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Numerical applications frequently contain nested loop structures that process large

arrays of data. The execution of these loop structures often produces memory preference

patterns that poorly utilize data caches. Limited associativity and cache capacity result

in cache con
ict misses. Also, non-unit stride access patterns can cause low utilization

of cache lines. Data copying has been proposed and investigated in order to reduce the

cache con
ict misses [1][2], but this technique has a high execution overhead since it does

the copy operations entirely in software.

I propose a combined hardware and software technique called data relocation and

prefetching which eliminates much of the overhead of data copying through the use of spe-

cial hardware. Furthermore, by relocating the data while performing software prefetching,

the overhead of copying the data can be reduced further. Experimental results for data

relocation and prefetching show a large improvement in cache performance.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Numerical applications frequently contain nested loop structures that process large

arrays. The execution of these loop structures has been shown to produce memory

reference patterns that poorly utilize data caches [3][4]. At least three problems have

been identi�ed as the cause of poor cache utilization. The �rst problem involves an

insu�cient capacity of the cache: The data accessed by each loop may exceed the cache

size, resulting in cache misses. Limited associativity of the cache leads to a second

problem: accesses to di�erent arrays, or even to di�erent elements of a single array, may

con
ict. The third problem involves non-unit stride access patterns that can cause low

utilization of cache lines and wasted bus and memory cycles [5].

Potentially, one could use a larger cache size and higher cache associativity to elimi-

nate cache capacity misses and cache con
ict misses. This brute force approach, however,

does not scale well with the rapidly increasing amount of data used in sophisticated nu-

merical applications. Moreover, it would result in signi�cant hardware cost and increased

cache access latency, both of which could be avoided via the more cost-e�ective approach

proposed in this research.
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The use of loop blocking transformations could reduce the working-set size of data

accessed in loop nests [4] [1] [6]. By reordering the execution of iterations, loop blocking

transformations reduce the amount of data referenced between two references to the same

datum. Once the data accessed between two references to the same datum is reduced

to an amount smaller than the cache size, capacity misses are eliminated. In practice,

however, loop blocking transformations may not reduce cache misses because of cache

mapping con
icts. Additionally, blocking alone does not reduce the working-set size of

data accessed in single loops since the data accesses are not reordered.

Data prefetching has also been proposed to reduce cache misses by fetching data into

the cache before it is referenced [7] [8]. When used in conjunction with small cache-block

sizes, one can potentially eliminate the problem of low utilization of cache blocks and

wasted bus cycles [5]. However, data prefetching may increase the size of the working set,

introducing capacity misses. Also, prefetched data may con
ict with the current working

set in the cache, introducing more con
ict misses [9] [10]. In order for data prefetching

to improve performance in a reliable manner, one must ensure that both current and

future working sets can �t into the cache. The proposed approach achieves this goal by

compressing the current and future working sets into a localized region in the virtual

address space such that no cache mapping con
icts exist among locations in the region.

This thesis research introduces an approach to solve all three cache performance

problems for array-based applications, rather than a solving these problems singly. The

�rst phase in this technique consists of strip-mining inner loops to reduce the number of

array accesses in the working set. In the second phase, the insertion of special hardware

2



instructions compress the working set into a localized region in the virtual address space

and prefetch the compressed working set into the cache. The compiler also modi�es the

working set accesses so that all references will be made to the compressed data in the

cache. Since array data are compressed in the localized region, most con
ict misses are

eliminated. Also, if the original data access pattern is of non-unit stride, unused data are

not brought into the cache during compression and prefetch, resulting in improved cache-

line utilization. After the computation is completed, additional instructions decompress

the modi�ed data and relocate it back to the original program arrays.

In order to minimize the overhead of compressing and decompressing data, com-

pression is performed as the data is prefetched from the memory into the cache. Also,

through the use of compiler transformations, compression and prefetching of the next

working set is overlapped with the computation for the current working set in order to

hide the latency of the relocation.

Using a prototype compiler, an emulation tool, and a simulation tool, I show that

this extension to the cache and processor architecture along with the requisite compiler

support greatly improves the data cache performance for array-based applications.

1.2 Cache Memory

A cache memory is a small, fast memory located to close to the CPU that holds

the most recently accessed code or data. Accessing a cache takes much less time than

accessing main memory due to the property that smaller is faster, which means that the

3



cache is smaller and can be made faster than the large main memory. The cache can hold

data that will be accessed in the near future due to the property of locality of reference.

There are several objectives in the design of a cache. The most important objective is

generally the high hit ratio, which is a measure of the likelihood that the cache contains

the requested data in it. Another important objective is to achieve fast access time, which

is determined by the hardware complexity. Also, it should be as small as possible while

maintaining the desired hit ratio. The degree to which these objectives are achieved

depends on not only the cache structure but also the characteristics of the targeted

program. For example, the cache performance of an array-oriented program is likely

di�erent from that of a scalar-oriented program. Supercomputer applications, especially,

have many loops that access large arrays. These array accesses are classi�ed into two

categories: sequential accesses and no-sequential accesses. Non-sequential accesses occur:

� when elements of an array are accessed by column,

Example: A[0][0], A[1][0], A[2][0], ...

� when the stride of the access is larger than one,

Example: A[0], A[2], A[4], A[6], ...

� or when di�erent arrays are accessed in turn.

Example: A[0], B[0], C[0], A[1], B[1], C[1], ...

These characteristics of numerical programs introduce some ine�ciency cache as

shown in Section 1.2.1 - 1.2.3.
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A[0] A[1]

A[3]A[2]

Access A[0]: Miss,purge A[4],A[5]
Access A[1]: Hit
Access A[2]: Miss,purge A[6],A[7]
Access A[3]: Hit

Access A[4]: Miss,purge A[0],A[1]
Access A[5]: Hit
Access A[6]: Miss,purge A[2],A[3]
Access A[7]: Hit

Access A[0]: Miss
Access A[1]: Hit
Access A[2]: Miss
Access A[3]: Hit

A[5]

A[6] A[7]

A[0] A[1]

A[2] A[3]

- Working set={A[0],A[1],A[2],A[3],A[4],A[5],A[6],A[7]}
- Direct mapped cache (size:4 words, line size:2 words)

A[6] A[7]

A[4] A[5]

- Every element of working set is purged
- Only the second element in the cache line can hit
- Miss rate = 0.5

A[4]

Figure 1.1 Capacity Misses Due to Large Working Set

1.2.1 Capacity Misses

If the cache cannot hold all data needed during the execution of a program, capacity

misses will occur due to data being purged and later referenced. In general, numerical

programs use large working sets, resulting in frequent capacity misses. This concept is

illustrated in Figure 1.1. In this case, the capacity misses comes from an actual lack of

cache capacity.

Non-sequential access, another characteristic of numerical programs, may also intro-

duce capacity misses, as shown in Figure 1.2. These capacity misses do not result wholly

from a lack of cache capacity, but rather the underutilization of the cache.
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- Direct mapped cache (size: 4 words, line size: 2 words)

A[2][0]- Working set = {A[0][0], A[1][0], A[2][0], A[3][0]}

Access A[0][0]: Miss
Access A[1][0]: Miss

Access A[2][0]: Miss, purge A[0][0]
Access A[3][0]: Miss, purge A[1][0]

Access A[0][0]: Miss, purge A[2][0]
Access A[1][0]: Miss, purge A[3][0]

A[3][0]

A[0][0]

A[1][0]

A[0][0]

A[1][0]

A[2][0]

A[3][0]

- Array size = 4 x 2

- Every element in working set is purged

- Miss rate = 1.0

- Only 50% utilization of cache

Figure 1.2 Capacity Misses Due to Non-Sequential Accesses

1.2.2 Con
ict Misses

If too many cache lines are mapped to a set in the cache, con
ict misses will occur due

to lines being purged and later referenced. Non-unit stride accesses in an array introduce

con
ict misses as shown in Figure 1.3. Unlike capacity misses, con
ict misses will occur

even though unused cache lines exist in the cache. Con
ict misses also occur when

di�erent arrays are accessed in turn and the elements map to the same set (Figure 1.4).

1.2.3 Line Fetch Overhead

Another problem due to non-sequential accesses is line fetch overhead. In general,

the cache line size is larger than one word. When an element of an array is brought into

the cache, consecutive elements are also fetched into the same cache line. If the array

accesses have non-unit stride, the consecutive elements that were fetched in cache are

6



- Direct mapped cache (size: 4 words, line size: 2 words)

A[1][0]

A[0][0]

A[0][0]

A[1][0]

- Array size = 4 x 4

- Every element in working set is purged

- Miss rate = 1.0

- Working set = {A[0][0], A[1][0]}

Access A[0][0]: Miss

Access A[1][0]: Miss, purge A[0][0]

Access A[0][0]: Miss, purge A[1][0]

Figure 1.3 Intra-array Con
ict Misses

A[0] A[1]

A[0] A[1]

A[0] A[1]

- Direct mapped cache (size:4 words, line size:2 words)

- Every element of working set is purged

- Array A starting address 0, array B starting address 4

- Working set = {A[0], B[0], A[1], B[1]}

Access A[0]: Miss

Access B[0]: 

Access B[1]:

Access A[0]:

Access A[1]:

Miss,
purge A[0],A[1]

Miss,
purge B[0],B[1]

- Miss rate = 1.0

B[0] B[1]

B[0] B[1]

Figure 1.4 Inter-array Con
ict Misses
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A[0][0]

- Direct mapped cache (size: 4 words, line size: 4 words)

Access A[0][0]: Miss

- Working set = {A[0][0], A[1][0]}

- Fetch A[0][1],A[0][2] and A[0][3]
  as well as A[0][0]

Access A[1][0]: Miss

- Fetch A[1][1],A[1][2] and A[1][3]
  as well as A[1][0]

- Fetching consecutive data is overhead

- Overhead increases as line size increases

- Array size = 4 x 4

A[1][0]

A[0][1] A[0][2] A[0][3]

A[1][1] A[1][2] A[1][3]

A[0][0] A[0][1] A[0][2] A[0][3]

- Only 25% utilization of cache

Figure 1.5 Cache Line Fetch Overhead Due to Non-Sequential Accesses

unlikely to be used in near future. Thus, fetching the consecutive elements is considered

as overhead, not useful work (Figure 1.5).

1.3 Previous Work

A technique called data copying has been proposed and investigated in order to reduce

the cache con
ict misses [1][2]. Data copying, however is bene�cial only if the performance

improvement outweighes the overhead of copying by reusing the data many times. The

overhead of copying data from array to array is signi�cant in general. Our proposed

method, data relocation and prefetching, has the same bene�ts as data copying while

reducing the overhead of copying. Furthermore, unlike data copying, data relocation

and prefetching relocates data into the cache during prefetching, which minimizes the

overhead of the relocation.
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Gather and Scatter operations for vector machines are used in the Cray-1 [11] in

order to handle non-unit stride data e�ectively. In the Cray-1, the array elements are

\gathered" from memory into the vector registers before performing vector operations,

and \scattered" back to memory after the vector operations are complete. However, the

hardware necessary to support data relocation and prefetching would be much easier to

add to an existing processor than the hardware to support vectorization.
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CHAPTER 2

HIGH LEVEL PROFILING AND SIMULATION

In general, pro�ling information is very useful for code transformation and optimiza-

tion [12][13]. This chapter describes a high-level pro�ling tool for loop iteration analysis

and array reference analysis. The statistics of the pro�led results for some benchmarks

are also described. Finally, high-level cache simulation is described with some results to

motivate data relocation and prefetching.

2.1 IMPACT Compiler

The high-level pro�ling and simulation have been implemented in IMPACT com-

piler [17], which is a research-oriented proto-type C compiler.

2.1.1 Overview

Figure 2.1 is an overview of the IMPACT C compiler. FORTRAN programs are

�rst translated into C by f2c before being compiled by IMPACT. The C program is then

parsed, semantically analyzed, and translated into Pcode. Dependence analysis and high-

level transformations are done in Pcode. After all transformations and optimizations are

performed at the high level, Pcode is translated into Lcode, where low-level optimizations

are performed. The code generator converts the Lcode into the assembly language of the

10



Code Generation

Pcode

Optimizations

Prefetch/Reloc. Support

Cache Simulation

Array Reference Profiling

Loop Iteration Profiling

Tools
Transformations

Prefetching

Loop Blocking

Data Relocation

F2C

Fortran

Preprocessor

Tools

Prefetch/Reloc. Support IMPACT
Simulator

HP PA-RISC

Lcode

Figure 2.1 An Overview of the IMPACT C Compiler

target machine using a machine speci�cation. The IMPACT C compiler generates code

for several existing processor architectures: Sun SPARC, HP PA-RISC, AMD29k and

Intel X86.

2.1.2 Pcode Overview

Pcode is the intermediate format which represents C programs. High-level transfor-

mations and optimizations are performed at the Pcode level. The restructuring process

at the Pcode level consists of the following steps:

11



(1) Read the source code into the Pcode intermediate representation. The for, while

and do loops in the source are read into the Ser loop statement structure.

(2) Dependence analysis and transformations can be performed on for loops that meet

the following criteria:

� Loops with simple header expressions,

� Loops with scalar iteration variables,

� Loops nested up to six levels deep,

� Loops that have non-negative integer constant increment expressions,

� Loops that are natural loops (have only one entry point).

These loops are identi�ed and their representation is changed from a Ser loop to a

Par loop data structure.

(3) Loop summary information is calculated for each loop nest. Since dependence

analysis is performed only on Par loops, the loop summary information is used

to check if all the loops for which dependence information is needed to perform

a given transformation are Par loops. Transforming a loop nest without this test

could be semantically incorrect since the dependence information for such a loop

nest is incomplete.

(4) Dependence analysis for scalar and array references is performed on all the loop

nests in each function and the information is maintained in an auxiliary data struc-

ture. Currently, the dependences across loop nests are not calculated since this

12



information is not needed by the transformations. The dependence analyzer uses

the Omega test [14][15] to compute dependence direction and distance vectors for

array references, which is an algorithm based on an extension of Fourier-Motzkin

variable elimination to integer programming. An extended data 
ow algorithm is

used to compute loop-carried dependence information for scalars.

(5) Each transformation uses the dependence information to determine validity. The

transformations are performed in the order speci�ed by the user of the IMPACT

compiler.

Table 2.1 shows some static loop information. The benchmarks are selected from the

PERFECT [16], SPEC'89 and SPEC'92 benchmark suits. In these benchmarks, most for

loops are transformed into Par loops. A few for loops are not transformed into Par loops

since the header expression are complex. In the Table 2.1, the Par loops are classi�ed

into two types: Outer and Innermost. An Outer Par loop is one that has one or more

loops nested within it. An Innermost Par loop is one that has no loops nested within it.

2.2 Pcode Pro�ling

Some pro�le information such as loop iteration counts is very important in order to

make the transformations e�ective. For example, performance degradation can occur if

a loop nest is blocked and the iteration counts is smaller than the transformed blocking

size. Also, loop invocation counts can be used to screen the unimportant loops so that the

possible code expansion due to the transformation can be minimized. In the IMPACT

13



Benchmark # of # of Par loops
Name Ser loops Loop Nesting Depth Total

Type 1 2 3 4 5

ADM 1 Outer 75 35 2 2 0 114
Innermost 79 67 40 0 2 188

SPICE 5 Outer 27 7 0 0 0 34
Innermost 250 49 11 0 0 310

MGD 2 Outer 12 4 1 0 0 17
Innermost 13 10 11 1 0 35

TRACK 0 Outer 18 8 2 0 0 28
Innermost 34 23 7 5 0 69

BDNA 0 Outer 50 6 2 0 0 58
Innermost 129 74 7 2 0 212

OCEAN 9 Outer 42 11 0 0 0 53
Innermost 28 39 12 0 0 79

DYFESM 2 Outer 70 23 6 0 0 99
Innermost 68 65 25 7 0 165

ARC2D 1 Outer 63 20 0 0 0 83
Innermost 71 59 20 0 0 150

FLO52 3 Outer 48 22 0 0 0 70
Innermost 45 49 24 0 0 118

TRFD 1 Outer 11 13 16 6 0 46
Innermost 3 3 6 14 6 32

SPEC77 0 Outer 98 26 4 0 0 128
Innermost 84 150 41 4 0 279

MATRIX300 0 Outer 2 0 0 0 0 2
Innermost 13 2 0 0 0 15

NASA7 5 Outer 33 17 6 0 0 56
Innermost 24 30 13 6 0 73

TOMCATV 0 Outer 6 0 0 0 0 6
Innermost 6 6 0 0 0 12

Table 2.1 Static Loop Information for PERFECT and SPEC
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compiler, pro�ling tools for Lcode have already been implemented. Since a pro�ling tool

for Pcode was unavailable, one has been implemented for my thesis research.

Pro�ling is the process of selecting a set of inputs for a program, executing the program

with these inputs and recording the run-time behavior of the program. The following

information is collected by the Pcode pro�ler.

(1) The invocation count of each loop nest.

(2) The initial value, �nal value and increment value of each loop nest

(3) The iteration count of each loop nest.

Pcode pro�ling is supported by three tools: a probe insertion program, an execution

monitor and a program to summarize pro�le information. There are three steps to

generate execution pro�les:

(1) The probe insertion program assigns a unique identi�er or line number to each loop

nest and inserts a probe just before the loop nest in Pcode. Whenever the prove

is activated, it increments the invocation counter for the associated loop nest. It

also produces the initial value, �nal value and increment value of the loop iteration

variable. The probe insertion program also inserts a probe just before the �rst line

in the loop nest to increment the iteration count every time that the body of the

loop nest is executed.
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(2) The probed insertion program is reverse-translated into C code. The C code is

compiled by a standard C compiler, and linked with the execution monitor program

to generate the probed executable program.

(3) The executable program is executed for a set of inputs, and generated pro�le in-

formation is collected.

(4) Finally, the average pro�le data is generated by the program using the pro�le

information and merged back into the Pcode intermediate representation.

Table 2.2 - 2.4 show some dynamic loop information that is summarized from the

pro�le information. Table 2.2 shows how many times each loop was invoked on average

at run time for a input. ADM and SPICE have many loops that are never invoked at

run time by the input used. SPICE, BDNA, MATRIX300 and TOMCATV have

very small invocation counts for Outer loops compared with those for Innermost loops.

Table 2.3 shows how many iterations each loop had on average at run time for a input.

This information is very important for some transformations such as loop blocking since

the blocking size should be smaller than the iteration counts. The last column of the table

shows the average iteration counts per invocation. ADM and SPICE have very small

iteration counts for both Outer and Innermost loops. In most benchmarks, the iteration

counts for Outer loops are equal to or less than that for Innermost loops. However,

MGD and TRACK have larger iteration counts for Outer loops than for Innermost

loops.

16



Bench Loop # of Number of Loops with Average
Name Type Loops Average Invocation Count Invocation

0 10 100 1000 10K 100K More Per Loop

ADM Outer 114 71 12 2 20 0 6 3 19,579
Innermost 188 102 20 7 7 2 37 13 58,784

SPICE Outer 34 20 9 5 0 0 0 0 17
Innermost 310 240 31 11 22 3 0 3 10,971

MGD Outer 17 5 3 1 6 1 1 0 3,256
Innermost 35 5 8 1 5 0 3 13 1,602,565

TRACK Outer 28 5 5 6 4 2 6 0 7,670
Innermost 69 12 5 13 8 7 23 1 17,391

BDNA Outer 58 14 43 1 0 0 0 0 2
Innermost 212 61 113 14 3 21 0 0 414

OCEAN Outer 53 4 16 5 23 4 1 0 862
Innermost 79 7 15 5 19 1 25 7 41,763

DYFESM Outer 99 20 42 8 3 17 9 0 5,486
Innermost 165 32 65 26 6 12 15 9 53,996

ARC2D Outer 83 11 18 0 54 0 0 0 144
Innermost 150 43 10 9 42 19 22 5 14,533

FLO52 Outer 70 9 8 0 23 28 2 0 2,016
Innermost 118 11 30 6 9 35 23 4 20,370

TRFD Outer 46 28 5 0 2 7 4 0 16,598
Innermost 32 17 2 0 1 1 7 4 478,393

SPEC77 Outer 128 11 39 26 6 23 23 0 6,972
Innermost 279 20 37 32 49 38 57 46 80,700

MATRIX300 Outer 2 0 2 0 0 0 0 0 1
Innermost 15 1 9 0 2 2 0 1 51,815

NASA7 Outer 56 0 19 9 14 4 10 0 6,142
Innermost 73 0 13 11 14 10 19 6 28,927

TOMCATV Outer 6 0 1 0 5 0 0 0 84
Innermost 12 1 3 0 3 0 5 0 11,614

Table 2.2 Loop Invocation Counts of PERFECT and SPEC
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Bench Loop # of Number of Loops with Average Average
Name Type Loops Average Iteration Count Iter. Per Iter. Per

Invoked 0 10 100 1000 10K More Loop Invocation

ADM Outer 43 1 27 15 0 0 0 16 3
Innermost 86 0 18 66 2 0 0 44 12

SPICE Outer 14 0 7 6 1 0 0 37 4
Innermost 70 0 43 19 8 0 0 31 3

MGD Outer 12 0 3 0 7 2 0 687 223
Innermost 30 0 16 6 4 3 1 1,141 12

TRACK Outer 23 0 12 7 4 0 0 95 81
Innermost 57 0 31 15 10 1 0 11 9

BDNA Outer 44 0 35 5 1 3 0 126 176
Innermost 151 1 65 19 11 54 1 869 285

OCEAN Outer 49 0 8 29 12 0 0 72 40
Innermost 72 0 0 28 42 2 0 182 169

DYFESM Outer 79 0 68 11 0 0 0 8 12
Innermost 133 6 97 28 2 0 0 11 20

ARC2D Outer 72 0 11 44 17 0 0 122 150
Innermost 107 1 0 41 65 0 0 204 154

FLO52 Outer 61 0 26 34 1 0 0 15 16
Innermost 107 0 4 77 26 0 0 75 58

TRFD Outer 18 0 0 16 2 0 0 63 24
Innermost 15 0 1 13 1 0 0 37 21

SPEC77 Outer 117 0 31 81 5 0 0 59 13
Innermost 259 0 57 167 34 1 0 153 15

MATRIX300 Outer 2 0 0 0 2 0 0 300 300
Innermost 14 0 1 0 13 0 0 279 300

NASA7 Outer 56 0 25 14 17 0 0 80 6
Innermost 73 0 10 13 46 3 1 697 190

TOMCATV Outer 6 0 0 0 6 0 0 255 255
Innermost 11 0 0 0 11 0 0 256 255

Table 2.3 Loop Iteration Counts of PERFECT and SPEC
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Bench Loop # of Number of Loops with Average Average
Name Type Loops Average Increment Iter. Per Iter. Per

Invoked 0 to 1 1 1 to 2 2 More Loop Invocation

ADM Outer 43 0 43 0 0 0 1.00 1.00
Innermost 86 0 83 0 3 0 1.03 1.17

SPICE Outer 14 0 14 0 0 0 1.00 1.00
Innermost 70 0 70 0 0 0 1.00 1.00

MGD Outer 12 0 12 0 0 0 1.00 1.00
Innermost 30 0 30 0 0 0 1.00 1.00

TRACK Outer 23 0 23 0 0 0 1.00 1.00
Innermost 57 0 57 0 0 0 1.00 1.00

BDNA Outer 44 0 44 0 0 0 1.00 1.00
Innermost 151 0 151 0 0 0 1.00 1.00

OCEAN Outer 49 0 46 0 3 0 1.06 1.09
Innermost 72 0 70 0 0 2 1.08 1.00

DYFESM Outer 79 0 79 0 0 0 1.00 1.00
Innermost 133 0 133 0 0 0 1.00 1.00

ARC2D Outer 72 0 72 0 0 0 1.00 1.00
Innermost 107 0 107 0 0 0 1.00 1.00

FLO52 Outer 61 0 57 0 4 0 1.07 1.03
Innermost 107 0 102 0 5 0 1.05 1.01

TRFD Outer 18 0 18 0 0 0 1.00 1.00
Innermost 15 0 15 0 0 0 1.00 1.00

SPEC77 Outer 117 0 109 0 6 2 1.14 1.51
Innermost 259 0 237 0 22 0 1.08 1.59

MATRIX300 Outer 2 0 2 0 0 0 1.00 1.00
Innermost 14 0 14 0 0 0 1.00 1.00

NASA7 Outer 56 0 55 0 0 1 1.05 1.00
Innermost 73 0 73 0 0 0 1.00 1.00

TOMCATV Outer 6 0 6 0 0 0 1.00 1.00
Innermost 11 0 11 0 0 0 1.00 1.00

Table 2.4 Loop Increments for PERFECT and SPEC

Table 2.4 shows the average increment of each loop. ADM, OCEAN, FLO52,

SPEC77 andNASA7 have a few loops whose increment is not one. Especially, SPEC77

has two as the increment in the half of the loop invocations. The increments for all other

benchmarks are one.
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2.3 Pcode Cache Simulation

In addition to the loop pro�le information, some cache simulation information is useful

to determine whether a loop nest should be transformed or not. Since the purpose of

the transformation is to reduce the cache misses, any loop nest with few cache misses

should not be transformed in order to avoid the possible performance penalty due to

the instruction overhead introduced by the transformation. Simulation is the process of

selecting a set of inputs for a program, executing the program with these inputs, and

simulating the cache behavior of the program. The following information is simulated by

the Pcode cache simulator:

(1) The cache compulsory misses, capacity misses and con
ict misses.

(2) The cache anti-con
ict hits.

Pcode cache simulation is supported by three tools: a probe insertion program, a

cache simulator and a program to summarize cache simulation information. There are

three steps to perform Pcode cache simulation:

(1) The probe insertion program assigns a unique identi�er or line number to each

array reference and inserts a probe just before the array reference in Pcode. The

probe is inserted only for reads if the cache has does not allocate line when a write-

miss occurs. Whenever the prove is activated, it produces the associated memory

address and identi�er.
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Bench Array Access in Par loop Other Array Total Array
Name Outer (%) Innermost (%) Accesses (%) Access Counts

TRACK 17,704,495 (33.4) 14,862,168 (28.1) 20,412,350 (38.5) 52,979,013

BDNA 91,292 (0.0) 318,842,870 (100.0) 833 (0.0) 318,934,995

OCEAN 1,909,884 (0.1) 1,602,459,335 (97.3) 42,489,908 (2.6) 1,646,859,127

ARC2D 1,441,725 (0.1) 1,459,178,576 (99.9) 2 (0.0) 1,460,620,303

MATRIX300 300 (0.0) 432,000,000 (100.0) 0 (0.0) 432,000,300

NASA7 1,221,370 (0.1) 2,080,443,485 (99.9) 162,807 (0.0) 2,081,827,662

TOMCATV 0 (0.0) 325,218,099 (100.0) 0 (0.0) 325,218,099

Table 2.5 Array Accesses of Each Loop Type of Several Benchmarks

(2) The Probed Pcode is reverse-translated into C code. The C code is compiled by a

standard C compiler and linked with the cache simulator program.

(3) The executable program is executed for a set of inputs. The generated cache sim-

ulation data for each line is collected.

(4) Finally, the summary cache simulation information is generated by the program

using the cache simulation data for each line. The cache simulation data for each

loop nest is also generated using the loop nest information. This information is

then merged back into the Pcode representation of the program.

Table 2.5 shows some characteristics of array accesses of several benchmarks. In all

benchmarks except TRACK, the Innermost loops contain the vast majority of the array

accesses in the program. The array accesses in TRACK occur not only in the Innermost

loops but also in Outer loops and the other regions where the accesses are not within

loops.
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Bench Loop Number of Par loops
Name Type Array Access Rate Total

0 0.1 1.0 10.0 more

TRACK Outer 3 5 4 2 1 15
Innermost 6 15 15 16 0 52

BDNA Outer 14 24 0 0 0 38
Innermost 49 78 6 4 2 139

OCEAN Outer 0 8 0 0 0 8
Innermost 4 25 15 11 4 59

ARC2D Outer 1 14 0 0 0 15
Innermost 41 50 13 33 0 137

MATRIX300 Outer 0 1 0 0 0 1
Innermost 1 0 0 0 1 2

NASA7 Outer 0 15 0 0 0 15
Innermost 0 20 11 14 3 48

TOMCATV Outer 0 0 0 0 0 0
Innermost 1 5 0 2 3 11

Table 2.6 Array Access Statistics for Several Benchmarks

Table 2.6 shows the number of loops with each array access counts for several bench-

marks. BDNA and ARC2D have many loops that do not read from arrays. Also, in

BDNA a few loops contain the vast majority of the array accesses.

2.4 Experiments

The experiments in this section show the e�ect of the cache structure for numerical

programs. Since there exist a lot of possible cache con�gurations, testing all con�gura-

tions is impossible with available computer resources and time. To test the e�ect of a

particular cache parameter, a base cache was de�ned and a single parameter was varied
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on each simulation. The selected base cache was a 8K, direct mapped cache with 16 byte

cache line, using a write-back and no-allocate-on-write-miss policy.

2.4.1 Cache Size

The �rst cache characteristic is the size. The cache simulations examined the e�ects

of increasing cache size from 8K to 64K bytes. As shown in Figure 2.2, for all the

benchmarks, the total cache misses as well as the cache capacity misses decreased as the

data cache size increased. The cache con
ict misses not necessarily decreased as the cache

size increased since the con
ict misses come from the lack of the cache line associativity,

not directly from the lack of the cache size. Regarding the capacity misses, increasing

the cache size decrease the cache capacity misses in the most cases. For TOMCATV,

however, doubling the cache size from 16K did not decrease the cache capacity misses as

well as the total cache misses. This may happens if the working set size is larger than

the cache size. Cache size does not a�ect the cache line overhead.

2.4.2 Set Associativity

The second cache parameter examined was set associativity. The cache simulations

examined the e�ects of increasing set associativity from direct-mapped to 8-way set. As

shown in Figure 2.3, for most benchmarks, the total cache misses did not necessarily

decrease as the set associativity increased. Although increasing the set associativity can

decreases the cache con
ict misses in almost all cases, it increases the capacity misses
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CHAPTER 3

LOOP BLOCKING

Loop blocking is an optimization technique to increase the chance for data reuse in

the cache. The basic idea is to reduce the number of accesses between two accesses to

the same datum. In this method, as illustrated in Figure 3.1, a large iteration space

(Figure 3.1a) is divided into smaller sub-iteration spaces (Figure 3.1b) so that the array

accesses that occur within each sub-iteration space can �t within the cache. This more

localized memory reference pattern can increase data reuse within the cache and reduce

processor stalls due to cache misses.

3.1 Method

The original program is transformed in order to divide the iteration space of loops into

smaller sub-iteration spaces. Using this method, no special hardware is necessary at run-

i

j

i

j

a) Original iteration space b) Blocked iteration space

Figure 3.1 Concept of Loop Blocking
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time. Instead, a sophisticated compiler is essential to perform the blocking transformation

correctly and e�ectively. The compiler need identify the following:

� the loop nests that are valid to block.

� the loop nests that should be blocked to improve cache performance.

� the blocking size that should be used to improve cache performance e�ectively.

The automatic blocking transformation has been implemented as one of the transfor-

mations for the IMPACT compiler.

3.2 Compiler Support

The loop blocking transformation consists of three phases:

� Phase 1: Validity Analysis

� Phase 2: Blocking Decision

� Phase 3: Code Transformation

3.2.1 Validity Analysis

Validity analysis is done as the �rst phase in order to con�rm that the blocking trans-

formation is valid, which means that the result of the computation after the blocking

transformation is exactly the same as that before the transformation. In the current im-

plementation, only perfectly nested and structured loops are considered as the candidate
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for loop blocking. Loop nests that contain multiple inner loops, return, goto, or break

statements are excluded, as well as which contain subroutine calls with possible side ef-

fects. Then, for the remaining loop nests, the dependence analysis checks the validity of

loop blocking.

The dependence analysis and the criteria for loop blocking are same as those for

the loop interchange. Loop blocking is an iteration space reordering transformation,

and therefore, may reverse dependence directions. Therefore, the dependence direction

vector can be used to check whether or not a loop nest can be legally blocked. If the

dependence direction vectors for the transformed loop nest are not lexically positive, the

transformation will be invalid. The dependence analyzer used by my implementation is

a version of the Omega test tailored to IMPACT by Grant Haab.

3.2.2 Blocking Decision

In the second phase of loop blocking, a fast compile time cache simulation is done in

order to determine the e�ective blocking size. In the current implementation, the address

of each array reference is calculated by a fast approximate method which uses a constant

number for the size of each array dimension and the coe�cient of each loop iteration

variable in the array subscript. Therefore, the loop nests which contain arrays whose

subscripts include variables other than loop iteration variables are excluded. Further-

more, the starting address of the array itself is very hard or impossible to determine at

compile time; thus, some approximation is necessary in order to perform cache simulation

at compile time.
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Using a given cache size, the simulator estimates the cache misses for a blocked loop

nest, starting from the smallest blocking size or one. Then, the blocking size is expanded

in each dimension. In order to speedup the blocking size determination, each dimension

for which blocking is to be applied is expanded by factors of power of 2 (i.e. 2, 4, 8,

16 and so on). Then, the cache miss ratio for each expanded blocking size is estimated.

The blocking size with the lowest miss ratio among the expanded blocked loop nests is

picked. This expansion process is repeated until the blocking size is expanded a pre-

de�ned number of times. If the estimated cache misses for the �nally selected blocking

size is less than a prede�ned threshold, use this blocking size for the transformation.

Otherwise, this loop nest is not blocked. Thus, the computational complexity of the

algorithm is O (DlogN), where D is the number of dimensions and N is the number of

iterations in each dimension.

3.2.3 Code Transformation

As the �nal phase of the blocking transformation, the loop nest is actually modi�ed

into the blocked loop nest with the blocking size determined by the previous phase.

A doubly-nested loop is given as an example in Figure 3.2a. The accesses to array B

are sequential within each row, while the accesses to array C are sequential within each

column, causing low utilization of the cache storage. The loop nesting after the blocking

transformation is shown in Figure 3.2b.
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a) Original code

for (i=0;i<N;i++)

for (j=0;j<N;j++)

A[i][j]=B[i][j]*C[j][i];

b) After blocking

for (ii=0;ii<N;ii+=Bi)

for (jj=0;jj<N;jj+=Bj)

for (i=ii;i<min(N,ii+Bi);i++)

for (j=jj;j<min(N,jj+Bj);j++)

A[i][j] = B[i][j] * C[j][i];

Figure 3.2 Code Transformation for Loop Blocking

3.3 Experimental Evaluation

In this section, the cache miss ratio of the loop blocking are evaluated through cache

simulations.

3.3.1 Statistics for Loop Blocking

Table 3.1 shows the statistics of blockable loops of several PERFECT benchmarks.

As described in Section 3.2.1, unstructured loops, imperfectly nested loops and loops

that contain calls with possible side e�ects are excluded. Then, dependence analysis is

performed for the remained loops. The last column of the Table 3.1 shows the number of

blockable loop nests. However, most of them are singly-nested loops that do not bene�t

from loop blocking since the access pattern would not change.

For the blockable loops, the cache miss is estimated using various blocking sizes. As

described before, the singly-nested loops has show no cache performance improvement

through loop blocking as shown in Table 3.2. The last column of Table 3.2 shows the

number of the blocked loop nests. Several benchmarks have blocked loop nests, but the
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# of Excluded Loops Blockable Loops
Bench Loops Unstruct Imperfect S. E�ect Depend # of Nest Depth Total

Analyzed Loops Nest Calls Invalid Loops 3 2 1 Loopnests

ADM 302 13 50 51 20 198 9 25 121 155
SPICE 348 87 22 245 0 55 0 0 55 55
MGD 52 5 19 6 2 29 0 0 29 29
TRACK 97 25 15 29 2 53 0 4 45 49
BDNA 270 26 40 71 0 158 0 8 142 150
OCEAN 132 4 34 22 26 79 0 8 63 71
DYFESM 264 15 62 83 9 124 0 18 88 106
MG3D 111 1 42 27 0 62 0 13 36 49
ARC2D 233 2 31 9 0 198 5 46 91 142
FLO52 188 14 35 22 4 128 7 27 53 87
TRFD 78 4 30 3 0 37 0 8 21 29
SPEC77 407 29 110 63 18 249 0 28 193 221

Total 2482 225 490 631 81 1370 21 185 937 1143

Table 3.1 Blockable Loops for PERFECT Benchmarks

number of the blocked loop nests is relatively small compared with the total number of

the loop nests.

3.3.2 Cache Miss Ratios for Blocked Loop Nests

Table 3.3 shows dynamic array access statistics for the blocked loops. Among the

eight benchmarks that have the blocked loop nests, only two benchmarks, BDNA and

ARC2D, have blocked loop nests that contain relatively high percentages of array access

counts.

Figure 3.3 shows the cache miss ratio of the blocked loop nest and the entire loop nests

of BDNA. BDNA has a very frequently executed loop nest that contains many arrays,

and therefore, loop blocking is very successful in improving the cache performance.

Figure 3.4 shows the cache miss ratio of the blocked loop nest and the entire loop

nests of ARC2D. Unlike BDNA, ARC2D has relatively many blocked loop nests, but
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Blockable Loops No Improvement Blocked Loops
Bench Nest Depth Total Nest Depth Total Nest Depth Total

3 2 1 Loopnests 3 2 1 Loopnests 3 2 1 Loopnests

ADM 9 25 121 155 1 3 121 125 8 22 0 30
SPICE 0 0 55 55 0 0 55 55 0 0 0 0
MDG 0 0 29 29 0 0 29 29 0 0 0 0
TRACK 0 4 45 49 0 4 45 49 0 0 0 0
BDNA 0 8 142 150 0 3 142 145 0 5 0 5
OCEAN 0 8 63 71 0 0 63 63 0 8 0 8
DYFESM 0 18 88 106 0 16 88 104 0 2 0 2
MG3D 0 13 36 49 0 13 36 49 0 0 0 0
ARC2D 5 46 91 142 3 26 91 120 2 20 0 22
FLO52 7 27 53 87 6 25 53 84 1 2 0 3
TRFD 0 8 21 29 0 2 21 23 0 6 0 6
SPEC77 0 28 193 221 0 21 193 214 0 7 0 7

Total 21 185 937 1143 10 113 937 1060 11 72 0 83

Table 3.2 Blocked Loop Nests for PERFECT Benchmarks

Blocked Loops

Bench Total # of Loopnests Array Access % of Total

Array Access Source Executed Array Access

ADM 462,824,761 30 0 0 0

BDNA 436,028,173 5 5 285,750,080 65.5

OCEAN 2,669,877,945 8 0 0 0

DYFESM 410,046,035 2 2 1,873,872 0.5

ARC2D 1,981,154,040 22 14 561,837,852 28.4

FLO52 736,423,318 3 1 5,715,360 0.7

TRFD 666,159,027 6 0 0 0

SPEC77 2,530,747,172 7 0 0 0

Table 3.3 Array Access Counts of PERFECT
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Figure 3.3 Cache Miss Detail of BDNA

33



0.0

0.5

AP

Total

1.0

Capacity miss

Miss Type Rate

Direct mapped

Size: 8KB

Line size: 16B

Conflict miss

O B

3481
(5.5%) 

3601
(1.8%) 

O B

5422
(5.5%) 

O B

5473
(1.4%) 

O B

6423
(4.2%) 

O B

6583
(2.5%) 

O B O B

Loopnest line #
(% of total miss) 

4085
(6.5%) 

O B

5582
(3.7%) 

O B

Figure 3.4 Cache Miss Detail of ARC2D

Line fetch
overhead

Capacity misses Conflict misses

Large Cache

Highly Associative Cache

Loop Blocking
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Table 3.4 Motivation for a More Aggressive Method

each execution percentage is small. Therefore, the entire benchmark cache performance

is not improved signi�cantly.

Loop blocking as well as changing cache parameters as described in Section 2.4 does

not solve all cache problems at the same time. This motivates a more aggressive method

that can solve all the cache problems at the same time (Table 3.4).
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CHAPTER 4

DATA RELOCATION AND PREFETCHING

4.1 Method

I propose a compiler-supported, hardware-based technique called data relocation and

prefetching in order to improve the data cache performance. In this method, the array

references in the inner loop of a nest are sequentially mapped in the cache before they are

accessed. The relocation operations are invoked by explicit instructions inserted by the

compiler. The compiler also inserts a declaration into the original code for the relocation

bu�er that allocates space for the relocated data in memory. Special hardware that is

attached to the cache unit maps and compresses the data into the virtual bu�er space

so that the relocation can be performed while prefetching the data from the memory to

the cache and without stalling the CPU. In order to access the relocated data (instead of

the original array data) during the computation, the compiler replaces the original array

references with corresponding relocation bu�er references.

Because the array data is relocated, the prefetch is binding. During the computation,

the newly assigned address in the relocation bu�er space is used to access the data

rather than the original address. Consequently, the relocation must be completed before

the computation on the same data begins. If the relocated, cached data is replaced by
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some other original address accesses, such as scalar accesses, the relocated data must be

written back to the relocation bu�er in memory since the accesses in the computation

use the address of the relocated data. To insure write-back of the relocated data, the

dirty bit is set when the cache line for the data is allocated. When the computation that

uses the relocated data is �nished, all modi�ed, relocated data are written back from the

relocation bu�er to their original memory locations using an explicit machine instruction.

Data Relocation and Prefetching (DRP) can improve the spatial locality of array

accesses for a loop nest. Figure 4.1 shows how array data elements accessed in the

�rst iteration of the outer loop are copied to sequential cache locations that map to the

relocation bu�er in memory. Array A is accessed with a stride of two, and array B is

accessed in column order during the execution of the inner loop. Accesses to these array

elements can result in poor performance because:

(1) The accesses may not exhibit any spatial locality because of the non-unit access

stride, resulting in wasted cache capacity which may lower the cache hit rate.

(2) The sets of accesses for di�erent arrays may con
ict with each other because they

happen to be mapped to some of the same locations in the cache.

(3) The accesses for a single array may con
ict with each other because of a large access

stride.

If the accessed elements of these arrays are relocated in the cache, spatial locality can be

improved by packing elements of the arrays into contiguous locations. Also, since only

necessary elements are brought into the cache, the extra memory requests and time to
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Layout in memory

A[0][0] A[0][2] A[0][4] B[0][0] B[1][0] B[2][0]

Layout in cache

A’ B’

a) Original Code

for (i = 0; i < N; i++) 
   for (j = 0; j < 3; j++) 
      ... = A[i][2*j] + B[j][i];

A’ B’

Relocation Buffer

... ...... ...

b)Transformed Code

for (i = 0; i < N; i++) 
   for (j = 0; j < 3; j++) 
      ... = A’[j] + B’[j];

Figure 4.1 Concept of Data Relocation

�ll the cache line due to the non-unit stride accesses are reduced. Furthermore, if the

total size of the relocated array elements is smaller than the cache size, the compression

guarantees that the references to the relocated data do not con
ict with each other in

the cache. Finally, cache space is conserved by packing elements of the arrays.

In order to reduce the instruction-fetch overhead due to the inserted relocation in-

structions, each instruction contains enough information to operate on several elements

of the array in sequence. Also, in order to accommodate the latency of the relocation

of array data, the relocation and computation phases are separated in time by software-

pipelining the outer loop. Further details are given in Section 4.4.
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4.2 Architectural Support

Implementing the mechanism for the DRP technique requires extra instructions as

well as extra hardware. Five instructions to support DRP are added to the processor

instruction set: precollect, distribute, preallocate, await and �nishup.

4.2.1 Precollect

The precollect instruction, which has �ve operands, collects the array data referenced

in a computation into consecutive locations in the cache before the data is needed for the

computation. The precollect instruction fetches the data at the original addresses from

the cache. If the cache misses the original address, memory is accessed to get the data

instead. After fetching the data from either the cache or memory, the data is stored into

the associated cache line with the tag of the relocated addresses. The dirty bit of the

cache line is set so that the relocated data can be written back to memory at the relocated

address if it is replaced with other data. Therefore, the relocated data in memory can

be referenced by the transformed code even if the cache misses the relocated address.

This instruction is non-blocking: It does not stall the processor even if it causes cache

misses. Also, this instruction is non-trapping: It does not interrupt the processor even

if this instruction accesses memory illegally. Therefore, the execution of this instruction

can be overlapped with the execution of the instructions which perform computations in

the loop nest.
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The �rst operand is the address of the �rst element of the array to be relocated,

whereas the second operand is the address of the �rst element of the relocated array in

the relocation bu�er. The third through the �fth operands are the size of each array

element in bytes, the stride of the array accesses in bytes, and the number of array

elements to be collected. The information given by the third through the �fth operands

is necessary since the DRP technique does not relocate entire cache lines but rather

relocates array elements that will be accessed in the computation.

4.2.2 Distribute

The distribute instruction writes the relocated data which were updated by the com-

putation back to their original array locations in memory. First, the cache is accessed

to read the updated data using the relocated address. If the cache misses the relocated

address due to the replacement, memory is accessed instead. After reading the updated

data from either the cache or memory, the data is written in the cache using the original

address. If the cache misses the original address, the data is written in memory instead.

Like the precollect instruction, the distribute instruction does not stall the processor.

The format of the distribute instruction is the same as that of the precollect instruction:

The �rst operand speci�es the starting address of the array elements before relocation,

and the second operand speci�es the starting address of the array data in the relocation

bu�er.
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a) Original code

for (i=0;i<N;i++)

for (j=0;j<8;j++) {

A[i][j] = 1.0;

... = A[i][j] * 2.0;

}

b) Transformed code using preallocate operation

for (i=0;i<N;i++) {

/* preallocate A'[0]..A'[7] */

for (j=0;j<8;j++) {

A'[j] = 1.0;

... = A'[j] * 2.0;

}

/* distribute A'[0]..A'[7] to A[i][0]..A[i][7] */

}

Figure 4.2 Example of Preallocate Operation

4.2.3 Preallocate

The preallocate instruction only allocates the necessary cache lines instead of collecting

the array data into consecutive locations within the cache and can be used instead of

the precollect instruction if the array data is not read before being written during the

computation as shown in Figure 4.2. In this case, there is no need to fetch the data into

the cache before the computation. Unlike the precollect operation, the dirty bit of the

cache line is not set since the data is not fetched into the cache line. Typically, tags of

the cache lines can be modi�ed rapidly by the hardware. Also, since this operation does

not access memory at all, it does not increase the bus tra�c at all. This instruction is

also non-blocking.
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The preallocate instruction has the same operands as the precollect instruction, except

that the �rst operand (the original starting address) and the fourth operand (the stride

of the original array accesses) are not needed.

4.2.4 Await

The await instruction provides a simple synchronization mechanism to avoid access-

ing the relocated array data before the precollect or preallocate operation is completed.

This instruction has a single operand that must match the second operand of the asso-

ciated precollect or preallocate instruction. If the operation of the associated precollect

or preallocate instruction has not been completed, the await instruction blocks the data

cache until the operation is �nished. The processor is not blocked until it accesses the

data cache.

4.2.5 Finishup

After the loop nest �nishes execution, there may be un�nished distribute instructions

which must be completed before the array data is accessed in subsequent code. The

�nishup instruction provides a synchronization mechanism to insure that all distribute

instructions are completed by blocking the data cache. No operands are necessary.
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4.3 Hardware Support

The execution of the DRP instructions is handled by special hardware called the Data

Relocation and Prefetching unit which can be attached to the existing cache unit (Fig-

ure 4.3). The DRP unit shares the MMU with the cache and also shares the cache itself

with the CPU. In this con�guration, both the processor and the cache have higher prior-

ity than the DRP unit in accessing the shared resources. This priority hierarchy helps to

ensure that the DRP unit doesn't signi�cantly slow down the execution of an application

program while executing precollect, preallocate and distribute instructions unless an await

or �nishup instruction is executed. The data cache con�guration necessary to support

the DRP unit is a write-back cache that does not allocate a cache line on a write miss. If

a high-bandwidth memory system like a split-transaction bus system is used, the DRP

unit can utilize the bandwidth by pipelining the read and write requests to the memory

system. Figure 4.4 illustrates the components of the DRP unit data path.

The DRP unit insures that the cache need not block due to a data fetch generated

by any DRP instruction by performing these fetches in the DRP unit itself. Since the

cache does not block while writes are serviced unless the write bu�er is full, writes misses

generated by the DRP instructions are handled by the cache instead of dedicated DRP

hardware. Furthermore, the DRP unit itself does not block when fetching data from a

memory location.

As program execution proceeds, precollect, preallocate, and distribute instructions

from the processor are placed in the instruction queue. If the instruction queue is full,

42



CPU

Cache

WB

MMU

BUS

memory request

Data Relocation
& Prefetch Unit

Cache
Unit

Precollect, Preallocate,
Distribute, Await, Finishup

Figure 4.3 Data Relocation and Prefetch Unit Interfaces

43



Instruction Queue

Sub-operation Queue

Data Element Counter

Cache
Unit

ID Counter

Source Addr Dest Addr Size ID

StrideArray Addr Buffer Addr Size # Data

+

+

+

+

Address
Generator

Counter

Precollect, Preallocate, and Distribute Instructions

Await Instructions

BUS

MMU

Read Buffer

Address Data

Type

Type

Block Cache

Buffer Addr

data

addr

size

data

addr

size

write
port

read
port

Data Buffer

Figure 4.4 Data Relocation and Prefetch Unit Data Path

the DRP unit stalls the processor until there is an empty entry in the queue. Each

instruction at the head of the queue is processed completely by the address generator

before the next may proceed.

The address generator calculates the original address of each array element using the

starting array address and the stride information. The address generator also uses the
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starting relocation bu�er address and the element size to calculate the relocation bu�er

address for each array element.

As each pair of addresses is generated, an entry is stored in the sub-operation queue

for processing. For the precollect and preallocate instructions, the original addresses are

stored in the source address �eld, and the bu�er addresses are stored in the destination

�eld of the sub-operation queue. For distribute instructions, the addresses are reversed.

To begin processing a precollect sub-operation, the source address �eld is used to send

a special read request to the cache. If the data is present in the cache, it is �rst stored in

the DRP unit data bu�er then written to the cache using the destination address. Also,

the sub-operation is removed from the queue since it is �nished.

If the data is not present in the cache, the cache does not send a read request to

fetch the data, but instead, the DRP unit sends the read request to the MMU using the

source address. At this point, the next sub-operation in the sub-operation queue begins

processing, but the pending sub-operation is left in the queue for further processing. If the

sub-operation queue has enough entries, the queue does not block while a sub-operation

is waiting for memory access to be completed.

When the data returns from memory to the read bu�er, the source address �elds of

the sub-operation queue are searched associatively using the address from the read bu�er

to obtain the destination address and size of the data from the same sub-operation. Then,

the appropriate cache line is allocated, and the data from the read bu�er is written to

the cache using the destination address and size. All blocks written with relocated data

in the cache are marked dirty.
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To begin processing a preallocate sub-operation, the source address �eld is used to

access the cache tag store. For each address that misses in the cache, a cache line is

allocated for the relocated data, but the array data is not fetched into the cache. After

the line is allocated, it is marked clean. Then, the sub-operation is removed from the sub-

operation queue. The preallocate sub-operation must �nish before the relocated address

is written by the computation in order to insure correct results are obtained for program

execution.

For a distribute sub-operation, the relocated data is read from the cache using the

source address �eld from the entry at the head of the sub-operation queue. If the data

is present in the cache, it is placed in the DRP unit data bu�er. If the data is not

present in the cache (which can occur if non-relocated data con
icts with relocated data

in the cache), the cache does not fetch the data; but instead, the DRP unit sends a read

request to the MMU using the source address. At this point, the next sub-operation

in the queue begins processing, but the pending sub-operation is left in the queue for

further processing. When the data returns from memory, the address in the read bu�er

is used to associatively search the source address �elds of the sub-operation queue for

the destination address and size �elds.

After the relocated data has been read, a write request is sent to the cache using the

destination address and data in either the read bu�er or the data bu�er, depending on

whether or not the read of the relocated data resulted in a cache miss or hit, respectively.

The sub-operation is removed from the queue, and the data is written to the original

address in the cache if a write hit occurs or in the memory if a write miss occurs.
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When each instruction is passed from the instruction queue to the address generator,

an entry is allocated in the data element counter for it, and the total number of data ele-

ments is used to initialize the counter. As the sub-operation queue �nishes the processing

of each data element, the data element counter is decremented by one. Therefore, a pre-

allocate, precollect, or distribute instruction has a corresponding non-zero data element

counter entry during execution. An await instruction causes the data cache to block until

the data element counter entry with the matching bu�er address identi�er reaches zero.

A �nishup instruction causes the data cache to block until all the data element counter

entries contain zero.

An interlock mechanism insures that a precollect or preallocate instruction will not

begin execution until after all previously issued distribute instructions which use the

same relocation bu�er have completed execution. The identi�er (bu�er address) of the

instruction at the head of the instruction queue is used to search the data element counter

associatively. If an instruction with the same identi�er is still being executed, address

generation is delayed until the previous instruction has been completed.

4.4 Compiler Support

Compiler support is essential to transforming the source code so that the proposed

scheme can improve the cache performance. The IMPACT research prototype com-

piler [17] supports high-level transformations and optimizations, superscalar and VLIW

optimizations and scheduling [18], as well as classical and machine-speci�c optimizations.
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Some high-level loop analysis information such as loop carry dependences is passed to

the low-level code so that the low level optimization can be performed e�ectively.

The compiler support for the DRP technique consists of �ve phases: loop analysis,

array analysis, DRP-transformation decision, high-level code transformation and low-

level code transformation. The �rst three phases are performed at the Pcode level, while

the last phase is performed at the Lcode level.

4.4.1 Loop Analysis

In this phase, each loop nest is analyzed to make the transformation valid and e�ec-

tive. First, innermost loops which contain return or goto are excluded since the trans-

formation would be invalid. Furthermore, loop nests that contain subroutine calls with

possible side e�ects are also excluded because the subroutine could modify global arrays

which have been relocated. Then, loop information is generated using static and pro-

�le information. The pro�le information contains iteration counts, array access counts,

and cache misses for each loop. Since transformations may introduce instruction over-

head and code expansion, only important loops should be transformed. The array access

counts and cache misses for each loop are used in order to determine whether the loop is

important. If it is considered as a unimportant loop, the loop is removed from consider-

ation. Iteration counts for each loop are necessary to determine whether the inner-most

loop has enough array elements to be relocated, and whether the outer loop has enough

iterations to reduce the startup overhead.
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Example:

for (ii=0;ii<N;ii+=Bi)

for (jj=0;jj<N;jj+=Bj)

for (i=ii;i<min(N,ii+Bi);i++)

for (j=jj;j<min(N,jj+Bj);j++)

A[i][j] = B[i][j] + A[i][j];

- i is dominated by ii

- j is dominated by jj

Figure 4.5 Relationships of Iteration Variables in Blocked Loop

Also, in this phase, the relationships between iteration variables in a loop nest are

determined. This information is necessary to prefetch elements of an array which will be

used in the next inner-most loop invocation. The index of the elements are determined

using this information. For example, if the loop nest is blocked as shown in Figure 4.5,

the initial value of j is determined by jj. In other words, the iteration variable j is

dominated by jj, which means that if jj is incremented, j also need to be incremented.

Similarly, the iteration variable i is dominated by ii. Therefore, the next iteration of the

i loop is determined by the current ii loop iteration and the relationships as illustrated

in Figure 4.6.

4.4.2 Array Analysis

The next phase is array analysis. In this phase, all array references in each loop nest

are analyzed and stored in a data structure. Data dependence analysis is performed using
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a) Iteration space b) Normal case

current
iteration

next iteration

current
iteration

next iteration

i

j

c) End of i iteration

current
iteration

d) End of jj iteration

i

next iteration

j j

i

i

j

Figure 4.6 Iteration Space in Blocked Loop

Omega test [14][15]. The data dependence information is used to insure the validity of

software-pipelining the data relocation and computation phases.

The relationships among the array references are also determined in this phase. If the

relationship between two array references is determined to be in line, they are grouped

in one array identi�er and they can share the relocation bu�er. For example, as shown

in Figure 4.7, if the array references in a loop nest are A[i][j] and A[i][j+1], these array

references are overlapped with regard to loop j and the relationship is considered as in

line. It is much more e�ective to use one shared bu�er for both array references since

the bu�er space can be saved and the overhead for data relocation can be reduced.

Furthermore, if the bu�er is not shared by the two array references, an inconsistency
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a) Original code

for (i=0;i<N;i++)

for (j=0;j<8;j++)

A[i][j+1] = A[i][j+1] + A[i][j];

b) Transformed code without sharing relocation buffer

for (i=0;i<N;i++) {

/* precollect A[i][0]..A[i][7] to A'[0]..A'[7] */

/* precollect A[i][1]..A[i][8] to A''[0]..A''[7] */

for (j=0;j<8;j++)

A''[j] = A''[j] + A'[j];

/* distribute A''[0]..A''[7] to A[i][1]..A[i][8] */

}

c) Transformed code with sharing relocation buffer

for (i=0;i<N;i++) {

/* precollect A[i][0]..A[i][8] to A'[0]..A'[8] */

for (j=0;j<8;j++)

A'[j+1] = A'[j+1] + A'[j];

/* distribute A'[1]..A'[8] to A[i][1]..A[i][8] */

}

Figure 4.7 Example of Shared Relocation Bu�er

problem may arise between A' and A" as shown in Figure 4.7b. Sharing the bu�er

eliminates the possible inconsistency problem.

Another relationship between array references is in line cross iteration. This re-

lationship exists if the array subscripts containing the inner loop index variable (j in

Figure 4.8a) are the same and if the di�erence in the array subscripts containing the

index of the outer-loop variable (i in Figure 4.8a) is exactly one (Figure 4.8a). The it-

eration space that was updated by the previous i-1 iteration is referenced at the current

i iteration. In this case, the relocation bu�er can be forwarded across the iteration so
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a) Original code

for (i=0;i<N;i++)

for (j=0;j<8;j++)

A[i+1][j] = A[i+1][j] + A[i][j];

b) Transformed code without forwarding relocation buffer

for (i=0;i<N;i++) {

/* precollect A[i][0]..A[i][7] to A'[0]..A'[7] */

/* precollect A[i+1][0]..A[i+1][7] to A''[0]..A''[7] */

for (j=0;j<8;j++)

A''[j] = A''[j] + A'[j];

/* distribute A''[0]..A''[7] to A[i+1][0]..A[i+1][7] */

}

c) Transformed code with forwarding relocation buffer

/* precollect A[0][0]..A[0][7] to A'[0]..A'[7] */

for (i=0;i<N;i++) {

/* precollect A[i+1][0]..A[i+1][7] to A''[0]..A''[7] */

for (j=0;j<8;j++)

A''[j] = A''[j] + A'[j];

/* distribute A''[0]..A''[7] to A[i+1][0]..A[i+1][7] */

/* forward A'' to A' */

}

Figure 4.8 Example of Forwarded Relocation Bu�er

that the unnecessary precollect operation can be avoided (Figure 4.8c). If the precollect

operation is overlapped with the computation by software pipelining, forwarding bu�er

is essential since the precollect operation must be invoked before the computation of the

previous iteration is completed. In other words, the elements have not been updated by

the time the precollect operation is invoked. Therefore, if the dependence distance regard-

ing i loop is not determined by the dependence analyzer, the array reference should not

be transformed using the DRP technique to avoid the possibility of incorrect execution.
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Some intelligent schemes are used to reduce the DRP operation overhead. As de-

scribed in Section 4.2.3, preallocate operations are used if the array analysis determines

that the array data is not read before being written during the computation (array A

in Figure 4.2). In this case, there is no need to fetch the data into the cache before the

computation since the data is updated by the computation anyway. The overhead of the

preallocate operation is much smaller than the precollect operation since it only sets the

tag �eld of the cache rather than fetching data.

A write bu�er is often attached to the cache in order to reduce the processor stalls

due to cache write misses. Often, a cache line is not allocated even if the cache misses for

a write access. This policy is called no-write-allocate. If the cache has a no-write-allocate

policy, the cache write miss does not stall the processor unless the write bu�er is full,

which is a rare case. In other words, these array references may not bene�t from the DRP

technique. Therefore, if an array is written and not read thereafter in a innermost loop,

it is more e�ective for these arrays not to be transformed by DRP in order to reduce the

DRP operation overhead which is shown in Figure 4.9. In the case of array B, the +=

operator is devided into two operators, = and +, so that only the read access can be

transformed for DRP.

After grouping the array references and determining the characteristics of the array

grouped, the information for the operands of DRP operations is determined. The start-

ing address of array to be relocated is determined using the loop analysis information

described in Section 4.4.1 since it needs the index of array reference for the next outer

loop iteration. The element size of an array is determined by information gathered from
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a) Original code

for (i=0;i<N;i++)

for (j=0;j<8;j++) {

A[i][j] = 1.0;

B[i][j] += 2.0;

}

b) Transformed code by DRP technique for all accesses

for (i=0;i<N;i++) {

/* preallocate A'[0]..A'[7] */

/* precollect B[i][0]..B[i][7] to B'[0]..B'[7] */

for (j=0;j<8;j++) {

A'[j] = 1.0;

B'[j] += 2.0;

}

/* distribute A'[0]..A'[7] to A[i][0]..A[i][7] */

/* distribute B'[0]..B'[7] to B[i][0]..B[i][7] */

}

c) Transformed code by DRP technique for all accesses except last stores

for (i=0;i<N;i++) {

/* precollect B[i][0]..B[i][7] to B'[0]..B'[7] */

for (j=0;j<8;j++) {

A[i][j] = 1.0;

B[i][j] = B'[j] + 2.0;

}

}

Figure 4.9 Example of Application of DRP to All Array Accesses Except Last Stores
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the Pcode representation and machine description. The stride of the array references

is determined by the di�erence between two array reference addresses, which may not

be able to be completely determined at compile time. Therefore, the stride is an ex-

pression such as &A[i][1] - &A[i][0]. This expression may be reduced into a constant

number by the low-level optimizations. The number of elements is determined by the

loop information such as the initial value, �nal value and increment of the inner-most

loop variable. Like the stride, the number of elements may not be able to be determined

at compile time. For example, it is impossible to determine the number of iterations

for a blocked loop at compile time since the �nal trip count value for a blocked loop is

usually expressed by a function which checks the loop boundary at run time. However,

if some transformation such as loop peeling is used for the blocked loop as described in

Section 4.4.3.6, the function to check the loop boundary can be removed from the loop

nest. In this case, the number of elements may be reduced to a constant by an intelligent

optimization in low-level code.

4.4.3 High-level Code Transformation

The data relocation and prefetching optimization can be applied most directly to

loops nested at least two deep. Figure 4.11a shows an example loop nest that illustrates

di�erent array access patterns. Before each invocation of the inner-most loop, array

data accessed in the inner-most loop are �rst relocated and prefetched, after which the

computation proceeds until the inner-most loop is �nished. The transformation is always

applied for the two inner-most loops for loop nests which are nested more deeply than
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two. For this case, I refer to the outer of the two inner-most loops as the outer loop,

and the inner-most loop as the inner loop. The high-level code transformations employed

for data relocation and prefetching are declaration of new variables for DRP, loop strip-

mining, insertion of DRP operations, replacement of array references with relocation

bu�er references, loop unrolling and loop peeling. Each of these transformations are

discussed in greater detail in the following subsections.

4.4.3.1 Declaration of New Variables for DRP

First, as shown in Figure 4.10, the relocation bu�er is declared as an array that has

the same size as the cache size. This guarantees that the relocated arrays in the relocation

bu�er have no cache line con
icts among them. Then, new array variables to access the

relocation bu�er are declared as pointers. The starting address of each relocated array

in the relocation bu�er is assigned to the associated variable. In my implementation,

the new array variables in Figure 4.11 are assigned in the relocation bu�er as shown in

Figure 4.10. Actually, cache is subdivided to a very high degree to accommodate widely

varying array data sizes. Thus, the same pointer variables need not be reassigned even if

the the number of arrays are di�erent for each loop nest, which eliminates the overhead

of pointer variable assignments of new variables for each loop nest.

In Figure 4.10, A0, B0, and C0 are pointers to the relocation bu�er starting addresses

for the elements of arrays A, B, and C (respectively) accessed in the �rst unrolled outer-

loop body, and A00, B00, and C00 point to the relocation bu�er starting addresses for array
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elements accessed in the second unrolled outer-loop body. Loop unrolling is described in

Section 4.4.3.5.

A’

A’’

B’

B’’

C’

C’’

Double CACHE[size];

Double *A’= &CACHE[0];

Double *A’’= &CACHE[size/2];

Double *B’= &CACHE[size/4];

Double *B’’= &CACHE[3*size/4];

Double *C’= &CACHE[size/8];

Double *C’’= &CACHE[3*size/8];

Relocation Buffer

cache size

Figure 4.10 Declaration of New Variables for DRP

4.4.3.2 Loop Strip-mining

For the DRP technique, strip-mining of the inner loop is performed in order to create

a doubly nested loop if the loop nest consists of only a singly nested loop. Strip-mining is

also used in order to reduce the amount of data relocated for the inner-loop computation

if that amount is too large to �t in the cache. This is necessary since all elements that

are relocated and prefetched for the inner loop computation must be allocated to unique

cache locations to prevent possible con
ict misses. at the same time. Furthermore, strip-

mining can remove some restrictions that prevent the loop nest from being transformed

for the DRP technique. For example, if the original outer loop includes calls with possi-
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a) Original Loop Nest

for (i=0; i<N; i++)

for (j=0; j<N; j++) {

C[i][j] = A[i][2*j] + B[j][i];

D[i][j] = C[i][j] - B[j+1][i];

}

b) After Strip Mining Inner Loop

for (i=0; i<N; i++)

for (jj=0; jj<N; jj+Bj)

min_j = min(jj+Bj, N);

for (j=jj; j<min_j; j++) {

C[i][j] = A[i][2*j] + B[j][i];

D[i][j] = C[i][j] - B[j+1][i];

}

Figure 4.11 Strip-mining Transformation

ble side-e�ect, the restrictions due to the outer loop can be ignored by strip-mining the

innermost loop and applying the DRP technique to the two innermost loops. As shown in

Figure 4.11, loop strip-mining does not alter the data access pattern of the original loop

and is, therefore, always a valid loop transformation. However, strip-mining introduces

the min function that is used to check the iteration boundary. The min function is actu-

ally implemented as if statements, thus it introducing unnecessary execution overhead.

These if statements can be eliminated by loop peeling, described in Section 4.4.3.6.

4.4.3.3 Insertion of DRP Operations

After creating a doubly-nested loop by strip-mining, new operations are inserted in

the high-level code to perform the precollect, preallocate, await, distribute, and �nishup

operations. (See Figure 4.12.) These high-level operations are replaced by the corre-

sponding machine instructions at the assembly code level.

Before the outer loop, precollect and/or preallocate operations are inserted for the

�rst inner loop computation. Since these operations cannot be overlapped with any

other computation in the loop body, these operations constitute the start-up overhead
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a) Strip-Mined Loop

for (jj=0; jj<N; jj+Bj)

min_j = min(jj+Bj, N);

for (j=jj; j<min_j; j++) {

C[i][j] = A[i][2*j] + B[j][i];

D[i][j] = C[i][j] - B[j+1][i];

}

b) After Inserting New Operations

precollect(&A[i][0], A', 8, 16, Bj);

precollect(&B[0][i], B', 8, Bd, Bj+1);

preallocate(C', 8, Bj);

for (jj=0; jj<N; jj+=Bj)

precollect(&A[i][jj+Bj], A'', 8, 16, Bj);

precollect(&B[jj+Bj][i], B'', 8, Bd, Bj+1);

preallocate(C'', 8, Bj);

await(A'); await(B'); await(C');

min_j = min(jj+Bj, N);

for (j=jj; j<min_j; j++) {

C[i][j] = A[i][2*j] + B[j][i];

D[i][j] = C[i][j] - B[j+1][i];

}

distribute(&C[i][jj], C', 8, 8, min_j-jj);

}

finishup();

Figure 4.12 Insertion of Operation for DRP

of software pipelining. One or more await operations are inserted just before the inner

loop to insure that each of the precollect and preallocate operations is completed before

the inner-loop array computation begins. Distribute operations are inserted just after

the inner loop in order to restore all modi�ed data in the relocation bu�ers to their

original locations in the memory. Also, precollect and/or preallocate operations for the

next outer-loop iteration are inserted before the inner loop. These operations need to use

di�erent bu�ers from those of the current iteration since precollecting the data for the

next iteration is overlapped with the computation for the current iteration by software

pipelining. Finally, a �nishup operation is placed just after the outer loop in order to

insure that all distribute operations are completed before execution proceeds to other

computations which may involve the same array data.
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a) Before Replacing Array References

precollect(&A[i][0],A',8,16,Bj);

precollect(&B[0][i],B',8,Bd,Bj+1);

preallocate(C',8,Bj);

for (jj=0; jj<N; jj+=Bj)

precollect(&A[i][jj+Bj],A'',8,16,Bj);

precollect(&B[jj+Bj][i],B'',8,Bd,Bj+1);

preallocate(C'',8,Bj);

await(A'); await(B'); await(C');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C[i][j] = A[i][2*j] + B[j][i];

D[i][j] = C[i][j] - B[j+1][i];

}

distribute(&C[i][jj],C',8,8,min_j-jj);

}

finishup();

b) After Replacing Array References

precollect(&A[i][0],A',8,16,Bj);

precollect(&B[0][i],B',8,Bd,Bj+1);

preallocate(C',8,Bj);

for (jj=0; jj<N; jj+=Bj)

precollect(&A[i][jj+Bj],A'',8,16,Bj);

precollect(&B[jj+Bj][i],B'',8,Bd,Bj+1);

preallocate(C'',8,Bj);

await(A'); await(B'); await(C');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C'[j] = A'[j] + B'[j];

D[i][j] = C'[j] - B'[j+1];

}

distribute(&C[i][jj],C',8,8,min_j-jj);

}

finishup();

Figure 4.13 Replacement of Array References for DRP

4.4.3.4 Replacement of Array References with Relocation Bu�er References

Once theDRP operations have been inserted, the array references for the computation

within the inner loop are modi�ed so that the relocation bu�er locations are accessed

instead of the original array locations. Some array references that do not need to be

relocated are left as the original array references. Replaced array references are all one-

dimensional even if the original array references are multi-dimensional.

4.4.3.5 Loop Unrolling

In order to overlap the data relocation and prefetching for the next outer-loop it-

eration with the computation for the current iteration, the relocation and prefetching

phase is software-pipelined with the computation phase as shown in Figure 4.14. This

software-pipelining scheme requires two relocation bu�ers. The inner loop is duplicated
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Buffer1
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Figure 4.14 Software Pipelining for DRP

by unrolling the outer loop once, as shown in Figure 4.15. In the �rst outer-loop body,

the data relocation proceeds into the second relocation bu�er, while the computation is

performed using the data already relocated in the �rst bu�er. For the second outer-loop

body, the same method is used as for the �rst outer-loop body except that the bu�ers are

switched. Loop unrolling introduces outer-loop code expansion and if statements that

check the iteration boundary for the second body.

4.4.3.6 Loop Peeling

The �nal transformation is loop peeling. This transformation peels the last iteration

of the outer loop in order to reduce the overhead of the if statements that have been in-

troduced by the strip-mining and loop unrolling as described in previous sections. Loop

peeling guarantees that the loop body is executed a certain number of times without

checking the iteration boundary, eliminating need for the if statements in the loop. Al-

though the peeled body still needs the if statements, the execution percentage for the
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a) Before Unrolling

for (jj=0; jj<N; jj+=Bj)

precollect(&A[i][jj+Bj],A'',8,16,Bj);

precollect(&B[jj+Bj][i],B'',8,Bd,Bj+1);

preallocate(C'',8,Bj);

await(A'); await(B'); await(C');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C'[j] = A'[j] + B'[j];

D[i][j] = C'[j] - B'[j+1];

}

distribute(&C[i][jj],C',8,8,min_j-jj);

}

finishup();

b) After Unrolling

for (jj'=0; jj'<N; jj'+=2*Bj)

jj=jj';

precollect(&A[i][jj+Bj],A'',8,16,Bj);

precollect(&B[jj+Bj][i],B'',8,Bd,Bj+1);

preallocate(C'',8,Bj);

await(A'); await(B'); await(C');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C'[j] = A'[j] + B'[j];

D[i][j] = C'[j] - B'[j+1];

}

distribute(&C[i][jj],C',8,8,min_j-jj);

jj+=Bj;

if (jj<N) {

precollect(&A[i][jj+Bj],A',8,16,Bj);

precollect(&B[jj+Bj][i],B',8,Bd,Bj+1);

preallocate(C',8,Bj);

await(A''); await(B''); await(C'');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C''[j] = A''[j] + B''[j];

D[i][j] = C''[j] - B''[j+1];

}

distribute(&C[i][jj],C'',8,8,min_j-jj);

}

}

finishup();

Figure 4.15 Loop Unrolling Transformation for DRP
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peeled body is generally much smaller than that for the loop body. However, like loop

unrolling, loop peeling introduces code expansion (Figure 4.16).

4.4.4 Low Level Code Transformations

After the high-level code transformations have been performed, the high-level code is

translated into the low-level code. Then, the low-level code is also transformed by the

DRP technique. The low-level code transformations employed for DRP are replacements

of high-level DRP operations with low-level instructions and creation of 
ow dependence

among DRP instructions in order to prevent invalid code schedules.

4.4.4.1 Replacement of High-level DRP Operations with Low-level Instruc-

tions

The transformed high-level code (Pcode) is translated into low-level code (Lcode),

which is a machine-level intermediate code in order to optimize and schedule the code

at the machine instruction level. Since the high-level DRP operations are still in the

form of function calls, they need to be translated to low-level instructions. Since prec-

ollect and distribute operations for the DRP technique have �ve operands including at

most four register operands, neither operation is likely to be implemented by one 32-bit

machine instruction. Therefore, each of these high-level operation is replaced with two

low-level instructions. The other DRP operations can be replaced with a single machine

instruction.
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a) Before Loop Peeling

for (jj'=0; jj'<N; jj'+=2*Bj)

jj=jj';

precollect(&A[i][jj+Bj],A'',8,16,Bj);

precollect(&B[jj+Bj][i],B'',8,Bd,Bj+1);

preallocate(C'',8,Bj);

await(A'); await(B'); await(C');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C'[j] = A'[j] + B'[j];

D[i][j] = C'[j] - B'[j+1];

}

distribute(&C[i][jj],C',8,8,min_j-jj);

jj+=Bj;

if (jj<N) {

precollect(&A[i][jj+Bj],A',8,16,Bj);

precollect(&B[jj+Bj][i],B',8,Bd,Bj+1);

preallocate(C',8,Bj);

await(A''); await(B''); await(C'');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C''[j] = A''[j] + B''[j];

D[i][j] = C''[j] - B''[j+1];

}

distribute(&C[i][jj],C'',8,8,min_j-jj);

}

}

finishup();

b) After Loop Peeling

for (jj'=0; jj'<N-2*Bj; jj'+=2*Bj)

jj=jj';

precollect(&A[i][jj+Bj],A'',8,16,Bj);

precollect(&B[jj+Bj][i],B'',8,Bd,Bj+1);

preallocate(C'',8,Bj);

await(A'); await(B'); await(C');

for (j=jj; j<jj+Bj; j++) {

C'[j] = A'[j] + B'[j];

D[i][j] = C'[j] - B'[j+1];

}

distribute(&C[i][jj],C',8,8,Bj);

jj+=Bj;

precollect(&A[i][jj+Bj],A',8,16,Bj);

precollect(&B[jj+Bj][i],B',8,Bd,Bj+1);

preallocate(C',8,Bj);

await(A''); await(B''); await(C'');

for (j=jj; j<jj+Bj; j++) {

C''[j] = A''[j] + B''[j];

D[i][j] = C''[j] - B''[j+1];

}

distribute(&C[i][jj],C'',8,8,Bj);

}

jj=jj';

if (jj < N) {

precollect(&A[i][jj+Bj],A'',8,16,Bj);

precollect(&B[jj+Bj][i],B'',8,Bd,Bj+1);

preallocate(C'',8,Bj);

await(A'); await(B'); await(C');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C'[j] = A'[j] + B'[j];

D[i][j] = C'[j] - B'[j+1];

}

distribute(&C[i][jj],C',8,8,min_j-jj));

jj+=Bj;

if (jj < N) {

await(A''); await(B''); await(C'');

min_j = min(jj+Bj,N);

for (j=jj; j<min_j; j++) {

C''[j] = A''[j] + B''[j];

D[i][j] = C''[j] - B''[j+1];

}

distribute(&C[i][jj],C'',8,8,min_j-jj));

}

}

finishup();

Figure 4.16 Loop Peeling Transformation for DRP
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Figure 4.17 shows the six machine level instructions that are added to the instruction

set for the DRP technique. Five instructions respectively correspond to the �ve high-

level operations that are described in Section 4.2. One new machine-level instruction is

Lop setup. This instruction is used with the Lop precollect and Lop distribute instructions

in order to implement the precollect and distribute operations, respectively. Lop setup

takes the element size and the access stride of an array as its two operands, and encodes

them into a register. A Lop setup instruction is inserted just before the corresponding

Lop precollect instruction. The Lop distribute instruction can use the register that is gen-

erated by the previous Lop setup instructions for Lop precollect instruction. Although the

original precollect operations are inserted in the outer loop body, the Lop setup instruc-

tion may be moved out of the outer loop by the Lcode optimizer since the two operands

are likely to be loop-independent. Therefore, the overhead of the additional Lop setup

instructions should be small.

The Lop precollect and Lop distribute instructions take four operands. The �rst

operand is the relocation bu�er address. The second operand is the array starting address

to be relocated. The third operand is the register that holds the encoded data generated

by the Lop setup instruction. The last operand is the number of relocated array elements.

This operand will be constant in the outer loop body. However, in the peeled body, the

value for this operand is determined by the min function as described in Section 4.4.3.2.

All operands except the last operand are read from general purpose registers. The last

operand can be read either from a register or directly from the immediate value in the

instruction.
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a) Precollect Operation

Lop_setup [Rt] [(element_size)(stride)]

Lop_precollect [buffer_addr] [(array_addr)(Rt)(# of data)]

b) Distribute Operation

Lop_setup [Rt] [(element_size)(stride)]

Lop_distribute [buffer_addr] [(array_addr)(Rt)(# of data)]

c) Preallocate Operation

Lop_preallocate [buffer_addr] [(element_size)(# of data)]

d) Await Operation

Lop_await [buffer_addr]

e) Finishup Operation

Lop_finishup []

Figure 4.17 Machine Level Instructions for Each DRP Operation
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4.4.4.2 Creation of Dependences among DRP Instructions

After replacing the high-level operations with low-level instructions, classical opti-

mizations are applied. Then, ILP increasing optimizations such as loop unrolling and

superblock formation [18] are also performed. Next, the code is scheduled, register al-

located, and optimized for a speci�c machine. Before performing the instruction-level

scheduling, data dependences among the DRP Instructions are created in order to pre-

vent the scheduler from producing an invalid schedule. The dependences are created

by the register that holds the relocation bu�er address as shown in Figure 4.18. Each

instruction takes a set of source operands and one destination operand. The �rst square

bracket of each instruction represents the destination �eld, and the second square bracket

represents the source �eld. The destination �eld has only one operand while the source

�eld has multiple operands, which is represented by parenthesis. The number of the

source operands depends on the instruction.

In the Figure 4.18, R1 represent a register that hold the relocation bu�er address.

This register is used to create 
ow dependence chain among the DRP instructions so

that these instructions can be scheduled in the same order as the high-level operations

inserted for DRP. Some instructions in the Figure 4.18 takes the relocation bu�er address

operand as both the source and the destination. This is done just for the scheduling

purpose, therefore one operand for the bu�er address is enough for the actual machine

instruction.
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Lop_ld [R1] [(&CACHE)(0)]

...

Lop_setup [Rt] [(element_size)(stride)]

...

Lop_precollect [R1] [(R1)(array_addr)(Rt)(# of data)]

...

Lop_await [R1] [R1]

for (i=0; i<N; i++) {

...

Lop_ld [Rn][(R1)(offset)] ; Rn <- Mem(R1+offset)

...

Lop_st [Rm][(R1)(offset)] ; Mem(R1+offset) <- Rm

...

}

Lop_distribute [R1] [(array_addr)(Rt)(# of data)]

Figure 4.18 Creation of Dependences among DRP Instructions

Since the store instruction has no destination register, an arti�cial dependence arc is

added from the store instruction to the Lop distribute instruction before scheduling the

code.
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CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter, the e�ectiveness of the data relocation and prefetching technique is

evaluated through simulations of a set of array-based benchmarks.

5.1 Methodology

5.1.1 Compiler Transformation Statistics

The benchmarks used for the experimental evaluation of the DRP technique consist

of fourteen numeric programs: ADM, SPICE, MGD, TRACK, BDNA, OCEAN,

DYFESM, ARC2D, FLO52, TRFD, and SPEC77 from the PERFECT benchmark

suite citeBeCK89;MATRIX300 from the SPEC'89 benchmark suite; and NASA7 and

TOMCATV from the SPEC'92 benchmark suite. All benchmarks are pro�led at the

loop level to obtain the number of loop invocations and iterations in order to apply the

DRP transformations selectively and e�ectively. Tables 5.1 - 5.3 summarize the DRP

compiler transformation statistics for each of the benchmarks.

Table 5.1 shows the inner-most loops that were excluded from consideration based

on static analysis of the loop characteristics. The second column of the table gives the

total number of inner-most loops for each benchmark, while the third through the �fth
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Benchmark # of Excluded Loops Remaining Loops

Name Loop Side E�ect Goto Return Depth Total

Nests Calls Stmts Stmts 1 2 3 4 5

ADM 188 29 8 0 54 63 38 0 0 155

SPICE 310 223 0 62 40 10 1 0 0 51

MGD 35 4 0 3 10 9 9 1 0 29

TRACK 69 16 1 8 22 18 6 3 0 49

BDNA 212 56 0 7 84 58 6 2 0 150

OCEAN 79 8 0 0 22 37 12 0 0 71

DYFESM 165 57 1 2 34 43 22 7 0 106

ARC2D 150 7 0 1 68 56 18 0 0 142

FLO52 118 22 0 10 20 43 24 0 0 87

TRFD 32 3 0 0 1 3 6 13 6 29

SPEC77 279 41 0 19 62 118 37 4 0 221

MATRIX300 15 11 0 0 2 2 0 0 0 4

NASA7 73 13 0 0 14 28 13 5 0 60

TOMCATV 12 0 0 1 6 5 0 0 0 11

Table 5.1 Inner-most Loops Excluded by Static Loop Characteristics

columns give the numbers of loops excluded because of subroutine calls which possibly

modify global arrays, \goto" statements which causes a branch out of the loop, and

\return" statements. A single inner-most loop may be represented in the counts for any

or all of these three columns. The number and loop nesting depths of the inner-most

loops that remain after the loops are excluded are given in the remaining columns of the

table.

After static loop-characteristic analysis has been applied, static array characteristics

and dynamic loop iteration counts are used to exclude more loops from being considered

for DRP transformation. Table 5.2 summarizes the array reference characteristics which

prevent certain references from being relocated as well as loops that were excluded due

to small loop iteration counts. The second column of the table gives the number of inner-

most loops which have not been excluded by the loop characteristics analysis phase. The
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Benchmark # of # of Innermost Loops # of
Name Innermost No Write Modi�ed No Inner Complex Flow Small Innermost

Loops Array Access Iteration Iteration Array Depend Iter. Loops
Before in Loop Variable Variable Subscript After

ADM 155 6 110 26 24 0 19 85 14
SPICE 51 0 30 3 21 0 4 25 1
MGD 29 3 9 11 10 0 7 11 3
TRACK 49 0 29 0 8 2 1 31 5
BDNA 150 7 63 25 43 33 7 63 13
OCEAN 71 1 19 0 4 5 10 1 40
DYFESM 106 17 48 2 17 7 6 51 2
ARC2D 142 2 48 0 2 0 4 34 89
FLO52 87 4 31 9 8 0 1 16 40
TRFD 29 6 11 7 6 0 4 8 1
SPEC77 221 5 91 19 52 4 7 91 57
MATRIX300 4 0 3 0 0 0 0 0 1
NASA7 60 0 24 2 10 0 2 4 30
TOMCATV 11 0 1 0 0 0 0 1 9

Table 5.2 Results of Static Array Reference and Dynamic Loop Iteration Count Anal-
yses

third column gives the number of inner-most loops which have no array accesses within

them. These loops are automatically excluded from consideration. Of the remaining

inner-most loops, the next �ve columns give the number of loops which contain speci�c

kinds of array reference characteristics which prevent these arrays from being relocated,

although other arrays in the loop may still bene�t from relocation. The second-from-

the-last column shows the number of inner-most loops which have too few iterations

to overcome the transformation overhead; either without applying strip-mining, or after

applying loop strip-mining if it is necessary. Finally, the last column relates the number

of inner-most loop nests which remain viable for DRP transformation after this phase of

the analysis.

There exist several reasons why individual array references are not relocated by the

DRP transformation. First, if the last access to an array in the inner-most loop is a

write, this access is not relocated in order to eliminate the overhead of adding the DRP
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operations. Second, if the iteration variable of either the inner-most or next-outer loop

is modi�ed in the next-outer loop body and occurs in a subscript of an array reference,

transforming this reference could be invalid. However, if the modi�ed iteration variable is

associated with the next-outer loop, then strip-mining the inner-most loop can sometimes

remove this restriction. The number of loops which contain array reference subscripts

with modi�ed iteration variables which cannot be rendered harmless by strip-mining is

given in Table 5.2. Third, if the inner-most loop iteration variable does not occur in

any of the subscripts of an array reference, then the reference is a scalar with respect to

the inner-most loop and is not relocated. Fourth, if any array reference subscript is a

non-linear function of the iteration variables or contains both the inner-most and next-

outer loop iteration variables, then that reference cannot be relocated using our DRP

implementation. Last, if a reference has a undetermined distance cross-iteration 
ow

dependence carried by the next-outer loop, relocating it could cause an inconsistency

problem with the relocation bu�ers. Again, strip-mining the inner-most loop can some-

times remove this restriction, and the data given in Table 5.2 re
ects those restrictions

which could not be removed by loop strip-mining. With the exception of the last-write-

access restriction, if one array reference is excluded from relocation consideration then

all other references to the same array in the inner-most loop are also excluded. If all

array references in the inner-most loop are excluded from relocation consideration, the

loop will not be transformed by DRP.

Table 5.3 shows the number of inner-most loops which are transformed as well as

statistics for the transformed loops based on pro�le information. The second column
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Benchmark Remaining Small Transformed % of Total Estimated
Name Innermost Array Access Innermost Array Cache Misses

Loops & Misses Loops Accesses Original DRP Improve

ADM 14 10 4 3.8 9.0 8.2 8.9%
SPICE 1 1 0 0 7.9 7.9 0%
MGD 3 3 0 0 2.1 2.1 0%
TRACK 5 2 3 0.4 11.1 10.9 1.8%
BDNA 13 9 4 63.2 26.7 13.8 48.3%
OCEAN 40 27 13 23.0 36.9 26.0 29.5%
DYFESM 2 2 0 0 5.7 5.7 0%
ARC2D 89 52 37 87.6 40.8 2.2 94.6%
FLO52 40 37 3 1.6 11.9 11.5 3.4%
TRFD 1 0 1 0.3 17.3 17.1 1.2%
SPEC77 57 54 3 0.3 12.1 11.8 2.5%
MATRIX300 1 0 1 100.0 48.2 0.0 100%
NASA7 30 12 18 60.6 42.8 9.3 78.3%
TOMCATV 9 5 4 95.8 34.0 2.0 94.1%

Table 5.3 Results of E�ectiveness Analyses for DRP-transformed Loops

of the table gives the number of inner-most loops which have not been excluded by the

analysis summarized in Table 5.2. Of those inner-most loops, column three shows the

number of loops which possess either small cache miss ratios or a relatively tiny num-

ber of dynamic array accesses as compared to the entire benchmark. If an inner-most

loop has a small cache miss ratio, the performance bene�t of transforming it may not

outweigh the transformation overheads. Also, if the loop has a very small percentage of

the dynamic array references for the benchmark, then the added code expansion due to

transformation may cause instruction cache performance degradation which could out-

weigh the performance bene�ts of transforming it. The fourth column gives the number

of inner-most loops which are actually transformed by the DRP technique.

The remaining columns of Table 5.3 relate information which predicts the e�ective-

ness of the DRP transformation. The �fth column of the table shows the number of

dynamic relocated array accesses as a percentage of the array accesses for the entire

benchmark. Notice that only seven benchmarks have transformed array accesses per-
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centages greater than two percent. These are the benchmarks used in Section 5.2 for

the experimental evaluation. The other benchmarks have characteristics which are un-

suitable for the DRP transformation. The last three columns give information about the

data cache miss ratio for the benchmarks derived from Pcode cache simulation results.

The �rst of these columns gives the original measured cache miss ratio while the second

gives the cache miss ratio estimated by reducing to zero the number of cache misses in

all transformed loops. The estimated percentage improvement for the cache miss ratio

due to the DRP technique is given in the last column. Among the fourteen benchmarks,

seven benchmarks have the improvement of the estimated cache misses: ADM, BDNA,

OCEAN, ARC2D, MATRIX300, NASA7, and TOMCATV. These seven bench-

mark were used for the detailed simulation.

5.1.2 Transformation Correctness Veri�cation via Emulation

In order to provide a realistic evaluation of the DRP technique, the code is optimized

using the IMPACT compiler. Classical optimizations are applied, then ILP increasing

optimizations such as loop unrolling and superblock formation [18] are performed. The

code is scheduled, register allocated, and optimized for a four-issue, scoreboarded, su-

perscalar processor with register renaming. The register �le contains 64 integer registers

and 64 double-precision 
oating-point registers. Each of the four functional units are

pipelined and can execute any type of instruction.

To verify the correctness of the code transformations, emulation of the generated

code is performed on a Hewlett-Packard PA-RISC 7100 workstation. The precollect and
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Function Latency Function Latency

Int ALU 1 FP ALU 2

memory load 2 FP multiply 2

memory store 1 FP divide (SGL) 8

branch 1 / 1 slot FP divide (DBL) 15

Table 5.4 Instruction Latencies for Simulation Experiments

distribute instructions are emulated using machine language subroutines that perform

the data relocation from memory to memory instead of to and from the cache. Thus, the

transformed code must relocate the data and reference it using the correct addresses for

the emulation to produce valid results.

5.1.3 Simulation Experiments

The emulator drives a simulator that models the processor and the DRP unit to deter-

mine benchmark execution time, cache performance, and bus utilization. The simulation

latencies used are those of a Hewlett-Packard PA-RISC 7100 microprocessor, as given in

Table 5.4.

The processor model includes separate instruction and data caches. Each cache is a

direct-mapped, 8k-byte blocking cache with a 16-byte block size. The data cache is a

multiported, write-back, no write-allocate cache that satis�es four load or store requests

per cycle from the processor. The 8-entry write bu�er combines write requests to the

same cache line. Streaming of data from load misses minimizes the load miss penalty.

The instruction cache and data cache share a common, split-transaction memory bus,

with 64 bits/cycle data bandwidth. A pipelined memory model is used with a 10-cycle

latency.
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A direct-mapped branch target bu�er with 1024 entries is used to perform dynamic

branch prediction using a 2-bit counter. Hardware speculation is supported, and the

branch misprediction penalty is approximately two cycles.

The simulation model for the DRP unit is based on the description in Chapter 4.

However, in�nite-size queues and bu�ers are modeled so that no blocking occurs in the

DRP unit due to insu�cient entries. Also, the data cache has one read and one write

port dedicated to service DRP unit accesses.

Since simulating the entire benchmark programs at this level of detail would be im-

practical, uniform sampling is used to reduce simulation time [19]. The samples are

200,000 instructions in length and are spaced evenly every 20,000,000 instructions, yield-

ing a 1% sampling ratio. Most of the benchmarks used have more than a billion dynamic

instructions, at least 50 samples, and thus, more than 10,000,000 instructions are simu-

lated. For smaller benchmarks, the time between samples is reduced to maintain at least

50 samples (10,000,000 instructions). From experience with the emulation-driven simula-

tor, it has been determined that sampling with at least 50 samples introduces very little

error in our performance estimates. Typically, the statistics generated with sampling are

within 1% of those generated without sampling.

5.2 Experimental Results

Experimental results are presented for some of the loop nests as well as the entire

benchmarks. From the view of the point of memory optimization, three types of processor
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stalls are evaluated for each experiment. The �rst one is processor stall due to the cache

read misses. The second one is processor stall due to the full write bu�er. The last one

is processor stall due to the await operations as described in Section 4.2.4. The last type

exists only for the DRP technique.

5.2.1 Individual Loop Nest Results

In order to show the full performance bene�t of the DRP technique, experimental

results are presented for all benchmark program loop nests which are modi�ed by theDRP

transformation. Performance statistics for individual loop nests are obtained by marking

the DRP-transformed loop nests as execution regions for the simulation. Consequently,

simulating the execution of the entire program once is su�cient to gather results for all

transformed loop nests in the context of the entire program execution.

Table 5.5 shows some array information of some transformed loop nests that were

frequently executed. The transformed loop nests are identi�ed by function name, the

Fortran outer DO-loop number, and the loop iteration variable if necessary. The second

column is the original code execution time for each of the loop nests selected by the

DRP technique as a percentage of the total original code execution time. For BDNA,

MATRIX300 and TOMCATV, a single loop nest has a very high percentage of the

execution cycles. Transforming these loop nests will greatly a�ect the entire benchmark

results. The entire benchmark results are discussed in Section 5.2.2. The third column

of Table 5.5 shows the array access counts of each loop nest as a percentage of the total

array accesses in the original code. This is almost proportional to the percentage of the
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Benchmark % of Total % of Total Cache Miss Ratio # of Arrays # of Strip-mine Estimated
Loop Nest Execution Array Acc (% of Total Miss) Orig Trans Bu� Size Outer Iter

ARC2D
STEPFX.232 9.9% 8.7% 49.8% (10.6%) 17 17 10 10 8
STEPFY.435J 7.0% 8.7% 29.5% (6.3%) 17 17 10 17 17
XPENTA.11 5.5% 4.0% 72.8% (7.2%) 12 12 12 10 8
STEPFX.212 5.4% 4.6% 34.8% (3.9%) 9 9 9 10 8
STEPFY.430 5.4% 4.5% 50.1% (5.5%) 9 9 9 17 16

ADM
LEAPFR.30 1.9% 2.4% 20.6% (5.4%) 3 3 3 28 27
DCTDX.10 0.7% 0.8% 25.1% (2.3%) 1 1 1 8 8

BDNA
ACTFOR.350 65.7% 62.7% 20.4% (47.7%) 42 21 15 26 24

OCEAN
IN.10 9.8% 10.3% 50.0% (14.0%) 1 1 1 50 50
OUT.10 5.9% 8.8% 44.7% (10.6%) 1 1 1 44 42

MATRIX300
SAXPY.10 97.6% 97.6% 48.2% (100.0%) 2 2 2 18 16

NASA7
CFFT2D2.30K 16.6% 10.1% 43.8% (10.3%) 8 8 4 12 10
GMTRY.8K 11.2% 12.0% 56.7% (15.9%) 3 2 2 19 17
CFFT2D1.130 9.9% 8.8% 25.0% (5.1%) 8 8 4 16 16
VPENTA.11 7.9% 5.5% 80.6% (10.3%) 18 18 18 12 10
VPENTA.15 5.6% 4.6% 80.0% (8.7%) 15 15 11 12 10

TOMCATV
MAIN.250 42.3% 56.0% 28.6% (47.1%) 28 28 6 16 15
MAIN.401I 22.5% 15.9% 50.1% (23.5%) 8 8 8 16 15
MAIN.501I 15.7% 15.9% 25.2% (11.8%) 8 8 6 16 15
MAIN.290I 9.0% 8.0% 50.1% (11.8%) 4 4 4 16 15

Table 5.5 Array Information of Transformed Loop Nests

execution time in the second column. The forth column is the cache miss ratio due to

array accesses in each loop nest and the percentage of the total cache misses of the entire

benchmark. The number of the �fth and the sixth column show the number of arrays in

original code and the number of arrays that are transformed respectively. The seventh

column is the number of the relocation bu�er for one iteration. The number in the eight

column shows the strip-mining size, and the the number of the last column show the

estimated iterations of the transformed outer loop.

Figure 5.1 presents the measured speedup of the DRP technique which is calculated

by dividing the original loop nest execution time by the DRP-transformed loop nest
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Figure 5.1 Speedup of the DRP-transformed Code Over the Original Code for the
Loop Nests

execution time. Measured speedup for most loop nests is relatively large, demonstrating

the high performance improvement obtainable using the DRP technique.

The stalls due to the cache read misses directly correspond to the cache read misses

since each cache read miss stalls the processor. Figure 5.2 shows the data cache miss

ratio for the original code and the DRP-transformed code for the loop nests. Since a

no write-allocate cache is used for these experiments, the miss ratios for both original

and transformed code are calculated by dividing the number of cache read misses by the

number of cache read requests in the original code. This method of calculating the cache

misses ensures a fair comparison if the number of cache accesses for the transformed code

is di�erent from the number for the original code. This ratio does not include requests
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initiated by the DRP unit. Since these cache reads do not stall the CPU, they have a

minimal impact on performance.

Note that cache misses are nearly eliminated for most of the loop nests. However,

the execution speedup obtained for each loop nest is not always highly correlated to the

reduction in cache miss ratio because of the complexity of scheduling a multiple-issue

processor.

For the loop nest ACTOFOR.100 in the BDNA, the cache misses were not com-

pletely eliminated by DRP technique. The loop nest contains forty two array references.

However, twenty one of them were transformed for DRP and the rest of the array refer-

ences were not transformed due the restrictions described in Chapter 4. Therefore, there

still exist cache misses due to the non-transformed array references. The cache misses

contains many con
ict misses between the transformed and non-transformed array ref-

erences. For the loop nest STEPFX.212 in the ARC2D, some cache misses are not

eliminated. The loop nest contains twenty scalar variables, which are not relocated, and

they con
ict the cache line with the transformed array references. The 98% of the cache

misses are the con
ict misses due to this reason.

Figure 5.3 shows the stall overhead due to the full write bu�er. The overhead is

represented as the percentage of execution cycles for which the processor is stalled due

to the full write bu�er for the transformed loop nests. The stalls due to the full write

bu�er are increased for DRP-transformed code. In general, for the cache with no-write-

allocate policy, the write misses do not a�ect the processor perfomance so much since

they do not stall the processor if the write bu�er is not full. Without DRP, the bus
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Figure 5.3 Stalls Due to the Full Write Bu�er

using the original addresses. Another reason is that most write accesses are not DRP-

transformed for no-write-allocate cache, thus write accesses do not bene�t from the DRP

technique very much. The solution to this problem is discussed in Section 5.2.3 - 5.2.5.

Figure 5.5 shows the await operation overhead. The overhead is represented as per-

centage of execution cycles for which the await instruction stalls the processor for the

transformed loop nests. As long as the loop nests shown in the Figure 5.5, there are not

many await operation stalls, which means that most precollect operations are completed

when the corresponding await operation is invoked.

The memory bus utilization for the transformed and original loop nests is displayed

in Figure 5.6. Since precollect operation may access memory when the bus is not used,

it increases the bus utilization. As long as the bus utilization does not exceed 100%, the
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Benchmark Transformed % of Total Estimated % of
Name Innermost Array Cache Misses Total

Loops Accesses Original DRP Improve Execution

ADM 4 3.8 9.0 8.2 8.9% 3.2%
BDNA 4 63.2 26.7 13.8 48.3% 66.3%
OCEAN 13 23.0 36.9 26.0 29.5% 20.2%
ARC2D 37 87.6 40.8 2.2 94.6% 89.9%
MATRIX300 1 97.6 48.2 0.0 100% 97.6%
NASA7 18 60.6 42.8 9.3 78.3% 73.0%
TOMCATV 4 95.8 34.0 2.0 94.1% 89.3%

Table 5.6 Statistics of DRP-transformed Entire Benchmark

while the �fth column gives the cache miss ratio estimated by reducing to zero the number

of cache misses in all transformed loops. The estimated percentage improvement for the

cache miss ratio due to the DRP technique is given in the sixth column. The last column

is the original code execution time for the loop nests selected by the DRP technique as

a percentage of the total original code execution time. This is almost proportional to

the percentage of the array access counts in the third column. All benchmarks except

for ADM and OCEAN have high percentage of the execution time for the transformed

loop nests. For ARC2D, MATRIX300, and TOMCATV, the estimated cache miss

ratios are expected to be improved greatly by the DRP technique.

The increase in the dynamic instruction count for DRP over the original code is

displayed in Figure 5.7. The �gure shows that the instruction overhead due to the DRP

transformation is relatively small. For TOMCATV, the dynamic instruction count for

DRP-transformed code is smaller than that for the original code. This will happen if

there exist many complicated address calculation such as multidimensional array in the

original code. The complicated address calculation may need more than one instruction
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Figure 5.7 Instruction Overhead of DRP-transformed Code Over the Original Code

while the DRP-transformed array takes only one instruction since the array is always a

single dimension. This is a hidden advantage of the DRP technique.

Speedups for the simulated execution of the DRP-transformed code over the original

code for the seven benchmarks are given in Figure 5.8. The total speedup of ARC2D,

MATRIX300, NASA7 and TOMCATV is high although the rest of the benchmarks

have small speedup. For ADM and OCEAN, the small speedup is attributable to the

fact that the percentage of the execution time spent in the transformed loop nests is rel-

atively small due to the restrictions for DRP transformations as described in Section 4.4.

In the case of BDNA, a single loop nest dominates the entire execution time. As de-

scribed in Section 5.2.1, not all array references in the loop nest were transformed for

DRP, resulting in the small speedup.
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Figure 5.8 Speedup of DRP-transformed Code Over the Original Code

The cache read miss ratios show promising improvement for almost all benchmarks

shown in Figure 5.9. For ARC2D, MATRIX300, and TOMCATV, especially, the

cache miss ratios are reduced to only a few percent of the read accesses. The binding-

prefetching mechanism of the DRP technique guarantees that most of the necessary

data for the computation resides in the cache. Also, the compression of the data in the

relocation bu�er increases the utilization of the cache so that more data can reside in the

cache at the same time.

Figure 5.10 shows the processor stall overhead due to the full write bu�er. As de-

scribed in Section 5.2.1, the DRP technique increases processor stalls due to the full

write bu�er since precollect operations block the write bu�er and the cache write misses

increase for the DRP-transformed loop nests.
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Figure 5.13 Bus Utilization for the DRP-transformed Code and the Original Code

array accesses for all stores as well as for loads. Originally, if array references for stores

are not referenced later in the loop nest, these array reference were not transformed for

DRP since write accesses to the cache with a no-write-allocate policy do not stall the

processor if the write bu�er is not full. In this section, the DRP transformation is applied

to the array accesses for all stores regardless the loads thereafter in order to examine the

e�ect on the write bu�er stall overhead.

Applying DRP technique to array accesses for stores does not increase precollect oper-

ations but preallocate and distribute operations as described in Section 4.4.2. Preallocate

operations do not a�ect bus accesses at all since the operation modi�es only the cache

tag without fetching the data. Since the number of distribute operations increases, the

operation a�ects bus accesses, therefore the write bu�er.
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Figure 5.14 E�ect of DRP for Write Accesses on Speedup

Regarding the speedup which results from transforming stores for DRP, only MA-

TRIX300 and TOMCATV have relatively large improvement while the others have a

few or less improvement as shown in Figure 5.14. Figure 5.15 shows the cache read miss

ratios. The cache read miss ratio increased for almost all benchmarks. The reason is

that transforming stores as well as loads for DRP increases the space of relocation bu�er

in the cache, causing to perge out the other un-relocated data from the cache, which

may be reused in un-transformed loop nests. For NASA7, the cache read miss ratio is

increased, resulting in the less improvement of speedup.

Figure 5.16 shows the write bu�er stall overhead. For most benchmarks except

BDNA, write bu�er stalls are greatly reduced by transforming the array accesses for

stores since the DRP technique greatly reduces the cache write miss ratios as shown in
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Figure 5.18 E�ect of DRP for Write Accesses on Await Stall Overhead

As shown in Figure 5.19, applying DRP to stores increases the bus utilization. The

reason is not the increase of the memory accesses but the reduction of the execution

cycles, which comes from the reduction of the write bu�er stalls. For MATRIX300,

especially, the bus utilization reached almost 100%, which means that memory is always

accessed during the execution cycles. This is the major reason that the await stalls for

MATRIX300 are very high as shown in Figure 5.18. Some scheme to reduce the bus

tra�c is necessary in order to solve this problem. This is discussed in Section 6.2.

5.2.4 E�ect of Write Bu�er Size

Another possible solution for the write bu�er stalls is to increase the size of the write

bu�er. The size was originally 8 entries, and it was enough large to handle the cache
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Figure 5.20 E�ect of Write Bu�er Size on Speedup

a very slight improvement of cache misses since larger write bu�er can hold more data,

which may be referenced by the processor, resulting in the reduction of the cache misses.

Figure 5.22 shows the stall overhead due to the full write bu�er. The speedup shown

in Figure 5.20 comes from the improvement of the write bu�er stalls. Since cache write

miss ratios are not a�ected much by the write bu�er size as shown in Figure 5.23 due

to the same reason as for cache read misses just as describe above, the improvement of

the write bu�er stalls comes from simply the fact that larger write bu�er does not easily

become full. The improvement of the write bu�er stall diminishes after a certain size,

which is large enough to hold all the data that the cache misses for stores during the

time when the bus is not available for the write bu�er.

97



A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

B
enchm

ark

Cache Read Miss Ratio

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

B
D

N
A

O
C

E
A

N
A

R
C

2D
M

A
T

R
IX

300
N

A
S

A
7

T
O

M
C

A
T

V

15.7%

37.4%

21.8%

28.6%

35.7%

16.1%

10.9%

14.2%

2.9%

0.2%

8.7%

3.0%

13.9%

11.5%

2.6%

0.4%

8.8%

2.7%

11.4%

13.9%

2.6%

0.3%

8.8%

2.6%

11.4%

13.9%

2.5%

0.3%

8.8%

2.6%

13.9%

11.4%

2.5%

0.3%

8.8%

2.6%

original code
A
A
A

A
A
A

A
A
A

8 entry W
B

A
A
A

A
A
A

A
A
A

16 entry W
B

A
A
A
A

A
A
A
A

A
A
A
A32 entry W

B
A
A
A

A
A
A

A
A
A

64 entry W
B

A
A
A

A
A
A

A
A
A

128 entry W
B

F
ig
u
re

5
.2
1

E
�
ect

of
W
rite

B
u
�
er

S
ize

on
C
ach

e
R
ead

M
iss

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

B
enchm

ark

Write Buffer Stall

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

B
D

N
A

O
C

E
A

N
A

R
C

2D
M

A
T

R
IX

300
N

A
S

A
7

T
O

M
C

A
T

V

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

6.0%

4.9%

23.7%

32.9%

13.8%

22.8%

5.0%

4.8%

18.5%

27.6%

10.3%

16.1%

1.8%

4.7%

11.6%

21.9%

8.0%

10.9%

0.2%

4.6%

8.5%

20.8%

6.8%

9.0%

0.0%

4.6%

7.5%

20.7%

6.4%

7.4%

original code
A
A
A

A
A
A

A
A
A

8 entry W
B

A
A
A

A
A
A

A
A
A

16 entry W
B

A
A
A
A

A
A
A
A

A
A
A
A32 entry W

B
A
A
A

A
A
A

A
A
A

64 entry W
B

A
A
A

A
A
A

A
A
A

128 entry W
B

F
ig
u
re

5
.2
2

E
�
ect

of
W
rite

B
u
�
er

S
ize

on
W
rite

B
u
�
er

S
tall

98



A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

B
enchm

ark

Cache Write Miss Ratio

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

B
D

N
A

O
C

E
A

N
A

R
C

2D
M

A
T

R
IX

300
N

A
S

A
7

T
O

M
C

A
T

V

3.7%

21.6%

45.2%

41.4%

24.3%

17.6%

18.7%

48.1%

74.2%

89.2%

39.8%

91.6%

18.8%

47.8%

74.1%

89.8%

40.4%

88.5%

19.1%

47.8%

73.8%

89.8%

40.4%

88.4%

19.1%

47.8%

73.7%

90.4%

40.4%

88.4%

19.1%

47.8%

73.4%

90.4%

40.4%

88.4%

original code
A
A
A

A
A
A

A
A
A

8 entry W
B

A
A
A

A
A
A

A
A
A

16 entry W
B

A
A
A

A
A
A

A
A
A

32 entry W
B

A
A
A

A
A
A

A
A
A

64 entry W
B

A
A
A

A
A
A

A
A
A

128 entry W
B

F
ig
u
re

5
.2
3

E
�
ect

of
W
rite

B
u
�
er

S
ize

on
C
ach

e
W
rite

M
iss

F
igu

re
5.24

sh
ow

s
th
e
a
w
a
it
stall

overh
ead

.
In
creasin

g
th
e
w
rite

b
u
�
er

size
d
oes

n
ot

a�
ect

th
e
D
R
P
op
eration

s
m
u
ch

sin
ce

th
e
w
rite

b
u
�
er

is
m
ain

ly
u
sed

for
th
e
p
rocessor

an
d
th
e
D
R
P
op
eration

s
h
ave

h
igh

er
p
riority

th
an

th
e
w
rite

b
u
�
er.

T
h
e
sligh

t
in
crease

of
th
e
a
w
a
it
stall

overh
ead

com
es

from
th
e
red

u
ction

of
th
e
ex
ecu

tion
cy
cles.

T
h
e
b
u
s
u
tilization

is
in
creased

b
y
in
creasin

g
th
e
w
rite

b
u
�
er

size
as

sh
ow

n
in

F
ig-

u
re

5.25.
T
h
is
com

es
from

th
e
fact

th
at

th
e
ex
ecu

tion
tim

e
itself

is
red

u
ced

b
y
in
creasin

g

th
e
w
rite

b
u
�
er

size.
T
h
e
u
sage

tim
e
of

th
e
b
u
s
itself

is
n
ot

a�
ected

b
y
th
e
w
rite

b
u
�
er

size.

99



A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

B
enchm

ark

Await Stall Overhead

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

B
D

N
A

O
C

E
A

N
A

R
C

2D
M

A
T

R
IX

300
N

A
S

A
7

T
O

M
C

A
T

V

0.1%

0.2%

1.8%

3.6%

1.4%

2.0%

0.0%

0.2%

3.3%

6.2%

2.4%

2.2%

0.0%

0.2%

4.3%

7.7%

2.7%

3.4%

0.3%

0.3%

5.0%

8.2%

2.8%

3.5%

0.3%

0.3%

5.2%

8.2%

2.9%

3.6%

A
A
A
A

A
A
A
A

A
A
A
A8 entry W

B
A
A
A

A
A
A

A
A
A

16 entry W
B

A
A
A

A
A
A

A
A
A

32 entry W
B

A
A
A
A

A
A
A
A

A
A
A
A64 entry W

B
A
A
A

A
A
A

A
A
A

128 entry W
B

F
ig
u
re

5
.2
4

E
�
ect

of
W
rite

B
u
�
er

S
ize

on
A
w
a
it
S
tall

O
v
erh

ead

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

B
enchm

ark

Bus Utilization

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

BDNA

OCEAN

ARC2D

MATRIX300

NASA7

TOMCATV

18.1%

31.5%

28.9%

29.2%

33.9%

24.6%

21.2%

36.5%

56.2%

88.8%

46.7%

51.6%

21.7%

36.5%

59.5%

92.1%

48.1%

55.7%

22.4%

36.5%

63.9%

98.4%

49.3%

58.8%

22.7%

36.5%

65.8%

99.9%

49.9%

60.0%

22.7%

36.5%

66.4%

99.9%

50.1%

60.9%

original code

A
A
A

A
A
A

A
A
A

8 entry W
B

A
A
A

A
A
A

A
A
A

16 entry W
B

A
A
A

A
A
A

A
A
A

32 entry W
B

A
A
A

A
A
A

A
A
A

64 entry W
B

A
A
A

A
A
A

A
A
A

128 entry W
B

F
ig
u
r
e
5
.2
5

E
�
ect

of
W
rite

B
u
�
er

S
ize

on
B
u
s
U
tilization

100



5.2.5 E�ect of Priority of Precollect Operation

Another way to solve the full write bu�er problem is to change the priority of the

DRP unit on the bus. Like a normal prefetch operation, the precollect operation had the

higher priority than the write bu�er. However, in the DRP technique, assigning the write

bu�er priority higher than the precollect priority is a reasonable way to reduce the stalls

due to the full write bu�er since the precollect operation may generate many memory

accesses.

Figure 5.26 shows the e�ect of the priority on the speedup. For ARC2D, MA-

TRIX300, NASA7 and TOMCATV, there is 10% through 20% improvement in the

speedup. These benchmarks had a high percentage of write bu�er stalls when the priority

of the precollect operation was higher than that of the write bu�er. By switching the

priority, these write bu�er stalls are reduced, resulting in the improvement of speedup as

shown in Figure 5.26. For ADM, BDNA and OCEAN, there is not much improvement

since the main reason for the poor performance of these benchmarks was not the write

bu�er stalls but other factors described in Section 5.2.2.

Figure 5.27 shows the cache read miss ratios of the original code, DRP with higher

priority than write bu�er, and DRP with lower priority than write bu�er. There is

not much di�erence between the cache miss ratios of the two priority policies since the

priority policy changes only the order of the bus accesses between the write bu�er and

the DRP unit, not the memory access itself of the processor.
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Figure 5.26 E�ect of Priority of Precollect Operation on Speedup
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Figure 5.27 E�ect of Priority of Precollect Operation on Cache Read Miss
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Figure 5.28 E�ect of Priority of Precollect Operation on Write Bu�er Stalls

Figure 5.28 shows the e�ect of the priority on the write bu�er stalls. By changing the

priority of the DRP to lower than that of the write bu�er, most of the write bu�er stalls

are eliminated, resulting in the improvement of speedup as shown in Figure 5.26. Since

the cache write miss ratios is hardly a�ected by the priority as shown in Figure 5.29 due

to the same reason as the cache read miss ratios just as described above, the reduction

of the write bu�er stalls comes from the fact that the DRP operations do not block the

write bu�er due to the change of the priority.

On the other hand, changing the priority of the precollect operation a�ects the await

stall overhead. Since precollect operations are blocked if the write bu�er uses the bus,

prefetching of data from memory by precollect operations may be delayed due to a bus

con
ict with the write bu�er, introducing the many await stalls as shown in Figure 5.30.
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Figure 5.29 E�ect of Priority of Precollect Operation on Cache Write Miss

Therefore, changing the priority of the precollect operation can reduce the write bu�er

stalls while increasing the await operation stalls. For all the benchmarks used, the re-

duction of the write bu�er stall overhead is larger than the increase of the await stall

overhead, resulting in the improvement of speedup as shown in Figure 5.26.

Figure 5.31 shows the e�ect of the priority on the bus utilization. Changing the

priority of precollect operation does not a�ect the bus untilization much due to the same

reason as changing the write bu�er size as described in Section 5.2.4. The increase of

the bus utilization in the Figure 5.31 comes from the reduction of the execution time.

Especially, forMATRIX300, the bus utilization reached almost 100%. This is the major

reason that there are a large number of the await operation stalls for MATRIX300 as
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Figure 5.30 E�ect of Priority of Precollect Operation on Await Stall

shown in Figure 5.30. Some schemes to reduce the bus tra�c are necessary in order to

solve this problem. This is discussed in Section 6.2.

5.2.6 E�ect of Distribute Operation

Among the benchmarks used for the experimental evaluation, ARC2D and NASA7

have loop nests that contain an array reference transformed for the distribute operation.

Each loop nest was executed for only 1% of the entire execution time. All other bench-

marks do not use the distribute operation at all. If distribute operations are not used at

all, preallocate and �nishup operations are not necessary any more. The experimental

results show that transforming array write accesses for DRP is not worth adding three
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CHAPTER 6

CONCLUSIONS

6.1 Summary

An architectural extension, referred to as data relocation and prefetching, is proposed

to perform data relocation and compression during prefetching. Data relocation is em-

ployed to remove array-data mapping con
icts by compressing the accesses in a loop nest

into sequential locations in the cache. Compression also improves utilization of the cache

by transforming non-unit stride and array column accesses into sequential accesses that

require fewer cache lines for storage. Furthermore, reduction of the cache space used to

hold the data in the loop nest can increase the data reuse across transformed loop nests.

By combining the data relocation and prefetching hardware with supporting compiler

transformations, the performance of loop nests is greatly improved for a set of array-based

benchmarks. Also, I have shown that application of the data relocation and prefetching

technique greatly improves the cache performance.

6.2 Future Research

For the programs that contains many transformed arrays, some technique is necessary

to combine multiple bus accesses into single access in order to reduce the bus tra�c.
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In addition, the compiler transformations can be expanded and improved in order to

transform more loop nests e�ectively. Further experiments are warranted to study the

performance of this technique using various implementation parameters for the DRP

hardware.
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