB

IF ID EX WB

Register content correctness
is guaranteed by the state
controller or operand writeback
priority

Store/Load
Address
Compare

Update the datum
if addresses match

Datum forward
if address match

Preload

IF ID EX

Load Delay

EX WB

Figure 4.4 Example pipeline stage and instruction relation assuming load latency of 2.

Table 4.1 Explanation of register states.

Register State explanation

P F R

0 0 0 Register rede�ned by a nonpreload
instruction, not ready

0 0 1 Register contains ready datum, coherence
o�

0 1 0 State not used

0 1 1 State not used

1 0 0 Preload register, normal datum,
not ready

1 0 1 Preload register, normal datum,
register ready

1 1 0 Preload register, normal or frozen
state unclear, not ready

1 1 1 Preload register, frozen datum

29

Table 4.2 Input types to the preload register controller.

Type Explanation

1 Instruction is a preload

2 Preload needs to be frozen

3 Preload does not need to be frozen

4 Store address matches the preload address

5 Store address does not match preload address

6 Preload datum is delivered

7 Nonpreload datum is delivered

8 Preload datum used, commit

9 Register is de�ned by an instruction other than a preload

preload, we can eliminate the 110 state totally and proceed to state 100 or 111 depending upon

the freeze status. Although the TLB access is fast in most processors, it still requires some lag

time before the result is available; therefore, state 110 is included. State 001 is the initial state

of all registers.

4.1.3 Committing preload data

After the execution of all of the stores that were bypassed by the preload, the coherence

mechanism is no longer needed for the destination register of the preload instruction. In fact,

none of the subsequent stores should be allowed to modify the register. Therefore, a method

to commit the preload is required to turn o� the coherence mechanism at this point of the

execution.

A commit instruction can be implemented in two possible ways. First, it can be added to

an existing instruction set. This opcode would only have one operand, which is the register

number of the preload destination register. The execution of the commit instruction turns

o� the coherence mechanism, or retries the preload if the freeze bit is set. For the second

option, the use of the preload destination register implies a commit instruction. As described

30

_ _
P F R

 _
P F R _ _ _

P F R

 _ _
P F R P F R

 _
P F R

INPUT/ACTION

INITIAL STATE

_ _ _
P F R _
P F R

_ _ _
P F R _
P F R

2/R=13/F=0

5/nil
8/cpu wait

4,5/nil
6/ignore datum

4,8/cpu wait
5/nil
6/*2

4,6/update register content

9/*1

1/*1

8/P=0

8/retry load

7/update register content

4/update register content
5/nil
6/ignore datum

4,5,8/nil
6/ignore datum

4,5/nil
8/cpu wait

9 goes to
1 goes to

9 goes to
1 goes to

*1 For all redefines, CPU must wait unless source state R=1
*2 if TLB misses, preload is retried when TLB hits, else
 the action is postponed until freeze status is known

Figure 4.5 State diagram of preload register controller.

31

in Section 4.2, the compiler does not move the instruction which uses the preload data above or

below any stores that may con
ict with the preload. Therefore, the execution of the use signals

the ending of the coherence mechanism. If a use is not available, we can create an arti�cial use

of the register by performing a move to a register hard-wired to 0 (such as R0 in the MIPS

R2000 [32]) or to itself. The two alternatives both have their advantages and disadvantages.

They vary in hardware complexity, compiler complexity, and execution overhead. From our

experience, the explicit commit instruction incurs much more overhead, and is not e�ective for

low issue rate machines. Therefore, we will concentrate on the second model.

4.1.4 An example of preload register update operation

We illustrate preload register update with an example. Figure 4.6(a) shows a load/store

pair whose dependence cannot be resolved at compile time. With preload register update, the

load is moved above the store with the condition that the use by op3 remains between the

two stores (Figure 4.6(b)). The execution of the preload instruction changes P of R3 to 1 to

indicate that R3 contains a preloaded datum, and memory coherence must be maintained for

R3. When the store is executed, the coherence mechanism checks the store address against the

address �eld of R3, and �nds that they are the same (Figure 4.6(c)). Therefore, the data �eld

of R3 is updated with the stored value. When the ALU instruction is executed, P of R3 is set

to 0, thereby turning o� the memory coherence for this register.

4.1.5 Subset design of preload register update

At this point, one may question the viability of the full-scale design when the number of

address registers increases to a large value. This subsection presents a subset design of preload

register update, which incurs lower cost for register �les of all sizes.

32

(a) Original code segment

store mem(R1) <- R2

load R3 <- mem(R4)

alu R4 <- R3 + 99

store mem(R4) <- R1

alu R2 <- R3 + R2

(b) Code segment after preloading

(op1) preload R3 <- mem(R4)

(op2) store mem(R1) <- R2

(op3) alu R4 <- R3 + 99

(op4) store mem(R4) <- R1

(op5) alu R2 <- R3 + R2

(c) Sample execution when load and store addresses con
ict

MEM(100) = 4

-

-

-

100

1

100

0

0

0

PDATAADDRESS

100 4 1
After
op1

R1

R2

R3

R4

-

-

-

100

1

100

0

0

0

PDATAADDRESS

100 1

MEM(100) = 1

1

After
op2

R1

R2

R3

R4

-

-

-

0

0

0

PDATAADDRESS

100

MEM(100) = 1

0

After
op3

R1

R2

R3

R4

100

1

1

100

MEM(100) = 4

-

-

-

-

100

1

-

100

0

0

0

PDATAADDRESS

INITIAL
STATE

R1

R2

R3

R4

-

-

-

-

0

0

0

PDATAADDRESS

100 0

R1

R2

R3

R4

100

1

1

100

-

-

-

0

0

0

PDATAADDRESS

100 0

R1

R2

R3

R4

100

1

100

MEM(100) = 100 MEM(100) = 100

2After
op4

After
op5

Figure 4.6 An example of preload register update.

33

Data State
R1
R2

Rn

Store
Data

Address

Comparator

Store
Address

GRP
1
2

m

Address

V

Preload
Address

State
Control

Cached
Data

Datum

Figure 4.7 A subset design of preload register update.

Basically, the subset design is similar to the full-scale design, except that the number of

the fully associative address compares is reduced to m (where m < n). That is, there are m

address registers each with a general-purpose register pointer (GRP) �eld and a valid bit (V)

added (see Figure 4.7). All other state bits for the general-purpose registers remain unchanged.

The purpose of the GRP is to associate an entry of the address register (from here on, the set

of m address registers will be referred to as address registers) to an arbitrary general-purpose

register entry. This way, all general purpose registers can become a preload register, but only

m of them can be active for memory coherence at the same time. The V bit indicates whether

the address entry contains a valid address for memory coherence. If the V bit is 1, the register

pointed to by GRP has to be kept coherent for all subsequent memory stores. If there is more

than one preload address entry which matches the store address, the pipeline is frozen and all

matching registers are serially updated.

34

(a) Original code segment

store (R1) <- R2

load R3 <- (R2)

load R4 <- (R4)

(b) Code segment after preloading

(op1) preload R3 <- (R2)

(op2) preload R4 <- (R4)

(op3) store (R1) <- R2

(op4) commit R3

(op5) commit R4

(c) An example of preload over
ow

MEM(100) = 4

-

-

-

-

100

-

100

0

0

0

PDATAADDRESS
INITIAL
STATE

R1

R2

R3

R4

ADDRESS V1 GRP -

- 0 -

0

0

-

0

100

MEM(100) = 4

-

-

-

100

100

0

0

0

PDATAADDRESS

R1

R2

R3

R4

ADDRESS V1 GRP

0

0

0

100

After
op1

100 1 R3

100 4 1 0

F F

MEM(100) = 4

-

-

100 0

0

PDATAADDRESS

R1

R2

R3

R4

ADDRESS V1 GRP

0

0100

-

-

100

100

0

0

PDATAADDRESS

R1

R2

R3

R4

ADDRESS V1 GRP

0

0

0

100

100 1

100 4 1

F F

After
op2 After

op3

100 1

100

100

4

4

1

1

1

0R4 R4

MEM(100) = 100

1

1100

-

-

100 0

0

PDATAADDRESS

R1

R2

R3

R4

ADDRESS V1 GRP

0

0100

-

-

100

100

0

0

PDATAADDRESS

R1

R2

R3

R4

ADDRESS V1 GRP

0

0

0

100

100

100

F F

100 1

100

100 1 0R4 R4

MEM(100) = 100

100

MEM(100) = 100After
op4

After
op5

0

100

100

0 0 0 0100

0

Figure 4.8 An example for preload in subset design.

35

At run time, a preload can occupy any of the address register entries. When the number of

preloads exceeds the number of available address registers, an address register entry is replaced

to allow for the new preload instruction. The replacement strategy can be LRU, FIFO, or

any other desired replacement policy. However, care should be taken to prevent stale preload

addresses from occupying useful address registers due to incorrect compile time branch predic-

tion. At the time of replacing an address register entry, the F bit of the general-purpose register

pointed to by the GRP is set to 1. This will cause a retry of the load when the register is used.

To illustrate the operation of the subset design, an example is provided in Figure 4.8 with

one address register available. When op2 �nishes executing, the data content of the �rst preload

is no longer kept coherent, and the F bit is set to 1. At the time to commit R3, we retry the load

to memory location 100 and obtain the correct datum. All register entries are in the normal

data state after op5 �nishes execution.

4.2 Compiler Support for Preload Register Update

In this section, we focus on code scheduling, which is the most important aspect of the

compiler support for preload register update. The scheduling support discussed in this paper is

based on the superblock structure [28]; however, it can be easily generalized to other structures.

A superblock or extended basic block is a block of sequential instructions in which control can

enter only from the top but may leave from one or more exit points.

4.2.1 Preload scheduling

To perform superblock scheduling, a dependence graph is constructed for each superblock.

The dependence graph includes
ow, output, anti, and control dependences between instruc-

36

tions. In addition, memory dependence arcs exist between all load/store, store/load, and

store/store pairs unless the compiler can determine that their respective addresses are always

di�erent. With the dependence graph in place, a list scheduling algorithm is used to derive the

schedule for each superblock.

To take advantage of preload register update, the dependence graph construction phase has

to be modi�ed. Several terms are used to explain the changes. When the memory dependence

relation between two memory instructions is uncertain, the dependence is termed ambiguous.

The Closest Ambiguous Store Before (CASB) of a memory instruction is de�ned as the �rst

ambiguous store above the memory instruction. The Closest Ambiguous Store After (CASA)

of a memory instruction is de�ned as the �rst ambiguous store after the memory instruction.

The basic block in which a preload originated is called the home basic block of the preload.

If a load instruction is not indirectly
ow dependent upon another load instruction in the

superblock, then it is marked as a potential preload. For potential preloads, all memory de-

pendences on all preceding stores within the superblock are removed. No use of the preload

destination register can be moved above the CASB. We stipulate that at least one instruction

which uses the result of the preload must remain within the home basic block of the preload.

Also, this use is marked as the commit instruction and must be scheduled before the CASA. If a

use is not available in the home basic block, a commit instruction is inserted in the home basic

block. Note that preloads may be moved above branches during superblock scheduling. In this

thesis, the general code percolation model [28] is assumed, and nontrapping hardware [33] is

used to suppress the exceptions caused by these preloads.

An example dependence graph for the code segment in Figure 4.9(a) is shown in Fig-

ure 4.10(a). We assume a load latency of 2 cycles and a latency of 1 cycle for all other in-

37

(a) Original code segment

t1: ALU

t2: BRANCH

t3: STORE

t4: LOAD

t5:

t6: ALU

t7: STORE

(b) Code segment after preloading

t1: ALU LOAD

t2: BRANCH

t3: STORE

t4: ALU

t5: STORE

Figure 4.9 Code scheduling and execution cycles.

structions for this example. To take advantage of the preload register update support, the

dependence from the store to the load is removed. A new dependence constraint now exists

from the store to the second ALU instruction. The updated dependence graph is shown in Fig-

ure 4.10(b). By allowing the load to bypass the �rst store, the second ALU instruction can be

scheduled earlier, thereby shortening the program critical path for a high issue rate processor.

The resulting schedule is shown in Figure 4.9(b). The total execution time drops from 7 to 5

cycles. Note that if the load latency is 3 cycles instead of 2 cycles, the original code segment

in Figure 4.9(a) would have taken 8 cycles to execute. However, the execution time of the code

segment with preloading in Figure 4.9(b) remains at 5 cycles.

4.2.2 Data register issues

Since memory coherence will not operate properly if the register content is saved somewhere

else (e.g., on the stack), there are certain restrictions placed on the handling of preload desti-

nation registers. Without interprocedural register allocation, preloads cannot be moved above

a function call. Also, the register allocation algorithm has to be modi�ed so that the preload

destination registers tend not to be spilled before they are committed. This is accomplished by

38

(a) Original dependence graph (b) Dependence graph after memory bypass

ALU

BR

ST

LD

ALU

ST ST

ALU

LD

ST

BR

ALU

Figure 4.10 An example dependence graph.

39

increasing the live range weight of the preload destination registers before their corresponding

commit instruction. Thus, spilling will be unlikely for the register in that section of the code.

If spilling does occur, the data register, the address register, and the register state all have to

be saved to the stack. 4 Whenever a spilled preload destination register is �lled from the stack,

its F bit is set to 1. Thus, at the time of the use, the register value is reloaded from the data

cache, thereby obtaining the most recent value.

4.3 Experimental Evaluation of Preload Register Update

Compiler support for preload register update has been implemented in the IMPACT-I com-

piler. In this section, experimental results on the e�ectiveness of preload register update are

reported for the thirteen nonnumeric C benchmarks listed in Table 4.3. The pro�le informa-

tion is used to identify superblocks in the benchmark programs. All benchmark programs are

pro�led with several di�erent inputs.

4.3.1 Evaluation methodology

To evaluate the performance of preload register update, each benchmark program is executed

using one input di�erent from those with which it was originally pro�led. During execution,

statistics are gathered for all branch instructions. Later, the benchmark is statically scheduled

with the preload register update support. The execution cycles for the instruction issue rates

of 2, 4, and 8 are determined by branch pro�le as discussed in Section 3.2. One branch de-

lay slot that consists of N instructions for an N-issue processor is automatically allocated for

4In fact, only either the data register or the address register has to be saved onto the stack depending on

the preload status (P bit) of each register. If the register is marked as a preload register, then only the address

register has to be saved, otherwise, the data register is saved.

40

Table 4.3 Benchmarks.

Benchmark Size Benchmark Description

cccp 4787 GNU C preprocessor

cmp 141 compare �les

compress 1514 compress �les

eqn 2569 format math formulas for tro�

eqntott 3461 Boolean equation minimization

espresso 6722 truth table minimization

grep 464 string search

lex 3316 lexical analyzer generator

qsort 136 quick sort

tbl 2817 format tables for tro�

wc 120 word count

xlisp 7747 lisp interpreter

yacc 2303 parser generator

each predicted-taken branch instruction. The function units are pipelined and uniform for all

issue rates except stores, which are restricted to one per cycle due to the di�culties involved

in designing the associative search and forwarding logic to handle multiple stores per cycle.

Therefore, for an N-issue machine, N loads can be issued in the same cycle, but at most one

store along with N-1 other instructions can be issued in the same cycle. The instruction laten-

cies for di�erent function units are listed in Table 4.4. Load latency can vary due to di�erent

cache sizes and physical distances (e.g., on-chip or o�-chip). Thus, the load latency is varied

from 1 to 4 cycles for the experiments. The processor includes a 64-entry integer register bank

and a 32-entry
oating-point register bank; the full-scale design of the preload register update

is used.

4.3.2 Base architecture performance

Figures 4.11 to 4.13 shows the benchmark speedup for issue rates of 2, 4, and 8 with load

delays of one to four. This is the base architecture support using the general code percolation

41

Table 4.4 Instruction latencies.

INT function latency FP function latency

ALU 1 ALU 3

barrel shifter 1 conversion 3

multiply 3 multiply 4

divide 10 divide 10

load varies load (1 word) varies

preload varies preload (1 word) varies

store 1 store 1

model without preload register update support. It is intended to show the problem of an

increase in load delay on superscalar performance. The x-axis shows the benchmark speedup,

and the base is a single issue processor with the same load delay. The y-axis lists the name of

each benchmark. The number beside each point on the graph indicates the load latency that

is under consideration.

Increase in load delay has more negative e�ect for issue 4 and issue 8 processors than two-

issue processors. Also, the performance degradation is often greater when going from a load

latency of 1 to a load latency of 2. This is especially true for the issue 8 processor in Figure 4.13.

It is, therefore, important for higher-issue rate processors to have small load latency. Preload

register update support attempts to provide the illusion of small load latency for high-issue

processors with large load latency.

4.3.3 Performance evaluation of preload register update

The full-scale design of preload register update is evaluated here in terms of execution

speedup with an ideal cache. For each individual issue rate and load delay, we take the ratio of

the execution cycle of the benchmark without preload register update support to the execution

cycle of the code with preload register update support to calculate the speedup. We can

42

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

cccp cmp compress eqn eqntottespresso grep lex qsort tbl wc li yacc

S
p
e
e
d
u
p

Benchmark

1

2

3

4

1

2

3

4

1
2
3

4

1

2

3

4

1
2

3

4

1

2

3

4

12

3

4

1

2

3

4

12

3

4

1
2

3

4

1
2

3

4

1

2

3

4

1

2

3

4

Figure 4.11 Speedup with varying load latency, issue 2.

1

1.5

2

2.5

3

3.5

4

cccp cmp compress eqn eqntottespresso grep lex qsort tbl wc li yacc

S
p
e
e
d
u
p

Benchmark

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4 1

2

3

4

1

2

3

4

Figure 4.12 Speedup with varying load latency, issue 4.

43

1

2

3

4

5

6

7

cccp cmp compress eqn eqntottespresso grep lex qsort tbl wc li yacc

S
p
e
e
d
u
p

Benchmark

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4 1

2

3

4

1

2

3

4

1

2

3

4

1

2

3
4

1

2

3

4

Figure 4.13 Speedup with varying load latency, issue 8.

characterize the thirteen benchmark programs into two groups. The �rst group pertains to

the benchmarks that obtained a noticeable performance improvement with preload register

update. The second group consists of the benchmarks which did not bene�t signi�cantly from

preload register update. Figures 4.14 , 4.15, and 4.16 show the speedup achieved by superscalar

processors over the base architecture with and without preload register update. These �gures

are in the same format as Figure 4.13. We will examine the two groups separately and explain

the di�erence.

The benchmarks in the �rst group are able to tolerate the increased load latency better

with preload register update. The benchmarks in this category are cccp, cmp, eqn, espresso,

grep, qsort, wc, and xlisp. Closer examination of the benchmark programs reveals that the

scheduling is limited by inconclusive memory dependence analysis results. As a result, the

44

1

1.05

1.1

1.15

1.2

1.25

cccp cmp compress eqn eqntottespresso grep lex qsort tbl wc li yacc

S
p
e
e
d
u
p

Benchmark

123

4

1

2

3

4

1234 12

3

4

12
3

4

1

2

3

4

12

3

4

1234 123

4

1234 123

4

12

3

4

12

3

4

Figure 4.14 Speedup for benchmarks, issue 2.

extra freedom to reorder memory instructions provided by preload register update leads to

substantial performance improvement.

The benchmarks of the second group do not bene�t from preload register update in gen-

eral. The benchmarks in this category are compress, eqntott, lex, tbl, and yacc. Examining

these benchmarks shows that the scheduling of these programs is not restricted by memory

dependence analysis. Also, a lack of stores in the frequently executed regions within these

benchmarks provides more scheduling freedom for load instructions than do the benchmarks

of the �rst group. These benchmarks are examples in which there are few opportunities for

preload register update to further improve performance.

The results shown do not necessarily mean that the Group 2 benchmarks cannot tolerate

the increased load latency. For high issue rates, the performance decrease that arises as the load

45

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

cccp cmp compress eqn eqntottespresso grep lex qsort tbl wc li yacc

S
p
e
e
d
u
p

Benchmark

1

2

3

4

1

2

34

12

3

4

1

2

3

4

1234 1

2

3

4

1

2

3

4

1234 1

2

3

4

1234 1

2

3

4

1

2

3

4

12

3
4

Figure 4.15 Speedup for benchmarks, issue 4.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

cccp cmp compress eqn eqntottespresso grep lex qsort tbl wc li yacc

S
p
e
e
d
u
p

Benchmark

1

2

3

4

1

2

3

4

1
23
4

1

2

3

4

1234
1

2
3
4

1

2

3

4

1

234
1

2

3

4

12
34

1

2
3
4

1

2

3
4

1

23
4

Figure 4.16 Speedup for benchmarks, issue 8.

46

latency increases is due to the lack of schedulable instructions within the superblock. Further

loop unrolling is required to provide su�cient independent instructions to hide the load latency.

Another observation is that preload register update is more e�ective for processors with

longer load latency. Scheduling load instructions early becomes more crucial as load latency

increases. Without conclusive memory dependence analysis results, as in the case of �rst group

benchmarks, load instruction cannot be scheduled su�ciently early to hide the load latency.

Preload register update removes the memory dependences which restrict the movement of load

instructions. Therefore, the schedule allows the processor to better tolerate the increased load

latency.

4.4 Summary of Preload Register Update

Preload register update complements compile-time data dependence analysis. Without con-

clusive data dependence analysis results, conventional compile-time scheduling of memory in-

structions is restricted by conservative assumptions. Preload register update allows the compiler

to move load instructions even in the presence of inconclusive data dependence analysis results.

The load destination registers are kept coherent when load instructions are moved above store

instructions that reference the same location. We have addressed issues regarding data forward-

ing, register interlocking, and register coherence within the context of a detailed state diagram

and a processor pipeline example. Problems associated with memory mapped I/O ports and

registers are resolved with additional register states. Saving and restoring (e.g., register spills)

of preload registers are shown to provide correct operation. Lastly, a subset design of preload

register update which incurs less cost while maintaining similar functionality is discussed.

47

A major limitation of preload register update is that dependent instructions of a load may

not be scheduled above any ambiguous stores. This is because the execution e�ect of these

dependent instructions cannot be reversed if an ambiguous store writes to the memory location

referenced by the load. An extension which overcomes this limitation is the subject of the next

chapter.

48

CHAPTER 5

MEMORY CONFLICT BUFFER

A compile-time code scheduler improves the performance of VLIW and superscalar proces-

sors by exposing simultaneously executable instructions to the hardware. To be e�ective, the

scheduler must be able to reorder instructions freely within the scheduling scope. Unfortunately,

compile-time code reordering is often inhibited by potential dependences between memory ref-

erence instructions. Because memory references often occur on program critical paths, such loss

of code reordering opportunities can limit the e�ectiveness of compile-time code scheduling.

Figure 5.1 shows three schedules with di�erent code reordering constraints. The load and

ALU latencies are assumed to be two and one cycles, respectively. Assume that data loaded by

load1 (load2) are used by alu1 (alu2) whose result is in turn used by store1 (store2). Further

assume that store1 and load2 form an ambiguous reference pair. Figure 5.1(a) shows a total

serial code segment by assuming a dependence between store1 and load2. If load2 is allowed

to be moved above store1, a better schedule can be derived as shown in Figure 5.1(b). Note

that in Figure 5.1(b), the performance improvement is limited by the fact that alu2 cannot be

moved above store2. If this constraint can be eliminated to further allow alu2 to move above

store 1, then the improved code schedule is shown in Figure 5.1(c).

In Section 5.1, an architectural feature referred to as the memory con
ict bu�er (MCB) is

introduced to increase the opportunities of compiler-time code reordering. This is achieved by

removing the dependence between a store/load pair when they seldom access the same location.

With the MCB, a memory load and its dependent instructions can be moved above any number

49

(a) No code reordering

t1: load1

t2: nop

t3: alu1

t4: store1

t5: load2

t6: nop

t7: alu2

t8: store2

(b) Load/store reordering only

t1: load1

t2: load2

t3: alu1

t4: store1

t5: alu2

t6: store2

(c) No constraint

t1: load1 load2

t2: nop nop

t3: alu1 alu2

t4: store1 store2

Figure 5.1 E�ect of architectural support on compile-time code scheduling.

of ambiguous stores. Section 5.2 discusses a set of compiler algorithms and its implementation

to take advantage of the MCB hardware. The e�ectiveness of this scheme is evaluated for a set

of nonnumeric benchmarks in Section 5.3.

5.1 Architectural Support

When a load is moved above an ambiguous store, the load becomes a preload. Instructions

that use the preloaded data are also free to move above the ambiguous store. The MCB

hardware supports such code reordering by (1) detecting the situation in which the ambiguous

reference pair access the same location and (2) invoking a correction code sequence supplied

by the compiler to restore the correctness of the program execution. The situation in which

a preload and an ambiguous store access the same location will be referred to as a con
ict

between the ambiguous reference pair. When this happens, the computation involving the

preload destination register must be redone.

The MCB hardware is physically located close to the on-chip data cache if there is one.

Otherwise, it should be located close to the load/store address pads leading to the o�-chip data

cache. As a separate entity, the MCB support does not alter the CPU register �le design. In this

50

.

.

.

.

.

.

Load
Address

Store
Address

Conflict
Vector

Address
Register
File

Fully
Associative
Comparators

ValidAddress

.

.

.

.

.

.

Comparator

Comparator

Comparator

Comparator

Decoder

Check
Rd #

.

.

.

.

.

.

.

.

.

.

.

.

Preload
Dest #

Decoder

Conflict
Status

Figure 5.2 Full-scale MCB design.

section, we present two alternative MCB designs to illustrate the cost performance trade-o�s

involved.

5.1.1 Full-scale MCB design

Figure 5.2 shows a full-scale design of the MCB. One address register is provided for every

general-purpose register de�ned in the instruction set architecture. In addition, one con
ict bit

is associated with each general purpose register to keep track of the occurrences of con
icts.

This design is suitable for supporting processors with a moderate number of general-purpose

registers. An alternative design for supporting processors with a large number of general-

purpose registers will be described in the next section.

Each address register contains a valid bit and a virtual address. When a preload is executed,

its destination register number is used to select the corresponding address register. The preload

deposits its virtual address into the address register and marks the address register valid. Note

that for a processor that supports the execution of multiple preload instructions per cycle, the

51

address register �le must be multiported to allow simultaneous insertion of multiple preload

addresses.

When a store instruction is executed, its virtual address is compared against all valid preload

addresses in the address register �le. This requires fully associative comparison and therefore

limits the number of general-purpose registers that can be e�ciently supported by this design.

If a match occurs in an address register, the corresponding bit in the con
ict vector is set. By

setting the con
ict bit for a general-purpose register, the store signals the need to reload this

register from memory and to re-execute its dependent instructions. Note that there can be

multiple preloads that match with the same store. Therefore, the comparators are designed to

independently set their corresponding con
ict bits.

A new conditional branch opcode, check, has to be added to the instruction set. The format

of the check instruction is as follows:

check Rd, Label

where Rd is a general-purpose register number, and Label speci�es the starting address of the

correction code supplied by the compiler. When a check instruction is executed, the con
ict bit

for Rd is examined. If the con
ict bit is set, the processor performs a branch to the correction

code marked by Label. The correction code provides for re-execution of the preload and its

dependent instructions. A branch instruction at the end of the correction code brings the

execution back to the instruction immediately after the check. Normal execution resumes from

this point.

The con
ict bits are reset in two ways. First, a check instruction resets the con
ict bit for

register Rd as a side e�ect. Second, any preload that deposits a value into a general-purpose

52

register also resets the corresponding con
ict bit. As far as the valid bits are concerned, a check

instruction resets the valid bit in Rd's address register.

Whenever a general-purpose register has to be saved to the memory due to context switches,

neither the con
ict bit nor the address register requires saving. The only requirement is that the

hardware set all of the con
ict bits when the register contents are restored from memory. This

simple scheme causes a performance penalty only when a preload destination register is saved

before it is examined by a check instruction. Thus the concern is that extra invocations of the

correction code due to context switching will occur. However, from our experience, this overhead

is negligible for systems with context switch intervals of more than 100,000 instructions. Issues

concerning procedure calls and register spills are discussed in Section 5.2.

Note that only preloads, stores, and checks have to access the address registers and the

con
ict vector. These accesses are performed in parallel with the data cache access. Thus,

the timing constraints for accessing MCB are the same as those for accessing the data cache.

Because the MCB support does not alter the design of the general-purpose register �le, it is

unlikely to a�ect the processor pipeline timing.

5.1.2 Set-associative MCB design

In this section, we present a set-associative design of MCB in which the number of com-

parators used does not increase with the number of general-purpose registers. Therefore, the

design is suitable for processors with a large number of general-purpose registers. Figure 5.3

illustrates the design.

Each address register in the set-associative design contains a valid bit, a virtual address,

and a general-purpose register number. These address registers are organized into S sets of

53

Conflict
Status

Valid Addr Reg# Valid Addr Reg# Valid Addr Reg#Valid Addr Reg#
Hash

Func

Comparator Comparator Comparator Comparator

Store
Addr

Preload
and
Store
Addr

Preload
Addr

Decoder Decoder Decoder Decoder

+ +

.

. .

Conflict vector

Check Rd#

Decoder

. .

Reverse pointer to set entry

Figure 5.3 A 4-way set-associative MCB design.

54

N entries each. As in the full-scale MCB design, one con
ict bit is still associated with each

general-purpose register. When a preload instruction is executed, its virtual address is hashed

to select a set. If there is an invalid entry in the set, the entry will be used to host the virtual

address and the destination register number of the preload. If all entries are valid, the MCB

controller carries out the following replacement policy:

(1) If there is an entry that has been marked for replacement by the approximate LRU algo-

rithm to be described below, the entry is purged to make room for the incoming preload.

This rule is used to prevent stale preload addresses from occupying useful MCB space due

to incorrect compile-time branch prediction. The general-purpose register number of the

replaced entry is used to set its corresponding con
ict bit.

(2) If there is no entry found according to the previous rule, no entry is replaced. Rather,

the incoming preload is rejected from the MCB. The con
ict bit of its destination register

is set. This will force the processor to invoke the correction code upon executing the

corresponding check instruction. The rationale behind this rule will become clear after

we explain the handling of stores.

To support the approximate LRU algorithm, a two-bit age counter is added to each address

register. The age counter is initialized to 11 when a preload deposits into the address register.

The hardware periodically decrements the age counters of all address registers. Once an age

counter reaches 0, it is not further decremented. The decrement of age counters can be done as

a background activity in parallel with the normal accesses to the address registers. By making

the period of decrementing reasonably large, this method identi�es potentially stale address

registers when their age counters reach 0.

55

When a memory store is executed, its address is also hashed to determine the set of address

registers to compare with. This set-associative design reduces the size of comparators to the

number of entries within a set (N). Typically, N is a small number, e.g., 4, compared to the

total number of general-purpose registers. If a con
ict is detected, the con
ict bit pointed to by

the preload destination register number is set, and the valid bit of the corresponding address

register is reset. Since there can be up to N con
icts detected for a store, the con
ict vector

has N write ports. Program execution continues until a check instruction discovers the con
ict

and invokes the con
ict correction code.

Note that the valid bit of an address register is reset immediately after a con
ict is detected

with the address register. Therefore, if all of the address registers in a selected set are valid,

these entries have survived all of the stores they have encountered so far. They will typically

have to survive fewer stores than the incoming preload address. Therefore, in rule (2) of the

replacement policy, we choose to reject the incoming preload rather than replacing existing

valid address registers.

5.1.3 Hash MCB design

In this section, we introduce the hash MCB design in which the address comparisons are

eliminated. The hash MCB design provides full MCB functionality except that the address

comparison is replaced by a hashing function. This alternative approach requires the same

preload and check instructions. However, the MCB is implemented as a direct-mapped bu�er,

based upon some hashing of the memory address.

Figure 5.4 shows the block diagram of the hash MCB design. When a preload occurs, the

address of the preload is hashed to determine the corresponding MCB location. The destination

56

Conflict
Bits

D
E
C
O
D
E
R

Check
Reg# .

.

.

. HASH

Reg #

Preload/
Store
Address

D
E
C
O
D
E
R

MCB
Location

D
E
C
O
D
E
R

conflict

vEntry#
ptr

Figure 5.4 Hashing MCB design.

register number of the preload is stored in the MCB and the valid
ag is set. Additionally, the

pointer of the con
ict bit is pointed to the MCB location being accessed and the con
ict bit

is reset. If the MCB location is originally valid, then the replacement causes the con
ict bit

corresponding to the replaced register number to be set. The associated pointer is set to null.

When a store occurs, the address of the store is hashed to determine the corresponding

MCB location. If the MCB location is invalid, no further action is needed. If the MCB location

is valid, then the register number is used to select and set the con
ict bit. The associated

pointer is set to null. Furthermore, the MCB location is invalidated.

A con
ict is generated for a valid MCB entry when 1) it is removed by another preload which

hashes to the same entry and 2) a store hashes to the same entry. The con
ict is detected by

the check instruction. The check instruction examines the valid bit. A con
ict bit which is set

generates a con
ict signal; thus the con
ict correction code is executed. The con
ict bit is reset

at this point. However if the con
ict bit is originally not set, the MCB location pointed to by

the con
ict bit pointer is invalidated to prevent unnecessary con
icts later.

57

This hash MCB approach will detect all true load/store address con
icts. However, it su�ers

from false con
icts because addresses are hashed rather than fully compared. There are two

types of false con
icts: load/load con
icts and load/store con
icts. All load/load con
icts are

false con
icts; these false con
icts result when two loads, possibly to di�erent addresses, hash

into the same MCB location. To make room in the MCB and ensure that no true con
icts

are missed, we must assume that the load purged from the MCB would have con
icted with a

subsequent store. Many load/store con
icts may also be false, because con
ict is assumed based

upon an address hashing rather than a full comparison. False con
icts cause no problem to

the correct execution of the program; however, they impact performance due to the execution

of unnecessary correction code. Thus, the hashing MCB approach su�ers from some level of

performance degradation as compared to the full comparison approach due to false con
icts.

5.1.4 Handling variable data sizes

Many instruction set architectures allow memory references to have byte addressability

and variable data sizes. One might argue that these features can potentially complicate the

MCB con
ict detection mechanism. However, this complication does not usually occur due to

the way memory access is implemented in processors. To keep the cache design simple, the

processor/cache interface often has logic to perform byte shifting and sign/zero extension. As

a result, the cache can be simply accessed with aligned word requests. However, more false

load/load con
ict will be seen in hashing MCB. Since MCB is physically close to the cache,

it can be accessed in the same manner as the cache. The only additional support required is

for the CPU to provide a mask about the bytes that are actually accessed in a request. This

information is recorded in the address register and is used in detecting con
icts. For a store

58

(a)

11 10 01 00

D
E
C
O
D
E
R

.

.

.

.

.

.

.

HASH

(b)

ld_char R1, 0017

11 10 01 00
MCB Location

R1

st_word R2, 0016R2 R2 R2 R2

Conflict Bit

R1

R2

R1

R2

0

0

1

0

Figure 5.5 (a) MCB extension to di�erentiate between access sizes and (b) an illustrative
example.

to con
ict with a preload, the logical AND of the masks must be nonzero and the two-word

addresses must match. The mask allows two accesses to di�erent bytes of the same word to be

identi�ed as independent of each other.

Providing the access mask, however, does not work as well for the hash MCB design when

byte and half-word accesses are supported within the architecture. To ensure that accesses

within the same word boundary are hashed into the same entry, lower-order bits of the address

must be ignored during address hashing. This will degrade the performance of programs making

frequent sequential byte or half-word accesses, since the di�erent lower-order bits do not matter

during hashing and the respective addresses will map to the same entry.

Extending the MCB entry in size to allow distinctions between byte, half-word, and word

accesses resolves the problem. A block diagram of the proposed extension is shown in Fig-

ure 5.5(a). Memory con
ict bu�er operation with the extended entries is the same as before

except that only the subentry is a�ected by the particular access. For example (in Figure 5.5(b)),

59

a byte access can modify only one of the four subentries which it is hashed into. For a word

access, all four subentries are modi�ed.

5.1.5 Speculative execution

Speculative execution has been used in the literature to refer to executing an instruction

before knowing that its execution is required. By moving an instruction above preceding condi-

tional branches, an instruction is executed speculatively. In this thesis, we extend the de�nition

of speculative execution to refer to executing an instruction before knowing that it can be ex-

ecuted correctly. Instructions thus executed will be referred to as speculative instructions. In

particular, a preload and its dependent instructions are executed before knowing if the preload

will con
ict with a store. The execution of these speculative instructions must be corrected if

a con
ict occurs.

There are two aspects of correcting the execution of speculative instructions. One is to

correct the values generated by these instructions. The compiler algorithm described in the

Section 5.2 ful�lls this requirement through intelligent compile-time renaming and register as-

signment. The more di�cult aspect is to correctly handle exceptions. Since the value preloaded

into the register may not be correct, there is a chance that a
ow-dependent instruction that

uses the preload result may cause an exception. In the example of Figure 5.6, if r1 equals r2,

then the value 7 is loaded into r3 in the original code segment. However, the value 0 may

be preloaded into r3, in which case the divide instruction will cause an exception. Since the

exception is due to an incorrect execution sequence, it must be ignored.

A solution is to provide architectural support to suppress the exceptions for speculative in-

structions [33]. A potential trap causing instruction executed speculatively should be converted

60

(a) Original

store (r1) <- 7

load r3 <- (r2)

div r4 <- r4,r3

(b) With preload

preload r3 <- (r2)

div r4 <- r4,r3

store (r1) <- 7

check r3, L3

Figure 5.6 Example showing the problem of speculative execution.

into the nontrapping version of the instruction. Therefore, the exception caused by the divide

instruction in the example above would be ignored. However, the exception should be reported

if there is no con
ict between the preload and the store. A scheme for the precise detection of

exceptions with speculative execution has been proposed and evaluated by Mahlke et al. [29]

5.1.6 A prototype implementation

A gate-level design of the set-associative MCB has been completed, allowing us to estimate

transistor count by computing the equivalence in gate count. The design is broken down into

�ve components (Figure 5.3): 1) the hashing function, 2) preload address register storage for

the e�ective addresses and register numbers, 3) the chooser for MCB entry selection, 4) the

con
ict bit and the reverse entry pointers, and 5) the control logic.

The hashing function, based upon XOR gates, performs permutation-based hashing on

the e�ective address. Including in the hashing function logic is the decoder which selects the

appropriate MCB set. The preload address registers store the incoming preload address and

preload destination register numbers. The chooser selects the con
ict bit location marked by

one of the valid entries of preload address registers. The chooser also serves the purpose of

reversing the selection process from the con
ict bit to one of the preload address registers for

invalidation. The con
ict bit, one for each physical register, is set if the store address matches

the preload address selected. The reverse entry pointer associated with each con
ict bit points

61

Table 5.1 MCB components and transister count.

Component Transistor Count Component Characteristics

Hash function 500 XORs outputing 6 hash address bits
6 to 64 entry decoder

Address register 48700 64 address registers holding 32 bits each for address
and 6 bits each for register number

Chooser 1000 Quadruple 2-line-to-1-line data multiplexers

Con
ict bit 7700 64 con
ict bits with reverse pointers

Control logic 2200 Controller made from JK
ip-
ops

TOTAL 60100

to the preload address register which causes the address match. The critical path created by

the MCB circuit is thirteen gate delays, for both the preload and the store instructions.

An approximation of the transister count for the prototype implementation in CMOS tech-

nology is listed in Table 5.1. The transister count is based upon a MCB employing 64 MCB

address registers, divided into 32 sets of 2 address registers. Each address register is required

to store a 32-bit e�ective preload address. The table also assumes 32 integer registers and 32

oating-point registers for the register number storage requirement computation. It is clear

from the table that address storage requires the greatest number of hardware resources. When

the MCB design is scaled upward to include more address registers, mainly the address register

part of the component will scale linearly. Other hardware increases will be in the hash function

and chooser section due to the increase in bits to index into the address registers.

5.2 Compiler Aspects of Memory Con
ict Bu�er

To take full advantage of the MCB support, a compiler must be able to intelligently reorder

ambiguous store/load pairs, insert check instructions, generate correction code, and e�ectively

62

allocate registers for preloads. In this section, we discuss the compiler algorithms for exploiting

the MCB support.

5.2.1 MCB instruction scheduling

To allow a selected load to move above an ambiguous store, the dependence arc between

the two instructions is removed. This allows the compiler freedom to convert the load into a

preload and to schedule dependent instructions of the preload above ambiguous stores. Then,

a check instruction is placed immediately after the �rst ambiguous store the preload moved

above. The code scheduler is restricted to not scheduling ambiguous stores and the check in the

same cycle. Also, virtual register renaming must be performed to preserve all source operands

used within the con
ict correction code that are destroyed by antidependent instructions.

The basic MCB scheduling preprocessing involves the following steps:

(1) Build memory dependence graph.

(2) For each load, remove memory dependences selected by heuristics and add the source of

the store of the removed dependence into the load's ambiguous store set (AS).

(3) Add one check instruction for each load with at least one memory dependence arc removed.

(4) Build complete dependence graph.

The heuristics for memory dependence removal involve picking cases in which con
icting ad-

dresses are unlikely. Three major classes of heuristics are used with success. One, the depen-

dence of memory instructions using the same register with di�erent de�ne-reach is removed.

The rationale behind this heuristic is that if the addresses are computed di�erently, then they

must usually point to di�erent addresses. Two, even though the address bases are di�erent reg-

63

isters, we remove the dependence between memory instructions with di�erent integer o�sets.

Three, indirect accesses are assumed to always di�er from one another.

The list scheduling algorithm is modi�ed to accommodate the check instructions. The

following changes are made:

(1) When scheduling a load L, if any AS member is not scheduled yet, then con�rm L as

preload, else L is an ordinary load.

(2) When scheduling a check, if the corresponding load is an ordinary load, then delete the

check from the instruction sequence, else schedule the check as an instruction.

(3) Keep track of the set of stores scheduled thus far.

(4) Preserve source operands of re-executed instructions.

5.2.2 Con
ict correction code

The compiler provides con
ict correction code for each preload instruction. The con
ict

correction code for a preload is invoked by its corresponding check instruction when con
icts

have been detected. The correction code repairs program execution of the preload and all

dependent instructions up to the point of the check. The dependent instructions of the preload

may be re-executed provided there are no antidependent instructions which overwrite their

source operand values. The compiler enforces this property by virtual register renaming and

extending the live range of source registers until the check instruction.

Generation of the con
ict correction code involves the following steps:

(1) For every preload P, mark P and all of P's
ow-dependent instructions between P and its

check.

64

(2) Copy marked instructions into a recovery block.

(3) Generate a label for the recovery block.

(4) Deposit the label into the check instruction.

(5) Tail duplicate fall through path to the con
ict correction code.

(6) Extend register live range through check instruction to preserve the contents of the source

register of re-executed instructions.

Tail duplication is performed because the superblock scheduling algorithm is used, and su-

perblock prohibits any side entrances into the superblock. Tail duplication is also necessary to

preserve superblock's scheduling scope.

5.2.3 Register allocation

Aggressive exploitation of the MCB support can increase the apparent register pressure.

The problem is that the preload destination registers tend to have long live ranges because they

are apparently used by the check instruction. However, a clever register allocation method can

eliminate much of the increase in register pressure by making the following observation:

If a preload destination register is recycled to hold the result of a nonpreload in-

struction, the contents of the corresponding address register remain active for the

preload.

This is because only preload, store, and check instructions can a�ect the contents of the MCB.

Therefore, while the preload destination register now holds the result of a nonpreload instruc-

tion, the corresponding address register continues to monitor con
ict conditions for the preload.

65

Therefore, the prolonged live range for preload destination registers a�ects only register recy-

cling among preloads. This observation leads to the following modi�ed form of Chaitin's graph

coloring algorithm [34].

The modi�ed algorithm builds the interference graph in two steps. In step one, an inter-

ference graph is built among all preload destination registers. At this point, a preliminary

register allocation identi�es the preload registers that can be potentially spilled due to insu�-

cient physical registers. The preloads whose destination registers are spilled are moved back to

their original positions. All of the remaining preloads are now guaranteed to reside in physical

registers for their whole lifetime.

In the second step, the nonpreload-destination live ranges are added into the interference

graph. The interference graph is constructed again with all check instructions ignored. Note

also that live ranges are extended for the source operands of the instructions which are
ow

dependent upon the preload instruction. The live range is extended to the con
ict correction

code pointed to by the corresponding check instruction. This is to prevent antidependence

from forming during the physical register allocation phase. Antidependence can destroy register

content which is needed for recovery. The new interference graph is merged with that produced

in the �rst step by taking the union of all of the edges. The �nal register allocation is then

performed by giving preload destination live ranges much higher priority than the other live

ranges.

The modi�ed register allocation algorithm is best illustrated with an example. In Figure 5.7,

as far as other preloads are concerned, the preload destination virtual register vr1 is live until

check vr1. The interference produced in step 1 is shown in Figure 5.8(a). According to the

interference graph, vr1 and vr2 must be assigned into di�erent physical registers, r1 and r2 in

66

preload vr1 <- mapping vr1 to r1

preload vr2 <- mapping vr2 to r2

store mapping vr3 to r1

last-use1 <- vr1

any-define vr3 <-

last-use2 <- vr2

check vr1

check vr2

Figure 5.7 Register assignment of an example code segment.

vr1

vr2

vr1

vr2 vr3

(a) (b)r1

r2

r1

r2 r3

Figure 5.8 Example interference graph. (a) Interference graph for address registers only, and
(b) interference graph for combined address and data registers.

this example. However, as far as the nonpreload live ranges are concerned, the live range of vr1

ends with last-use1. This is re
ected in the interference graph produced in Step 2 as shown in

Figure 5.8(b). Therefore, virtual register vr3 can reside in the same physical register as vr1.

They are both assigned to r1 in our example. This is correct because the address register that

corresponds to r1 still contains the preload address, and the con
ict detection will continue

until the appropriate check instruction.

5.2.4 Dependence pro�ling

The execution of con
ict correction code incurs run-time overhead. If the overhead due

to executing con
ict correction code is greater than bene�t of code reordering, then an overall

decrease in program performance will occur. Thus, it is important to minimize the invocation of

con
ict correction code. This leads to the idea of dependence pro�ling, a technique to estimate

67

load/store address con
icts using run-time information. This information is then used by the

compiler to make code reordering decisions.

The basic concept behind dependence pro�ling is to collect the frequency of con
icts between

each ambiguous store/load pair at run time. Ideally, the address of each memory store should be

compared against all subsequent load addresses. However, this would require too much storage

and instrumentation time for the pro�ler. To solve this problem, the compiler �rst marks

those ambiguous store/load pairs which an aggressive code scheduler would reorder to improve

performance. Only the con
ict status of these relevant store-load pairs is recorded during

dependence pro�ling. In our prototype implementation, this selective dependence pro�ling

approach successfully keeps the pro�ling cost under control. After dependence pro�ling, the

compiler utilizes the con
ict frequency and a con
ict threshold value to make code reordering

decisions.

An important bene�t of dependence pro�ling is to minimize the negative impact of con-

ict correction code on the instruction cache performance. Due to dependence pro�ling, the

invocation frequency of the correction code can be kept low. By placing all of the correction

code at the end of the function, the compiler can practically eliminate the negative impact on

the instruction cache performance. The performance of dependence pro�le for MCB has been

evaluated in [35]. It will not be discussed further in this thesis.

5.2.5 Veri�cation of transformed code

After compiler transformations, the optimizations done must be veri�ed to ensure the pro-

gram's correctness. Since formal proof of correctness is unavailable and no machine incorporat-

ing MCB has been built, the program correctness is done by inserting emulation instructions

68

I1: R1 = R2

I2: M(R3+R7) = R1

I3: R4 = M(R5+R8)

I4: R6 = R4+1

I3’:check R4, same

I1: R1 = R2

I2: M(R3+R7) = R1

I3: R4 = M(R5+R8)

I4: R6 = R4+1

 R11 = R5+R8

 R12 = R3+R7

 ld_id = I3

 st_id = I2

 ld_addr = R11

 st_addr = R12

 check_addr(ld_id,st_id,ld_addr,st_addr)

 if (result ==1) same

same: R4 = M(R5+R8)

R6 = R4+1

result

Original code Emulated code

Figure 5.9 Emulation code to perform veri�cation.

and executing the program on existing machines. Figure 5.9 shows the original code segment

and the code segment with emulation instructions. Preload and store addresses are computed

and preserved. The check instruction is emulated by a subroutine call which looks for address

overlap. An actual conditional branch instruction is used in place of the nonexisting check.

Since most architectures have no nontrapping hardware to support speculative execution, the

UNIX utility signal is used to ignore all exceptions. The program output is compared against

correct program output for veri�cation.

69

5.3 Experimental Evaluation of Memory Con
ict Bu�er

Memory con
ict bu�er can assist many code reordering techniques, including trace schedul-

ing [36], superblock scheduling [37], and software pipelining [38], [39]. In this section, we report

our evaluation results based on superblock scheduling.

5.3.1 Evaluation methodology

The compiler algorithms described in Section 5.2 have been implemented in the IMPACT-I

compiler. The performance implication of MCB is evaluated with a benchmark set that consists

of nine control intensive nonnumeric programs, cmp, compress, eqn, espresso, grep, qsort, wc,

xlisp, and yacc. The processors modeled in the simulation are superscalar architectures that

are capable of dispatching four and eight instructions per clock cycle. The function units are

pipelined and uniform for all issue rates. Latencies for all instructions are the same as in

Table 4.4 except that the load and preload latencies are �xed at two. The processor includes

64-entry integer and 64-entry
oating-point register banks.

5.3.2 Check instruction characteristics

Table 5.2 lists for each benchmark the total dynamic number of check instructions executed

and the percentage of the total dynamic instructions that are checks. The percentage of check

instructions ranges from 2.3% to 11.5% in a four-issue machine and 2.7% to 20.9% in an eight-

issue machine. The number of check instructions executed can account for a large percentage

of the instruction overhead due to MCB support. This amount of dynamic instruction increase

requires a high issue rate architecture to absorb the cost of added instruction bandwidth. The

table also lists the number of true con
icts, as would be seen by the full-scale MCB design.

70

Table 5.2 Check statistics.

Issue 4 Issue 8

Benchmark Checks % of Total True Con
icts Checks % of Total True Con
icts

cmp 284302 11.5% 0 576592 20.9% 0

comp 211889 4.0% 0 245846 4.4% 0

eqn 156043 4.9% 24 156979 4.9% 24

espresso 1303616 4.7% 23449 1323437 4.7% 21928

grep 108938 7.4% 0 108938 7.2% 0

qsort 5270713 9.0% 0 7875682 12.4% 0

wc 157469 9.3% 0 170697 10.0% 0

xlisp 616897 7.6% 20177 710271 8.3% 20177

yacc 412302 2.3% 7 525404 2.7% 301

Looking at Table 5.2, eqn, espresso, xlisp and yacc are the only benchmarks in which true

con
icts are observed. Although some of the con
icts are due to poor judgement in dependence

removal during MCB scheduling, most of these true con
icts are due to con
icting pointers and

structure accesses.

5.3.3 Full-scale MCB evaluation

The speedup of the benchmarks with MCB support over a four-issue machine without MCB

support is presented in Figures 5.10 and 5.11. There are three points associated with each

benchmark. The connected points between the benchmarks in the middle represent the base

architecture speedup without MCB support. For the remaining two points for each benchmark,

the upper point present the benchmark speedup with MCB over the base. As for the lower point,

MCB support is not included in a less expensive version of the same architecture. However,

for compatibility reasons, the same program must execute on all versions of the architecture.

The lower point shows the worst-case performance in which every check instruction executed is

taken; the full penalty of con
ict correction code is taken.

71

0.6

0.7

0.8

0.9

1

1.1

1.2

cmp compress eqn espresso grep qsort wc xlisp yacc

B
e
s
t

a
n
d

W
o
r
s
t

C
a
s
e
s

Benchmarks

Figure 5.10 Best and worst cases, 4 issue.

The positive performance increase ranges from over 2% to 19% over a four-issue base.

Compress and qsort are the only benchmarks which resulted in a performance degradation on

a four-issue machine (Figure 5.10). After closer examination, the problem is di�erent for both

benchmarks. For compress, static branch prediction is the problem. A frequently executed

superblock is exited early most of the time. The more aggressive MCB scheduling algorithm

prolonged the execution time before the exiting branch by one cycle as compared to the no-

MCB scheduling scheme. Therefore, the performance degradation is not a result of executing the

con
ict correction code, but it is actually a product of a less ideal schedule. Benchmark Qsort,

on the other hand, takes its performance hit with an overuse of physical registers. Due to a

more aggressive schedule and the preservation of the source operands, qsort experiences slightly

more register pressure and therefore more register spills. The register spill code lengthens the

schedule, thus resulting in the performance loss.

72

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

cmp compress eqn espresso grep qsort wc xlisp yacc

B
e
s
t

a
n
d

W
o
r
s
t

C
a
s
e
s

Benchmarks

Figure 5.11 Best and worst cases, 8 issue.

Increasing the issue rate from four to eight also increases performance, as seen in Figure 5.11.

Without MCB support, the speedup over a four-issue base ranges from 7% to 46%. However,

additional performance gain is observed by providing MCB support, giving performance gain

ranges from 24% to 91%. Eight-issue machines bene�t more from MCB than a four-issue

machine due to a greater need for independent instructions and more available instruction slots

to hide the overhead of check instructions.

5.3.4 Hash MCB evaluation

Hash MCB design provides a less expensive alternative. However, due to its dynamic nature,

the e�ectiveness of the hash design must be evaluated. The hashing function used in the

evaluation is a permutation-based hash function. Each bit in the hash address is computed by

XORing several di�erent preload/store address bits. Mathematically, it can be represented as

73

Table 5.3 Percentage of checks taken due to ld/ld or ld/st con
icts, issue 4 .

Benchmark Con
ict Number of Hash Entries
Type 8 16 32 64 128 256 512 1024

cmp ld/ld 3.30% 1.64% 0.82% 0.41% 0.21% 0.11% 0.06% 0.04%
ld/st 3.77% 1.82% 0.91% 0.46% 0.22% 0.11% 0.05% 0.03%

compress ld/ld 9.22% 7.98% 0.88% 0.43% 0.22% 0.11% 0.05% 0.03%
ld/st 11.8% 4.89% 2.73% 1.42% 0.71% 0.35% 0.17% 0.11%

eqn ld/ld 0.43% 0.19% 0.10% 0.05% 0.03% 0.03% 0.02% 0.02%
ld/st 10.1% 4.21% 2.41% 1.11% 0.54% 0.28% 0.14% 0.09%

espresso ld/ld 21.8% 15.8% 12.1% 10.7% 10.0% 9.67% 9.56% 9.50%
ld/st 9.48% 6.16% 3.85% 3.10% 2.20% 2.09% 2.03% 1.97%

grep ld/ld 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ld/st 3.62% 2.08% 1.04% 0.70% 0.46% 0.33% 0.09% 0.02%

qsort ld/ld 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ld/st 15.0% 12.2% 3.00% 1.58% 0.85% 0.30% 0.12% 0.01%

wc ld/ld 0.31% 0.16% 0.08% 0.04% 0.02% 0.01% 0.00% 0.00%
ld/st 6.93% 3.43% 1.71% 0.85% 0.42% 0.20% 0.10% 0.04%

xlisp ld/ld 7.95% 4.35% 1.87% 0.90% 0.48% 0.34% 0.29% 0.21%
ld/st 14.2% 9.60% 6.64% 5.61% 4.90% 4.32% 4.18% 3.96%

yacc ld/ld 8.58% 6.85% 2.82% 1.42% 1.21% 1.08% 1.00% 0.99%
ld/st 8.81% 5.37% 2.77% 0.83% 0.39% 0.26% 0.17% 0.13%

matrix multiplication where hash address = A * address. The matrix A used in the simulation

is

0 1 1 0 0 1 0 0 1 1 0 1
1 0 1 1 0 1 1 0 1 0 0 0
0 1 0 1 1 1 0 1 0 0 1 1
1 0 0 0 1 0 1 1 0 1 1 0
0 1 0 1 0 1 1 1 0 1 0 1
1 1 1 0 1 0 0 0 1 1 0 0
1 0 1 0 1 1 0 0 1 1 1 0
1 1 0 0 0 0 1 1 1 0 1 1
1 0 1 1 1 0 1 0 0 0 1 1
0 0 1 1 0 1 0 1 0 1 0 1

The hash address generated is scaled down for the appropriate number of hash locations. Also,

the least signi�cant bits of the memory address are truncated to support byte, half-word, and

full word accesses.

74

Table 5.4 Percentage of checks taken due to ld/ld or ld/st con
icts, issue 8.

Benchmark Con
ict Number of Hash Entries
Type 8 16 32 64 128 256 512 1024

cmp ld/ld 4.59% 2.20% 1.09% 0.55% 0.26% 0.12% 0.05% 0.03%
ld/st 5.12% 2.40% 1.21% 0.61% 0.29% 0.13% 0.07% 0.03%

compress ld/ld 8.10% 6.94% 0.77% 0.39% 0.20% 0.10% 0.05% 0.03%
ld/st 11.9% 3.99% 2.21% 1.15% 0.57% 0.28% 0.14% 0.10%

eqn ld/ld 0.43% 0.18% 0.10% 0.05% 0.03% 0.02% 0.02% 0.01%
ld/st 10.1% 4.26% 2.47% 1.12% 0.55% 0.29% 0.15% 0.10%

espresso ld/ld 20.9% 15.5% 11.7% 10.6% 9.66% 9.29% 9.17% 9.18%
ld/st 8.99% 5.23% 2.87% 2.22% 1.93% 1.80% 1.74% 1.68%

grep ld/ld 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ld/st 5.62% 3.13% 1.60% 0.98% 0.59% 0.38% 0.12% 0.03%

qsort ld/ld 1.29% 1.15% 1.07% 1.07% 0.00% 0.00% 0.00% 0.00%
ld/st 16.5% 10.9% 3.76% 2.36% 1.94% 1.31% 1.13% 0.91%

wc ld/ld 0.29% 0.15% 0.08% 0.03% 0.01% 0.00% 0.00% 0.00%
ld/st 7.87% 3.91% 1.94% 0.97% 0.48% 0.24% 0.12% 0.05%

xlisp ld/ld 11.3% 4.58% 1.56% 0.98% 0.63% 0.39% 0.35% 0.29%
ld/st 13.8% 8.74% 6.64% 5.22% 4.10% 3.71% 3.58% 3.25%

yacc ld/ld 16.5% 12.1% 5.00% 2.22% 1.51% 1.39% 1.17% 1.16%
ld/st 7.92% 4.60% 2.62% 0.94% 0.44% 0.40% 0.26% 0.22%

The hash MCB performance is dominated by the number of false con
icts. All true con
icts

are detected. However, the additional false con
icts determine how well hash MCB designs

perform. To give an intuitive feeling, Tables 5.3 and 5.4 shows the percentage of the check

instructions that are taken due to false con
icts. The false con
icts are further divided into

ld/ld and ld/st con
icts. False con
icts level o� approximately around 32 to 64 hash table

entries. More hash table entries do not further reduce false con
icts signi�cantly.

The performance of hash MCB is shown in Figure 5.12 to 5.29. In addition, a performance

trade-o� is made on whether the extra preload instruction is actually necessary or not. By

eliminating the preload instruction, all load instructions will enter the MCB hardware. A

potential problem is that the false ld/ld con
ict may increase, therefore degrading performance.

Two curves are presented for each benchmark, partial preload and all preload. The partial

75

0.9

0.95

1

1.05

1.1

1.15

1.2

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.12 Hash MCB, cmp, 4 issue.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.13 Hash MCB, compress, 4 issue

preload curve shows the MCB performance with the addition of a preload instruction. In

contrast, the all preload curve allows all loads to enter the MCB hardware.

As expected, the performance curve reaches the asymptotic point around 32 to 64 MCB

entries. The asymptotic hash MCB performance is comparable to the full-scale MCB. Even

without the additional preload instructions, the hash MCB performance tracks the partial

preload curve closely. The only problem is espresso. Comparing Figures 5.10 and 5.11, espresso

achieves 10% and 25% performance improvement over the base, respectively. However, in the

hash MCB design, the asymptotic performance levels o� at 3% and 18% for four-issue and

eight-issue. This big drop is due to ld/ld con
icts observed in Tables 5.3 and 5.4. Espresso

uses right shifts in address computation. Therefore for several consecutive accesses, the preload

addresses are the same. This causes the same hash address to be generated and causes false

ld/ld con
icts. One way to avoid this is to recognize such address computation as dangerous

and disallow promotion to preload in such an instance.

76

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.14 Hash MCB, eqn, 4 issue

0.8

0.85

0.9

0.95

1

1.05

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.15 Hash MCB, espresso, 4 issue

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.16 Hash MCB, grep, 4 issue

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.17 Hash MCB, qsort, 4 issue

0.85

0.9

0.95

1

1.05

1.1

1.15

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.18 Hash MCB, wc, 4 issue

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.19 Hash MCB, xlisp, 4 issue

77

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.20 Hash MCB, yacc, 4 issue

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.21 Hash MCB, cmp, 8 issue

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.22 Hash MCB, compress, 8 issue

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.23 Hash MCB, eqn, 8 issue

0.9

0.95

1

1.05

1.1

1.15

1.2

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.24 Hash MCB, espresso, 8 issue

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.25 Hash MCB, grep, 8 issue

78

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.26 Hash MCB, qsort, 8 issue

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.27 Hash MCB, wc, 8 issue

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.28 Hash MCB, xlisp, 8 issue.

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

2 4 8 16 32 64 128

S
p
e
e
d
u
p

Hash Table Entries

partial preload
all preload

Figure 5.29 Hash MCB, yacc, 8 issue.

79

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p

Hash Table Entries

8 wide entry
4 wide entry

Figure 5.30 Hash entry trade-o� for grep, 4 issue.

5.3.5 MCB entry width evaluation

When the MCB entry width is increased to accommodate di�erent access sizes, the storage

area of MCB hardware increases proportionally. Byte and word accesses are the two most

common access sizes. We wish to evaluate whether an MCB entry can treat half-word accesses

the same as a word access, thus reducing each MCB entry by a factor of two. Figures 5.30 shows

grep on a four-issue processor and Figure 5.31 shows compress on an eight-issue processor. The

top curve shows the MCB performance supporting all access sizes. The lower curve shows the

MCB performance treating half-word accesses the same as word accesses. As can be seen, the

lower curve su�ers a large dip in performance as the number of MCB entries increases. The

asymptotic performance does not track well. The di�erence in performance, however, is not

due to half-word accesses but to sequential byte accesses. A half-word access consists of two

sequential byte accesses. When half-word accesses are ignored within MCB entries, information

regarding sequential byte accesses is lost. A byte access can replace another sequential byte

access within an MCB entry due to the loss of information. False ld/ld con
icts increase, and

80

1

1.05

1.1

1.15

1.2

1.25

1.3

2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p

Hash Table Entries

8 wide entry
4 wide entry

Figure 5.31 Hash entry trade-o� for compress, 8 issue.

performance decreases. These two benchmarks serve as an example of what would happen when

an MCB entry width is reduced. Therefore, full MCB entry width should be supported.

5.4 Summary of Memory Con
ict Bu�er

This chapter proposes an architectural feature, the memory con
ict bu�er (MCB) to in-

crease the opportunities of code reordering. This is achieved by removing the dependence

between a store/load pair when they seldom access the same location; thus a memory load

and its dependent instructions can be moved above any number of memory stores regardless of

the dependence relation between the load and the stores. The MCB hardware supports such

code reordering by detecting the situation in which the ambiguous reference pair access the

same location and subsequently invoking a correction code sequence supplied by the compiler

to restore the correctness of the program execution. The combination of these supports en-

able the compiler to expose instruction-level parallelism previously restricted by the store/load

dependences.

81

CHAPTER 6

PRELOAD BUFFER

Cost versus performance tradeo�s have resulted in system designs with fast processors, and

diverse speeds of memory subsystems. The disparity between the speeds of the memory sub-

systems creates longer communication delays which if not carefully managed, can eliminate

most of the bene�ts gained from a fast processor. Recently, several hardware and software

solutions to minimize the e�ect of this communication delay, or memory latency, have been

proposed. This chapter focuses on method of data preload to reduce this latency. First, a

complementary method, cache prefetching, is discussed. Then, the preload bu�er is introduced

to compensate for the de�ciency of cache prefetching.

6.1 Cache Prefetching and Memory Latency

Early cache loads with the assistance of an optimizing compiler is an e�ective means of

reducing the penalty of long memory access time beyond the primary cache. Among those,

cache prefetching is the most prominent one in recent literatures. However, cache prefetching

can cause cache pollution and its bene�t can be unpredictable. This section describes cache

prefetch, its variations, and its problems. Through the discussion, an attempt is made at

discovering what the preload support should encompass to overcome these problems.

82

6.1.1 Cache pollution

The main objective of data prefetching is to decrease the overall execution time of a given

application. Cache prefetching is typically performed for scienti�c applications, where the

performance of caches is often inadequate. Many scienti�c applications sweep through several

arrays that are larger than the current cache sizes. In this case, expecting a particular element

to survive replacement within the �rst level cache for repeated use is unlikely. Therefore, the

compiler attempts to bring the data to be used in the near future into the cache through

prefetching. The idea is to have the data available in the cache when the actual memory access

occurs. This, however, increases the requirements of the data cache. Now, the cache is expected

to hold not only the current working set, but also the future working set simultaneously. The

working set size that the cache is required to hold depends on the prefetch strategy and the

memory latency. If the working set requirement is larger than what the cache size can handle,

additional cache pollution will occur, thus degrading the cache performance further. In addition,

as cache pollution increases, o�-chip memory tra�c also increases. The cache behavior, however,

cannot be easily determined at compile time, and thus the bene�t of cache prefetching is

unpredictable.

6.1.2 Prefetch into the prefetch bu�er

The problem of cache pollution due to prefetching into the cache can be solved by prefetching

the data into a separate prefetch bu�er, which is organized as a fully associative FIFO queue [22].

The prefetch bu�er can be thought of as a second cache. The data cache holds the current

working set, and the prefetch bu�er holds the possible future working set. The processor

83

therefore operates on two separate caches. When the data in the prefetch bu�er are referenced,

the associated cache line for the data is transferred from the bu�er into the data cache.

The existence of a prefetch bu�er creates two problems: the associativity of the prefetch

bu�er and the coherence between the data cache and the prefetch bu�er. Implemented as a

cache with FIFO replacement policy, the prefetch bu�er size is proportional to the memory

latency of the system. Its size can become unreasonably large for full set associativity as

the memory latency increases. Reducing the associativity, on the other hand, increases the

probability of con
ict within the prefetch bu�er and causes additional unnecessary memory

tra�c.

Maintaining coherence between the data cache and the prefetch bu�er further complicates

the memory system design. Extra communication channels must exist between the cache and

the prefetch bu�er in order for the cache to inform the prefetch bu�er of any dirty data and

to transfer data from the bu�er to the cache. This extra channel complicates cache controller

design.

6.1.3 Prefetch into registers

The concept of increasing the distance between a load instruction and the use of the load

destination register is called register preloading. Since architectural registers are managed by

the compiler, the registers exhibit none of the cache pollution e�ects. Register preloading has

proved to be tolerant of the memory latency, but it achieves the objective at a large increase in

register usage [40]. This increase in register usage requires either nonconventional register �le

design or an increase in the size of the instruction. Also, additional problems are raised with

84

memory dependences and conditionals within the loop body since the value preloaded into the

register must be binding.

6.1.4 Prefetch for superscalar processors

To sustain its performance, a superscalar processor must be able to issue multiple memory

accesses per cycle [28]. This increase in the number of memory accesses further complicates the

problem of prefetching either into the cache or into a prefetch bu�er. In a superscalar processor,

a prefetch instruction must bypass more instructions to compensate for a given number of

cycles. Since more than one memory access can be executed per cycle, increasing the number

of instructions bypassed leads to more memory accesses executed between a given prefetch

instruction and its associated memory load instruction. Under these conditions, further cache

pollution may result. This also holds true for a lower associativity prefetch bu�er, because the

probability of a replacement within the prefetch bu�er increases proportionally. Although a fully

associative FIFO prefetch bu�er can alleviate the problem, the number of entries and the size

of the fully associative comparator can increase dramatically as the number of simultaneously

executable memory loads increases.

6.1.5 Prefetching architecture requirements

A new architecture for prefetching has to solve the following problems:

(1) Prefetching the future working set must not replace the present working set from the

cache.

(2) In maintaining coherence, the architectural support for prefetching must be disjoint from

the data cache to avoid increasing the bandwidth and complexity of the data cache.

85

(3) Associativity should be disallowed to avoid comparison overhead and reduce cycle time.

(4) Prefetched data must not be replaced or discarded unless it is deemed unnecessary.

(5) The architecture must be expandable as the number of simultaneously executable memory

loads increases per processor cycle.

This chapter presents the preload bu�er based on the above criteria. This support is shown

to be e�ective in reducing the miss ratio, the memory latency, and the memory tra�c for a set

of scienti�c benchmarks. The next section further explains the cache prefetching problem with

simulation results. In Section 6.3, the new preload architecture and compiler support are de-

scribed in detail. An algorithm for prefetching and preloading loops is presented in Section 6.4.

Section 6.5 presents the simulation result of the new prefetch architecture. Concluding remarks

are given in Section 6.6.

6.2 A Brief Empirical Study of Cache Prefetching

This section focuses on the inherent problems associated with cache prefetching. An in�nite-

sized prefetch bu�er is used in the simulation as a basis for the lower bound on the miss ratio.

Cache prefetching will be compared against our proposed preloading scheme using more realistic

parameters in Section 6.5.

All of the results reported are obtained using the execution-driven system simulation based

on actual compiled code. Within the context of this chapter, an issue-4 processor model has

been chosen to represent the base architecture. No restriction is placed on function unit usage.

As with the issue rate, the instruction latency also a�ects where the prefetch instruction is

inserted for a given memory latency. The instruction latencies shown in Table 4.4 are used for

86

Table 6.1 Miss ratio of benchmarks.

Miss Ratio

Benchmark 16K Cache 256K Cache

doduc 6.65% 0.15%

fpppp 3.15% 0.02%

matrix300 23.13% 13.66%

nasa7 31.82% 15.36%

tomcatv 25.59% 22.05%

our simulation (loads are �xed at two processor cycles). The assumed cache miss latency is

30 processor cycles. The simulation results reported in this section are based on single-level

direct-mapped write-through caches with a block size of 32 bytes. These caches are nonblocking

with no limit on outstanding requests.

Benchmarks with a signi�cant level of cache misses should be used to evaluate prefetch

schemes, since cache prefetch is needed only when the miss ratio is high. The miss ratios for �ve

benchmarks are shown in Table 6.1. Two of the benchmarks, doduc and fpppp, exhibit relatively

low miss ratios. By increasing the cache size, the misses almost completely disappear. Therefore,

these benchmarks will not be discussed further. High miss ratios, however, are observed for

matrix300, nasa7, and tomcatv, even with a 256K cache. Since increasing the cache size does not

su�ciently reduce the miss ratios, cache prefetching is considered as an alternative approach to

improving the memory access behavior. Further examination of the seven independent kernels

from nasa7 �nds that �ve of them, �t2d, cholsky, btrix, gmtry, and vpenta, have high miss

ratios. These �ve nasa7 kernels are studied separately along with matrix300 and tomcatv.

Figure 6.1 compares the miss ratios with and without prefetch support for three cache sizes.

The results of the fully associative prefetch bu�er are shown by the black bar. The data,

however, are not transferred to the cache from the prefetch bu�er upon use. The black bar

87

No Prefetch

Cache Prefetch

Prefetch with Buffer

1.0

0.5

N
o
r
m
a
l
i
z
e
d

M
i
s
s

R
a
t
i
o

4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k
matrix300 tomcatv fft2d cholsky btrix gmtry vpenta

Figure 6.1 Comparison of normalized miss ratios.

closely represents the ideal prefetch case and serves as a good basis for improvement over the

other two results. The black bar has nonzero results due to the start-up cost of prefetching and

the fact that non-inner-loop accesses are not prefetched. For each benchmark, the miss ratio is

normalized based on results for a 4K cache with no prefetching.

The e�ectiveness of cache prefetching is mixed with respect to the miss ratio. Prefetching

into the cache substantially reduces the miss ratio for all of the cache sizes shown formatrix300,

cholsky, and btrix. Most of the prefetched data for these three benchmarks are used before

replacement. In the case of the other four benchmarks, prefetching into the cache o�ers either

little improvement or actually degrades the cache performance. With a separate prefetch bu�er

to eliminate con
icts between current and future working sets, prefetching can potentially

reduce the miss ratio signi�cantly as shown by the black bar for all benchmarks. This graph has

clearly shown that the problems of block replacement and pollution are quite signi�cant when

cache prefetching is performed. The pollution e�ect causes the behavior of cache prefetching to

be unpredictable. This is an undesirable e�ect since the performance degradation can be large.

88

4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k

1.0

0.5

1.5

2.0

N
o
r
m
a
l
i
z
e
d

B
u
s

T
r
a
f
f
i
c

matrix300 tomcatv fft2d cholsky vpentagmtrybtrix

No Prefetch

Cache Prefetch

Figure 6.2 Comparison of normalized bus tra�c.

Miss ratio alone does not give a complete picture of the e�ects of cache prefetching. Bus traf-

�c must also be evaluated with respect to system performance. Figure 6.2 plots the normalized

bus tra�c for the no prefetch and prefetch cases.1

It is not surprising that the benchmarks with increased miss ratios due to prefetching exhibit

a dramatic increase in bus tra�c. We are also interested in the benchmarks with a decrease

in miss ratio, speci�cally matrix300, cholsky, and btrix. In all cases, the bus tra�c ratio is

higher than without prefetching. This increase in bus tra�c occurs when data elements in the

current working set are replaced by prefetched data elements and later reloaded from memory.

Depending on the amount of additional bus tra�c, the overall bene�t of prefetching can degrade

proportionally.

1This model assumes that prefetched data are not cached to ensure that there are no con
icts between the

current and future working sets. As a result, the miss ratio is low but the penalty for bus tra�c is high since

every prefetch is required to go o�-chip. The bus tra�c associated with an ideal case prefetch bu�er is therefore

omitted from the chapter.

89

To summarize, prefetching into the cache increases cache pollution which in turn creates

additional bus tra�c. The overall performance gain can be positive or negative, which leads to

unpredictable memory system behavior. The new prefetch architecture support must deal with

these issues. The e�ectiveness of the new architecture will be compared with cache prefetching

in Section 6.5 using a more detailed system simulation.

6.3 The Preload Bu�er

The preload bu�er is designed to solve the problems discussed previously. It has the following

characteristics:

� All preload data are stored within the preload bu�er. The data in the preload bu�er are

not transferred to the cache when used.

� The preload bu�er is a separate module from the data cache. No communication between

the data cache and the preload bu�er is necessary.

� The preload bu�er is employed to complement cache prefetch.

� No comparison of address tags is necessary to retrieve a preload bu�er entry. All entries

are directly accessible using an index.

� All preload data are mapped to some preload entry and will not be replaced by another

preload unless they are used or become unnecessary.

� The bus tra�c for each loop iteration is predictable.

� The preload bu�er is expandable with increasing instruction issue rate. Multiple accesses

to the preload bu�er are always possible without bank con
icts.

90

V

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Preload
Data

Preload
Address

Preload
Address
Entry
Selector

Incoming
Address
Counter

Outgoing
Address
Counter

Preload
Data
Entry
Selector

Incoming
Data
Counter

Outgoing
Data
Counter

Preload
Address

Preload
Data

VC

.

.

.

.

.

.

.

.

.

.

Buffer Output Latch

. . .

.

Figure 6.3 Hardware support for the preload bu�er.

6.3.1 Hardware organization

The hardware support for preload bu�er is shown in Figure 6.3. It consists of a bank of

data registers, a bank of memory address registers, and several data and address entry counters.

The data registers are used to hold preload data, and the memory address registers are used to

hold the e�ective preload addresses for data accesses. Each counter serves as an index into the

preload bu�er. The incoming counters are used to place an item within the preload bu�er. The

outgoing counters are used to obtain an item from the preload bu�er. The (V) bits indicate

when the preload address and preload data entries are valid. The (C) bit indicates the possibility

of a stale datum within the preload bu�er. The number of entries within the preload bu�er

is an architectural parameter that must be made known to the compiler to prevent erroneous

program execution.

91

Several new instructions are introduced into the instruction set to utilize the hardware.

They are init, preload, loadb, prestore, storeb, and skip. Except for the init instruction, input

operands are speci�ed for the other instructions. They have the following formats:

preload o�set(base-address)

loadb dest, o�set(base-address)

prestore o�set(base-address)

storeb o�set(base-address)

skip value

The loadb instruction exercises the preload bu�er instead of the cache. Otherwise, the loadb

instruction has the same semantics as a regular memory load instruction. The e�ective address

is calculated by adding the o�set to the base address. The operand for skip, Value, is an integer

specifying the increment for the outgoing data counter. We proceed to the discussion of the

preload bu�er operation for a loop without conditionals and without memory hazards using

the init, preload, and loadb instructions. Later in this section, the prestore, storeb and skip

instructions will be discussed as well as how they are used to deal with memory hazards and

conditionals.

6.3.2 Basic concept

The preload bu�er serves the memory loads within a single loop iteration as sequential

accesses. Each load operation should appear to the preload bu�er in its instruction fetch order.

It is therefore possible to map each memory load into some sequential entry within the preload

bu�er. Preloads to the preload bu�er can be viewed as "pushes onto the queue" and loads from

the preload bu�er as "pops from the queue."

92

Before executing any preload instructions, the init instruction is executed to reset the coun-

ters. All entries of preload data and preload addresses are also invalidated. The preload bu�er

is now ready for operation.

The preload instruction places the calculated e�ective address within the entry pointed to

by the incoming address counter. The preload address �eld of the entry is marked as valid.

For superscalar processors which can execute multiple preloads simultaneously, the e�ective

addresses are inserted sequentially into the address registers in their instruction fetch order.

The incoming address counter is then incremented by the appropriate o�set equal to the number

of addresses inserted. The address counter wraps around as it is incremented past the last

preload address entry. Note that the preload bu�er is a circular queue, and all addresses and

data are placed accordingly. The preload instruction does not a�ect any other counters.

The preload bu�er arbitrates for the system bus with the write bu�er and data cache through

a unique time stamp. All memory writes and reads should appear in order to ensure correctness.

The current preload to arbitrate for the system bus is a valid address entry pointed to by the

outgoing address counter. When the preload bu�er obtains the system bus, the transmitted

packet contains the preload address and the preload data entry location. The preload data entry

location is used to latch the returning data into the correct preload bu�er entry. Although this

method allows out-of-order return of preload data, it incurs additional bus tra�c from the

sending and receiving of the preload data entry location. An alternative solution is to provide

an incoming data counter and permit only the memory system to return in-order preload data.

We assume the existence of an incoming data counter for our simulation results. The preload

address �eld of an entry is marked invalid when the request is sent.

93

The preload data �eld of an entry is set to valid when the requested data are received. Due

to the lag time in the processing of the preloads, the incoming address counter will always lead

the outgoing address counter with the incoming data counter trailing. All subsequent memory

loads to the preload bu�er obtain their data from the entry pointed to by the outgoing data

counter. If the preload data entry is invalid and the associated memory register is valid, the

memory request has not returned and the access must wait for the request to return. When

the data are read, the entry is marked invalid as a side e�ect.

Due to memory coherence or context switching, data in the preload bu�er may be incorrect

or even unavailable. This is indicated by the coherence bit (C) of the preload bu�er. If the

coherence bit of the preload data entry is set, the load request is routed to the data cache.

The memory load instruction provides the e�ective address as usual. Details of the coherence

bit are explained in Sections 6.3.3 and 6.3.6. The outgoing data counter increments and wraps

around in a manner similar to all other counters of the preload bu�er.

Since preload instructions are inserted for all loop iterations, the last few iterations of the

loop may contain useless preloads. Upon exiting the loop, the init instruction is executed again.

The main purpose at this time is to invalidate all of the preload address registers. This prevents

the preload bu�er from sending residual preload requests.

Due to system bandwidth and lag time, di�erent spacings between each counter are antici-

pated. To clarify the relationship between the four pointers, an ordering between the address

and data counters is shown in Figure 6.4. The operation of the preload bu�er is shown with a

simple example given in Figure 6.5. The states of the preload bu�er are shown from a to h for

the code segment given.

94

.

.

.

.

.

.

.

.

.

.

.

Outgoing Address
Counter

Incoming Address
Counter

Outgoing Data
Counter

Incoming Data
Counter

Preload
Buffer
Entries

Direction of Queue

Distance determined mainly
by memory latency

Distance determined mainly
by how fast address bus
can take requests

Distance determined mainly
by how often and how fast
the processor executes
preloads

Figure 6.4 An ordering for the address and data counters.

preload(0)
preload(4)
.
.
loadb(0)
loadb(4)

valid

invalid

out
in

data addr
out
in

init

0
out

in out
in

preload(0)

0
4

out
in

out
in

request bus
preload(4)

0
4

out
in

out
in

out 0
4in

out
in

1

data back

0
4

in out
in

1
out 3

loadb(0)
data back

0
4

in out
in

1

out
3

loadb(4)

a) b)

c) d) e)

f) g)

intermediate
operations

intermediate
operations

out 0
4

in
out
in

1
3

h)

Figure 6.5 An example operation of the preload bu�er.

95

Instructions

preload 0(60)

preload 0(20)

store 0(60),r5

preload 0(60)

store 0(20),r3

loadb r8,0(60)

loadb r7,0(20)

preload 0(20)

Figure 6.6 Example coherence problem.

6.3.3 Memory dependences

Memory dependences pose a di�cult problem for the preload bu�er. For simplicity and

speed, the preload bu�er does not maintain coherence with the data cache. All values preloaded

are binding and may not necessarily re
ect the current memory state. If a memory location is

preloaded and later changed by a store, the value obtained by a later load is incorrect. This

problem is illustrated by the left column of Figure 6.6. Since addresses 20 and 60 were preloaded

and later updated by a stores, the values in the preload bu�er are stale. Thus, when the loadb

instructions for these preloads are executed, they will load the stale data.

To ensure correct program execution, we cannot preload a load if the preload has to bypass a

dependent store. For loops with de�nite short dependence distance2 between particular memory

references, we can choose to prefetch these loads into the cache. However, for some applications

(e.g., sparse matrix computations), nested array indexes pose di�culties in obtaining exact

dependence relations, and we do not want to discard the preload bu�er support. For this

situation, the prestore instruction and a prestore log (shown in Figure 6.7) are added to the

2We de�ne short dependence distance as a number of processor cycles that is less than the memory latency.

96

.

.

.

.

.

.

.

Hash
Func

+/- 1

= 0
Coherence
Status

.

.

.

.

Prestore
Address
Queue

Prestore
Address

Store Address
Preload Address

Figure 6.7 Design of a prestore log to maintain coherence.

architecture. These additions allow the preload to be converted into a cache load (prefetch) if

the preload address may con
ict with a later store address.

During compilation, prestores are generated along with preloads in sequential order. The

prestore instruction contains only information for the store address and not the store data. The

prestore instruction is a hint to the preload bu�er that there might be a later store (storeb) that

can a�ect the correctness of the data preloaded. Prestore does not make a memory request; it

a�ects only the contents of the prestore log. Three types of addresses enter the prestore log:

prestore, storeb, and preload. All addresses entering the prestore log are hashed to access an

entry. The prestore instruction adds one to the prestore log entry while the storeb instruction

subtracts one. Therefore, each entry contains the number of stores that may write to the same

address as a later preload that hashes into the same entry. The preload instruction checks

the prestore log entry before it sends the memory request to the system bus. If the log entry

content is greater than zero, a later store may a�ect the preload memory contents. Therefore,

the preload request is modi�ed to a cache load, and the corresponding C
ag is set. When the

load request for the preload data sees that the entry is unavailable due to a coherence problem,

the load request is routed to the data cache.

97

Prestore Coherence
Instructions Log Entry Status

0

prestore 0(60) 1

prestore 0(20) 2

preload 0(60) 2 1

preload 0(20) 2 1

store 0(60),r5 1

storeb 0(60) 1

preload 0(60) 1 1

store 0(20),r3 1

storeb 0(20) 0

loadb r8,0(60) 0

loadb r7,0(20) 0

preload 0(20) 0 0

Figure 6.8 Example coherence solution.

Figure 6.8 is used to clarify the concept. Addresses 60 and 20 hash into the same prestore

log entry. When prestore 0(60) and prestore 0(20) obtain the bus, no memory request is made.

The addresses 60 and 20, however, are hashed into the prestore log and the content of the entry

is appropriately increased. When later preloads execute, the same addresses hash into the same

entry. The prestore log notes that the content is greater than zero, and the coherence status is

set to one. The preload request is then aborted, and a cache load request is sent instead. Note

that even though the second preload from address 60 can obtain the correct memory content,

the preload is aborted due to mapping con
icts. The associated loadb instructions for addresses

20 and 60 will be redirected to the cache since their respective C bits are set. The prestore log

can be made less conservative by increasing the number of log entries to decrease the chance of

mapping con
icts. The last preload of address 20 will operate normally.

98

1

2

3

4

5

80 20

30
20

30

(a) Original flow graph

1

2

53

5

5

4

(b) After tail duplication

,

,,
50

Figure 6.9 Example
ow graph with conditionals.

Like the preload bu�er, the number of bits in each prestore log entry is an architectural

parameter that must be made known to the compiler. This is to prevent over
ow of the prestore

log entries.

6.3.4 Dealing with conditionals

All load instructions and their preload data entry locations are sequential as long as the same

sequence of memory loads is executed for all loop iterations. This may not be true, however,

for memory loads within conditional statements. Three solutions are provided: no prefetching,

cache prefetching, or perform preloading with the help of the skip instruction. This section will

concentrate on the third solution.

Consider the
ow graph in Figure 6.9(a). The numbers beside the
ow arcs are the execution

frequency of that particular path of control. The execution frequency is obtained through

99

program pro�ling. As shown in the �gure, there is more than one path through the loop,

and this may cause a nonconstant number of loads to be executed for each loop iteration. The

preload bu�er, however, assumes that this number is constant so that it can be stepped through

sequentially. Using the pro�le information, however, an important path of execution can be

identi�ed. In this case, they are blocks 1, 2, and 5, which is called the main path. All other

paths from the exits of the main path are the side paths. By performing tail duplication, a

single path of control is extracted; the resulting control
ow is shown in Figure 6.9(b) and the

resulting code is shown in Figure 6.10(a). Loop unrolling is performed to increase the scheduling

scope. Preloading is then performed on the resulting program structure.

Code scheduling and preloading are �rst performed for the main path (Figure 6.10(b)). This

involves the insertion of preloads and the transformation of the appropriate loads into loadbs.

The next step is to �x the side path. The simplest algorithm is to duplicate any preloads after

the individual exits of the main path into individual side paths and leave all memory accesses

in the side paths as cache loads. As shown in Figure 6.10(c), all preloads in blocks 2 and 5 are

duplicated into blocks 4 and 5", and all preloads in block 5 are duplicated into blocks 3 and

5'. This ensures that the preload bu�er is maintained consistently regardless of the execution

path taken through the loop.

Optimizations can be performed to utilize the available data in the preload bu�er for the

side paths. Since the ordering of the loadbs within the main path is now �xed, reading of the

preload bu�er from the side path can be emulated using the skip instruction. Skip allows the

preload bu�er to jump over preloads which are not read in the side paths. Before loading from

the preload bu�er, the skip instruction increments the outgoing data counter to the correct

entry value (Figure 6.10(c)).

100

(b) After preloading main path

pld1ldb1
ldb4
ldb2

pld4
pld2

ldb3

pld3
pld5
pld6

ldb5
ldb6

ld1

ld2
ld3

ld4
ld5
ld6

ld7
ld8

ld9

ld4
ld5
ld6

ld4
ld5
ld6

(a) Before preloading

pld1ldb1
ldb4
ldb2

pld4
pld2

ldb3

pld3
pld5
pld6

ldb5
ldb6

pld4
pld2
pld3
pld5
pld6

ld7
ld8
ld4

skip 2
ldb6
ld5

pld3
pld5
pld6

ld9

(c) After preloading side paths

ld4
ldb5
ldb6

ld9

ld4
ld5
ld6

ld7
ld8

ld4
ld5
ld6

Figure 6.10 Example of preloading for conditionals.

101

6.3.5 Multiple preload bu�er accesses

Superscalar processors can potentially make multiple load requests per cycle. Interleaving

the cache banks is one way to reduce the access con
icts. If more than one reference is competing

for the same memory bank, it is typical to allow only one to proceed while stalling the others.

This bank mapping con
ict, however, does not occur for the preload bu�er. The preload bu�er

returns requests from sequential entries. By allowing a number of interleaved banks to be equal

to the maximum number of allowable loadbs per cycle, the preload bu�er can anticipate the

loadb requests and store them in the preload bu�er output latches. The loadb request performs

only a latch-to-register transfer which can be accomplished in minimal cycle time. Exceptions

occur only if the valid bit is not set or the coherence bit is set. In this case, the requester either

waits for the data to return or sends a new memory request to the data cache.

6.3.6 Context switch

When a processor switches context during the execution of a preloaded loop, the preload

bu�er states must be saved to ensure correctness when the process resumes execution. One

option is to save the entire preload bu�er state. This may not be feasible when the number of

entries within the preload bu�er is large. The proposed solution is simply to save the outgoing

data counter and the incoming address counter (Figure 6.4). All preload requests before the

context switch should be prevented from returning to the preload bu�er. When returning to the

context, the counter values are read back, and the C bits of all of the entries from the outgoing

data counter up to the outgoing address counter are set. The incoming data counter and the

outgoing address counter values are initialized to the incoming address counter. The coherence

bit of the preload bu�er ensures that correct data are fetched for later loadb accesses.

102

6.4 Algorithm

To study the problem with cache prefetching, we have implemented a prefetch/preload

algorithm in the IMPACT compiler which supports both scalar and superscalar compilation [28].

The prefetch instruction is inserted at the assembly level a number of cycles ahead of the

corresponding load instruction within an inner loop to cover the memory latency. A simple

cache pro�ler is used to determine the miss rate of a particular memory access for a given

cache size. A 1K cache is used for all of the cache pro�ling done in this chapter. By using

the miss rate information, unnecessary prefetches to data that tend to be in the cache can be

eliminated. References with a nonzero miss rate will be prefetched for this chapter, and these

loads are marked by the compiler. While generating the cache misses using the pro�ler, the

stride of each memory reference is recorded. If the stride of an access is equal to the access size,

a prefetch instead of a preload is generated to utilize the sequentiality of the cache better. The

stride information is also used for later optimizations.

First, the loop is scheduled to determine the number of cycles required to execute under

ideal memory conditions. Dividing a given memory latency by this cycle time, the compiler uses

the ceiling of the result to decide the number of loop iterations to prefetch ahead. Next, the

instructions generating the load address o�sets are marked within the loop. If the size of the

structure being accessed is statically declared and the o�set producing instructions have loop

invariant increments, the stride information from the cache pro�ler can be used. By using the

stride information, many of the address calculations for prefetching can be eliminated. Abstract

interpretation can be used by the compiler to determine the value of an invariant access stride.

However, we chose to use pro�le information to reduce the compiler complexity. If the pro�led

access stride can be used, a prefetch/preload instruction is inserted for each array reference. For

103

example, the prefetch instruction for load destination,(base addr + int o�set) can be generated

as prefetch (base addr + int o�set + stride * prefetch iteration). The base addr is the address

calculated based on each loop iteration. If the pro�led access stride cannot be used, the marked

address calculation instructions are duplicated into the loop preheader and also into the loop

body. These instructions are copied n times into the loop preheader based on the prefetch

iteration number. Also, prefetches (or preloads) are inserted into the loop preheader and loop

body. For preloads, the corresponding loads are changed into loadbs. Register renaming is

performed for the duplicated instructions.

Care must be taken when marking the loads for preloading. If the address calculation is

dependent on the direction of a conditional within the loop, then preloading may not be correct.

In this case, prefetch is generated instead of a preload. Also, if a load address is dependent

upon another load instruction, the address producing load must also be prefetched(preloaded).

Therefore, the prefetch algorithm is a two-step process; the �rst pass is used to catch the simple

loads, and the second pass is used to catch the address producing loads.

Care also must be taken when memory dependences exist within and between the loop

bodies. If an intermediate store exists between a preload and the corresponding loadb, the store

instruction is also marked as an address producing instruction. When code duplication occurs,

the store instruction is transformed into a prestore, and the corresponding store instruction is

changed into a storeb instruction.

6.5 Experimental Evaluation

Experiments were conducted to evaluate the performance of preloading. The performances

of cache prefetching and no cache prefetching were also measured for comparison. First, the

104

miss ratio and bus tra�c are shown when employing preloading. Then detailed simulations are

done for two cache sizes. Finally, the cache block size is decreased to measure the performance

variation.

6.5.1 Simulation architecture

The base architecture is an in-order superscalar processor capable of fetching four instruc-

tions per cycle. Nontrapping hardware is assumed to suppress exceptions caused by preload and

prefetch instructions. The functional units are pipelined and any combination of instructions

can be dispatched per cycle. The instruction latencies are the same as those used in Section 6.2.

The primary cache size varies according to the simulation. In all cases, the primary cache is

assumed to be nonblocking with an in�nite-sized miss queue. The second-level cache is �xed at

1MB and is assumed to be blocking. Both caches are direct mapped and employ write through.

An eight-entry write bu�er is provided. The penalty for a �rst-level cache miss is 10 cycles to

access the second-level cache. If the second-level cache misses, an additional 20 cycle penalty is

incurred to access main memory. The memory latency for prefetching is therefore a total of 30

cycles. The address bus is fully pipelined and can take one memory request every cycle. The

data bus bandwidth, however, is limited to transfer a double word every cycle. Therefore, the

data transfer for a 32-byte cache block will occupy the data bus for four cycles.

6.5.2 Miss ratio and bus tra�c

During compilation to support preloading, the maximum number of preload bu�er entries

used for each benchmark was recorded. Table 6.2 lists the benchmarks and their preload

requirements. Benchmark gmtry requires the greatest number of entries. A maximum of 64

bu�er entries were used for all later simulation results. To allow for the size of the preload

105

Table 6.2 Maximum number of preload bu�er entries used.

Benchmark Bu�er Entries

matrix300 32

�t2d 16

cholsky 32

btrix 24

gmtry 44

vpenta 32

tomcatv 34

Table 6.3 Comparison of normalized miss ratios.

No Prefetch With Preload

Bench 4KB 8KB 16KB 2KB 4KB 8KB

mat300 1.00 0.80 0.57 0.03 0.02 0.02

�t2d 1.00 0.93 0.86 0.06 0.05 0.05

cholsky 1.00 0.94 0.75 0.04 0.04 0.03

btrix 1.00 0.64 0.33 0.18 0.12 0.09

gmtry 1.00 0.97 0.75 0.02 0.00 0.00

vpenta 1.00 1.00 1.00 0.05 0.05 0.05

tomcatv 1.00 0.37 0.25 0.08 0.02 0.02

bu�ers, simulations using preloading assume that data cache size is half the size of simulations

with no preloading.3 Thus, a simulation supporting prefetch with an 8K cache is compared to

a simulation supporting preloading with a 4K cache.

First, the performance of the preload bu�er was characterized by its miss rate reduction.

Tests were run using 32-byte blocks with no preloading for 4, 8, and 16KB caches. In all

experiments, a preload data element that has not been validated before its associated load

occurs is counted as a miss. The normalized miss ratios for preloading are shown in Table 6.3.

When no preloading is performed, an increase in the cache size does not signi�cantly reduce

3A 64-entry preload bu�er requires 64 * (3 * 4 bytes) = 768 bytes plus the valid and coherence bits.

106

the number of misses for several of the benchmarks. By performing preloading, a signi�cant

percentage of misses are eliminated for all benchmarks.

1.0

0.5

matrix300
fft2d

cholsky
btrix

gmtry
vpenta

tomcatv

4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k 4k 8k 16k

No prefetch

Preload Buffer

Figure 6.11 Comparison of normalized bus tra�c.

Next, the bus tra�c was evaluated. The normalized bus tra�c ratio comparing no preload

versus preload is shown in Figure 6.11. Surprisingly, preloading reduces the bus tra�c for all

but two cases. Since the miss ratio is always reduced, a decrease in bus tra�c usually results in

an improvement in system performance. Detailed processor simulation is required to show the

extent to which preload improves the overall system performance. Also, in the case of btrix and

tomcatv, we must �nd out how the increase in bus tra�c a�ects the performance of preloading

with detailed simulation.

6.5.3 Detailed simulation

Detailed system simulation was performed to account for the resource constraints of the

memory system. The comparison of cache prefetch was included as an alternative solution to

preloading. The execution cycle for each simulation is divided into two parts: the instruction

execution time and memory overhead. The instruction execution time is the time required to

execute the benchmark if all references can be satis�ed by the primary cache. The memory

107

overhead is the time that the processor is waiting for the data to return from the second level

cache or the main memory. The discrepancy between the instruction execution time is due to

prefetch and preload overhead.

btrix vpenta

matrix300 cholsky gmtry

fft2d

tomcatv

No Prefetch

Cache Prefetch

Buffer Preload

Memory OverheadInstructions

1.0

0.5

1.5

2.0

N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Figure 6.12 Comparison of normalized execution time for 8K cache.

btrix

tomcatvmatrix300

fft2d

cholsky gmtry

vpenta

2.0

1.5

1.0

0.5

No Prefetch

Cache Prefetch

Buffer Preload

Memory Overhead
Instructions

N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Figure 6.13 Comparison of normalized execution time for 16K cache.

The 8K and 16K cache results are shown in Figure 6.12 and 6.13, respectively. It is not

surprising that memory overhead accounts for a large portion of the execution time in an four-

108

issue superscalar processor. Also, due to the increase in bus tra�c, cache prefetching improves

the performance of these benchmarks only in the case of matrix300 and cholsky. Preloading

always performs better. However, it is interesting to note that where preloading increases the

bus tra�c (btrix), the bene�t of preloading drops signi�cantly. It is imperative to eliminate

misses while reducing the bus tra�c to guarantee an improvement in system performance.

6.5.4 E�ects of cache block size

Up to this point all of the cache simulation assumed 32-byte blocks. In this section, the

cache block size is restricted to a double word to eliminate the e�ects of sequential prefetch.

The small block size prevents any unused data from being placed in the cache. A small block

size is bene�cial in reducing cache pollution for long stride accesses. However, a small block

size creates extra bus tra�c which degrades system performance for short stride accesses.

btrix vpenta

matrix300 cholsky gmtry

fft2d

tomcatv

No Prefetch

Cache Prefetch

Buffer Preload

Memory OverheadInstructions

1.0

0.5

1.5

2.0

N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Figure 6.14 Comparison of normalized execution time for 8K cache with 8-byte blocks.

In Figure 6.14, the results for an 8K cache are shown. All results are normalized against the

result of no prefetch using an 8K cache with a 32-byte block. A noticeable performance shift

can be seen for no prefetch and cache prefetch. Matrix300 performance dropped signi�cantly

109

due to the loss of the bene�t of long cache block fetches. The elimination of unnecessary cache

block fetches greatly improved the performance of the other benchmarks. However, the bene�ts

of cache prefetch are still unpredictable due to con
icts between the current working set and the

future working set. As a result of these con
icts, the e�ective cache size may be smaller than

its physical size depending on the mapping of the structures into the cache. These con
icts can

also remove necessary data from the cache, and their subsequent reloading results in increased

bus tra�c.

It is interesting to note that the improved cache prefetch performance with btrix makes

cache prefetch perform slightly better than the preload bu�er. In comparison to Figure 6.12,

the main observation is that the performance of the preload bu�er stays relatively constant.

This predictability is a major advantage of the preloading approach.

6.6 Summary of Preload Bu�er

This chapter proposes an architectural support, the preload bu�er, to cooperate with the

compiler in tolerating long memory access latencies. Unlike previously proposed methods of

nonbinding cache loads, a preload is a binding access to the memory system. The prefetch bu�er

requires associative searches and a coherence mechanism which is high in cost and access time.

Also, we have shown that cache prefetching can produce unpredictable performance results due

to cache interference among data arrays. The preload bu�er eliminates some of the problems

caused by compiler-assisted cache prefetching either into the cache or into a prefetch bu�er.

The main feature of the preload bu�er is expandability and simplicity. The bene�ts of the

preload bu�er are also predictable. The problems of pollution and dimensional con
icts due

to cache prefetch are eliminated. The preload bu�er assumes no searching or comparisons.

110

Access to the preload data can be made faster than access to the data cache. With simple

interleaving, accesses to the preload bu�er are independent of the access pattern and processor

issue rate, and are therefore memory bank con
ict free. The preload method will default to

cache prefetching in the event of updates to the cache which invalidate preloaded data.

With advanced compiler technology using IMPACT, the preload bu�er is shown to be

e�ective at hiding long memory access latencies. In particular, preloading is shown to achieve

better performance than cache prefetching for a set of benchmarks. In all cases, preloading

decreases the bus tra�c and reduces the miss rate when compared with no prefetching or cache

prefetching. Overall, the preload bu�er is a promising concept and deserves further research.

111

CHAPTER 7

CONCLUSIONS

7.1 Summary

This thesis has presented schemes which allow instruction reordering in the presence of

memory dependence. Data preloading is a combination of architectural and compiler support

which allows a dependent load to be moved above an ambiguous store. Correctness of execution

is maintained by both the hardware and software. Data preload is divided into two major

categories: 1) only the loads are allowed to move above ambiguous stores, and 2) both loads and

ow-dependent instructions of the load are allowed to move above ambiguous stores. Depending

on how much distance is between the moved load and its
ow dependent instruction, di�erent

amounts of memory latency are hidden from the view of the pipeline. Also, as
ow dependent

instructions move along with the load, more freedom in instruction reordering is achieved,

thereby uncovering more instruction-level parallelism.

Experimental evaluation of the proposed methods has shown that memory dependence can

limit instruction reordering. By allowing memory dependence to be removed, bene�ts start to

surface in four-issue processors with the most bene�ts seen in eight-issue processors. Limitations

to the proposed schemes include the following: 1) increased dynamic instruction count which

requires higher instruction bandwidth to compensate, 2) di�culty involved in static branch

prediction which can result in optimization of the wrong branch path, 3) nonrobust integrated

register allocation and instruction scheduling algorithm which can cause excess register spilling

112

when more instructions are scheduled in parallel, 4) limited scheduling scope with the superblock

to extract more parallelism, and 5) existing memory dependence analyzer has already removed

most of the critical memory dependences and the program cannot bene�t from the proposed

schemes.

Experimental analysis is conducted for the proposed schemes. It was shown that the hashing

memory con
ict bu�er design is cost e�ective, and a 64-entry memory con
ict bu�er is su�cient

to uncover most of the parallelism for a set of benchmarks. It was also shown that cache

pollution is a major drawback of cache prefetching and preload bu�er support can complement

cache prefetching for latency tolerance. To cover thirty cycle of memory latency, a 64-entry

preload bu�er is adequate.

7.2 Future Research

As hardware real estate cost decreases and instruction issue bandwidth increases, the need

for data preload support will grow. Heuristics for ambiguous memory dependence removal may

not be as good as one can hope for. The use of memory dependence pro�ling can give a static

weight of memory address matches. With a dynamic estimate of memory address matches,

the compiler can make more intelligent decisions for ambiguous memory dependence removal.

Hyperblock [5] scheduling provides a larger scheduling scope than does superblock, and it is

this larger scheduling scope that data preload can utilize to extract more instruction-level

parallelism. As instruction-level parallelism increases, ways to increase the e�ective number

of physical registers must be introduced to compensate for the ever-growing need for more

registers. Although the memory dependence analyzer can never replace data preload support,

a better memory dependence analyzer can eliminate overhead introduced by preload supports by

113

actually guaranteeing the independence of memory instructions. Further evaluation of preload

support would include modifying the compiler.

114

REFERENCES

[1] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, W. W. Hwu, P. P. Chang, and T. Kiy-
ohara, \Compiler code transformations for superscalar-based high-performance systems,"
in Proceedings of Supercomputing '92, Nov. 1992.

[2] W.W. Hwu and P. P. Chang, \E�cient instruction sequencing with inline target insertion,"
IEEE Transactions on Computers, Dec. 1992.

[3] V. A. Guarna Jr., \Analysis of C programs for parallelization in the presence of pointers,"
M.S. thesis, Center for Supercomputing Research and Development, University of Illinois,
Urbana-Champaign, Illinois, 1987.

[4] D. R. Chase, M. Wegman, and F. K. Zadeck, \Analysis of pointers and structures," in
Proceedings of the ACM SIGPLAN `90 Conference on Programming Language Design and

Implementation, pp. 296{310, June 1990.

[5] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ective
compiler support for predicated-execution using the hyperblock," in Proceedings of the

25th International Symposium on Microarchitecture, pp. 45{54, December 1992.

[6] M. J. Wolfe, \Optimizing compilers for supercomputers," Ph.D. dissertation, Department
of Computer Science, University of Illinois, Urbana, IL, 1982.

[7] J. R. Allen, \Dependence analysis for subscripted variables and its application to program
transformation," Ph.D. dissertation, Department of Mathematical Science, Rice University,
1983.

[8] U. Banerjee, Dependence Analysis for Supercomputing. Boston, MA: Kluwer Academic
Publishers, 1988.

[9] H. Dietz and C. H. Chi, \Cregs: A new kind of memory for referencing arrays and pointers,"
in Proceedings of Supercomputing '88, pp. 360{367, Nov. 1988.

[10] B. Heggy and M. L. So�a, \Architectural support for register allocation in the presence of
aliasing," in Proceedings of Supercomputing '90, pp. 730{739, Nov. 1990.

[11] A. Nicolau, \Run-time disambiguation: coping with statically unpredictable dependen-
cies," IEEE Transactions on Computers, vol. 38, pp. 663{678, May 1989.

[12] P. P. Chang, W. Y. Chen, S. A. Mahlke, and W. W. Hwu, \Comparing dynamic and static
code scheduling for multiple-instruction-issue procesors," in Proceedings of 24th Annual

Workshop on Microprogramming and Microarchitectures, (Albuquerque, NM.), Nov. 1991.

[13] P. G. Emma, J. W. Knight, III, J. H. Pomerene, R. N. Rechtscha�en, and F. J. Sparacio,
\Posting out-of-sequence fetches," Feb. 1991. United States Patent No. 4991090.

115

[14] D. Kroft, \Lockup-free instruction fetch/prefetch cache organization," in Proceedings of 8th
Annual International Symposium on Computer Architecture, (Minneapolis, MN), pp. 81{
87, May 1981.

[15] J. E. Sicolo, \A multiported nonblocking cache for a superscalar uniprocessor," M.S. the-
sis, Department of Electrical and Computer Engineering, University of Illinois, Urbana-
Champaign, Illinois, 1992.

[16] R. L. Lee, P. C. Yew, and D. H. Lawrie, \Data prefetching in shared memory multiproces-
sors," in Proceedings of 16th International Conference on Parallel Processing, pp. 28{31,
Aug. 1987.

[17] E. H. Gornish, E. D. Granston, and A. V. Veidenbaum, \Compiler-directed data prefetch-
ing in multiprocessor with memory hierarchies," in Proceedings of International Conference
on Supercomputing, (Amsterdam, The Netherlands), pp. 354{368, June 1990.

[18] J.-L. Baer and T.-F. Chen, \An e�ective on-chip preloading scheme to reduce data access
penalty," in Proceedings of Supercomputing '91, pp. 176{186, Nov. 1991.

[19] D. Callahan, K. Kennedy, and A. Porter�eld, \Software prefetching," in Proceedings of

Fourth International Conference on Architectural Support for Programming Languages and

Operating Systems, pp. 40{52, Apr. 1991.

[20] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. Hwu, \Data access microarchitec-
tures for superscalar processors with compiler-assisted data prefetching," in Proceedings

of 24st Annual Workshop on Microprogramming and Microarchitectures, (Albuquerque,
NM.), Nov. 1991.

[21] J. W. C. Fu and J. H. Patel, \Data prefetching in multiprocessor vector cache memories," in
Proceedings of 18th Annual International Symposium on Computer Architecture, (Toronto,
Canada), pp. 54{63, June 1991.

[22] A. C. Klaiber and H. M. Levy, \An architecture for software-controlled data prefetch-
ing," in Proceedings of 18th Annual International Symposium on Computer Architecture,
(Toronto, Canada), pp. 43{53, May 1991.

[23] T. C. Mowry and A. Gupta, \Tolerating latency through software-controlled prefetching in
shared-memory multiprocessors," Journal of Parallel and Distributed Computing, vol. 12,
pp. 87{106, 1991.

[24] T.-F. Chen and J.-L. Baer, \Reducing memory latency via non-blocking and prefetch-
ing caches," in Proceedings of Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 51{61, Oct. 1992.

[25] J. W. C. Fu, J. H. Patel, and B. L. Janssens, \Stride directed prefetching in scalar proces-
sors," in Proceedings of 25th Annual Conference on Microprogramming and Microarchitec-

tures, (Portland, Oregon), Dec. 1992.

[26] T. C. Mowry, M. S. Lam, and A. Gupta, \Design and evaluation of a compiler algorithm
for prefetching," in Proceedings of Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, pp. 62{73, Oct. 1992.

116

[27] P. P. Chang, \Compiler support for multiple-instruction-issue architectures," Ph.D. dis-
sertation, Department of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign, 1991.

[28] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An
architectural framework for multiple-instruction-issue processors," in Proceedings of 18th

Annual International Symposium on Computer Architecture, (Toronto, Canada), pp. 266{
275, June 1991.

[29] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, \Sentinel
scheduling for VLIW and superscalar processors," in Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, Oct. 1992.

[30] H. S. Warren, Jr., \Instruction scheduling for the IBM RISC System/6000 processor," IBM
Journal of Research and Development, vol. 34, pp. 85{92, Jan. 1990.

[31] R. M. Russell, \The Cray-1 computer system," Communications of the ACM, vol. 21,
pp. 63{72, Jan. 1978.

[32] G. Kane, MIPS RISC Architecture. Englewood Cli�s, NJ: Prentice-Hall, 1988.

[33] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, \A VLIW ar-
chitecture for a trace scheduling compiler," in Proceedings of Second International Confer-

ence on Architectural Support for Programming Languages and Operating Systems., (Palo
Alto, CA), pp. 180{192, Oct. 1987.

[34] G. J. Chaitin, \Register allocation and spilling via graph coloring," in Proceedings of ACM

SIGPLAN '82 Symposium on Compiler Construction, pp. 98{105, 1982.

[35] W. Y. Chen, S. A. Mahlke, N. J. Warter, R. E. Hank, R. A. Bringmann, S. Anik, D. M.
Lavery, J. C. Gyllenhall, T. Kiyohara, and W. W. Hwu, \Using pro�le information to assist
advanced compiler optimization and scheduling," in Advances in Languages and Compilers

for Parallel Processing. Cambridge, MA: MIT press, 1992.

[36] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE

Transactions on Computers, vol. c-30, no. 7, pp. 478{490, July 1981.

[37] P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Three superblock
scheduling models for superscalar and superpipelined processors," Tech. Rep., Center for
Reliable and High-Performance Computing, University of Illinois, Urbana, IL, Dec. 1991.

[38] B. R. Rau and C. D. Glaeser, \Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scienti�c computing," in Proceedings of 14th

Annual Workshop on Microprogramming and Microarchitectures, Oct. 1981.

[39] M. Lam, \Software pipelining: An e�ective scheduling technique for VLIW machines," in
Proceedings of 1989 ACM Conference on Programming Language Design and Implemen-

tation, (Atlanta, Georgia), June 1988.

[40] W. Y. Chen, S. A. Mahlke, and W. W. Hwu, \Tolerating �rst level memory access latency
in high-performance systems," in Proceedings of 21st International Conference on Parallel

Processing, Aug. 1992.

117

VITA

William Yu-Wei Chen was born on July 6, 1965, in Taipei, Taiwan. He received his B.S.

degree in electrical engineering from The Ohio State University. From 1988 to 1990, he was a

teaching assistant in the Electrical and Computer Engineering Department at the University

of Illinois, Urbana-Champaign, where he received his M.S. degree. Since 1990, he has been

a research assistant in the Center for Reliable and High-Performance Computing, also at the

University of Illinois. In August 1993, he joins Intel Corporation in Santa Clara, CA, working

on the next generation superscalar compiler.

118

