
A Run-time Optimization Technique for
Tolerating Cache Misses

November16,2002

Abstract

Stallscausedby datacachemissesarea costly problemfor high-performancecomputer
systems.Out-of-orderprocessorsavoid many of thesestallsat theexpenseof complex hard-
wareanda deeperpipeline. In addition, their continuousreschedulingof instructions(even
whenit providesno benefit)is asignificantsourceof additionalpower consumption.

This paperpresentscache-miss stall deferral, a strategy for allowing in-orderEPIC pro-
cessorsto toleratevariable-latency memoryoperationsby continuingissuebeyondinstructions
dependentupona missedload. ThetechniqueusesEPICcontrol-speculationrecovery mech-
anismsto inexpensively recover from cache-missstallswhich aredeferredat run-time. By
usingan in-line recovery mechanism,no additionalcodeneedsto be generatedfor recovery.
Reexecutionproceedsonly whenrequired,eliminatingunneededstallson speculative opera-
tions.

The strategy presentedrealizessimilar benefitto out-of-orderprocessorsin that instruc-
tionsfollowing a stalledoperationcanbeoverlappedwith thehandlingof a cachemiss,often
enablingoverlapof additionalcachemissesthatwouldnotbepossiblein sequentialexecution.
Our approachmaintainsthe in-order model of executionavoiding the power consumption,
complexity andpipelinestagesrequiredby out-of-orderexecutionwhile achieving significant
performanceimprovementover traditionalEPICprocessorsexecutingaggressively optimized
code.

1 Introduction

In orderto meetthe latency requirementsof modernhigh-frequency microprocessors,first-level

datacacheshaveremainedrelativelysmallin size.For thisreason,theadditionallatency causedby

datacachemissescontinueto beamajorperformancebottleneck.Out-of-orderprocessorstolerate

this variablelatency behavior of memoryoperationsthoughdynamicschedulingwhich allows the

overlappedexecutionof instructionsthatfollow astalledinstructionwith thehandlingof thecache

miss.However, in in-orderprocessors,an instructionthatconsumesthedestinationof a loadwill

stall if thatmemoryoperation’s resulthasnotyet returnedfrom thememoryhierarchy.

As dynamicschedulingallows executionbeyond a stalledinstruction,someof the inherent

benefitfrom out-of-orderexecutioncomesfrom its ability to performadditionalmemoryinstruc-

tionswhichwouldbeblockedbyastalledinstructionin anin-ordermachine.Suchloadsmightalso

missin thecache.In thisway, considerableperformanceimprovementis achievedsimply through

handlingmultiplecachemissessimultaneouslythatwouldotherwisebehandledsequencially.

This paperpresentscache-miss stall deferal, a strategy for allowing in-orderprocessorsto

proceedbeyondastalledinstructionwaitingonacacheaccess.By maintainingthein-ordermodel

of excuction,theadditionalcomplexity andpipelinestagesrequiredby out-of-orderexecutionare

This paperpresentsa new mechanismfor usein run-timeoptimizationsystemsfor allowing

in-orderprocessorsto achievemuchof thecachemisstolerationthatwaspreviouslyonly available

in dynamicallyscheduledmachines. While this work builds upon a previously describedsys-

tem,it couldbeextendedto otherdynamicoptimizationsystemswhich exploit hardwaresupport.

The next sectiondiscussesthe relevant previous work. Sections3 and4 introducethe Run-time

Optimization Architecture (ROAR) andthe implementationof cache-missstall deferalwithin the

ROAR framework. Section5 reportstheexperimentalevaluationof our approach,andSections6

and7 containfuturework andconclusions.

2 Related Work

Focuson memorytoleranttechniquesandlesson runtimeopti

OOO====

InstructionIssueLogic in PipelinedSupercomputers

Comparisonof differentissuemodels,namelyCRAY-1scalar, Tomasulo’salgorithm,thortons

scorboardalgorithm,anda direct tagsearchalgorithm. Using CRAY asbaseline,tomasulogets

58%thortongets28%dtsgets38%

Implementationof preciseinterruptsin pipelinedprocessors

This is the reorderbuffer paper. 25%-3%degradationdependingon handlingof stores(do

they wait for pipelineto drainor issueandwait in memoryunit).

CheckpointRepairfor High PerformanceOut-of-orderExecutionMachines

Checkpointrepairallows recovery from an erroneousspeculative stateto a previous, valid

stateby recordingstatechangeswithin differencelists. The sizeof the differencelists limit the

amountanddistanceof reorderingthatcantakeplace.

out-of-ordertoleratecachemissesbetterthan in-orderCachemissdelaycanbe hiddenby

dynamiccodeschedulerout-of-orderis lesssensitive to cachemissbehavior thanin-order

2

Runtimeoptimization====================

Dynamo:A TransparentDynamicOptimizationSystem

Transparentlyoptimizesanativeapplicationasit executesThissystemdoesnotcurrentlyem-

ploy a speculationmechanismif preciseexceptionsarerequired,avoidsoptimizationsthatmight

violatepreciseexceptions(limits its aggressiveness).

¡– OOOrePLay:A HardwareFramework for DynamicOptimization

Frameis similar to a very long tracecacheline and is atomic in its executionSpeculation

failurewithin a traceforcesa recovery of stateto a point beforeexecutionof thetracebeganRe-

executionresumesfrom the original code. Staterecovery throws out all newly generatedvalues

includingany correctlyexecutedportions.

¡— EPIC(adaptto profilevariationbut not cache)

Hotspotdetectionlooksfor importantphaseswith consistentcontrolpathsandadaptsto con-

trol variation.Doesnot look for importantcachemissesnor adaptsto cachemissvariationwithin

thesamehotspot.

ReferenceEPICsomewhere(maybein intro?)

EPIC:An Architechurefor InstructionParallelProcessors

enablehigherlevelsof instruction-level parallelismwithoutunacceptablehardwarecomplex-

ity

Placebulk of burdenof POEon thecompilerPredictableruntimeenvironment

complexity. OOOEPIC========

renaminganddynamicschedulingof predicatedcodeNormally stall renamerif unresolved

predicatesguardmultiple write to samereg hold op in res. stationuntil predicateresolves*With

Selectu-op: (pX) r5 = , (pY) r5 = , user5 ===¿(pX) rW =, (PY) rU = , userS anda selectrS =

(rW,rU) , which is aSSAphi-likenodeHowever, thereservationstationwill still fillup waiting for

predicateresolution.*With predicateslip: predicatedinstructionsareexecutedassoonasnon-pred

sourcesareavailable.Thereresultsareheldin thereorderbuffer until thepredicateis resolved,in

whichcasebypassed/broadcastoccurs.15%averagespeedup

SimulataneousMultithreading:MaximizingOn-ChipParallelism

Examinationof multiple SMT modelscomparedto a wide superscalaror convential multi-

threadingarchitectures.Vertical(idle cycles)andHorizontal(unusedissueslots)waste

3

OOO (supposedlythe 2001 work) and/orspeculative precomputation(using SMT) yeilds

87%,92%,and,with both,141%

OOO:ability to toleratememorylatency (L1 in particular)

SP: toleratesmall numberof delinquentloads[4] (L2,L3 in particular)basictrigger: main

threadspawnsspecthreadchaintrigger: specthreadspawnsspecthread

Both OOOandSPaim to hidememorylatency by overlappingexecutionwith cachemisses.

It appearsthatOOOgetsthebulk of, andmostflexible partof theimprovement.SPdoeswell and

canbecombinedwith OOO,but really only hasachanceonmemoryintensivebenchmarks.

4

3 Speculation Models

Thissectiondetailstheoperationof twopreviouslypresentedtechniquesfor dealingwith compiler-

controlledspeculation.The two modelsarenot exclusive, but they wereproposedfor different

uses.Precise-speculationwasproposedasanadditionalmethodof control-speculationthatwould

allow instructionreorderingthat maintainedpreciseexceptionsandrequireda minimal amount

of analysis.This techniqueis particularlyattractive for speculationperformedby run-timecode

generation.Sentinalspeculationwith inline recovery is a relatedapproachthat is lessrestrictive

thanprecisespeculationbut requiresmorecapableanalysis.

The cache-missdeferraltechniqueexploits a combinationof both strategies. While the ap-

proachis not strictly tied to PreciseSpeculation,it is proposedin this work for operationsthat

areprecise-specuative. The advantagesof usingthis modelwill be discussedin Section4. The

recovery from adeferredoperationusestheinline recoverymechanismpresentedin [12].

3.1 Precise speculation model

Precisespeculationwasproposedin [1?] to minimize the restrictions= placeduponthe control

anddataspeculationacrosspotentially= exceptinginstructions,aswell asspeculativerelocationof

themand= brancheswhilecompletelypreservingboththeorderingandtheliveness= requirements

to maintainpreciseexceptions.Bothpotentiallyexcepting= instructionsandbranchescanchange

the control flow. Speculative = instructionsmustnot destroy the contentsof registersthat may

be life = if this not sequentialpath is taken. The mechanismprovidesa separate= speculative

registerfile wherespeculative instructionswrite their = results.At commit time, thearchitectural

registersareupdated.= Non-speculative instructions,on the otherhand,work directly with the

= architecturalregisters. Whena checkdetectsany speculative exception,= the contentof the

speculativeregisterfile is discarded,anda= transitionto recoverymodeis thenforced.Somecode

is reexecutedand= exceptionsarecleareddueto completionof pendingeventor are= reproduced

in their properorder. It shouldbenotedthantheorderof = storesis neverchangedandthatstores

areneverspeculated.

If a takenbranchleadsto skip a commit,theassociatedpending= speculativeexceptionsare

no moreneeded,andcanbecleared(?).

5

As saidbeforeandexplainedin detailin [1?], precisespeculation= requiresaspecialregister

file thatcontainsaspeculativehalf and= non-speculativehalf aswell asaS-valid bit to specifythe

validity of = thefirst one. Non-speculative writesalwaysupdatebothhalvesand= clearS-valid.

Speculative instructionswrite only thespeculativehalf = andsetS-valid. All readsfrom aregister

aredonefrom thespeculative = half. Speculative readsleave theS-valid bit unchanged.Explicit

commit= instructionsareno-opscomposedof thesourcesreadyfor committing.= Theseonesand

non-speculativereadscleartheS-valid bit and,if it = wasset,commitstheoutstandingspeculative

value,copying it to the = non-speculative half. The completeregisterfile canbe restoredto a =

non-speculativestateby copying thenon-speculativehalf to the= speculativehalf for eachregister

andsettingits S-valid bit.

At runtime,speculative branchesexceptsilently, meaningthat they flag = an exceptionbut

otherwisedo nothing. Non-speculative branchesexcept= if eithertheinstructionitself causesan

exceptionor if apreceding= speculative instructionsilentlyexcepted.At this event,theregister=

file is restoredto non-speculativestateandcontrol is transferredto = =85?a point prior to any of

thespeculatedinstructions,executingin = recoverymode(?).

Precisespeculationprovidesgreaterfreedomin codemotion by allowing = the merging of

basicblocks.

3.2 Exception recovery model

EPICarchitectureemploys speculationto initiate loadsfrom memory= earlierin the instruction

stream.Becausemoved instructionscan= produceexceptionswhich cannotoccurin sequential

programorder, = mechanismmustensurethat exceptionsareproperlyhandled.Memory load =

is brokeninto speculative loadandcommit instructions,which verify = andgenerateexceptionif

necessaryandcheckfor load-storeconflicts. Load speculationdesigntries to avoid unnecessary

cachemissesaswell = asunwantedpagefaults.A speculationbit (S-bit) is setfor any = operation

which is controlspeculated,or datadependenton = data-speculative load. Non-speculative oper-

ationsreportexceptions= immediately. But the architecturemustprovide mechanismsto detect

= potentialexceptionson control-speculativeoperationsasthey occurand= to recordexceptions

until check.For this purpose,anexceptionbit = (E-tag)is addedto eachregister, indicatingthat

exceptionoccurred= duringgenerationof valuestoredin associatedregister. E-tagis = forwarded

6

with its associatedregister. Architecturemustbedesignedto allow recovery from exceptionson=

controlspeculation.TheIMPACT EPICrecoverymodel,basedon an= improvedSentinelmodel,

addedan R-bit to eachregister, which is used= to selectively executeonly data-flow successors

of excepting= speculativeoperationsduringrecovery. Every time anoperationfinishes= without

exception,the E-tag in destinationregister is clearedand= resultstoredin destinationregister;

otherwiseprogramcounteris = storedinto destinationregisterandE-tagin destinationregisteris

= set.If sourceoperandin registerhasits E-tagset,programcounter= from thissourceoperandis

copiedinto destinationandE-tagin = destinationregisteris set.In this way exceptionsarepropa-

gateduntil = a non-speculativeoperationis executed,which make check,or an= explicit commit

instructionis reached.If checkdiscoversoneof source= operandhasE-tagset,thenexceptionis

triggered.=20

One of key advantageof EPIC exceptionrecovery model is addition of = selective inline

recoverymechanismfor fix up of speculativegenerated= exceptionsor datadependencememory

conflicts. For this purposethe = R-tagis addedto eachregister, usedto identify operationsthat

are= data-flow dependenton the exceptingspeculatedinstruction. In EPIC = modelsemantic,

branchesandspeculativeoperations(with S-bit)which= aredata-flow dependentonvaluesnewly

generatedin recoveryare= executed,until checkis reached.Theseinstructionsmusthave their =

registersourcesR-bit set.

Recoverycanstartin casethatspeculatively generatedoperand= indicatingexceptionis used

non-speculativelyandthereforeagenuine= exceptionis indicated,thenresolutionof exceptionand

re-executionof = dependentinstructionsarerequiredto programexecutioncontinue.= Recovery

startsin casethatdataspeculationchecksignalsthat= speculative loadconflictswith intervening

store,re-executionof load= anddependentinstructionsis required.In bothcasestherecovery =

predicate(pR)is setto indicaterecoverymode.Theoperationatthe= recoverypoint is re-executed

non-speculatively, and any exceptionis = raisedimmediately. The pR is an implicit predicate

to all operations,= andwhen is set, instructionsbehave with accordingrecovery semantics.=

During recovery, all speculative operationsdependenton operations= which trigger exception

which recovery is in progressmustbe executed= until checkoperationwhich initiated recovery

is reached.These= instructionsmusthave in their registersourcesR-tagset.When= speculative

instructions(including instructionwhich generates= exception)commit resultsduring recovery

7

mode,theR-tagson their= destinationregistersareset.Following non-speculativeexecutionof =

instructionwhichproducesexception(includingexceptionhandlingif = need),recoverycontinues

with re-executionof flow dependent= speculative instructions. During this phasebranchesand

speculative = instructionswith at leastoneR-tagsetfor sourceoperandare= executed.Because

executionof branchinstructionsis requiredfor = original controlpath,branchesmustbeexecutes

independentof pR = value. The branchpredicatemust have samevalue in recovery asduring

= executioninside original executioncode. Recovery must executebranches= and dependent

speculative operationsuntil R-tag on non-predicate= register (predicateregister, which cannot

initiate recovery, shouldnot = indicatethatrecovery is completed)sourceoperandreaches= non-

speculativeuse.Only non-predicateregister’sR-tagcanterminate= recoverymode,whatis when

homeblockof exceptingspeculation= instructionhasbeenreached.Now, if nopendingexception

is indicated= by sourceoperandE-tagsthenoriginalexceptionor conflict is fixed,= pRis cleared,

andexecutioncontinues.During recovery, propagationand= generationof E-tagsoccursin same

way asduringnormalexecution. If = E-tagsaresetduringa non-speculative useof registerwith

R-tagset= is reached,thenadditionalexceptionoccurredduringrecoveryfrom = initial exception.

In this case,recovery restartsfrom the new = exceptinglocation. Using this approachin EPIC

architectureduring recovery can be fetched= a lot of unusableinstructions,but this approach

preventcodebloating= by selectivere-executionof existingcode.

8

4 Cache-miss Stall Deferral

Thissectionpresentsthearchitecturesemanticsthatenablecache-missstalldeferral.As discussed

is Section3, PreciseSpeculation[13] hasbeenusedin ROAR to allow instructionreorderingwithin

an optimizedtracestoredin a memory-basedcodecache. Run-timeoptimizationusessuchre-

orderingto adapttheoptimizationof thetracesto theobservedexecutionprofile. Thecache-miss

deferraltechniquesimilarly exploits this speculationsupportto allow the in-ordercoreto adapt

executionto thevariablelatency of memoryoperations.

As originally presented[14],theselective inline recovery modelwasproposedfor thepoten-

tial deferralof both faultsandcachemissesfor control-speculative loads. Sincepagefaultsare

typically infrequentandquite expensive to handle,deferralof faultsfor speculative loadsseems

advantageous.However, the trade-offs for deferringcachemissesare much lessclear. Cache

missesaremuchmorecommonthanfaultsandcanbehandledwithout blockingexecutionof the

currentthread.Deferringcachemissesis advantageousin caseswhentheloadis speculatedby the

compilerfrom an instructionblock that is not subsequentlyreached.Accordingto [14] this situ-

ationoccursfrequently. However, in caseswherethe load’s homeblock is reachedandrecovery

is initiated,thecostof recovery canbeexorbitant.Likely for this reason,PreciseSpeculationwas

introducedto supportrecoveringonly from spuriousfaultsgeneratedby run-timespeculation,and

thuswasnot intendedto supportdeferringcachemissesfrom speculativeoperations.

4.1 Execution overview

In processorswithout dynamicscheduling,instructionsare issuedsequentially. Whena depen-

dency is not metbecauseanoperationsourceis not ready, instructionissuestalls;oncethedepen-

dency is met,instructionissueagainproceeds.Thisbehavior preventstheexecutionof subsequent,

independentoperationsfrom overlappingwith thedatacachemiss.In Figure1(a),thetwo loadop-

erationsareindependent,but becausethesecondloadfollowstheconsumerof thefirst, it is trapped

behindconsumerwhenever it is stalled.It is possiblethatbothloadswill missin thecachecausing

two sequentialstalls.With a differentorderof thesameinstructionsin Figure1(b), thetwo loads

areissuedbeforeany consumercancauseastall. Whenbothloadsmissin thecache,thehandling

of themissesarehandledsimultaneouslyduring thestall. Suchan instructionorderingwould be

9

ld [r1]r2 ld [r1]r2

r5ld [r4]

add r3 r2

add r3 r2

add

(b)

r5r6 add r5r6

r5ld [r4]

stall

stall

overlapped
stalls

(a)

Figure1: Two alternative instructionschedules;(a) memoryaccessare performedsequentially
allowing two possiblestalls(b) memoryaccessesareoverlappedallowing only onepotentialstall
location.

foundby dynamicschedulingwhenever thefirst loadmissedin thecache.A staticcompilercould

attemptto scheduleinstructionsin an attemptto allow an in-orderprocessorto overlapasmany

loadmissesaspossible.However, at compile-timeit is not easyto determinewhich instructions

arelikely to missin thecache.In addition,suchanorderingmightnotbethebestschedulefor the

instanceswhentherearenot misses(which is oftenthetypical case).

With cache-missstall deferral,whena speculativeoperationwould normallystall becauseof

a producer’s cachemiss, its executionis deferredwhile continuingexecutionto subsequentin-

structions.Suchinstructionsmight includeloadswhichalsomissin thecacheasin theexamplein

Figure1. Operationsdependentuponthedeferredinstructionareskipped,while independentin-

structionsareexecuted.Eventually, re-executionof all deferredor skippedinstructionsis initiated

at a point at which speculationcannotcontinue.Using in-line recovery, control is returnedto the

locationof thedeferralandonly the instructionsnot originally executedareperformed.In some

cases,executionfrom acontrol-speculativedependentof aspeculativeloadmightneverreachnon-

speculativeconsumers.In thesecases,stallson this dependentsarefruitless,andcache-missstall

deferralavoidsre-executionof them.

4.2 Cache-miss deferral recovery model

Operationundercache-missstall deferral is shown in the example in Figure 2(a). If precise-

speculative load operationA missesin the cache,the miss can be handledas a normal, non-

10

r5, r6r8

r2, 4

cmp p1 r11 > 0

N(p1) branch

0
1
1
0

0
0

1
0

0
1
1
1

0
0
0
0

(d)

(e)

0
0
1
1r4

r3
r2
r1

r4
r3
r2
r1

r4
r3
r2
r1

A

B

1

C

D

F

G

H

I

sub

ld.ps

shr.ps

ld.ps r9

[r1]r2

[r8]

ld.ps

r3

r4

add

J

and.psr1

[r3]

st r11

K

r8, 1

L

r2,r9

[r6]

r11

commit

result of G
result of A

Reg Value

result of G
result of A

address of C

Reg Value

result of C

result of C
result of E

(a)

commit r2,r3

r1, r4, r9

RE

RE

result of G
result of A

address of C

Reg Value

address of C
address of C

Reg Value RE

(b)

(c)

RE

0
0

1

0
1

0r4
r3
r2
r1

0

0
0

0
initial r1 val

E

unknown

address of C 0

Figure2: Cache-missstall deferraloperation

blockingmiss. However, aftersucha miss,whenoperationC is reached,a stall would normally

occursincer2 is not ready. However, in a way similar to theoperationof thespeculationmodel

in [12] explainedin Section3, operationC will insteadmark its destination,r3, with an E-tag

denotingthat an “exceptional”conditionhadoccurred.This bit continuesto shareits operation

with the original exceptionfault deferral functionality. Sincea real fault hasnot occured,the

system-level exceptionflag is not setandthusa precise-speculative restorewill not needto occur.

Additionally, the addressof operationC is placedin r3 to enablere-executionof this skipped

instruction. Later speculative consumersof r3 (like operationE) will similarly be skipped,and

will passon theaddressof operationC throughto their destinations.

Instructionsthatareindependentof operationA canexecutenormallyandwill notneedto be

reexecuted.Theseinstructionscanincludestoreslike operationH. This storemustnot aliaswith

the loadsspeculatedabove it unlessthe load is alsodata-speculative (data-speculative operations

canalsobecorrectlyhandledthroughthenormaldata-speculationfailurerecovery from [12]). If

later instructionslike G consumer2 after load A hascompleted,they will receive the correct

value of r2. Otherwisesuchoperationswould behave exactly like operationC, by deferring

their executionandpropagatingtheir addressandtheE-taginto their destinationregister. When

operationA completes,it will write right its valueinto r2 andwill user2’s R-tagto indicateif a

dependentinstructionwasdeferredandneedsto bere-executedduringrecovery. It is importantto

11

notethatthis is aslight departurefrom thepreviouslyproposedinline recoverybehavior; theneed

for markingr2’s R-tagat this point will be explainedin Section3. By allowing A to complete

its operation,this loadwill not needto be reexectued,andsubsequentdependantoperationsthat

occurafterA hascompletedwill executewith thecorrectsourcevalues.

In somecases,re-executionof defferedinstructionsis not necessary. ConsiderinstructionD

in Figure2(a). If this load operationmissesin the cache,the executionof instructionG might

beskipped.If branchK subsequentlyleavesthetraceshown in Figure2, this will causea restore

conditionwhereall precise-speculativevaluesarereplacedwith valuesfrom thearchitecturalstate.

This eliminatesandE-tagson registersr1 andr9. Sincethe resultof the speculative chainof

instructions,D � G, is not commited,theG’s stall is avoidedaltogether.

Later, re-executionof deferredinstructionsmight needto occur. A non-speculative depen-

dentof an antecedent,deferredmisswill requirethe recovery from that deferral. SincePrecise

Speculationallowsthespeculationof everyoperationexceptfor stores,instructionissuecannever

proceedbeyond dependentstores.Oncere-executionis initiated by a non-speculative consump-

tion of a registerwith a setE-tag,control will move to the operationwhoseaddressis storedin

the consumedregister. If the instructioncausingre-executionhasmultiple sourceregisterswith

E-tagsset,thesourcewith theearliestaddressis chosenasthetargetinstructionfor beginningthe

re-execution.As will beexplainedin Section4.3,becauseof thesemanticsof PreciseSpeculation,

this choicecaneliminatecaseswheremultiple re-executionsof thesametraceareneeded.

Theregisterfile contentsfor theexamplein Figure2(a)atinstructionF is shown in Figure2(b)

for thecasewhereloadA hadmissedin thefirst level cache.InstructionsC andE weredeferred

andthusthe destinationregistersr3 andr4 containthe addressof instructionC andhave their

E-tagfieldsset.

In this example,the latency of loadA wasassumedto beshortenoughthatoperationG did

not needto be deferred.WhenA completes,it writes registerr2 andsetsr2’s R-tagsincethe

instruction,C, wasdeferred.OnceinstructionI is reached,recovery will berequiredsinceoneof

I’s sources,r3, hasasetE-tag.Theregisterfile statusat this point is shown in Figure2(c).

With recovery initiated,theprogramcounteris movedto theaddressof instructionC andthis

instructionwill beexecutedasanon-speculativeoperation.At this point,sincer2 is available,no

stall is neededfor instructionC andit cancomputer3’s value,clearits E-tagandsetits R-tag.

12

Theregistercontentsat this pointareshown in Figure2(d).

The R-tagbits will serve to indicatewhich instructionsneedto be re-executedbecauseof

a new sourcevaluebeingavailable. Sincethe R-tagof r3 is set, re-executionof E is needed.

While it is correctto re-executeany instructionlike G becauseoneof its sourceshasan R-tag

set,this executioncanbeavoidedsinceG’s destinationdoesnot have anE-tagsetandthusmust

havereceivedthecorrectsourcevaluesduringtheoriginalexecution.Finally, onceinstructionI is

reached,re-executionhascompletedandthepR bit canbeclearedandexecutioncancontinueas

normal.Thestatusat thispoint is shown in Figure2(e).

Sincethedeferredloadcontinues,... overlapwith eventslikebranchmispred.

4.3 Deferral Implementation

If only traditionalspeculation...

4.4 Preservation of register lifetimes

13

Table1: SimulatedEPICmachinemodel.
Parameter Setting

Instructionissue 8 units
Integerarithmeticandlogic unit 5 units
Floatingpointarithmeticunit 3 units
Memoryunit 3 units
Branchunit 3 units
Branchpredictor 10-bit historygshare

3 predictionspercycle
BTB size 1024entry
RAS size 32entry
Branchresolution 7 cycles
LD/ST buffer size 8 entryeach
L1 datacache 64KB
L1 instructioncache 64KB
Unified L2 cache 512KB
BBB associativity 4-way
NumBBB sets 512set
Candidatebranchthreshold 16
Refreshtimer interval 8192branches
Cleartimer interval 65536branches
Hot spotdetectioncountersize 13bits
Hot spotdetectioncounterinc 2
Hot spotdetectioncounterdec 1
Execandtakencountersize 9 bits

Table2: Benchmarksandinputsused
in experiments.

Benchmark Inputs Instructions

099.go A: SPECTrain 338M
124.m88ksim A: SPECTrain 89M

A: SPECTrain 122M
130.li B: 6 Queens 32M

C: ReducedRef. 362M
A: SPECTrain 1094M

132.ijpeg B: CustomFaces 57M
C: CustomScenery 320M
A: SPECTrain1 1512M

134.perl B: SPECTrain2 28M
C: SPECTrain3 8 M

164.gzip A: ReducedTrain 1902M
175.vpr A: SPECTest 1012M
181.mcf A: SPECTest 105M
197.parser A: UMN sm red 178M

A: UMN sm red 63M
255.vortex B: UMN md red 315M

C: UMN lg red 886M
300.twolf A: UMN sm red 167M
mpeg2dec A: MediaTrain 99M

5 Experimental Results

6 Future Work

7 Conclusions

References
[1] S.WeissandJ.E. Smith,“Instructionissuelogic in pipelinedsupercomputers,” IEEE Transactions on Comput-

ers, vol. C-33,pp.1013–1022,November1984.

[2] W. W. Hwu andY. Patt,“Checkpointrepairfor highperformanceout-of-orderexecutionmachines,” IEEE Trans-
action on Computers, vol. C-36,pp.1496–1514,December1987.

[3] P. P. Chang,W. Y. Chen,S. A. Mahlke, andW. W. Hwu, “Comparingstaticanddynamiccodeschedulingfor
multiple-instruction-issueprocessors,” in Proceedings of the 24th Annual International Symposium on Microar-
chitecture, pp.25–33,November1991.

[4] V. Bala,E. Duesterwald, andS. Banerjia,“Dynamo: A transparentdynamicoptimizationsystem,” in Proceed-
ings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation, pp.1–12,
June2000.

[5] S. J. PatelandS. S. Lumetta,“rePLay: A hardwareframework for dynamicoptimization,” IEEE Transactions
on Computers, vol. 50,pp.590–608,June2001.

[6] M. C. Merten,A. R. Trick, R. D. Barnes,E. M. Nystrom,C. N. George,J.C. Gyllenhaal,andW. W. Hwu, “An
architecturalframework for runtimeoptimization,” IEEE Transactions on Computers, vol. 50,pp.567–589,June
2001.

[7] M. C. Merten,Run-Time Optimization Architecture. PhDthesis,Universityof Illinois, Urbana,IL, 2002.

14

[8] M. SchlanskerandB. R.Rau,“EPIC: An architechurefor instructionparallelprocessors,” Tech.Rep.HPL-1999-
111,Hewlett-PackardLaboratory, 1501PageMill Road,PaloAlto, CA 94304,February2000.

[9] P. H. Wang,H. Wang,R. M. Kling, K. Ramakrishnan,andJ. P. Shen,“Registerrenamingandschedulingfor
dynamicexecutionof predicatedcode,” in Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, pp.15–25,January2001.

[10] D. M. Tullsen,S. J. Eggers,andH. M. Levy, “Simultaneousmultithreading:Maximizing on-chipparallelism,”
in Proceedings of the 22nd International Symposium on Computer Architecture, pp.392–403,June1995.

[11] P. H. Wang,H. Wang,J. D. Collins, E. Grochowski, R. M. Kling, andJ. P. Shen,“Memory latency-tolerance
approachesfor itaniumprocessors:Out-of-orderexecutionvs. speculative precomputation,” in Proceedings of
the 8th International Symposium on High-Performance Computer Architecture, pp.167–176,February2002.

[12] D. I. August,D. A. Connors,S.A. Mahlke,J.W. Sias,K. M. Crozier, B. Cheng,P. R. Eaton,Q. B. Olaniran,and
W. W. Hwu, “Integratedpredicatedandspeculativeexecutionin theIMPACT EPICarchitecture,” in Proceedings
of the 25th International Symposium on Computer Architecture, pp.227–237,June1998.

[13] E.Nystrom,R.D. Barnes,M. C.Merten,andW. W. Hwu, “Codereorderingandspeculationsupportfor dynamic
optimizationsystems,” in Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques, pp.163–174,September2001.

[14] D. I. August,J. W. Sias,J. Puiatti, S. A. Mahlke, D. A. Connors,K. M. Crozier, andW. W. Hwu, “The pro-
gramdecisionlogic approachto predicatedexecution,” in Proceedings of the 26th International Symposium on
Computer Architecture, pp.208–219,May 1999.

15

